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ABSTRACT

Being able to predict software quality is essential, but also it pose significant challenges in software engi-
neering. Historical software project datasets are often being utilized together with various machine learn-
ing algorithms for fault-proneness classification. Unfortunately, the missing values in datasets have nega-
tive impacts on the estimation accuracy and therefore, could lead to inconsistent results. As a method
handling missing data, K nearest neighbor (KNN) imputation gradually gains acceptance in empirical
studies by its exemplary performance and simplicity. To date, researchers still call for optimized param-
eter setting for KNN imputation to further improve its performance. In the work, we develop a novel
incomplete-instance based KNN imputation technique, which utilizes a cross-validation scheme to opti-
mize the parameters for each missing value. An experimental assessment is conducted on eight qual-
ity datasets under various missingness scenarios. The study also compared the proposed imputation ap-
proach with mean imputation and other three KNN imputation approaches. The results show that our
proposed approach is superior to others in general. The relatively optimal fixed parameter settings for
KNN imputation for software quality data is also determined. It is observed that the classification accu-

racy is improved or at least maintained by using our approach for missing data imputation.
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1. Introduction

In the domain of empirical software engineering and its related
software quality estimation, researchers have devoted to predicting
important quality-related variables, such as the fault count or if the
fault-proneness exists, etc. Most empirical software engineering es-
timation builds statistical or machine learning models on histori-
cal data (Sentas and Angelis, 2006). Meanwhile, the software com-
munity has accumulated a myriad of software project quality re-
lated data for academic research, such as the PROMISE data repos-
itories. Unfortunately, due to scarcity of software engineering data
(Myrtveit et al., 2001), the significant occurrence of missing values
in software datasets or known as “missingness” gradually becomes
an unavoidable issue (Khoshgoftaar and Van Hulse, 2008). In ad-
dition, many properties in software engineering datasets are often
indirectly measured, which leads to more frequent and complex
missingness pattern to occur (Mockus, 2008).

Many estimation models cannot directly handle the missing
data values; therefore, it leaves the data-preprocessing step very
necessary for modern estimation process in software engineer-
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ing. For example, a well-known technique called listwise dele-
tion, had been widely adopted for handling missing values dur-
ing data-preprocessing, but it potentially impairs the complete-
ness of data and introduces undesirable biases in estimation
(Huang et al., 2015). By contrast, missing data imputation meth-
ods replace missing variables by artificial estimates (Song et al.,
2008); at the same time maintain the data completeness. Nowa-
days, more complex imputation approaches, such as random for-
est (Stekhoven and Biihlmann, 2012), neural network (Rey-del-
Castillo and Cardefiosa, 2012), decision trees (Deb and Liew, 2016),
and low-rank matrix factorization (Jing et al., 2016), have been pro-
posed to handle the missingness issue in the applications of bioin-
formatics, education, ecology, energy, traffic and software engineer-
ing, etc.

When compared to mean imputation (MEI), novel approaches
are still lacking popularity in software engineering estimation (SEE)
(Khatibi Bardsiri et al., 2013; Kocaguneli et al., 2013a), one of which
is the K nearest neighbor (KNN) imputation. The main advantage of
KNN imputation is that it is simple and free of parametric assump-
tions required otherwise. It could adapt to distinct types of vari-
ables or features known to be important in estimation. KNN im-
putation had been specially applied in real-world application as a
data-preprocessing step in governmental or national surveys, such
as reported in Chen and Shao (2000). Its performance has also
been widely analyzed in the domain of SEE (Strike et al., 2001;
Twala et al., 2005). Since most of the empirical software engi-
neering datasets are relatively small or medium-sized, the newer
robust approaches, like random forest, neural network, and low-
rank matrix factorization as less than relevant. The cost of apply-
ing these sophistical approaches in practice is also unpredictable.
The majority of the previous SEE studies only applied KNN imputa-
tion with fixed parameters when dealing with incomplete software
measurement data.

Song and Shepperd (2007) once evaluated a KNN imputation
approach with several key features classification in small-sized
software effort datasets. More recently, Van Hulse and Khoshgof-
taar (2014) extended the flexibility of KNN imputation for the soft-
ware quality datasets, using incomplete-instance for missing data
imputation instead of complete-instance to provide a relatively su-
perior performance. Unfortunately, the parameter setting of the
former KNN imputation approaches was generally predetermined
for each imputation, regardless of its features or the types of miss-
ingness being imputed. While in the specialized KNN imputation
studies, numerous efforts have been made to improve the impu-
tation performance. The major improvement drives from two re-
search directions (Zhang, 2012):

- Searching for the most similar K nearest neighbors for a given
missing value;
- Final adaptation from the selected neighbors.

