Top 1000
Java
Interview Question & Answers

Knowledge Powerhouse

Copyright © 2017 Knowledge Powerhouse

All rights reserved.

No part of this book can be copied in any form. The publisher and the author have used good
faith efforts to ensure that the information in this book is correct and accurate. The
publisher and the author disclaim all responsibility for errors or omissions. Use of the
information in this book is at your own risk.

www.KnowledgePowerhouse.com

DEDICATION

To our readers!

CONTENTS

Java Basics

1. What is the difference between JDK and JRE?

What is Java Virtual Machine (JVM)?

What are the different types of memory areas allocated by JVM?
What is JIT compiler?

How Java platform is different from other platforms?

Why people say that Java is 'write once and run anywhere' language?
How does ClassLoader work in Java?

Do you think ‘main’ used for main method is a keyword in Java?

A e AT LR R o B

Can we write main method as public void static instead of public static
void?

10. In Java, if we do not specify any value for local variables, then what
will be the default value of the local variables?

11. Let say, we run a java class without passing any arguments. What will
be the value of String array of arguments in Main method?

12. What is the difference between byte and char data types in Java?
OO0PS

13. What are the main principles of Object Oriented Programming?

14. What is the difference between Object Oriented Programming
language and Object Based Programming language?

15. In Java what is the default value of an object reference defined as an

instance variable in an Object?

16. Why do we need constructor in Java?

17. Why do we need default constructor in Java classes?
18. What is the value returned by Constructor in Java?
19. Can we inherit a Constructor?

20. Why constructors cannot be final, static, or abstract in Java?

Inheritance

21. What is the purpose of ‘this’ keyword in java?

22. Explain the concept of Inheritance?

23. Which class in Java is superclass of every other class?

24. Why Java does not support multiple inheritance?

25. In OOPS, what is meant by composition?

26. How aggregation and composition are different concepts?
27. Why there are no pointers in Java?

28. If there are no pointers in Java, then why do we get
NullPointerException?

29. What is the purpose of ‘super’ keyword in java?
30. Is it possible to use this() and super() both in same constructor?

31. What is the meaning of object cloning in Java?

Static
32. In Java, why do we use static variable?
33. Why it is not a good practice to create static variables in Java?

34. What is the purpose of static method in Java?

35. Why do we mark main method as static in Java?
36. In what scenario do we use a static block?
37. Is it possible to execute a program without defining a main() method?

38. What happens when static modifier is not mentioned in the signature
of main method?

39. What is the difference between static method and instance method in
Java?

Method Overloading and Overriding
40. What is the other name of Method Overloading?
41. How will you implement method overloading in Java?

42. What kinds of argument variations are allowed in Method
Overloading?

43. Why it is not possible to do method overloading by changing return
type of method in java?

44. Is it allowed to overload main() method in Java?

45. How do we implement method overriding in Java?
46. Are we allowed to override a static method in Java?
47. Why Java does not allow overriding a static method?
48. Is it allowed to override an overloaded method?

49. What is the difference between method overloading and method
overriding in Java?

50. Does Java allow virtual functions?

51. What is meant by covariant return type in Java?

Polymorphism

52,
33.

What is Runtime Polymorphism?

Is it possible to achieve Runtime Polymorphism by data members in

Java?

54.

Explain the difference between static and dynamic binding?

Abstraction

5S.
56.
57.
8.

What is Abstraction in Object Oriented programming?
How is Abstraction different from Encapsulation?
What is an abstract class in Java?

Is it allowed to mark a method abstract method without marking the

class abstract?

59.
60.
61.
62.
63.
64.
65S.
66.
67.
68.

Is it allowed to mark a method abstract as well as final?

Can we instantiate an abstract class in Java?

What is an interface in Java?

Is it allowed to mark an interface method as static?

Why an Interface cannot be marked as final in Java?

What is a marker interface?

What can we use instead of Marker interface?

How Annotations are better than Marker Interfaces?

What is the difference between abstract class and interface in Java?

Does Java allow us to use private and protected modifiers for

variables in interfaces?

69.

How can we cast to an object reference to an interface reference?

Final

70.
71.
72.
73.
74.
75.
76.
77.

How can you change the value of a final variable in Java?
Can a class be marked final in Java?

How can we create a final method in Java?

How can we prohibit inheritance in Java?

Why Integer class in final in Java?

What is a blank final variable in Java?

How can we initialize a blank final variable?

Is it allowed to declare main method as final?

Package

78.
79.
80.
81.
82.
83.
84.

What is the purpose of package in Java?

What is java.lang package?

Which is the most important class in Java?

Is it mandatory to import java.lang package every time?
Can you import same package or class twice in your class?
What is a static import in Java?

What is the difference between import static com.test.Fooclass and

import com.test.Fooclass?

Internationalization

8sS.
86.

What is Locale in Java?

How will you use a specific Locale in Java?

Serialization

87.
88.

What is the serialization?

What is the purpose of serialization?

89. What is Deserialization?

90. What is Serialization and Deserialization conceptually?
91. Why do we mark a data member transient?

92. Is it allowed to mark a method as transient?

93. How does marking a field as transient makes it possible to serialize an
object?

94. What is Externalizable interface in Java?

95. What is the difference between Serializable and Externalizable
interface?

Reflection

96. What is Reflection in Java?

97. What are the uses of Reflection in Java?

98. How can we access private method of a class from outside the class?

99. How can we create an Object dynamically at Runtime in Java?

Garbage Collection

100. What is Garbage Collection in Java?

101. Why Java provides Garbage Collector?

102. What is the purpose of gc() in Java?

103. How does Garbage Collection work in Java?

104. When does an object become eligible for Garbage Collection in Java?
105. Why do we use finalize() method in Java?

106. What are the different types of References in Java?

107.How can we reference an unreferenced object again?

108. What kind of process is the Garbage collector thread?
109. What is the purpose of the Runtime class?
110. How can we invoke an external process in Java?

111. What are the uses of Runtime class?

Inner Classes

112. What is a Nested class?

113. How many types of Nested classes are in Java?
114. Why do we use Nested Classes?

115. What is the difference between a Nested class and an Inner class in
Java?

116. What is a Nested interface?

117. How can we access the non-final local variable, inside a Local Inner
class?

118. Can an Interface be defined in a Class?
119. Do we have to explicitly mark a Nested Interface public static?

120. Why do we use Static Nested interface in Java?
String

121. What is the meaning of Immutable in the context of String class in
Java?

122. Why a String object is considered immutable in java?
123. How many objects does following code create?
124. How many ways are there in Java to create a String object?

125. How many objects does following code create?

126. What is String interning?
127. Why Java uses String literal concept?

128. What is the basic difference between a String and StringBuffer
object?

129.How will you create an immutable class in Java?
130. What is the use of toString() method in java ?

131. Arrange the three classes String, StringBuffer and StringBuilder in
the order of efficiency for String processing operations?

Exception Handling
132. What is Exception Handling in Java?

133.In Java, what are the differences between a Checked and
Unchecked?

134. What is the base class for Error and Exception classes in Java?
135. What is a finally block in Java?

136. What is the use of finally block in Java?

137.Can we create a finally block without creating a catch block?
138.Do we have to always put a catch block after a try block?
139.1In what scenarios, a finally block will not be executed?
140.Can we re-throw an Exception in Java?

141. What is the difference between throw and throws in Java?
142. What is the concept of Exception Propagation?

143. When we override a method in a Child class, can we throw an
additional Exception that is not thrown by the Parent class method?

Multi-thre ading

144.How Multi-threading works in Java?

145. What are the advantages of Multithreading?

146. What are the disadvantages of Multithreading?

147.What is a Thread in Java?

148. What is a Thread’s priority and how it is used in scheduling?

149. What are the differences between Pre-emptive Scheduling Scheduler
and Time Slicing Scheduler?

150.1Is it possible to call run() method instead of start() on a thread in
Java?

151. How will you make a user thread into daemon thread if it has already
started?

152.Can we start a thread two times in Java?
153.In what scenarios can we interrupt a thread?
154.1In Java, is it possible to lock an object for exclusive use by a thread?

155. How notify() method is different from notifyAll() method?

Collections

156. What are the differences between the two data structures: a Vector
and an ArrayList?

157. What are the differences between Collection and Collections in Java?
158. In which scenario, LinkedList is better than ArrayList in Java?
159. What are the differences between a List and Set collection in Java?

160. What are the differences between a HashSet and TreeSet collection
in Java?

161. In Java, how will you decide when to use a List, Set or a Map

collection?

162. What are the differences between a HashMap and a Hashtable in
Java?

163. What are the differences between a HashMap and a Tree Map?
164. What are the differences between Comparable and Comparator?
165.1In Java, what is the purpose of Properties file?

166. What is the reason for overriding equals() method?

167.How does hashCode() method work in Java?

168.1Is it a good idea to use Generics in collections?
Mixed Questions

169. What are Wrapper classes in Java?

170. What is the purpose of native method in Java?

171. What is System class?

172. What is System, out and println in System.out.println method call?
173. What is the other name of Shallow Copy in Java?

174. What is the difference between Shallow Copy and Deep Copy in
Java?

175. What is a Singleton class?

176. What is the difference between Singleton class and Static class?

Java Collection

177.What is the difference between Collection and Collections
Framework in Java?

178. What are the main benefits of Collections Framework in Java?

179. What is the root interface of Collection hierarchy in Java?

180. What are the main differences between Collection and Collections?
181. What are the Thread-safe classes in Java Collections framework?

182. How will you efficiently remove elements while iterating a
Collection?

183.How will you convert a List into an array of integers like- int[]?

184. How will you convert an array of primitive integers int[] to a List
collection?

185.How will you run a filter on a Collection?

186. How will you convert a List to a Set?

187.How will you remove duplicate elements from an ArrayList?

188. How can you maintain a Collection with elements in Sorted order?

189. What is the difference between Collections.emptyList() and creating
new instance of Collection?

190. How will you copy elements from a Source List to another list?

191. What are the Java Collection classes that implement List interface?
192. What are the Java Collection classes that implement Set interface?
193. What is the difference between an Iterator and ListIterator in Java?
194. What is the difference between Iterator and Enumeration?

195. What is the difference between an ArrayList and a LinkedList data
structure?

196. What is the difference between a Set and a Map in Java?
197. What is the use of a Dictionary class?

198. What is the default size of load factor in a HashMap collection in
Java?

199. What is the significance of load factor in a HashMap in Java?
200.What are the major differences between a HashSet and a HashMap?
201.What are the similarities between a HashSet and a HashMap in Java?
202.What is the reason for overriding equals() method?

203.How can we synchronize the elements of a List, a Set or a Map?

204.What is Hash Collision? How Java handles hash-collision in
HashMap?

205.What are the Hash Collision resolution techniques?

206.What is the difference between Queue and Stack data structures?
207.What is an Iterator in Java?

208.What is the difference between Iterator and Enumeration in Java?

209.What is the design pattern used in the implementation of Enumeration
in Java?

210. Which methods do we need to override to use an object as key in a
HashMap?

211. How will you reverse a List in Java?
212.How will you convert an array of String objects into a List?

213. What is the difference between peek(), poll() and remove() methods
of Queue interface in java?

214.What is the difference between Array and ArrayList in Java?

215.How will you insert, delete and retrieve elements from a HashMap
collection in Java?

216. What are the main differences between HashMap and
ConcurrentHashMap in Java?

217.What is the increasing order of performance for following collection
classes in Java?

218. Why does Map interface not extend Collection interface in Java?
219. What are the different ways to iterate elements of a list in Java?

220.What is CopyOnWrite ArrayList? How it is different from ArrayList
in Java?

221.How remove() method is implemented in a HashMap?
222.What is BlockingQueue in Java Collections?
223.How is TreeMap class implemented in Java?

224.What is the difference between Fail-fast and Fail-safe iterator in
Java?

225.How does ConcurrentHashMap work in Java?

226.What is the importance of hashCode() and equals() methods?
227.What is the contract of hashCode() and equals() methods in Java?
228.What is an EnumSet in Java?

229.What are the main Concurrent Collection classes in Java?
230.How will you convert a Collection to SynchronizedCollection in Java?
231.How IdentityHashMap is different from a regular Map in Java?
232.What is the main use of IdentityHashMap?

233.How can we improve the performance of IdentityHashMap?
234.1s IdentityHashMap thread-safe?

235.What is a WeakHashMap in Java?

236.How can you make a Collection class read Only in Java?

237.When is UnsupportedOperationException thrown in Java?

238.Let say there is a Customer class. We add objects of Customer class
to an ArrayList. How can we sort the Customer objects in ArrayList by
using customer firstName attribute of Customer class?

239.What is the difference between Synchronized Collection and
Concurrent Collection?

240.What is the scenario to use ConcurrentHashMap in Java?
241.How will you create an empty Map in Java?

242.What is the difference between remove() method of Collection and
remove() method of Iterator?

243.Between an Array and ArrayList, which one is the preferred
collection for storing objects?

244.1s it possible to replace Hashtable with ConcurrentHashMap in Java?

245.How CopyOnWrite ArrayList class is different from ArrayList and
Vector classes?

246.Why Listlterator has add() method but Iterator does not have?

247.Why do we sometime get ConcurrentModificationException during
iteration?

248.How will you convert a Map to a List in Java?

249.How can we create a Map with reverse view and lookup in Java?
250.How will you create a shallow copy of a Map?

251.Why we cannot create a generic array in Java?

252.What is a PriorityQueue in Java?

253.What are the important points to remember while using Java
Collections Framework?

254.How can we pass a Collection as an argument to a method and ensure
that method will not be able to modify it?

255.Can you explain how HashMap works in Java?
256.Can you explain how HashSet is implemented in Java?
257.What is a NavigableMap in Java?

258.What is the difference between descendingKeySet() and
descendingMap() methods of Navigable Map?

259.What is the advantage of Navigable Map over Map?

260.What is the difference between headMap(), tailMap() and subMap()
methods of Navigable Map?

261.How will you sort objects by Natural order in a Java List?
262.How can we get a Stream from a List in Java?
263.Can we get a Map from a Stream in Java?

264.What are the popular implementations of Deque in Java?

Advanced Multi-threading

265.What is a Thread in Java?

266.What is the priority of a Thread and how it is used in scheduling?
267.What is the default priority of a thread in Java?

268.What are the three different priorities that can be set on a Thread in
Java?

269.What is the purpose of join() method in Thread class?

270.What is the fundamental difference between wait() and sleep()
methods?

271.1Is it possible to call run() method instead of start() on a thread in

Java?
272.What is a daemon thread in Java?
273.How can we make a regular thread Daemon thread in Java?

274.How will you make a user thread into daemon thread if it has already
started?

275.Can we start a thread two times in Java?

276.What is a Shutdown hook in Java?

277.What is synchronization in Java?

278.What is the purpose of Synchronized block in Java?
279.What is static synchronization?

280.What is a Deadlock situation?

281. What is the meaning of concurrency?

282.What is the main difference between process and thread?
283.What is a process and thread in the context of Java?
284.What is a Scheduler?

285.What is the minimum number of Threads in a Java program?
286.What are the properties of a Java thread?

287.What are the different states of a Thread in Java?

288.How will you set the priority of a thread in Java?

289.What is the purpose of Thread Groups in Java?

290.Why we should not stop a thread by calling its stop() method?

291.How will you create a Thread in Java?

292.How can we stop a thread in the middle of execution in Java?
293.How do you access the current thread in a Java program?

294.What is Busy waiting in Multi-threading?

295.How can we prevent busy waiting in Java?

296.Can we use Thread.sleep() method for real-time processing in Java?

297.Can we wake up a thread that has been put to sleep by using
Thread.sleep() method?

298.What are the two ways to check if a Thread has been interrupted?

299.How can we make sure that Parent thread waits for termination of
Child thread?

300.How will you handle InterruptedException in Java?

301. Which intrinsic lock is acquired by a synchronized method in Java?
302.Can we mark a constructor as synchronized in Java?

303.Can we use primitive values for intrinsic locks?

304.Do we have re-entrant property in intrinsic locks?

305.What is an atomic operation?

306.Can we consider the statement i++ as an atomic operation in Java?
307.What are the Atomic operations in Java?

308.Can you check if following code is thread-safe?

309.What are the minimum requirements for a Deadlock situation in a
program?

310.How can we prevent a Deadlock?

311. How can we detect a Deadlock situation?

312.What is a Livelock?

313.What is Thread starvation?

314.How can a synchronized block cause Thread starvation in Java?
315. What is a Race condition?

316. What is a Fair lock in multi-threading?

317. Which two methods of Object class can be used to implement a
Producer Consumer scenario?

318.How JVM determines which thread should wake up on notify()?

319.Check if following code is thread-safe for retrieving an integer value
from a Queue?

320.How can we check if a thread has a monitor lock on a given object?

321. What is the use of yield() method in Thread class?

322.What is an important point to consider while passing an object from
one thread to another thread?

323.What are the rules for creating Immutable Objects?
324.What is the use of ThreadLocal class?
325.What are the scenarios suitable for using ThreadLocal class?

326.How will you improve the performance of an application by multi-
threading?

327.What is scalability in a Software program?

328.How will you calculate the maximum speed up of an application by
using multiple processors?

329.What is Lock contention in multi-threading?

330.What are the techniques to reduce Lock contention?

331. What technique can be used in following code to reduce Lock
contention?

332.What is Lock splitting technique?

333.Which technique is used in ReadWrite Lock class for reducing Lock
contention?

334.What is Lock striping?
335.What is a CAS operation?
336.Which Java classes use CAS operation?

337.1s it always possible to improve performance by object pooling in a
multi-threading application?

338.How can techniques used for performance improvement in a single
thread application may degrade the performance in a multi-threading
application?

339.What is the relation between Executor and ExecutorService
interface?

340.What will happen on calling submit() method of an ExecutorService
instance whose queue is already full?

341. What is a ScheduledExecutorService?
342.How will you create a Thread pool in Java?

343.What is the main difference between Runnable and Callable
interface?

344.What are the uses of Future interface in Java?
345.What is the difference in concurrency in HashMap and in Hashtable ?
346.How will you create synchronized instance of List or Map Collection?

347.What is a Semaphore in Java?

348.What is a CountDownLatch in Java?
349.What is the difference between CountDownLatch and CyclicBarrier?
350.What are the scenarios suitable for using Fork/Join framework?

351.What is the difference between Recursive Task and Recursive Action
class?

352.In Java 8, can we process stream operations with a Thread pool?
353.What are the scenarios to use parallel stream in Java 8?
354.How Stack and Heap work in Java multi-threading environment?
355.How can we take Thread dump in Java?

356.Which parameter can be used to control stack size of a thread in
Java?

357.There are two threads T1 and T2? How will you ensure that these
threads run in sequence T1, T2 in Java?

Java 8

358.What are the new features released in Java 8?

359.What are the main benefits of new features introduced in Java 8?
360.What is a Lambda expression in Java 8?

361.What are the three main parts of a Lambda expression in Java?
362.What is the data type of a Lambda expression?

363.What is the meaning of following lambda expression?

364.Why did Oracle release a new version of Java like Java 8?
365.What are the advantages of a lambda expression?

366.What is a Functional interface in Java 8?

367.What is a Single Abstract Method (SAM) interface in Java 8?
368.How can we define a Functional interface in Java 8?
369.Why do we need Functional interface in Java?

370.1s it mandatory to use @Functionallnterface annotation to define a
Functional interface in Java 8?

371.What are the differences between Collection and Stream API in Java
8?

372.What are the main uses of Stream API in Java 8?

373.What are the differences between Intermediate and Terminal
Operations in Java 8 Streams?

374.What is a Spliterator in Java 8?

375.What are the differences between Iterator and Spliterator in Java 8?
376.What is Type Inference in Java 8?

377.Does Java 7 support Type Inference?

378.How does Internal Iteration work in Java 8?

379.What are the main differences between Internal and External
Iterator?

380.What are the main advantages of Internal Iterator over External
Iterator in Java 8?

381.What are the applications in which we should use Internal Iteration?

382.What is the main disadvantage of Internal Iteration over External
Iteration?

383.Can we provide implementation of a method in a Java Interface?

384.What is a Default Method in an Interface?

385.Why do we need Default method in a Java 8 Interface?
386.What is the purpose of a Static method in an Interface in Java 8?
387.What are the core ideas behind the Date/Time API of Java 8?

388.What are the advantages of new Date and Time API in Java 8 over
old Date API?

389.What are the main differences between legacy Date/Time API in Java
and Date/Time API of Java 8?

390.How can we get duration between two dates or time in Java 8?

391. What is the new method family introduced in Java 8 for processing of
Arrays on multi core machines?

392.How does Java 8 solve Diamond problem of Multiple Inheritance?

393.What are the differences between Predicate, Supplier and Consumer
in Java 8?

394.1s it possible to have default method definition in an interface without
marking it with default keyword?

395.Can we create a class that implements two Interfaces with default
methods of same name and signature?

396.How Java 8 supports Multiple Inheritance?

397.In case we create a class that extends a base class and implements an
interface. If both base class and interface have a default method with
same name and arguments, then which definition will be picked by JVM?

398.If we create same method and define it in a class , in its parent class
and in an interface implemented by the class, then definition will be
invoked if we access it using the reference of Interface and the object of
class?

399.Can we access a static method of an interface by using reference of

the interface?

400.How can you get the name of Parameter in Java by using reflection?
401. What is Optional in Java 8?

402.What are the uses of Optional?

403.Which method in Optional provides the fallback mechanism in case of
null value?

404.How can we get current time by using Date/Time API of Java 8?
405.1Is it possible to define a static method in an Interface?

406.How can we analyze the dependencies in Java classes and packages?
407.What are the new JVM arguments introduced by Java 8?

408.What are the popular annotations introduced in Java 8?

409.What is a StringJoiner in Java 8?

410. What is the type of a Lambda expression in Java 8?

411. What is the target type of a lambda expression ?

412.What are the main differences between an interface with default
method and an abstract class in Java 8?

Java Tricky Questions
413.1s there any difference between a =a + b and a += b expressions?

414.What does the expression 1.0 / 0.0 return? Will there be any
compilation error?

415.Can we use multiple main methods in multiple classes?
416.Does Java allow you to override a private or static method?

417.What happens when you put a key object in a HashMap that is
already present?

418.How can you make sure that N threads can access N resources
without deadlock?

419.How can you determine if JVM is 32-bit or 64-bit from Java
Program?

420.What is the right data type to represent Money (like Dollar/Pound) in
Java?

421.How can you do multiple inheritances in Java?
422.1Is ++ operation thread-safe in Java?

423.How can you access a non-static variable from the static context?

424.Let say there is a method that throws NullPointerException in the
superclass. Can we override it with a method that throws
Runtime Exception?

425.How can you mark an array volatile in Java?

426.What is a thread local variable in Java?

427.What is the difference between sleep() and wait() methods in Java?
428.Can you create an Immutable object that contains a mutable object?
429.How can you convert an Array of bytes to String?

430.What is difference between CyclicBarrier and CountDownLatch
class?

431. What is the difference between StringBuffer and StringBuilder?
432.Which class contains clone method? Cloneable or Object class?
433.How will you take thread dump in Java?

434.Can you cast an int variable into a byte variable? What happens if the
value of int is larger than byte?

435.In Java, can we store a double value in a long variable without explicit

casting?

436.What will this return 5%0.1 == 0.5? true or false?

437.0ut of an int and Integer, which one takes more memory?
438.Can we use String in the switch case statement in Java?
439.Can we use multiple main methods in same class?

440.When creating an abstract class, is it a good idea to call abstract
methods inside its constructor?

441.How can you do constructor chaining in Java?

442.How can we find the memory usage of JVM from Java code?

443.What is the difference between x ==y and x.equals(y) expressions in
Java?

444. How can you guarantee that the garbage collection takes place?

445.What is the relation between x.hashCode() method and x.equals(y)
method of Object class?

446.What is a compile time constant in Java?
447.Explain the difference between fail-fast and fail-safe iterators?

448. You have a character array and a String. Which one is more secure
to store sensitive data (like password, date of birth, etc.)?

449.Why do you use volatile keyword in Java?

450.What is the difference between poll() and remove() methods of Queue
in Java?

451.Can you catch an exception thrown by another thread in Java?

452.How do you decide which type of Inner Class — Static or Non-Static to
use in Java?

453.What are the different types of Classloaders in Java?

454.What are the situations in which you choose HashSet or TreeSet?
455.What is the use of method references in Java?

456.Do you think Java Enums are more powerful than integer constants?
457.Why do we use static initializers in Java?

458.Your client is complaining that your code is throwing
NoClassDefFoundError or NoSuchMethodError, even though you are able
to compile your code without error and method exists in your code. What
could be the reason behind this?

459.How can you check if a String is a number by using regular
expression?

460.What is the difference between the expressions String s =
"Temporary" and String s = new String("' Temporary '')? Which one is
better and more efficient?

461.In Java, can two equal objects have the different hash code?
462.How can we print an Array in Java?

463.1Is it ok to use random numbers in the implementation of hashcode()
method in Java?

464.Between two types of dependency injections, constructor injection
and setter dependency injection, which one is better?

465.What is the difference between DOM and SAX parser in Java?

466.Between Enumeration and Iterator, which one has better performance
in Java?

467.What is the difference between pass by reference and pass by value?
468.What are the different ways to sort a collection in Java?

469.Why Collection interface doesn’t extend Cloneable and Serializable
interfaces?

470.What is the difference between a process and a thread in Java?

471. What are the benefits of using an unordered array over an ordered
array?

472.Between HashSet and TreeSet collections in Java, which one is
better?

473.When does JVM call the finalize() method?

474.When would you use Serial Garabage collector or Throughput
Garbage collector in Java?

475.In Java, if you set an object reference to null, will the Garbage
Collector immediately free the memory held by that object?

476.How can you make an Object eligible for Garbage collection in Java?

477.When do you use Exception or Error in Java? What is the difference
between these two?

478.What is the advantage of PreparedStatement over Statement class in
Java?

479.In Java, what is the difference between throw and throws keywords?

480.What happens to the Exception object after the exception handling is
done?

481.How do you find which client machine is sending request to your
servlet in Java?

482.What is the difference between a Cookie and a Session object in
Java?

483.Which protocol does Browser and Servlet use to communicate with
each other?

484. What is HTTP Tunneling?
485.Why do we use JSP instead of Servlet in Java?

486.1s empty ‘.java’ file name a valid source file name in Java?

487.How do you implement Servlet Chaining in Java?

488.Can you instantiate this class?

489.Why Java does not support operator overloading?

490.Why String class is Immutable or Final in Java?

491. What is the difference between sendRedirect and forward methods?

492.How do you fix your Serializable class, if it contains a member that is
not serializable?

493.What is the use of run time polymorphism in Java?

494.What are the rules of method overloading and method overriding in
Java?

495.What is the difference between a class and an object in Java?
496.Can we create an abstract class that extends another abstract class?
497.Why do you use Upcasting or Downcasting in Java ?

498.What is the reason to organize classes and interfaces in a package in
Java?

499.What is information hiding in Java?

500.Why does Java provide default constructor?

501. What is the difference between super and this keywords in Java?
502.What is the advantage of using Unicode characters in Java?
503.Can you override an overloaded method in Java?

504.How can we change the heap size of a JVM?

505.Why should you define a default constructor in Java?

506.How will you make an Object Immutable in Java?
507.How can you prevent SQL Injection in Java Code?

508.Which two methods should be always implemented by HashMap key
Object?

509.Why an Object used as Key in HashMap should be Immutable?
510.How can we share an object between multiple threads?

511. How can you determine if your program has a deadlock?
JSP

512.What are the implicit objects in JSP?
513.How will you extend JSP code?
514.How will you handle runtime exceptions in JSP?

515.How will you prevent multiple submits of a page that come by clicking
refresh button multiple times?

516.How will you implement a thread safe JSP page?

517.How will you include a static file in a JSP page?

518. What are the lifecycle methods of a JSP?

519. What are the advantages of using JSP in web architecture?
520.What is the advantage of JSP over Javascript?

521.What is the Lifecycle of JSP?

522.What is a JSP expression?

523.What are the different types of directive tags in JSP?
524.What is session attribute in JSP?

525.What are the different scopes of a JSP object?

526.What is pageContext in JSP?
527.What is the use of jsp:useBean in JSP?

528.What is difference between include Directive and include Action of
JSP?

529.How will you use other Java files of your application in JSP code?
530.How will you use an existing class and extend it to use in the JSP?
531.Why _jspService method starts with _ symbol in JSP?

532.Why do we use tag library in JSP?

533.What is the different type of tag library groups in JSTL?
534.How will you pass information from one JSP to another JSP?
535.How will you call a stored procedure from JSP?

536.Can we override _jspService() method in JSP?

537.What is a directive in JSP?

538.How will you implement Session tracking in JSP?

539.How do you debug code in JSP?

540.How will you implement error page in JSP?

541.How will you send XML data from a JSP?

542.What happens when we request for a JSP page from web browser?
543.How will you implement Auto Refresh of page in JSP?

544.What are the important status codes in HTTP?

545.What is the meaning of Accept attribute in HI'TP header?

546.What is the difference between Expression and Scriptlet in JSP?

547.How will you delete a Cookie in JSP?

548.How will you use a Cookie in JSP?

549.What is the main difference between a Session and Cookie in JSP?
550.How will you prevent creation of session in JSP?

551. What is an output comment in JSP?

552.How will you prevent caching of HTML output by web browser in
JSP?

553.How will you redirect request to another page in browser in JSP
code?

554.What is the difference between sendRedirect and forward in a JSP?
555.What is the use of config implicit object in JSP?

556.What is the difference between init-param and context-param?
557.What is the purpose of RequestDispatcher?

558.How can be read data from a Form in a JSP?

559.What is a filter in JSP?

560.How can you upload a large file in JSP?

561.1In which scenario, Container initializes multiple JSP/Servlet objects?

Java Design Patterns

562.When will you use Strategy Design Pattern in Java?
563.What is Observer design pattern?

564.What are the examples of Observer design pattern in JDK?

565.How Strategy design pattern is different from State design pattern in
Java?

566.Can you explain Decorator design pattern with an example in Java?
567.What is a good scenario for using Composite design Pattern in Java?
568.Have you used Singleton design pattern in your Java project?
569.What are the main uses of Singleton design pattern in Java project?
570.Why java.lang.Runtime is a Singleton in Java?

571.What is the way to implement a thread-safe Singleton design pattern
in Java?

572.What are the examples of Singleton design pattern in JDK?
573.What is Template Method design pattern in Java?
574.What are the examples of Template method design pattern in JDK?

575.Can you tell some examples of Factory Method design pattern
implementation in Java?

576.What is the benefit we get by using static factory method to create
object?

577.What are the examples of Builder design pattern in JDK?
578.What are the examples of Abstract Factory design pattern in JDK?
579.What are the examples of Decorator design pattern in JDK?
580.What are the examples of Proxy design pattern in JDK?

581. What are the examples of Chain of Responsibility design pattern in
JDK?

582.What are the main uses of Command design pattern?
583.What are the examples of Command design pattern in JDK?

584.What are the examples of Interpreter design pattern in JDK?

585.What are the examples of Mediator design pattern in JDK?
586.What are the examples of Strategy design pattern in JDK?
587.What are the examples of Visitor design pattern in JDK?
588.How Decorator design pattern is different from Proxy pattern?

589.What are the different scenarios to use Setter and Constructor based
injection in Dependency Injection (DI) design pattern?

590.What are the different scenarios for using Proxy design pattern?

591. What is the main difference between Adapter and Proxy design
pattern?

592.When will you use Adapter design pattern in Java?
593.What are the examples of Adapter design pattern in JDK?

594.What is the difference between Factory and Abstract Factory design
pattern?

595.What is Open/closed design principle in Software engineering?
596.What is SOLID design principle ?
597.What is Builder design pattern?

598.What are the different categories of Design Patterns used in Object
Oriented Design?

599.What is the design pattern suitable to access elements of a
Collection?

600.How can we implement Producer Consumer design pattern in Java?

601. What design pattern is suitable to add new features to an existing
object?

602.Which design pattern can be used when to decouple abstraction from
the implementation?

603.Which is the design pattern used in Android applications?

604.How can we prevent users from creating more than one instance of
singleton object by using clone() method?

605.What is the use of Interceptor design pattern?
606.What are the Architectural patterns that you have used?
607.What are the popular uses of Facade design pattern?

608.What is the difference between Builder design pattern and Factory
design pattern?

609.What is Memento design pattern?

610. What is an AntiPattern?

611. What is a Data Access Object (DAO) design pattern?

Spring Questions

612. What is Spring framework?

613. What are the benefits of Spring framework in software development?
614. What are the modules in Core Container of Spring framework?

615. What are the modules in Data Access/Integration layer of Spring
framework?

616. What are the modules in Web layer of Spring framework?

617. What is the main use of Core Container module in Spring framework?
618. What kind of testing can be done in Spring Test Module?

619. What is the use of BeanFactory in Spring framework?

620.Which is the most popular implementation of BeanFactory in Spring?
621. What is XMLBeanFactory in Spring framework?

622.What are the uses of AOP module in Spring framework?

623.What are the benefits of JDBC abstraction layer module in Spring
framework?

624.How does Spring support Object Relational Mapping (ORM)
integration?

625.How does Web module work in Spring framework?

626.What are the main uses of Spring MVC module?

627.What is the purpose of Spring configuration file ?

628.What is the purpose of Spring IoC container?

629.What is the main benefit of Inversion of Control (IOC) principle?

630.Does IOC containers support Eager Instantiation or Lazy loading of
beans?

631. What are the benefits of ApplicationContext in Spring?
632.How will you implement ApplicationContext in Spring framework?

633.Explain the difference between ApplicationContext and BeanFactory
in Spring?

634.Between ApplicationContext and BeanFactory which one is
preferable to use in Spring?

635.What are the main components of a typical Spring based application?
636.Explain Dependency Injection (DI) concept in Spring framework?
637.What are the different roles in Dependency Injection (DI)?

638.Spring framework provides what kinds of Dependency Injection
mechanism?

639.In Spring framework, which Dependency Injection is better?
Constructor-based DI or Setter-based DI?

640.What are the advantages of Dependency Injection (DI)?
641. What are the disadvantages of Dependency Injection (DI)?
642.What is a Spring Bean?

643.What does the definition of a Spring Bean contain?

644.What are the different ways to provide configuration metadata to a
Spring Container?

645.What are the different scopes of a Bean supported by Spring?
646.How will you define the scope of a bean in Spring?

647.1s it safe to assume that a Singleton bean is thread safe in Spring
Framework?

648.What are the design-patterns used in Spring framework?
649.What is the lifecycle of a Bean in Spring framework?

650.What are the two main groups of methods in a Bean’s lifecycle?
651.Can we override main lifecycle methods of a Bean in Spring?
652.What are Inner beans in Spring?

653.How can we inject a Java Collection in Spring framework?
654.What is Bean wiring in Spring?

655.What is Autowiring in Spring?

656.What are the different modes of Autowiring supported by Spring?

657.What are the cases in which Autowiring may not work in Spring
framework?

658.1s it allowed to inject null or empty String values in Spring?

659.What is a Java-based Configuration in Spring?

660.What is the purpose of @Configuration annotation?

661. What is the difference between Full @Configuration and 'lite’
@Beans mode?

662.In Spring framework, what is Annotation-based container
configuration?

663.How will you switch on Annotation based wiring in Spring?
664.What is (@ Autowired annotation?
665.What is @Required annotation?

666.What are the two ways to enable
RequiredAnnotationBeanPostProcessor in Spring?

667.What is @Qualifier annotation in Spring?

668.How Spring framework makes JDBC coding easier for developers?
669.What is the purpose of JdbcTemplate?

670.What are the benefits of using Spring DAQO?

671.What are the different ways to use Hibernate in Spring?

672.What types of Object Relational Mapping (ORM) are supported by
Spring?

673.How will you integrate Spring and Hibernate by using
Hibernate DaoSupport?

674.What are the different types of the Transaction Management
supported by Spring framework?

675.What are the benefits provided by Spring Framework’s Transaction
Management?

676.Given a choice between declarative and programmatic Transaction
Management, which method will you choose?

677.What is Aspect Oriented Programming (AOP)
678.What is an Aspect in Spring?

679.In Spring AOP, what is the main difference between a Concern and a
Cross cutting concern?

680.What is a Joinpoint in Spring AOP?

681. What is an Advice in Spring AOP?

682.What are the different types of Advice in Spring AOP?
683.What is a Pointcut in Spring AOP?

684.What is an Introduction in Spring AOP?

685.What is a Target object in Spring AOP?

686.What is a Proxy in Spring AOP?

687.What are the different types of AutoProxy creators in Spring?
688.What is Weaving in Spring AOP?

689.In Spring AOP, Weaving is done at compile time or run time?
690.What is XML Schema-based Aspect implementation?

691. What is Annotation-based aspect implementation in Spring AOP?
692.How does Spring MVC framework work?

693.What is DispatcherServlet?

694.Can we have more than one DispatcherServlet in Spring MVC?
695.What is WebApplicationContext in Spring MVC?

696.What is Controller in Spring MVC framework?

697.What is @RequestMapping annotation in Spring?

698.What are the main features of Spring MVC?

699.What is the difference between a Singleton and Prototype bean in
Spring?

700.How will you decide which scope- Prototype or Singleton to use for a
bean in Spring?

701. What is the difference between Setter and Constructor based
Dependency Injection (DI) in Spring framework?

702.What are the drawbacks of Setter based Dependency Injection (DI) in
Spring?

703.What are the differences between Dependency Injection (DI) and
Factory Pattern?

704.In Spring framework, what is the difference between
FileSystemResource and ClassPathResource?

705.Name some popular Spring framework annotations that you use in
your project?

706.How can you upload a file in Spring MVC Application?

707.What are the different types of events provided by Spring
framework?

708.What is the difference between DispatcherServlet and
ContextLoaderListener in Spring?

709.How will you handle exceptions in Spring MVC Framework?
710. What are the best practices of Spring Framework?
711. What is Spring Boot?

Hibernate

712. What is Hibernate framework?

713. What is an Object Relational Mapping (ORM)?
714. What is the purpose of Configuration Interface in Hibernate?
715. What is Object Relational Impedance Mismatch?

716. What are the main problems of Object Relational Impedance
Mismatch?

717.What are the key characteristics of Hibernate?
718.Can you tell us about the core interfaces of Hibernate framework?

719. How will you map the columns of a DB table to the properties of a
Java class in Hibernate?

720.Does Hibernate make it mandatory for a mapping file to have
.hbm.xml extension?

721. What are the steps for creating a SessionFactory in Hibernate?
722.Why do we use POJO in Hibernate?

723.What is Hibernate Query Language (HQL)?

724.How will you call a stored procedure in Hibernate?

725.What is Criteria API in Hibernate?

726.Why do we use Hibernate Template?

727.How can you see SQL code generated by Hibernate on console?
728.What are the different types of collections supported by Hibernate?

729.What is the difference between session.save() and
session.saveOrUpdate() methods in Hibernate?

730.What are the advantages of Hibernate framework over JDBC?

731.How can we get statistics of a SessionFactory in Hibernate?

732.What is the Transient state of an object in Hibernate?

733.What is the Detached state of an object in Hibernate?

734.What is the use of Dirty Checking in Hibernate?

735.What is the purpose of Callback interface in Hibernate?
736.What are the different ORM levels in Hibernate?

737.What are the different ways to configure a Hibernate application?
738.What is Query Cache in Hibernate?

739.What are the different types of Association mappings supported by
Hibernate?

740.What are the different types of Unidirectional Association mappings
in Hibernate?

741.What is Unit of Work design pattern?

742.In Hibernate, how can an object go in Detached state?

743.How will you order the results returned by a Criteria in Hibernate?
744.How does Example criterion work in Hibernate?

745.How does Transaction management work in Hibernate?

746.How can we mark an entity/collection as immutable in Hibernate?

747.What are the different options to retrieve an object from database in
Hibernate?

748.How can we auto-generate primary key in Hibernate?
749.How will you re-attach an object in Detached state in Hibernate?
750.What is the first level of cache in Hibernate?

751.What are the different second level caches available in Hibernate?

752.Which is the default transaction factory in Hibernate?
753.What are the options to disable second level cache in Hibernate?
754.What are the different fetching strategies in Hibernate?

755.What is the difference between Immediate fetching and Lazy
collection fetching?

756.What is ‘Extra lazy fetching’ in Hibernate?

757.How can we check is a collection is initialized or not under Lazy
Initialization strategy?

758.What are the different strategies for cache mapping in Hibernate?
759.What is the difference between a Set and a Bag in Hibernate?
760.How can we monitor the performance of Hibernate in an application?

761.How can we check if an Object is in Persistent, Detached or
Transient state in Hibernate?

762.What is ‘the inverse side of association’ in a mapping?

763.What is ORM metadata?

764.What is the difference between load() and get() method in Hibernate?
765.When should we use get() method or load() method in Hibernate?
766.What is a derived property in Hibernate?

767.How can we use Named Query in Hibernate?

768.What are the two locking strategies in Hibernate?

769.What is the use of version number in Hibernate?

770.What is the use of session.lock() method in Hibernate?

771. What inheritance mapping strategies are supported by Hibernate?

Maven

772.What is Maven?

773.What are the main features of Maven?

774.What areas of a Project can you manage by using Maven?
775.What are the main advantages of Maven?

776.Why do we say “Maven uses convention over configuration”?
777.What are the responsibilities of a Build tool like Maven?
778.What are the differences between Ant and Maven?
779.What is MOJO in Maven?

780.What is a Repository in Maven?

781. What are the different types of repositories in Maven?
782.What is a local repository in Maven?

783.What is a central repository in Maven?

784.What is a Remote repository in Maven?

785.Why we should not store jars in CVS or any other version control
system instead of Maven repository?

786.Can anyone upload JARS or artifacts to Central Repository?
787.What is a POM?

788.What is Super POM?

789.What are the main required elements in POM file?
790.What are the phases in Build lifecycle in Maven?

791. What command will you use to package your Maven project?

792.What is the format of fully qualified artifact name of a Maven
project?

793.What is an Archetype in Maven?

794.What is the command in Maven to generate an Archetype?
795.What are the three main build lifecycles of Maven?
796.What are the main uses of a Maven plugin?

797.How will you find the version of a plugin being used?

798.What are the different types of profile in Maven? Where will you
define these profiles?

799.What are the different setting files in Maven? Where will you find
these files?

800.What are the main elements we can find in settings.xml?

801. How will you check the version of Maven in your system?
802.How will you verify if Maven is installed on Windows?
803.What is a Maven artifact?

804.What are the different dependency scopes in Maven?
805.How can we exclude a dependency in Maven?

806.How Maven searches for JAR corresponding to a dependency?
807.What is a transitive dependency in Maven?

808.What are Excluded dependencies in Maven?

809.What are Optional dependencies in Maven?

810. Where will you find the class files after compiling a Maven project
successfully?

811. What are the default locations for source, test and build directories in
Maven?

812. What is the result of jar:jar goal in Maven?

813.How can we get the debug or error messages from the execution of
Maven?

814. What is the difference between a Release version and SNAPSHOT
version in Maven?

815.How will you run test classes in Maven?

816.Sometimes Maven compiles the test classes but doesn't run them?
What could be the reason for it?

817.How can we skip the running of tests in Maven?
818.Can we create our own directory structure for a project in Maven?
819. What are the differences between Gradle and Maven?

820.What is the difference between Inheritance and Multi-module in
Maven?

821. What is Build portability in Maven?
GIT

822.How can we see n most recent commits in GIT?

823.How can we know if a branch is already merged into master in GIT?
824.What is the purpose of git stash drop?

825.What is the HEAD in GIT?

826.What is the most popular branching strategy in GIT?

827.What is SubGit?

828.What is the use of git instaweb?

829.What are git hooks?

830.What is GIT?

831. What is a repository in GIT?

832.What are the main benefits of GIT?

833.What are the disadvantages of GIT?

834.What are the main differences between GIT and SVN?
835.How will you start GIT for your project?

836.What is git clone in GIT?

837.How will you create a repository in GIT?

838.What are the different ways to start work in GIT?
839.GIT is written in which language?

840.What does ‘git pull’ command in GIT do internally?
841. What does ‘git push’ command in GIT do internally?
842.What is git stash?

843.What is the meaning of ‘stage’ in GIT?

844. What is the purpose of git config command?

845.How can we see the configuration settings of GIT installation?
846.How will you write a message with commit command in GI'T?
847.What is stored inside a commit object in GIT?
848.How many heads can you create in a GIT repository?
849.Why do we create branches in GIT?

850.What are the different kinds of branches that can be created in GIT?

851.How will you create a new branch in GIT?
852.How will you add a new feature to the main branch?
853.What is a pull request in GIT?

854.What is merge conflict in GIT?

855.How can we resolve a merge conflict in GIT?
856.What command will you use to delete a branch?

857.What command will you use to delete a branch that has unmerged
changes?

858.What is the alternative command to merging in GIT?
859.What is Rebasing in GIT?

860.What is the ‘Golden Rule of Rebasing’ in GIT?

861. Why do we use Interactive Rebasing in place of Auto Rebasing?
862.What is the command for Rebasing in Git?

863.What is the main difference between git clone and git remote?
864.What is GIT version control?

865.What GUI do you use for working on GIT?

866.What is the use of git diff command in GIT?

867.What is git rerere?

868.What are the three most popular version of git diff command?
869.What is the use of git status command?

870.What is the main difference between git diff and git status?

871. What is the use of git rm command in GIT?

872.What is the command to apply a stash?

873.Why do we use git log command?

874.Why do we need git add command in GIT?

875.Why do we use git reset command?

876.What does a commit object contain?

877.How can we convert git log messages to a different format?

878.What are the programming languages in which git hooks can be
written?

879.What is a commit message in GIT?

880.How GIT protects the code in a repository?
881.How GIT provides flexibility in version control?
882.How can we change a commit message in GIT?

883.Why is it advisable to create an additional commit instead of amending
an existing commit?

884.What is a bare repository in GIT?
885.How do we put a local repository on GitHub server?

886.How will you delete a branch in GIT?

887.How can we set up a Git repository to run code sanity checks and
UAT tests just before a commit?

888.How can we revert a commit that was pushed earlier and is public
now?

889.In GIT, how will you compress last n commits into a single commit?

890.How will you switch from one branch to a new branch in GIT?

891.How can we clean unwanted files from our working directory in GIT?
892.What is the purpose of git tag command?

893.What is cherry-pick in GIT?

894.What is shortlog in GIT?

895.How can you find the names of files that were changed in a specific
commit?

896.How can we attach an automated script to run on the event of a new
commit by push command?

897.What is the difference between pre-receive, update and post-receive
hooks in GIT?

898.Do we have to store Scripts for GIT hooks within same repository?
899.How can we determine the commit that is the source of a bug in GIT?
900.How can we see differences between two commits in GIT?

901. What are the different ways to identify a commit in GIT?

902.When we run git branch <branchname>, how does GIT know the
SHA-1 of the last commit?

903.What are the different types of Tags you can create in GIT?
904.How can we rename a remote repository?

905.Some people use git checkout and some use git co for checkout. How
is that possible?

906.How can we see the last commit on each of our branch in GIT?
907.1Is origin a special branch in GIT?
908.How can we configure GIT to not ask for password every time?

909.What are the four major protocols used by GIT for data transfer?

910. What is GIT protocol?

911. How can we work on a project where we do not have push access?
912.What is git grep?

913.How can your reorder commits in GIT?

914. How will you split a commit into multiple commits?

915. What is filter-branch in GIT?

916. What are the three main trees maintained by GIT?

917. What are the three main steps of working GIT?

918. What are ours and theirs merge options in GIT?

919. How can we ignore merge conflicts due to Whitespace?
920.What is git blame?

921. What is a submodule in GIT?
AWS

922.What do you know about AWS Region?

923.What are the important components of IAM?

924.What are the important points about AWS IAM?

925.What are the important features of Amazon S3?

926.What is the scale of durability in Amazon S3?

927.What are the Consistency levels supported by Amazon S3?

928.What are the different tiers in Amazon S3 storage?

929.How will you upload a file greater than 100 megabytes in Amazon S3?

930. What happens to an Object when we delete it from Amazon S3?

931. What is the use of Amazon Glacier?
932.Can we disable versioning on a version-enabled bucket in Amazon S3?
933.What are the use cases of Cross Region Replication Amazon S3?

934.Can we do Cross Region replication in Amazon S3 without enabling
versioning on a bucket?

935.What are the different types of actions in Object Lifecycle
Management in Amazon S3?

936.How do we get higher performance in our application by using
Amazon CloudFront?

937.What is the mechanism behind Regional Edge Cache in Amazon
CloudFront?

