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EE 5320
Computational Electromagnetics

Lecture #9

Perfectly Matched Layer

¢ ¢ ¢ These notes may contain copyrighted material obtained under fair use rules. Distribution of these materials is strictly prohibited & ¢ ¢
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Background Information

Lecture 9
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Tensors

Tensors are a generalization of a scaling factor where the direction
of a vector can be altered in addition to its magnitude.

Scalar Relation = 17'/ ————————————————————— ﬁ I?

V/ _____________________ — [a] 17 & Tensor Relation
xx axy a,. Vz
[a] V=la, a, a.|V,
a., zy 2z I/z
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Reflectance from a Surface with Loss CEN

Complex Refractive Index
~ . n = ordinary refractive index (oscillation )
n=n+ JjK

K = extinction coefficient (decay)

Reflectance from a Lossy Surface

(1-n) +&°

1+n) +x°
(1+n)

air

** Loss contributes to reflections

Lecture 9 Slide 5

Reflection, Transmission and Refraction at an Interface @Elm
Angles
einc = eref = Hl

nsin6, =n,sinf, Snell's Law

TE Polarization
_ 1n,co086,—n,cosb,
1, cos 6, +1, cos b,

2n, cos 6,

b =
1, cos 6, +1n, cosb,

TM Polarization

_ n,cos86,—n, cosb,

1, cos 6 + 1, cos b,

2n, cos b,

™5, cos@ +1,cos6,

n, = refractive index in region i

Lecture 9 = lmpedance in region ! Slide 6
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Maxwell’s Equations in Anisotropic Media CEM

Maxwell’s curl equations in anisotropic media are:

VxH = jos,[&,|E VxE =—jou,[u|H

These can also be written in a matrix form that makes the tensor
aspect of 1zand £ more obvious.

£ 0 -ZIl|H, |=jos|e, ¢, €.]|E,
-5 & 0] £, &, & || E.
0 -& £ & ooty Aj H,
£ 0 —ZIE |=-jouy|p, u, u.|H,
-5 & 0 |LE] M Moo || H.

Lecture 9 Slide 7

&, O 0
0 ¢, O isotropic
| 0 0 &
_‘9 0 0 ] Note: terms only arise in the off-
o diagonal positions when the tensor
0 & 0 uniaxial is rotated relative to the coordinate
° system.
10 0 &
g 0 0
0 ¢ O biaxial
10 0 &
Lecture 9 Slide 8




Anisotropic Media

Maxwell’s Equations in Doubly-Diagonally

0 -% & |[H, g 0 O[E . o O
% 0 -% H, |=jog| 0 &, 0 |E, = V| = 0 py,
- % £ 0| H, 0o 0 E. 2 . 0 0

6‘ZZ

o o ©
o |
2 ©
ol wp
Pl
|
1
&y &

0
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Maxwell’s equations for diagonally anisotropic media can be written
as

£ & [H,] e +0"[jw 0 0 E,
2z Ll H, |= jos, 0 sy+0'f/ja) 0 E,
-2 £ 0 |H, ] 0 0 e.+o’/jo|| E.

0 -2 FE] u ol |jo 0 0 H,
£ 0 -Z|E |=-jou, 0 u,+ol fjo 0 H
22 0 |\E 0

i3 x L=z

w.+oljo| H,

0[H,
0|4,
u. || H.

¥
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Scattering at a Doubly-Anisotropic Interface

Refraction into a diagonally
anisotropic materials is described

a 0 0

o [u]=l5]=]0 b 0
) . 0 0 ¢
sin @, =+/bcsin 6,

Reflection from a diagonally

anisotropic material is
Vacos6, —/bcosb,
7 —
TE
\a cos 6, +\/gcos<92
—vacos b, +\/Ecost92
4 =
™
\acos6, + Jb cos o,
Sacks, Zachary S., et al. "A perfectly matched anisotropic absorber for use as an absorbing\
boundary condition." IEEE Trans. Antennas and Propagation, Vol. 43, No. 12, pp. 1460-1463, 1995.
Lecture 9
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Notes on a Single Interface CEM

* Itis a change in impedance that causes reflections
* Snell’s Law quantifies the angle of transmission

* Angle of transmission and reflection does not
depend on polarization.

