<text><text><text><section-header><section-header><section-header><section-header>

Types of Anis	otropic Med	ia Cem
There are three bas	ic types of anisotro	ppic media
$egin{bmatrix} arepsilon_{ ext{iso}} & 0 & 0 \ 0 & arepsilon_{ ext{iso}} & 0 \ 0 & 0 & arepsilon_{ ext{iso}} \end{bmatrix}$	isotropic	
$\begin{bmatrix} \varepsilon_{\rm o} & 0 & 0\\ 0 & \varepsilon_{\rm o} & 0\\ 0 & 0 & \varepsilon_{\rm e} \end{bmatrix}$	uniaxial	<u>Note</u> : terms only arise in the off- diagonal positions when the tensor is rotated relative to the coordinate system.
$\begin{bmatrix} \varepsilon_{\mathrm{a}} & 0 & 0 \\ 0 & \varepsilon_{\mathrm{b}} & 0 \\ 0 & 0 & \varepsilon_{\mathrm{c}} \end{bmatrix}$	biaxial	
Lecture 9		Slide 8

Slide 12

More Trouble?
By examining the Fresnel equations, we see that we can
only prevent reflections from the interface at one
frequency, one angle of incident, and one polarization.

$$r_{\text{TE}} = \frac{\eta_2 \cos \theta_1 - \eta_1 \cos \theta_2}{\eta_2 \cos \theta_1 + \eta_1 \cos \theta_2} = 0 \quad \rightarrow \quad \eta_2 = \eta_1 \frac{\cos \theta_2}{\cos \theta_1}$$

$$r_{\text{TM}} = \frac{\eta_2 \cos \theta_2 - \eta_1 \cos \theta_1}{\eta_1 \cos \theta_1 + \eta_2 \cos \theta_2} = 0 \quad \rightarrow \quad \eta_2 = \eta_1 \frac{\cos \theta_1}{\cos \theta_2}$$
Leture 3

Designing Anisotropy for Zero Reflection (2 of 3) If we choose $\sqrt{bc} = 1$, then the refraction equation reduces to $\sin \theta_1 = \sqrt{bc} \sin \theta_2 = \sin \theta_2 \rightarrow \theta_1 = \theta_2$ No refraction/ The reflection coefficients now reduce to $r_{\text{TE}} = \frac{\sqrt{a} \cos \theta_1 - \sqrt{b} \cos \theta_2}{\sqrt{a} \cos \theta_1 + \sqrt{b} \cos \theta_2} = \frac{\sqrt{a} - \sqrt{b}}{\sqrt{a} + \sqrt{b}}$ $r_{\text{TM}} = \frac{-\sqrt{a} \cos \theta_1 + \sqrt{b} \cos \theta_2}{\sqrt{a} \cos \theta_1 + \sqrt{b} \cos \theta_2} = \frac{-\sqrt{a} + \sqrt{b}}{\sqrt{a} + \sqrt{b}}$ These are no longer a function of angle !! ©

12/7/2015

Vector Expansion	Cem
Assuming only diagonal tensors $\begin{bmatrix} \varepsilon_{r} \end{bmatrix} = \begin{bmatrix} \varepsilon_{xx} & 0 & 0 \\ 0 & \varepsilon_{yy} & 0 \\ 0 & 0 & \varepsilon_{zz} \end{bmatrix} \qquad \begin{bmatrix} \mu_{r} \end{bmatrix} = \begin{bmatrix} \mu_{xx} & 0 \\ 0 & \mu_{yy} \\ 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0\\ 0\\ \mu_{zz} \end{bmatrix}$
Maxwell's equations expand to	
$\frac{\partial E_z}{\partial y} - \frac{\partial E_y}{\partial z} = k_0 \mu_{xx} \frac{s_y s_z}{s_x} \tilde{H}_x$	$\frac{\partial \tilde{H}_{z}}{\partial y} - \frac{\partial \tilde{H}_{y}}{\partial z} = k_{0} \varepsilon_{xx} \frac{s_{y} s_{z}}{s_{x}} E_{x}$
$\frac{\partial E_x}{\partial z} - \frac{\partial E_z}{\partial x} = k_0 \mu_{yy} \frac{s_x s_z}{s_y} \tilde{H}_y$	$\frac{\partial \tilde{H}_x}{\partial z} - \frac{\partial \tilde{H}_z}{\partial x} = k_0 \varepsilon_{yy} \frac{s_x s_z}{s_y} E_y$
$\frac{\partial E_{y}}{\partial x} - \frac{\partial E_{x}}{\partial y} = k_{0} \mu_{zz} \frac{s_{x} s_{y}}{s_{z}} \tilde{H}_{z}$	$\frac{\partial \tilde{H}_{y}}{\partial x} - \frac{\partial \tilde{H}_{x}}{\partial y} = k_{0} \varepsilon_{zz} \frac{s_{x} s_{y}}{s_{z}} E_{z}$
Lecture 9	Slide 32