938.What are the benefits of Streaming content?
939.What is Lambda@Edge in AWS?

940.What are the different types of events triggered by Amazon
CloudFront?

941. What is Geo Targeting in Amazon CloudFront?
942.What are the main features of Amazon CloudFront?

943.What are the security mechanisms available in Amazon S3?
Cloud Computing
944.What are the benefits of Cloud Computing?

945.What is On-demand computing in Cloud Computing?
946.What are the different layers of Cloud computing?

947.What resources are provided by Infrastructure as a Service (IAAS)
provider?

948.What is the benefit of Platform as a Service?

949.What are the main advantages of PaaS?

950.What is the main disadvantage of PaaS?

951. What are the different deployment models in Cloud computing?
952.What is the difference between Scalability and Elasticity?
953.What is Software as a Service?

954.What are the different types of Datacenters in Cloud computing?

955.Explain the various modes of Software as a Service (SaaS) cloud
environment?

956.What are the important things to care about in Security in a cloud
environment?

957.Why do we use API in cloud computing environment?

958.What are the different areas of Security Management in cloud?
959.What are the main cost factors of cloud based data center?
960.How can we measure the cloud-based services?

961.How a traditional datacenter is different from a cloud environment?

962.How will you optimize availability of your application in a Cloud
environment?

963.What are the requirements for implementing IaaS strategy in Cloud?
DOCKER

964.What is Docker?
965.What is the difference between Docker image and Docker container?
966.How will you remove an image from Docker?

967.How is a Docker container different from a hypervisor?

968.Can we write compose file in json file instead of yaml?
969.Can we run multiple apps on one server with Docker?
970.What are the common use cases of Docker?
971.What are the main features of Docker-compose?
972.What is the most popular use of Docker?

973.What is the role of open source development in the popularity of
Docker?

UNIX Shell

974.How will you remove all files in current directory? Including the files
that are two levels down in a sub-directory.

975.What is the difference between the —v and —x options in Bash shell
scripts?

976.What is a Filter in Unix command?

977.What is Kernel in Unix operating system?

978.What is a Shell in Unix OS?

979.What are the different shells in Unix that you know about?
980.What is the first character of the output in Is —1 command ?

981. What is the difference between Multi-tasking and Multi-user
environment?

982.What is Command Substitution in Unix?
983.What is an Inode in Unix?

984.What is the difference between absolute path and relative path in
Unix file system?

985.What are the main responsibilities of a Unix Shell?

986.What is a Shell variable?

Microservices

987.What is a Microservice?

988.What are the benefits of Microservices architecture?
989.What is the role of architect in Microservices architecture?

990.What is the advantage of Microservices architecture over Service
Oriented Architecture (SOA)?

991.1Is it a good idea to provide a Tailored Service Template for
Microservices development in an organization?

992.What are the disadvantages of using Shared libraries approach to
decompose a monolith application?

993.What are the characteristics of a Good Microservice?
994.What is Bounded Context?

995.What are the points to remember during integration of
Microservices?

996.1s it a good idea for Microservices to share a common database?

997.What is the preferred type of communication between Microservices?
Synchronous or Asynchronous?

998.What is the difference between Orchestration and Choreography in
Microservices architecture?

999.What are the issues in using REST over HTTP for Microservices?

1000. Can we create Microservices as State Machines?

ACKNOWLEDGMENTS

We thank our readers who constantly send
feedback and reviews to motivate us in creating
these useful books with the latest information!

INTRODUCTION

Java is one of the most popular programming language. There is a growing
demand for Java Developer jobs in technology companies.

This book contains technical interview questions that an interviewer asks for
Java technology and related topics like Spring, Hibernate, Maven, Git,
Microservices, AWS etc.

Each question is accompanied with an answer so that you can prepare for job
interview in short time.

We have compiled this list after attending dozens of technical interviews in
top-notch companies like- Facebook, Oracle, Netflix, Amazon etc.

Once you go through them in the first pass, mark the questions that you could
not answer by yourself. Then, in second pass go through only the difficult
questions.

After going through this book 2-3 times, you will be well prepared to face a
technical interview for a Java Developer position from Software Engineer
level to Principal Engineer level.

All the best!!

Java Interview Questions

Java Basics

1. What is the difference between
JDK and JRE?

JDK stands for Java Development Kit. It contains the tools and
libraries for development of Java programs. It also contains
compilers and debuggers needed to compile Java program,

JRE stands for Java Runtime Environment. This is included in JDK.
JRE provides libraries and JVM that is required to run a Java
program.

2. What is Java Virtual Machine
(JVM)?

Java Virtual Machine (JVM) is an abstract machine that executes
Java Bytecode. There are different JVM for different hardware and
software platforms. So JVM is platform dependent. JVM is
responsible for loading, verifying and executing the Bytecode on a
platform.

3. What are the different types of
memory areas allocated by JVM?

In java, JVM allocates memory to different processes, methods and
objects. Some of the memory areas allocated by JVM are:

1. ClassLoader: It is a component of JVM used to load class
files.

2. Class (Method) Area: It stores per-class structures such as
the runtime constant pool, field and method data, and the
code for methods.

3. Heap: Heap is created a runtime and 1t contains the runtime
data area in which objects are allocated.

4. Stack: Stack stores local variables and partial results at
runtime. It also helps in method invocation and return
value. Each thread creates a private JVM stack at the time
of thread creation.

5. Program Counter Register: This memory area contains the
address of the Java virtual machine instruction that is
currently being executed.

6. Native Method Stack: This area is reserved for all the
native methods used in the application.

4. What is JIT compiler?

Just In Time compiler also known as JIT compiler is used for
performance improvement in Java. It is enabled by default. It is
compilation done at execution time rather earlier.

Java has popularized the use of JIT compiler by including it in
JVM.

5. How Java platform is different
from other platforms?

Java 1s a platform independent language. Java compiler converts
Java code in to byte code that can be interpreted by JVM. There are
JVM written for almost all the popular platforms in the world.

Java byte code can run on any supported platform in same way.
Where as other languages require libraries compiled for a specific
platform to run.

6. Why people say that Java is 'write
once and run anywhere' language?

You can write Java code on Windows and compile it in Windows
platform. The class and jar files that you get from Windows
platform can run as it is on Unix environment. So it is a truly
platform independent language.

Behind all this portability is Java byte code. Byte code generated by
Java compiler can be interpreted by any JVM. So it becomes much
easier to write programs in Java and expect those to run on any
platform.

Java compiler javac compiles java code and JVM java runs that
code.

7. How does ClassL.oader work in
Java?

In Java, ClassLoader 1s a class that is used to load files in JVM.
ClassLoader loads files from their physical file locations e.g.
Filesystem, Network location etc.

There are three main types of ClassLoaders in Java.

1.

2.

Bootstrap ClassLoader: This is the first ClassLoader. It
loads classes fromrt.jar file.

Extension ClassLoader: It loads class files from jre/lib/ext
location.

Application ClassLoader: This ClassLoader depends on
CLASSPATH to find the location of class files. If you
specify your jars in CLASSPATH, then this ClassLoader
will load them.

8. Do you think ‘main’ used for main
method is a keyword in Java?

No, main is just a name of method. There can be multiple methods
with same name main in a class file. It is not a keyword in Java.

9. Can we write main method as
public void static instead of public
static void?

No, you cannot write it like this. Any method has to first specify the
modifiers and then the return value. The order of modifiers can
change.

We can write static public void main() instead of public static void
main().

10.In Java, if we do not specify any
value for local variables, then what
will be the default value of the local
variables?

Java does not initialize local variables with any default value. So
these variables will be just null by default.

11. Let say, we run a java class without
passing any arguments. What will be
the value of String array of
arguments in Main method?

By default, the value of String array of arguments is empty in Java.
It is not null.

12. What is the difference between
byte and char data types in Java?

Both byte and char are numeric data types in Java. They are used to
represent numbers in a specific range.

Major difference between them is that a byte can store raw binary
data where as a char stores characters or text data.

Usage of char 1s E.g. char ch= ‘x’;
Byte values range from -128 to 127.

A byte i1s made of 8 bits. But a char is made of 16 bits. So it is
equivalent to 2 bytes.

O0OPS

13. What are the main principles of
Object Oriented Programming?

Main principles of Object Oriented Programming (OOPS) are:
1. Abstraction

2. Encapsulation
3. Inheritance
4. Polymorphism

14. What is the difference between
Object Oriented Programming
language and Object Based
Programming language?

Object Oriented Programming languages like Java and C++ follow
concepts of OOPS like- Encapsulation, Abstraction, Polymorphism
and Inheritance etc.

Object Based Programming languages follow some features of
OOPS but they do not provide support for Polymorphism and
Inheritance. Egg. JavaScript, VBScript etc.

Object Based Programming languages provide support for Objects
and you can build objects from constructor. They languages also
support Encapsulation. These are also known as Prototype-oriented

languages.

15.In Java what is the default value of
an object reference defined as an
instance variable in an Object?

All the instance variable object references in Java are null.

16. Why do we need constructor in
Java?

Java 1s an object-oriented language, in which we create and use
objects. A constructor is a piece of code similar to a method. It is
used to create an object and set the initial state of the object.

A constructor is a special function that has same name as class
name.

Without a constructor, there is no other way to create an object.
By default, Java provides a default constructor for every object. If

we overload a constructor then we have to implement default
constructor.

17.Why do we need default
constructor in Java classes?

Default constructor is the no-argument constructor that is
automatically generated by Java if no other constructor is defined.

Java specification says that it will provide a default constructor if
there is no overloaded constructor in a class. But it does not say
anything about the scenario in which we write an overloaded
constructor in a class.

We need at least one constructor to create an object, that’s why Java
provides a default constructor.

When we have overloaded constructor, then Java assumes that we
want some custom treatment in our code. Due to which it does not
provide default constructor. But it needs default constructor as per
the specification. So it gives error.

18. What is the value returned by
Constructor in Java?

When we call a constructor in Java, it returns the object created by
it. That 1s how we create new objects in Java.

19.Can we inherit a Constructor?

No, Java does not support inheritance of constructor.

20. Why constructors cannot be final,
static, or abstract in Java?

If we set a method as final it means we do not want any class to
override it. But the constructor (as per Java Language

Specification) cannot be overridden. So there is no use of marking it
final.

If we set a method as abstract it means that it has no body and it
should be implemented in a child class. But the constructor is called
implicitly when the new keyword is used. Therefore it needs a
body.

If we set a method as static it means that it belongs to the class, but
not a particular object. The constructor is always called to initialize
an object. Therefore, there is no use of marking constructor static.

Inheritance

21.What is the purpose of ‘this’
keyword in java?

In Java, ‘this’ keyword refers to current instance of the object.

It 1s useful for differentiating between instance variables and local
variables.

It can be used to call constructors. Or it can be used to refer to the
1nstance.

In case of method overriding, this is used for falling the method of
current class.

22. Explain the concept of
Inheritance?

Inheritance 1s an 1important concept in Object Oriented
Programming. Some objects share certain characteristics and
behavior. By using Inheritance, we can put the common behavior
and characteristics in a base class which also known as super class.
And then all the objects with common behavior inherit from this
base class.

It is also represented by IS-A relationship.

Inheritance promotes, code reuse, method overriding and poly-
morphism.

23. Which class in Java is superclass
of every other class?

Java 1s an object oriented programming language. In Java, Object
class is the superclass of every other class.

24. Why Java does not support
multiple inheritance?

Multiple Inheritance means that a class can inherit behavior from
two or more parent classes.

The issue with Multiple Inheritance is that both the parent classes
may have different implementation for the same method. So they
have different ways of doing the same thing. Now which
implementation should the child class choose?

This leads to ambiguity in Multiple Inheritance. This is the main
reason for Java not supporting Multiple Inheritance in
implementation.

Lets say you have a class TV and another class AtomBomb. Both
have method switchOn() but only TV has switchOff() method. If
your class inherits from both these classes then you have an issue
that you can switchOn() both parents, but switchOff will only
switchOff() TV.

But you can implement multiple interfaces in Java.

25. In OOPS, what is meant by
composition?

Composition is also known as “has-a” relationship. In composition,
“has-a” relation relates two classes. E.g. Class Car has a steering
wheel.

If a class holds the instance of another class, then it is called
composition.

26. How aggregation and composition
are different concepts?

In OOPS, Aggregation and Composition are the types of association
relations. A composition is a strong relationship. If the composite
object is destroyed, then all its parts are destroyed. E.g. A Car has a
Steering Wheel. If Car object is destroyed, then there is no meaning
of Steering Wheel.

In Aggregation, the relationship is weaker than Composition.

E.g. A Library has students. If a Library is destroyed, Students still
exist. So Library and Student are related by Aggregation. A Library
has Books. If Library is destroyed, the Books are also destroyed.
Books of a Library cannot exist without the Library. So Book and
Library are related by Composition.

27. Why there are no pointers in
Java?

In Java there are references instead of pointers. These references
point to objects in memory. But there is no direct access to these
memory locations. JVM is free to move the objects within VM
memory.

The absence of pointers helps Java in managing memory and
garbage collection effectively. Also it provides developers with
convenience of not getting worried about memory allocation and de-
allocation.

28. If there are no pointers in Java,
then why do we get
NullPointerException?

In Java, the pointer equivalent is Object reference. When we use a .
it points to object reference. So JVM uses pointers but
programmers only see object references.

In case an object reference points to null object, and we try to
access a method or member variable on it, then we get
NullPointerException.

29. What is the purpose of ‘super’
keyword in java?

‘super’ keyword is used in the methods or constructor of a child
class. It refers to immediate parent class of an object.

By using ‘super’ we can call a method of parent class from the
method of a child class.

We can also call the constructor of a parent class from the
constructor of a child class by using ‘super’ keyword.

30. Is it possible to use this() and
super() both in same constructor?

No, Java does not allow using both super() and this() in same
constructor. As per Java specification, super() or this() must be the
first statement in a constructor.

31.What is the meaning of object
cloning in Java?

Object.clone() method is used for creating an exact copy of the
object in Java. It acts like a copy constructor. It creates and returns
a copy of the object, with the same class and with all the fields
having same values as of the original object.

One disadvantage of cloning is that the return type is an Object. It
has to be explicitly cast to actual type.

Static

32. In Java, why do we use static
variable?

Whenever we want to have a common property for all objects of a
class, we use a class level variable i.e. a static variable.

This variable is loaded in memory only once at the time of class
loading. So it saves memory, since it is not defined per object in
Java.

33. Why it is not a good practice to
create static variables in Java?

Static variables are common to all the objects of a class. If a new
object is created, there is no need to test the value of static variable.
Any code that uses static variable can be in any state. It can be
within a new object or at a class level. So the scope of static
variable 1s open ended in a Java class.

If we want tighter control on scope, then variables should be
created at the object creation level.

Also defining static variables is not a good practice because they go
against the principles of Object Oriented Programming.

34. What is the purpose of static
method in Java?

Java provides the feature of static method to create behavior at the
class level. The static method is common to all the objects of a
class. We do not need to create any object of a class to call a static
method. So it provides convenience of not creating an object for
calling it.

Also a static method can access and modify static data members.
This also helps in keeping the behavior as well as state at the class
level.

35. Why do we mark main method as
static in Java?

The main method in Java is marked as static, so that JVM can call it
to start the program. If main method is not static, then which
constructor will be called by Java process?

As such it is a known as convention to mark main method static in
Java. But if we remove the static, then there will be ambiguity. Java
process may not know which method of a class to call to start the
program.

So this convention helps in Java process to identify the starting code
for a program in class that is passed as an argument to java process.

36. In what scenario do we use a static
block?

At times, there 1s a class that has static member variables. These
variables need some complicated initialization. At this time static
block helps as a tool to initialize complex static member variable
initialization.

The static block is executed even before the execution of main.

Sometimes, we can also replace static block with a static method of
class.

37. Is it possible to execute a program
without defining a main() method?

No, with Java 7 onwards, you need a main() method to execute a
program. In earlier versions of Java, there was a workaround
available to use static blocks for execution. But now this gap has
been closed.

38. What happens when static
modifier is not mentioned in the
signature of main method?

As per Java specification, main method has to be marked as static.
It needs only one argument that is an array of String,

A program can compile with a non-static method. But on execution
it will give NoSuchMethodError.

39. What is the difference between
static method and instance method in
Java?

Often, there 1s a need to define a behavior for a class that is not
dependent on member variables of an object. Such behavior is
captured in a static method. If there is a behavior dependent upon
the member variables of an object, then we do not mark it static, it
remains as instance method.

To call as static method, we do not need to create an object. We just
call it with class name. But to call an instance method, we need to
create/get an object first.

Instance member variables cannot be accessed by a static method.
But an instance method can call both instance variables and static
variables.

Method Overloading and Overriding

40. What is the other name of Method
Overloading?

Method Overloading is also known as Static Polymorphism.

41.How will you implement method
overloading in Java?

In Java, a class can have multiple methods with same name but
different arguments. It is called Method Overloading. To implement
method overloading we have to create two methods with same name
in a class and do one/more of the following;

1. Different number of parameters
2. Different data type of parameters
3. Different sequence of data type of parameters

42. What Kinds of argument
variations are allowed in Method
Overloading?

Method Overloading allows two methods with same name to differ
in:

1. Number of parameters

2. Data type of parameters

3. Sequence of data type of parameters

43. Why it is not possible to do
method overloading by changing
return type of method in java?

If we change the return type of overloaded methods then it will lead
to ambiguous behavior. How will clients know which method will
return what type. Due to this different return type are not allowed in
overloaded methods.

44. Is it allowed to overload main()
method in Java?

Yes, Java allows users to create many methods with same name
‘main’. But only public static void main(String[] args) method is
used for execution.

45. How do we implement method
overriding in Java?

To override a method, we just provide a new implementation of a
method with same name in subclass. So there will be at least two
implementations of the method with same name. One
implementation is in parent class. And another implementation is in
child class.

46. Are we allowed to override a static
method in Java?

No. Java does not allow overriding a static method. If you create a
static method with same name in subclass, then it is a new method,
not an overridden method.

4’7. Why Java does not allow
overriding a static method?

To override a method, you need an instance of a class. Static method
is not associated with any instance of the class. So the concept of
overriding does not apply here.

Therefore, Java does not allow overriding a static method.

48. Is it allowed to override an
overloaded method?

Yes. You can override an overloaded method in Java.

49. What is the difference between
method overloading and method
overriding in Java?

Differences between method overloading and overriding are:

l.

2.

Method overloading 1s static polymorphism. Method
overriding is runtime polymorphism.

Method overloading occurs within the same class. Method
overriding happens in two classes with hierarchy
relationship.

Parameters must be different in method overloading,
Parameters must be same in method overriding.

Method overloading is a compile time concept. Method
overriding is a runtime concept.

50. Does Java allow virtual functions?

Yes. All instance methods in Java are virtual functions by default.
Only class methods and private instance methods are not virtual
methods in Java.

51.What is meant by covariant return
type in Java?

A covariant return type of a method is one that can be replaced by a
"narrower" type when the method is overridden in a subclass.

Let say class B is child of class A. There is a get() method in class
A as well as class B. get() method of class A can return an instance
of A, and get() method of class B return an instance of B. Here
class B overrides get() method, but the return type is different.

Before Java 5, any method that overrides the method of parent class
would have same return type.

From Java 5 onwards, a child class can override a method of parent
class and the child class method can return an object that is child of
object return by parent class method.

Polymorphism

52. What is Runtime Polymorphism?

Runtime Polymorphism or Dynamic Polymorphism 1is the
polymorphism that exists at runtime. In case of method overriding it
is not known which method will be called at runtime. Based on the
type of object, JVM decides the exact method that should be called.

So at compile time it 1s not known which method will be called at
run time.

53. Is it possible to achieve Runtime
Polymorphism by data members in
Java?

No. We need to create Runtime Polymorphism by implementing
methods at two levels of inheritance in Java.

54. Explain the difference between
static and dynamic binding?

In Static binding references are resolved at compile time. In
Dynamic binding references are resolved at Run time.

E.g.
Person p = new Person();
p-walk(); // Java compiler resolves this binding at compile time.

public void walk(Object 0){
((Person) 0).walk(); // this 1s dynamic binding.

b

Abstraction

55. What is Abstraction in Object
Oriented programming?

Abstraction is the process of hiding certain implementation details
of an object and showing only essential features of the object to
outside world.

It is different from Abstract class in Java.
Abstraction process identifies commonalities and hides the

complexity of implementation. It helps us in focusing on the
interface that we share with the outside world.

56. How is Abstraction different from
Encapsulation?

Abstraction happens at class level design. It results in hiding the
implementation details. Encapsulation 1is also known as
“Information Hiding”. An example of encapsulation is marking the
member variables private and providing getter and setter for these
member variables.

57. What is an abstract class in Java?

An abstract class in Java has one or more abstract methods. An
abstract method 1s just declared in the abstract class, but it is not
implemented.

An abstract class has to be extended in Java and its abstract
methods have to be implemented by a child class. Also Java does
not allow new instance of Abstract class.

58. Is it allowed to mark a method
abstract method without marking the
class abstract?

No. Java specification says that if there is at least one abstract
method in a class, the class has to be marked abstract.

59. Is it allowed to mark a method
abstract as well as final?

No. It will be contradictory statement to mark a method abstract as
well as final.

An abstract method has to be overridden by a child class. And a
final method cannot be overridden. Therefore a method can be
either abstract or final in Java.

60. Can we instantiate an abstract
class in Java?

No. We cannot create an instance of an abstract class in Java.

61.What is an interface in Java?

An Interface in Java is an abstract type blueprint of a class. It
contains the methods that a class must implement. It is like a
protocol.

It has method signatures and constant declarations.

62. Is it allowed to mark an interface
method as static?

Yes, from Java 8 onwards, we can define static and default methods
in an interface. Prior to Java 8, it was not allowed.

63. Why an Interface cannot be
marked as final in Java?

A final method cannot be overridden. But an interface method has to
be implemented by another class. So the interface method cannot be
marked as final.

64. What is a marker interface?

There are interfaces that do not have any data member or methods.
These interfaces are called Marker interface.
E.g. Serializable, Cloneable, Remote etc.

65. What can we use instead of
Marker interface?

We can use annotations instead of Marker interface.

66. How Annotations are better than
Marker Interfaces?

Annotations serve the purpose of conveying metadata about the
class to its consumers without creating a separate type for it.

Annotations are more powerful than a Marker interface. They allow
programmers to pass more sophisticated information to classes that
"consume" it.

67. What is the difference between
abstract class and interface in Java?

Differences between Abstract class and Interface are as follows:

1.

An abstract class can have implemented methods with
body (non-abstract methods). Interface has only abstract
methods. From Java 8 onwards, interface can have
static/default methods in implemented form.

An abstract class can have instance member variables. An
interface cannot have instance variables. It can only have
constants.

An abstract class can have a constructor. Interface cannot
have constructor. It has to be implemented by another
class.

A class can extend only one abstract class. A class can
implement more than one interface.

68. Does Java allow us to use private
and protected modifiers for variables
in interfaces?

No. All the variables in an interface are implicitly public.

69. How can we cast to an object
reference to an interface reference?

An Object that implements an Interface can be cast to the same
Interface. Since An Object implementing an Interface already
provides implementation for the methods of that Interface, it is
allowed to do so as per the rules of Inheritance.

Final

70. How can you change the value of a
final variable in Java?

Java does not allow changing the value of a final variable. Once the
value is set, it cannot be changed.

71.Can a class be marked final in
Java?

Yes a class can be marked final in Java. Once a class is marked
final, it cannot be extended.

72. How can we create a final method
in Java?

To mark a method, add modifier final to that method. A final method
can not be overridden by a child class.

73. How can we prohibit inheritance
in Java?

If you mark a class final, it cannot be extended. This will prohibit
the inheritance of that class in Java.

74. Why Integer class in final in Java?

Integer class is a wrapper for int. If it is not marked final, then any
other class can extend it and modify the behavior of Integer
operations. To avoid this Integer wrapper class is marked as final.

75. What is a blank final variable in
Java?

When we declare a final variable without giving any initial value,
then it is called blank final variable.

76. How can we initialize a blank final
variable?

A blank final instance variable can be initialized in a constructor.

A blank final static variable can be initialized in the static block of
class.

77. Is it allowed to declare main
method as final?

Yes, we can mark the main method as final.

Package

78. What is the purpose of package in
Java?

A package is used to encapsulate a group of classes, interfaces and
sub-packages. Often, it is a hierarchical structure of storing
information. It is easier to organize the related classes and sub-
packages in this manner.

A Package also provides access protection for classes and
interfaces. A package also helps in removing naming collision.

79. What is java.lang package?

In Java, java.lang package contains the classes that are fundamental
to the design of Java programming language. The most important
class in this package is Object class.

It also contains wrapper classes like- Integer, Boolean, Character
etc. It provides Math class for mathematical operations.

80. Which is the most important class
in Java?

It is an open-ended question with many answers. In my view, Object
class is the most important class of Java programming language. It
is the root of all the classes in Java. It provides some very
important and fundamental methods.

81.1Is it mandatory to import java.lang
package every time?

No. By default, JVM loads it internally.

82. Can you import same package or
class twice in your class?

If we import same package multiple times in a class, compiler
includes it only once. So neither JVM nor Compiler gives any
error/warning on including a package multiple times.

If you have two classes with same name, then you may get name
collision on importing the class erroneously.

JVM internally loads the class only one time.

83. What is a static import in Java?

Static import is similar to normal import declaration. Normal
import allows us to import classes from packages without using
package qualifier. Static import allows us to import static members
from a class without using class qualifier.

84. What is the difference between
import static com.test.Fooclass and
import com.test.Fooclass?

First import is a static import and the second import is normal
import of a class. First import allows us to import static members of
class.

Internationalization

85. What is Locale in Java?

A Locale object represents a specific geographical, political, or
cultural region. It is used to locale-sensitive operations in Java.

It helps is following the local conventions of a country, native or
region. These conventions can be for formatting the dates, money,
numbers etc.

86. How will you use a specific Locale
in Java?

To use a specific Locale, we need to load that Locale. We can use
ResourceBundle.getBundle("Locale.UK") method to load a Locale.

Serialization

87. What is the serialization?

Serialization is a process converting an object into a byte array.
This byte array represents the class, version and internal state of the
object. JVM can use this byte array to transmit/read the object over
a network.

88. What is the purpose of
serialization?

Some of the uses of serialization are:

1. Communication: It is used for transmitting an object over
network between two machines.

2. Persistence: We can store the object’s state in a database
and retrieve it from database later on.

3. Caching: Serialization can be used for caching to improve
performance. We may need 10 minutes to build an object,
but it may take just 10 seconds to de-serialize the object.

4. Cross JVM Synchronization: It can be used in same way
across multiple JVM that follow different architecture.

89. What is Deserialization?

Deserialization is the process of reconstructing the object from the
serialized state. It is the reverse process of serialization.

90. What is Serialization and
Deserialization conceptually?

Serialization is to convert Object data into a stream of bytes

Deserialization is to convert a stream of bytes back into a copy of
the original object.

91.Why do we mark a data member
transient?

Member variables of an object are marked transient to indicate that
they should not be serialized.

During serialization process the transient variables are not
considered part of the persistent state of an object.

92. Is it allowed to mark a method as
transient?

No, Java does not allow marking a method as transient. The
transient keyword is valid only for member variables.

93. How does marking a field as
transient makes it possible to serialize
an object?

Let say we have a class ABC that implements Serializable
interface, but it contains a member variable object of class XYZ
that does not implement Serializable interface. Due to this it is not
possible to Serialize the class ABC.

To solve this issue, we can mark the member variable XYZ as
Transient in class ABC. This will allow us to serialize the class
ABC.

94. What is Externalizable interface
in Java?

Externalizable interface extends Serializable interface in Java. It 1s
used for giving the Class control over saving and restoring the
contents of its instances.

A class implements methods writeExternal() and readExternal() to
store and restore the object.

95. What is the difference between
Serializable and Externalizable
interface?

Serializable is a marker interface but Externalizable is not a marker
interface.

When we implement Serializable interface, the class is serialized
automatically by default. We can override writeObject() and
readObject()methods to control more complex object Serialization
process.

In case of Externalizable, we wuse readExternal() and
writeExternal() methods to give control to class for class's
serialization process.

Serializable interface is based on recursive algorithm.

Serializable gives you two options. One option is to provide custom
way of serialization, the other default way. In Externalizable, you
have to always implement readExternal() and writeExternal()
methods.

A public no-arg constructor is needed while using Externalizable
interface.

In Serialization, we need to define serialVersionUID. If it is not
explicitly defined it will be generated automatically based on all the
fields, methods of the class.

Reflection

96. What is Reflection in Java?

Reflection is Java language's ability to inspect and dynamically call
classes, methods, attributes etc. at Runtime. It helps in examining or
modifying the Runtime behavior of a class at Runtime.

97. What are the uses of Reflection in
Java?

Reflection is often used in Testing, Debugging and in Integrated
Development Environment (IDE).

Reflection allows you to write programs that do not have to "know"
everything at compile time. It makes programs more dynamic, since

they can be tied together at runtime.

Many modern frameworks like Spring etc. use Reflection. Some
modern languages like Python etc. also use Reflection.

JAVA API for XML Parsing (JAXP) also uses Reflection.

98. How can we access private
method of a class from outside the
class?

We can use Reflection to access private method of a class from
outside the class. IN Java, we use getDeclaredMethod() to get
instance of a private method. Then we mark this method accessible
and finally invoke it.

In following sample code, we are accessing private method
message() of class Foo by Reflection.

FileName: Foo.java
public class Foo {
private void message() { System.out.println("hello java"); }

}

FileName: FooMethodCall.java

import java.lang.reflect. Method;

public class FooMethodCall{

public static void main(String[] args)throws Exception{

Class ¢ = Class.forName("Foo");

Object o= c.newInstance();

Method m =c.getDeclaredMethod("message", null);
m.setAccessible(true);

m.invoke(o, null);

99. How can we create an Object
dynamically at Runtime in Java?

We can use Reflection to create an Object dynamically at Runtime
in Java. We can use Class.newInstance() or
Constructor.new Instance() methods for creating such Objects.

Garbage Collection

100. What is Garbage Collection in
Java?

Java has an internal mechanism called Garbage collection to
reclaim the memory of unused projects at run time.

Garbage collection i1s also known as automatic memory
management.

101. Why Java provides Garbage
Collector?

In Java, there are no pointers. Memory management and allocation
is done by JVM. Since memory allocation is automated, after some
time JVM may go low on memory. At that time, JVM has to free
memory from unused objects. To help with the process of
reclaiming memory, Java provides an automated process called
Garbage Collector.

102. What is the purpose of gc¢() in
Java?

Java provides two methods System.gc() and Runtime.gc() to request
the JVM to run the garbage collection. By using these methods,
programmers can explicitly send request for Garbage Collection.
But JVM process can reject this request and wait for some time
before running the GC.

103.How does Garbage Collection
work in Java?

Java has an automated process called Garbage Collector for
Memory Management. It is a daemon in JVM that monitors the
memory usage and performs memory cleanup. Once JVM is low on
memory, GC process finds the unused objects that are not
referenced by other objects. These unused objects are cleaned up by
Garbage Collector daemon in JVM.

104. When does an object become
eligible for Garbage Collection in
Java?

An object can be Garbage Collected by JVM, if it is not reachable.
There are two cases for deciding eligibility of objects for Garbage
Collection:

1. An Object/instance that cannot be reached by a live thread.
2. A set of circularly referenced instances that cannot be
reached by any other instance outside that set.

105. Why do we use finalize() method
in Java?

Java provides finalize() method to perform any cleanup before
Garbage Collection. This method is in Object class, and it is
invoked by JVM internally. Developers are free to implement this
method for any custom cleanup in case of Garbage Collection.

If an Object is not Garbage Collected, then this method may not be
called.

This method is never invoked more than once by JVM.

106. What are the different types of
References in Java?

In Java, there are four types of references:

1. Strong Reference
2. Soft Reference

3. Weak Reference

4. Phantom Reference

107.How can we reference an
unreferenced object again?

We can provide implementation in finalize() method to reference
and unreferenced object. For an unreferenced object, finalize()
method is called at the time of Garbage Collection. At this time,
Object can pass its reference ‘this’ to finalize() method and revive
itself.

108. What kind of process is the
Garbage collector thread?

Garbage Collection is a Daemon process in JVM. It is an internal
process that keep checking Memory usage and cleans up the
memory.

109. What is the purpose of the
Runtime class?

The purpose of the Runtime class is to provide access to the Java
Runtime system. This class provides certain important methods like:

1. Runtime.freeMemory() — This method returns the value of
free memory in JVM

2. Runtime.maxMemory() - This method returns the value of
maximum memory that JVM can use.

3. Runtime.gc() — This method can invoke garbage collection.

110. How can we invoke an external
process in Java?

Java provides the method Runtime.getRuntime().exec() to invoke an
external process from JVM.

111. What are the uses of Runtime
class?

Runtime class in Java provides following benefits:

1. TItallows to read data via key board
It can use system properties and environment variables

3. It helps in running non-java programs from within a java
application.

Inner Classes

112. What is a Nested class?

In Java, a Nested class is a class declared inside another class. We
can have more than one class declared inside a file.

113. How many types of Nested classes
are in Java?

Java provides four types of Nested classes:

Member inner class
Local inner class
Anonymous inner class
Static nested class

b S

114. Why do we use Nested Classes?

There are following reasons for using nested classes:

1.

Logical Grouping: We can logically group classes in one
place. If one class is useful to only one other class, then
we put smaller class within the larger class and keep them
in one file. This kind of nesting "helper classes" in a top-
level class makes the package more streamlined.

Encapsulation: Nested classes increase encapsulation. Let
say there are two top-level classes, Foo and Bar. Bar
needs access to private members of Foo. We can hide
class Bar within class Foo. In this way, private members
of Foo can be accessed by class Bar. So class Foo remains
encapsulated. Also, class Bar remains hidden from the
outside world.

Code Clarity: Nested classed make the code more
readable and well organized. Only Top-level classes are
exposed. The helper classes are kept hidden and closer the
code where it is used by a Top-level class.

115. What is the difference between a
Nested class and an Inner class in
Java?

An Inner class in Java is non-static class. It is a type of Nested class
that 1s defined in another class but not qualified with a Static
modifier. A Nested class is also a class can be Static Nested class
or a non-Static Inner class.

An Inner class has access to other members of the enclosing class,
even if they are declared private. A Static Nested class can not
access the other members of the enclosing class.

116. What is a Nested interface?

A Nested interface is declared inside another interface or a top-
level class. By default it is static.

A Nested interface is also known as Static interface.

117. How can we access the non-final
local variable, inside a Local Inner

class?

Java allows a Local Inner class to access only Constant local
members. So we have to make the non-final local variable as final
constant to access it inside a Local Inner class.

118.Can an Interface be defined in a
Class?

Yes, we can define a Static Nested interface within a class. Only the
enclosing class can access it.

119.Do we have to explicitly mark a
Nested Interface public static?

A Nested Interface is implicitly public static. So the modifiers
public and static are redundant in declaration.

120. Why do we use Static Nested
interface in Java?

Only the enclosing class can access a Static Nested interface.
Consider following code in which interface Xyz is enclosed in
class Abc.

public class Abc {

public interface Xyz {
void callback();

b

public static void registerCallback(Xyz xyz) {...}
b

// Client Code
Abc.registerCallback(new Abc.Xyz() {
public void callback() {...}

$);

Any code that cannot access Abc can not access interface Xyz also.

So the purpose of declaring an Inner interface is to restrict its
access from outside world.

String

121.What is the meaning of
Immutable in the context of String
class in Java?

An Immutable object cannot be modified or changed in Java. String
is an Immutable class in Java.

Once a String object is created, it cannot be changed. When we
assign the String to a new value, a new object is created.

122.Why a String object is considered
immutable in java?

Java language uses String for a variety of purposes. For this it has
marked String Immutable.

There is a concept of String literal in Java.

Let say there are 2 String variables A and B that reference to a
String object “TestData”. All these variables refer to same String
literal. If one reference variable A changes the value of the String
literal from “TestData” to “RealData”, then it will affect the other
variable as well. Due to which String is considered Immutable. In
this case, if one variable A changes the value to “RealData”, then a
new String literal with “RealData” is created and A will point to
new String literal. While B will keep pointing to “TestData”

123.How many objects does following
code create?

Code:

String s1="HelloWorld";
String s2=" HelloWorld ";
String s3=" HelloWorld ";

The above code creates only one object. Since there is only one
String Literal “HelloWorld” created, all the references point to
same object.

124. How many ways are there in
Java to create a String object?

Java provides two ways to create a String object. One is by using
String Literal, the other is by using new operator.

125.How many objects does
following code create?

Code:
String s = new String("HelloWorld");

The above code creates two objects. One object is created in String
constant pool and the other is created on the heap in non-pool area.

126. What is String interning?

String interning refers to the concept of using only one copy of a
distinct String value that 1s Immutable.

It provides the advantage of making String processing efficient in
Time as well as Space complexity. But it introduces extra time in
creation of String.

127.Why Java uses String literal
concept?
Java uses String literal concept to make Java more efficient in

memory. If same String already exists in String constant pool, it can
be reused. This saves memory usage.

128. What is the basic difference
between a String and StringBuffer
object?

String 1s an immutable object. Its value cannot change after creation.

StringBuffer is a mutable object. We can keep appending or
modifying the contents of a StringBuffer in Java.

129. How will you create an immutable
class in Java?

In Java, we can declare a class final to make it immutable. There
are following detailed steps to make it Immutable:

l.

2.

(98]

9,

Add final modifier to class to prevent it from getting
extended

Add private modifier to all the fields to prevent direct
access

Do not provide any setter methods for member variables
Add final modifier to all the mutable fields to assign value
only once

Use Deep Copy to initialize all the fields by a constructor
In clone method, return a copy of object instead of the
actual object reference

130. What is the use of toString()
method in java ?

In Java, Object class has toString() method. This method can be
used to return the String representation of an Object. When we print
an object, Java implicitly calls toString() method.

Java provides a default implementation for toString() method. But
we can override this method to return the format that we want to

print.

131. Arrange the three classes String,
StringBuffer and StringBuilder in the
order of efficiency for String
processing operations?

StringBuilder is the most efficient class. It does not have the
overhead of Synchronization. StringBuffer is a Synchronized class.
It has better performance than String but it is slower than
StringBuilder. String is the slowest for any String processing
operations, since it is leads to creation of new String literal with
each modification.

So the decreasing order of efficiency is: StringBuilder, StringBuffer,
String

Exception Handling

132. What is Exception Handling in
Java?

Java provides Exception Handling mechanism to handle Runtime
errors that occur in JVM. There are checked exceptions in a
program that we expect to occur in certain situations.

Exception handling mechanism catches these checked exceptions
and takes relevant actions.

133.1In Java, what are the differences
between a Checked and Unchecked?

Checked Exceptions extend Throwable class, but they do not extend
RuntimeException or Error classes. UncheckedException extend
RuntimeException class.

Checked Exceptions are checked at compile time in Java.
Unchecked Exceptions happen at Runtime, so they are not checked
at compile time.

IOException, SQLException etc. are examples of Checked
Exceptions. NullPointerException, ArithmeticException etc. are
examples of Unchecked Exceptions.

134. What s the base class for
Error and Exception classes in Java?

Error as well as Exception class i1s derived from Throwable class
in Java.

135. What is a finally block in Java?

Java provides a finally block with a try block. This is an optional
block. But finally block 1s always executed after the execution of try

block.

136. What is the use of finally block in
Java?

As per Java specification, a finally block is always executed,
whether an error occurs or not, whether an exception is handled or
not. It helps in doing the cleanup like- Rollback Transaction, Close
Connection, Close a file etc.

137.Can we create a finally block
without creating a catch block?

Yes. A finally block can follow a try block or catch block. So we
can defined a finally block just after a try block.

138.Do we have to always put a catch
block after a try block?

Java does not enforce the rule to put a catch block after try block.
We can write catch block or finally block after a try block.

Any exception that we want to catch is mentioned in catch block.

139.1In what scenarios, a finally block
will not be executed?

There are two main scenarios in which finally block is not
executed:

1. Program exits by calling system.exit() call.
2. Afatal error causes JVM to crash.

140. Can we re-throw an Exception
in Java?

Yes, Java allows to re-throw an Exception.

141.What is the difference between
throw and throws in Java?

Java provides throw keyword to throw an exception from a method
or a static block. Java provides throws keyword to mention the
probable exception thrown by a method in its declaration.

We use throw to explicitly throw an exception. We used
throws to declare an exception in method definition.

We cannot propagate checked exceptions with throw only. But
checked exceptions can be propagated with throws keyword.

A throw call is followed by an instance. Class or Exception follows
a throws keyword.

Call to throw occurs within a method. throws is just used with
method signature.

We can throw only one exception at a time. But we can mention as
many exceptions in throws clause.

142. What s the concept of
Exception Propagation?

In Exception Propagation, uncaught exceptions are propagated in the
call stack until stack becomes empty. This propagation is called
Exception Propagation.

Let say an exception propagates from one method to another method.
A() calls B(), which calls C(), which calls D(). And if D() throws
an exception, the exception will propagate from D to C to B to A,
unless one of the methods catches the exception.

143. When we override a method in
a Child class, can we throw an
additional Exception that is not
thrown by the Parent class method?

Yes, Java allows us to throw additional Exception in a child class,
but the additional exception should be an unchecked exception

(RuntimeException).

Java Collection

144. What is the difference between
Collection and Collections
Framework in Java?

In Java, a Collection is an object that contains multiple elements of
same type in a single unit. These multiple elements can be accessed
through one Collection object.

In Java Collections Framework is a library that provides common
architecture for creating, updating and accessing different types of
collections. In Collections framework there are common methods
that are frequently used by developers for working on a Collection
object.

145.

What are the main benefits of

Collections Framework in Java?

Main benefits of Collections Framework in Java are as follows:

1.

Reusability: Java Collections Framework provides
common classes and utility methods than can be used with
different types of collections. This promotes the reusability
of the code. A developer does not have to re-invent the
wheel by writing the same method again.

Quality: Using Java Collection Framework improves the
program quality, since the code is already tested and used
by thousands of developers.

Speed: Most of programmers report that their development
speed increased since they can focus on core logic and use
the generic collections provided by Java framework.

Maintenance: Since most of the Java Collections
framework code is open source and API documents is
widely available, it is easy to maintain the code written
with the help of Java Collections framework. One
developer can easily pick the code of previous developer.

146. What s the root interface of
Collection hierarchy in Java?

The root interface of Collection hierarchy in Java is Collection
interface.

But the Collection interface extends Iterable interface. Due to this
some people consider Iterable interface as the root interface.

Iterable interface is present in java.lang package but Collection
interface is present in java.util package. Oracle Java API docs
mention that Collection interface is a member of the Java
Collections framework.

Whereas, Iterable interface is not stated as a part of Java
Collections framework in Java docs.

Due to this Collection interface 1s the root of Collections
Framework.

147. What are the main differences
between Collection and Collections?

Main differences between Collection and Collections are as
follows:

1. Collection is an interface in Java. But Collections is a
class in Java.

2. Collection is a base interface. Collections is a utility class
in Java.

3. Collection defines methods that are used for data structures
that contain the objects. Collections defines the methods
that are used for operations like access, find etc. on a
Collection.

148. What are the Thread-safe
classes in Java Collections
framework?

The Thread-safe classes in Java Collections framework are:

Stack

Properties

Vector

Hashtable

BlockingQueue
ConcurrentMap
ConcurrentNavigableMap

149. How will you efficiently
remove elements while iterating a
Collection?

The right way to remove elements from a collection while iterating
1s by using Listlterator.remove() method.

E.g.

Listlterator<Integer> iter = myList.iterator();
while(iter.hasNext()) {
itr.remove();

b

Some developers use following code to remove an element which is
incorrect:

Iterator<Integer> iter = myList.iterator();
while(iter.hasNext()) {
itr.remove();

b

By doing so we get ConcurrentModificationException.

An 1terator 1s first created to traverse the list. But at the same time
the list is changed by remove() method.

In Java, it is not allowed for a thread to modify a collection while
another thread i1s iterating it. Listlterator provides the capability of
removing an object during traversal.

150. How will you convert a List into
an array of integers like- int[]?

We can use ArrayUtils class in Apache Commons Lang library.
Sample code is:

int[|intArray = ArrayUtils.toPrimitive(myList.toArray(new
Integer[0]));

If we use List.toArray(), it will convert List to Integer[].

Another option is:

int[] intArray = new int[myList.size()];

for (int 1=0; 1 <myList.size(); i++) {

intArray [1] = myList.get(1);
}

151.How will you convert an array of
primitive integers int[] to a List
collection?

We can use ArrayUtils in Apache Commons Lang library for this
purpose.

Sample code is:
List intList = Arrays.asList(ArrayUtils.toObject(intArray));

The other option would be to use a for loop and explicitly adding
integers to a List.

Sample code is:

int[JintArray = {10,20,30};
List<Integer> intList = new ArrayList<Integer>();
for (int 1: intArray) {
intList.add(1);
b

152.How will you run a filter on a
Collection?

We can use CollectionUtils of Apache for this purpose. We will
have to create a Predicate that will define the condition for our
filter. Then we can apply this Predicate in filter() method.

Sample code is:

In this example we filter any names that are less than 5 characters
long.

List<String> namesList = asList("Red", "Blue", "Green");

List<String> shortNamesList = new ArrayList<String>();
shortNamesList.addAll(namesList);

CollectionUtils.filter(shortNamesList, new Predicate() {
public boolean evaluate(Object input) {
return ((String) input).length() < 5;
h
I

We can also use Google Guava library for this.

In Java 8, we can use Predicate to filter a Collection through
Stream.

153.How will you convert a List to a
Set?

There are two ways to convert a List to a Set in Java.

Option 1: Use HashSet

Set<Integer> mySet = new HashSet<Integer>(myList);

In this case we put a list into a HashSet. Internally hashCode()
method is used to identify duplicate elements.

Option 2: Use TreeSet
In this case we use our own comparator to find duplicate objects.

Set<Integer> mySet = new TreeSet<Integer>(myComparator);
mySet.addAll(myList);

154. How will you remove duplicate
elements from an ArrayList?

The trick in this question is to use a collection that does not allow
duplicate elements. So we use a Set for this purpose.

Option 1: Use Set
If ordering of elements is not important then we just put the elements
of ArrayList in a HashSet and then add them back to the ArrayList.

Sample Code is:

ArrayList myList =// ArrayList with duplicate elements
Set<Integer> mySet = new HashSet<Integer>(myList);
myList.clear();

myList.addAll(mySet);

Option 2: Use LinkedHashSet

If ordering of elements is important then we put the elements of
ArrayList in a LinkedHashSet and then add them back to the
ArrayList.

Sample Code is:

ArrayList myList=// ArrayList with duplicate elements
Set<Integer> mySet = new LinkedHashSet<Integer>(myList);
myList.clear();

myList.addAll(mySet);

155.How can you maintain a
Collection with elements in Sorted
order?

In Java, there are many ways to maintain a Collection with elements
in sorted order.

Some collections like TreeSet store elements in the natural
ordering. In case of natural ordering we have to implement
Comparable interface for comparing the elements.

We can also maintain custom ordering by providing a custom
Comparator to a Collection.

Another option is to use the utility method Collections.sort() to sort
a List. This sorting gives nlog(n) order of performance. But if we
have to use this method multiple times then it will be costly on
performance.

Another option is to use a PriorityQueue that provides an ordered
queue. The main difference between PriorityQueue and
Collections.sort() is that PriorityQueue maintains a queue in Order
all the time, but we can only retrieve head element from queue. We
cannot access the elements of PriorityQueue in Random order.

We can use TreeSet to maintain sorted order of elements in
collection if there are no duplicate elements in collection.

156. What are the differences between
the two data structures: a Vector and
an ArrayList?

An ArrayList is a newer class than a Vector. A Vector 1s considered a
legacy class in Java. The differences are:

1. Synchronization: Vector is synchronized, but the ArrayList
1s not synchronized. So an ArrayList has faster operations
than a Vector.

2. Data Growth: Internally both an ArrayList and Vector use
an array to store data. When an ArrayList is almost full it
increases its size by 50% of the array size. Whereas a
Vector increases it by doubling the underlying array size.

157.What are the differences between
Collection and Collections in Java?

Main differences between Collection and Collections are:

1.

2.

Type: Collection is an interface in Java. Collections is a
class.

Features: Collection interface provides basic features of
data structure to List, Set and Queue interfaces.
Collections is a utility class to sort and synchronize
collection elements. It has polymorphic algorithms to
operate on collections.