* The Fresnel equations quantify the amount of
reflection and transmission

* Amount of reflection and transmission depends
on the polarization

Lecture 9 Slide 11

Uniaxial
Perfectly Matched Layer
(UPML)

S. Zachary, D. Kingsland, R. Lee, J. Lee, “A Perfectly Matched Anisotropic Absorber for Use as an
Absorbing Boundary Condition,” IEEE Trans. on Ant. and Prop., Vol. 43, No. 12, pp 1460-1463, 1995.
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Boundary Condition Problem

If we model a wave hitting some device or object, it will scatter the applied wave into potentially
many directions. We do NOT want these scattered waves to reflect from the boundaries of the
grid. We also don’t want them to reenter from the other side of the grid (periodic boundaries).

?

How do we

/ ? prevent this?

T

Lecture 9 Slide 13

How We Prevent Reflections in Lab CEM

In the lab, we use anechoic foam to absorb outgoing waves.

Lecture 9 Slide 14
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Match the Impedance

We need to introduce loss to absorb outgoing waves, but we also need
to match the impedance to the problem space to prevent reflections.

introduce loss here
~ / s N
&, =&, + J& ;

|

adjust this to control impedance

Lecture 9 Slide 17

More Trouble?

By examining the Fresnel equations, we see that we can
only prevent reflections from the interface at one
frequency, one angle of incident, and one polarization.

_ 17,086, —1,c0s 6, 0 > =1 cos 0,

" p,c0s6, +1,cos b, > " cos,

; _ 11,086, —1,cos G 0 > n=p cos G,
™M 5 cos8 +n, cosé, > "cosh,

Lecture 9 Slide 18
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Anisotropy to the Rescue!!

It turns out we can prevent reflections at all angles and for all
polarizations if we allow our absorbing material to be doubly-
diagonally anisotropic.

=
T

|
s kA

e
:
-
-
-
-
-

<
E%; :u

T,
. F
.

e U e
B xax%xa -
e - .
- - .
.- - .
e - .
e = =
e LR e
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Problem Statement for the PML

Free Space »
Hy, &

Lecture 9 Slide 20
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Designing Anisotropy for Zero Reflection (1 of 3) CEM

We need to perfectly match the impedance of the grid to the
impedance of the absorbing region.

n=,— everywhere
£

One easy way to ensure impedance is perfectly matched is:

a 0 0
[n]=lz]=[0 b o
_O 0 |

Lecture 9 Slide 21

Designing Anisotropy for Zero Reflection (2 of 3) CEM

If we choose \/bc =1, then the refraction equation reduces to
sin 91 =/ bc sin 02 =sin 02 —> 01 = (92 No refraction/

The reflection coefficients now reduce to

; _\/;cosﬁl—\/zcosez_\/Z—\/Z
" \/Zcos«91+\/gcos:92 Ja +-b

—Jacos6 ++bcosl, —Ja+-/b

V. =
™ \/Zcos91+x/3c0592 \/Z+\/E

These are no longer a function of angle!! ©

Lecture 9 Slide 22
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Designing Anisotropy for Zero Reflection (3 of 3) CEM

If we further choose a = b, the reflection equations reduce to

o Na=b_
TE \/;-i-\/g
Ja+b _

oy =—7——=0

Ja+b

Reflection will always be zero regardless of frequency, angle of
incidence, or polarization!! ©

0

Recall the necessary conditions: [vbc =1 and a=5b

Lecture 9 Slide 23

The PML Parameters (1 of 3)

So far, we have

a 0 0 i
[u.]=[e]=[0 b 0 a=b=—
0 0 ¢ ¢

Thus, we can write our PML in terms of just one parameter s..

SZ O O /——\This form of tensor
. is why we call this a
[SZ] =10 s 0 S, = a —]ﬂ uniaxial PML.
-1
0O 0 =

This is for a wave travelling in the +z direction incident on a z-axis
boundary.

Lecture 9 Slide 24
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The PML Parameters (2 of 3)

We potentially want a PML along all the borders.