Both two directions are about the parameter setting in KNN es-
timator, including the distance measure, the choice of K, and the
adaptation method. The 1st direction is the KNN algorithm ker-
nel. Literature review shows that the current rule of searching the
neighbors in SEE is mostly based on Minkowski distance measure.
Some specialized studies of KNN imputation show that the grey
relational analysis (GRA) based distance, is more appropriate to
capture the ‘nearness’ (Huang and Lee, 2004). Caruana (2001) has
pointed out that the KNN imputation could not always be supe-
rior with any possible distance measures. The choice of the K is
subject to controversy recently. The related studies often prepopu-
late that the K from limited experience and empirical studies, other
researchers argues the potential choices of K to be +/N,N > 100
(Lall and Sharma, 1996), where N is the sample size of the dataset
being investigated.

The 2nd direction is computation using the selected neighbors.
Missing data imputation using median/mean is a naive and effec-
tive adaptation in some cases. Using rank or distance as weight is
also popular in literature (Kocaguneli et al., 2012b). Unfortunately,
there is no such a guarantee that one of these adaptations results
the best option. Therefore, researchers turned to build ensembles
of multi-adaptation methods to empirically find the best one un-
der certain circumstance (Kocaguneli et al., 2012b; 2013b).

In this study, we focus and present a novel approach named as
cross-validation based KNN imputation (CVBKNNI) to conquer the
major drawback of existing KNN imputation approaches: an inabil-
ity of adapting the parameter setting to the data. CVBKNNI utilizes
a cross-validation scheme to search for the optimal parameter set-
ting for estimating each missing value. CVBKNNI is also compared
with three other KNN imputation approaches in the presence of
artificial missingness scenarios. This empirical study:

- Introduce CVBKNNI, a novel approach with an adaptive param-
eter setting, applicable to software quality prediction and mod-
eling. The internal design of CVBKNNI includes both imputation
ordering and various parameters of KNN imputation estimator.
Based on the estimators returned from the CVBKNN algorithm,
a fixed parameter setting is discovered to be recommendable
for KNN imputation in software quality datasets.

Validate that the missingness scenario could be a critical fac-
tor that significantly impacts the imputation performance un-
der certain circumstance. A thorough statistical analysis is pre-
sented to compare with the different KNN imputation ap-
proaches under different missingness scenarios.

In the remaining parts of the work, background and review
are presented in Section 2. Section 3 introduces the CVBKNNI, the
novel missing data imputation technique proposed in this study.
The experimental design is described in Section 4. Section 5 fur-
ther presents the experimental results. Section 6 discusses the
known threats to validity in this empirical study. At last, the work
is concluded with future work in Section 7.

2. Background

In this section, we define the terminology and provide a sim-
ple review. This section covers three aspects: an introduction to
the missingness mechanisms and patterns, the review of recent
specialized K nearest neighbor (KNN) imputation studies and the
missing data treatments (MDTs) research in software engineering
estimation (SEE).

The missingness mechanisms (MM) and patterns (MP) explain
how the missingness is summarized and classified in literature.
Selecting the proper approach to deal with missing values is re-
lated to the assumption of the mechanism and pattern (Song et al.,
2005). The introduction of MM, MP and ratio helps build different
missingness scenarios. The performance of different MDTs could be
further validated under these scenarios then. In the section of ex-
periment design, the incomplete datasets are synthetized according
to the various missingness scenarios.

The KNN imputation, free of data distribution assumption, is
an important single hot-deck imputation technique. Popular single
imputation approaches also contain mean imputation (MEI), me-
dian imputation and the ones based on stochastic regression meth-
ods, etc. Single imputation cannot tolerate the variability of char-
acterization of the imputed values. Concisely, it is unable to pro-
vide valid confidence intervals of the imputed values. Therefore,
its simultaneous accuracy as well as robustness become a concern
but difficult to address adequately. As an alternative of single data
imputation, multiple imputation generates many different imputed
datasets and then computes the final estimation result of the com-
plete dataset by applying appropriate adaptation strategy, which
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is considered more complex in its application. Novel techniques,
for example, iterative imputation, gain increasing popularity in re-
cent years, and they improve the estimation accuracy by iteratively
searching for the optimal estimates until convergence.