Method Type: Most of the methods in Collection are at
instance level. Collections class has mainly static methods
that can work on an instance of Collection.

158. In which scenario, LinkedList
is better than ArrayList in Java?

ArrayList is more popular than LinkedList in Java due to its ease of
use and random access to elements feature.

But LinkedList is better in the scenario when we do not need
random access to elements or there are a lot of insertion, deletion of
elements.

159. What are the differences between
a List and Set collection in Java?

Main differences between a List and a Set are:

1.

Order: List collection is an ordered sequence of elements.
A Set 1s just a distinct collection of elements that is
unordered.

Positional Access: When we use a List, we can specify
where exactly we want to insert an element. In a Set there
1s no order, so we can insert element anywhere without
worrying about order.

Duplicate: In a List we can store duplicate elements. A Set
can hold only unique elements.

160. What are the differences between
a HashSet and TreeSet collection in
Java?

Main differences between a HashSet and TreeSet are:

1. Ordering: In a HashSet elements are stored in a random
order. In a TreeSet, elements are stored according to
natural ordering.

2. Null Value Element: We can store null value object in a
HashSet. A TreeSet does not allow to add a null value
object.

3. Performance: HashSet performs basic operations like
add(), remove(), contains(), size() etc in a constant size
time. A TreeSet performs these operations at the order of
log(n) time.

4. Speed: A HashSet is better than a TreeSet in performance
for most of operations like add(), remove(), contains(),
size() etc .

5. Internal Structure: a HashMap in Java internally backs a
HashSet. A NavigableMap backs a TreeSet internally.

6. Features: A TreeSet has more features compared to a
HashSet. It has methods like pollFirst(), pollLast(), first(),
last(), ceiling(), lower() etc.

7. Element Comparison: A HashSet uses equals() method for
comparison. A TreeSet uses compareTo() method for

comparison to maintain ordering of elements.

161.1In Java, how will you decide when
to use a List, Set or a Map collection?

1. If we want a Collection that does not store duplicate
values, then we use a Set based collection.

2. If we want to frequently access elements operations based
on an index value then we use a List based collection. E.g.
ArrayList

3. If we want to maintain the insertion order of elements in a
collection then we use a List based collection.

4. For fast search operation based on a key, value pair, we
use a HashMap based collection.

5. If we want to maintain the elements in a sorted order, then
we use a TreeSet based collection.

162. What are the differences between
a HashMap and a Hashtable in Java?

Main differences between a HashMap and a Hashtable are:

1.

Synchronization: HashMap 1s not a synchronized
collection. If it is used in multi-thread environment, it may
not provide thread safety. A Hashtable is a synchronized
collection. Not more than one thread can access a
Hashtable at a given moment of time. The thread that
works on Hashtable acquires a lock on it and it makes
other threads wait till its work is completed.

Null values: A HashMap allows only one null key and any
number of null values. A Hashtable does not allow null
keys and null values.

Ordering: A HashMap implementation by LinkedHashMap
maintains the insertion order of elements. A TreeMap sorts
the mappings based on the ascending order of keys. On the
other hand, a Hashtable does not provide guarantee of any
kind of order of elements. It does not maintain the
mappings of key values in any specific order.

Legacy: Hashtable was not the initial part of collection
framework in Java. It has been made a collection
framework member, after being retrofitted to implement the
Map interface. A HashMap implements Map interface and
is a part of collection framework since the beginning.

Iterator: The Iterator of HashMap is a fail-fast and it
throws ConcurrentModificationException if any other
Thread modifies the map by inserting or removing any
element except iterator’s own remove() method.

Enumerator of the Hashtable 1s not fail-fast.

163. What are the differences between
a HashMap and a TreeMap?

Main differences between a HashMap and a TreeMap in Java are:

1.

Order: A HashMap does not maintain any order of its keys.
In a HashMap there is no guarantee that the element
inserted first will be retrieved first.

In a TreeMap elements are stored according to natural
ordering of elements. A TreeMap uses compareTo()
method to store elements in a natural order.

Internal Implementation: A HashMap uses Hashing
internally. A TreeMap internally uses Red-Black tree
implementation.

Parent Interfaces: A HashMap implements Map interface.
TreeMap implements NavigableMap interface.

Null values: A HashMap can store one null key and
multiple null values. A TreeMap can not contain null key
but it may contain multiple null values.

Performance: A HashMap gives constant time performance
for operations like get() and put(). A TreeMap gives order
of log(n) time performance for get() and put() methods.

Comparison: A HashMap uses equals() method to compare
keys. A TreeMap uses compareTo() method for
maintaining natural ordering.

Features: A TreeMap has more features than a HashMap. It
has methods like pollFirstEntry() , pollLastEntry() |,
tailMap() , firstKey() , lastKey() etc. that are not provided
by a HashMap.

164.

What are the differences

between Comparable and
Comparator?

Main differences between Comparable and Comparator are:

l.

Type: Comparable<T> is an interface in Java where T is
the type of objects that this object may be compared to.

Comparator<T> is also an interface where T is the type of
objects that may be compared by this comparator.

Sorting: In Comparable, we can only create one sort
sequence. In Comparator we can create multiple sort
sequences.

Method Used: Comparator<T> interface in Java has
method public int compare (Object ol, Object 02) that
returns a negative integer, zero, or a positive integer when
the object ol is less than, equal to, or greater than the
object 02. A Comparable<T> interface has method public
int compareTo(Object o) that returns a negative integer,
zero, or a positive integer when this object is less than,
equal to, or greater than the object o.

Objects for Comparison: The Comparator compares two
objects given to it as input. Comparable interface
compares "this" reference with the object given as input.

Package location: Comparable interface in Java is defined
in java.lang package. Comparator interface in Java is
defined in java.util package.

165.1n Java, what is the purpose of
Properties file?

A Properties file in Java is a list of key-value pairs that can be
parsed by java.util.Properties class.

Generally a Properties file has extension .properties e.g.
myapp.properties.

Properties files are used for many purposes in all kinds of Java
applications. Some of the uses are to store configuration, initial
data, application options etc.

When we change the value of a key in a properties file, there is no
need to recompile the Java application. So it provides benefit of
changing values at runtime.

166. What is the reason for overriding
equals() method?

The equals() method in Object class is used to check whether two
objects are same or not. If we want a custom implementation we can
override this method.

For example, a Person class has first name, last name and age. If we
want two Person objects to be equal based on name and age, then
we can override equals() method to compare the first name, last
name and age of Person objects.

Generally in HashMap implementation, if we want to use an object
as key, then we override equals() method.

167.How does hashCode() method
work in Java?

Object class in Java has hashCode() method. This method returns a
hash code value, which is an integer.

The hashCode() is a native method and its implementation is not
pure Java.

Java doesn't generate hashCode(). However, Object generates a
HashCode based on the memory address of the instance of the

object.

If two objects are same then their hashCode() is also same.

168.1s it a good idea to use Generics
in collections?

Yes. A collection is a group of elements put together in an order or
based on a property. Often the type of element can vary. But the
properties and behavior of a Collection remains same. Therefore it
is good to create a Collection with Generics so that it is type-safe
and it can be used with wide variety of elements.

169. What is the difference between
Collections.emptyList() and creating
new instance of Collection?

In both the approaches, we get an empty list. But
Collections.emptyList() returns an Immutable list. We cannot add
new elements to an Immutable empty list.

Collections.emptyList() works like Singleton pattern. It does not
create a new instance of List. It reuses an existing empty list
instance.

Therefore, Collections.emptylist() gives better performance if we
need to get an emptyList multiple times.

170.How will you copy elements from
a Source List to another list?

There are two options to copy a Source List to another list.
Option 1: Use ArrayList constructor
ArrayList<Integer> newList = new ArrayList<Integer>(sourceList);

Option 2: Use Collection.copy()
To use Collections.copy() destination list should be of same or
larger size than source list.

ArrayList<Integer> newList = new ArrayList<Integer>
(sourceList.size());
Collections.copy(newList, sourceList);

Collections.copy() does not reallocate the capacity of destination
List if it does not have enough space to contain all elements of
source List. It throws IndexOutOfBoundsException.

The benefit of Collection.copy() is that it guarantees that the copy
will happen in linear time. It is also good for the scenario when we
want to reuse an array instead of allocating more memory in the
constructor of ArrayList.

One limitation of Collections.copy() is that it can accept only List
as source and destination parameters.

171. What are the Java Collection
classes that implement List interface?

Java classes that implement List interface are:

AbstractList
AbstractSequential List
ArrayList

AttributeList
CopyOnWriteArrayList
LinkedList

RoleList
RoleUnresolvedList
Stack

Vector

172.What are the Java Collection
classes that implement Set interface?

Java classes that implement Set interface are:

AbstractSet
ConcurrentSkipListSet
CopyOnWriteArraySet
EnumSet

HashSet
JobStateReasons
LinkedHashSet
TreeSet

173.What is the difference between an
Iterator and Listlterator in Java?

Iterator and Listlterator are two interfaces in Java to traverse data
structures. The differences between these two are:

1.

Listlterator can be used to traverse only a List. But Iterator
can be used to traverse List, Set, and Queue etc.

An lterator traverses the elements in one direction only. It
just goes. Listlterator can traverse the elements in two
directions i.e. backward as well as forward directions.

Iterator cannot provide us index of an element in the Data
Structure. Listlterator provides us methods like nextIndex()
and previousIndex() to get the index of an element during
traversal.

Iterator does not allow us to add an element to collection
while traversing it. It throws
ConcurrentModificationException. Listlterator allows use
to add an element at any point of time while traversing a
list.

An existing element’s value cannot be replaced by using
Iterator. Listlterator provides the method set(e) to replace
the value of last element returned by next() or previous()
methods.

174. Whatis the difference between
Iterator and Enumeration?

Both Iterator and Enumeration are interfaces in Java to access Data
Structures. The main differences between these are:

1. Enumeration is an older interface. Iterator is a newer
interface.

2. Enumeration can only traverse legacy collections. Iterator
can traverse both legacy as well as newer collections.

3. Enumeration does not provide remove() method. So we
cannot remove any element during traversal. Iterator
provides remove() method.

4. Tterator is a fail-fast interface, it gives
ConcurrentModificationException if any thread tries to
modify an element in the collection being iterated.
Enumeration is not fail-fast.

5. Method names 1in Iterator are shorter than 1n an
Enumeration.

175.What is the difference between an
ArrayList and a LinkedList data
structure?

Main differences between ArrayList and LinkedList data structures
are:

1. Data Structure: An ArrayList is an indexed based
dynamic array. A LinkedList is a Doubly Linked List data
structure.

2. Inmsertion: It is easier to insert new elements in a
LinkedList, since there is no need to resize an array.
Insertion in ArrayList is O(n), since it may require resizing
of array and copying its contents to new array.

3. Remove elements: LinkedList has better performance in
removal of elements than ArrayList.

4. Memory Usage: LinkedList uses more memory than
ArrayList, since it has to maintain links for next and
previous nodes as well.

5. Access: LinkedList is slower in accessing an element,
since we have to traverse the list one by one to access the
right location.

176. What is the difference between a
Set and a Map in Java?

Main differences between a Set and a Map in Java are:

1. Duplicate Elements: A Set does not allow inserting
duplicate elements. A Map does not allow using duplicate
keys, but it allows inserting duplicate values for unique
keys.

2. Null values: A Set allows inserting maximum one null
value. In a Map we can have single null key at most and
any number of null values.

3. Ordering: A Set does not maintain any order of elements.
Some of sub-classes of a Set can sort the elements in an
order like LinkedHashSet. A Map does not maintain any
order of its elements. Some of its sub-classes like
TreeMap store elements of the map in ascending order of
keys.

177.What is the use of a Dictionary
class?

The Dictionary class in Java is used to store key-value pairs. Any
non-null object can be used for key or value. But we cannot insert a
null key or null object in Dictionary.

Dictionary class is deprecated now. So it should not be used in
newer implementations.

178. What is the default size of load
factor in a HashMap collection in

Java?

Default value of load factor in a HashMap is 0.75.

179.What is the significance of load
factor in a HashMap in Java?

A HashMap in Java has default initial capacity 16 and the load
factor 1s 0.75f (i.e. 75% of current map size). The load factor of a
HashMap is the level at which its capacity should be doubled.

For example, in a HashMap of capacity 16 and load factor .75. The
capacity will become 32 when the HashMap is 75% full. Therefore,
after storing the 12th key— value pair (16 * .75 = 12) into HashMap,
its capacity becomes 32.

180. What are the major differences
between a HashSet and a HashMap?

The main difference between a HashSet and a HashMap are:

1.

Base class: A HashSet class implements the Set interface.
Whereas a HashMap class implements the Map interface.

Storage: A HashSet is used to store distinct objects. A
HashMap 1s used for storing key & value pairs, so that
these can be retrieved by key later on.

Duplicate Elements: A HashSet does not allow storing
duplicate elements. A HashMap also does not allow
duplicate keys. But we can store duplicate values in a
HashMap.

Null Elements: In a HashSet we can store a single null
value. In a HashMap we can store single null key, but any
number of null values.

Element Type: A HashSet contains only values of objects
as its elements. Whereas a HashMap contains entries(key
value pairs).

Iteration: By using an Iterator we can iterate a HashSet.
But a HashMap has to be converted into Set for iteration.

181.What are the similarities between
a HashSet and a HashMap in Java?

As the name suggests, HashSet and HashMap are Hashing based
collections. Similarities between HashSet and HashMap are:

1. Thread Safety: Both HashMap and HashSet are not
synchronized collections. Therefore they are not good for
thread-safe operations. To make these thread-safe we need
to explicitly use synchronized versions.

2. Order of Elements: None of these classes guarantee the
order of elements. These are unordered collections.

3. Internal Implementation: A HashMap backs up a HashSet
internally. So HashSet uses a HashMap for performing its
operations.

4. Performance: Both of these collections provide constant
time performance for basic operations such as insertion
and removal of elements.

182. Whatis the reason for
overriding equals() method?

The equals() method in Object class is used to check whether two
objects are same or not. If we want a custom implementation we can
override this method.

For example, a Person class has first name, last name and age. If we
want two Person objects to be equal based on name and age, then
we can override equals() method to compare the first name, last
name and age of Person objects.

Generally in HashMap implementation, if we want to use an object
as key, then we override equals() method.

183.How can we synchronize the
elements of a List, a Set or a Map?

Sometimes we need to make collections Thread-safe for use in
Multi-threading environment. In Java, Collections class provides
useful static methods to make a List, Set or Map as synchronized
collections. Some of these methods are:

static <T> Collection<T> synchronizedCollection(Collection<T>
c)

Returns a synchronized (thread-safe) collection backed by the
specified collection.

static <T> List<T> synchronizedList(List<T> list)
Returns a synchronized (thread-safe) list backed by the specified
list.

static <K, V> Map<K,V>synchronizedMap(Map<K,V>m)
Returns a synchronized (thread-safe) map backed by the specified
map.

static <T> Set<T> synchronizedSet(Set<T> s)
Returns a synchronized (thread-safe) set backed by the specified
set.

static <K, V>
SortedMap<K,V> synchronizedSortedMap(SortedMap<K,V> m)
Returns a synchronized (thread-safe) sorted map backed by the
specified sorted map.

static <T> SortedSet<T> synchronizedSortedSet(SortedSet<T> s)
Returns a synchronized (thread-safe) sorted set backed by the
specified sorted set.

184. Whatis Hash Collision? How
Java handles hash-collision in
HashMap?

In a Hashing scenario, at times two different objects may have same
HashCode but they may not be equal. Therefore, Java will face
issue while storing the two different objects with same HashCode in
a HashMap. This kind of situation is Hash Collision.

There are different techniques of resolving or avoiding Hash
Collision. But in HashMap, Java simply replaces the Object at old
Key with new Object in case of Hash Collision.

185. What are the Hash Collision
resolution techniques?

To resolve a Hash Collision we can use one of the following
techniques:

Separate Chaining with Linked List
Separate Chaining with List Head Cells
Open Addressing with Coalesced Hashing
Open Addressing with Cuckoo Hashing
Hopscotch Hashing

Robinhood Hashing

186. What is the difference between
Queue and Stack data structures?

Queue is a FIFO data structure. FIFO stands for First In First Out. It
means the element added first will be removed first from the queue.
A real world example of Queue is a line for buying tickets at a
station. The person entering first in the Queue is served first.

Stack 1s a LIFO data structure. LIFO stands for Last In First Out.
The element that 1s added last 1s removed first from the collection.
In a Stack elements are added or removed from the top of stack.

A real world example of Stack is back button in browser. We can go
back one by one only and it works in the reverse order of adding
webpages to history

187.What is an Iterator in Java?

Iterator 1s an interface in Java to access the elements in a collection.
It is in java.util package.
It provides methods to iterate over a Collection class in Java.

Iterator interface in Java is based on Iterator design pattern. By
using an Iterator one can traverse a container of objects and can
also access the objects in the container. A container of objects is a
Collection class in Java.

188. Whatis the difference between
Iterator and Enumeration in Java?

Main differences between Iterator and Enumeration in Java are:

1. Version: Enumeration interface is in Java since JDK 1.0.
Iterator interface was introduced in Java 1.2.

2. remove() method: The main difference between
Enumeration and Iterator interface is remove() method.
Enumeration can just traverse a Collection object. If we
use Enumeration, we cannot do any modifications to a
Collection while traversing the collection. Iterator
interface provides remove() method to remove an element
while traversing the Collection. There is not remove()
method in Enumeration interface.

3. Method names: Names of methods in Iterator interface are
hasNext(), next(), remove(). Names of methods in
Enumeration interface are hasMoreElements(),
nextElement().

4. Legacy Interface: Enumeration is considered as a legacy
interface. It is used to traverse legacy classes like Vector,
Stack and HashTable. Iterator is a newer interface that is
used to traverse almost all of the classes in Java
Collections framework.

5. Fail-fast vs. Fail-safe: Iterator is based on fail-fast
principle. It throws ConcurrentModificationException if a
collection is modified during iteration over that collection.
An Enumeration 1s based on fail-safe principle. It doesn’t
throw any exception if a collection is modified during
traversal.

6. Safety: Since Iterator is fail-fast and does not allow
modification of a collection by other threads, it is
considered safer than Enumeration.

189. Whatis the design pattern
used in the implementation of
Enumeration in Java?

Enumeration is based on Iterator design pattern. Iterator design
pattern provides a common interface with methods to traverse the
collection of objects. It hides the underlying implementation details
of the collection.

190. Which methods do we need to
override to use an object as key in a
HashMap?

If we want to use an object as a key in a HashMap in Java, then we
have to make sure that it has the implementation of equals() and
hashCode() methods.

191.How will you reverse a List in
Java?

In Collections class, Java provides a method reverse(List list) that
can be used to reverse a List.

E.g.
Collections.reverse(myList);

192.How will you convert an array of
String objects into a List?

Java provides Arrays class in java.util package. Arrays class has a
method asList() that accepts an Array as input and returns a List as

output.
public static <T> List<T> asList(T... a)

String[] myArray = {"George" , "Jack", "Ryan"};
List myList = Arrays.asList(myArray);

193. What is the difference between
peek(), poll() and remove() methods of
Queue interface in java?

In a Java Queue, poll() and remove() methods can be used for
removing the head object of Queue. The main difference arises in
the case when Queue is empty().

If Queue 1s empty then poll() method returns null value. If Queue is
empty then remove() method throws NoSuchElementException.

In a Java Queue, peek() method retrieves the head of Queue but it
does not remove it. If queue is empty then peek() method returns
null value.

194. What s the difference between
Array and ArrayList in Java?

The main differences between Array and ArrayList in Java are:

1. Size: Array in Java is fixed in size. We cannot change the
size of array after creating it. ArrayList is dynamic 1n size.
When we add elements to an ArrayList, its capacity
increases automatically.

2. Performance: In Java Array and ArrayList give different
performance for different operations.

3. add() or get(): Adding an element to or retrieving an
element from an array or ArrayList object has similar
performance. These are constant time operations.

4. resize(): Automatic resize of ArrayList slows down the
performance. ArrayList is internally backed by an Array.
In resize() a temporary array is used to copy elements from
old array to new array.

5. Primitives: Array can contain both primitive data types as
well as objects. But ArrayList cannot contain primitive
data types. It contains only objects.

6. Iterator: In an ArrayList we use an Iterator object to
traverse the elements. We use for loop for iterating
elements in an array.

7. Type Safety: Java helps in ensuring Type Safety of
elements in an ArrayList by using Generics. An Array can

10.

contain objects of same type of class. If we try to store a
different data type object in an Array then it throws
ArrayStoreException.

Length: Size of ArrayList can be obtained by using size()
method. Every array object has length variable that is same
as the length/size of the array.

Adding elements: In an ArrayList we can use add()
method to add objects. In an Array assignment operator is
used for adding elements.

Multi-dimension: An Array can be multi-dimensional. An
ArrayList is always of single dimension.

195.How will you insert, delete and
retrieve elements from a HashMap
collection in Java?

We use following methods to insert, delete and retrieve elements in
a HashMap.

1. Retrieve: We use get() method to retrieve elements from a
HashMap.
Value get(Object key)

2. Imsert: We use put() method to insert a key value pair in a
HashMap.
Value put(Key k, Value v)

3. Delete: We use remove() method to delete key-value pair
from the HashMap.
Value remove(Object key)

196. What are the main differences
between HashMap and
ConcurrentHashMap in Java?

Main differences between HashMap and ConcurrentHashMap are:

1.

2.

Synchronization: A HashMap is not synchronized. But a
ConcurrentHashMap is a synchronized object.

Null Key: A HashMap can have one null key and any
number of null values. A ConcurrentHashMap cannot have
null keys or null values.

Multi-threading: A ConcurrentHashMap works well in a
multi-threading environment.

197. What is the increasing order of
performance for following collection
classes in Java?

The increasing order of performance is:

Hashtable
Collections.SynchronizedMap
ConcurrentHashMap
HashMap

Hashtable has the worst performance and HashMap has the best
performance.

198. Why does Map interface not
extend Collection interface in Java?

A Map is a collection objects. But Map interface is not compatible
with Collection interface in Java.

A Map requires key as well as a value. So it requires two
parameters to add an element to a HashMap.

But Collection interface provides add(Object o) method with only
one parameter.

Map collection has to provide methods like valueSet, keySet etc.
These methods are specific to Map collection. Where as methods in
Collection interface can be reused by a List, Set, Queue etc.

199. What are the different ways to
iterate elements of a list in Java?

There are mainly two ways to iterate the elements of list in Java:

1. Iterator: We can get an Iterator for list and use it to iterate
the objects of the list.

2. For-each loop: We can use for-each loop to traverse all
the elements of a list.

200. Whatis
CopyOnWriteArrayList? How it is
different from ArrayList in Java?

CopyOnWriteArrayList was introduced in Java 5 version. It is a
thread-safe collection. It is similar to an ArrayList.

In CopyOnWriteArrayList, all mutative operations (add, set etc.)
are implemented by making a fresh copy of the underlying array.

Iterator of CopyOnWriteArrayList is guaranteed to not throw
ConcurrentModificationException. But Iterator also does not reflect
any additions, removals that happened to list after the Iterator was
created.

All elements including null are permitted in CopyOnWriteArrayList.

201.How remove() method is
implemented in a HashMap?

Remove() method in HashMap uses logic similar to the one used in
get() method. First we locate the correct bucket in HashMap for an
entry. Then within that bucket we remove the element e. It is similar
to removing a node from a single-linked list.

If e is the first element in the bucket we set the corresponding
element of Hash to e.next. Else we set the next field of the element
just before e to e.next.

202. What is BlockingQueue in
Java Collections?

BlockingQueue was introduced in Java 1.5. It extends Queue
interface in Java.

BlockingQueue supports operations that wait for the queue to
become non-empty when retrieving an element. Also it supports the
operations that wait for space to become available in the queue
while storing an element.

Some of the features of BlockingQueue are:

It does not accept null elements.

Its main use is in producer-consumer problems.
BlockingQueue implementation is thread-safe.

It can be used in inter-thread communications.

It does not support any kind of "close" or "shutdown"
operation to indicate that no more items will be added.

203. Howis TreeMap class
implemented in Java?
Internally, a TreeMap class in Java uses Red-Black tree.

It 1s a NavigableMap. The map sorts the keys in natural order or it
can use a Comparator supplied at the creation time.

The implementation of TreeMap is not synchronized in Java.

204. What is the difference between
Fail-fast and Fail-safe iterator in
Java?

Differences between Fail-fast and Fail-safe iterators are as
follows:

Fail-fast iterator throws ConcurrentModificationException. But
Fail-safe iterator does not throw this exception.

Fail-fast iterator does not clone the original collection. Fail-safe
iterator creates a copy of the original collection of objects.

A Fail-fast iterator tries to immediately throw Exception when it
encounters failure. A Fail-safe Iterator works on a copy of
collection instead of original collection.

205. Howdoes
ConcurrentHashMap work in Java?

ConcurrentHashMap extends AbstractMap 1n Java. It was
introduced in Java 1.5. It provides concurrency in a collection
based on a HashMap.

All methods are thread-safe in ConcurrentHashMap.

Internally there is a Hashtable backing a ConcurrentHashMap. This
Hashtable supports the concurrent methods for retrieval of data as
well as updates on ConcurrentHashMap.

It has same functional specification as a Hashtable.

It also supports a set of sequential and bulk operations. These
operations accept parallelismThreshold argument.

206. What is the importance of
hashCode() and equals() methods?

In a HashMap collection it is very important for a key object to
implement hashCode() method and equals() method. If hashCode()
method returns same hashcode for all key objects then the hash
collision will be high in HashMap. Also with same hashcode, we
will get same equals method that will make our HashMap
inefficient.

The problem arises when HashMap treats both outputs same instead
of different. It will overwrite the most recent key-value pair with
the previous key-value pair.

So it 1s important to implement hashCode() and equals() methods
correctly for an efficient HashMap collection.

207. What is the contract of
hashCode() and equals() methods in
Java?

Contract of hashCode() and equals() methods is as follows in Java:

If objectl.equals(object2), then objectl.hashCode() ==
object2.hashCode() should always be true. It means if two objects
are equal then their hashCode should be same.

If objectl.hashCode() == object2.hashCode() is true, it does not
guarantee that objectl.equals(object2). It means if two objects have
same hashCode, then can still have different values so that may not
be equal objects.

208.

What is an EnumSet in Java?

Set: EnumSet is a specialized implementation of Set.

1.

2.

Use: It is mainly used with enum types.

Single enum type: All the elements in an EnumSet must
come from a single enum type when the set is created.

Bit vector: Internally, EnumSet is represented as bit
vector.

Iterator: The iterator of EnumSet traverses the elements in
their natural order. (It is the order in which the enum
constants are declared).

Null: In an EnumSet, null elements are not permitted. If we
try to insert a null element it throws NullPointerException.

Thread-safe: EnumSet is not a synchronized collection.
For use in multi-threading scenarios, EnumSet should be
synchronized.

Bit flags: EnumSet is a very good alternative to int based
“bit flags™ implementation.

209. What are the main Concurrent
Collection classes in Java?

Java 1.5 has provided new package java.util.concurrent. This
package contains thread-safe collection classed. These collection
classes can be modified while iterating. The iterator of these
classes is fail-safe.

Main Concurrent Collection classes in Java 8 are:

ArrayBlockingQueue
CopyOnWriteArrayList
CopyOnWriteArraySet
ConcurrentHashMap
ConcurrentLinkedDeque
ConcurrentLinkedQueue
LinkedBlockingQueue
LinkedBlockingDeque
PriorityBlockingQueue

210.How will you convert a Collection
to SynchronizedCollection in Java?

Java provides an easy method in java.utils.Collections class to
create a ThreadSafe collection from a regular collection.

We can use the method synchronizedCollection() for this purpose.
For any class of type T we can use following method:

static <T> Collection<T> synchronizedCollection(Collection<T>

c)

211.How IdentityHashMap is
different from a regular Map in Java?

IndentityHashMap 1n Java implements Map interface. But it is not a
general purpose implementation. It violates the general contract of
Map interface by a different implementation of equals() method.

In an IdentityHashMap, two keys k1l and k2 are equal if and only if
(k1==k2). (In a normal Map implementation (like HashMap) two
keys k1 and k2 are considered equal if and only if (kl==null ?
k2==null : kl.equals(k2)).)

It implements the Map interface with a hash table, using reference-
equality in place of object-equality when comparing keys (and
values).

212.What is the main use of
IdentityHashMap?

Main uses of IdentityHashMap are:

1.

Topology Preservation: The typical use of
IdentityHashMap class is topology-preserving object
graph transformations, such as serialization or deep-
copying. In such a scenario, a program must maintain a
"node table" to keep track of all the object references that
have already been processed.

The node table should not considered distinct objects as
equal even if they happen to be equal.

Proxy objects: Another use of this class is to maintain
proxy objects. A debugging program has to maintain a
proxy object for each object in the program being
debugged.

213.How can we improve the
performance of IdentityHashMap?

IdentityHashMap class has one tuning parameter for performance
improvement: expectedMaxSize.

This parameter is the maximum number of key-value mappings that
the map is expected to hold.

We can use this parameter is used to determine the number of
buckets initially in the hash table. The precise relationship between
the expected maximum size and the number of buckets is
unspecified.

If the number of key-value mappings exceeds the expected maximum
size, the number of buckets is increased.

Increasing the number of buckets is also known as rehashing.
Rehashing may be fairly expensive. So it is better to create identity
hash maps with a sufficiently large expected maximum size.

But iteration over a Map collection requires time proportional to
the number of buckets in the hash table. So iteration may take extra
time due to large number of buckets.

Therefore the value of expectedMaxSize should be set in
consideration with both of these aspects.

214. Is IdentityHashMap thread-
safe?

The implementation of IdentityHashMap 1s not thread-safe, since its
methods are not synchronized.

The iterators returned by the iterator method of IdentityHashMap
are fail-fast. But the fail-fast behavior of an iterator cannot be
guaranteed.

Since the Iterator 1S fail-fast, 1t throws
ConcurrentModificationException.

215.What is a WeakHashMap in
Java?

WeakHashMap is a class similar to IdentityHashMap.
Internally, it 1s represented by a Hashtable.

It is not a synchronized class. We can make a WeakHashMap thread
safe by using Collections.synchronizedMap() method.

An entry in WeakHashMap is automatically removed when it is no
longer in ordinary use.

The presence of a mapping for a given key does not prevent the key
from being discarded by the garbage collector.

WeakHashMap also permits null keys and null values.

216.How can you make a Collection
class read Only in Java?

In Java, there are useful methods to make a Collection class read
Only. We can make the Collection read Only by using one of the
following methods:

Collections.unmodifiableMap(Map m)
Collections.unmodifiableList(List I)
Collections.unmodifiableSet(Set s)
Collections.unmodifiableCollection(Collection c)

217.When is
UnsupportedOperationException
thrown in Java?

In a Java collection UnsupportedOperationException is thrown
when the requested operation is not supported by the collection.

It is an unchecked exception that is thrown on optional operations.

If there is an optional add() or remove() methods in a read only
collection, then this exception can be thrown.

218. Let say there is a Customer
class. We add objects of Customer
class to an ArrayList. How can we
sort the Customer objects in
ArrayList by using customer
firstName attribute of Customer
class?

There are two ways to handle this scenario. We can use these
options:

Comparable: Implement the Comparable interface for Customer
class and compare customer objects by firstName attribute.

Comparator: Implement Comparator for comparing two Customer
objects on the basis of firstName attribute. Then use this comparator
object in sort method of Collections class.

219. What is the difference between
Synchronized Collection and
Concurrent Collection?

In Java 1.5 many Concurrent collection classes were added in SDK.
These are ConcurrentHashMap, CopyOnWriteArrayList,
BlockingQueue etc.

Java also provides utility methods to get a synchronized copy of
collection like ArrayList, HashMap etc. by using
Collections.synchronizedList(), Collections.synchronizedMap()
methods.

The main difference is in performance. Concurrent collection
classes have better performance than synchronized collection
classes because they lock only a portion of the class to achieve
concurrency and thread-safety.

220. What is the scenario to use
ConcurrentHashMap in Java?

ConcurrentHashMap is more suited for scenarios where we have
multiple reader threads and one writer thread. In this case map is
locked only during the write operation.

If we have an equal number of reader and writer threads then
ConcurrentHashMap performance is similar to a Hashtable or a
synchronized HashMap.

221.How will you create an empty
Map in Java?
There are two ways to create an empty Map in Java.

1. Immutable: If we want an immutable empty Map, we can
use following code:

myMap = Collections.emptyMap();

2. Any map: For all other scenarios, we can use following
code by using new method:

myMap = new HashMap();

222. What s the difference between
remove() method of Collection and
remove() method of Iterator?

In Collection interface remove(Object 0) method is used to remove
objects from a Collection.

List interface also provides remove(int index) method to remove an
object at a specific index.

These methods are used to remove an entry from Collection, while
no thread 1s iterating over it.

When we are iterating over a Collection, then we have to remove()
method of Iterator. This method removes current element from
Iterator’s point of view. If we use remove(0 method of Collection
or List, then we will get ConcurrentModificationException.

Therefore, it is recommended to use remove() method of Iterator
during the traversal of a Collection by an Iterator.

223. Between an Array and
ArrayList, which one is the preferred
collection for storing objects?

An ArrayList is backed up by array internally. There are many
usability advantages of using an ArrayList over an array in Java.

Array has a fixed length at the time of creation. Once it is created
we cannot change its length.

ArrayList is dynamic in size. Once it reaches a threshold, it
automatically allocates a new array and copies contents of old array
to new array.

Also ArrayList provides support of Generics. But Array does not
support Generics.

E.g. If we store an Integer object in a String array at Runtime it will
throw ArrayStoreException. Whereas, if we use ArrayList then as
compile time we will get the error. This helps in preventing errors
from happening at runtime.

If we know the size in advance and do not need re-sizing the
collection then Array should be used in place of an ArrayList.

224. Is it possible to replace
Hashtable with ConcurrentHashMap
in Java?

Yes, a ConcurrentHashMap can be replaced with Hashtable in Java.

But it requires careful observation, since locking behavior of
Hashtable is different than that of ConcurrentHashmap.

A Hashtable locks whole Map instead of a portion of Map.
Compound operations like if(Hashtable.get(key) == null) put(key,
value) work in Hashtable but not in ConcurrentHashMap.

In a ConcurrentHashMap we use putlfAbsent() method for such a
scenario.

225. How CopyOnWriteArrayList
class is different from ArrayList and
Vector classes?

CopyOnWriteArrayList was introduced in Java 1.5. It implements
List interface.

It provides better concurrent access methods than a Synchronized
List.

In CopyOnWriteList, concurrency is achieved by copying ArrayList
over each write and replace with original instead of locking.

CopyOnWriteArrayList also does not throw any
ConcurrentModification Exception during Iteration.

It is a thread-safe list.
It is different from a Vector in terms of Concurrency.

CopyOnWriteArrayList provides better Concurrency by reducing
contention among readers and writers.

226. Why Listlterator has add()
method but Iterator does not have?

Listlterator can iterate in the both directions of a Collection. It
maintains two pointer for previous and next element. In Listlterator
we can use add() method to add an element into the list immediately
before the element returned by next() method.

So a subsequent call to next() method will not be affected. And the
call to previous() method will return the newly added element.

In Iterator we can only traverse in one direction. So there is no
purpose of add() method there.

227. Why do we sometime get
ConcurrentModificationException
during iteration?

When we remove an object by using remove() method of a
Collection or List while an Iterator thread is traversing it, we get
ConcurrentModificationException. If an Iterator detects any
structural change in Collection it can throw
ConcurrentModificationException.

228. How will you convert a Map to
a List in Java?

In Java, a Map has three collection sets:

key set

value set

key-value set

Each of these Sets can be converted to List by using a constructor.
Sample code is as follows:

List keyList = new ArrayList(map.keySet());

List valueList = new ArrayList(map.values());
List entryList = new ArrayList(map.entrySet());

229. How can we create a Map with
reverse view and lookup in Java?

In a Map we can lookup for a value by using a distinct key. In a Map
with reverse view and lookup, even the values are distinct. So there
1s one to one mapping between keys and values and vice version.

If we enable this constraint on a Map then we can look up a key by
its value. Such data structure 1s called bi-directional map.

There is no built data structure similar to reverse lookup Map in
JDK.

But Apache Common Collections and Guava libraries provide
implementation of bidirectional map. It is called BidiMap and
BiMap. Both of these data structure enforce the constraint of one to
one mapping between keys and values.

230. How will you create a shallow
copy of a Map?

In Java, most implementations of Map interface provide a
constructor to create copy of another map. But the copy method is
not synchronized.

Therefore, when a thread is copying the map, another thread can
modify it.

To prevent such a scenario, we should wuse
Collections.synchronizedMap() method to first create a thread-safe
map.

Another way of to create a shallow copy is by using clone() method.
But it is not considered as a recommended approach.

231.Why we cannot create a generic
array in Java?

Java does not allow creation of array with generics as elements.

In Java an array has to know the type information of its elements at
runtime.

This information is used at runtime to throw ArrayStoreException if
data type of an element to be inserted does not match the type of
Array.

In case of Generics, the type information of a collection is erased at
runtime by Type Erasure. Due to this array cannot use generics as
elements.

232. What s a PriorityQueue in
Java?

A PriorityQueue is data structure based on Queue. Unlike Queue,
the elements on PriorityQueue are not returned in FIFO order.

A PriorityQueue maintains the natural order of its elements or it
uses a Comparator provided at initialization.

It is an unbounded queue based on a priority heap.

PriorityQueue does not allow null values. We cannot add any object
that does not provide natural ordering to PriorityQueue.

PriorityQueue in Java is not thread-safe.

It gives O(log n) time for enqueing and dequeing operations.

233. What are the important points
to remember while using Java
Collections Framework?

Some of the important points to remember while using Java
Collections Framework are:

1. Interfaces: For Collections, we should write code with
generic interfaces instead of concrete implementation. Due
to this we maintain the flexibility of changing the
implementation at a later point of time.

2. Generics: We should use Generics for type-safety and to
avoid ClassCastException at runtime.

3. Collections: It is recommended to use Collections utility
class for algorithms and various other common methods
for Collections.

4. Right Type: We have to choose the right type of Java
collection based on our need. If size is fixed, we can use
Array over ArrayList. If we do not want duplicate
elements we use Set.

If we need the ability to iterate the elements of a Map in
the order of insertion then we use a TreeMap.

5. Initial Size: In some collection classes we can specify the
initial size/capacity. Therefore we should have an estimate
of number of elements in a Collection before deciding the
right collection type. We can use it to avoid rehashing or
resizing.

6. Map: We should use immutable classes provided by Java
as key elements in a Map.

234. How can we pass a Collection
as an argument to a method and
ensure that method will not be able to
modify it?

To ensure that a method 1s not able to modify a Collection passed as
an argument, we have to make the Collection read only.

We can make a read only collection by using
Collections.unmodifiableCollection(Collection ¢) method.

This will make sure that any operation to change the collection will
throw UnsupportedOperationException.

235. Can you explain how
HashMap works in Java?

In Java, a HashMap works on the concept of hashing.

A HashMap in Java stores both key and value objects, in a bucket. It
is stored as an Entry object that implements Map.Entry interface.

The key object used in a HashMap has to provide implementation
for hashCode() and equals() methods.

When put() method is used to store a key-value pair, the HashMap
implementation calls hashCode() method on Key object to calculate
a hash that 1s used to find a bucket where Entry object will be
stored.

When get() method is used to retrieve a value stored against a key
object, we first calculate a hash of Key object. Then we use this
hash to find the bucket in which that particular key is stored.

Once Key object’s location 1s found, it may happen that more than
one Key is stored in same location. So now we use equals() method
to find the exact Key object. Once the exact Key object is found we
use it to get Value object.

236. Can you explain how HashSet
is implemented in Java?

Internally, a HashSet uses a HashMap to store the elements and to
maintain the uniqueness of elements.

When we create a HashSet object, a corresponding HashMap object
is also created.

When we insert an element in HashSet, it inserts it into
corresponding HashMap.

237. Whatis a NavigableMap in
Java?

As the name suggests, NavigableMap provides the capability to
navigate the keys of a Map in Java. A NavigableMap extends
SortedMap interface.

Some of the interesting methods of a NavigableMap are
descendingKeySet(), descendingMap(), headMap() and tailMap().

238. What s the difference between
descendingKeySet() and
descendingMap() methods of
NavigableMap?

The descendingKeySet() method of NavigableMap returns a
NavigableSet in which the elements are stored in reversed order as
compared to the original key set.

The returned view is internally represented by the original KeySet
of NavigableMap. Therefore any changes to the descending set also
get reflected in the original set.

But it is not recommended to remove elements directly from the key
set. We should use the Map.remove() method.

The descendingMap() method of NavigableMap returns a
NavigableMap which is an inverse view of the original Map. The
order of the elements in this view are in reverse order of the
elements in original map. Any changes to this view are also
reflected in the original map.

239. What is the advantage of
NavigableMap over Map?

The main advantage of NavigableMap over Map is the Navigation
capability.

It provides the capabilities of a Map, SortedMap and navigation in
one collection.

It even returns the closest matches for given search targets.

Methods like lowerEntry, floorEntry, ceilingEntry, and higherEntry
return Map.Entry objects associated with keys respectively less
than, less than or equal, greater than or equal, and greater than a
given key.

Methods like lowerKey, floorKey, ceilingKey, and higherKey return
only the associated keys. All of these methods are designed for
locating, not traversing entries.

240. What s the difference between
headMap(), tailMap() and subMap()
methods of NavigableMap?

The headMap() method returns a view of the original
NavigableMap that contains the elements that are less than a given
element.

NavigableMap original = new TreeMap();
original.put("1", "1");
original.put("2", "2");
original.put("3", "3");

//this headmap1 will contain elements "1" and "2"
SortedMap headmap1 = original.headMap("3");

//this headmap2 will contain elements "1", "2", and "3" because
"inclusive"=true
NavigableMap headmap2 = original.headMap("3", true);

The tailMap() method works similar to headMap() method, but it
returns all elements that are higher than the given input element.

The subMap() method accepts two parameters demarcating the
boundaries of the view map to return.

All the three methods return a subset of the original map in a view
form.

241. How will you sort objects by
Natural order in a Java List?

We can use Collections.sort method to sort the elements of a List in
natural order. To use this method, we have to make sure that element
objects implement compareTo() method.

We can also use a Comparator to define the natural ordering for
elements of a List. Then we can use this Custom Comparator in sort
method of Collections class.

242. How can we get a Stream from
a List in Java?

From Java 8 onwards it is a very easy to get a Stream from a List.
We can just use stream() method to get a stream from a list of
elements.

243. Can we get a Map from a
Stream in Java?

Yes, we can create a Map from the elements of a Stream. We can
use map() method to get a Map.

E.g. items.stream()
.map(1tem -> item.toLowerCase())

In this example we are creating a map with each item object
mapped to its LowerCase equivalent.

This is also used in Map-Reduce implementation on a Stream.

244. What are the popular
implementations of Deque in Java?

The two most popular implementation of Deque interface in Java
are:

1. ArrayDeque: It is a resizable array implementation of
Deque. The capacity of ArrayDeque can increase based
on the need of the program. It is not thread safe
implementation. Also the iterator on ArrayDeque is fail-
fast.

2. LinkedList: This is another popular implementation of
Deque interface in Java. It is also not synchronized, so it
is not thread-safe. It mainly provides functionality of a
doubly linked list.

Multi-threading

245. Whatis a Thread in Java?

A thread in Java is a lightweight process that runs within another
process or thread.

It 1s an independent path of execution in an application. JVM gives
each thread its own method-call stack.

When we start JVM, Java starts one thread. This thread calls the
main method of the class passed in argument to java call.

246. What is the priority of a
Thread and how it is used in
scheduling?

In Java, every Thread has a priority. This priority is specified as a
number between 1 to 10.

Scheduler in Java schedules different threads based on the priority
of a thread. It is also known as pre-emptive scheduling.

The thread with higher priority gets preference in execution over a
thread with lower priority.

247. What is the default priority of
a thread in Java?

In Java, a new thread gets the same priority as the priority of the
parent thread that creates it.

Default priority of a thread is 5 (NORM_PRIORITY).

248. What are the three different
priorities that can be set on a Thread
in Java?

We can set following three priorities on a Thread object in Java:

1. MIN PRIORITY: This is the minimum priority that a
thread can have.

2. NORM PRIORITY: This is the default priority that is
assigned to a thread.

3. MAX PRIORITY: This is the maximum priority that a
thread can have.

Default priority of a thread i1s 5 NORM PRIORITY. The value of
MIN_ PRIORITY is 1 and the value of MAX PRIORITY is 10.

249. What is the purpose of join()
method in Thread class?

In Java, Thread Scheduler controls thread scheduling. But we can
use join() method on a thread to make current thread to wait for
another thread to finish.

When we use join(), the current thread stops executing. It wait for
the thread on which join() is called to finish.

This makes sure that current thread will continue only after the
thread it joined finished running. Consider following example:

Public class ThreadJoin {
Thread importantThread = new Thread(
new Runnable() {
public void run () {
//do something

;

b
);
Thread currentThread = new Thread(
new Runnable() {
public void run () {
//do something

}

b
);
importantThread.start(); // Line 1
importantThread.join(); // Line 2
currentThread.start(); // Line 3

}

In the above example, main thread is executing. On Line 1, a new
thread called importantThread is ready to run. But at Line 2, main

thread joins the importantThread. Now it lets importantTread to
finish and then it moves to Line 3. So currentThread at Line 3 will
not start till the importantThread has finished.

250. What s the fundamental
difference between wait() and sleep()
methods?

The main difference between wait() and sleep() i1s that wait 1s an
Object level method, whereas sleep() is a static method in Thread
class. A waiting thread can be woken up by another thread by
calling notify() on the monitor which is being waited on. But a
sleeping thread cannot be woken up.

A wait() and notify() has to happen within the same block that is
synchronized on the monitor object.

When we call wait() the current thread releases the monitor and
goes to waiting state. Then another thread calls notify() to wake it

up.

In case of sleep() current thread does not release the monitor or
locks. It just sleeps for some pre-defined time period.

251.1s it possible to call run() method
instead of start() on a thread in Java?

Yes. We can call run() method of a thread. But it does not work as a
separate thread. It will just work as a normal object in main thread
and there will not be context switching between the threads.

252. How Multi-threading works in
Java?

Java provides support for Multithreading. In a Multithreading
environment, one process can execute multiple threads in parallel at
the same time.

In Java, you can create process and then create multiple threads
from that process. Each process can execute in parallel to perform
independent tasks.

Java provides methods like- start(), notify(), wait(), sleep() etc. to
maintain a multi-threading environment.

253.

What are the advantages of

Multithreading?

Main advantages of Multithreading are:

1.

2.

Improved performance: We can improve performance of a
job by Multi-threading.

Simultaneous access to Multiple Applications: We can
access multiple applications from a process by doing
multithreading

Reduced number of Servers required: With Multi-
threading we need lesser number of servers, since one
process can spawn multiple threads.

Simplified Coding: In certain scenarios, it is easier to
code multiple threads than managing it from same thread.

254. What are the disadvantages of
Multithreading?

There are certain downsides to Multithreading. These are:

1. Difficult to Debug: Multithreading code is difficult to
debug in case of an issue.

2. Difficult to manage concurrency: Due to multiple threads,
we may experience different kinds of issues.

3. Difficulty of porting code: It is difficult to convert existing
single threaded code into multi-threading code.

4. Deadlocks: In case of multi-threading we can experience
deadlocks in threads that are waiting for same resource.

255. Whatis a Thread in Java?

In Java, a thread is a lightweight process that runs within another
process or thread. It is an independent path of execution in an
application. Each thread runs in a separate stack frame.

By default Java starts one thread when the main method of a class is
called.

256. Whatis a Thread’s priority
and how it is used in scheduling?

In Java, every Thread has a priority. This priority is specified as an
integer value. The priority value is used in scheduling to pick up the
thread with higher priority for execution. The threads with higher
priority get more preference in execution than the threads with
lower priority.

The task scheduler schedules the higher priority threads first,
followed by the lower priority threads.

257. What are the differences
between Pre-emptive Scheduling

Scheduler and Time Slicing
Scheduler?

In Pre-emptive scheduling, the highest priority task will keep getting
time to execute until it goes to waiting state or dead state or a task
with higher priority comes into queue for scheduling.

In Time slicing scheduling, every task gets a predefined slice of
time for execution, and then it goes to the pool of tasks ready for
execution. The scheduler picks up the next task for execution, based
on priority and various other factors.