Lecture 9

s 0 0 s, 0 0
[s]=] 0 s, of [S]=|0 s' 0| [s]
0 s, 0 0 =,

SySZ O 0
sx
[s1=[s)[s,]{s]=] 0 % o
y
0 0 SxSy
L SZ .

Slide 25
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UPML in Cylindrical and Spherical Coordinates CENI

Cylindrical Coordinates

PS5 0 0 Spherical Coordinates
o (7Y 1 |
Sl=| 0 Liszsp 0 - — 00
P ry.Ss,
oS, S|= 0 s, 0
0 0 —
i P S, ] 0 0 S,

F. L. Teixeira, W. C. Chew, “Systematic Derivation of Anisotropic PML Absorbing Media in Cylindrical and Spherical
Coordiantes,” IEEE Microwave and Guided Wave Letters, Vol. 7, No. 11, pp. 371-373, 1997.

Lecture 9
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Two-Dimensional UPML

For 2D simulations in the x-y plane, sz = 1 and the UPML tensor

reduces to
s
Sx
S
Sf=l0 = 0
Sy
0 S.S

ik b

0

i
e
-
-
o
-
o
e
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Incorporating a UPML into
Maxwell’s Equations

Lecture 9

Slide 29

Incorporating the UPML Into Maxwell’s Eqs. CEN

Maxwell’s Equations UPML

This set of equations does includes devices,
but no UPML at the boundary to absorb
outgoing waves.

This set of equations includes the UPML to
absorb outgoing waves, but does not
include devices or real materials.

VxE=k[p]H VxE =k [S|H
VxH =k[e,]E VxH =k, [S|E

% |

Maxwell’s Equations with UPML

= & This approach incorporates the PML in a way that

X =
VxE ko [’u’][S]H is independent of the materials. It keeps the PML
V x I?I _ ko [gr][S]E impedance matched to the background materials

automatically.

Lecture 9
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Maxwell’s Equations with a UPML

Maxwell’s equations with a UPML

VxE =k [ ][s]A e e Mo I

= - 8’” = g)’x gyy yz [’u r ] = ’u x ’u y ’LI yz
VxH =k [z, ][S]E . &, & Moo My, M
The UPML can be incorporated into the _ﬁ 0 0 ]
material tensors directly. s,

- = _ Sy,
VxE=k[]H [1£]=[1][5] [s]=) 0 = 0
Vi [] [e1]=[=][5] L. s

S, i

This let’s us formulate and implement a numerical
algorithm without having to explicitly consider the PML.
It is simply incorporated into the material tensors.

Lecture 9 Slide 31

Vector Expansion

Assuming only diagonal tensors

e, 0 0 #, 0 0
[£]=| 0 &, 0 []=| 0w, 0
0 0 ¢ 0 0 u.

2z

Maxwell’s equations expand to

- 7 OH 5.S
%_aEy:koﬂ 5,8: ot OH, rope S p
oy oz s, T oy /4 s,
OE OE SS. ~ OH_  0oH S8
X z — X"z H X __ z :k X"z
0z Ox o s, ’ Oz Oox 0% s, 7
OE, _OE, _ B Sy g aF[y ~ oH i SS g
ax 6_)/ 0/ zz SZ z ax ay 0¢zz SZ z

Slide 32
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Absorb UPML into i and (3D Grid) CEM

We can absorb the UPML parameters into the material functions.

s S s.S
"o oz ro_ oz
Moo = Hy gx.x - gxx
SX SX
A A
L Xz r x"z
Hy = Hy s E =&y s
y y
S8 S8
ro_ Xy ro_ Xy
H. =M. gzz - gzz
SZ SZ

We can now write Maxwell’s equations as

0E. OE, - oA, oH, .

—= —a—’ =kl H, o azy =k E, This means we can

63’ o 4 - formulate a code as if

O0E. OF ~ OH_  ©OH , there was no PML. All we
x Tz - ! Zx Tz ke E .