Slide 33

Absorb UPML into μ and ε (3D Grid) CEM

We can absorb the UPML parameters into the material functions.

$\mu_{xx}' = \mu_{xx} \frac{s_y s_z}{s_x}$	$\varepsilon_{xx}' = \varepsilon_{xx} \frac{S_y S_z}{S_x}$	
$\mu_{yy}' = \mu_{yy} \frac{s_x s_z}{s_y}$	$\varepsilon_{yy}' = \varepsilon_{yy} \frac{S_x S_z}{S_y}$	
$\mu_{zz}' = \mu_{zz} \frac{S_x S_y}{S_z}$	$\varepsilon_{zz}' = \varepsilon_{zz} \frac{S_x S_y}{S_z}$	
We can now write Maxwell'	's equations as	
$\frac{\partial E_z}{\partial y} - \frac{\partial E_y}{\partial z} = k_0 \mu'_{xx} \tilde{H}_x$ $\frac{\partial E_x}{\partial z} - \frac{\partial E_z}{\partial x} = k_0 \mu'_{yy} \tilde{H}_y$ $\frac{\partial E_y}{\partial x} - \frac{\partial E_x}{\partial y} = k_0 \mu'_{zz} \tilde{H}_z$	$\frac{\partial \tilde{H}_{z}}{\partial y} - \frac{\partial \tilde{H}_{y}}{\partial z} = k_{0}\varepsilon'_{xx}E_{x}$ $\frac{\partial \tilde{H}_{x}}{\partial z} - \frac{\partial \tilde{H}_{z}}{\partial x} = k_{0}\varepsilon'_{yy}E_{y}$ $\frac{\partial \tilde{H}_{y}}{\partial x} - \frac{\partial \tilde{H}_{x}}{\partial y} = k_{0}\varepsilon'_{zz}E_{z}$	This means we can formulate a code as if there was no PML. All we have to do is modify the materials being modeled near the boundaries.

ecture 9

Absorb UPML into μ and ε (2D Grid) CEM Let z be the uniform direction, then d/dz = 0 and $s_z = 1$. We can still absorb the UPML parameters into the material functions. $\mu'_{xx} = \mu_{xx} \frac{s_y}{s_x}$ $\varepsilon'_{xx} = \varepsilon_{xx} \frac{s_y}{s_x}$ $\mu'_{yy} = \mu_{yy} \frac{s_x}{s_y}$ $\varepsilon'_{yy} = \varepsilon_{yy} \frac{s_x}{s_y}$ $\mu'_{zz} = \mu_{zz} s_x s_y$ We can now write Maxwell's equations as E Mode
H Mode $\frac{\partial \tilde{H}_y}{\partial x} - \frac{\partial \tilde{H}_x}{\partial y} = k_0 \varepsilon'_{zz} E_z$ $\frac{\partial E_y}{\partial x} - \frac{\partial E_x}{\partial y} = k_0 \mu'_{zx} \tilde{H}_z$ $\frac{\partial \tilde{H}_z}{\partial y} = k_0 \mu'_{yy} \tilde{H}_y$ $- \frac{\partial \tilde{H}_z}{\partial x} = k_0 \mu'_{yy} \tilde{H}_y$ Leture 9
Side 34