258. Is it possible to call run()
method instead of start() on a thread
in Java?

Yes. We can call run() method of a thread. But it does not work as a
separate thread. It will just work as a normal object in main thread
and there will not be context-switching between the threads.

259. How will you make a user
thread into daemon thread if it has
already started?

No. We cannot make a user thread to daemon thread once it has
already started.

If we do it by calling setDaemon(), it will throw
Illegal ThreadStateException

260. Can we start a thread two
times in Java?

No. We can call start() method only once on a thread in Java. If we
call it twice, it will give us exception.

261.In what scenarios can we
interrupt a thread?

We can interrupt a thread if we want to wake it up from the sleep or
wait state.

262. In Java, is it possible to lock an
object for exclusive use by a thread?

Yes. We can use synchronized block to lock an object. The locked
object is inaccessible to any other thread. Only the thread that has
locked it can access it.

263. How notify() method is
different from notifyAll() method?

In Java, notify() method is used to unblock a specific thread that is
in waiting stated. Whereas, notifyAll() method is used to unblock
all the threads that are in waiting state.

264. Whatis a daemon thread in
Java?

A daemon thread in Java is a low priority thread that does not
prevent the JVM from exiting when the program finishes. The thread
keeps running. Garbage Collection is an example of daemon thread.

265. How can we make a regular
thread Daemon thread in Java?

We can call setDaemon(boolean) method to change a thread to
daemon thread before the thread starts.

266. How will you make a user
thread into daemon thread if it has
already started?

No. We cannot make a user thread to daemon thread once it has
already started. If we do it by calling setDaemon(), it will throw
Illegal ThreadStateException

267. Can we start a thread two
times in Java?

No. We can call start() method only once on a thread in Java. If we
call it twice, it will give us exception.

268. Whatis a Shutdown hook in
Java?

The shutdown hook is a thread that is invoked implicitly by JVM
just before the shut down. It can be used to clean up unused
resources etc.

We can use java.lang.Runtime.addShutdownHook(Thread hook)
method to register a new virtual-machine shutdown hook.

269. What is synchronization in
Java?

The concept of Synchronization in Java is used in Multi-threading
programming.

It is a feature in Java that helps in controlling the access of multiple
threads to a shared resource.

It is used to prevent Deadlock between multiple threads.

270. What is the purpose of
Synchronized block in Java?

Synchronized block has many uses in Java multi-threading
environment. Some of the uses are:

It can prevent thread interference
It is also used to avoid memory inconsistency issues

In general, scope of synchronized block is smaller than the scope of
a method.

271.What is static synchronization?

We can make a static method as synchronized in Java. Adding
synchronized keyword to a static method can do this.

In static synchronization, the lock is on class not on object.

272. Whatis a Deadlock situation?

A Deadlock 1s a situation in which two or more threads are waiting
on each other to release a resource. Each thread 1s waiting for a
resource that is held by the other waiting thread.

At times there is a circular wait when more than two threads are
waiting on each other’s resources.

273. What is the meaning of
concurrency?

Concurrency is the ability of a program to execute several programs
simultaneously. This is achieved by distributing computations over
multiple CPU cores of a machine or even over different machines
within the same network.

It can increase the speed of execution of the overall program in
multi-processor or multi-core system.

274. What is the main difference
between process and thread?

As such both process and thread are independent sequences of
execution.

The main difference is that a thread runs in a shared memory space,
where as a process runs in its own memory space.

A process runs the execution in an environment provided by the
operating system. A process has its own set of private resources
(e.g. memory, open files, etc.).

A thread lives within a process and shares the resources like-
memory, open files etc. with the other threads of the same process.

This ability to share resources between different threads makes
thread more suitable for tasks where performance is a significant
factor.

275. Whatis a process and thread
in the context of Java?

In Java, a process refers to the running of Java Virtual Machine
(JVM). But a thread lives within a JVM and it can be created or
stopped by the Java application at runtime.

276. Whatis a Scheduler?

A scheduler is a program that is the implementation of a scheduling
algorithm to manage access of processes and threads to limited
resource like CPU or an I/O channel.

The goal of most scheduling algorithms is to provide load balancing
for the available processes/threads and to guarantee that each
process/thread will get a reasonable time frame to access the
requested resource exclusively.

277. What is the minimum number
of Threads in a Java program?

In a JVM, each Java program is executed within the main process
that starts with java.exe. Therefore each Java application has at
least one thread.

278. What are the properties of a
Java thread?

Each Java thread has following properties:

1. Identifier: An identifier of type long that is unique within
the JVM

Name: A name of type String

Priority: Priority of type int

State: A state of type java.lang. Thread.State

Group: A thread group the thread belongs to

A

279. What are the different states of
a Thread in Java?

Following are the different states of a Thread in Java:
1. New: In the New state the thread has not yet.

2. Runnable: A thread executing in the JVM is in Runnable
state.

3. Blocked: A thread waiting for a monitor lock is in
Blocked state.

4. Waiting: A thread waiting indefinitely for another thread
to perform a particular action is in Waiting state.

5. Timed waiting: A thread waiting for another thread to
perform an action for up to a specified waiting time is in
Timed waiting state.

6. Terminated: A thread that has exited is in Terminated
state.

280. How will you set the priority
of a thread in Java?

The priority of a thread in Java can be set by using setPriority(int
priority) method.

We can use constant Thread. MAX PRIORITY to set the maximum
priority of a thread.

We can use constant Thread. MIN_ PRIORITY to set the minimum
priority of a thread.

Or we can use constant Thread. NORM_PRIORITY to set the default
priority of a thread.

281. What s the purpose of Thread
Groups in Java?

In Java, every thread belongs to a group of threads.

The JDK class java.lang. ThreadGroup provides methods to handle
a whole group of Threads.

With the help of these methods we can interrupt all threads of a
group or set the maximum priority of all threads of a group.

So a thread group is used for taking collective actions on a group of
threads.

282. Why we should not stop a
thread by calling its stop() method?

The stop() method in Thread class is a deprecated method. Its use is
not recommended.

When we call stop() method, the thread unlocks all monitors that it
has acquired. If any locked object was in an inconsistent state, this

state gets visible to all other threads.

It can cause unexpected behavior when other threads work on this
inconsistent object.

So calling stop() method to stop a thread is not advisable.

283.

How will you create a Thread

in Java?

There are two main ways to create a thread in Java.

1.

Extend Thread class: We can extend java.lang. Thread
class and implement run() method. On calling start()
method it will start a new thread.

Implement Runnable interface: We can implement
java.lang. Runnable interface and pass the implemented
object to the constructor of java.lang. Thread class. On
calling start() it will start a new thread.

284. How can we stop a thread in
the middle of execution in Java?

We can use a volatile variable as an indicator to stop the thread.

We can create a volatile reference pointing to the current thread.
This reference can be set to null by other threads to flag that the
current thread should stop execution.

In following example threadStopper is the volatile reference that
can be set as null in stopThread() method by other threads.

Sample code is as follows:
public static class MyThread extends Thread {
private volatile Thread threadStopper;

public void start() {
threadStopper = new Thread(this);
threadStopper.start();

b

public void stopThread() {
threadStopper = null;

j

public void run() {
Thread currThread = Thread.currentThread();
while(currThread == threadStopper) {
try {
Thread.sleep(100);
} catch (InterruptedException e) {

h
j

285. How do you access the current
thread in a Java program?

We can access the current thread in Java by calling the static method
currentThread() of java.lang. Thread class.

Sample code is as follows:
public class MyThread {

public static void main(String[] args) {
// Get ID of Current Thread
long id = Thread.currentThread().getld();

// Get Name of Current Thread
String name = Thread.currentThread().getName();

h

286. What is Busy waiting in Multi-
threading?

Busy waiting is also known as busy-looping or spinning. It is a
multi-threading technique in which a process repeatedly checks if a
condition is true.

For example, a process can keep checking if any keyboard input is
available.

In general, busy waiting is considered as Anti-pattern that wastes
processor time, so it should be avoided.

Sample code for busy waiting is as follows:

Thread thread = new Thread(new Runnable() {
@Override
public void run() {
long timeToStop = System.currentTimeMillis() + 1000;
long currentTime = System.currentTimeMillis();

// Busy waiting
while (timeToStop > currentTime) {
currentTime = System.currentTimeMillis();

}
1)

287. How can we prevent busy
waiting in Java?

There is a simple way to prevent busy-waiting in Java. We can just
put the current thread to sleep for given amount of time.

It can be done by calling sleep() method of java.lang. Thread class.
We can pass the number of milliseconds to sleep() method as an

argument.

288. Can we use Thread.sleep()
method for real-time processing in
Java?

Java does not guarantee that Thread.sleep() will cause the thread to
sleep for exactly N number of milliseconds. Sometime the thread
can sleep for than N number of milliseconds.

In real-time processing we need precise time period for which a
thread should run or sleep.

Therefore the invocation of Thread.sleep() method is not
recommended for use in real-time processing.

289. Can we wake up a thread that
has been put to sleep by using
Thread.sleep() method?

We can use interrupt() method of java.lang. Thread class to interrupt
a thread that is in sleep state. It will get InterruptedException to
wake up from the sleep.

Sample code is as follows:

public class ThreadInterrupt implements Runnable {
public void run() {
try {
Thread.sleep(Long. MAX VALUE);
} catch (InterruptedException e) {
SOP(“Interrupted by exception!");

h
}

public static void main(String[] args) throws InterruptedException

{
Thread myThread = new Thread(new Threadlnterrupt(),
“myThread");
myThread.start();
SOP(*“Sleeping in main thread for 10 seconds”);

Thread.sleep(10000);
SOP(“Interrupting myThread");

myThread.interrupt();

}
b

290. What are the two ways to
check if a Thread has been

interrupted?

These are the two ways to check for thread interruption:

1. InJava, a Thread can call Thread.interrupted() method to
check if it has been interrupted or not.

2. The other option is to call isInterrupted() method of
Thread class to check if it has been interrupted or not.

291.How can we make sure that
Parent thread waits for termination of
Child thread?

We can use join() method for this purpose. On calling join() method,
current thread waits for the child thread to which it joins to finish.

Sample code is as follows:

Thread myThread = new Thread(new Runnable() {
public void run() {

§
});

myThread.start();
// Join on myThread
myThread.join();

292. How will you handle
InterruptedException in Java?

In Java we can get InterruptedException from sleep() or join()
methods. Throwing InterruptedException 1s way to inform that
another thread has interrupted this thread.

In general, the purpose of Interrupt is to ask current thread to stop its
current execution and finish unexpectedly.

Therefore ignoring this exception by catching it and only logging it
to the console or some log file is not the recommended approach.

The run() method of the Runnable interface does not allow that
throwing any exceptions. So we cannot re-throw
InterruptedException.

Therefore the correct way to handle this exception is that run()
method should check and handle this exception by itself and take
appropriate action.

293. Which intrinsic lock is
acquired by a synchronized method in
Java?

When we mark a method as synchronized and then call this method,
then this method will first acquire the intrinsic lock of the object in
which that method is mentioned.

Once the synchronized method returns, it releases the lock.

In case the synchronized method throws an exception, the intrinsic
lock will be released.

Sample code equivalent to a synchronized method is:

public void myMethod() {
synchronized(this) {
b

b

294. Can we mark a constructor as
synchronized in Java?

No. We cannot mark a constructor as synchronized.

This will lead to compiler error.

The reasoning behind this is that, in this case, only the constructing
thread would have access to the object being constructed.

295. Can we use primitive values
for intrinsic locks?

No. Java does not allow primitive values to be used for intrinsic
locks.

296. Do we have re-entrant
property in intrinsic locks?

Yes. An intrinsic lock can be accessed by the same thread multiple
times. So an Intrinsic lock is re-entrant.

If it is not allowed then the code that acquires a lock would have to
avoid acquiring the lock that it has already acquired.

297. What is an atomic operation?

An atomic operation is an operation that completes in a single step
relative to other threads.

An Atomic operation is either executed completely or not at all.

There is no halfway mark in Atomic operation.

298. Can we consider the statement
i++ as an atomic operation in Java?

No. The statement i++ 1s not an Atomic operation. It has more than
one operation.

First JVM loads the current value of i in memory. Then it
increments it. Finally it stores the new value back into variable 1.

The current thread that executes this operation may be interrupted
between any of the above-mentioned three steps. Therefore it is not
an atomic operation.

299. What are the Atomic
operations in Java?

Java language provides some basic Atomic operations. These
operations can be used to make sure that concurrent threads always
see the same value.

Some of these Atomic operations are:

1. Read operations on reference variables and primitive
variables (except long and double)

2. Write operations on reference variables and primitive
variables (except long and double)

3. Read operations on all variables declared as volatile

4. Write operations on all variables declared as volatile

300. Can you check if following
code is thread-safe?

public class SingletonDoubleCheck {
private SingletonDoubleCheck instance = null;

public SingletonDoubleCheck getlnstance() {
if (instance == null) {
synchronized (SingletonDoubleCheck.class) {
if (instance == null) {
instance = new SingletonDoubleCheck();
h
h
} .
return 1nstance;

b

b

The above-mentioned code is for creating a Singleton class. But this
code 1s not thread-safe.

In this we check the value of instance second time in the
synchronized block. But the JIT compiler can rearrange the
Bytecode in such a way that the reference to SingletonDoubleCheck
instance will be set before the execution of constructor.

Due to this the method getlnstance() will return an object that may
not have been initialized properly.

We can use the keyword volatile for instance to make this thread-
safe code.

Any variables that is marked as volatile will be visible to other
threads only after the completion of the constructor of the object.

301. What are the minimum
requirements for a Deadlock situation
in a program?

For a deadlock to occur following are the minimum requirements:

1.

Mutual exclusion: There has to be a resource that can be
accessed by only one thread at any point of time.

Resource holding: One thread locks one resource and
holds it, and at the same time it tries to acquire lock on
another mutually exclusive resource.

No preemption: There is no pre-emption mechanism by
which resource held by a thread can be freed after a
specific period of time.

Circular wait: There can be a scenario in which two or
more threads lock one resource each and they wait for
each other’s resource to get free. This causes circular wait
among threads for same set of resources.

302. How can we prevent a
Deadlock?

To prevent a Deadlock from occurring at least one requirement for a
deadlock has to be removed:

1. Mutual exclusion: We can use optimistic locking to
prevent mutual exclusion among resources.

2. Resource holding: A thread has to release all its exclusive
locks if'it does not succeed in acquiring all exclusive locks
for resources required.

3. No preemption: We can use timeout period for an
exclusive lock to get free after a given amount of time.

4. Circular wait: We can check and ensure that circular wait
does not occur, when all exclusive locks have been
acquired by all the threads in the same sequence.

303. Howcan we detect a Deadlock
situation?

We can use ThreadMXBean.findDeadlockedThreads() method to
detect deadlocks in Java program. This bean comes with JDK:

Sample code is as follows:

ThreadMXBean bean = ManagementFactory.getThreadMXBean();
long[] threadlds = bean.findDeadlockedThreads(); // It will return
null for no deadlock
if (threadIds != null) {

ThreadInfo[] infos = bean.getThreadInfo(threadlds);

for (ThreadInfo info : infos) {
StackTraceElement[] stack = info.getStackTrace();
// Log or store stack trace information.
b
h

304. Whatis a Livelock?

Livelock is a scenario in which two or more block each other by
responding to an action caused by another thread.

In a deadlock situation two or more threads wait in one specific
state.

In a Livelock scenario, two more threads change their state in such a
way that it prevents progress on their regular work.

E.g. Consider scenario in which two threads try to acquire two
locks. They release a lock that they have acquired, when they cannot
acquire the second lock.

In a Livelock situation, both threads concurrently try to acquire the
locks. Only one thread would succeed, the second thread may
succeed in acquiring the second lock.

Now both threads hold two different locks. And both threads want
to have both locks. So they release their lock and try again from the
beginning. This situation keeps repeating multiple times..

305. Whatis Thread starvation?

In a priority based scheduling, Threads with lower priority get
lesser time for execution than higher priority threads.

If a lower priority thread performs a long running computation, it
may happen that this thread does not get enough time to finish its
computations just in time. In such a scenario, the tread with lower
priority would starve. It will remain away from the threads with

higher priority.

306. How can a synchronized block
cause Thread starvation in Java?

It is not defined for synchronization that which thread will enter a
synchronized block. It may happen that if many threads are waiting
for the entry to a synchronized block, some threads may have to wait
longer than other threads.

Hence these threads with lower priority will not get enough time to
finish their work in time.

307. Whatis a Race condition?

A race condition is an unwanted situation in which a program
attempts to perform two or more operations at the same time, but
because of the logic of the program, the operations have to be
performed in proper sequence to run the program correctly.

Since it is an undesirable behavior, it is considered as a bug in
code.

Most of the time race condition occurs in “check then act” scenario.
Both threads check and act on same value. But one of the threads
acts in between check and act. See this example to understand race
condition.

if (x==3) // Check

{
y=x%*5;// Act

// If another thread changes x
// between "if (x ==3)" and "y =x * 57,
// then y will not be equal to 15.

}

308. What is a Fair lock in multi-
threading?

In Java there 1s a class ReentrantLock that 1s used for implementing
Fair lock. This class accepts an optional parameter fairness. When
fairness 1s set to true, the RenentrantLock will give access to the
longest waiting thread.

The most popular use of Fair lock is in avoiding thread starvation.
Since longest waiting threads are always given priority in case of
contention, no thread can starve.

Downside of Fair lock is the low throughput of the program. Since
low priority or slow threads are getting locks multiple time, it leads
to slower execution of a program.

The only exception to a Fair lock is tryLock() method of
ReentrantLock. This method does not honor the value of fairness
parameter.

309. Which two methods of Object
class can be used to implement a
Producer Consumer scenario?

In a Producer Consumer scenario, one thread is a Producer and
another thread 1s a Consumer.

For this scenario to start working, a Consumer has to know when
the Producer has produced. In Object class, there is a wait()
method. A Consumer calls wait method to wait on Producer. The
Producer used notify() method of Object class to inform Consumer
that it has produced.

In this way the processor time between produce and consume
operations is freed due to the use of wait() and notify() methods.

310.How JVM determines which
thread should wake up on notify()?

If multiple threads are waiting on an object’s monitor, JVM
awakens one of them. As per Java specification the choice of this
thread is arbitrary and it is at the discretion of the implementation.
So there is no guarantee of rule that a specific thread will be
awakened by JVM on notify() method call.

311. Check if following code is thread-
safe for retrieving an integer value
from a Queue?

public class QueueCheck {
Queue queue;

public Integer getNextInt() {

Integer retVal = null;

synchronized (queue) {
try {
while (queue.isEmpty()) {
queue.wait();
h
} catch (InterruptedException e) {
e.printStackTrace();

}

}
synchronized (queue) {

retVal = queue.poll();
if (retVal ==null) {
System.err.println("retVal is null");
throw new IllegalStateException(); }
b
return retVal;
}
b

In the above code Queue is used as object monitor to handle
concurrency issues. But it may not behave correctly in a multi-
threading scenario.

There are two separate synchronized blocks in above code. In case
two threads are woken up simultaneously by another thread, both

threads will enter one after in the second synchronized block.

Only one of the two threads will get new value from the queue and
make it empty. The second thread will poll on an empty queue and it
will not get any non-null return value.

312.How can we check if a thread has
a monitor lock on a given object?

In Java, Thread class has a static method holdsLock(Object
objToCheck) to check whether thread has a lock on objToLock
object.

This method will return true if current thread holds the lock on the
objToLock object that was passed as an argument to this method.

313. What is the use of yield() method
in Thread class?

The yield() method of Thread class is used to give a hint to
scheduler that the current thread wants to free the processor.

The scheduler can either use this hint or just ignore this hint. Since
the scheduler behavior is not guaranteed, it may happen that the
current thread again gets the processor time.

It can be used for debugging or testing purposes. But there is rarely
any concrete use of this method.

314. What is an important point to
consider while passing an object from
one thread to another thread?

This 1s a multi-threading scenario. In a multi-threading scenario, the
most important point 1s to check whether two threads can update
same object at the same time.

If it is possible for two threads to update the same object at the
same time, it can cause 1ssues like race condition.

So it is recommended to make the object Immutable. This will help
in avoiding any concurrency issues on this object.

315. What are the rules for creating
Immutable Objects?

As per Java specification, following are the rules for creating an
Immutable object:

Do not provide "setter" methods that modify fields or objects
referred to by fields.

Make all fields final and private.

Do not allow subclasses to override methods. The simplest way to
do this is to declare the class as final. A more sophisticated
approach is to make the constructor private and construct instances
in factory methods.

If the instance fields include references to mutable objects, do not
allow those objects to be changed.

Do not provide methods that modify the mutable objects.

Do not share references to the mutable objects. Never store
references to external, mutable objects passed to the constructor; if
necessary, create copies, and store references to the copies.
Similarly, create copies of your internal mutable objects when
necessary to avoid returning the originals in your methods.

316.What is the use of ThreadLocal
class?

ThreadLocal class provides thread-local variables. Each thread
accesses only its own local variables. It has its own copy of the
variable.

By using ThreadLocal, if thread X stores a variable with value x
and another thread Y stores same variable with the value y, then X
gets x from its ThreadlLocal instance and Y gets y from its
ThreadLocal instance.

Typically, ThreadLocal instances are private static fields that are
associated with the state of a thread.

317.What are the scenarios suitable
for using ThreadLocal class?

We can use instance of ThreadLocal class to transport information
within an application.

One use case is to transport security or login information within an
instance of ThreadLocal so that every method can access it.

Another use case is to transport transaction information across an
application, without using the method-to-method communication.

318.How will you improve the
performance of an application by
multi-threading?

In an environment with more than one CPU, we can parallelize the
computation tasks on multiple CPUs. This leads to parallel
processing of a bigger task that takes lesser time due to multiple
threads dividing the work among themselves.

One example is that if we have to process 1000 data files and
calculate the sum of numbers in each file. If each file takes 5
minutes, then 1000 files will take 5000 minutes for processing.

But by using multi-threading we can process these files in 10
parallel threads. So each thread will take 100 files each. Since now
work is happening in 10 parallel threads, the time taken will be
around 500 minutes.

319. What is scalability in a Software
program?

Scalability is the capability of a program to handle growing amount
of work or its potential to be enlarged in order to accommodate
growth.

A program is considered scalable, if it is suitable to handle a large
amount of input data or a large number of users or a large number of
nodes.

When we say a program does not scale, it means that program fails
on increasing the size of task.

320. How will you calculate the
maximum speed up of an application
by using multiple processors?

Amdahl’s law gives the theoretical speedup in latency of the
execution of a task at fixed workload.

It gives the formula to compute the theoretical maximum speed up
that can be achieved by providing multiple processors to an
application.

If S 1s the theoretical speedup then the formula is:
S(n) =1/ (B + (1-B)/n)

where n is the number of processors
B is the fraction of the program that cannot be executed in parallel.

When n converges against infinity, the term (1-B)/n converges
against zero. Therefore, the formula can be reduced in this special
case to 1/B.

In general, the theoretical maximum speedup behaves in inverse
proportion to the fraction that has to be executed serially. This
means the lower this fraction is, the more theoretical speedup can
be achieved.

321.What is Lock contention in multi-
threading?

Lock contention is the situation when one thread is waiting for a
lock/object that being held by another thread. The waiting thread
cannot use this object until the other thread releases the lock on that
object.

It is also known as Thread contention.

Ideally locks reduce the thread contention. Without locks, multiple
threads can operate on same object and cause undesirable behavior.
If locking is implemented correctly it reduces the occurrence of
contention between multiple threads.

322. What are the techniques to
reduce Lock contention?

There are following main techniques to reduce Lock contention:

Reduce the scope of lock.

Reduce object pooling.

Reduce the number of times a certain lock can be acquired.
Avoid synchronization at unnecessary places.

Implement hardware supported Optimistic locking in place
of synchronization.

SNk =

323. What technique can be used in
following code to reduce Lock
contention?

synchronized (map) {
Random r = new Random();
Integer value = Integer.valueOf(42);
String key = r.nextString(5);
map.put(key, value);

b

The code uses Random() to get a random string and it also used
Integer to convert 42 in an object. Since these lines of code are

specific to this thread, these can be moved out of Synchronization
block.

Random r = new Random();
Integer value = Integer.valueOf(42);
String key = r.nextString(5);

synchronized (map) {
map.put(key, value);
h

324. Whatis Lock splitting
technique?

Lock splitting is a technique to reduce Lock contention in multi-
threading. It 1s applicable in scenario when one lock is used to
synchronize access to different aspects of the same application.

Sometimes we put one lock to protect the whole array. There can be
multiple threads trying to get the lock for same array. This single
lock on array can cause Lock contention among threads. To resolve
this we can give one lock to each element of the array. Or we can
use modulus function to assign different locks to a small group of
array elements. In this way we can reduced the chance of Lock
contention. This is Lock splitting technique.

325. Which technique is used in
ReadWriteLock class for reducing
Lock contention?

ReadWriteLock uses two locks. One lock for read-only operations,
another lock for write operations.

Its implementation is based on the premise that concurrent threads
do not need a lock when they want to read a value while no other
thread 1s trying to write.

In this implementation, read-only lock can be obtained by multiple
threads. And the implementation guarantees that all read operation
will see only the latest updated value as soon as the write lock 1s
released.

326. Whatis Lock striping?

In Lock splitting we use different locks for different parts of the
application. In Lock striping we use multiple locks to protect
different parts of the same data structure.

ConcurrentHashMap class of Java internally uses different buckets
to store its values. Each bucket is chosen based on the value of key.
ConcurrentHashMap uses different locks to guard different buckets.
When one thread that tries to access a hash bucket, it can acquire the
lock for that bucket. While another thread can simultaneously
acquire lock for another bucket and access it. In a synchronized
version of HashMap, the whole map 1s has one lock.

Lock striping technique gives better performance than Synchronizing
the whole data structure.

327. Whatis a CAS operation?

CAS is also known a Compare-And-Swap operation.

In a CAS operation, the processor provides a separate instruction
that can update the value of a register only if the provided value is
equal to the current value.

CAS operation can be used as an alternate to synchronization.

Let say thread T1 can update a value by passing its current value
and the new value to be updated to the CAS operation. In case
another thread T2 has updated the current value of previous thread,
the previous thread T1’s current value is not equal to the current
value of T2. Hence the update operation fails.

In this case, thread T1 will read the current value again and try to
update it.

This 1s an example of optimistic locking,

328. Which Java classes use CAS
operation?

Java classes like AtomicInteger or AtomicBoolean internally use
CAS operations to support multi-threading.

These classes are in package java.util.concurrent.atomic.

329. Is it always possible to improve
performance by object pooling in a
multi-threading application?

By using Object pools in an application we limit the number of new
objects to be created for a class. In a single thread operation, it can
improve the performance by reusing an already created object from
a pool.

In a multi-threading application an object pool has to provide
synchronized access to multiple threads. Due to this only one thread
can access the pool at a time. Also there is additional cost due to
Lock contention on pool. These additional costs can outweigh the
cost saved by reuse of an object from the pool.

Therefore using an Object pool may not always improve the
performance in a multi-threading application.

330. How can techniques used for
performance improvement in a single
thread application may degrade the
performance in a multi-threading
application?

In a single thread applications we can use Object pool for
performance optimization. Where as in multi-threading environment,
it may not be a good idea to use an Object pool. Increased overhead
of synchronization and lock contention can degrade the performance
gained by using Object pool in a multi-threading application.

Another example is the implementation in which a List keeps a
separate variable to hold the number of elements. This technique is
useful in single thread application where size() method can return
the value from this variable, without the need to count all the
elements of list.

But in a multi-threading application, this separate variable can
rather degrade the performance. This variable has to be access
controlled by a lock since multiple concurrent threads can insert an
element in a list. The additional cost of lock on this variable can
outweigh the benefit gained by it in a multi-threading application.

331.What is the relation between
Executor and ExecutorService
interface?

Executor interface has only execute(Runnable) method. The
implementing class of this interface has to execute the given
Runnable instance passed to execute() method at some time in the
future.

ExecutorService interface extends Executor interface. It provides
additional methods like- invokeAny(), invokeAll(), shutdown(),
awaitTermination(). These method provide the ability to shutdown
the thread so that further requests can be rejected. Also it provides
ability to invoke a collection of Callable tasks.

332. What will happen on calling
submit() method of an
ExecutorService instance whose
queue is already full?

The implementation of ExecutorService will throw

RejectedExecutionException, when its queue is already full and a
new task is submitted by calling submit() method.

333. Whatis a
ScheduledExecutorService?

ScheduledExecutorService interface extends the interface
ExecutorService. It provides various schedule() methods that can be
used to submit new tasks to be executed at a given point of time.

One of the schedule() method provides the ability to schedule a one-
shot task that can be executed after given delay.

Another version of schedule() method provides the ability to
execute ScheduleFuture after a given amount of delay.

In addition there are scheduleAtFixedRate() and
scheduleWithFixedDelay() methods that can execute an action at a
periodic interval of time.

334. How will you create a Thread
pool in Java?

In Java, Executors framework provides a method
newFixedThreadPool(int nThreads) that can be used to create a
Thread pool with a fixed number of threads.

Sample code is as follows:

public static void main(String[] args) throws InterruptedException,
ExecutionException

{

ExecutorService myService = Executors.newFixedThreadPool(5);
Future<Integer>[] futureList = new Future[5];
for (int1 = 0; 1 < futureList.length; i++) {
futureList[1] = myService.submit(new MyCallable());
b
for (int1 = 0; 1 < futureList.length; i++) {
Integer retVal = futureList[1].get();
printin(retVal);

}

myService.shutdown();

}

335. What is the main difference
between Runnable and Callable
interface?

Runnable interface defines run() method that does not return any
value.

Callable interface allows call() method to return a value to its
caller. A Callable interface can also throw an exception in case of

an error. Also Callable is a newer addition to Java since version
1.5.

336. What are the uses of Future
interface in Java?

We can use Future interface to represent the result of an
asynchronous computation.

These are the operations whose result is not immediately available.

Therefore Future interface provides isDone() method to check if the
asynchronous computation has finished or not.

We can also check if the task was cancelled by calling
isCancelled() method.

Future also provides cancel() method to attempt the cancellation of
a task.

337. What is the difference in
concurrency in HashMap and in
Hashtable?

In a Hashtable class all methods are synchronized.

In a HashMap implementation all the methods are not synchronized.

Therefore Hashtable is a thread-safe collection. HashMap is not a
thread-safe collection.

In a multi-threading it 1s not advisable to use regular HashMap. We
can use ConcurrentHashMap class in multi-threading applications.

338. How will you create
synchronized instance of List or Map
Collection?

In Java, Collections class provides methods to synchronize any
collection.

It also provides synchronizedList(List) and synchronizedMap(Map)
methods that can be used to convert a List or Map to a synchronized
instance.

339. Whatis a Semaphore in Java?

Semaphore class in Java is used to implement a counting
semaphore. It is used to restrict the number of threads that can
access a physical or logical resource.

A Semaphore maintains a set of permits that should be acquired by
competing threads.

We can also use it to control how many threads can access the
critical section of a program or a resource concurrently.

The first argument in Semaphore constructor is the total number of
permits available. Each invocation of acquire() method tries to
obtain one of the available permits.

The acquire() method is used to acquire a permit from the
semaphore. If we pass number of permits required to acquire()
method, then it blocks the thread until that number of permits are
available.

Once a thread has finished its work, we can use release() method to
release the permits.

340. Whatis a CountDownLatch in
Java?

CountDownLatch class helps in implementing synchronization in
Java. It 1s used to implement the scenarios in which one or more
threads have to wait until other threads have reached the same state
such that all thread can start.

There is a synchronized counter that is decremented until it reaches
the value zero. Once it reaches zero, it means that all waiting
threads can proceed now.

It is a versatile tool that can be used for other Synchronization
scenarios as well. It can also work as on/off latch or gate. All
threads invoking await() method wait at the gate until it is opened
by a thread invoking countdown() method.

341. What is the difference between
CountDownLatch and CyclicBarrier?

CyclicBarrier takes an optional Runnable task that is run once the
common barrier condition is achieved.

CountDownlLatch is used in simple use cases where a simple start
stop is required. A CyclicBarrier is useful in complex scenarios
where more coordination is required. E.g. MapReduce algorithm
implementation.

CyclicBarrier resets the internal value to the initial value once the
value reaches zero. CyclicBarrier can be used to implement the
scenarios in which threads have to wait for each other multiple
times.

342. What are the scenarios suitable
for using Fork/Join framework?

ForkJoinPool class is in the center of Fork/Join framework. It is a
thread pool that can execute instances of ForkJoinTask.

ForkJoinTask class provides the fork() and join() methods. The
fork() method is used to start the asynchronous execution of a task.
The join() method is used to await the result of the computation.

Therefore, divide-and-conquer algorithms can be easily
implemented with Fork/Join framework.

343. What s the difference between
RecursiveTask and RecursiveAction
class?

RecursiveAction class has compute() method that does not have to
return a value.

RecursiveAction can be used when the action has to directly
operate on a Data structure. It does not need to return any computed
value.

In RecursiveTask class has compute() method that always returns a
value.

Both RecursiveTask and RecursiveAction classes are used in
ForkJoinTask implementations.

344. In Java 8, can we process
stream operations with a Thread
pool?

In Java 8, Collections provide parallelStream() method to create a
stream that can be processed by a Thread pool.

We can also call the intermediate method parallel() on a given
stream to convert it into a sequential stream of parallel tasks.

345. What are the scenarios to use
parallel stream in Java 8?

A parallel stream in Java 8 has a much higher overhead compared
to a sequential one.

It takes a significant amount of time to coordinate the threads.
We can use parallel stream in following scenarios:

When there are a large number of items to process and the
processing of each item takes time and is parallelizable.

When there is a performance problem in the sequential processing.
When current implementation is not already running in a multi-
thread environment. If there 1is already a multi-threading
environment, adding parallel stream can degrade the performance.

346. How Stack and Heap work in
Java multi-threading environment?

In Java, Stack and heap are memory areas available to an
application. Every thread has its own stack. It is used to store local
variables, method parameters and call stack.

Local variables stored in Stack of one Thread are not visible to
another Thread.

Where as, Heap 1s a common memory area in JVM. Heap is shared
by all threads. All objects are created inside heap.

To improve performance thread can cache the values from heap into
their stack. This can create problem if the same variable is modified
by more than one thread.

In such a scenario we should used volatile keyword to mark a
variable volatile. For a volatile variable the thread always reads
the value from main memory.

347. How can we take Thread dump
in Java?

The steps to take Thread dump of Java process depends on the
operating system.

On taking Thread dump, Java writes the state of all threads in log
files or standard error console.

We can press Ctrl + Break key together to take thread dump in
Windows.

We can execute kill -3 command for taking Thread dump on Linux.
Another option to take Thread dump is jstack tool. We can pass
process 1d of java process to this tool for taking Thread dump.

This 1s the simple one, -Xss parameter is used to control stack size
of Thread in Java. You can see this list of JVM options to learn
more about this parameter.

348. Which parameter can be used
to control stack size of a thread in
Java?

We use —Xss parameter to control the stack size of a thread in Java.

If we set it as 1 MB, then every thread will get 1MB of stack size.

349. There are two threads T1 and
T2? How will you ensure that these
threads run in sequence T1, T2 in
Java?

In Java there are multiple ways to execute threads in a sequence.

One of the simplest way for sequencing is join() method of Thread
class.

We can call join() method to start a thread when another thread has
finished.

We start with the last thread to execute first. And make this thread
join on the next thread.

In this case we start thread T2 first. And then call T1.join() so that
thread T2 waits for thread T1 to finish execution.

Once T1 completes execution, T2 thread starts executing.

Java 8

350. What are the new features
released in Java 8?

The new features released in Java & are:

1. Lambda Expression
2. Stream API
3. Date and Time API
4. Functional Interface
5. Interface Default and Static Methods
6. Optional
7. Base64 Encoding and Decoding
8. Nashorn JavaScript Engine
9. Collections API Enhancements
10. Concurrency Enhancements
11. Fork/Join Framework Enhancements
12. Spliterator
13. Internal Iteration
14. Type Annotations and Repeatable Annotations
15. Method Parameter Reflection
16. JVM Parameter Changes

351.What are the main benefits of
new features introduced in Java 8?

The main benefits of Java &8 features are:

1.

XN R WD

Support for functional programming by Lambda and
Streams

Ease of high volume data processing by Streams

Ease of use by getting Parameter names through Reflection
Reusable code with enhanced Collection APIs

Smart exception handling with Optional

Control on JVM with new Parameters

Enhanced encryption support with Base 64

Faster execution with Nashorn JavaScript engine support

352. What is a Lambda expression
in Java 8?

Lambda expression is an anonymous function. It is like a method
that does not need any access modifiers, name or return value
declaration. It accepts a set of input parameters and returns result.

Lambda expression can be passed as a parameter in a method. So
we can treat code in Lambda expression as data. This piece of code
can be passed to other objects and methods.

353. What are the three main parts
of a Lambda expression in Java?
Three main parts of a Lambda expression are:

1. Parameter list: A Lambda expression can have zero or

more parameters. Parameter list is optional to Lambda.

2. Lambda arrow operator: “->” is known as Lambda arrow
operator. It separates the list of parameters and the body of
Lambda.

3. Lambda expression body: The piece of code that we want
to execute 1s written in Lambda expression body.

E.g. In following example:
Arrays.asList("a", "b", "d").forEach(e -> System.out.println(¢));
Parameter list=¢

Arrow = ->
Body = System.out.println(¢)

354. What is the data type of a
Lambda expression?

A Lambda expression fulfills the purpose of passing code as data.
The data type of a Lambda expression is a Functional interface.

In most of the cases this is java.lang.Runnable interface.

355. What is the meaning of
following lambda expression?

(e -> System.out.println(€));

This Lambda expression takes a parameter e and prints it via
System.out.

356. Why did Oracle release a new
version of Java like Java 8?

The main theme of Java 8 is support for functional programming,
With increase in Database size and growth of multi-code CPU
servers, there is need for Java to support such large-scale systems.

With new features of Java 8, it is possible to create functional
programs to interact efficiently with Big Data systems. Support for
Streams 1s very helpful in this regard.

Lambda expressions are very useful for cloud computing where we
can pass code as data and run the same code on multiple servers.

Optional is a best practice that is borrowed from Google Guava
library for handling the exceptional cases. This has made programs
more robust with support for edge cases.

357. What are the advantages of a
lambda expression?

We can pass a lambda expression as an object to a method. This
reduces the overhead involved in passing an anonymous class.

We can also pass a method as a parameter to another method using
lambda expressions.

358. What is a Functional interface
in Java 8?

A Functional interface in Java is an interface that has exactly one
abstract method.

It can have default methods with implementation. A default method
1s not abstract.

In Java 8, java.lang.Runnable and java.util.concurrent.Callable are
two very popular Functional interfaces.

359. What s a Single Abstract
Method (SAM) interface in Java 8?

A Functional interface is also known as Single Abstract Method
Interface, since it has exactly one abstract method.

360. How can we define a
Functional interface in Java 8?

To define a Functional interface in Java &8, we can create an
Interface with exactly one abstract method.

Another way 1s to mark an Interface with annotation
(@FunctionalInterface. Even with the annotation we have to follow
the rule of exactly one abstract method.

The only exception to this rule is that if we override
java.lang.Object class’s method as an abstract method, then it does
not count as an abstract method.

361. Why do we need Functional
interface in Java?

Functional Interfaces are mainly used in Lambda expressions,
Method reference and constructor references.

In functional programming, code can be treated as data. For this
purpose Lambda expressions are introduced. They can be used to
pass a block of code to another method or object.

Functional Interface serves as a data type for Lambda expressions.
Since a Functional interface contains only one abstract method, the
implementation of that method becomes the code that gets passed as
an argument to another method.

362. Isit mandatory to use
@Functionallnterface annotation to

define a Functional interface in Java
8?

No, it is not mandatory to mark a Functional interface with
@FunctionalInterface annotation.

Java does not impose this rule.
But, if we mark an interface with @Functionallnterface annotation

then Java Compiler will give us error in case we define more than
one abstract method inside that interface.

363.

What are the differences

between Collection and Stream API in
Java 8?

Main differences between Collection and Stream API in Java & are:

1.

2.

Version: Collection API is in use since Java 1.2. Stream
API is recent addition to Java in version 8.

Usage: Collection API is used for storing data in different
kinds of data structures. Stream API is used for
computation of data on a large set of Objects.

Finite: With Collection API we can store a finite number
of elements 1n a data structure. With Stream API, we can
handle streams of data that can contain infinite number of
elements.

Eager vs. Lazy: Collection API constructs objects in an
eager manner. Stream API creates objects in a lazy manner.
Multiple consumption: Most of the Collection APIs
support iteration and consumption of elements multiple
times. With Stream APl we can consume or iterate
elements only once.

364.

What are the main uses of

Stream API in Java 8?

Main uses of Stream API in Java 8 are:

1.

It helps in using data in a declarative way. We can make
use of Database functions like Max, Min etc., without
running a full iteration.

It makes good use of multi-core architectures without
worrying about multi-threading code.

We can create a pipeline of data operations with Java
Stream that can run in a sequence or in parallel.

It provides support for group by, order by etc. operations.
It supports writing for code in Functional programming

style.

It provides parallel processing of data.

365. What are the differences
between Intermediate and Terminal
Operations in Java 8 Streams?

Main differences between Intermediate and Termuinal Stream
operations are as follows:

1. Evaluation: Intermediate operations are not evaluated until
we chain it with a Terminal Operation of Stream. Terminal
Operations can be independently evaluated.

2. Output: The output of Intermediate Operations is another
Stream. The output of Terminal Operations is not a Stream.

3. Lazy: Intermediate Operations are evaluated in lazy
manner. Terminal Operations are evaluated in eager
manner.

4. Chaining: We can chain multiple Intermediate Operations
in a Stream. Terminal Operations cannot be chained
multiple times.

5. Multiple: There can be multiple Intermediate operations in
a Stream operation. There can be only one Terminal
operation in Stream processing statement.

366. Whatis a Spliterator in Java
8?
A Spliterator 1s a special type of Iterator to traverse and partition

the elements of a source in Java. A source can be a collection, an 10
channel or a generator function.

A Spliterator may traverse elements individually or sequentially in
bulk.

367. What are the differences
between Iterator and Spliterator in
Java §?

Main differences between Iterator and Spliterator are as follows:

1. Spliterator can be used with Streams in Java 8. Where as,
Iterator is just used with Collection.

2. Spliterator uses Internal Iteration to iterate Streams.
Iterator uses External Iteration to iterate Collections.

3. Spliterator can iterate Streams in Parallel as well as
Sequential manner. Iterator only iterates in Sequential
manner.

4. Spliterator can traverse elements individually as well as in
bulk. Iterator only iterates elements individually.

368. Whatis Type Inference in Java
8?

A Java compiler can see each method’s invocation and it
declaration to determine what are type arguments required for
invocation.

By Type Inference, Java can determine the types of the arguments as
well as the type of the result being returned.

Type inference algorithm also tries to find the most specific type
that can work with all types of arguments.

369. Does Java 7 support Type
Inference?
Yes, Java 7 supports Type Inference. In Java 8, Oracle has enhanced

the Type Inference concept. Now it can be used to define Lambda
expressions, functions and Method references.

370. How does Internal Iteration
work in Java 8?

In an Iterator, the fundamental question is that which party controls
the 1teration. Is it Iterator or the Collection on which iterator runs.

When a Collection controls the iterator, then it 1s called External
Iteration. When the Iterator controls the iteration then it is called
Internal Iteration.

In case of Internal Iteration, the client hands over an operation to
Iterator and the Iterator applies the operation to all the elements in

aggregate.

Internal Iteration is easier to implement, since the Iterator does not
have to store the state of the collection.

371.What are the main differences
between Internal and External
Iterator?

Main differences between Internal and External Iterator are as
follows:

1. An Internal Iterator controls the iteration itself. In an
External Iterator collection controls the iteration.

2. Internal Iterator can iterate elements in individually as
well as in

3. Bulk (like forEach). External iterator iterates element one
by one.

4. Internal Iterator does not have to iterate elements only
sequentially. External Iterator always iterates sequentially.

5. Internal Iterator supports declarative programming style
that goes well with functional programming. External
Iterator follows imperative style OOPS programming.

6. Some people consider Internal Iterator code more readable
than that of External Iterator.

372. What are the main advantages
of Internal Iterator over External
Iterator in Java 8?

Some of the main advantages of Internal Iterator are:

1. Internal Iterator is based on Functional programming,
therefore it can work on declarative style code.

2. There is no need to sequentially iterate elements in Internal

Iterator.

Code 1s more readable and concise in Internal Iterator.

4. Internal Iterator supports concurrency and parallel
processing.

(O8]

373. What are the applications in
which we should use Internal
Iteration?

We need Internal Iterator in applications that require high
performance, parallel processing, fast iteration and bulk operations
support.

Also in Internal Iteration applications, we do not have much control
over iteration. The other features like parallel processing etc.
become more important.

374. What is the main disadvantage
of Internal Iteration over External
Iteration?

Internal Iteration has many advantages over External Iteration. But it
has one big disadvantage. Since Java API is responsible for
iterating in Internal iterator, developer does not get any control over
iteration.

375. Can we provide
implementation of a method in a Java
Interface?

Before Java 8, it was not allowed to provide implementation of a
method in an Interface.

Java 8 has introduced the flexibility of providing implementation of
a method in an interface. There are two options for that:

1. Default Method: We can give default implementation of a
method.

2. Static Method: We can create a static method in an
interface and provide implementation.

376. Whatis a Default Method in
an Interface?

In Java 8, we can provide implementation of a method in an
Interface and mark this method with Default keyword.

In this way, this implementation of the method becomes default
behavior for any class implementing the interface.

377. Why do we need Default
method in a Java 8 Interface?

Default methods in an Interface provide backward compatibility
feature in Java 8.

Let say there is an interface Car that is implemented by BMW,
Chevrolet and Toyota classes. Now a Car needs to add capability
for flying. It will require change in Car interface. Some of the car
classes that do not have flying capability may fail. Therefore a
Default Implementation of flying methods is added in Car interface
so that cars with no flying capability can continue to implement the
original Car interface.

378. What is the purpose of a Static
method in an Interface in Java 8?

A Static method in an Interface 1s utility or helper method. This is
not an object level instance method. Some of the uses of Static
method in an Interface are:

1. Single Class: There is no need to create a separate Utils
class for storing utility or helper methods. We can keep
these methods in same interface.

2. Encapsulation: With Static methods, complete behavior of
a Class 1s encapsulated in same class. There is no need to
maintain multiple classes.

3. Extension: It is easier to extend a Class/APIL If we extend
a collection ArrayList, we get all the methods. We need not
extend Collections class also.

379. What are the core ideas behind
the Date/Time API of Java 8?

There are three core 1deas behind the Date/Time API of Java §:

1. Immutable-value classes: The new API avoids thread-
safety and concurrency issues by ensuring that all the core
classes are immutable and represent well-defined values.

2. Domain-driven design: The new API is modeled on
precise domain with classes that represent different use
cases for Date and Time.

3. The emphasis on domain-driven design offers benefits like
clarity and understandability.

4. Separation of chronologies: The new API allows people to
work with different calendar systems. It supports the needs
of users in different areas of the world likes Japan or
Thailand that don’t follow ISO-8601.

380. What are the advantages of
new Date and Time API in Java 8 over
old Date API?

Some of the advantages of Java 8 Date Time API over existing Date
API are:

Concurrency: Existing Date Time classes (such as java.util.Date and
SimpleDateFormatter) are not thread-safe. This does not work well
in concurrent applications. In new Date Time API, developer does
not have to deal with concurrency issues while writing date-
handling code.

Better Design: Date/Time classes prior to Java 8 have poor API
design. For example, years in java.util.Date start at 1900, months
start at 1, and days start at 0. It is not very intuitive. Java 8 Date
Time API handles it very well.

No need for 3rd Party Libraries: With the popularity of third-party
Date/Time libraries like Joda Time, Java has to make its native
Date/Time API comparable. Now we can use the Java API instead
of using 3rd party libraries.

381.What are the main differences
between legacy Date/Time API in Java
and Date/Time API of Java 8?

Main difference between legacy Date/Time API and Java 8
Date/Time API are:

1. Old APl is not Thread safe. Java 8 API is Thread safe.
Old API has many mutable objects. New Java 8 API is
based on Immutable objects.

3. Performance of old API is not good. New Java 8
Date/Time API gives better performance.

4. Old API is less readable and maintainable. New Java 8
APl is very well designed and 1s more readable.

5. Old API has month values from 0 to 11. New API has
months from 1 to 12.

382. How can we get duration
between two dates or time in Java 8?

In Java8, we have a new class Duration that provides the utility of
computing duration between two dates.