As the specialized KNN imputation research has been evolved
in years, yet it has been applied in contemporary SEE studies.
Huang et al. (2015) has found that MEI monopolizes the imputa-
tion approaches in recent software effort estimation studies. A re-
view of the other MDTs in SEE studies is presented at last.

2.1. Missingness mechanisms and patterns

Missingness mechanisms (MMs) and patterns (MP) make as-
sumptions about the distribution and types of missing values
(Song et al., 2008). The judgment of MM helps assess what im-
putation approach may be adopted (Song et al., 2005). The MM
concerns if the missingness is related to the key variable or not.
It is critical as it determines how difficult handling missing val-
ues is (Song and Shepperd, 2007). There are three mechanisms
(Little and Rubin, 2002): missing completely at random (MCAR),
missing at random (MAR) and non-ignorable (NI). To present the
MM with formal notations, assume the real-valued software data
we intend to collect as X = {x;},1 <i < N, and X has observed and
missing parts. Consider the missing parts in X have the values
that are unobserved, we use the missing data indicator M = {m;},
if x;isunobserved
if x; is observed’
come. The missingness mechanism is characterized by the condi-
tional probability distribution of M given X, i.e. p(M|X, vr), where
Y refers to the unknown parameters.

MCAR means there is no difference between the distribution of
observed and missing values (Song et al., 2008). In other words,
missingness does not depend on either observed values or missing
values of X, thus p(M|X, ¥) = p(M, ¥).

MAR means that missingness only depends on the observed
values of other variable(s), not the missing ones. It does not fulfil
the condition of MCAR (it must depend on at least one variable).
Assuming that m is a potential value (vector) for M, then Vme {1,
OIN and Vx,y e RN with H(x,y) =m: p(M = m|x) = p(M = m|y),
where H(x, y) denotes the Hamming difference vector of variables
x and y, that has 0 in the positions where x and y differ and 1 in
the positions where they coincide.

NI represents the situation that neither MCAR nor MAR holds
(Valdiviezo and Van Aelst, 2015). Missingness only depends on the
unobserved values, i.e. their real values. Even accounting for all the
available observed information, the reason for observations being
missing still depends on the unseen missingness.

Generally, there are two types of multivariate missingness pat-
terns (MPs): monotone and general (non-monotone) (Song and
Shepperd, 2007; Van Buuren, 2012). An MP is said to be mono-
tone if an instance x;, could be ordered such that if x; , is missing
then all values in x; with p’ > p are missing simultaneously. It could
occur in longitudinal studies. In software quality datasets, if a ma-
jor basic measure is missing, all the following derived ones will
not exist. In the general pattern, missing data can occur anywhere
and no special structure appears regardless of how the variables
are arranged. The type of MP may affect the selection of MDTs.
Strike et al. (2001) found the MDTs tend to perform worse with
monotone pattern. This issue will be discussed in the experiment
analysis.

Some imputation approaches cannot handle specific MMs or
MPs appropriately (Song and Shepperd, 2007). MCAR could be
tested by Little and Rubin (2002)’s multivariate test under certain
strict conditions. Unfortunately, it is hardly applicable to validate
the exact MM and MP before adopting an MDT (Song et al., 2005).
Identifying MM is difficult since the prior distribution is in general

where m; = {(1) to denote the observation out-

unknown. Hardly it is possible to guarantee that none of MCAR, NI
or MAR could exist in software quality data. Generally, the MM in
real datasets is often to be either NI or MAR, while the MP often
consists both general and monotone, but not always tenable (Song
et al., 2005; 2008; Strike et al., 2001). Song et al. (2008) illustrated
how NI and MAR may happen in software practice. Suppose un-
der the politic pressure, software engineers prefer not to report
many high fault rates and then intend to make the values missing.
While some software metrics are too difficult and time-consuming
to collect, which, therefore, may cause the values missing as well.
They explain how NI could happen when missingness depends on
its real values. MAR could occur if only the small-sized projects
were less likely to report fault rates than the large well-organized
projects. It exemplifies MAR that missingness depends on the non-
missing project feature: size. Therefore, this study simulates the
MPs (monotone and general) and MMs (MCAR, MAR, and NI) si-
multaneously to conduct the experiments.