12/7/2015

 $a_{\rm max} = 3$

 $\sigma'_{\rm max} = 1$

p = 3

Example Data for 2D

NGRID = [7 4]; NPML = [2 3 1 2]; [sx,sy] = calcpml2d(NGRID,NPML);

0.0040 + 1.50691	0.0040 + 1.5069i	0.0040 + 1.5069i	0.0040 + 1.5069i
0.0014 + 0.2590i	0.0014 + 0.2590i	0.0014 + 0.2590i	0.0014 + 0.2590i
0.0010	0.0010	0.0010	0.0010
0.0010	0.0010	0.0010	0.0010
0.0011 + 0.1046i	0.0011 + 0.1046i	0.0011 + 0.1046i	0.0011 + 0.1046i
0.0019 + 0.5337i	0.0019 + 0.5337i	0.0019 + 0.5337i	0.0019 + 0.5337i
0.0040 + 1.5069i	0.0040 + 1.5069i	0.0040 + 1.5069i	0.0040 + 1.5069i
sy = 1.0e+03 *			
0.0040 + 1.5069i	0.0010	0.0014 + 0.2590i	0.0040 + 1.5069i
0.0040 + 1.5069i	0.0010	0.0014 + 0.2590i	0.0040 + 1.5069i
0.0040 + 1.5069i	0.0010	0.0014 + 0.2590i	0.0040 + 1.5069i
0.0040 + 1.5069i	0.0010	0.0014 + 0.2590i	0.0040 + 1.5069i
0.0040 + 1.5069i	0.0010	0.0014 + 0.2590i	0.0040 + 1.5069i
0 0040 1 1 5060;	0.0010	0.0014 + 0.2590i	0.0040 + 1.5069i
0.0040 + 1.30691			

Maxwell's Equa	tions with	ו a SC-	PML	Cem
Maxwell's equations b	efore the PML	is added	are	
$\nabla \times \vec{E} = k_0 [\mu_r] \vec{\tilde{H}}$ $\nabla \times \vec{\tilde{H}} = k_0 [\varepsilon_r] \vec{E}$	$\begin{bmatrix} \mathcal{E}_r \end{bmatrix} = \begin{bmatrix} \mathcal{E}_{xx} & \mathcal{E}_{xy} \\ \mathcal{E}_{yx} & \mathcal{E}_{yy} \\ \mathcal{E}_{zx} & \mathcal{E}_{zy} \end{bmatrix}$	$ \begin{bmatrix} \mathcal{E}_{xz} \\ \mathcal{E}_{yz} \\ \mathcal{E}_{zz} \end{bmatrix} $	$\begin{bmatrix} \mu_r \end{bmatrix} = \begin{bmatrix} \mu_{xx} \\ \mu_{yx} \\ \mu_{zx} \end{bmatrix}$	$ \begin{array}{ccc} \mu_{xy} & \mu_{xz} \\ \mu_{yy} & \mu_{yz} \\ \mu_{zy} & \mu_{zz} \end{array} \right] $
The SC-PML is incorpo	rated as follow	s.		
$\nabla_{s} \times \vec{E} = -j\omega[\mu]\vec{H}$ $\nabla_{s} \times \vec{H} = j\omega[\varepsilon]\vec{E}$	$\nabla_s \times =$	$\begin{bmatrix} 0 \\ \frac{1}{s_z} \frac{\partial}{\partial z} \\ -\frac{1}{s_y} \frac{\partial}{\partial y} \end{bmatrix}$	$-\frac{1}{s_z}\frac{\partial}{\partial z}$ 0 $-\frac{1}{s_x}\frac{\partial}{\partial x}$	$ \begin{bmatrix} \frac{1}{s_y} \frac{\partial}{\partial y} \\ -\frac{1}{s_x} \frac{\partial}{\partial x} \\ 0 \end{bmatrix} $
Lecture 9				Slide 52