We can call the static method Duration.between(datel, date2) to get
the time period in hours, mins, days etc. between datel and date2.

383. What is the new method family
introduced in Java 8 for processing of
Arrays on multi core machines?

Java 8 has enhanced the Arrays class with methods that can run
efficiently on multi core machines.

These methods start with keyword parallel.
Egg. Arrays.parallelSetAll(), Arrays.parallelSort() etc.

This parallel set of methods provides parallel processing of Arrays
that can run Java code very fast on a multi core machine.

384. Howdoes Java 8 solve
Diamond problem of Multiple
Inheritance?

In Multiple Inheritance if a class extends more than one classes with
two different implementation of same method then it causes
Diamond problem.

Consider following example to see problem and solution for
Diamond problem in Java 8:

public interface Baselnterface {
default void display() { //code goes here }
j
public interface BaseOne extends Baselnterface { }
public interface BaseTwo extends Baselnterface { }
public class ChildClass implements BaseOne, BaseTwo { }

In the above code, class ChildClass gives compile time error. Java
Compiler cannot decide which display method should it invoke in
ChildClass.

To solve this problem, Java SE 8 has given the following remedy:

public interface A {

default void display() { //code goes here }
b
public interface B extends A{ }
public interface C extends A{ }
public class D implements B,C{

default void display() {

B.super.display();

}
}

public interface Baselnterface {
default void display() { //code goes here }
b
public interface BaseOne extends Baselnterface { }
public interface BaseTwo extends Baselnterface { }
public class ChildClass implements BaseOne, BaseTwo {
default void display(){
BaseOne.super.display();

h
b

The method invocation at BaseOne.super.display(); solves the
Diamond problem as it resolves the confusion for compiler.

385. What are the differences
between Predicate, Supplier and
Consumer in Java 8?

The subtle difference between Predicate, Supplier and Consumer in
Java 8 is as follows:

Predicate is an anonymous function that accepts one argument and
returns a result.

Supplier is an anonymous function that accepts no argument and
returns a result.

Consumer is an anonymous function that accepts one argument and
returns no result.

386. Is it possible to have default
method definition in an interface
without marking it with default
keyword?

No, we have to always mark a default method in interface with
default keyword.

If we create a method with implementation in an interface, but do
not mark it as default, then we will get compile time error.

387. Can we create a class that
implements two Interfaces with
default methods of same name and
signature?

No, it 1s not allowed to create a class that implements interfaces
with same name default methods.

It will give us compile time error for duplicate default methods.

388. How Java 8 supports Multiple
Inheritance?

In Multiple Inheritance a class can inherit behavior from more than
one parent classes.

Prior to Java 8, a class can implement multiple interfaces but
extend only one class.

In Java 8, we can have method implementation within an interface.
So an interface behaves like an Abstract class.

Now if we implement more than one interface with method
implementation in a class, it means we are inheriting behavior from
multiple abstract classes. That is how we get Multiple Inheritance
in Java 8.

389. 1In case we create a class that
extends a base class and implements
an interface. If both base class and
interface have a default method with
same name and arguments, then
which definition will be picked by
JVM?

In such a scenario, JVM will pick the definition in base class.

390. If we create same method and
define it in a class , in its parent class
and in an interface implemented by
the class, then definition will be
invoked if we access it using the
reference of Interface and the object
of class?

In all the cases, method defined in the class will be invoked.

391.Can we access a static method of
an interface by using reference of the
interface?

No, a static method of interface has to be invoked by using the name
of the interface.

392. How can you get the name of
Parameter in Java by using
retlection?

Java 8 has introduced a method Parameter.getName() to get the
name of a parameter by using reflection.

Before using this feature, we need to turn on this feature in Java
compiler.

To turn on this feature, just run javac with —parameters argument.

To verify the availability of this feature, we can use Parameter.
isNamePresent() method.

393. Whatis Optional in Java 8?

Optional 1s a container object that may have a null or non-null
value. If it has a value then isPresent() method returns true.

It a value is present, we can call get() method to get the value. Else
we will get nothing.

It is very useful in handling data that has null values.

394. What are the uses of Optional?

Some of the uses of Optional in Java are:

We can use Optional to avoid NullPointerException in an
application.

Optional performs Null check at compile time, so we do not get run
time exception for a null value.

Optional reduces the codebase pollution by removing unnecessary
null checks.

Optional can also be used to handle default case for data when a
value is null.

395. Which method in Optional
provides the fallback mechanism in
case of null value?

In case, an Optional has null value, we can use orElseGet() method
as fallback mechanism. If we implement orElseGet() method, it will
be invoked when the value of Optional is null.

396. How can we get current time
by using Date/Time API of Java 8?

In Java 8 we can use Clock class to get the current time. Instead of
using old method System.currentTimeMillis(), we can create a
Clock object and call millis() method to get the current time in
milliseconds.

We can also call instant() method on Clock object to get the current
time in a readable format.

397. Isit possible to define a static
method in an Interface?

Yes, from Java 8, an Interface can also has a static method.

398. How can we analyze the
dependencies in Java classes and
packages?

Java 8 comes with a new command line tool jdeps that can help in
analyzing the package-level and class-level dependencies.

We can pass a jar file name or a class name as an argument to this
tool. It will list all the dependencies of that jar or class.

399. What are the new JVM
arguments introduced by Java 8?

In Java 8, PermGen space of ClassLoader is removed. It has been
replaced with MetaSpace.

Now we can set the initial and maximum size of MetaSpace.

The JVM options -XX:PermSize and —XX:MaxPermSize are
replaced by -XX:MetaSpaceSize and -XX:MaxMetaspaceSize
respectively in Java 8.

400. What are the popular
annotations introduced in Java 8?

Some of the popular annotations introduced in Java 8 are:

@FunctionalInterface: This annotation is used to mark an interface
as Functional Interface. As mentioned earlier, A Functionallnterface
can be used for lambda expressions.

(@Repeatable: This annotation 1s used for marking another
annotation. It indicates that the marked annotation can be applied
multiple times on a type.

401. Whatis a StringJoiner in Java
8?

StringJoiner 1s a new class in Java 8 that can be used to create a
String. It can construct a sequence of characters separated by a
delimiter. It can also optionally add a prefix and suffix to this
sequence. We can use this sequence to get a String.

E.g.
The String "[One:Two:Three]" may be constructed as follows:

StringJoiner sj = new StringJoiner(":", "[", "]");
sj.add("One").add("Two").add("Three");
String desiredString = sj.toString();

402. What s the type of a Lambda
expression in Java 8?

The type of a lambda expression depends on the context it is being
used.

A lambda is like a method reference. It does not have a type of its
own.

Generally, a Lambda is an instance of a Functional Interface.

403. What s the target type of a
lambda expression ?

The target type of a lambda expression represents a type to which
the expression can be converted.

The target type for a lambda expression is a functional interface.
The lambda expression must have same parameter type as the

parameter in the function of the interface. It must also return a type
compatible with the return type of function.

404. What are the main differences
between an interface with default

method and an abstract class in Java
8?

An interface with a default method appears same as an Abstract
class in Java. But there are subtle differences between two.

1. Instance variable: An interface cannot have instance
variables. An abstract class can have instance variables.

2. Constructor: An interface cannot have a constructor. An
abstract class can have constructor.

3. Concrete Method: An interface cannot have concrete
methods other than default method. An abstract class is
allowed to define concrete methods with implementation.

4. Lambda: An interface with exactly one default method can
be used for lambda expression. An abstract class cannot be
used for lambda expression.

Java Tricky Questions

405. Is there any difference between
a=a+banda-+=b expressions?

When we add two integral variables e.g. variables of type byte,
short, or int in Java, then they are first promoted to int type, and then
addition happens.

The += operator implicitly casts the result of addition into the type
of variable used to hold the result.

What happens when you put return statement or System.exit () on try
or catch block? Will finally block execute?

It is a popular tricky Java interview question. Most of the
programmers think that no matter what the finally block will always
execute. This question challenges that concept by putting a return
statement in the try or catch block or calling System.exit() from try
or catch block.

You can answer by saying that finally block executes even if we put
a return statement in the try block or catch block. But finally block
does not execute if you call System.exit() from try or catch block.

406. What does the expression 1.0 /
0.0 return? Will there be any
compilation error?

Double class is the source of many tricky interview questions. You
may know about the double primitive type and Double class. But
while doing floating point arithmetic some people don't pay enough
attention to Double.INFINITY, NaN, and -0.0. There are rules that
govern the floating point arithmetic calculations involving Double.

The answer to this question i1s that 1.0 / 0.0 will compile
successfully. And it will not throw ArithmeticException. It will just
return Double INFINITY.

407. Can we use multiple main
methods in multiple classes?

Yes. When we start an application in Java, we just mention the class
name to be run to java command. The JVM looks for the main
method only in the class whose name is passed to java command.
Therefore, there is no conflict amongst the multiple classes having
main method.

408. Does Java allow you to
override a private or static method?

The question is tricky but the answer is very simple. You cannot
override a private or static method in Java. If we create a similar
method with same return type and same method arguments in child
class, then it will hide the superclass method. This is known as
method hiding.

Also, you cannot override a private method in sub class because
Private method is not visible even in a subclass. Therefore, what
you can do is to create another private method with the same name
in the child class.

So in both the cases, it is not method overriding. It is either method
hiding or a new method.

409. What happens when you put a
key object in a HashMap that is
already present?

In a HashMap there are buckets in which objects are stored. Key
objects with same HashCode go to same bucket.

If you put the same key again in a HashMap, then it will replace the
old mapping because HashMap doesn't allow duplicate keys. The
same key will have same HashCode as previous key object. Due to
same HashCode, it will be stored at the same position in the bucket.

410. How can you make sure that N
threads can access N resources
without deadlock?

This question checks your knowledge of writing multi-threading
code. If you have experience with deadlock and race conditions,
you can easily answer this.

The answer is that by resource ordering you can prevent deadlock.
If in our program we always acquire resources in a particular order
and release resources in the reverse order, then we can prevent the
deadlock.

So a thread waiting for same resource can not get into deadlock
while the other thread is trying to get it and holding the resource
required by first thread. If both of them release the resources in right
order, one of them can acquire it to finish the work.

411.How can you determine if JVM is
32-bit or 64-bit from Java Program?

We can find JVM bit size 32 bit or 64 bit by running java command
from the command prompt.

Or we can get it from Java program.

Sun has a Java System property to determine the bit size of the
JVM: 32 or 64:

sun.arch.data.model=32 // 32 bit JVM
sun.arch.data.model=64 // 64 bit JVM

We can use System.getProperty("sun.arch.data.model") to determine
if it is 32/64 bit from Java program.

412. What is the right data type to
represent Money (like Dollar/Pound)
in Java?

To represent money you need decimal points in the numbers like
$1.99.

BigDecimal class provides good methods to represent Money.
Using BigDecimal, we can do the calculation with decimal points
and correct rounding. But using BigDecimal is a little bit high on
memory usage.

We can also use double with predefined precision. But calculation
on double can give erroneous results.

413. How can you do multiple
inheritances in Java?

This is a question to trick people coming from C++ and Scala
background to Java. There are many Object Oriented languages that
support multiple inheritances. But Java is not one of them.

Answer of this question can be that, Java does support multiple
inheritances of by allowing an interface to extend other interfaces.
You can implement more than one interface. But you cannot extend
multiple classes. So Java doesn't support multiple inheritances of
implementation.

But in Java 8, the default method breaks the rule of multiple
inheritances behavior.

414. Is ++ operation thread-safe in
Java?

No, ++ operator is not a thread safe operation. It involves multiple
instructions like- reading a value, incrementing it and storing it back
into memory. These instructions can overlap between multiple
threads. So it can cause issues in multi-threading.

415. How can you access a non-
static variable from the static context?

We cannot access a non-static variable from the static context in
Java. If you write a code like that, then you will get compile time
error. It is one of the most common problems for beginner Java
programmers, when they try to access instance variable inside the
main method in a class.

Since main method is static in Java, and instance variables are non-
static, we cannot access instance variable inside main. The solution
is to create an instance of the object and then access the instance
variables.

416. Let say there is a method that
throws NullPointerException in the
superclass. Can we override it with a
method that throws
RuntimeException?

This question is checking your understanding of the concepts of
method overloading and overriding in Java.

We can throw superclass of RuntimeException in an overridden
method, but we cannot do the same if it is a checked Exception.

417. How can you mark an array
volatile in Java?

If you know multi-threading well then you can easily answer it.

We can mark an array volatile in Java. But it makes only the
reference to array volatile, not the whole array.

If one thread changes the reference variable to point to another
array, then it will provide a volatile guarantee. But if multiple
threads are changing individual array elements, they won't be having
same reference due to the reference itself being volatile.

418. Whatis a thread local variable
in Java?

Thread-local variable is a variable restricted to a specific thread. It
is like thread's own copy of variable that is not shared among
multiple threads.

Java provides ThreadLocal class to support thread-local variables.
To achieve thread-safety, you can use it. To avoid any memory leak,
it is always good to remove a thread-local variable, once its work
is done.

419. What s the difference between
sleep() and wait() methods in Java?

In Java, we use these methods to pause currently running thread.
There is a simple difference between these.

sleep() 1s actually meant for short pause because it doesn't release
lock.

wait() 1s meant for conditional wait and it can release a lock that
can be acquired by another thread to change the condition on which
it is waiting.

420. Can you create an Immutable
object that contains a mutable object?

In Java, it is possible to create an Immutable object that contains a
mutable object.

We should not share the reference of the mutable object, since it is
inside an immutable object. Instead, we can return a copy of it to
other methods.

421. How can you convert an Array
of bytes to String?

You can convert an Array of bytes to String object by using the
String constructor that accepts byte[]. We need to make sure that
right character encoding is used. Else we may get different results
after conversion.

422. What is difference between
CyclicBarrier and CountDownLatch
class?

CyclicBarrier and CountDownLatch classes were introduced from
Java 5.

We can reuse CyclicBarrier even if it is broken, but we cannot reuse
CountDownLatch in Java.

423. What is the difference between
StringBuffer and StringBuilder?

StringBuilder was introduced in Java 5. The main difference
between both of them is that StringBuffer methods e.g. length(),
capacity(), append() are synchronized. But corresponding methods
in StringBuilder are not synchronized.

Due to this difference, concatenation of String using StringBuilder is
faster than StringBuffer. Now it is considered bad practice to use
StringBuffer, because, in most of the scenarios, we perform string
concatenation in the same thread.

424. Which class contains clone
method? Cloneable or Object class?

It is a very basic trick question. clone() method is defined in Object
class. Cloneable is a marker interface that doesn't contain any
method.

425. How will you take thread dump
in Java?

There are platform specific commands to take thread dump in Java.

In Linux/Unix, just use kill -3 PID, where PID is the process id of
Java process. It will give the thread dump of Java process.

In Windows, press Ctrl + Break. This will instruct JVM to print
thread dump in standard out or err. It can also go to console or log
file depending upon your application configuration.

426. Can you cast an int variable
into a byte variable? What happens if
the value of int is larger than byte?

An int is 32 bit in Java. But a byte is just 8 bit in Java. We can cast
an int to byte. But we will lose higher 24 bits of int while casting,
Because a byte can hold only first 8 bits of int. Remaining 24 bits
(32-8 = 24) will be lost.

427. In Java, can we store a double
value in a long variable without
explicit casting?

No, we cannot store a double value into a long variable without
casting it to long. The range of double is more than that of long. So
we need to type cast.

To answer this question, just remember which one i1s bigger
between double and long in Java.

428. What will this return 5%0.1 ==
0.5? true or false?

The answer is false because floating point numbers can not be
represented exactly in Java, so 5*0.1 is not same as 0.5.

429. Out of an int and Integer,
which one takes more memory?

An Integer object takes more memory than an int in Java. An Integer
is an object and it stores meta-data overhead about the object. An
int 1s a primitive type so its takes less memory and there is no meta-
data overhead.

430. Can we use String in the switch
case statement in Java?

Yes. From Java 7 onwards, String can be used in switch case
statement. This gives convenience to programmer. But internally
hash code of String is used for the switch statement.

431. Can we use multiple main
methods in same class?

Yes. You can have multiple methods with name main in the same
class. But there should be only one main method with the signature
public static void main(String[] args). JVM looks for main with this
signature only. Other methods with name main in same class are just
ignored.

432. When creating an abstract
class, is it a good idea to call abstract
methods inside its constructor?

No, we should avoid calling abstract methods in the constructor of
an abstract class. Because, it can restrict how these abstract
methods can be implemented by child classes.

Many IDE give “Overridable method call in constructor” warning
for such implementation.

This 1s a problem of object initialization order. The superclass
constructor will run before the child class constructor. It means
child class is not yet initialized. But due to presence of overridden
method in superclass, the overridden method of subclass is called
when the subclass is not fully initialized.

433. How can you do constructor
chaining in Java?

When we call one constructor from another constructor of the same
class, then it is known as constructor chaining in Java. When you
have multiple overloaded constructors in a class, you can do
constructor chaining.

434. How can we find the memory
usage of JVM from Java code?

We can use memory management related methods provided in
java.lang.Runtime class to get the free memory, total memory and
maximum heap memory in Java.

By using these methods, you can find out how much of the heap is
used and how much heap space still remains.

Runtime.freeMemory() returns amount of free memory in bytes.
Runtime.totalMemory() returns total memory in bytes.
Runtime.maxMemory() returns maximum memory in bytes.

435. What is the difference between
X ==Yy and x.equals(y) expressions in
Java?

The x ==y expression does object reference matching if both a and
b are an object and only returns true if both are pointing to the same
object in the heap space.

The x.equals(y) expression is used for logical mapping and it is
expected from an object to override this method to provide logical

equality.

Eg. A Book object may be logically equal to another copy of same
Book, but it 1s a different object which will be false while doing x

—.

436. How can you guarantee that
the garbage collection takes place?

No. We cannot guarantee the garbage collection in Java. Java
documentation explicitly says that GarbageCollection is not
guaranteed.

You can call System.gc() to request garbage collection, however,
that's what it is - a request. It is upto GC's discretion to run.

437. What is the relation between
x.hashCode() method and x.equals(y)
method of Object class?

x.hashCode() method returns an int hash value corresponding to an
object instance.

It 1s used in hashCode based collection classes like Hashtable,
HashMap, LinkedHashMap etc.

hashCode() method is also related to equals() method.

As per Java specification, two objects which are equal to each
other using equals() method must have same hash code.

Therefore, two objects with same hashCode may or may not be
equal to each other. But two equal objects should have same hash
code.

438. What is a compile time
constant in Java?

A compile time constant is public static final variable. The public
modifier is optional here. At compile time, they are replaced with
actual values because compiler knows their value up-front and it
also knows that it cannot be changed during run-time. So they are
constants.

439. Explain the difference between
fail-fast and fail-safe iterators?

The main difference between fail-fast and fail-safe iterators is
whether or not the collection can be modified while it is being
1terated.

Fail-safe iterators allow modification of collection in an iteration
task. But fail-fast iterators do not allow any modification to
collection during iteration.

During iteration, fail-fast iterators fail as soon as they realize that
the collection has been modified. Modification can be addition,
removal or update of a member. And it will throw a
ConcurrentModificationException.

Eg. ArrayList, HashSet, and HashMap are fail-fast.

Fail-safe iterators operate on a copy of the collection. Therefore
they do not throw an exception if the collection is modified during
iteration.

Eg. ConcurrentHashMap, CopyOnWriteArrayList are fail-safe.

440. You have a character array
and a String. Which one is more
secure to store sensitive data (like
password, date of birth, etc.)?

Short answer 1s, 1t 1s safe to store sensitive information in character
array.

In Java, String is immutable and it is stored in the String pool. Once
a String is created, it stays in the pool in memory until it is garbage
collected. You have no control on garbage collection. Therefore,
anyone having access to a memory dump can potentially extract the
sensitive data and use it.

Whereas, if you use a mutable object like a character array, to store
the value, you can set it to blank once you are done with it. Once it
1s made blank it cannot be used by anyone else.

441. Why do you use volatile
keyword in Java?

The volatile keyword guarantees global ordering on reads and
writes to a variable. This implies that every thread accessing a
volatile field will read the variable’s current value instead of using
a cached value.

By marking the variable volatile, the value of a variable is never
cached thread-locally. All reads and writes will go straight to main
memory of Java.

442. What is the difference between
poll() and remove() methods of Queue
in Java?

It is a basic question to know the understanding of Queue data

structure. Both poll() and remove() methods remove and return the
head of the Queue.

When Queue is empty, poll() method fails and it returns null, but
remove() method fails and throws Exception.

443. Can you catch an exception
thrown by another thread in Java?

Yes, it can be done by using Thread.UncaughtExceptionHandler.

Java Documentation says “When a thread is about to terminate due
to an uncaught exception the Java Virtual Machine will query the
thread for
its UncaughtExceptionHandler usingThread.getUncaughtExceptionH:e
will invoke the handler's uncaughtException method, passing the
thread and the exception as arguments.”

https://docs.oracle.com/javase/7/docs/api/java/lang/Thread.html#getUncaughtExceptionHandler()

444. How do you decide which type
of Inner Class — Static or Non-Static
to use in Java?

An 1nner class has full access to the fields and methods of the
enclosing class. This 1s convenient for event handlers, but comes at
a cost. Every instance of an inner class retains and requires a
reference to its enclosing class.

Due to this cost, there are many situations where static nested
classes are preferred over inner classes. When instances of the
nested class outlive instances of the enclosing class, the nested
class should be static to prevent memory leaks.

At times, due to their “hidden” reference to enclosing class, Inner
classes are harder to construct via reflection.

445. What are the different types of
Classloaders in Java?

Java Classloader is the part of the Java Runtime Environment (JRE)
that loads classes on demand into Java Virtual Machine (JVM).

When the JVM is started, three types of class loaders are used:

1. Bootstrap Classloader: It loads core java API file rt.jar classes
from folder.

2. Extension Classloader: It loads jar files from lib/ext folder.

3. System/Application Classloader: It loads jar files from path
specified in the CLASSPATH environment variable.

Classes may be loaded from the local file system, a remote file
system, or even the web.

446. What are the situations in
which you choose HashSet or
TreeSet?

HashSet 1s better than TressSet in almost every way. It gives O(1)
for add(), remove() and contains() operations. Whereas, TressSet
gives O(log(N)) for these operations.

Still, TreeSet 1s useful when you wish to maintain order over the
inserted elements or query for a range of elements within the set.

We should use TreeSet when we want to maintain order. Or when
there are enough read operations to offset the increased cost of
write operations.

447. What is the use of method
references in Java?

Java 8 has introduced Method references. It allows constructors and
methods to be used as lambdas.

The main uses of Method reference are to improve code
organization, clarity and terseness.

448. Do you think Java Enums are
more powerful than integer
constants?

Yes. Java Enums provide many features that integer constants
cannot. Enums can be considered as final classes with a fixed
number of instances. Enums can implement interfaces but cannot
extend another class.

While implementing the strategy pattern, we can use this feature of
Enums. Especially, when the number of strategies is fixed.

You can also attach meta-data to enum values in Java. Also enum
values are typesafe, where as integer constants are not.

You can also define custom behavior in enum values.

449. Why do we use static
initializers in Java?

In Java, a static initializer can run code during the initial loading of
a class and it guarantees that this code will only run once. Also the
static code will finish running before a class can be accessed in any
way.

Initializing static members from constructors is more work. You
have to make sure that every constructor does this. You need to
maintain a flag to mark the static work when it is done. You may
have to think about synchronization or races conditions for work in
static block not initialized from static context.

450. Your client is complaining that
your code is throwing
NoClassDefFoundError or
NoSuchMethodError, even though
you are able to compile your code
without error and method exists in
your code. What could be the reason
behind this?

Sometimes we upgrade our libraries even with same method name.
But we forget to let the client know about the new version. Due this
different in version, we get NoClassDefFoundError or
NoSuchMethodError at runtime when one library was not
compatible with such an upgrade.

Java build tools and IDEs can also produce dependency reports that
tell you which libraries depend on that JAR. Mostly, identifying and
upgrading the library that depends on the older JAR resolve the
issue.

451. How can you check if a String
is a number by using regular
expression?

Regex 1s a powerful tool for matching patterns and searching
patterns.

A numeric String can only contain digits i.e. 0 to 9. It can also
contain + and - sign at start of the String. We can create a regular

expression for these two rules. One simple example is as follows:

Pattern pattern = Pattern.compile(".*\\D.*");

452. What is the difference between
the expressions String s =
"Temporary' and String s = new
String(""Temporary ")? Which one is
better and more efficient?

'

In general, String s =" Temporary " is more efficient to use than

String s = new String("Temporary ").

In case of String s = " Temporary ", a String with the value
“Temporary” 1s created in String pool. If another String with the
same value i1s created (e.g., String s2 = " Temporary "), it will

reference the same object in the String pool.

But, when you use String s = new String("Temporary "), Java
creates a String with the value “Temporary” in the String pool.
Also, that String object is then passed to the constructor of the
String Object i.e. new String("Temporary "). And this call creates
another String object (not in the String pool) with that value.

Therefore, each such call creates an additional String object. E.g.
String s2 = new String("Temporary ") creates an extra String object,
rather than just reusing the same String object from the String pool.

So String s = “Temporary” is always an efficient way.

453. 1In Java, can two equal objects
have the different hash code?

No. It is not possible for two equal objects to have different
hashcode. But two objects with same hashcode may or may not be
equal.

454. How can we print an Array in
Java?

We can print an array by using methods of Arrays class. We can
either use Arrays.toString() method or we can use
Arrays.deepToString() method.

Since array doesn't implement toString() method by itself, just
passing an array to System.out.println() will not print its contents.
But we can use Arrays.toString() to print each element of an array.

455. Is it ok to use random numbers
in the implementation of hashcode()
method in Java?

No. The hashcode of an object should be always same. If you use
random number in hashcode() method, then you may get a different
value of hashcode for same object. This will break the hashcode
contract.

456. Between two types of
dependency injections, constructor
injection and setter dependency
injection, which one is better?

Constructor injection guarantees that a class will be initialized with
all its dependencies during creation. But setter injection provides
flexibility to set an optional dependency.

If we are using an XML file to describe dependencies, the setter
injection is more readable.

In general, it is a good practice to use constructor injection for
mandatory dependencies and use setter injection for optional
dependencies.

457. What is the difference between
DOM and SAX parser in Java?

In Java, Document Object Model (DOM) parser loads the whole
XML into memory and creates a tree based on DOM model. This
helps it in quickly locating the nodes, and making a change in the
structure of XML.

On the other hand, Simple API for XML (SAX) parser is an event
based parser. It doesn't load the whole XML into memory. Due to
this reason DOM is faster than SAX but require more memory and
is not suitable to parse large XML files.

458. Between Enumeration and
Iterator, which one has better
performance in Java?

Enumeration interface is a read-only interface. It has better
performance than Iterator. It is almost twice as fast as compared to
an Iterator. It also uses very less memory. Also Enumeration does
not have remove() method.

On the other hand, Iterator interface is safer than Enumeration, since
it can check whether a collection is modified or not during iteration.
If a collection is altered while an Iterator is iterating, then it throws
ConcurrentModificationException.

459. What is the difference between
pass by reference and pass by value?

Whenever an object is passed by value, it means that a copy of the
object is passed. Even if changes are made to that object, it doesn’t
affect the original value.

Whenever an object is passed by reference, it means that the actual
object is not passed, rather a reference of the object is passed.
Therefore, any changes made by an external method, are also
reflected in the actual object and its reference.

460. What are the different ways to
sort a collection in Java?

The most popular way to sort a collection in Java is by calling
Collections.sort() method. You can provide your custom
Comparator to sort() method for sorting the data in your custom
way.

The other way is to use a Sorted collection like TreeSet or TreeMap
that stores the information in a sorted order and then you can
convert it to a List.

461. Why Collection interface
doesn’t extend Cloneable and
Serializable interfaces?

Collection interface just specifies groups of objects known as
elements. Each concrete implementation of a Collection can choose
its own way of how to maintain and order its elements.

Some collections may allow duplicate keys, while other collections
may not.

A lot of collection implementations have clone method. But many do
not. It is not worthwhile to include it in all, since Collection is an
abstract representation. What matters is the concrete
implementation.

Cloning and serialization come into picture while doing concrete
implementation. Therefore, the concrete implementations of
collections should decide how they can be cloned or serialized.

462. What is the difference between
a process and a thread in Java?

A process is simply an execution of a program.
A Thread 1s a single execution sequence within a process.

A process may contain multiple threads. A Thread is also called as
a lightweight process.

463. What are the benefits of using
an unordered array over an ordered
array?

In an ordered array the search time has time complexity of O(log n).
Whereas, in an unordered array, search time complexity is O (n).

In an ordered array, the insert operation has a time complexity of
O(n). Whereas, the insertion operation for an unordered array takes
constant time of O(1).

Therefore, when we have more writes than reads, it is preferable to
use an unordered array.

464. Between HashSet and TreeSet
collections in Java, which one is
better?

A HashSet is Implemented using a HashTable. Therefore, its
elements are stored in a random order. The add(), remove(), and
contains() methods of a HashSet have constant time complexity

o(1).

A TreeSet is implemented using a tree data structure. The elements
in a TreeSet are sorted in a natural order. Therefore, add(),
remove(), and contains() methods have time complexity of O(logn).

So from performance perspective, HashSet has better performance
than TreeSet. But if you want to store elements in a natural sorting
order, then TreeSet 1s a better collection.

465. When does JVM call the
finalize() method?

JVM instructs the Garbage Collector to call the finalize method, just
before releasing an object from the memory. A programmer can
implement finalize() method to explicitly release the resources held
by the object. This will help in better memory management and
avoid any memory leaks.

466. When would you use Serial
Garabage collector or Throughput
Garbage collector in Java?

The Serial Garbage collector is used for small applications that
require heap memory upto 100 MB.

The Throughput Garbage collector is used in medium to large size
Java applications.

467. 1InJava,if you set an object
reference to null, will the Garbage
Collector immediately free the
memory held by that object?

No. JVM decides to run the Garbage Collector whenever it 1s low
on memory. When Garbage Collector runs, it looks for objects that
are available for garbage collection and then frees the memory
associated with this object.

So just setting an Object reference null makes it eligible for
Garbage Collection, but it does not immediately free the memory.

468. How can you make an Object
eligible for Garbage collection in
Java?

To make an Object eligible for Garbage collection, just make sure
that it is unreachable to the program in which it is currently defined
/ created / used. You can set the object reference to null and make
sure no other object refers it. Once the object cannot be reached,
Garbage Collection can clean it during the next run.

469. When do you use Exception or
Error in Java? What is the difference
between these two?

Throwable class is the superclass of Exception and Error classes in
Java.

When you want to catch the exceptional conditions that your
program can create or encounter, then use the Exception class or
subclass of Exception.

When you come across situations that are unexpected then use Error
class in Java. Also recovering from Error is not possible in most of
cases. So it is better to terminate the program.

470. What is the advantage of
PreparedStatement over Statement
class in Java?

PreparedStatements are precompiled statements for database
queries. Due to this their performance is much better. Also, we can
reuse PreparedStatement objects with different input values to the
same query.

Where as, Statement class does not provide these features.

471. In Java, what is the difference
between throw and throws keywords?

When we want to raise an exception in our code, we use the throw
keyword with the name of the exception to be raised.

Where as, throws keyword is used in method declaration. Throws
keyword tells us the Exception that can be thrown by this method.
Any caller of this method should be prepared to expect this
Exception.

Another minor difference is that throw is used only with one
exception, but throws can be used with comma-separated list of
multiple exceptions.

472. What happens to the Exception
object after the exception handling is
done?

Once the exception handling is complete, the Exception object is not

reachable. Then it is garbage collected in the next run of Garbage
Collector.

473. How do you find which client
machine is sending request to your
servlet in Java?

We can use the ServletRequest class to find the IP address or host
name of the client machine.

There are methods getRemoteAddr() to get the IP address of the
client machine and getRemoteHost() to get the host name of the
client machine.

474. What is the difference between
a Cookie and a Session object in
Java?

Both Cookie and Session are used during communication between
Client and Server. The Client can disable a Cookie. Due to which
the Web server cannot send a cookie. But a client cannot disable a
session. So a Session always works irrespective of any setting at
the client side.

Also a Session can store any Java object. But the Cookie can only
store small information in a String object.

475. Which protocol does Browser
and Servlet use to communicate with
each other?

HTTP protocol. The Browser and Servlet communicate with each
other by using the HTTP protocol.

476. Whatis HTTP Tunneling?

There are many network communication protocols on the Internet.
But HTTP is the most popular among them. HTTP Tunneling is a
technique in which HTTP or HTTPS protocol encapsulated the
communication done by any other type of protocol. The masking of
other protocol requests as HTTP requests is known as HTTP
Tunneling.

477. Why do we use JSP instead of
Servlet in Java?

Since JSP pages are dynamically compiled into servlets, the
programmers can easily make updates to the presentation layer
code.

For better performance, JSP pages can be pre-compiled.

Also JSP pages provide flexibility to combine static templates like
HTML or XML snippets.

In addition, programmers can make logic changes at the class level,
without editing the JSP pages that use the class logic.

478. Is empty ‘.java’ file name a
valid source file name in Java?
Yes. You can create a class and store it in a file with name .java.

You can try it yourself, by creating, compiling and running such a
file. It will run correctly.

479. How do you implement Servlet
Chaining in Java?

To implement, Servlet Chaining, there has to be more than one
servlet. The output of one servlet has to be sent to a second servlet.
The output of the second servlet can be sent to a third servlet, and
so on. In this way, a chain of servlets is formed to complete a task.

The last servlet in the chain will be responsible for sending final
response to client.

480. Can you instantiate this class?

public class A

{
Aa=new A();

b

No, this class cannot be instantiated, since it will result in
recursively calling its constructor.

481. Why Java does not support
operator overloading?

Java supports Method overloading but does not support operator
overloading. It would make the design more complex by adding
operator loading. Also it will make more complex compiler.

One more reason is that, it will reduce the performance of JVM by
operator overloading, since JCM has to do extra work to find the
real meaning of overloaded operators at run time.

482. Why String class is Immutable
or Final in Java?

Since String objects are cached in a String pool, it makes sense to
make the String immutable. The cached String literals are shared
between multiple clients. And there is a possibility that one client's
action may affect another client’s access to String pool.

String is also used as a parameter in many Java classes. Eg. You can
pass hostname, port number as String while opening a network
connection. If any one can modify your copy of the String, it can
change the hostname. Due to this reason, it makes sense to make
String final as soon as it is created.

483. What is the difference between
sendRedirect and forward methods?

When you use sendRedirect method, it creates a new request. When
you use the forward method, it just forwards a request to a new
target.

In case of sendRedirect, the previous request scope objects are not
available, because it creates a new request.

In case of forward method, the previous request scope objects are
available after forwarding.

Also the sendRedirect method i1s considered slower than the
forward method.

484. How do you fix your
Serializable class, if it contains a
member that is not serializable?

If you want to make a class Serializable, but find that this class
contains members that are not Serializable, then you have to mark
those members as transient. This will ensure that this member is not
persisted to a stream of bytes during Serialization.

Therefore, Transient keyword of Java comes to help in this
scenario.

485. What is the use of run time
polymorphism in Java?

During the run time the behavior of an Object can change based on
its run time state. Due to this run time polymorphism is introduced
in Java. If you override a method in a child class, then you are
providing run time polymorphism. Nothing will happen at the
compile time. But at the run time, JVM decides which method will
be called based on the class of the Object.

486. What are the rules of method
overloading and method overriding in
Java?

When we want to overload a method, we need to make sure that the
method name remains same. But method signature can vary in the
number or datatype of arguments or in the order of arguments.

When we want to override a method, we ensure that the method is
not throwing checked exceptions that are new or higher than those
declared by the overridden method. Also we make sure that the
method name, arguments and return type remain the same.

Also we cannot override Static and Final methods in Java.

487. What is the difference between
a class and an object in Java?

A Class is a template or a blue print of an Object to be created. An
Object is an instance of a Class. A Class defines the methods and
member variables. But an Object populates the values of the
member variables.

Therefore a class is a blueprint that you use to create objects. An
object is an instance of a class — it is a concrete 'thing' that you
made using a specific class.

Most of the OOPS concepts are valid only when an Object is
created.

488. Can we create an abstract class
that extends another abstract class?

Yes. An abstract class can extend another abstract class. It does not
need to define the methods of parent abstract class. Only the last
non-abstract class has to define the abstract methods of a parent
abstract class.

489. Why do you use Upcasting or
Downcasting in Java ?

When we want to cast a Sub class to Super class, we use Upcasting.
It is also known as widening. Upcasting is always allowed in Java.

When we want to cast a Super class to Sub class, we use
Downcasting. It is also known as narrowing.

At times, Downcasting can throw the ClassCastException if it fails
the type check.

490. What is the reason to organize
classes and interfaces in a package in
Java?

As the name suggests, a package contains a collection of classes. It
helps in setting the category of a file. Like- whether it 1s a Data
Access Object (DAO) or an APL.

It helps in preventing the collision of Name space.

Also we can introduce access restriction by using package and the
right modifiers on a class and its methods.

491. What is information hiding in
Java?

Information hiding is OOPS concept. In Java you can use
encapsulation to do Information hiding. An object can use the access
modifiers like-public, private, protected to hide its internal details
from another object. This helps in decoupling the internal logic of
an object from outside world.

By using Information hiding, an object can change its internal
implementation without impacting the outside calling client’s code.

492. Why does Java provide default
constructor?

In Java all the interaction takes place between Object instances. To
create an Object instance, JVM needs a constructor. Java does not
enforce the rule on a programmer to define a default constructor for
every class.

Whenever an object has to be created and programmer has not
provided a constructor, Java uses default constructor to create the
object. Default constructor also initializes member variables with
their default values.

493. What is the difference between
super and this keywords in Java?

We use super keyword to access the methods of the super class from
child class.

We use this keyword to access methods of the same class.

494. What is the advantage of using
Unicode characters in Java?

Unicode characters have much larger number of characters in the
specification.

They also contain Asian and non-western European characters.

Most of the modern technologies, websites and browsers support
these Unicode characters.

495. Can you override an
overloaded method in Java?

Yes. Java allows to override an overloaded method, if that method
1s not a static or final method.

496. How can we change the heap
size of a JVM?

Java provides the command line parameters to set the heap size for
JVM.

You can specify the values in —Xms and —Xmx parameters. These
parameters stand for initial and maximum heap size of JVM.

497. Why should you define a
default constructor in Java?

In general, Java provides a default constructor with each class. But
there are certain cases when we want to define our own version of
default constructor.

When we want to construct an object with default values, we create
our default constructor.

At times, we can mark the default constructor private. So that any
other class cannot create an instance of our class. This technique is
generally used in Singleton design pattern.

498. How will you make an Object
Immutable in Java?

To make an object immutable follow these two rules. One, do not
use any setter methods that can change the fields of your class. Two,
make the fields final. By following these rules, the member
variables cannot be changed after initialization. This will ensure
that member variables of an Object do not change. And thus the
Object will be considered Immutable.

499. How can you prevent SQL
Injection in Java Code?

In Java, you can use PreparedStatement to prevent SQL injection. In
a PreparedStatement you can pass the precompiled SQL queries
with pre-defined parameters. This helps in checking the type of
parameters to SQL queries. So it protects your code from SQL
injection attacks.

500. Which two methods should be
always implemented by HashMap key
Object?

Any object that we want to use as key for HashMap or in any other
hash based collection data structure e.g. Hashtable, or
ConcurrentHashMap must implement equals() and hashCode()
method.

501.Why an Object used as Key in
HashMap should be Immutable?

The Key object should be immutable so that hashCode() method
always return the same value for that object.

The Hashcode returned by hashCode() method depends on values of
member variables of an object. If an object is mutable, then the
member variables can change. Once the member variables change,
the Hashcode changes. If the same object returns different hash code
at different times, then it is not reliable to be used in the HashMap.

Let say, when you insert the object, the Hashcode is X, the
HashMap will store it in bucket X. But when you search for it the
Hashcode is Y, then HashMap will look for the object in bucket Y.

So you are not getting what you stored.
To solve this, a key object should be immutable.

Although, the compiler does not enforce this rule, a good
programmer always remembers this rule.

502. How can we share an object
between multiple threads?

There are many ways to share same object between multiple
threads. You can use a BlockingQueue to pass an object from one
thread to another thread.

You can also use Exchanger class for this purpose. An Exchanger is
a bidirectional form of a SynchronousQueue in Java. You can use it
to swap the objects as well.

503. How can you determine if your
program has a deadlock?

If we suspect that our application is stuck due to a Deadlock, then
we just take a thread dump by using the command specific to
environment in which your application is running. Eg. In Linux you
can use command kill -3.

In case of deadlock, you will see in thread dump the current status
and stack trace of threads in the JVM, and one or more of them will
be stuck with message deadlock.

Also you can do this programmatically by using the ThreadMXBean
class that ships with the JDK.

If you don't need programmatic detection you can do this via
JConsole. On the thread tab there is a "detect deadlock" button.

Mixed Questions

1. What are Wrapper classes in Java?

Java has concept of Wrapper classes to allow primitive types to be
accessed as objects. Primitive types like boolean, int, double, float
etc. have corresponding Wrappers classes — Boolean, Integer,
Double, Float etc.

Many of these Wrapper classes are in java.lang package.

Java 5.0 has launched the concept of Autoboxing and Unboxing in
Java for Wrapper classes.

E.g.

public class WrapperTest{

public static void main(String args[]){

//Converting int into Integer

int count=>50;

Integer i=Integer.valueOf(count);//converting int into Integer

Integer j=a;//autoboxing, @ now compiler will write
Integer.valueOf{ count) internally

System.out.printIn(count+" "+i+" "47);

Iy

2. What is the purpose of native
method in Java?

The native keyword is used for applying to a method to indicate that
the method is implemented in native code using JNI(Java Native
Interface).

Therefore, native methods allow Java Developer to directly access
platform specific APIs.

Often, native methods are linked to native library.

3. What is System class?

System.class is a final class provided by java.lang package. It
contains several useful class fields and methods.

The purpose of System class is to provide access to system
resources.

4. What is System, out and println in
System.out.printin method call?

System is a final class provided by java.lang package.
out refers to PrintStream class and a static member of System class.

println is a method of PrintStream class.

5. What is the other name of Shallow
Copy in Java?

Object Cloning., A Shallow Copy just copies the values of references in a
Class.

6. What is the difference between
Shallow Copy and Deep Copy in
Java?

A Shallow copy just copies the values of the references in the class.
A Deep copy copies the values of the objects as well.

7. What is a Singleton class?

A Singleton class in Java has maximum one instance of the class
present in JVM, all the time. The constructor of this class is written
in such a way that it never creates more than one object of same
class.

8. What is the difference between
Singleton class and Static class?

A static class in Java has only static methods. It is a container of
functions. It is created based on procedural programming design.

Singleton class is a pattern in Object Oriented Design. A Singleton
class has only one instance of an object in JVM. This pattern is
implemented in such a way that there is always only one instance of
that class present in JVM.

JSP

9. What are the implicit objects in
JSP?

JSP has following implicit objects:

Request
Response
Application
Exception
Page
Config
Session

Nk =

10. How will you extend JSP code?

We can extend JSP code by using Tag libraries and Custom actions.

11. How will you handle runtime
exceptions in JSP?

We use Errorpage attribute in JSP to catch runtime exceptions. This
attribute forwards user request to the error page automatically.

12.How will you prevent multiple
submits of a page that come by
clicking refresh button multiple
times?

We can use Post Redirect Get (PRG) pattern to solve the issue of
multiple submission of same data. It works as follows:

First time when a user submits a form to server by POST or GET
method, then we update the state in application database.

Then we send a redirect response to send reply to client.

Then we load a view by using GET command. There is no data is
sent in this. Since this a new JSP page, it is safe from multiple
submits. The code that processes the request is idempotent. So it
does not do same action twice for same request.

13.How will you implement a thread
safe JSP page?

We can use SingleThreadModel Interface to implement a thread safe
JSP page.

We can also add <%@page isThreadSafe="false” %> directive in
JSP page to make it thread safe.

14.How will you include a static file in
a JSP page?

We can use include directive of JSP to include a Static page in JSP.
In this approach, we use translation phase to include a static page.
We have to specify the URL of the resource to be included as file
attribute in this directive.

E.g. <% @ include file="footer.html" %>

15. What are the lifecycle methods of a
JSP?

A JSP has following lifecycle methods:

1. jsplInit(): This method is invoked when the JSP is called
for the first time. We can do initial setup for servicing a
request in this method.

2. _jspService(): This method is used to serve every request
of the JSP.

3. jspDestroy(): Once we remove a JSP from the container,
we call this method. It is used for cleanup of resources like
Database connections etc.

16. What are the advantages of using
JSP in web architecture?

We get following advantages by using JSP in web architecture:

1.

Performance: JSP provides very good performance due to
their design of using same code to service multiple
requests.

Fast: Since JSP is pre-compiled, server can serve the
pages very fast.

Extendable: JSP is based on Java Servlets. This helps in
extending JSP architecture with other Java technologies
like JDBC, JMS, JNDI etc.

Design: It is easier to design user interface with JSP, since
it is very close to HTML. UI designers can create a JSP
with mock data and developers can later provide
implementation of dynamic data.

17.What is the advantage of JSP over
Javascript?

In JSP we can write Java code seamlessly. It allows for writing
code that can interact with the rest of the application.

Javascript code is mostly executed at client side. This limits the
tasks that can be done in Javascript code. We cannot connect to
database server from Javascript at the client side.

18. What is the Lifecycle of JSP?

JSP has following lifecycle stages:

1.

Compilation: When a request is made for a JSP, the
corresponding JSP is converted into Servlet and compiled.
If there is already a compiled form of JSP and there is not
change in JSP page since last compilation, this stage does
not do anything.

Initialization: In this stage, jsplnit() method is called to
initialize any data or code that will be later used multiple
times in _jspService() method.

Service: In this stage, with each request to JSP,
_jspService() method is called to service the request. This
is the core logic of JSP that generates response for request.

Destroy: In this stage, JSP is removed from the
container/server. Just before removal, this stage performs
the cleanup of any resources held by JSP.

19. What is a JSP expression?

A JSP expression is an element of a JSP page that 1s used to
evaluate a Java expression and convert into a String. This String is
replaced into the locations wherever the expression occurs in JSP

page.

E.g. <%= expression =%>

20. What are the different types of
directive tags in JSP?

JSP has following directive tags:

1.

Page: This directive is used for page related attributes. It
can be put anywhere in the JSP page. But by convention we
put it on the top of the page.

E.g.
<% @ page attribute="value" %>

Taglib: We can create custom tags in JSP and use these by
taglib directive in a JSP page.

E.g.
<% (@ taglib uri="‘abc.html” prefix="tag prefix” >

Include: We use include directive to read a file and merge
its content with the JSP page. This i1s done during

compilation stage.

<% @ include file="relative url" >

21.What is session attribute in JSP?

Session attribute in JSP is used for HTTP session mechanism. If we
do not want to use HTTP session in JSP, then we set this attribute to
false. If it is set to true, we can use built in session object in JSP.

22. What are the different scopes of a
JSP object?

A JSP object, implicit or explicit, can have one of the following
scopes:

1. Page: In this scope, the object is accessible from the page
where it was created. Important point here is that when a
user refreshes the page, the objects of this scope also get
created again.

2. Request: In request scope, the object is accessible to the
HTTP request that created this object.

3. Session: In this scope, the object is available throughout
the same HTTP session.

4. Application: This is the widest scope. The object is
available throughout the application in which JSP was
created.

23. What is pageContext in JSP?

In JSP, pageContext is an implicit object. This 1s used for storing
and accessing all the page scope objects of JSP.

It is an instance of the PageContext class from javax.servlet.jsp
package.

24. What is the use of jsp:useBean in
JSP?

We use jsp:useBean to invoke the methods of a Java Bean class.
The Java Bean class has some data and setter/getters to access the
data.

With this tag, container will try to locate the bean. If bean is not
already loaded then it will create an instance of a bean and load it.
Later this bean can be used in expressions or JSP code.

25. What is difference between
include Directive and include Action
of JSP?

Some of the main differences between include Directive and
include Action are as follows:

1. Include directive is called at translation phase to include

content in JSP. Include Action is executed during runtime
of JSP.

2. It is not possible to pass parameters to include directive.
Include action can accept parameters by jsp:param tag.

3. Include directive is just copying of content from another
file to JSP code and then it goes through compilation.
Include action will dynamically process the resource being
called and then include it in the JSP page.