2.2. KNN imputation improvement

In this section, 12 former studies about specific improvements
on KNN imputation are chronologically selected and summarized
in Table 1 in terms of the imputation estimator design and the
experimental data simulation (missingness injection) approaches.
Note that this is not an exhaustive search on recent studies. We
use the keywords combination:

(knn OR k-nn OR knni OR “nearest neighbo*”) AND (imput*)
AND (missing)

to search the related recent papers. Only the qualified works that
concentrates on kNN imputation improvement for numeric vari-
ables are kept. The studies in Table 1 are simply summarized ac-
cording to the KNN imputation technique design and experiment
design. In specific, Garcia-Laencina et al. (2009) proposed a fea-
ture weighted distance measure based on mutual information (MI)
in KNN imputation. Their experiment validated that both missing
data imputation and classification task were improved by their
technique. Hron et al. (2010) adopted the Aitchison distance in
KNN imputation and found that it is not robust against outliers.
Zhang et al. (2011) proposed a nonparametric iterative imputa-
tion algorithm (NIIA) to impute missing value and found it outper-
forms the other methods in general. Zhang (2011) proposed shell
neighbors imputation (SNI) which fills in an incomplete instance
in a given dataset by only using its left and right nearest neigh-
bors with respect to each other. SNI was found to be better than
a traditional KNN imputation. Zhang (2012) changed the distance
measure to grey distance and found its advantage in capturing the
proximity relationship. Magnussen and Tomppo (2014) calibrated
KNN imputation with local linear regression in the context of for-
est science. The new technique presented improved correlation be-
tween imputation and its real value. Sahri et al. (2014) proposed
FINNIM in the context of dissolved gas analysis, in which they
clearly addressed two important components of imputation: or-
dering and estimator. Silva-Ramirez et al., (2015) combined multi-
player perceptron and KNN algorithms in missing data imputation
and conducted their experiment on simulated datasets with differ-
ent missingness patterns. Ma and Zhong (2016) proposed a corre-
lated degree model to extract K nearest neighbors for imputation
in the context of natural disaster science. Zhang et al., (2017) fur-
ther incorporated correlation matrix in KNN imputation design and
found its efficiency compared with the traditional KNN imputation.

Regarding to imputation ordering, one important component in
MDT, 10 out of the 12 studies did not consider using it in KNN
imputation. As for the KNN parameter: distance measure, besides
the classic Euclidean distance and Manhattan distance measures,



Table 1
Major improvements of KNN imputation in selected studies.

Imputation approach and the reference Imputation Imputation approach Experiment data and the simulation
ordering
The 3 parameters in KNN estimator Feature relevance
Distance measure K Adaptation Data Data simulation
CM-kNN (Zhang et al., 2017) N Euclidean Various Mean N/A UCI and Libsvm N/A
Novel KNN (Ma and Zhong, 2016) N GRA By distance threshold IDWM N/A A drought case MCAR, NI, MAR
FWGKNN (Pan et al.,, 2015) Y GRA* All possible neighbors ~ Dudani-weighted mean Mutual information 5 UCI datasets MCAR, NI, MAR and
missingness ratio
MIMLP (Silva-Ramirez et al., 2015) N A similarity function All possible neighbors Nearest N/A 18 datasets MCAR, NI, MAR
ICKNNI (Van Hulse and Khoshgoftaar, 2014) N Euclidean 5 Mean N/A 4 Software quality MCAR, NI, MAR and
datasets missingness ratio
FINNIM (Sahri et al., 2014) Y Manhattan 1~10 Mean Fisher score 3 DGA datasets N/A
KNN with local linear regression N Euclidean All possible neighbors  Regression N/A 3 artificial datasets and ~ Multiple sampling
(Magnussen and Tomppo, 2014) 2 inventory datasets
GKNN (Zhang, 2012) N GRA VN Mean, mode N/A 3 UCI datasets MAR
NIIA (Zhang et al., 2011) N GRA All possible neighbors ~ Mean, mode Mutual information 3 UCI datasets Missingness ratio
SNI (Zhang, 2011) N Euclidean All possible neighbors  Cluster mean N/A 6 UCI datasets Missingness ratio
Iterative KNN (Hron et al., 2010) N Euclidean Unknown Geometric mean N/A Simulated data Outlier ratio
MiI-based KNN (Garcia-Laencina et al., 2009) N Euclidean 2,5 Dudani-weighted mean Mutual information 5 UCI datasets Missingness ratio

* GRA: grey relational analysis, which could be used to measure distance.
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4 out of 12 studies preferred the grey relational analysis (GRA)
based similarity measure to capture the ‘nearness’ of neighbors. In
terms of the choice of K, half of the studies predefined the value
of K and the other half preferred to use overall available neigh-
bors for adaptation. As for the adaptation methods, instead of us-
ing the mean, various methods are adopted, such as regression-
based, cluster-based and Dudani weighted mean, etc. Meanwhile,
less than half of the studies considered the issue of feature rele-
vance in searching of the nearest neighbors.