0z  ox Fatt, H, oz ox have to do is modify the
OE. OF , oH oH materials being modeled
—L——==fku H, —L——~ =kl E. near the boundaries.

ox 0oy ox Oy

Lecture 9 Slide 33

Absorb UPML into i and (2D Grid) CEM

Let z be the uniform direction, then d/dz =0 and s, = 1.

We can still absorb the UPML parameters into the material functions.

S N
o Sy o ®y
Hoo = My gxx - gxx
SX SX
N N
o Sx = =
My = Hyy s Ew =&y s
y y
ro_ r_
H. = luzzsxsy gzz - gzzsxsy

We can now write Maxwell’s equations as

E Mode H Mode
oH 7 OE, OE, .~
» O 4ok, — =kl H,
ox oy ox oy
. = Oll'l;xl:lx oH, =k E,
oy oy
OE, ) 5 oH, ,
T kot H, T ke, E,

Lecture 9
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Implementing the PML

Lecture 9 Slide 35

The Perfectly Matched Layer (PML) CEM

The perfectly matched layer (PML) is an absorbing boundary condition (ABC) where the
impedance is perfectly matched to the problem space. Reflections entering the lossy regions
are prevented because impedance is matched. Reflections from the grid boundary are

prevented because the outgoing waves are absorbed. ' 20
o #

Lecture 9 Slide 36

12/7/2015

18



Typical Grid Schemes

20 cells 20 cells
<~ <~

20
cells

spacerl
region

Periodic Boundary
AJepunog d1poliad

20
cells
Periodic Devices Finite Devices

Lecture 9 Slide 37

Justification for the Spacer Regions

The refractive index is high inside the PML so evanescent waves can
become propagating waves, giving an escape path for power.

Lecture 9 Slide 38
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How to Calculate the PML Parameters

Maxwell’s Egs. with PML

VxE=k[u][s]H
VxH=k,[&][s]E

s S
=0 0
SX
S8
[s]: 0 Lz 0
Sy
0 0 SXSy
SZ
NGRID = [Nx Nyl;
NPML = [0 0 20 20];
[sx,sy] = calcpml2d (NGRID, NPML

Lecture 9

Computing PML Parameters
s, (x) =a, (x)[l + jn,0o. (x)]
s, (v)=a,(»)[1+ jne ()]

s.(z)=a, (Z)[1+j7700'; (Z)]

CEM

7, =376.73... = free space impedance

a,(x)=1+a,, -(x/L,) o 7x
) o, (x) =0}, sin 3L
a,(y)=1+a,, (y/L,) 2
a(z)=1+a,,(z/L.)" o, (y)=0,,sin’ [%J
0<a, <5 ol(z)=0 sinz[gj
3<p<s
Ohe ~1

)7
T Writing this function will be in homework ©

Slide 39

Visualizing the PML Loss Terms — 2D

CEM

For best performance, the loss terms should increase gradually into
the PMLs.

]
I o, () I l—’ o, (»)

Lecture 9 Slide 40
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Procedure for Calculating s, and s, on a 2D Grid CEM

1. Initialize s, and s, to all ones.
s.(xy)=s,(xy)=1

2. Fill in x-axis PML regions using two for loops.

NXHOHHHHNXHIL

3. Fill in y-axis PML regions using two for loops.

I INRAIL{G)

INRSE

Lecture 9 Slide 41

Note About x/L,, y/Ly, and z/L, CEM

The following ratios provide a single quantity that goes from 0 to 1 as you move
through a PML region.

X y z X, y,z = position within PML
— and — and — :
L L L,L, L, =size of PML

x y z

We can calculate the same ratio using integer indices from our grid.

X nx nx nx=1,2,..,NXLO

~ or
L NXLO  NXHI nx=1,2, .., NXHI

x

y ny ny ny = 1, 2, ey NYLO
-—r or
L, NYLO NYHI ny=1,2,..,NYHI

z nz nz nz=1,2,..,NZLO

~ or
L. NZLO NZHI nz=1,2,..,NZHI

Lecture 9 Slide 42
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Visualizing s, in 2D

% ADD XHI PML
for nx = 1 : NXHI

% ADD XLO PML
for nx = 1 : NXLO

sx (NXx-NXHI+nx, :) = ...
end

sx (NXLO-nx+l,:) = ...