26. How will you use other Java files
of your application in JSP code?

We can use import tag to import a Java file in JSP code. Once a file
is imported, it can be used by JSP code. It is a very convenient
method to use Java classes in JSP code.

For better organization of Java code, we should create a package of
classes that we are planning to use in JSP code.

27. How will you use an existing class
and extend it to use in the JSP?

We can use extends attribute in include tag to use an existing class
and extend it in the current JSP.

E.g.

<% (@ include page extends="parent class” %>

28. Why jspService method starts
with _ symbol in JSP?

All the code that we write in a JSP goes into _jspService method
during translation phase. We cannot override this method. Where as
other lifecycle methods jsplnit() and jspDestroy() can be
overridden.

It appears that container uses _ symbol to distinguish the method that
cannot be overridden by client code.

29. Why do we use tag library in JSP?

At times we want to create a Ul framework with custom tags. In
such a scenario, taglib is a very good feature of JSP. With taglib we
can create tags that can provide custom features.

Taglib is also a nice way to communicate with Ul designers who
can use custom tags in the html without going into the details of how
the code 1s implemented.

Another benefit of taglib is reusability of the code. This promotes
writing code only once and using is multiple times.

30. What is the different type of tag
library groups in JSTL?

JSTL stands for JavaServer Pages Standard Tag Library. In JSTL,
we have a collection of JSP tags that can be used in different
scenarios. There are following main groups of tags in JSTL:

1. Core tags

2. SQLtags

3. Formatting tags
4. XML tags

5. JSTL Functions

31.How will you pass information
from one JSP to another JSP?

We can pass information from one JSP to another by using implicit
objects. If different JSP are called in same session, we can use
session object to pass information from one JSP to another.

If we want to pass information from one JSP to another JSP
included in the main JSP, then we can use jsp:param to pass this
information.

32. How will you call a stored
procedure from JSP?

JSP allows running Java code from a .jsp file. We can call a stored
procedure by using JDBC code.

We can call a CallableStatement from JSP code to invoke a stored
procedure.

If we are using Spring framework, then we can use JdbcTemplate
class to invoke stored procedure froma JSP.

33. Can we override jspService()
method in JSP?

No, JSP specification does not allow overriding of jspService
method in JSP. We can override other methods like jspInit() and
jspDestroy().

34. What is a directive in JSP?

JSP directive 1s a mechanism to pass message to JSP container. JSP
directive does not produce an output to the page. But it
communicates with JSP container.

E.g. <% @include ..%> directive is used for telling JSP container
to include the content of another file during translation of JSP.

There can be zero or more attributes in a directive to pass
additional information to JSP container.

Some of the important directives in JSP are: page, include and
taglib.

35. How will you implement Session
tracking in JSP?

We can use different mechanisms to implement Session tracking
JSP. Some these mechanisms are as follows:

1. Cookies: We can use cookie to set session information and
pass it to web client. In subsequent requests we can use the
information in cookie to track session.

2. Hidden Form Field: We can send session id in a hidden
field in HTML form. By using this we can track session.

3. Session object: We can use the built in session object to
track session in JSP.

4. URL Rewriting: We can also add session id at the end of
a URL.

Like- www.abcserver.com?sessionid=1234

http://www.abcserver.com?sessionid=1234

36. How do you debug code in JSP?

In simplest form we can write logger statements or
System.out.println() statements to write messages to log files. When
we call a JSP, the log messages get written to logs. With useful
information getting logged we can easily debug the code.

Another option in debugging is to link JSP container with an IDE.
Once we link IDE debugger to JSP Engine, we can use standard
operations of debugging like breakpoint, step through etc.

37. How will you implement error
page in JSP?

To implement an error-handling page in JSP, we first create a JSP
with error page handling information. In most of the cases we
gracefully handle error by giving a user-friendly message like
“Sorry! There 1s system error. Please try again by refreshing page.”

In this error page, we show user-friendly message to user, but we
also log important information like stack trace to our application log
file.

We have to add parameter isErrorPage=true in page directive of this
page. This tells to JSP container that this is our error page.

<%@page isErrorPage="true” %>
Now we can use this error page in other JSP where we want to
handle error. In case of an error or exception, these JSP will direct

it to errorPage.

<% page errorPage="ErrorPage.jsp” %>

38. How will you send XML data from
a JSP?

In general, JSP is used to pass HTML data to web browser. If we
want to send data in XML format, we can easily do it by setting
contentType="text/xml” in page directive.

E.g. <%@page contentType="text/xml” %>

39. What happens when we request
for a JSP page from web browser?

When a user calls JSP page from web browser, the request first
comes to web server. Web server checks for .jsp extension of page
and passes the request to JSP container like Tomcat.

The JSP container checks whether it has precompiled JSP class or
not. If this is the first time this JSP is called, then JSP container will
translate JSP into a servlet and compiles it.

After compiling, JSP code if loaded in memory and JSP container
will call jspInit() method and _jspService() methods.

The jspService() method will create the output that will be sent by
JSP container to client browser.

40. How will you implement Auto
Refresh of page in JSP?

We can use setlntHeader() method to set the refresh frequency with
which we want to auto-refresh a JSP page.

We can send key “Refresh” with the time in seconds for auto refresh
of the JSP page.

E.g. response.setintHeader(“Refresh”,10)

41.What are the important status
codes in HTTP?

Every HTTP request comes back with a status code from the server.
The important status codes in HTTP are as follows:

200: It means the request is successful.

400: It means the request was bad.

401: It means request was not authorized.

404: It means the resource requested was not found.
503: It means the service is not available.

Nk W=

42. What is the meaning of Accept
attribute in HTTP header?

In HTTP header, Accept attribute is used to specify the MIME types
that a HTTP client or browser can handle. MIME type is the
identifier for specifying the type of file/data that we are planning to
pass over the internet.

43. What is the difference between
Expression and Scriptlet in JSP?

We use Expression in a JSP to return a value and display it at a
specific location. It is generally used for dynamically print
information like- time, counter etc in a HTML code.

Scriptlet is for writing Java code in a JSP. We can define variable,
methods etc in a Scriptlet. A Scriptlet can handle much more
complex code and can be also reused.

44. How will you delete a Cookie in
JSP?

We can use following options to delete a Cookie in JSP:

1. setMaxAge(): we can set the maximum age of a cookie.
After this time period, Cookie will expire and will be
deleted.

2. Header: We can also set the expiry time in header of
response. Respone.setHeader(). This will also expire the
cookie after specified time period.

45. How will you use a Cookie in JSP?

We can use a Cookie in JSP by performing following steps:

First we create a Cookie object. We set the name and value of the
cookie to be created.

We set the expiry time of the Cookie by setting the maximum age.
We can use setMaxAge() method for this.

Finally, we can send the cookie in a HTTP Response by sending it
in HTTP header. In this way cookie goes to client browser and gets
stored there till the maximum age is not achieved.

Once a Cookie is set in the client browser, we can call getCookies()
method to get the list of all the cookies set in Client. We iterate
through the list of all the cookies and get the value of the cookie that
was set in earlier request.

In this way we can use Cookie to set some information at client side
and retrieve its value.

46. What is the main difference
between a Session and Cookie in JSP?
A Session is always stored at the Server side. In JSP, session is a
built-in object in JSP container.

A Cookie is always stored at the client side.

We can use both the methods for Session tracking. But Cookie

method needs permission from user for storing cookie at the client
location.

4’7. How will you prevent creation of
session in JSP?

We can simply set the session attribute as false in page directive to
prevent creation of session object.

E.g. <% (@page session="false” %>

48. What is an output comment in
JSP?

We can write output in JSP in such a way that it becomes a comment
in HTML code. This comment will not be visible in the web
browser. But when we view page source to see HTML, we can see
output comment.

An HTML comment is of following format:

<!-- comment -->

If we output comment in above format, it will be visible to client.

49. How will you prevent caching of
HTML output by web browser in
JSP?

We can use set the header in response object for Cache-Control to
specify no caching.

Sample code is as follows:

response.setHeader(“Cache-Control”, “no-store”);
response.setDateHeader(“Expires”,”0”);

50. How will you redirect request to
another page in browser in JSP code?

We can use sendRedirect() method in JSP to redirect the request to
another location or page.

In this case the request will not come back to server. It will redirect
in the browser itself.

Sample code is as follows:

<% response.sendRedirect(URL); %>

51.What is the difference between
sendRedirect and forward in a JSP?

Both forward and sendRedirect are mechanisms of sending a client
to another page. The main difference between these two are as
follows:

1. In forward, the processing takes place at server side. In
case of sendRedirect() the processing takes place the
client side.

2. In forward, the request is transferred to another resource
within same server. In case of sendRedirect the request can
be transferred to resource on some other server.

3. In forward only one request call is consumed. In case of
sendRedirect two request response calls are created and
consumed.

4. The forward is declared in RequestDispatcher interface.
Where as sendRedirect is declared in
HttpServletResponse object.

52. What is the use of config implicit
object in JSP?

In JSP, config object is of type ServletConfig. This object 1s created
by Servlet Container for each JSP page. It is used for setting
initialization parameters for a specific JSP page.

53. What is the difference between
init-param and context-param?

We can specify both init-param and context-param in web.xml file.

We use init-param to specify the parameters that are specific to a
servlet or jsp. This information is confined to the scope of that JSP.

We use context-param to specify the parameters for overall
application scope. This information does not change easily. It can
be used by all the JSP/Servlet in that Container.

54. What is the purpose of
RequestDispatcher?

We use RequestDispatcher interface to forward requests to other
resources like HTML, JSP etc.

It can also be used to include the content of another page in a JSP.
It has two methods: forward and include.

We have to first get the RequestDispatcher object from the container
and then we can call include or forward method on this object.

55. How can be read data from a
Form in a JSP?

There 1s a built-in request object in a JSP that provides methods to
read Form data. Some of the methods are as follows::

1. getParameterNames(): This method returns the list of all
the parameters in the Form.

2. getParameter(): We call this method to get the value of
parameter set in the Form. It returns null if the parameter is
not found.

3. getParameterValues(): If a Parameter 1s mentioned
multiple times in a Form, we use
request.getParameter Values() method to get all the values.
This method returns an array of String values.

4. getParameterMap(): This method returns the map of all
the Parameters in Form.

56. What is a filter in JSP?

We can define filters in JSP to intercept requests from a client or to
change response from a server.

Filter is a Java class that is defined in the deployment descriptor of
web.xml of an application. The JSP container reads filter from
web.xml and applies a filter as per the URL pattern associated with
the filter.

JSP Engine loads all the filters in when we start the server.

57. How can you upload a large file in
JSP?

To upload a file by JSP we can use <input type="file”’> in the Form
data being passed from HTML.

If the file is very large in size, we can set enctype=multipart/form-
data.

We have to use POST method in the Form to send a file.
Once the request is received, we can implement the logic to read

mulitpart data in doPost() method of JSP. There are methods in JSP
framework to read large files via this method.

58. In which scenario, Container
initializes multiple JSP/Servlet
objects?

To initialize multiple JSP objects, we have to specify same Servlet
object multiple times in web.xml.

This indicates to JSP container to initialize separate JSP/Servlet
object for each element. Each of the Servlet instance will have its
own ServletConfig object and parameters.

Java Design Patterns

59. When will you use Strategy Design
Pattern in Java?

Strategy pattern is very useful for implementing a family of
algorithms. It is a behavioral design pattern.

With Strategy pattern we can select the algorithm at runtime. We can
use it to select the sorting strategy for data. We can use it to save
files in different formats like- .txt, .csv, .jpg etc.

In Strategy pattern we create an abstraction, which is an interface
through which clients interact with our system. Behind the
abstraction we create multiple implementation of same interface
with different algorithms.

For a client, at runtime we can vary the algorithm based on the type
of request we have received.

So we use Strategy pattern to hide the algorithm implementation
details from client.

In Java Collections.sort() method uses strategy design pattern.

60. What is Observer design pattern?

In Observer design pattern, there is a Subject that maintains the list
of Observers that are waiting for any update on the Subject. Once
there 1s an update in Subject it notifies all the observers for the
change.

E.g. Inreal life, students are waiting for the result of their test. Here
students are the observers and test is the subject. Once the result of
test 1s known, testing organization notifies all the students about
their result.

The most popular use of Observer pattern is in Model View
Controller (MVC) architectural pattern.

Main issue with Observer pattern is that it can cause memory leaks.
The subject holds a strong reference to observers. If observers are
not de-registered in time, it can lead to memory leak.

61. What are the examples of
Observer design pattern in JDK?

In JDK there are many places where Observer design pattern is
used. Some of these are as follows:

1. java.util.Observer, java.util.Observable

2. javax.servlet.http.HttpSessionAttributeListener

3. javax.servlet.http.HttpSessionBindingListener

4. All implementations of java.util. EventListener, and also in
Swing packages

5. javax.faces.event.PhaseListener

62. How Strategy design pattern is
different from State design pattern in
Java?

State design pattern is a behavioral design pattern that is use for
defining the state machine for an object. Each state of an object is
defined in a child class of State class. When different actions are
taken on an Object, it can change its state.

Strategy pattern is also a behavioral pattern, but it is mainly used
for defining multiple algorithms. With same action of a client, the
algorithm to be used can change.

Some people consider State pattern similar to Strategy pattern,
since an Object changes its Strategy with different method
invocations. But the main difference is that in State pattern internal
state of an Object is one of the determining factors for selecting the
Strategy for change of state.

Where as in Strategy pattern, client can pass some external
parameter in input during method invocation that determines the
strategy to be used at run time.

Therefore State pattern is based on the Object’s internal state,
where as Strategy pattern is based on Client’s invocation.

State pattern is very useful in increasing the maintainability of the
code in a large code-base.

63. Can you explain Decorator design
pattern with an example in Java?

Some people call Decorator pattern as Wrapper pattern as well. It
is used to add the behavior to an object, without changing the
behavior of other objects of same class.

One of the very good uses of Decorator pattern is in java.io
package. We can have a FilelnputStream to handle a File. To add
Buffering behavior we can decorate FilelnputStream with
BufferedInputStream. To add the gzip behavior BufferedInputStream
we can decorate it with GzipInputStream. To add serialization
behavior to GuziplnputStream, we can decorate it with
ObjectlnputStream.

E.g.
Open a FilelnputStream:

FileInputStream fis = new FilelnputStream("/myfile.gz");
Add buffering:

BufferedInputStream bis = new BufferedInputStream(fis);
Add Gzip:

GzipInputStream gis = new GzipInputStream(bis);

Add Serialization:

ObjectlnputStream ois = new ObjectInputStream(gis);

So with each step we have decorated the FilelnputStream with
additional behavior.

64. What is a good scenario for using
Composite design Pattern in Java?

Some of the good scenarios where Composite design pattern can be
used are as follows:

Tree Structure: The most common use of Composite design pattern
is Tree structure. If you want to represent data in a Tree data
structure, Composite pattern can be used.

E.g. In an Organization, to a Manager has Employees. But Manager
is also an Employee. If we start from CEO level, there is one big
tree for the whole organization structure. Under that big tree there
are many sub-trees. This can be easily represented with Composite
design pattern.

Recursion: Another use of Composite design pattern is Recursion. If
we have a Recursion based algorithm, we need data to be passed to
algorithm in a data structure that treats individual objects and
compositions at each level of recursion uniformly.

E.g. To implement a recursive Polynomial Solving algorithm, we
can use Composite design pattern to store the intermediate results.

Graphics: Another good use of Composite design pattern is in
Graphics. We can group shapes inside a composite and make
higher-level groups of smaller groups of shapes to complete the
graphics to be displayed on screen.

65. Have you used Singleton design
pattern in your Java project?

Yes. Singleton is one of the most popular design patterns in
enterprise level Java applications. Almost in every project we see
some implementation of Singleton.

With Singleton pattern we can be sure that there is only one instance
of a class at any time in the application.

This helps in storing properties that have to be used in the
application in a unique location.

66. What are the main uses of
Singleton design pattern in Java
project?

Some of the main uses of Singleton design pattern in Java are as
follows:

Runtime: In JDK, java.lang.Runtime is a singleton-based class. There
is only one instance of Runtime in an application. This is the only
class that interfaces with the environment/machine in which Java
process 1s running.

Enum: In Java, enum construct is also based on Singleton pattern.
Enum values can be accessed globally in same way by all classes.

Properties: In an application it makes sense to keep only one copy of
the properties that all classes can access. This can be achieved by
making properties class Singleton so that every class gets same copy
of properties.

Spring: In Spring framework, all the beans are by default Singleton
per container. So there is only one instance of bean in a Spring [oC
container. But Spring also provides options to make the scope of a
bean prototype in a container.

67. Why java.lang.Runtime is a
Singleton in Java?

In Java, java.langRuntime is implemented on Singleton design
pattern.

Runtime is the class that acts as an interface with the environment in
which Java process is running. Runtime contains methods that can
interact with the environment.

Like- totalmemory() method gives the total memory in JVM.
maxMemory() method gives the maximum memory that JVM can
use.

There is an exit() method to exit the Java process. We do not want
multiple objects in JVM to have exit() method.

Similarly there 1s gc() method that can run the Garbage Collector.
With only one copy of gc() method, we can ensure that no other
object can run the Garbage Collector when one instance of GC is
already running,

Due to all these reasons there is only one copy of Runtime in Java.
To ensure single copy of Runtime, it is implemented as a Singleton
in Java.

68. What is the way to implement a
thread-safe Singleton design pattern
in Java?

In Java there are many options to implement a thread-safe Singleton
pattern. Some of these are as follows:

1. Double Checked Locking: This is the most popular method
to implement Singleton in Java. It is based on Lazy
Initialization. In this we first check the criteria for locking
before acquiring a lock to create an object. In Java we use
it with volatile keyword.

Sample code:

class DoubleCheckSingleton {
private volatile HelloSingleton helloSingleton; // Use Volatile

public HelloSingleton getHelloSingleton() {
HelloSingleton result = helloSingleton;
if (result == null) {
synchronized(this) { // Synchronize for thread safety
result = helloSingleton;
if (result == null) {
result = new HelloSingleton();
helloSingleton = result;

j
h
}

return result;

}

2. Bill Pugh Singleton: We can also use the method by Bill
Pugh for implementing Singleton in Java. In this we use an
Inner Static class to create the Singleton instance.

Sample code:
public class SingletonBillPugh {

// Inner class that holds instance
private static class InnerSingleton{
private static final SingletonBillPugh INSTANCE = new
SingletonBillPugh();

h

// Private constructor
private SingletonBillPugh(){}

public static SingletonBillPugh getlnstance() {
return InnerSingleton.INSTANCE;

h
}

When first time SingletonBillPugh is loaded in memory,
InnerSingleton is not loaded. Only when getlnstance() method is
called, InnerSingleton class is loaded and an Instance is created.

3. Enum: We can also use Java enum to create thread-safe
implementation. Java enum values are accessible globally
so these can be used as a Singleton.

Sample Code:

public enum SingletonEnum {

INSTANCE;

public static void doImplementation() {

o
}

69. What are the examples of
Singleton design pattern in JDK?

In JDK there are many places where Singleton design pattern is
used. Some of these are as follows:

1. java.lang.Runtime.getRuntime(): This method gives
Runtime class that has only one instance in a JVM.

java.lang.System.getSecurityManager(): This method
returns a SecurityManager for the current platform.

java.awt.Desktop.getDesktop()

70. What is Template Method design
pattern in Java?

It 1s a behavioral design pattern. We can use it to create an outline
for an algorithm or a complex operation. We first create the skeleton
of a program. Then we delegate the steps of the operation to
subclasses. The subclasses can redefine the inner implementation of
each step.

E.g. While designing a Game in Java, we can implement it as an
algorithm with Template Method pattern. Each step in the game can
be deferred to subclasses responsible for handling that step.

Let say we implement Monopoly game in Java. We can create
methods like initializeGame(), makeMove(), endGame() etc. Each
of these methods can be handled in subclasses in an independent
manner.

We can use same algorithm for Chess game with same set of
abstract methods. The subclass for Chess game can provide the
concrete implementation of methods like initializeGame(),
makeMove(), endGame() etc.

Template Method pattern is very useful in providing customizable
class to users. We can create the core class with a high level
implementation. And our users can customize our core class in their
custom subclasses.

71.What are the examples of Template
method design pattern in JDK?

In JDK there are many places where Template method design
pattern is used. Some of these are as follows:

1.

In Java Abstract Collection classes like
java.util.AbstractList, java.util. AbstractSet and
java.util.AbstractMap implement a template for their
corresponding Collection.

javax.servlet.http.HttpServlet: In the HttpServlet class all
the doGet(), doPost() etc. methods send a HTTP 405
"Method Not Allowed" error to the response. This error
response is like a Template that can be further customized
for each of these methods.

In java.io package there are Stream and Writer classes like
java.io.InputStream, java.io.OutputStream, java.io.Reader
and java.io.Writer that provide non-abstract methods.
These methods are implementation of Template method
design pattern.

72. Can you tell some examples of
Factory Method design pattern
implementation in Java?

Factory Method pattern is a creational design pattern. A Factory is
an object that is used to create more objects.

In general, a Factory object has methods that can be used to create a
type of objects. Some people call it Factory Method design pattern
as well.

Some of the examples of Factory Method pattern in JDK are:

Java.lang.Class.forName()
java.net.URLStreamHandlerFactory.createURLStreamHan
java.util.Calendar.getInstance()
java.util.ResourceBundle.getBundle()

java.text. NumberFormat.getInstance()
java.nio.charset.Charset.forName()

java.util. EnumSet.of{()
javax.xml.bind.JAXBContext.createMarshaller()

73. What is the benefit we get by
using static factory method to create
object?

By using Static Factory Method we encapsulate the creation process
of an object. We can use new() to create an Object from its
constructor. Instead we use static method of a Factory to create the
object. One main advantage of using Factory is that Factory can
choose the correct implementation at runtime and create the right
object. The caller of method can specify the desired behavior.

E.g. If we have a ShapeFactory with createShape(String type)
method. Client can call ShapeFactory.createShape(“Circle™) to get
a circular shape. ShapeFactory.createShape(“Square”) will return
square shape. In this way, ShapeFactory knows how to create
different shapes based on the input by caller.

Another use of Factory is in providing access to limited resources
to a large set of users.

E.g. In ConnectionPool, we can limit the total number of
connections that can be created as well as we can hide the
implementation details of creating connection. Here ConnectionPool
is the factory. Clients call static method
ConnectionPool.getConnection().

74. What are the examples of Builder
design pattern in JDK?

In JDK there are many places where Builder design pattern is used.
Some of these are as follows:

1.

java.lang.StringBuilder.append(): StringBuilder is based
on Builder pattern.

java.nio.IntBuffer.put(): Invocation of put() method return
IntBuffer. Also there are many variants of this method to
build the IntBuffer.

javax.swing.GroupLayout.Group.addComponent(): We can
use addComponent() method to build a Ul that can contain
multiple levels of components.

java.lang. Appendable
java.lang.StringBuffer.append(): StringBuffer is similar to

StringBuilder and it 1s also based on Builder design
pattern.

75. What are the examples of
Abstract Factory design pattern in
JDK?

In JDK there are many places where Abstract Factory design pattern
1s used. Some of these are as follows:

e javax.xml.xpath.XPathFactory.newInstance()
e javax.xml.parsers.DocumentBuilderFactory.newInstance()

e javax.xml.transform.TransformerFactory.newInstance()

76. What are the examples of
Decorator design pattern in JDK?

In JDK there are many places where Decorator design pattern is
used. Some of these are as follows:

1.

In java.io package many classes use Decorator pattern.
Subclasses of java.io.InputStream, OutputStream, Reader
and Writer have a constructor that can take the instance of
same type and decorate it with additional behavior.

In java.util.Collections, there are methods like
checkedCollection(), checkedList(), checkedMap(),
synchronizedList(), synchronizedMap(),
synchronizedSet(), unmodifiableSet(), unmodifiableMap()
and unmodifiableList() methods that can decorate an object
and return the same type.

In javax.servlet package, there are classes like
javax.servlet.http.HttpServletRequestWrapper and
HttpServletResponseWrapper that are based on Decorator
design pattern.

77. What are the examples of Proxy
design pattern in JDK?

Proxy design pattern provides an extra level of indirection for
providing access to another object. It can also protect a real object
from any extra level of complexity.

In JDK there are many places where Proxy design pattern is used.
Some of these are as follows:

e java.langreflect.Proxy
e java.rmi.*

e javax.inject.Inject

e javax.ejb.EJB

e javax.persistence.PersistenceContext

78. What are the examples of Chain of
Responsibility design pattern in JDK?

In JDK there are many places where Chain of Responsibility design
pattern is used. Some of these are as follows:

1.

java.util.logging.Logger.log(): In this case Logger class
provides multiple variations of log() method that can take
the responsibility of logging from client in different
scenarios. The client has to just call the appropriate log()
method and Logger will take care of these commands.

javax.servlet.Filter.doFilter(): In the Filter class, the
Container calls the doFilter method when a
request/response pair is passed through the chain. With
filter the request reaches to the appropriate resource at the
end of the chain. We can pass FilterChain in doFilter()
method to allow the Filter to pass on the request and
response to the next level in the chain.

79. What are the main uses of
Command design pattern?

Command design pattern is a behavioral design pattern. We use it to
encapsulate all the information required to trigger an event. Some of
the main uses of Command pattern are:

1.

Graphic User Interface (GUI): In GUI and menu items, we
use command pattern. By clicking a button we can read the
current information of GUI and take an action.

Macro Recording: If each of user action is implemented as
a separate Command, we can record all the user actions in
a Macro as a series of Commands. We can use this series
to implement the “Playback” feature. In this way, Macro
can keep on doing same set of actions with each replay.

Multi-step Undo: When each step is recorded as a
Command, we can use it to implement Undo feature in
which each step can by undo. It is used in text editors like
MS-Word.

Networking: We can also send a complete Command over
the network to a remote machine where all the actions
encapsulated within a Command are executed.

Progress Bar: We can implement an installation routine as
a series of Commands. Each Command provides the
estimate time. When we execute the installation routine,
with each command we can display the progress bar.

Wizard: In a wizard flow we can implement steps as
Commands. Each step may have complex task that is just
implemented within one command.

Transactions: In a transactional behavior code there are
multiple tasks/updates. When all the tasks are done then
only transaction is committed. Else we have to rollback the
transaction. In such a scenario each step is implemented as
separate Command.

80. What are the examples of
Command design pattern in JDK?

In JDK there are many places where Command design pattern is
used. Some of these are as follows:

e All implementations of java.lang.Runnable

e All implementations of javax.swing.Action

81. What are the examples of
Interpreter design pattern in JDK?

Interpreter design pattern is used to evaluate sentences in a
language. E.g. In SQL we can use it to evaluate a query by
evaluating each keyword like SELECT, FROM, WHERE clause.

In an Interpreter implementation there 1s a class for each
keyword/symbol. A sentence is just a composite of these keywords.
But the sentence is represented by Syntax tree that can be
interpreted.

In JDK there are many places where Interpreter design pattern is
used. Some of these are as follows:

e java.util.Pattern
e java.text.Normalizer

e Subclasses of java.text.Format: DateFormat,
MessageFormat, NumberFormat

e Subclasses of javax.el.ELResolver: ArrayELResolver,
MapELResolver, CompositeELResolver etc.

82. What are the examples of
Mediator design pattern in JDK?

By using Mediator pattern we can decouple the multiple objects that
interact with each other. With a Mediator object we can create
many-to-many relationships in multiple objects.

In JDK there are many places where Mediator design pattern is
used. Some of these are as follows:

e java.util.Timer: schedule() methods in Timer class act as
Mediator between the clients and the TimerTask to be
scheduled.

e java.util.concurrent.Executor.execute(): The execute()
method in an Executor class acts as a Mediator to execute
the different tasks.

e java.util.concurrent.ExecutorService

e java.langreflect. Method.invoke(): In Method class of
reflection package, invoke() method acts as a Mediator.

e java.util.concurrent.ScheduledExecutorService: Here also
schedule() method and its variants are Mediator pattern
implementations.

83. What are the examples of Strategy
design pattern in JDK?

In JDK there are many places where Strategy design pattern is used.
Some of these are as follows:

1. java.util.Comparator: In a Comparator we can use
compare() method to change the strategy used by
Collections.sort() method.

2. javax.servlet.http.HttpServlet: In a HttpServlet class
service() and doGet(), doPost() etc. methods take
HttpServletRequest and HttpServletResponse and the

implementor of Servlet processes it based on the strategy it
selects.

84. What are the examples of Visitor
design pattern in JDK?

By using Visitor design pattern we can add new virtual methods to
existing classes without modifying their core structure.

In JDK there are many places where Visitor design pattern is used.
Some of these are as follows:

e javax.lang.model.element. AnnotationValue and
AnnotationValue Visitor

e java.nio.file.FileVisitor and SimpleFileVisitor
e javax.lang.model.type.TypeMirror and TypeVisitor
e javax.lang.model.element.Element and ElementVisitor

e javax.faces.component.visit. VisitContext and
VisitCallback

85. How Decorator design pattern is
different from Proxy pattern?

Main differences between Decorator and Proxy design pattern are:

Decorator provides an enhanced interface after decorating
it with additional features. Proxy provides same interface
since it is just acting as a proxy to another object.

Decorator i1s a type of Composite pattern with only one
component. But each decorator can add additional
features. Since it is one component in Decorator, there is
no object aggregation.

Proxy can also provide performance improvement by lazy
loading. There is nothing like this available in Decorator.

Decorator follows recursive composition. Proxy is just
one object to another object access.

Decorator is mostly used for building a variety of objects.
Proxy is mainly used for access to another object.

86. What are the different scenarios
to use Setter and Constructor based
injection in Dependency Injection

(DI) design pattern?

We use Setter injection to provide optional dependencies of an

object. Constructor injection is used to provide mandatory
dependency of an object.

In Spring IoC, Dependency Injection is heavily used. There we have
to differentiate between the scenario suitable for Setter based and
Constructor based dependency injection.

87. What are the different scenarios
for using Proxy design pattern?

Proxy design pattern can be used in a wide variety of scenario in
Java. Some of these are as follows:

1.

Virtual Proxy: This is a virtual object that acts as a proxy
for objects that are very expensive to create. It is used in
Lazy Loading. When client makes the first request, the real
object is created.

Remote Proxy: This is a local object that provides access
to a remote object. It is generally used in Remote Method
Invocation (RMI) and Remote Procedure Call (RPC). It is
also known as a Stub.

Protective Proxy: This is an object that control the access
to a Master object. It can authenticate and authorize the
client for accessing the Master object. If client has right
permissions, it allows client to access the main object.

Smart Proxy: It is an object that can add additional
information to the main object. It can track the number of
other objects accessing the main object. It can track the
different clients from where request is coming. It can even
deny access to an object if the number of requests is
greater than a threshold.

88. What is the main difference
between Adapter and Proxy design
pattern?

Adapter pattern provides a different interface to an object. But the
Proxy always provides same interface to the object.

Adapter is like providing an interface suitable to client’s use. But
Proxy is same interface that has additional feature or check.

E.g. In electrical appliances we use Adapter to convert from one
type of socket to another type of socket. In case of proxy, we have a
plug with built-in surge protector. The interface for plug and the
original device remains same.

89. When will you use Adapter design
pattern in Java?

If we have two classes with incompatible interfaces, we use
Adapter pattern to make it work. We create an Adapter object that
can adapt the interface of one class to another class.

It is generally used for working with third party libraries. We create
an Adapter class between third party code and our class. In case of
any change in third party code we have to just change the Adapter
code. Rest of our code can remain same and just take to Adapter.

90. What are the examples of Adapter
design pattern in JDK?

In JDK there are many places where Adapter design pattern is used.
Some of these are as follows:

e java.util.Arrays.asList(): This method can adapt an Array
to work as a List.

e java.util.Collections.list(): This method can adapt any
collection to provide List behavior.

e java.util.Collections.enumeration(): This method returns
an enumeration over the collection.

e java.io.InputStreamReader(InputStream): This method
adapts a Stream to Reader class.

e java.io.OutputStreamWriter(OutputStream): This method
adapts an OutputStream to Writer class.

e javax.xml.bind.annotation.adapters.Xml Adapter.marshal()

91. What is the difference between
Factory and Abstract Factory design
pattern?

With Factory design pattern we can create concrete products of a
type that Factory can manufacture. E.g. If it 1s CarFactory, we can
produce, Ford, Toyota, Honda, Maserati etc.

With Abstract Factory design pattern we create a concrete
implementation of a Factory. E.g. DeviceFactory can be Abstract
and it can give us GoogleDeviceFactory, AppleDeviceFactory etc.
With AppleDeviceFactory we will get products like- iPhone, iPad,
Mac etc. With GoogleDeviceFactory we will get products like-
Nexus phone, Google Nexus tablet, Google ChromeBook etc.

So it is a subtle difference between Factory and Abstract Factory
design pattern. One way to remember is that within Abstract Factory
pattern, Factory pattern is already implemented.

92. What is Open/closed design
principle in Software engineering?

Open/closed design principle states “software entities (classes,
modules, functions, etc.) should be open for extension, but closed
for modification”.

Open/closed principle term was originated by Bertrand Meyer in
his book Object Oriented Software Construction.

As per this principle, if a module is available for extension then it
i1s considered open. If a module is available for use by other
modules then it is considered closed.

Further Robert C. Martin has mentioned it as O in SOLID principles
of Object Oriented design.

It is used in State and Strategy design patterns. Context class is
closed for modification. But new functionality can be added by
writing new strategy code.

93. What is SOLID design principle?

SOLID word in SOLID design principle is an acronym for:

1.

2.

S: Single responsibility. A Class should have a single
responsibility.

O: Open-closed. Software entities should be open for
extension but closed for modification.

L: Liskov substitution. Objects in a program should be
replaceable by subclasses of same type without any
adverse impact.

I: Interface segregation. Multiple client specific interfaces
are preferable over single generic interface.

D: Dependency inversion. Program should depend on
abstract entities. It should not depend on concrete
implementation of an interface.

This principle was mentioned by Robert C. Martin. These are
considered five basic principles of Object Oriented design.

If we follow these principles, then we can create a stable program
that 1s easy to maintain and can be extended over time.

94. What is Builder design pattern?

Builder design pattern is a creational design pattern. We can use
Builder pattern to create complex objects with multiple options.

E.g. when we have to create a Meal in a restaurant we can use
Builder pattern. We can keep adding options like- Starter, Drink,
Main Course, and Dessert etc. to create complete meal. When a user
selects other options of Starter, Drink Main Course, Dessert another
type of meal is created.

Main feature of Builder pattern is step-by-step building of a
complex object with multiple options.

95. What are the different categories
of Design Patterns used in Object
Oriented Design?

In Object Oriented design mainly three categories of design patterns
are used. These categories are:

Creational Design Patterns:
Builder

Factory Method

Abstract Factory

Object Pool

Singleton

Prototype

Structural Design Patterns:
Adapter

Bridge

Facade

Decorator

Composite

Flyweight

Proxy

Behavioral Design Patterns:
Command

Iterator

Chain of Responsibility
Observer

State

Strategy

Mediator

Interpreter

96. What is the design pattern
suitable to access elements of a
Collection?

We can use Iterator design pattern to access the individual elements
of a Collection. In case of an ordered collection we can get Iterator
that returns the elements in an order.

In Java there are many implementation of Iterator in Collections
package. We have iterators like- Spliterator, Listlterator etc. that
implement Iterator pattern.

97. How can we implement Producer
Consumer design pattern in Java?

We can use BlockingQueue in Java to implement Producer
Consumer design pattern.

It is a concurrent design pattern.

98. What design pattern is suitable to
add new features to an existing
object?

We can use Decorator design pattern to add new features to an
existing object. With a Decorator we work on same object and
return the same object with more features. But the structure of the
object remains same since all the decorated versions of object
implement same interface.

99. Which design pattern can be used
when to decouple abstraction from the
implementation?

We can use Bridge design pattern to detach the implementation from
the abstraction.

Bridge is mainly used for separation of concern in design. We can
create an implementation and store it in the interface, which is an
abstraction. Where as specific implementation of other features can
be done in concrete classes that implement the interface.

Often Bridge design pattern is implemented by using Adapter
pattern.

E.g. we have Shape interface. We want to make Square and Circle
shapes. But further we want to make RedSquare, BlackSquare
shapes and GreenCircle, WhiteCircle shapes. In this case rather
than creating one hierarchy of all the shapes, we separate the Color
concern from Shape hierarchy.

So we create two hierarchies. One is Shape to Square and Shape to
Circle hierarchy. Another one is Color to Red, Black, Green, White
hierarchy. In this way we can create multiple types of shapes with
multiple colors with Bridge design pattern.

100. Which is the design pattern used
in Android applications?

Android applications predominantly use Model View Presenter
design pattern.

1. Model: This i1s the domain model of the Android
application. It contains the business logic and business
rules.

2. View: These are the Ul components in your application.
These are part of the view. Also any events on Ul
components are part of view module.

3. Presenter: This is the bridge between Model and View to
control the communication. Presenter can query the model
and return data to view to update it.

4. E.g If we have a Model with large news article data, and
view needs only headline, then presenter can query the
data from model and only give headline to view. In this
way view remains very light in this design pattern.

101. How can we prevent users from
creating more than one instance of
singleton object by using clone()
method?

First we should not implement the Cloneable interface by the object
that is a Singleton.

Second, if we have to implement Cloneable interface then we can
throw exception in clone() method.

This will ensure that no one can use clone() method or Cloneable
interface to create more than one instance of Singleton object.

102. What is the use of Interceptor
design pattern?

Interceptor design pattern is used for intercepting a request. Primary
use of this pattern is in Security policy implementation.

We can use this pattern to intercept the requests by a client to a
resource. At the interception we can check for authentication and
authorization of client for the resource being accessed.

In Java it is used in javax.servlet.Filter interface.

This pattern is also used in Spring framework in HandlerInterceptor
and MVC interceptor.

103. What are the Architectural
patterns that you have used?

Architectural patterns are used to define the architecture of a
Software system. Some of the patterns are as follows:

1.

MVC: Model View Controller. This pattern is extensively
used in the architecture of Spring framework.

Publish-subscribe: This pattern is the basis of messaging
architecture. In this case messages are published to a
Topic. And subscribers subscribe to the topic of their
interests. Once the message i1s published to a topic in
which a Subscriber has an interest, the message 1is
consumed by the relevant subscriber.

Service Locator: This design pattern is used in a service
like JNDI to locate the available services. It uses as
central registry to maintain the list of services.

n-Tier: This 1s a generic design pattern to divide the
architecture 1n multiple tiers. E.g. there 1is 3-tier
architecture with Presentation layer, Application layer and
Data access layer. It is also called multi-layer design
pattern.

Data Access Object (DAO): This pattern is used in
providing access to database objects. The underlying
principle is that we can change the underlying database
system, without changing the business logic. Since
business logic talks to DAO object, there is no impact of
changing Database system on business logic.

Inversion of Control (IoC): This is the core of Dependency
Injection in Spring framework. We use this design pattern

to increase the modularity of an application. We keep the
objects loosely coupled with Dependency Injection.

104.

What are the popular uses of

Facade design pattern?

Some of the popular uses of Fagcade design pattern are as follows:

1.

A Fagade provides convenient methods for common tasks
that are used more often.

A Fagade can make the software library more readable.

A Fagade can reduce the external dependencies on the
working of inner code.

A Facade can act as a single well-designed API by
wrapping a collection of poorly designed APIs.

A Facade pattern can be used when a System is very
complex and difficult to use. It can simplify the usage of
complex system.

105. What is the difference between
Builder design pattern and Factory
design pattern?

Both Factory and Builder patterns are creational design patterns.
They are similar in nature but Factory pattern is a simplified generic
version of Builder pattern.

We use Factory pattern to create different concrete subtypes of an
Object. The client of a Factory may not know the exact subtype. E.g.
If we call createDrink() of a Factory, we may get Tea or Coffee
drinks.

We can also use Builder pattern to create different concrete
subtypes of an object. But in the Builder pattern the composition of
the object can be more complex. E.g. If we call createDrink() for
Builder, we can getCappuccino Coffee with Vanilla Cream and
Sugar, or we can get Latte Coffee with Splenda and milk cream.

So a Builder can support creation of a large number of variants of
an object. But a Factory can create a broader range of known
subtypes of an object.

106. What is Memento design
pattern?

Memento design pattern is used to implement rollback
feature in an object. In a Memento pattern there are three
objects:

Originator: This is the object that has an internal state.

Caretaker: This is the object that can change the state of
Originator. But it wants to have control over rolling back
the change.

Memento: This 1s the object that Caretaker gets from
Originator, before making and change. If Caretaker wants
to Rollback the change it gives Memento back to
Originator. Originator can use Memento to restore its own
state to the original state.

E.g. One good use of memento is in online Forms. If we
want to show to user a form pre-populated with some
data, we keep this copy in memento. Now user can
update the form. But at any time when user wants to reset
the form, we use memento to make the form in its original
pre-populated state. If user wants to just save the form
we save the form and update the memento. Now onwards
any new changes to the form can be rolled back to the
last saved Memento object.

107.What is an AntiPattern?

An AntiPattern is opposite of a Design Pattern. It is a common
practice in an organization that is used to deal with a recurring
problem but it has more bad consequences than good ones.

AntiPattern can be found in an Organization, Architecture or
Software Engineering.

Some of the AntiPatterns in Software Engineering are:

1. Gold Plating: Keep on adding extra things on a working
solution even though these extra things do not add any
additional value.

2. Spaghetti Code: Program that are written in a very
complex way and are hard to understand due to misuse of
data structures.

3. Coding By Exception: Adding new code just to handle
exception cases and corner case scenarios.

4. Copy Paste Programming: Just copying the same code
multiple times rather than writing generic code that can be
parameterized.

108. What is a Data Access Object
(DAO) design pattern?

DAO design pattern is used in the data persistent layer of a Java
application. It mainly uses OOPS principle of Encapsulation.

By using DAO pattern it makes the application loosely coupled and
less dependent on actual database.

We can even implement some in-memory database like H2 with
DAO to handle the unit-testing.

In short, DAO hides the underlying database implementation from
the class that accesses the data via DAO object.

Recently we can combine DAO with Spring framework to inject any
DB implementation.

Spring

109. What is Spring framework?

Spring is development framework for Java programming. It is an
open source development framework for Enterprise Java.

The core features of Spring Framework can be used in developing a
Java Enterprise application.

It has many extensions and jars for developing web applications on
top of Java EE platform.

With Spring we can develop large-scale complex Java applications
very easily. It is also based on good design patterns like
Dependency Injection, Aspect oriented programming for developing
extensible feature rich software.

110. What are the benefits of Spring
framework in software development?

Many benefits of Spring framework are:

Lightweight Framework: Basic Spring framework is very small in
size. It i1s easy to use and does not add a lot of overhead on
software. It just has 2 MB in basic version.

Container: Spring framework provides the basic container that
creates and manages the life cycle of application objects like Plain
old Java objects (POJO). It also stores the configuration files of
application objects to be created.

Dependency Injection (DI): Spring provided loose coupling is
application by Dependency Injection. It uses Inversion of Control
technique by which objects specify their dependencies to Spring
container instead of creating new objects themselves.

Aspect Oriented Programming (AOP): Spring framework promotes
and provides support for Aspect oriented programming in Java.
This helps in separating application business logic from system
services that are common across all the business logic. E.g. Logging
can be a cross cutting concern in an Application.

Transaction Management: Spring provides a framework for
transaction management. So a developer does not have to implement
it from scratch. Spring Transaction Management is so powerful that
we can scale 1t from one local transaction to global transactions in a
cluster.

MVC Framework: For Web applications, Spring provides MVC
framework. This framework is based on MVC design pattern and

has better features compared to other web frameworks.

Exception Handling: Spring also gives support for a common API to
handle exceptions in various technologies like- Hibernate, JDBC
etc.

111. What are the modules in Core
Container of Spring framework?

Spring framework has a Core Container. Modules in Core Container
are:

Core module

Bean module

Context module

Spring Expression Language module

112. What are the modules in Data
Access/Integration layer of Spring
framework?

Modules in Data Access/Integration Layer of Spring framework are:

JDBC module: An abstraction layer to remove tedious JDBC
coding.

ORM module Integration layers for Object Relational Mapping
OXM module: An abstraction layer to support Object XML
mapping.

Java Messaging Service (JMS) module: Module for producing and
consuming messages.

Transactions module: Transaction Management for POJO classes

113. What are the modules in Web
layer of Spring framework?

Modules in Web Layer of Spring framework are:

Web module: This provides basic web-oriented integration features.
Servlet module: Support for Servlet Listeners.

WebSocket module: Support for Web Socket style messaging.
Portlet module: MVC implementation for Portlet environment.

114. What is the main use of Core
Container module in Spring
framework?

As the name suggests, Spring Core Container is the core of Spring
framework. It gives the basic functionality of the Spring. All the
parts of Spring Framework are built on top of Core Container.

Its main use is to provide Dependency Injection (DI) and Inversion
of control (I0C) features.

115. What kind of testing can be done
in Spring Test Module?

Spring Test Module provides support for Unit testing as well as
Integration testing of Spring components. It allows using JUnit or
TestNG testing frameworks. It also gives ability to mock objects to
use the test code.

116. What is the use of BeanFactory in
Spring framework?

BeanFactory is the main class that helps in implementing Inversion
of Control pattern in Spring. It is based on the factory design
pattern. It separates the configuration and dependencies of an
application from the rest of application code.

Implementations of BeanFactory like XmlBeanFactory class are
used by applications built with Spring.

117. Which is the most popular
implementation of BeanFactory in

Spring?

XMLBeanFactory 1s the most popular implementation of
BeanFactory in Spring.

118. What is XM LBeanFactory in
Spring framework?

XMLBeanFactory is one of the most useful implementation of
BeanFactory in Spring. This factory loads its beans based on the
definitions mentioned in an XML file.

Spring container reads bean configuration metadata from an XML
file and creates a fully configured application with the help of
XMLBeanFactory class.

119. What are the uses of AOP module
in Spring framework?

AOP module is also known as Aspect Oriented Programming
module. Its uses are:

Development of aspects in a Spring based application

Provides interoperability between Spring and other AOP
frameworks

Supports metadata programming to Spring

120. What are the benefits of JDBC
abstraction layer module in Spring
framework?

Spring provides JDBC abstraction layer module. Main benefits of
this module are:

Helps in keeping the database code clean and simple.

Prevents problems that result from a failure to close database
resources.

Provides a layer of useful exceptions on top of the error messages
given by different database servers.

Based on Spring’s AOP module

Provides transaction management services for objects in a Spring
application

121.How does Spring support Object
Relational Mapping (ORM)
integration?

Spring supports Object Relational Mapping (ORM) by providing

ORM Module. This module helps in integrating with popular ORM
framework like Hibernate, JDO, and iBATIS SQL Maps etc.

Transaction Management module of Spring framework supports all
of these ORM frameworks as well as JDBC.

122.How does Web module work in
Spring framework?

Spring provides support for developing web application by using
Web module. This module is built on application context module
that provides context for web-based applications.

This module also supports web-oriented integration features like-
transparently handling multipart requests for uploading files,
programmatically binding request parameters to business objects
etc.

This module also supports integration with popular web
frameworks like Jakarta Struts, JSF, and Tapestry etc.

123. What are the main uses of Spring
MVC module?

Spring-webmvc module is also known as Web-servlet module. It is
based on Web Model View Controller pattern.

Main uses of this module are:

Integration of Spring with other MVC frameworks

Supports IoC to provide clean separation of controller logic from
business objects

Provides clean separation between domain model code and web
forms

Allows developers to declaratively bind request parameters to
business objects

124. What is the purpose of Spring
configuration file?

Spring application can be configured by an XML file. This file
contains information of classes and how these classes are
configured and introduced to each other.

Spring IoC container uses some kind of configuration metadata. This
configuration metadata represents how an application developer
tells the Spring container to instantiate, configure, and assemble the
objects in your application. This configuration metadata is stored in
Spring configuration file.

The other ways of specifying configuration metadata are Java based
configuration and Annotation based configuration.

125. What is the purpose of Spring
IoC container?

The Spring loC Container is responsible for:

Creating the objects

Configuring the objects

Managing dependency between objects (with dependency injection
(DD))

Wiring the objects together

Managing complete lifecycle of objects

126. What is the main benefit of
Inversion of Control (I0C) principle?

Inversion of Control (IOC) principle is the base of Spring
framework. It supports dependency injection in an application. With
Dependency Injection, a programmer has to write minimal code. It
also makes easier to test an application.