As for the experiment design, the experiment data and data
simulation methods are quite consistent among the studies. The
UCI data, a famous machine learning data repository, has been
experimented on by half of them. The rest datasets belong to
diverse professional domains, such as biology, energy, and soft-
ware. Only Song and Shepperd (2007) and Van Hulse and Khosh-
goftaar (2014) evaluate their new proposed KNN imputation ap-
proaches in the domain of empirical SEE. The missingness in-
jection criteria for data simulation majorly consider the missing-
ness mechanism (MM) and ratio (MR), and only Song and Shep-
perd (2007)’s research took into account of the missingness pat-
tern (MP). However, only Pan et al. (2015) and Song and Shep-
perd (2007) empirically analyzed the impact of missingness injec-
tion on imputation performance.

To sum, for current KNN based missing data imputation re-
search, it is common to see the overall methodology design is frag-
mented. Researchers turn to prefer different experiment evaluation
criteria in studies, which, therefore, causes the corresponding tech-
nical contribution hardly justified. As for the improvement on KNN
imputation, none of the studies systematically analyze the impacts
imputation ordering in KNN imputation performance. There is still
no common solution to select the optimized KNN parameters for
imputation. Although researchers prefer to use various missingness
scenarios to test their techniques, the significance of the impacts of
the missingness scenarios are often neglected.

Two of the recent imputation approaches in Table 1, FWGKNN
imputation (FWGKNNI) and ICkNNI, which could be repeated
according to corresponding experiment design, are utilized in
our experimental design as competitors to CVBKNNI. Pan et al.
(2015) proposed a feature weighted grey based KNN iterative im-
putation (FWGKNNI) approach, in which they combined feature
relevance and grey relational analysis (GRA) based distance mea-
sure in the estimator. MEI is used to have a preliminary estimate
of the missing values. The nearest neighbors are extracted from
the dataset which contains all the available instances, except the
one that is to be imputed. The data is updated after each im-
putation iteration, and the iteration repeats until all the missing
values are imputed. The capacity of FWGKNNI is improved com-
pared with the 4 other competitors used in their study, includ-
ing FkMI (Li et al., 2004), IkNNI (Bras and Menezes, 2007), GBNN
(Huang and Lee, 2004) and GkNN (Zhang, 2012). Missing data in-
jection with various MMs is also considered in their data simula-
tion.

Van Hulse and Khoshgoftaar (2014) proposed an incomplete-
case (instance) based KNN imputation (ICKNNI) in the context of
software quality data, and raised the issue of missing data in em-
pirical SEE research once again. Instead of using all available com-
plete instances, ICKNNI searches the nearest neighbor of each in-
stance from the incomplete data. Their results showed that the
complete-case based KNN imputation (CCkNNI) is far less superior
than the imputation approach based on both incomplete and com-
plete instances, i.e. the ICKNNI. The parameters of ICKNNI is pre-
dominated as well: Euclidean distance, K=5, with mean adapta-
tion. This paper did not consider comparing the ICKNNI with more
imputation approaches, even the MEI.

2.3. Studies of missing data treatment in software engineering
estimation context

Missing data treatment (MDT) has been mostly discussed in
the data-driven studies of social science, biology, psychology, trans-
portation, and behavioral science (Poloczek et al., 2014; Sahri et al.,
2014; Suyundikov et al.,, 2015). MDT is considered as an evolv-
ing area in software engineering estimation (SEE) research for less
than 15 years. Less attention has been focused on MDT methods
themselves. In a more recent study, Huang et al. (2015) found that
only some of the former software effort estimation studies have
considered the significance of the MDTs, of which only Minku and
Yao (2011) used KNN imputation in data-reprocessing during the
estimation modeling. By contrast, Troyanskaya et al. (2001) applied
KNN imputation in the estimation of missing DNA microarrays, and
Finley et al. (2006) even explored its utility in the domain of forest
science.

Empirical analysis about missingness characteristics in software
quality data are even rare. Song et al. (2008) emphasized that
for large-sized samples with MCAR mechanism, listwise deletion
is considered appropriate, but the assumption of MCAR is ideal
and less applicable in real software datasets. Additionally, if ei-
ther NI or MAR exists, which is more probable, missing data im-
putation is relatively a better option then. However, imputation
needs more thorough computational analysis (Myrtveit et al., 2001;
Strike et al., 2001), and the prediction error may be introduced
(Mittas and Angelis, 2010). MEI is efficient and has been involved
in SEE as the most popular imputation approach; however, it will
cause bias to data. MEI simply replaces the missing values with the
mean of other values in the same feature.