\>

end

o) 77, o (Ge)]

560

NXLO

Nx-NXHI+1

Lecture 9 Slide 43

Visualizing s, in 2D

1 % ADD YLO PML
for ny = 1 : NYLO

%}@J)_iay(.)}.) [! _!%].'77057;(:‘)-}.)]|r4:— Sy (:,NYLO-ny+1) = ...

end

NYLO

% ADD YHI PML
for ny = 1 : NYHI

ST )=o) ()IEE- - ]

sy (:,Ny-NYHI+ny) = ..

Ny - NYHI + 1

Ny

end

Lecture 9 Slide 44
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Example Data for 2D

NGRID = [7 4]; a =3
ma
NPML =[2312]; 3
[sx,sy] = calcpml2d (NGRID,NPML) ; ol =
sx = 1.0e+03 *
0.0040 + 1.5069i 0.0040 + 1.50691 0.0040 + 1.50691 0.0040 + 1.5069i
0.0014 + 0.25901 0.0014 + 0.25901 0.0014 + 0.25901 0.0014 + 0.25901
0.0010 0.0010 0.0010 0.0010
0.0010 0.0010 0.0010 0.0010
0.0011 + 0.10461 0.0011 + 0.10461 0.0011 + 0.10461 0.0011 + 0.10461
0.0019 + 0.5337i 0.0019 + 0.5337i1 0.0019 + 0.53371 0.0019 + 0.5337i
0.0040 + 1.5069i 0.0040 + 1.50691 0.0040 + 1.50691 0.0040 + 1.5069i
sy = 1.0e+03 *
0.0040 + 1.50691 0.0010 0.0014 + 0.25901 0.0040 + 1.5069i
0.0040 + 1.50691 0.0010 0.0014 + 0.25901 0.0040 + 1.50691i
0.0040 + 1.50691 0.0010 0.0014 + 0.25901 0.0040 + 1.5069i
0.0040 + 1.50691 0.0010 0.0014 + 0.25901 0.0040 + 1.5069i
0.0040 + 1.50691 0.0010 0.0014 + 0.25901 0.0040 + 1.5069i
0.0040 + 1.50691 0.0010 0.0014 + 0.25901 0.0040 + 1.5069i
0.0040 + 1.50691 0.0010 0.0014 + 0.25901 0.0040 + 1.50691i
Lecture 9 Slide 45

PML is Not a Boundary Condition CEM

A numerical boundary condition is the rule you follow
when an equation references a field from outside the grid.

The PML does not address this issue.

It is simply a way of incorporating loss while preventing
reflections so as to absorb outgoing waves.

Sometimes it is called an absorbing boundary condition,
but this is still misleading as the PML is not a true
boundary condition.

Lecture 9 Slide 46
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Stretched Coordinate

Perfectly Matched Layer
(SC-PML)

Slide 47

The Uniaxial PML

Vszko[,ur:

[S]=

Slide 48
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Rearrange the Terms

We can bring the PML tensor to the left side of the
equations and associate it with the curl operator.

[S]' VxE =k, [ |H

The curl operator is now

[ 11 -2 2
S.S,S, 0 0 0 x
2
B

z
-1 _ -1 -1 9
[S ] Vx = 0 S.8,S, 0 0 -+
1 -1 o
0 5.8, —% 2 0

Lecture 9

[S]' VxH =k,[e,]E

Slide 49

“Stretched” Coordinates

Our new curl operator is

The factors s,, s,, and s, are effectively “stretching” the

coordinates, but they are “stretching” into a complex
space.

Lecture 9

Slide 50
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Drop the Other Terms

We drop the non-stretching terms.

Justification
Sf1rao )18
s;\s. 0z) s, 0z

reflections, sensitivity to angle of incidence, polarization, etc.

Lecture 9

Inside the z-PML, 5, = s, = 1. This is valid everywhere except at the
extreme corners of the grid where the PMLs overlap.