Vector Expansion	Cem
Maxwell's equations with a SC-PML expand to	
Fully Anisotropic	Diagonally Anisotropic
$\frac{1}{s_{y}}\frac{\partial \tilde{H}_{z}}{\partial y} - \frac{1}{s_{z}}\frac{\partial \tilde{H}_{y}}{\partial z} = k_{0}\left(\varepsilon_{xx}E_{x} + \varepsilon_{xy}E_{y} + \varepsilon_{xz}E_{z}\right)$	$\frac{1}{s_{y}}\frac{\partial \tilde{H}_{z}}{\partial y} - \frac{1}{s_{z}}\frac{\partial \tilde{H}_{y}}{\partial z} = k_{0}\varepsilon_{xx}E_{x}$
$\frac{1}{s_z}\frac{\partial \tilde{H}_x}{\partial z} - \frac{1}{s_x}\frac{\partial \tilde{H}_z}{\partial x} = k_0 \left(\varepsilon_{yx}E_x + \varepsilon_{yy}E_y + \varepsilon_{yz}E_z\right)$	$\frac{1}{s_z}\frac{\partial \tilde{H}_x}{\partial z} - \frac{1}{s_x}\frac{\partial \tilde{H}_z}{\partial x} = k_0 \varepsilon_{yy} E_y$
$\frac{1}{s_x}\frac{\partial \tilde{H}_y}{\partial x} - \frac{1}{s_y}\frac{\partial \tilde{H}_x}{\partial y} = k_0 \left(\varepsilon_{zx}E_x + \varepsilon_{zy}E_y + \varepsilon_{zz}E_z\right)$	$\frac{1}{s_x}\frac{\partial \tilde{H}_y}{\partial x} - \frac{1}{s_y}\frac{\partial \tilde{H}_x}{\partial y} = k_0 \varepsilon_{zz} E_z$
$\frac{1}{s_{y}}\frac{\partial E_{z}}{\partial y} - \frac{1}{s_{z}}\frac{\partial E_{y}}{\partial z} = k_{0}\left(\mu_{xx}\tilde{H}_{x} + \mu_{xy}\tilde{H}_{y} + \mu_{xz}\tilde{H}_{z}\right)$	$\frac{1}{s_y}\frac{\partial E_z}{\partial y} - \frac{1}{s_z}\frac{\partial E_y}{\partial z} = k_0 \mu_{xx}\tilde{H}_x$
$\frac{1}{s_z}\frac{\partial E_x}{\partial z} - \frac{1}{s_x}\frac{\partial E_z}{\partial x} = k_0 \left(\mu_{yx}\tilde{H}_x + \mu_{yy}\tilde{H}_y + \mu_{yz}\tilde{H}_z\right)$	$\frac{1}{s_z}\frac{\partial E_x}{\partial z} - \frac{1}{s_x}\frac{\partial E_z}{\partial x} = k_0 \mu_{yy}\tilde{H}_y$
$\frac{1}{s_x}\frac{\partial E_y}{\partial x} - \frac{1}{s_y}\frac{\partial E_x}{\partial y} = k_0 \left(\mu_{zx}\tilde{H}_x + \mu_{zy}\tilde{H}_y + \mu_{zz}\tilde{H}_z\right)$	$\frac{1}{s_x}\frac{\partial E_y}{\partial x} - \frac{1}{s_y}\frac{\partial E_x}{\partial y} = k_0\mu_{zz}\tilde{H}_z$
Lecture 9	Slide 53

12/7/2015

UPML Vs. SC-PML

Cem

Uniaxial PML

Benefits

- Has a physical interpretation
- Models can be formulated and implemented without considering the PML in the frequency-domain

Drawbacks

Lecture 9

- Can be more computationally intensive to implement in timedomain
- Resulting matrices are less well conditioned in the frequenydomain

Stretched-Coordinate PML

<u>Benefits</u>

- Less computationally intensive in time-domain
- More efficient implementation in the time-domain
- Matrices are better conditioned.

Drawbacks

- Must be accounted for in the formulation and implementation of the numerical method.
- Not intuitive to understand

Slide 59