Most important benefit is that it leads to loose coupling within
objects. With loose coupling it is easier to change the application
with new requirements.

127.Does 10C containers support
Eager Instantiation or Lazy loading of

beans?

IOC Container in Spring supports both the approaches. Eager
instantiation as well as lazy loading of beans.

128. What are the benefits of
ApplicationContext in Spring?

ApplicationContext in Spring provides following benefits:

Bean factory methods: These are used to access application
components

Load File Resources: It helps in loading file resources in a generic
fashion

Publish Events: It enables publishing events to registered listeners
Internationalization Support: Ability to resolve messages to support
internationalization

Parent Context: Ability to inherit from a parent context

129. How will you implement
ApplicationContext in Spring
framework?

ApplicationContext in Spring can be implemented in one of the
following three ways:

FileSystemXmlApplicationContext: If we want to load the
definitions of beans from an XML file then
FileSystemXml ApplicationContext is used. The full path of XML
bean configuration file is provided to the constructor.

ClassPathXml ApplicationContext: To loads the definitions of beans
from an XML file in the CLASSPATH, we use
ClassPathXml ApplicationContext. It is used for application context
embedded in jars.

WebXmlApplicationContext: To provide configuration for a web
application WebXmlApplicationContext 1is used. While the
application is running, it is read only. But it can be reloaded if
underlying application supports it.

130. Explain the difference between
ApplicationContext and BeanFactory
in Spring?

Main differences between ApplicationContext and BeanFactory are:

Automatic BeanPostProcessor registration: BeanFactory does not
support BeanPostProcessor registration. Whereas
ApplicationContext support this.

Automatic BeanFactoryPostProcessor registration: BeanFactory
also does not allow Automatic BeanFactoryPostProcessor
registration. Whereas ApplicationContext allows this.

MessageSource access: BeanFactory is not convenient for
MessageSource access. ApplicationContext is quite convenient for
MessageSource access.

ApplicationEvent: We cannot publish ApplicationEvent with
BeanFactory. But ApplicationContext provides ability to publish
ApplicationEvent.

131. Between ApplicationContext and
BeanFactory which one is preferable
to use in Spring?

Spring documentation recommends using ApplicationContext in
almost all the cases. ApplicationContext has all the functionality of

BeanFactory.

132. What are the main components of
a typical Spring based application?

In a Spring based application, main components are:

Spring configuration XML file: This i1s used to configure Spring
application

API Interfaces: Definition of API interfaces for functions provided
by application

Implementation: Application code with implementation of APIs
Aspects: Spring Aspects implemented by application

Client: Application at client side that is used for accessing functions

133.Explain Dependency Injection
(DI) concept in Spring framework?

Dependency Injection is a software design pattern. It 1s used to
implement Inversion of Control (IOC) in Spring framework. As per
this pattern, we do not create objects in an application by calling
new. Rather, we describe how an object should be created. In this
way creation of an object is not tightly coupled with another object.

A container is responsible for creating and wiring the objects. The
container can call injecting code and wire the objects as per the
configuration at runtime.

134. What are the different roles in
Dependency Injection (DI)?

There are four roles in Dependency Injection:

Service object(s) to be used

Client object that depends on the service

Interface that defines how client uses services

Injector responsible for constructing services and injecting them
into client

135.Spring framework provides what
kinds of Dependency Injection
mechanism?

Spring framework provides two types of Dependency Injection
mechanism:

Constructor-based Dependency Injection: Spring container can
invoke a class constructor with a number of arguments. This
represents a dependency on other class.

Setter-based Dependency Injection: Spring container can call setter
method on a bean after creating it with a no-argument constructor or
no-argument static factory method to instantiate another bean.

136.In Spring framework, which
Dependency Injection is better?
Constructor-based DI or Setter-based
DI?

Spring framework provides support for both Constructor-based and
Setter-based Dependency Injection. There are different scenarios in
which these options can be used.

It 1s recommended to use Constructor-based DI for mandatory
dependencies. Whereas Setter-based DI is used for optional
dependencies.

137.What are the advantages of
Dependency Injection (DI)?

Dependency Injection (DI) pattern has following advantages:

Dependency Injection reduces coupling between a class and its
dependencies.

With Dependency Injection (DI), we can do concurrent or
independent software development. Two teams can work parallel
on classes that will be used by each other.

In Dependency Injection (DI), the client can be configured in
multiple ways. It needs to just work with the given interface. Rest of
the 1mplementation can be changed and configured for different
features.

Dependency injection is also used to export a system's configuration
details 1into configuration files. So we can configure same
application run in different environments based on configuration.
E.g. Run in Test environment, UAT environment, and Production
environment.

Dependency Injection (DI) applications provide more ease and
flexibility of testing. These can be tested in isolation in Unit Test.

Dependency injection (DI) isolates client from the impact of design
and implementation changes. Therefore, it promotes reusability,
testability and maintainability.

138. What are the disadvantages of
Dependency Injection (DI)?

Dependency Injection (DI) pattern has following disadvantages:

Most of the time Dependency Injection forces developers to use an
injection framework like Spring. This causes dependency on a
framework.

With Dependency Injection, clients are dependent on the
configuration data. This becomes extra task for developers when the
application does not need so many custom configuration values.

Code is difficult to trace and read in Dependency Injection. DI
separates behavior from construction of objects.

Dependency injection increases complexity in the linkages between
classes. It may become harder to manage such complexity outside
the implementation of a class.

139. What is a Spring Bean?

A Spring Bean is a plain old Java object (POJO) that is created and
managed by a Spring container.

There can be more than one bean in a Spring application. But all
these Beans are instantiated and assembled by Spring container.

Developer provides configuration metadata to Spring container for
creating and managing the lifecycle of Spring Bean.

In general a Spring Bean is singleton. Evert bean has an attribute
named "singleton". If its value is true then bean is a singleton. If its
value is false then bean is a prototype bean.

By default the value of this attribute is true. Therefore, by default all
the beans in spring framework are singleton in nature.

140. What does the definition of a
Spring Bean contain?

A Spring Bean definition contains configuration metadata for bean.
This configuration metadata is used by Spring container to:

Create the bean
Manage its lifecycle
Resolve its dependencies

141.What are the different ways to
provide configuration metadata to a
Spring Container?

Spring supports three ways to provide configuration metadata to
Spring Container:

XML based configuration: We can specify configuration data in an
XML file.

Annotation-based configuration: We can use Annotations to specify
configuration. This was introduced in Spring 2.5.

Java-based configuration: This is introduced from Spring 3.0. We
can embed annotations like @Bean, @Import, @Configuration in
Java code to specify configuration metadata.

142. 'What are the different scopes
of a Bean supported by Spring?

Spring framework support seven types of scopes for a Bean. Out of
these only five scopes are available for a web-aware
ApplicationContext application:

singleton: This is the default scope of a bean. Under this scope,
there 1s a single object instance of bean per Spring loC container.

prototype: Under this scope a single bean definition can have
multiple object instances.

request: In this scope, a single bean definition remains tied to the
lifecycle of a single HTTP request. Each HTTP request will have
its own instance of a bean for a single bean definition. It is only
valid in the context of a web-aware Spring ApplicationContext.

session: Under this scope, a single bean definition is tied to the
lifecycle of an HTTP Session. Each HTTP Session will have one
instance of bean. It is also valid in the context of a web-aware
Spring ApplicationContext.

globalSession: This scope, ties a single bean definition to the
lifecycle of a global HTTP Session. It is generally valid in a Portlet
context. It is also valid in the context of a web-aware Spring
ApplicationContext.

application: This scope, limits a single bean definition to the
lifecycle of a ServletContext. It is also valid in the context of a
web-aware Spring ApplicationContext.

websocket: In this scope, a single bean definition is tied to the
lifecycle of a WebSocket. It is also valid in the context of a web-
aware Spring ApplicationContext.

143. How will you define the scope
of a bean in Spring?

In configuration xml, we can specify the scope of bean in its
definition. This is used by container to decide the scope of bean in
Spring.

E.g. <bean id="userService" class="com.um.UserService"
scope="prototype"/>

This 1s an example of userService bean with prototype scope.

144. Is it safe to assume that a
Singleton bean is thread safe in Spring
Framework?

No, Spring framework does not guarantee anything related to multi-
threaded behavior of a singleton bean. Developer is responsible for
dealing with concurrency issues and maintaining thread safety of a
singleton bean.

145. What are the design-patterns
used in Spring framework?

Spring framework uses many Design patterns. Some of these
patterns are:

Singleton — By default beans defined in spring config files are
singleton. These are based on Singleton pattern.

Template — This pattern i1s used in many classes like-
JdbcTemplate, RestTemplate, JmsTemplate, JpaTemplate etc.

Dependency Injection — This pattern is the core behind the design of
BeanFactory and ApplicationContext.

Proxy — Aspect Oriented Programming (AOP) heavily uses proxy
design pattern.

Front Controller — DispatcherServlet in Spring is based on Front
Controller pattern to ensure that incoming requests are dispatched to
other controllers.

Factory pattern — To create an instance of an object, BeanFactory is
used. This 1s based on Factory pattern.

View Helper — Spring has multiple options to separating core code
from presentation in views. Like- Custom JSP tags, Velocity macros
etc.

146. What is the lifecycle of a Bean
in Spring framework?

A Bean in Spring framework goes through following phases in its
lifecycle.

Initialization and creation: Spring container gets the definition of
Bean from XML file and instantiates the Bean. It populates all the
properties of Bean as mentioned in the bean definition.

Setting the Behavior of Bean: In case a Bean implements
BeanNameAware interface, Spring uses setBeanName() method to
pass the bean’s id. In case a Bean implements BeanFactoryAware
interface, Spring uses setBeanFactory() to pass the BeanFactory to
bean.

Post Processing: Spring container uses
postProcesserBeforelnitialization() method to call
BeanPostProcessors associated with the bean. Spring calls
afterPropertySet() method to call the specific initialization methods.
In case there are any BeanPostProcessors of a bean, the
postProcessAfterInitialization() method 1s called.

Destruction: During the destruction of a bean, if bean implements
DisposableBean, Spring calls destroy() method.

147. 'What are the two main groups
of methods in a Bean’s lifecycle?

A Bean in Spring has two main groups of lifecycle methods.

Initialization Callbacks: Once all the necessary properties of a Bean
are set by the container, Initialization Callback methods are used for
performing initialization work. A developer can implement method
afterPropertiesSet() for this work.

Destruction Callbacks: When the Container of a Bean is destroyed,
it calls the methods in DisposableBean to do any cleanup work.
There is a method called destroy() that can be used for this purpose
to make Destruction Callbacks.

Recent recommendation from Spring is to not use these methods,
since it can strongly couple your code to Spring code.

148. Can we override main lifecycle
methods of a Bean in Spring?

Yes, Spring framework allows developers to override the lifecycle
methods of a Bean. This is used for writing any custom behavior for

Bean.

149. What are Inner beans in
Spring?
A bean that is used as a property of another bean is known as Inner

bean. It can be defined as a <bean/> element in <property/> or
<constructor-arg/> tags.

It is not mandatory for an Inner bean to have id or a name. These are
always anonymous.

Inner bean does not need a scope. By default it is of prototype
scope.

150. How can we inject a Java
Collection in Spring framework?

Spring promotes Dependency Injection (DI) in code. It gives
support for injecting not only objects but also collection of objects.

We can inject collections like- list, set, map etc. in Spring.
Following tags can be used for this purpose:

<list> : This type 1s used for injecting a list of values. In a <list>
duplicates are allowed.

<set> : This type is used for injecting a set of values. As per set
property, duplicates are not allowed.

<map> : This type is used for injecting name-value pairs in form of
map. Name and value can be of any type that is allowed for a map.

<props> : This type is used to inject a collection of String based
name-value. It is like a properties file.

151. What is Bean wiring in Spring?

A Spring container is responsible for injecting dependencies
between beans. This process of connecting beans is called wiring.

Developer mentions in configuration file, the dependencies between
beans. And Spring container reads these dependencies and wires

the beans on creation.

152. What is Autowiring in Spring?
Autowiring 1s a feature of Spring in which container can
automatically wire/connect the beans by reading the configuration
file.

Developer has to just define “autowire” attribute in a bean.

Spring resolves the dependencies automatically by looking at this
attribute of beans that are autowired.

153. What are the different modes of
Autowiring supported by Spring?

There are five modes of Autowiring supported by Spring
framework:

no: This is default setting for Autowiring. In this case, we use “ref”
mode to mention the explicit bean that is being referred for wiring.

E.g. In this example Employee bean refers Manager bean.

<bean id="employee" class="com.dept. Employee">
<property name="manager" ref="manager" />

</bean>

<bean id="manager" class="com.dept.Manager" />

byName: In this case, Spring container tries to match beans by name
during Autowiring. If the name of a bean is same as the name of
bean referred in autowire byname, then it automatically wires it.

E.g. In following example, Manager bean 1s wired to Employee
bean by Name.

<bean 1d="employee" class="com.dept.Employee"
autowire="byName" />
<bean id="manager" class="com.dept.Manager" />

byType: In this case, Spring container check the properties of beans
referred with attribute byType. Then it matches the type of bean and
wires. If it finds more than one such bean of that type, it throws a
fatal exception.

E.g. In following example, Manager bean is wired by type to

Employee bean.

<bean 1id="employee" class="com.dept.Employee"
autowire="byType" />
<bean id="manager" class="com.dept.Manager" />

constructor: In this case, Spring container looks for byType attribute
in constructor argument. It tries to find the bean with exact name. If
it finds more than one bean of same name, it throws fatal exception.
This case 1s similar to byType case.

E.g. In following example ‘“constructor” mode is used for

autowiring.
<bean 1d="employee" class="com.dept.Employee"
autowire="constructor" />

<bean id="manager" class="com.dept.Manager" />

autodetect: This 1s an advanced mode for autowiring. In this case,
by default Spring tries to find a constructor match. If it does not find
constructor then it uses autowire by Type.

E.g. This is an example of autodetect Autowiring.

<bean id="employee" class="com.dept.Employee"
autowire="autodetect" />

<bean id="manager" class="com.dept.Manager" />

154. What are the cases in which
Autowiring may not work in Spring
framework?

Autowiring is a great feature in Spring. It can be used in most of the
cases. But there are certain scenarios in which Autowiring may not
work.

Explicit wiring: Since Autowiring is done by Spring, developer
does not have full control on specifying the exact class to be used. It
is preferable to use Explicit wiring in case of full control over
wiring.

Primitive Data types: Autowiring does not allow wiring of
properties that are based on primitive data types like- int, float etc.

155.1s it allowed to inject null or
empty String values in Spring?

Yes, Spring allows injecting null or empty String values.

156. What is a Java-based
Configuration in Spring?

Spring allows for Java-based configuration in which a developer
can specify configuration by using Java-based annotations. This
feature was introduced in Spring 3.0.

You can use annotations like- @Configuration, @Bean, @Import
and @DependsOn in Java classes for specifying the configuration.

157. What is the purpose of
@Configuration annotation?

This annotation is used in a class to indicate that this is class is the
primary source of bean definitions. This class can also contain
inter-bean dependencies that are annotated by (@Bean annotation.

158. What is the difference between
Full @Configuration and 'lite’
(@Beans mode?

Spring allows for using @Bean annotation on methods that are
declared in classes not annotated with @Configuration. This is
known as “lite” mode. In this mode, bean methods can be declared
in a @Component or a plain java class without any annotation.

In the “lite” mode, @Bean methods cannot declare inter-bean
dependencies.

It is recommended that one (@Bean method should not invoke
another (@Bean method in 'lite' mode.

Spring recommends that @Bean methods declared within
@Configuration classes should be used for full configuration. This
kind of full mode can prevent many bugs.

159.1In Spring framework, what is
Annotation-based container
configuration?

From Spring 2.5 version it is possible to provide configuration by
using annotation.

To turn this configuration on, we need to mention
<context:annotation-config/> in spring XML file.

Now developer can use annotations like (@Required, (@Autowired,
@Qualifier etc. in a class file to specify the configuration for beans.
Spring container can use this information from annotation for
creating and wiring the beans.

160. How will you switch on
Annotation based wiring in Spring?

To use Annotation based wiring, we need to turn on Annotation
based configuration in Spring.

By default, Annotation based configuration is switched off in
Spring. To turn it is we can specify <context:annotation-config/>
element in Spring config file.

Once it is turned on, we can use (@Autowired annotation or
(@Required annotation in a Java class for wiring in Spring.

161. What is @ Autowired annotation?

We can use @Autowired annotation to auto wire a bean on a setter
method, constructor or a field. @Autowired auto wiring is done by
matching the data type.

Before using @Autowired annotation we have to register
AutowiredAnnotationBeanPostProcessor. This can be done by
including <context:annotation-config /> in bean configuration file.

162. What is @Required annotation?

We use @Required annotation to a property to check whether the
property has been set or not.

Spring container throws BeanlnitializationException if the
@Required annotated property is not set.

When we use @Required annotation, we have to register
Required AnnotationBeanPostProcessor in Spring config file.

163. What are the two ways to enable
RequiredAnnotationBeanPostProcessc
in Spring?

Required AnnotationBeanPostProcessor can be enabled in two ways
in Spring:

Include <context:annotation-config />

Add Spring context and <context:annotation-config /> in bean
configuration file.

E.g.

<beans

xmlns:context="http://www.springframework.org/schema/context"

http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-
2.5.xsd">

<context:annotation-config />
</beans>
Include Required AnnotationBeanPostProcessor in bean

configuration file

E.g.

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.springframework.org/schema/be:

http://www.springframework.org/schema/beans/spring-beans-
2.5.xsd">

<bean

class="org.springframework.beans.factory.annotation.Required Anno

<bean id="BookBean" class="com.foo.Book">

<property name="action" value="price" />
<property name="type" value="1" />
</bean>

<bean 1d="AuthorBean" class="com.foo.Author">
<property name="name" value="Rowling" />
</bean>

</beans>

164. Whatis @Qualifier annotation
in Spring?

We use @Qualifier annotation to mark a bean as ready for auto
wiring, This annotation is used along with @Autowired annotation
to specify the exact bean for auto wiring by Spring container.

165.How Spring framework makes
JDBC coding easier for developers?

Spring provides a mature JDBC framework to provide support for
JDBC coding. Spring JDBC handled resource management as well
as error handling in a generic way. This reduces the work of
software developers.

They just have to write queries and related statements to fetch the
data or to store the data in database.

166. What is the purpose of
JdbcTemplate?

Spring framework provides JdbcTemplate class that contains many
convenient methods for regular tasks like- converting data into
primitives or objects, executing prepared or callable statements etc.

This class makes it very easy to work with database in our
Application and it also provides good support for custom error
handling in database access code.

167. What are the benefits of using
Spring DAO?

Some of the benefits of using Spring DAO are:

It makes it easier to work on different data access methods like-

JDBC, Hibernate etc.
It provides a consistent and common way to deal with different data

access methods.
Spring DAO makes it easier to switch between different data

persistence frameworks.
No need for catching framework specific exceptions.

168. What are the different ways to
use Hibernate in Spring?

Spring provides two ways to use Hibernate:

We can extend HibernateDAOSupport and apply an AOP

interceptor node to use Hibernate.
We can also use HibernateTemplate and Callback to access

Hibernate. This is based on Inversion of Control.

169. What types of Object Relational
Mapping (ORM) are supported by
Spring?

Spring supports following Object Relational Mapping (ORM)
frameworks:

Hibernate

Java Persistence API (JPA)

TopLink

Java Data Objects (JDO)

Apache Object Relational Bridge (ORB)

170.How will you integrate Spring
and Hibernate by using
HibernateDaoSupport?

We can use following steps for integrating Spring and Hibernate:
Add dependencies for Spring and Hibernate in pom.xml

Implement DAO from HibernateDaoSupport
Use Hibernate functions via getHibernateTemplate() method

171. What are the different types of
the Transaction Management
supported by Spring framework?

Spring framework provides support for two types of Transaction
Management:

Programmatic: In this method, we have to manage Transaction by
programming explicitly. It provides flexibility to a developer, but it
1s not easier to maintain.

Declarative: In this approach, we can separate Transaction
Management from the Application Business code. We can use
annotations or XML based configuration to manage the transactions
in declarative approach.

172.What are the benefits provided by
Spring Framework’s Transaction
Management?

Main benefits provided by Spring Transaction Management are:

Consistent: By using Spring Transaction management, we can use
consistent programming model across different transaction APIs
like- JPA, JDBC, JTA, Hibernate, JPA, JDO etc.

Simplicity: Spring TM provides simple API for managing the
transaction programmatically.

Declarative: Spring also supports annotation or xml based
declarative transaction management.

Integration: Spring Transaction management is easier to integrate
with other data access abstractions of Spring.

173.Given a choice between
declarative and programmatic
Transaction Management, which
method will you choose?

In Spring, Declarative Transaction Management is the preferred
choice. This method is very less invasive and it has very less
impact in Application Business Logic.

Although Declarative method gives less flexibility than
Programmatic method, it is simpler to use and easier to maintain in
long run.

174. What is Aspect Oriented
Programming (AOP)

Aspect Oriented Programming (AOP) is a programming paradigm
that promotes programmers to develop code in different modules
that can be parallel or in crosscutting concerns.

E.g. To develop banking software, one team can work on business
logic for Money withdrawal, Money deposit, Money Transfer etc.
The other team can work on Transaction Management for
committing the transaction across multiple accounts.

In an Auto company, one team can work on software to integrate
with different components of car. The other team can work on how
all the components will send signal and current information to a
common dashboard.

175. What is an Aspect in Spring?

An Aspect is the core construct of AOP. It encapsulates the behavior
that affects multiple classes in a reusable module.

An Aspect can have a group of APIs that provide cross-cutting
features.

E.g. Alogging module can be an Aspect in an Application.

An application can have multiple of Aspects based on the different
requirements.

An Aspect can be implemented by using annotation (@Aspect on a
class.

176.In Spring AOP, what is the main
difference between a Concern and a
Cross cutting concern?

A Concern in Spring is the behavior or expectation from an
application. It can be the main feature that we want to implement in
the application.

A Cross cutting concern is also a type of Concern. It is the feature or
functionality that is spread throughout the application in a thin way.

E.g. Security, Logging, Transaction Management etc. are cross
cutting concerns in an application.

177.What is a Joinpoint in Spring
AOP?

In Spring AOP, Joinpoint refers to a candidate point in application
where we can plug in an Aspect.

Joinpoint can be a method or an exception or a field getting
modified.

This is the place where the code of an Aspect is inserted to add new
behavior in the existing execution flow.

178. What is an Advice in Spring
AOP?

An Advice in Spring AOP, is an object containing the actual action
that an Aspect introduces.

An Advice is the code of cross cutting concern that gets executed.

There are multiple types of Advice in Spring AOP.

179. What are the different types of
Advice in Spring AOP?

Spring AOP provides five kinds of Advice:

1.

Before Advice: This type of advice runs just before a
method executes. We can use (@Before annotation for this.

After (finally) Advice: This type of advice runs just after a
method executes. Even if the method fails, this advice will
run. We can use @After annotation here.

After Returning Advice: This type of advice runs after a
method executes successfully. @AfterReturning annotation
can be used here.

After Throwing Advice: This type of advice runs after a
method executes and throws an exception. The annotation
to be used is @AfterThrowing.

Around Advice: This type of advice runs before and after

the method is invoked. We use @Around annotation for
this.

180. What is a Pointcut in Spring
AOP?

A Pointcut in Spring AOP refers to the group of one or more
Joinpoints where an advice can be applied.

We can apply Advice to any Joinpoint. But we want to limit the
places where a specific type of Advice should be applied. To
achieve this we use Pointcut.

We can use class names, method names or regular expressions to
specify the Pointcuts for an Advice.

181. What is an Introduction in
Spring AOP?
In Spring AOP we can declare additional methods or fields on

behalf of a type. To do this we use an Introduction. It is also known
as inter-type declaration.

E.g. We can use an Introduction for making a bean implement
IsModified interface.

182. Whatis a Target object in
Spring AOP?

A Target object is the object that gets Advice from one or more
Aspects.

This is also known as advised object.

In most cases it is a proxy object.

183.What is a Proxy in Spring AOP?

In Spring AOP, a Proxy is an object created by the AOP framework
to implement Aspect contracts. It is generally a JDK dynamic proxy

or CGLIB proxy.

184. 'What are the different types of
AutoProxy creators in Spring?

Spring AOP provides following standard types of Autoproxy
creators:

1. BeanNameAutoProxyCreator: This is a
BeanPostProcessor that creates AOP proxies for beans
automatically by matching names.

2. DefaultAdvisorAutoProxyCreator: This creator is more
powerful that other Proxy Creators. This also applies
eligible advisors automatically to bean in the current
context.

3. AbstractAdvisorAutoProxyCreator: This is the parent
class of DefaultAdvisorAutoProxyCreator. We can create
our own auto-proxy creators by extending this class.

185. What is Weaving in Spring
AOP?

In Aspect oriented programming, linking Aspects with the other
application types creates an Advised object. This process is known
as Weaving.

Without Weaving, we just have definition of Aspects. Weaving
makes use realize full potential of the AOP.

Weaving can be done at compile time, load time or at run time.

186.In Spring AOP, Weaving is done
at compile time or run time?

Spring container performs Weaving at run time.

187.What is XML Schema-based
Aspect implementation?

Spring allows for implementing Aspect by using regular classes and
XML based configurations. This 1s different from Annotation based
Aspect implementation. But it achieves the same goal of AOP.

We <can wuse elements like <aop:aspect 1d="testAspect"
ref="testBean" /> and <aop:pointcut id="testPointcut" /> in Spring
XML config file.

To use this we need to import Spring AOP schema as follows:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"

xsi:schemalocation="http://www.springframework.org/schema/bear
http://www.springframework.org/schema/beans/spring-beans-
3.0.xsd
http://www.springframework.org/schema/aop

http://www.springframew ork.org/schema/aop/spring-aop-3.0.xsd
H>

188. What is Annotation-based
aspect implementation in Spring
AOP?

This is a declarative style AOP implementation. In this case, we use
annotations like @Aspect, @Pointcut, @Joinpoint etc. to annotate
code with different types of AOP elements.

This can be used Java 5 onwards, when the support for Annotations
was introduced.

189. How does Spring MVC
framework work?

Spring provides its own Model View Controller (MVC) framework
for developing web applications.

Spring MVC framework is based on Inversion of Control (I0OC)
principle. It separates the business objects from controller.

It is designed around the DispatcherServlet that is responsible for
dispatching requests to relevant handlers.

Spring MVC framework also supports annotation based binding of
request parameters.

190. What is DispatcherServlet?

In Spring MVC, DispatcherServlet is the core servlet that is
responsible for handling all the requests and dispatching these to
handlers.

Dispatcher servlet knows the mapping between the method to be
called and the browser request. It calls the specific method and
combines the results with the matching JSP to create an html
document, and then sends it back to browser.

In case of RMI invocation, it sends back response to the client
application.

191.Can we have more than one
DispatcherServlet in Spring MVC?

Yes, a Spring MVC web application can have more than one
DispatcherServlets.

Each DispatcherServlet has to operate in its own namespace. It has
to load its own ApplicationContext with mappings, handlers, etc.

Only the root application context will be shared among these
Servlets.

192. What is WebApplicationContext
in Spring MVC?
WebApplicationContext is the child of plain ApplicationContext. It

1s used in web applications. It provides features to deal with web-
related components like- controllers, view resolvers etc.

A Web Application can have multiple WebApplicationContext to
handle requests.

Each DispatcherServlet 1S associated with one
WebApplicationContext.

193. What is Controller in Spring
MVC framework?

Controller 1is an interface in Spring MVC. It receives
HttpServletRequest and HttpServletResponse in web app just like
an HttpServlet, but it is able to participate in an MVC flow.

Controllers are similar to a Struts Action in a Struts based Web
application.

Spring recommends that the implementation of Controller interface
should be a reusable, thread-safe class, capable of handling
multiple HTTP requests throughout the lifecycle of an application.

It is preferable to implement Controller by using a JavaBean.

Controller interprets user input and transforms it into a model. The
model is represented to the user by a view.

Spring implements a controller in a very generic way. This enables
us to create a wide variety of controllers.
What is @Controller annotation in Spring MVC?

We use @ Controller annotation to indicate that a class is a
Controller in Spring MVC.

The dispatcher in Spring scans for @Controller annotated classes
for mapped methods and detects (@RequestMapping.

194. Whatis @RequestMapping
annotation in Spring?

In Spring MVC, we use (@RequestMapping annotation to map a web
request to either a class or a handler method.

In @RequestMapping we can specify the path of URL as well as
HTTP method like- GET, PUT, POST etc.

@RequestMapping also supports specifying HTTP Headers as
attributes.

We can also map different media types produced by a controller in
@RequestMapping. We use HTTP Header Accepts for this purpose.

E.g. @RequestMapping(
value = "/test/mapping",
method = GET,
headers = "Accept=application/json")

195. What are the main features of
Spring MVC?

Spring MVC has following main features:

1.

Clear separation of role: In Spring MVC, each
role like- controller, validator, command object, form
object, model object, DispatcherServlet, handler mapping,
view resolver etc. is fulfilled by a specialized object.

Reusability: Spring MVC promotes reusable business code
that reduces the need for duplication. We can use existing
business objects as command or form objects instead of
copying them to extend a particular framework base class.

Flexible Model Transfer: Spring MVC Model transfer
supports easy integration with other view technologies as
well.

Customizable binding and validation: In Spring MVC, we
can to custom binding between Requests and Controllers.
Even validation can be done on non-String values as well.

JSP form tag library: From Spring 2.0, there is a powerful
JSP form tag library that makes writing forms in JSP pages
much easier.

Customizable locale, time zone and theme resolution:
Spring MVC supports customization in locale, timezone
etc.

196. What is the difference between a
Singleton and Prototype bean in
Spring?

Every bean in Spring has a scope that defines its existence
timeframe in the application.

Singleton scope for bean limits a bean to a single object instance
per Spring IOC container.

This single instance is limited to a specific ApplicationContext. If
there are multiple ApplicationContext then we can have more than
one instance of bean.

By default all the beans in Spring framework are Singleton scope
beans.

With Prototype scope a single bean definition can have multiple
object instances in a Spring container.

In prototype scope bean, the Spring IoC container creates new bean
instance of the object every time a request for that specific bean is
made.

197.How will you decide which scope-
Prototype or Singleton to use for a
bean in Spring?

In general, we use prototype scope for all stateful beans and
singleton scope for stateless beans.

Since a stateless bean does not maintain any state, we can use the
same object instance again and again. Singleton scope bean serves
the same purpose.

In a stateful bean, there 1s a need to maintain the state in each
request, it 1s necessary to use a new instance of object with each
call. A Prototype scope bean ensures that we get a new instance
each time we request for the object.

198. What s the difference between
Setter and Constructor based
Dependency Injection (DI) in Spring
framework?

Main differences between Setter and Constructor based
Dependency Injection (DI) in Spring are:

Priority: Setter based injection has higher priority than a constructor
based injection in Spring. If an application uses Setter as well as
Constructor injection, Spring container uses the Setter injection.

Partial dependency: We can inject partial dependency by using
Setter injection. In Constructor injection, it is not possible to do just
a partial dependency injection.

E.g. If there are two properties in a class, we can use Setter method
to inject just one property in the class.

Flexibility: Setter injection gives more flexibility in introducing
changes. One can easily change the value by Setter injection. In case
of Constructor injection a new bean instance has to be created
always.

Readability: Setter injection is more readable than Constructor
injection. Generally Setter method name is similar to dependency
class being used in setter method.

199. What are the drawbacks of Setter
based Dependency Injection (DI) in
Spring?

Although Setter based Dependency Injection has higher priority than
Constructor based DI, there are some disadvantages of it.

No Guarantee: In Setter based DI, there is no guarantee that a
certain dependency is injected or not. We may have an object with
partial or no dependency. Whereas in Constructor based DI, an
object in not created till the time all the dependencies are ready.

Security: One can use Setter based DI to override another
dependency. This can cause Security breach in a Spring application.

Circular Dependency: Setter based DI can cause circular
dependency between objects. Where as Constructor based DI will
throw ObjectCurrentlyInCreationException if there is a circular
dependency during the creation of an object.

200. What are the differences
between Dependency Injection (DI)
and Factory Pattern?

Main differences between Dependency Injection (DI) and Factory
Pattern are:

Coupling: Factory pattern adds tight coupling between an object,
factory and dependency. In case of DI, there is no coupling between
objects. We just mention the dependencies on different objects and
container resolves and introduces these dependencies.

Easier Testing: DI is easier to test, since we can inject the mock
objects as dependency in Test environment. In case of Factory
pattern, we need to create actual objects for testing.

Flexibility: DI allows for switching between different DI
frameworks easily. It gives flexibility in the choice of DI
framework.

Container: DI always needs a container for injecting the
dependencies. This leads to extra overhead as well as extra code in
your application. In factory pattern, you can just use POJO classes
to implement the application without any container.

Cleaner Code: DI code is much cleaner than Factory pattern based
code. In DI, we do not need to add extra code for factory methods.

201.In Spring framework, what is the
difference between
FileSystemResource and
ClassPathResource?

In Spring we can specify configuration by using a file or classpath.

In FileSystemResource we have to give absolute path / relative path
of Spring Configuration file spring-config.xml file.

In ClassPathResource Spring looks for Spring Configuration file
spring-config.xml in ClassPath. Therefore, developer has to include
spring-config.xml in classpath.

ClassPathResource looks for configuration file in CLASSPATH,
whereas FileSystemResource looks for configuration file in file
system.

202. Name some popular Spring
framework annotations that you use
in your project?

Spring has many Annotations to serve different purposes. For
regular use we refer following popular Spring annotations:

@Controller: This annotation is for creating controller classes in a
Spring MVC project.

@RequestMapping: This annotation maps the URI to a controller
handler method in Spring MVC.

@ResponseBody: For sending an Object as response we use this
annotation.

(@PathVariable: To map dynamic values from a URI to handler
method arguments, we use this annotation.

@Autowired: This annotation indicates to Spring for auto-wiring
dependencies in beans.

@Service: This annotation marks the service classes in Spring.
@Scope: We can define the scope of Spring bean by this annotation.

@Configuration: This an annotation for Java based Spring
configuration.

@Aspect, @Before, @After, @Around, @Joinpoint, @Pointcut:
These are the annotations in Spring for Aspect] AOP.

203. How can you upload a file in
Spring MVC Application?

In Spring MVC framework we can use MultipartResolver interface
to upload a file. We need to make configuration changes to make it
work. After uploading the file, we have to create Controller handler
method to process the uploaded file in application.

204. What are the different types of
events provided by Spring
framework?

Spring framework provides following five events for Context:

ContextRefreshedEvent: =~ Whenever ApplicationContext is
initialized or refreshed, Spring publishes this event. We can also
raise it by using refresh() method on
Configurable ApplicationContext interface.

ContextStartedEvent: When ApplicationContext i1s started using
start() method on ConfigurableApplicationContext interface,
ContextStartedEvent 1s published. We can poll database or restart
any stopped application after receiving this event.

ContextStoppedEvent: Spring publishes this event when
ApplicationContext 1s stopped using stop() method on
ConfigurableApplicationContext interface. This is used for doing
any cleanup work.

ContextClosedEvent: Once the ApplicationContext is closed using
close() method, ContextClosedEvent is published. Once a context is
closed, it is the last stage of its lifecycle. After this it cannot be
refreshed or restarted.

RequestHandledEvent: This is a web specific event that informs to
all beans that an HTTP request has been serviced.

205. What is the difference between
DispatcherServlet and
ContextLoaderListener in Spring?

DispatcherServlet is the core of Spring MVC application. It loads
Spring bean configuration file and initialize all the beans mentioned
in config file.

In case we have enabled annotations in Spring config file, it also
scans the packages and configures any bean annotated with
@Component, @Controller, @Repository or (@Service annotations.

ContextLoaderListener is a listener to start up and shut down
Spring’s root WebApplicationContext. ContextLoaderListener links
the lifecycle of ApplicationContext to the lifecycle of the
ServletContext. It automates the creation of ApplicationContext. It
can also be used to define shared beans used across different spring
contexts.

206. How will you handle
exceptions in Spring MVC
Framework?

Spring MVC Framework provides following mechanisms to help us
achieve exception handling;

Controller Based: A developer can define exception handler
methods in a Controller class. To do so, they have to annotate the
methods with @ExceptionHandler annotation.

Global Exception Handler: Spring provides @ControllerAdvice
annotation for exception handling as cross-cutting concern. We can
mark any class as global exception handler by using this annotation.

HandlerExceptionResolver implementation: Spring Framework
provides HandlerExceptionResolver interface that can be
implemented to create a global exception handler.

207. What are the best practices of
Spring Framework?

In Spring Framework, following are some of the best practices:

We can Divide spring bean configurations based on their concerns
such as spring-jdbc.xml, spring-security.xml.

It is better to avoid version numbers in schema reference. This
makes sure that we have the latest config files.

It is a good practice to configure bean dependencies as much as
possible. Unless there is a good reason, we try to avoid autowiring.

For spring beans that are used in multiple contexts in Spring MVC,
we can create them in root context and initialize with listener.

Spring framework provides many features and modules. We should
just use what we need for our application. An extra dependency has
to be removed

For application properties, it is good to create a property file and
read it in Spring configuration file.

Annotations are useful for smaller applications, but for larger
applications annotations can become an overhead. It is easier to
maintain if all the configurations are in xml files.

When we are doing AOP, we have to make sure to keep the
Joinpoint as narrow as possible to avoid Advice on unwanted
methods.

We should use right annotation for components or services. For
services use @Service and for DAO beans use @Repository.

Dependency Injection (DI) has to be used when there is real benefit.
It should not be used just for the sake of loose coupling.

208. Whatis Spring Boot?

Spring Boot is a ready made solution to create Spring applications
with production grade features. It favors convention over
configuration.

We can embed Tomcat or Jetty in in an application created with
Spring Boot. Spring Boot automatically configures Spring in an
application.

It does not require any code generation or xml configuration. It is an
easy solution to create applications that can run stand-alone.

Hibernate

209. What is Hibernate
framework?

Hibernate 1s a popular Object Relational Mapping (ORM)
framework of Java. It helps in mapping the Object Oriented Domain
model to Relational Database tables.

Hibernate 1s a free software distributed under GNU license.

Hibernate also provides implementation of Java Persistence API
(JPA).

In simple words, it is a framework to retrieve and store data from
database tables from Java.

210.What is an Object Relational
Mapping (ORM)?

Object Relational Mapping (ORM) is a programming technique to
map data from a relational database to Object oriented domain
model. This 1s the core of Hibernate framework.

In case of Java, most of the software is based on OOPS design. But
the data stored in Database i1s based on Relation Database
Management System (RDBMS).

ORM helps in data retrieval in an Object Oriented way from an
RDBMS. It reduces the effort of developers in writing queries to
access and insert data.

211. What is the purpose of
Configuration Interface in
Hibernate?

Configuration interface can be implemented in an application to
specify the properties and mapping documents for creating a
SessionFactory in Hibernate.

By default, a new instance of Configuration uses properties
mentioned in hibernate.properties file.

Configuration 1s mainly an initialization time object that loads the
properties in helps in creating SessionFactory with these properties.

In short, Configuration interface is used for configuring Hibernate
framework in an application.

212.What is Object Relational
Impedance Mismatch?

Object Relational Impedance Mismatch (ORIM) is also known as
paradigm mismatch. It means that Object model and Relational
model do not work well with each other.

Relational model or a RDBMS represents data in tabular format
like a spreadsheet. Object model or OOPS represents the data as an
inter-connected graph of objects.

Mixing these two models leads to various problems. The common
name for these issues is Object Relational Impedance Mismatch.

213.What are the main problems of
Object Relational Impedance
Mismatch?

Object model and Relational models (RDBMS) have following
problems that are part of Object Relational Impedance Mismatch:

Granularity: Object model is more granular than Relational model.
There are more classes in object model than the corresponding
tables in relational model.

Inheritance: Object model supports inheritance. But Relational
model does not have any concept of inheritance.

Identity: Relational model has just one criteria for sameness of data.
It is based on primary key. In object model like Java we can have
equals as well as == for sameness of objects.

Associations: In Object model associations are uni-directional. In
RDBMS, there is a concept of foreign key for association. Also
multiplicity of a relationship is hard to judge by looking at object
model.

Data navigation: In Object model, you can move from one object to
another object for getting data. Egg. you can retrieve and Employee
object, then go to its department object and then get the employees
in the department object. In RDBMS, we try to minimize the SQL
calls, so we get all the data by using joins.

214. What are the key
characteristics of Hibernate?

Hibernate has following key characteristics:

Object/Relational Mapping (ORM): Hibernate provides ORM
capabilities to developers. So then can write code in Object model
for connecting with data in Relational model.

JPA Provider: Hibernate provides an excellent implementation of
Java Persistence API (JPA) specification.

Idiomatic persistence: Hibernate provides persistence based on
natural Object-oriented idioms with full support for inheritance,
polymorphism, association, composition, and the Java collections
framework. It can work with any data for persistence.

High Performance: Hibernate provides high level of performance
supporting features like- lazy initialization, multiple fetching
strategies, optimistic locking etc. Hibernate does not need its own
database tables or fields. It can generate SQL at system
initialization to provide better performance at runtime.

Scalability: Hibernate works well in multi server clusters. It has
built in scalability support. It can work well for small projects as
well as for large business software.

Reliable: Hibernate very reliable and stable framework. This is the
reason for 1its worldwide acceptance and popularity among
developer community.

Extensible: Hibernate is quite generic in nature. It can be configured
and extended as per the use case of application.

215.Can you tell us about the core
interfaces of Hibernate framework?

The core interfaces of Hibernate framework are as follows:

Configuration: Configuration interface can be implemented in an
application to specify the properties and mapping documents for
creating a SessionFactory in Hibernate. Hibernate application
bootstraps by using this interface.

SessionFactory: In Hibernate, SessionFactory is used to create and
manage Sessions. Generally, there is one SessionFactory created for
one database. It is a thread-safe interface that works well in multi-
threaded applications.

Session: Session is a lightweight object that is used at runtime
between a Java application and Hibernate. It contains methods to
create, read and delete operations for entity classes. It is a basic
class that abstracts the concept of persistence.

Transaction: This is an optional interface. It is a short lived object
that is used for encapsulating the overall work based on unit of
work design pattern. A Session can have multiple Transactions.

Query: This interface encapsulates the behavior of an object-
oriented query in Hibernate. It can accept parameters and execute
the queries to fetch results. Same query can be executed multiple
times.

Criteria: This 1s a simplified API to retrieve objects by creating
Criterion objects. It is very easy to use for creating Search like
features.

216.How will you map the columns of
a DB table to the properties of a Java
class in Hibernate?

We can map the class properties and table columns by using one of
the two ways:

XML: We can map the column of a table to the property of a class in
XML file. It is generally with extension hbm.xml

Annotation: We can also use annotations @Entity and @Table to
map a column to the property of a class.

217.Does Hibernate make it
mandatory for a mapping file to have
.Jhbm.xml extension?

No. It is a convention to have.hbm.xml extension in the name of a
mapping file. It is not a requirement enforced by Hibernate. We can
use any other extension of our convenience for this.

218. What are the steps for creating
a SessionFactory in Hibernate?

Steps to create a SessionFactory in Hibernate are:

Configuration: First create a Configuration object. This will refer to
the path of configuration file.

Resource: Add config file resource to Configuration object.
Properties: Set properties in the Configuration object.
SessionFactory: Use Configuration object to build SessionFactory.

Egg.

Configuration config = new Configuration();
config.addResource(“testlnstance/configuration.hbm.xml”);
config.setProperties(System.getProperties());
SessionFactory sessions = config.buildSessionFactory();

219. Why do we use POJO in
Hibernate?

POJO stands for Plain Old Java Objects. A POJO is java bean with
getter and setter methods for each property of the bean.

It is a simple class that encapsulates an object’s properties and
provides access through setters and getters.

Some of the reasons for using POJO in Hibernate are:

POJO emphasizes the fact that this class is a simple Java class, not
a heavy class like EJB.

POJO is a well-constructed class, so it works well with Hibernate
proxies.

POJO also comes with a default constructor that makes it easier to
persist with a default constructor.

220. What is Hibernate Query
Language (HQL)?

Hibernate Query Language is also known as HQL. It is an Object
Oriented language. But it is similar to SQL.

HQL works well with persistent objects and their properties. HQL
does not work on database tables.

HQL queries are translated into native SQL queries specific to a
database.

HQL supports direct running of native SQL queries also. But it
creates an issue in Database portability.

221.How will you call a stored
procedure in Hibernate?

Hibernate supports executing not only simple queries but also
stored procedure of database. There are three ways to call a stored
procedure in Hibernate:

XML mapping file:
We can declare the store procedure inside XML Mapping file.

<!-- Employee.hbm.xml -->

<hibernate-mapping>
<class = name="com.testHibernate.util. Employee"
table="employee" ...>
<id name="employeeld" type="java.lang Integer">
<column name=“"EMPLOYEE ID" />
<generator class="identity" />
</id>
<property name="employeeld" type="string">
<column name="EMPLOYEE ID" length="10" not-
null="true" unique="true" />
</property>
</class>
<sql-query name="callEmployeeStoreProcedure">
<return alias="employee"
class="com.testHibernate.util. Employee"/>
<I[CDATA[CALL GetEmployees(:employeeld)]]>
</sql-query>

</hibernate-mapping>
We can call it with getNamedQuery().

Query query =

session.getNamedQuery("callEmployeeStoreProcedure")
.setParameter("employeeld", “1234”);

List result = query.list();

for(int 1=0; 1<result.size(); 1++){
Employee employee = (Employee)result.get(i);
System.out.printin(employee.getEmployeeCode());

b

Native SQL: We can use Native SQL to call a store procedure query
directly. In this example GetEmployees() stored procedure is being

called.

Query query = session.createSQLQuery(
"CALL GetEmployees(:employeeld)")
.addEntity(Employee.class)
.setParameter("employeeld", “1234);

List result = query.list();
for(int 1=0; 1<result.size(); 1++){
Employee employee = (Employee) result.get(i);
System.out.println(employee.getEmployeeCode());
b

Use annotation:
We can also mark out stored procedure
(@NamedNativeQueries annotation.

//Employee.java

@NamedNativeQueries({
@NamedNativeQuery(
name = "callEmployeeStoreProcedure",
query = "CALL GetEmployees(:employeeld)",
resultClass = Employee.class
)

})

(@Entity

with

@Table(name = "employee")
public class Employee implements java.io.Serializable {

Call it with getNamedQuery().

Query query
session.getNamedQuery("callEmployeeStoreProcedure")

.setParameter("employeeld", “1234”);
List result = query.list();
for(int 1=0; 1<result.size(); i++){
Employee employee = (Employee)result.get(i);
System.out.println(employee.getEmployeeCode());
b

222. Whatis Criteria API in
Hibernate?

Criteria is a simplified API in Hibernate to get entities from
database by creating Criterion objects.

It 1s a very intuitive and convenient approach for search features.
Users can specify different criteria for searching entities and
Criteria API can handle these.

Criterion instances are obtained through factory methods on
Restrictions.

223. Why do we use
HibernateTemplate?

This is a trap question. HibernateTemplate has been deprecated.
There were earlier good reasons to use HibernateTemplate. But
now the trend has changed towards not using it anymore.

224. How can you see SQL code
generated by Hibernate on console?

To display the SQL generated by Hibernate, we have to turn on the
show sql flag.

This can be done in Hibernate configuration as follows:

<property name="show _sql”>true</property>

225. What are the different types of
collections supported by Hibernate?

Hibernate supports following two types of collections:

Indexed Collections: List and Maps
Sorted Collections: java.util.SortedMap and java.util.SortedSet

226. What s the difference between
session.save() and

session.saveOrUpdate() methods in
Hibernate?

Save method first stores an object in the database. Then it persists
the given transient instance by assigning a generated identifier.
Finally, it returns the id of the entity that is just created.

SaveOrUpdate() method calls either save() or update() method. It
selects one of these methods based on the existence of identifier.

If an identifier exists for the entity then update() method is called. If
there 1s no identifier for the entity then save() method is called as
mentioned earlier.

227. What are the advantages of
Hibernate framework over JDBC?

Main advantages of Hibernate over JDBC are as follows:

Database Portability: Hibernate can be used with multiple types of
database with easy portability. In JDBC, developer has to write
database specific native queries. These native queries can reduce
the database portability of the code.

Connection Pool: Hibernate handles connection pooling very well.
JDBC requires connection pooling to be defined by developer.