This also implies that the UPML and SC-PML have nearly identical performance in terms of

Maxwell’s Equations with a SC-PML

Slide 51

Maxwell’s equations before the PML is added are

VxE=k, [,u,,]l-:I

gxx gxy gxz luxx
= — [gV ] = gyx gyy gyz [’u r ] = 'Ll yx
V % H - ko [8,, ]E gzx gzy gzz Il'lzx

The SC-PML is incorporated as follows.

V,xE=—jo[u|H
V, xH = jo|c]|E

120
0 s, Oz
= L2
vsx_ s, Oz 0
18 Lo
s, oy s, Ox

Lecture 9

/ny ltlxz
ﬂyy /uyz
/uzy ll'lzz
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Vector Expansion

Maxwell’s equations with a SC-PML expand to

Fully Anisotropic Diagonally Anisotropic
i%_i?: O(EX,\’EX +€XVEy+gszz) i%_L a - kO XXEX
s, S, ’ Sy s, oz
1od, 1A LoA, 1A
— s T k(e E +e E +¢ E —— = =ke¢,E
S aZ Sx ax 0( e vy ” Z) § 62 Sx ax v
81:1 7 OH
L_Y_L%:ko(gﬂEv.}-gwEv+gZZEZ) i_y_iai:kogﬂEz
s, ox s, Oy T s, Ox s, Oy
1 0E, 1 0CE, - - ~ 10E, 10E >
—_— =k H +u H +u H —— Y =fou H
5 E o (1l +p H o+ H.) o s ookt
1 %E, 1 GE, - - i 1 0E, 10k,
P G P
1 0E, 1 GE, . . . 1 OB, 1 0E, 7
o s oy ol A A T s o .
X i
Lecture 9 olide 33
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PMLs Are Not Perfect

PML absorbing boundary conditions are not
perfect absorbers. They still reflecte waves!

+40.5

-0.5

-1.0

Slide 55
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Theoretical Performance

Given the following choice of PML parameters

10, 108, 10, (%) LY
Vo=—— A A = — = =
S, ox @ +Sy ayay +Sz 0z 4 Sy (x) 1+] ws, O, (JC) o-x,max [LX]
s (y)=1+jM o, (7)=0, e
¥ 0)30 y y,max Ly

Sz(z)=1+j"z_(z) 0. ()0 [Li]m

&,

We choose ;.. to achieve a target maximum
reflectance R at normal incidence according to

P (m + 1) InR We typically choose
o 2n,L, 3<m<4
4
O-i,max ~
A

Slide 56
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UPML Performance in FDFD

E Mode, NRES = 10 H Mode, NRES = 10

2 2

] 20 ] 20
o 3 o 3
& 0§ ® 0§
920 H 220 :
= -40 © P -40 ©
»n 3 ) o
- | = - ) =
s -50 s -50
210 210

o~
fn
3
=
oy
3 8

20 40 60 20 40 60
Angle of Incidence (degrees) Angle of Incidence (degrees)

E Mode, NRES =20 H Mode, NRES = 20

N
o
°
N
o
L o°
s

w
=]
8
S
w
o
&
S

&
3
&
3

IS
3
IS
3

a
3

N
o

S
PML Size (# Cells)
N
o
(ap) souejosyey

PML Size (# Cells)
N
o
(ap) souejsey

)
3

5
3

oP—
®

ar i
L2

20 40 60 20 40 60 80
Angle of Incidence (degrees) Angle of Incidence (degrees)
a,. =3
UPML performance if affected by ] and its size. "“;_3
H mode UPML exhibits slightly poorer performance. o
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UPML Vs. SC-PML
[ ]
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UPML Vs. SC-PML

Uniaxial PML

Benefits

Has a physical interpretation
Models can be formulated and
implemented without considering
the PML in the frequency-domain

Drawbacks

Can be more computationally
intensive to implement in time-
domain

Resulting matrices are less well
conditioned in the frequeny-
domain

Lecture 9

Stretched-Coordinate PML

Benefits

Less computationally intensive in
time-domain

More efficient implementation in
the time-domain

Matrices are better conditioned.

Drawbacks

Must be accounted for in the
formulation and implementation
of the numerical method.

Not intuitive to understand

Slide 59
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