Complexity: Hibernate handles complex query scenarios very well
with its internal API like Criteria. So developer need not gain
expertise in writing complex SQL queries. In JDBC application
developer writes most of the queries.

228. How can we get statistics of a
SessionFactory in Hibernate?

In Hibernate we can get the statistics of a SessionFactory by using
Statistics interface. We can get information like Close Statement
count, Collection Fetch count, Collection Load count, Entity insert
count etc.

229. What s the Transient state of
an object in Hibernate?

When an object is just instantiated using the new operator but is not
associated with a Hibernate Session, then the object is in Transient
state.

In Transient state, object does not have a persistent representation
in database. Also there is no identifier assigned to an object in
Transient state.

An object in Transient state can be garbage collected if there is no
reference pointing to it.

230. What is the Detached state of
an object in Hibernate?

An object 1s in detached state if it was persistent earlier but its
Session is closed now.

Any reference to this object is still valid. We can even update this
object. Later on we can even attach an object in detached state to a
new session and make it persistent.

Detached state is very useful in application transactions where a
user takes some time to finish the work.

231.What is the use of Dirty Checking
in Hibernate?

Dirty Checking 1s very useful feature of Hibernate for write to
database operations. Hibernate monitors all the persistent objects
for any changes. It can detect if an object has been modified or not.

By Dirty Checking, only those fields of an object are updated that
require any change in them. It reduces the time-consuming database
write operations.

232. What s the purpose of
Callback interface in Hibernate?

Callback interface in Hibernate is mainly used for receiving
notifications of different events from an object.

Egg. We can use Callback to get the notification when an object is
loaded into or removed from database.

233. What are the different ORM
levels in Hibernate?

There are following four different ORM levels in Hibernate:

Pure Relational ORM: At this level entire application is designed
around the relational model. All the operations are SQL based at
this level.

Light Object Mapping: At this level entity classes are mapped
manually to relational tables. Business logic code is hidden from
data access code. Applications with less number of entities use this
level.

Medium Object Mapping: In this case, application is designed
around an object model. Most of the SQL code is generated at
compile time. Associations between objects are supported by the
persistence mechanism. Object-oriented expression language 1is
used to specify queries.

Full Object Mapping: This is one of the most sophisticated object
modeling level. It supports composition, inheritance, polymorphism
and persistence. The persistent classes do not inherit any special
base class at this level. There are efficient fetching and caching
strategies implemented transparently to the application.

234. What are the different ways to
configure a Hibernate application?

There are mainly two ways to configure Hibernate application:

XML based: We can define the Hibernate configuration in an XML
file like ibernate.cfg.xml file

Programming based: We can also use code logic to configure
Hibernate in our application.

235. What is Query Cache in
Hibernate?

Hibernate provides Query Cache to improve the performance of
queries that run multiple times with same parameters.

At times Query Caching can reduce the performance of
Transactional processing. By default Query Cache is disabled in
Hibernate.

It has to be used based on the benefits gained by it in performance
of the queries in an application.

236. What are the different types of
Association mappings supported by
Hibernate?

Hibernate supports following four types of Association mappings:

Unidirectional association: This kind of association works in only
one direction.

Unidirectional association with join tables

Bidirectional association: This kind of association works in both
directions.

Bidirectional association with join tables

237. What are the different types of
Unidirectional Association mappings
in Hibernate?

In Hibernate there can be following three types of Unidirectional
Association mappings:

Many to one
One to one
One to many

238. What is Unit of Work design
pattern?

Unit of Work is a design pattern to define business transactions.

A Unit of Work i1s a list of ordered operations that we want to run on
a database together. Either all of these go together or none of these
goes.

Most of the time, we use term business transaction in place of Unit
of Work.

Egg. In case of money transfer from account A to B, the unit of work
can be two operation Debit account A and Credit account B in a
sequence. Both these operations should happen together and in right
sequence.

239. In Hibernate, how can an
object go in Detached state?

Once the session attached to an Object is closed, the object goes
into Detached state. An Object in Detached state can be attached to
another session at a later point of time.

This state is quite useful in concurrent applications that have long
unit of work.

240. How will you order the results
returned by a Criteria in Hibernate?

Hibernate provides an Order criterion that can be used to order the
results. This can be order objects based on their property in
ascending or descending order.

Class is org.hibernate.criterion.Order.

One example is as follows:

Egg.

List employees = session.createCriteria(Employee.class)
.add(Restrictions.like("name", "F%")
.addOrder(Order.asc("name"))
.addOrder(Order.desc("age"))
.setMaxResults(10)
Jist();

241. How does Example criterion
work in Hibernate?

In Hibernate, we can create an object with desired properties. Then
we can use this object to search for objects with similar object. For
this we can use org.hibernate.criterion.Example criterion.

Egg. First we create a sample book object of author Richard and
category mystery. Then we search for similar books.

Book book = new Book();
book.setAuthor(‘Richard’);
book.setCategory(Category. MYSTERY);
List results = session.createCriteria(Book.class)
.add(Example.create(book))
Aist();

242. How does Transaction
management work in Hibernate?

In Hibernate we use Session interface to get a new transaction.
Once we get the transaction we can run business operations in that
transaction. At the end of successful business operations, we
commit the transaction. In case of failure, we rollback the
transaction.

Sample code is a follows:

Session s = null;

Transaction trans = null;

try {

s = sessionFactory.openSession();
trans = s.beginTransaction();
doTheAction(s);

trans.commit();

} catch (RuntimeException exc) {
trans.rollback();

} finally {

s.close();

b

243. How can we mark an
entity/collection as immutable in
Hibernate?

In Hibernate, by default an entity or collection is mutable. We can
add, delete or update an entity/collection.

To mark an entity/collection as immutable, we can use one of the
following:

@Immutable: We can use the annotation @Immutable to mark an
entity/collection immutable.

XML file: We can also set the property mutable=false in the XML
file for an entity to make it immutable.

244. What are the different options
to retrieve an object from database in
Hibernate?

In Hibernate, we can use one of the following options to retrieve
objects from database:

Identifier: We can use load() or get() method and pass the identifier
like primary key to fetch an object from database.

HQL: We can create a HQL query and get the object after executing
the query.

Criteria API: We can use Criteria API to create the search
conditions for getting the objects from database.

Native SQL: We can write native SQL query for a database and just
execute it to get the data we want and convert it into desired object.

245. How can we auto-generate
primary key in Hibernate?

We can use the primary key generation strategy of type
GenerationType., AUTO to auto-generate primary key while
persisting an object in Hibernate.

Egg.

@Id

(@Generated Value(strategy=GenerationType. AUTO)

private int id;

We can leave it null/0 while persisting and Hibernate automatically
generates a primary key for us.

Sometimes, AUTO strategy refers to a SEQUENCE instead of an
IDENTITY .

246. How will you re-attach an
object in Detached state in
Hibernate?

We can «call one of the methods Session.update(),
Session.saveOrUpdate(), or Session.merge() to re-attach an object
in detached state with another session in Hibernate.

247. What is the first level of cache
in Hibernate?

A Hibernate Session is the first level of cache for persistent data in
a transaction.

The second level of cache is at JVM or SessionFactory level.

248. What are the different second
level caches available in Hibernate?

In Hibernate, we can use different cache providers for implementing
second level cache at JVM/SessionFactory level.

Some of these are:

Hashtable
EHCache
OSCache
SwarmCache
JBoss Cache 1.x
JBoss Cache 2

249. Which is the default
transaction factory in Hibernate?
In Hibernate, default transaction factory 1s

JDBCTransactionFactory. But we can change it by setting the
property hibernate.transaction.factory class.

250. What are the options to disable
second level cache in Hibernate?

This is a trick question. By default Second level cache is already
disabled in Hibernate.

In case, your project is using a second level cache you can use one
of the following options to disable second level cache in Hibernate:

We can set hibernate.cache.use _second level cache to false.

We can use CacheMode.IGNORE to stop interaction between the
session and second-level cache. Session will interact with cache
only to invalidate cache items when updates occur

251.What are the different fetching
strategies in Hibernate?

Hibernate 3 onwards there are following fetching strategies to
retrieve associated objects:

Join fetching: In Join strategy Hibernate uses OUTER join to
retrieve the associated instance or collection in the same SELECT.

Select fetching: In Select strategy, Hibernate uses a second SELECT
to retrieve the associated entity or collection. We can explicitly
disable lazy fetching by specifying lazy="false". By default lazy
fetching is true.

Subselect fetching: In Subselect strategy, Hibernate uses a second
SELECT to retrieve the associated collections for all entities
retrieved in a previous query or fetch.

Batch fetching: In Batch strategy, Hibernate uses a single SELECT
to retrieve a batch of entity instances or collections by specifying a
list of primary or foreign keys. This 1s a very good performance
optimization strategy for select fetching.

252. What is the difference between
Immediate fetching and Lazy
collection fetching?

In Immediate fetching an association, collection or attribute is
retrieved at the same time when the owner 1s loaded.

But in Lazy collection fetching, a collection is fetched only when an
operation is invoked on that collection by client application.

This is the default fetching strategy for collections in Hibernate.

Lazy fetching is better from performance perspective.

253. What s ‘Extra lazy fetching’ in
Hibernate?

In Extra lazy fetching, only individual elements of a collection are
fetched from the database when they are required.

In this strategy, Hibernate does not fetch the whole collection into
memory unless it is essential.

It is a good fetching strategy for large collections of objects.

254. How can we checkis a
collection is initialized or not under
Lazy Initialization strategy?

Hibernate provides two convenient methods, Hibernate.initialize()
and Hibernate.isInitialized() to check whether a collection is
initialized or not.

By using Hibernate.initialize() we can force the initialization of a
collection in Hibernate.

255. What are the different
strategies for cache mapping in
Hibernate?

Hibernate provides following strategies for cache mapping;

Read only: If an application requires caching only for read but not
for write operations, then we can use this strategy. It is very simple
to use and give very good performance benefit.

It is also safe to use in a cluster environment.

Read/Write: If an application also needs caching for write
operations, then we use Read/Write strategy.

Read/write cache strategy should not be used if there is requirement
for serializable transaction isolation level.

If we want to use it in a cluster environment, we need to implement
locking mechanism.

Nonstrict Read/Write: If an application only occasionally updates
the data, then we can use this strategy. It cannot be used in systems
with serializable transaction isolation level requirement.

Transactional: This strategy supports full transactional cache
providers like JBoss TreeCache.

256. What is the difference between
a Set and a Bag in Hibernate?

A Bag in Hibernate is an unordered collection. It can have duplicate
elements. When we persist an object in a bag, there is no guarantee
that bag will maintain any order.

A Set in Hibernate can only store unique objects. If we add the same
element to set second time, it just replaces the old one. By default a
Set 1s unordered collection in Hibernate.

257. How can we monitor the
performance of Hibernate in an
application?

We can use following ways to monitor Hibernate performance:

Monitoring SessionFactory: Since there is one SessionFactory in an
application, we can collect the statistics of a SessionFactory to
monitor the performance. Hibernate provides
sessionFactory.getStatistics() method to get the statistics of
SessionFactory.

Hibernate can also use JMX to publish metrics.

Metrics: In Hibernate we can also collect other metrics like-
number of open sessions, retrieved JDBC connections, cache hit,
miss etc.

These metrics give great insight into the performance of Hibernate.
We can tune Hibernate settings and strategies based on these
metrics.

258. How can we check if an Object
is in Persistent, Detached or Transient
state in Hibernate?

We can use following methods to check the state of an object in
Hibernate:

Persistent State: If call to EntityManager.contains(object) returns
true, the object is in Persistent state.

Detached State: If the call to
PersistenceUnitUtil.getldentifier(object) returns identifier property
then the object 1s in detached state.

Transient State: If call to PersistenceUnitUtil.getldentifier(object)
returns null then object is in Transient state.

We can get access to PersistenceUnitUtil from the
EntityManagerFactory in Hibernate.

259. Whatis ‘the inverse side of
association’ in a mapping?

Let us consider an example in which a customer can have multiple
orders and for every order there has to be a customer.

In OO world, customer is the owner of order. In SQL world, an
Order has reference to customer 1d.

It is a bi-directional one to many mapping from customer to order.
The inverse side in this mapping is the owner of object. In this case
customer 1s the owner or order. Since an order cannot exist without

a customer. But a customer can exist without an order.

Also customer has no column to save order data. But an Order table
can store customer id, which is used for mapping.

260. Whatis ORM metadata?

ORM uses metadata for its internal work. ORM maintains metadata
to generate code used for accessing columns and tables.

ORM maps classes to tables and stores this information in
Metadata. It maps fields in classes to columns in tables. These kinds
of mappings are also part of Metadata.

Application developers can also access Hibernate Metadata by
using ClassMetadata and CollectionMetadata interfaces and Type
hierarchy.

261.What is the difference between
load() and get() method in Hibernate?

In Hibernate, load() and get() methods are quite similar in
functionality.

The main difference is that load() method will throw an
ObjectNotFoundException if row corresponding to an object is not
found in the database.

On the other hand, get() method returns null value when an object is
not found in the database.

It is recommended that we should use load() method only when we
are sure that object exists in database.

262. When should we use get()
method or load() method in
Hibernate?

As a thumb rule we can follow these guidelines:

We should use get() method when we want to load an object.
We should use load() method when we need a reference to an object
without running extra SQL queries.

263. Whatis a derived property in
Hibernate?

In Hibernate, a derived property is not mapped to any column of a
database table.

A derived property is computed at runtime by evaluation of an
expression.

These are read only properties.

Egg. In this example profitMargin is derived from salePrice and
buyPrice.

<property name="profitMargin" formula="(SELECT (i.salePrice —
1.buyPrice) FROM item 1 WHERE i.1d = 1d)"/>

264. How can we use Named Query
in Hibernate?

A Named SQL query is the HQL query that is associated with a
string name and can be referenced in the application by name.

It can be used in following ways:
XML Mapping File: We can define it in XML mapping file.

Egg. <query name="findBookByAuthor>
<I[CDATA[from Book s where s.author = :author]]>
</query>

Annotation: We can also mark Named SQL with annotation.

@NamedQueries({
@NamedQuery(
name = "findBookByAuthor”,
query = "from Book s where s.author = :author”

)
§)

265. What are the two locking
strategies in Hibernate?

There are two popular locking strategies that can be used in
Hibernate:

Optimistic: In Optimistic locking we assume that multiple
transactions can complete without affecting each other. So we let the
transactions do their work without locking the resources initially.

Just before the commit, we check if any of the resource has changed
by another transaction, then we throw exception and rollback the
transaction.

Pessimistic: In Pessimistic locking we assume that concurrent
transactions will conflict while working with same resources. So a
transaction has to first obtain lock on the resources it wants to
update.

The other transaction can proceed with same resource only after the
lock has been released by previous transaction.

266. What is the use of version
number in Hibernate?

Version number is used in optimistic locking in Hibernate. When a
transaction modifies an object, it increments its version. Based on
version number, second transaction can determine 1f the object it has
read earlier has changed or not.

If the version number at the time of write is different than the
version number at the time of read, then we should not commit the
transaction.

267. Whatis the use of
session.lock() method in Hibernate?

Session.lock() is a deprecated method in Hibernate. We should not
use it.

Instead we should call
buildLockRequest(LockMode).lock(entityName, object) method in
Hibernate.

268. What inheritance mapping
strategies are supported by
Hibernate?

Hibernate supports following inheritance mapping strategies
between classes and tables:

Table per class hierarchy: In case of multiple types of books, we
can have one book class and one book table. We can store all child
classes of book like- HardCoverBook, PaperBackBook etc in same
table book. But we can identify the subclasses by a BookType
column in Book table.

Table per subclass: In this case we can have separate table for each
kind of book. HardCoverBook table for HardCoverBook book
class. PaperBackBook table for PaperBackBook book class. And
there will be a parent table, Book for Book class.

Table per concrete class: In this case also we have separate table
for each kind of book. But in this case we have even inherited
properties defined inside each table. There is no parent table Book
for Book class, since it 1s not a concrete class.

Maven
269. Whatis Maven?

Maven is a software project management tool. It is open source
software from Apache software foundation.

It is used for building, reporting and documenting a Software
project. It is mainly based on POM (Project Object Model).

270.

What are the main features of

Maven?

Some of the main features of Maven are:

1.

Simple: Maven provides simple project setup that is based
on best practices.

Fast: You can get a new project or module started in a few
seconds in Maven.

Easy to learn: Maven usage and commands are easy to
learn across all projects. Therefore ramp up time for new
developers coming onto a project is very less.

Dependency management: Maven provides superior
dependency management including automatic updates and
transitive dependencies.

Multiple Projects: You can easily work with multiple
projects at the same time by using Maven.

Large Library: Maven has a large and growing repository
of libraries and metadata to use out of the box.

Extensible: Maven supports the ability to easily write
plugins in Java or scripting languages for extending its
core functionality.

Instant: Maven is online and it provides instant access to
new features with very less configuration.

271.What areas of a Project can you
manage by using Maven?

Maven can help us manage following areas of a project:

Build

Testing

Release

Reporting

Software Change Management (SCM)
Documentation

Distribution

NownkLh =

272.

What are the main advantages

of Maven?

Maven has a long list of advantages for Software development.
Some of the main advantages are:

1.

Common Project Structure: By using Maven, every
developer has a common project structure that helps in
understanding the code as well as developing new features
in a new project.

Modular Design: Maven promotes modular design that
divides a complex project into multiple modules that are
easier to manage. By using Maven, it is easier to manage
multiple modules for build, test, release etc.

Centralized Dependency Management: With Maven,
each developer does not have to include the jars separately
in each project or module. Maven provides a centralized
dependency management that can help improve efficiency
of software development.

Fewer Decisions: With Maven a developer has to make
fewer decisions about things unrelated to software
development work. The project structure comes ready with
Maven, dependency management is a uniform approach
and build/release are handled by Maven. So a developer
can focus on core work of developing software.

273. Why do we say “Maven uses
convention over configuration”?

Convention over configuration is a Software Design Paradigm that
decreases the number of decisions made by a software developer,
without losing flexibility.

In Maven, there are many conventions for setting up the project,
building the artifacts, running unit tests and releasing the code.
These conventions lead to common process for Software
development.

In case of other tools, there are a lot of configuration options are
present. But most of the time, a developer uses same set of
configuration options. So it is better to make these as a default
options. Maven uses default options from best practices and
provides right conventions for Software development.

274. 'What are the responsibilities of
a Build tool like Maven?

A Build tool like Maven helps us with following tasks:

1. Source Code: A Build tool can generate source code
based on templates.

2. Documentation: We can get documentation files from
source code by using a build tool. E.g. Javadoc

3. Compilation: Primary responsibility of a Build tool is to
compile source code into executable code.

4. Packaging: A Build tool packages compiled code into a
deployable file like- jar, zip war etc.

5. Deployment: We can deploy the packaged code on server
by using a Build tool.

275.

What are the differences

between Ant and Maven?

Key differences between Ant and Maven are:

1.

Ant is a Java library and command line toolbox for build
process. Maven is a framework for many aspects of
software development like- project setup, compile, build,
documentation etc.

Ant does not have any conventions for project structure or
build processes. Maven has conventions for setting up
project structure as well as for build processes.

Ant is based on procedural programming. We have to write
code for compilation build, copy etc. Maven is based on
declarative programming. We have to just configure it for
our project setup and programming.

Ant does not impose any lifecycle. We need to create the
sequence of tasks manually. Maven has a lifecycle for
software build processes. There are well-defined phases
that we can use in Maven.

Ant scripts are not reusable in multiple projects. Maven
has plugins that are reusable across multiple projects.

276. Whatis MOJO in Maven?

MOJO stands for Maven plain Old Java Object.
Every MOJO is an executable goal in Maven. It is like an annotated
Java class. It specifies metadata about a goal like- goal name, phase

of lifecycle for goal and parameters required by goal.

A Maven plugin can contain multiple MOJOs.

277. Whatis a Repository in
Maven?

A repository is a location on file system where build artifacts, jars,
dependencies and pom.xml files are stored.

278.

What are the different types of

repositories in Maven?

There are mainly two types of repositories in Maven:

1.

Local Repository: This is your local folder in which a
copy of your installation and dependencies is stored.

Remote Repository: This is a remote folder in which jars
and other build artifacts are stored. These can be located
on servers within your organization.

Central Remote Repository: This is the central Maven
repository that is located on repo.maven.apache.org or
uk.maven.org or any other third party location. This where
we can find artifacts from different providers that are
available for download and use. Like- Hibernate, Spring
libraries etc.

279. What s a local repository in
Maven?

Maven local repository is a folder in your local files system in
which your project’s installation, dependency jars, plugins etc. are
stored.

Default location of Maven local repository is .m2 folder. It can be
located under following location on file system:

Windows — C:\Documents and Settings\{ username }\.m2
Unix/Linux/Mac — ~/.m2

280. What is a central repository in
Maven?

Maven central repository is a truly remote repository that is located
on repo.maven.apache.org or uk.maven.org or any other third party
location.

This contains the jars and artifacts provided by various software
providers.

Central repository contains a large amount of data. Therefore it is
not allowed to scrape the whole site. But you can use the relevant
jars that you want for download and use in your Maven project.

281. What is a Remote repository
in Maven?

A Remote repository is a remote location on the internet where the
jars and dependencies from different vendors are stored.

These files can be accessed by protocols like- file:// or http:// etc.
These can be truly remote repositories set up by third party vendors

or locations inside your organization that contains the relevant jars
required by your project.

282. Why we should not store jars
in CVS or any other version control
system instead of Maven repository?

Maven recommends storing jars in local repository instead of CVS
or any other version control system. There are following advantages
of storing it in Maven repo vs. CVS:

Less Storage: A repository is very large, but it takes less space
because each JAR is stored only in one place. E.g. If we have 10
modules dependent on Spring jar, then they all refer to same Spring
jar stored in local repository.

Quicker Checkout: Project checkout 1s quicker from local
repository, since there is not need to checkout jars if they are
already present in repo.

No need for versioning: There is no need to version JARS since
external dependencies do not change so often.

283. Can anyone upload JARS or
artifacts to Central Repository?

No, we need special permissions to upload JARS and artifacts to
Central Maven Repository?

284. Whatis a POM?

POM is an abbreviation for Project Object Model. This is the basic
unit of work in Maven. It is an XML file with name pom.xml.

It contains details of project and project configuration that are used
by Maven to build the project.

It also contains default values for many projects. E.g. target is the
name of build directory for Java Maven project.

285. Whatis Super POM?

Super POM is Maven’s default POM. All the POM files extend
from Super POM.

286. What are the main required
elements in POM file?

Every POM file should have following required elements:

project root

model Version

grouplD: the 1d of the project's group.

artifactID: the 1d of the artifact (project)

version: the version of the artifact under the specified

group

SNk =

287. What are the phases in Build
lifecycle in Maven?

In Maven, each build lifecycle consists of many phases. Default
build lifecycle has following phases:

1. validate: In this phase, Maven validates that the project is
correct and all necessary information is available to run
next phase.

2. compile: Maven compiles the source code of the project in
this phase.

3. test: This is the phase to run unit tests on the compiled
source. There should not be any need to package or deploy
the code to run these tests.

4. package: In this phase, Maven takes the compiled code
and packages it in its distributable format, such as a JAR.

5. verify: Maven runs any checks on results of integration
tests to ensure that quality criteria are met.

6. install: In this phase, Maven installs the package into local
repository. After this it can be used as a dependency in
other projects locally.

7. deploy: In the build environment, Maven copies the final
package to the remote repository for sharing with other
developers and projects.

288. What command will you use to
package your Maven project?

To package a project into a distributable format we use following
command:

mvn -package

289. What is the format of fully
qualified artifact name of a Maven
project?

A Maven project has artifact name with following format:
<groupld>:<artifactld>:<version>

Following is the convention used by some organizations:
Parent pom

groupld: org.Orgname.Projectname

artifactld: org.Orgname.Projectname

version: X.X.X

E.g. org. Orgname.Projectname:org. Orgname.Projectname-1.0.0.pom
Modules

groupld: org.Orgname.Projectname

artifactld: org.Orgname.Projectname.Modulename

version: X.X.X

E.g.

org.Orgname.Projectname:org.Orgname.Projectname.Modulename-
1.0.0.jar

290. Whatis an Archetype in
Maven?

As per official definition, an Archetype is a Maven project
templating toolkit.

By using an Archetype, an author of Archetype can create a Project
template. Users of this project template (archetype) can pass
different parameters to this template and start using it.

Archetype promotes consistency in the process of creating and
working on a project. It also helps in reducing the ramp up time for
new developers to come on board on a project.

291. What is the command in Maven
to generate an Archetype?

In Maven, we can use following command to generate an
Archetype:

mvn archetype:generate

292. What are the three main build
lifecycles of Maven?

Maven has following three build lifecycles that further contain
multiple phases:

1. clean: In this lifecycle any files generated by previous
builds are removed.

2. default: This lifecycle is used for validating, compiling
and creating the application. It has multiple phases like-
compile, test, package inside it.

3. site: Maven generates and deploys the documentation of a
site in this phase.

293. What are the main uses of a
Maven plugin?

Maven is mainly a plugin execution framework. At the code of
Maven all the work is done by plugins. A Maven plugin can be used
for following purposes:

Cleaning up the code
Compiling the code

Creating a JAR file

Deploying the artifacts
Running the unit tests
Documenting the project
Generating the site of a project
Generating a WAR file
Generate a checkstyle report

A e A

294. How will you find the version
of a plugin being used?

Maven Help Plugin has a describe goal. This can be used for listing
the version of a plugin. Sample command for this is:

mvn -Dplugin=install help:describe

Note: In the above command replace Dplugin with the plugin prefix
as the argument. Do not use the artifact ID of plugin here.

295. What are the different types of
profile in Maven? Where will you
define these profiles?

In Maven, we can have following types of Profile:

Per Project
It is defined in the POM itself (pom.xml).

Per User
We can define it in the Maven-settings
(%USER_HOMEY%/.m2/settings.xml).

Global
It 1s defined in the global Maven-settings

($ {maven.home}/conf/settings.xml).

Profile descriptor
Descriptor is located in project basedir (profiles.xml) (It is not
supported in Maven 3.0)

296. What are the different setting
files in Maven? Where will you find
these files?

Maven is very simple to use. At the core it has a setting file names
settings.xml. This file contains the setting element that is used to
configure the Maven with different options.

The main locations where this file can be found are:

Maven Installation directory: ${maven.home}/conf/settings.xml

User Home directory: ${user.home}/ .m2 / settings.xml

297. What are the main elements we
can find in settings.xml?

In settings.xml we can have all the configuration information for
Maven. Some of the important elements are:

localRepository: The value of this element is the path of this build
system’s local repository. The default wvalue is
$ {user.home}/.m2/repository.

It is used for a main build server to allow all logged-in users to
build from a common local repository.

interactiveMode: If it is true then Maven should attempt to interact
with the user for input. If it is false then Maven does not interact
with the user. Default setting is true.

usePluginRegistry: If it is true Maven wuses the
${user.home}/.m2/plugin-registry.xml file to manage plugin
versions. By defaults it is false.

offline: If it is true this build system should be able to operate in
offline mode. By default it is false. This element is used for build
servers that cannot connect to a remote repository due to network
setup or security reasons.

298. How will you check the version
of Maven in your system?

We can use following command in console to check the version of
Maven in our system.

mvn -version

299. How will you verity if Maven is
installed on Windows?

To check this, type mvn —version in cmd prompt of Windows. This
will give you the version of Maven installed on Windows.

300. Whatis a Maven artifact?

A Maven artifact is a file that gets deployed to a Maven repository.
In most cases it is a JAR file.

When Maven build runs, it creates one or more artifacts. In case of
Java projects, it produces a compiled jar and a sources jar.

Every artifact in Maven has a group ID, an artifact ID and a version
string. These three attributes uniquely identify an artifact.

In Maven, we specify a project's dependencies as artifacts.

301. What are the different
dependency scopes in Maven?

Maven supports following dependency scopes:

compile: This i1s the default dependency scope in Maven. The
compile level dependencies are available in all classpaths of a
project. These dependencies are also propagated to dependent
projects.

provided: This scope is similar to compile. But in this scope we
expect the JDK or a container to provide the dependency at runtime.
E.g. While building a web application for the Java Enterprise
Edition, we can set the dependency on the Servlet API and related
Java EE APIs to scope provided. The web container will provide
these classes at runtime to our application.

This scope is only available on the compilation and test classpath,
and is not transitive.

runtime: The dependency in this scope is not required for
compilation. It is required for execution. It is available in the
runtime and test classpaths. It is not present in the compile
classpath.

test: This scope is used for dependencies that are required for test
compilation and execution phases. This scope is not transitive.

system: This scope 1s same as provided scope, except that you have
to provide the JAR that contains it explicitly. In this case, he artifact
is always available. There is no need to look it up in a repository.

import: This scope is only used on a dependency of type pom in the
<dependencyManagement> section. In this case, the specified POM
has to be replaced with the dependencies in that POM's
<dependencyManagement> section. This scope is only available in

Maven 2.0.9 or later.

302. How can we exclude a
dependency in Maven?

To exclude a dependency we can add the <exclusions> tag under the
<dependency> section of the pom.

E.g.

<dependencies>
<dependency>
<groupld>test.ProjectX</groupld>
<artifactld>ProjectX</artifactld>
<version>1.0</version>
<scope>compile</scope>
<exclusions>
<exclusion> <!-- exclusion is mentioned here -->
<groupld>test.ProjectY</groupld>
<artifactld>ProjectY</artifactld>
</exclusion>
</exclusions>
</dependency>
</dependencies>

303. How Maven searches for JAR
corresponding to a dependency?

Maven first looks for a JAR related to a dependency in the local
repository. If it finds it there then it stops.

If it does not find it in local repo, it looks for the JAR in the remote
repository and downloads the corresponding version of JAR file.
From remote repository it stores the JAR into local repository.

304. Whatis a transitive
dependency in Maven?

Let say you have a Project A that depends on dependency B. The
dependency B further depends on dependency C. So your
dependency C is a Transitive Dependency of your project A.

In Maven, starting from 2.0, you do not have to specify transitive

dependencies. You just mention your immediate dependencies in
pom.xml.

Maven takes care of resolving the Transitive dependencies and
includes them automatically.

305. What are Excluded
dependencies in Maven?

Let say a project A depends on project B, and project B depends on
project C. The developers of project A can explicitly exclude
project C as a dependency. We can use the "exclusion" element to
exclude it.

Such dependencies are called Excluded dependencies in Maven.

306. What are Optional
dependencies in Maven?

Let say a project B depends on project C. The developers of project
B can mark project C as an optional dependency by using the
"optional" element.

In case project A depends on project B, A will depend only on B
and not on B's optional dependency C.

The developers of project A may then explicitly add a dependency
on C. The dependency of B on C is known as Optional dependency
in Maven.

307. Where will you find the class
files after compiling a Maven project
successfully?

Once Maven completes the compilation successfully, it stores the
files in target folder. The default location for class files is:

$ {basedir}/target/classes/

308. What are the default locations
for source, test and build directories
in Maven?

The default locations are as follows:

Source: src/main/java

Test: src/main/test
Build: Target

309. What is the result of jar:jar
goal in Maven?

In Maven, jar:jar goal creates a jar file in the Maven build
directory. Jar file is create with the name format ${project.id}-
${project.currentVersion} .jar.

The id and currentVersion are mentioned in the project.xml of the
project being built.

jar:jar does not recompile sources. It just creates a jar from already
compiled classes.

310.How can we get the debug or
error messages from the execution of
Maven?

At times, project build or compile fails in Maven. At this time it is
very helpful to see the debug or error messages from Maven
execution.

To get the debug messages we can call Maven with -X option.

To get the error/exception messages we can call Maven with -e
option.

311. What is the difference between a

Release version and SNAPSHOT
version in Maven?

A SNAPSHOT version in Maven 1s the one that has not been
released.

Before every release version there is a SNAPSHOT version.
Before 1.0 release there will be 1.0-SNAPSHOT.

If we download 1.0-SNAPSHOT today then we may get different
set of files than the one we get on downloading it yesterday.
SNAPSHOT version can keep getting changes in it since it is under
development.

But release version always gives exactly same set files with each
download.

312.How will you run test classes in
Maven?

We need Surefire plugin to run the test classes in Maven.

To run a single test we can call following command:

mvn -Dtest=TestCaseA test

We can also use patterns to run multiple test cases:
mvn -Dtest=TestCase™ test
or

mvn -Dtest=TestCaseA, TestCaseB, Testimportant™ test

313.Sometimes Maven compiles the
test classes but doesn't run them?
What could be the reason for it?

In Maven, Surefire plugin is used for running the Tests.

We can configure it to run certain test classes. Sometimes we you
may have unintentionally specified an incorrect value to ${test} in
settings.xml or pom.xml.

We need to look for following in pom.xml/settings.xml and fix it:

<properties>
<property>
<name>test</name>
<value>some-value</value>
</property>
</properties>

314. How can we skip the running
of tests in Maven?

We can use the parameter -Dmaven.test.skip=true or -
DskipTests=true in the command line for skipping the tests.

The parameter -Dmaven.test.skip=true skips the compilation of
tests.

The parameter -DskipTests=true skips the execution of tests

Surefire plugin of Maven honors these parameters.

315.Can we create our own directory
structure for a project in Maven?

Yes, Maven gives us the flexibility of creating our own directory
structure. We just need to configure the elements like
<sourceDirectory>, <resources> etc. in the <build> section of
pom.xml.

316.What are the differences between
Gradle and Maven?

Gradle is nowadays getting more popular. Google uses it for
Android development and release. Companies like LinkedIn also
use Gradle.

Gradle 1s based on Domain Specific Language (DSL). Maven is
based on XML.

Gradle gives more flexibility to do custom tasks similar to ANT.
Maven scripts have predefined structure. So it is less flexible.

Maven 1s mainly used for Java based systems. Gradle is used for a
variety of languages. It is a Polyglot build tool.

317.What is the difference between
Inheritance and Multi-module in
Maven?

In Maven, we can create a parent project that will pass its values to
its children projects.

A multi-module project is created to manage a group of other sub-
projects or modules. The multi-module relationship is like a tree
that starts from the topmost level to the bottom level. In a multi-
module project, we specify that a project should include the
specific modules for build. Multi-module builds are used to group
modules together in a single build.

Whereas in Inheritance, the parent-child project relationship starts
from the leaf node and goes upwards. It deals more with the
definition of a specific project. In this case a child’s pom is derived
from its parent’s pom.

318.What is Build portability in
Maven?

In Maven, the portability of a build is the measure of how easy it is
to take a particular project and build it in different environments.

A build that does not require any custom configuration or
customization of properties files is more portable than a build that
requires a lot of custom work to build it from scratch.

Open source projects from Apache Commons are one of the most
portable projects. These build can work just out of the box.

GIT

319.How can we see n most recent
commits in GIT?

We can use git log command to see the latest commits. To see the
three most recent commits we use following command:

gitlog -3

320. How can we know if a branch
is already merged into master in GIT?

We can use following commands for this purpose:
git branch --merged master : This prints the branches merged into
master

git branch --merged lists : This prints the branches merged into
HEAD (i.e. tip of current branch)

git branch --no-merged : This prints the branches that have not been
merged

By default this applies only to local branches.
We can use -a flag to show both local and remote branches.

Or we can use -t flag to show only the remote branches.

321.What is the purpose of git stash
drop?

In case we do not need a specific stash, we use git stash drop
command to remove it from the list of stashes.

By default, this command removes to latest added stash

To remove a specific stash we specify as argument in the git stash
drop <stashname> command.

322. Whatis the HEAD in GIT?

A HEAD is a reference to the currently checked out commit.
It 1s a symbolic reference to the branch that we have checked out.

At any given time, one head is selected as the ‘current head’ This
head is also known as HEAD (always in uppercase).

323. What is the most popular
branching strategy in GIT?

There are many ways to do branching in GIT. One of the popular
ways 1s to maintain two branches:

master: This branch is used for production. In this branch HEAD is
always in production ready state.

develop: This branch is used for development. In this branch we
store the latest code developed in project. This is work in progress
code.

Once the code is ready for deployment to production, it is merged
into master branch from develop branch.

324. What is SubGit?

SubGit is software tool used for migrating SVN to Git. It 1s very
easy to use. By using this we can create a writable Git mirror of a
Subversion repository.

It creates a bi-directional mirror that can be used for pushing to Git
as well as committing to Subversion.

SubGit also takes care of synchronization between Git and
Subversion.

325. What is the use of git
instaweb?

Git-instaweb 1s a script by which we can browse a git repository in
a web browser.

It sets up the gitweb and a web-server that makes the working
repository available online.

326. What are git hooks?

Git hooks are scripts that can run automatically on the occurrence of
an event in a Git repository. These are used for automation of
workflow in GIT.

Git hooks also help in customizing the internal behavior of GIT.

These are generally used for enforcing a GIT commit policy.

327. Whatis GIT?

GIT 1s a mature Distributed Version Control System (DVCS). It is
used for Source Code Management (SCM).

It is open source software. It was developed by Linus Torvalds, the
creator of Linux operating system.

GIT works well with a large number of IDEs (Integrated
Development Environments) like- Eclipse, InteliJ etc.

GIT can be used to handle small and large projects.

328. Whatis a repository in GIT?

A repository in GIT is the place in which we store our software
work.

It contains a sub-directory called .git. There is only one .git
directory in the root of the project.

In .git, GIT stores all the metadata for the repository. The contents
of .git directory are of internal use to GIT.

329.

What are the main benefits of

GIT?

There are following main benefits of GIT:

1.

Distributed System: GIT is a Distributed Version Control
System (DVCS). So you can keep your private work in
version control but completely hidden from others. You
can work offline as well.

Flexible Workflow: GIT allows you to create your own
workflow. You can use the process that is suitable for your
project. You can go for centralized or master-slave or any
other workflow.

Fast: GIT is very fast when compared to other version
control systems.

Data Integrity: Since GIT uses SHAI, data 1s not easier to
corrupt.

Free: It is free for personal use. So many amateurs use it
for their initial projects. It also works very well with large
size project.

Collaboration: GIT 1is very easy to use for projects in
which collaboration is required. Many popular open
source software across the globe use GIT.

330. What are the disadvantages of
GIT?

GIT has very few disadvantages. These are the scenarios when GIT
is difficult to use. Some of these are:

1. Binary Files: If we have a lot binary files (non-text) in our
project, then GIT becomes very slow. E.g. Projects with a
lot of images or Word documents.

2. Steep Learning Curve: It takes some time for a newcomer
to learn GIT. Some of the GIT commands are non-intuitive
to a fresher.

3. Slow remote speed: Sometimes the use of remote
repositories in slow due to network latency. Still GIT is
better than other VCS in speed.

331.What are the main differences
between GIT and SVN?

The main differences between GIT and SVN are:

1.

Decentralized: GIT is decentralized. You have a local
copy that is a repository in which you can commit. In SVN
you have to always connect to a central repository for
check-in.

Complex to learn: GIT is a bit difficult to learn for some
developers. It has more concepts and commands to learn.
SVN is much easier to learn.

Unable to handle Binary files: GIT becomes slow when it
deals with large binary files that change frequently. SVN
can handle large binary files easily.

Internal directory: GIT creates only .git directory. SVN
creates .svn directory in each folder.

User Interface: GIT does not have good UL But SVN has
good user interfaces.

332. How will you start GIT for
your project?

We use git init command in an existing project directory to start
version control for our project.

After this we can use git add and git commit commands to add files
to our GIT repository.

333. Whatis git clone in GIT?

In GIT, we use git clone command to create a copy of an existing
GIT repository in our local.

This 1s the most popular way to create a copy of the repository
among developers.

It is similar to svn checkout. But in this case the working copy is a
full-fledged repository.

334. How will you create a
repository in GIT?

To create a new repository in GIT, first we create a directory for the
project. Then we run ‘git init” command.

Now, GIT creates .git directory in our project directory. This is
how our new GIT repository is created.

335. What are the different ways to
start work in GIT?

We can start work in GIT in following ways:
New Project: To create a new repository we use git init command.

Existing Project: To work on an existing repository we use git clone
command.

336. GIT is written in which
language?

Most of the GIT distributions are written in C language with Bourne
shell. Some of the commands are written in Perl language.

337. What does ‘git pull’ command
in GIT do internally?

In GIT, git pull internally does a git fetch first and then does a git
merge.

So pull is a combination of two commands: fetch and merge.

We use git pull command to bring our local branch up to date with
its remote version.

338.

What does ‘git push’ command

in GIT do internally?

In GIT, git push command does following two commands:

1.

fetch: First GIT, copies all the extra commits from server
into local repo and moves origin/master branch pointer to
the end of commit chain.

merge: Then it merges the origin/master branch into the
master branch. Now the master branch pointer moves to
the newly created commit. But the origin/master pointer
remains there.

339. Whatis git stash?

In GIT, sometimes we do not want to commit our code but we do not
want to lose also the unfinished code. In this case we use git stash
command to record the current state of the working directory and
index in a stash. This stores the unfinished work in a stash, and
cleans the current branch from uncommitted changes.

Now we can work on a clean working directory.

Later we can use the stash and apply those changes back to our
working directory.

At times we are in the middle of some work and do not want to lose
the unfinished work, we use git stash command.

340. What is the meaning of ‘stage’
in GIT?

In GIT, stage is a step before commit. To stage means that the files
are ready for commit.

Let say, you are working on two features in GIT. One of the features
is finished and the other is not yet ready. You want to commit and
leave for home in the evening. But you can commit since both of
them are not fully ready. In this case you can just stage the feature
that is ready and commit that part. Second feature will remain as
work in progress.

341. What is the purpose of git
config command?

We can set the configuration options for GIT installation by using git
config command.

342. How can we see the
configuration settings of GIT
installation?

We can use ‘git config --list” command to print all the GIT
configuration settings in GIT installation.

343. How will you write a message
with commit command in GIT?

We call following command for commit with a message:
$/> git commit —m <message>

344. What s stored inside a commit
object in GIT?

GIT commit object contains following information:

SHA1 name: A 40 character string to identify a commit

Files: List of files that represent the state of a project at a specific
point of time

Reference: Any reference to parent commit objects

345. How many heads can you
create in a GIT repository?

There can be any number of heads in a repository.

By default there is one head known as HEAD in each repository in
GIT.

346. Why do we create branches in
GIT?

If we are simultaneously working on multiple tasks, projects,
defects or features, we need multiple branches. In GIT we can
create a separate branch for each separate purpose.

Let say we are working on a feature, we create a feature branch for
that. In between we get a defect to work on then we create another
branch for defect and work on it. Once the defect work i1s done, we
merge that branch and come back to work on feature branch again.

So working on multiple tasks is the main reason for using multiple
branches.

347. What are the different kinds of
branches that can be created in GIT?

We can create different kinds of branches for following purposes in
GIT:

Feature branches: These are used for developing a feature.
Release branches: These are used for releasing code to production.

Hotfix branches: These are used for releasing a hotfix to production
for a defect or emergency fix.

348. How will you create a new
branch in GIT?

We use following command to create a new branch in GIT:

$/> git checkout —b <branchname>

349. How will you add a new feature
to the main branch?
We do the development work on a feature branch that is created

from master branch. Once the development work is ready we use git
merge command to merge it into master branch.

350. Whatis a pull request in GIT?

A pull request in GIT is the list of changes that have been pushed to
GIT repository. Generally these changes are pushed in a feature
branch or hotfix branch. After pushing these changes we create a
pull request that contains the changes between master and our
feature branch. This pull request is sent to reviewers for reviewing
the code and then merging it into develop or release branch.

351. What is merge conflict in GIT?

A merge conflict in GIT is the result of merging two commits.
Sometimes the commit to be merged and current commit have
changes in same location. In this scenario, GIT is not able to decide
which change is more important. Due to this GIT reports a merge
conflict. It means merge is not successful. We may have to manually
check and resolve the merge conflict.

352. How can we resolve a merge
conflict in GIT?

When GIT reports merge conflict in a file, it marks the lines as
follows:

E.g.

the business days in this week are
<<<<<<< HEAD

five

SIX
>>>>>>> hranch-feature

To resolve the merge conflict in a file, we edit the file and fix the
conflicting change. In above example we can either keep five or six.

After editing the file we run git add command followed by git
commit command. Since GIT is aware that it was merge conflict, it
links this change to the correct commit.

353. What command will you use to
delete a branch?

After the successful merge of feature branch in main branch, we do
not need the feature branch.

To delete an unwanted branch we use following command:

git branch —d <branchname>

354. What command will you use to
delete a branch that has unmerged
changes?

To forcibly delete an unwanted branch with unmerged changes, we
use following command:

git branch —D <branchname>

355. What is the alternative
command to merging in GIT?

Another alternative of merging in GIT is rebasing. It is done by git
rebase command.

356. What is Rebasing in GIT?

Rebasing is the process of moving a branch to a new base commit.
It 1s like rewriting the history of a branch.

In Rebasing, we move a branch from one commit to another. By this
we can maintain linear project history.

Once the commits are pushed to a public repository, it is not a good
practice to use Rebasing.

357. Whatis the ‘Golden Rule of
Rebasing’ in GIT?

The golden rule of Rebasing is that we should never use git rebase
on public branches. If other people are using the same branch then
they may get confused by looking at the changes in Master branch
after GIT rebasing.

Therefore, it is not recommended to do rebasing on a public branch
that 1s also used by other collaborators.

358. Why do we use Interactive
Rebasing in place of Auto Rebasing?

By using Interactive rebasing we can alter the commits before
moving them to a new branch.

This is more powerful than an automated rebase. It gives us
complete control over the branch’s commit history.

Generally, we use Interactive Rebasing to clean up the messy
history of commits just before merging a feature branch into master.

359. Whatis the command for
Rebasing in Git?

Git command for rebasing is:

git rebase <new-commit>

360. What is the main difference
between git clone and git remote?

The main difference between git clone and git remote is that git
clone is used to create a new local repository whereas git remote is
used in an existing repository.

git remote adds a new reference to existing remote repository for
tracking further changes.

git clone creates a new local repository by copying another
repository froma URL.

361.What is GIT version control?

GIT version control helps us in managing the changes to source
code over time by a software team. It keeps track of all the changes
in a special kind of database. If we make a mistake, we can go back
in time and see previous changes to fix the mistake.

GIT version control helps the team in collaborating on developing a
software and work efficiently. Every one can merge the changes
with confidence that everything is tracked and remains intact in GIT
version control. Any bug introduced by a change can be discovered
and reverted back by going back to a working version.

362. What GUI do you use for
working on GIT?

There are many GUI for GIT that we can use. Some of these are:

GitHub Desktop
GITX-dev
Gitbox

Git-cola
SourceTree

Git Extensions
SmartGit

GitUp

363. What is the use of git diff
command in GIT?

In GIT, git diff command is used to display the differences between
2 versions, or between working directory and an index, or between
index and most recent commit.

It can also display changes between two blob objects, or between
two files on disk in GIT.

It helps in finding the changes that can be used for code review for a
feature or bug fix.

364. Whatis git rerere?

In GIT, rerere 1s a hidden feature. The full form of rerere is “reuse
recorded resolution”.

By using rerere, GIT remembers how we’ve resolved a hunk
conflict. The next time GIT sees the same conflict, it can
automatically resolve it for us.

365. What are the three most
popular version of git diff command?

Three most popular git diff commands are as follows:

git diff: It displays the differences between working directory and
the index.

git diff —cached: It displays the differences between the index and
the most recent commit.

git diff HEAD: It displays the differences between working
directory and the most recent commit

366. What is the use of git status
command?

In GIT, git status command mainly shows the status of working tree.
It shows following items:

1. The paths that have differences between the index file and
the current HEAD commt.

2. The paths that have differences between the working tree
and the index file

3. The paths in the working tree that are not tracked by GIT.
Among the above three items, first item is the one that we commit by

using git commit command. Item two and three can be committed
only after running git add command.

367. What is the main difference
between git diff and git status?

In GIT, git diff shows the differences between different commits or
between the working directory and index.

Whereas, git status command just shows the current status of
working tree.

368. What is the use of git rm
command in GIT?

In GIT, git rm command is used for removing a file from the
working tree and the index.

We use git rm —r to recursively remove all files from a leading
directory.

369. What is the command to apply
a stash?

Sometimes we want to save our unfinished work. For this purpose
we use git stash command. Once we want to come back and
continue working from the last place where we left, we use git stash
apply command to bring back the unfinished work.

So the command to apply a stash is:
git stash apply

Or we can use
git stash apply <stashname>

370. Why do we use git log
command?

We use git log command to search for specific commits in project
history.

We can search git history by author, date or content. It can even list
the commits that were done x days before or after a specific date.

371.Why do we need git add
command in GIT?

G