KNN imputation is then used as an advanced imputation tech-
nique in SEE (Minku and Yao, 2011). Strike et al. (2001) compared
and tested various parameter settings in KNN imputation. The set-
tings took account of Euclidean and Manhattan distance measures.
The MM is simulated from 206 real-world software datasets. The
results indicated that listwise deletion is reasonable but may not
provide the best performance. They called for validating more ad-
vanced imputation techniques on software engineering datasets.
Myrtveit et al. (2001) evaluated the closest neighbor imputation on
a real-world incomplete dataset and showed that compared to list-
wise deletion, KNN imputation is the right option only when the
dataset has too much missingness. Cartwright et al. (2003) then
examined MEI and KNN imputation for two real industrial incom-
plete datasets and found that KNN imputation provides better pre-
diction than MEI does. Twala et al. (2005), on the other hand, rec-
ommended adopting MEI when massive missingness exists and us-
ing KNN imputation when sparse missingness exists. Song et al.
(2005) argued that the impact of MM on imputation performance
is not always that obvious. Jonsson and Wohlin (2006) examined
that KNN imputation performs better in high dimensional incom-
plete datasets.

Li et al. (2007) found that more missingness in data could
worsen the accuracy of KNN imputation. They appealed to future
investigation of the impact of missingness scenarios with more dis-
tance and adaptation in KNN imputation. Continuously, Song et al.
(2008) further confirmed that KNN imputation provides high ac-
curacy. Khoshgoftaar and Van Hulse (2008) analyzed the effective-
ness of various imputation approaches, including MEI, KNN impu-
tation and Bayes multiple imputation (BMI), on two real software
datasets. Their results indicate BMI is better than KNN imputation
and MEI Overall, most researchers did not consider improving KNN
imputation in the context of SEE. Even the performance of KNN
imputation against MEI is not consistent. As for the impact of MM
or MP on imputation in software measurement datasets, few con-
clusions have ever reached the topic.
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Based on the above discussion, the research questions (RQs) are
presented as follows:

RQ1: Is KNN imputation on software quality data improved by
using optimized and adaptive parameters?

RQ2: Does the MM or the MP have an impact on the imputa-
tion accuracy?

RQ3: Is there a fixed parameter setting of KNN imputation rec-
ommended for incomplete software quality data?

RQ4: Is the classification performance maintained with the im-
puted dataset?

The above RQs are answered in Section 5.

3. Imputation strategy design

This section presents the overall background used for the de-
sign of the new imputation strategy, CVBKNNI, including imputa-
tion ordering, estimator, and the complete algorithm. The parame-
ters used in the study will be described in detail in Section 3.2.

3.1. Imputation ordering

Imputation ordering assigns missing values different priority
levels (Sahri et al., 2014). The ordering is potentially influential to
the final imputation results since each imputed value shall be in-
cluded in the complete dataset iteratively for estimating the rest
missing values. The criterion in this study requires the data matrix
is arranged based on the missingness ratio (MR) in both instance-
row and feature-column in ascending order (Conversano and Sicil-
iano, 2009). The missingness ratio (MR) in feature-column of one
feature is defined as the number of missingness in the correspond-
ing feature divided by the number of overall instances, N. While
the MR in instance-row of one instance is defined as the number of
missingness in the corresponding instance divided by the number
of overall features, M. The prior ordering sequence of imputation
in this work is from left to right, i.e. feature by feature (Van Bu-
uren, 2012). Then the instances are re-ordered from top to bot-
tom, according to the ascending MR in instance (row). In practice,
there are small imputation sequence effects of some imputation
algorithms. Evidence shows that the effects would not significantly
matter (Van Buuren, 2012). Imputation ordering would maximize
the information availability during each missing value imputation.
The impact of imputation ordering on imputation accuracy shall be
presented in the section of the experimental analysis.

3.2. Imputation estimator

The quality of K nearest neighbor (KNN) algorithm is largely de-
pendent on the parameter tuning. There are three necessary pa-
rameters in KNN imputation estimator: the distance measure, the
choice of K, and the adaptation method.

3.2.1. Distance measure

The distance measure is also referred as dissimilarity measure.
Given two different instances of numeric measurements x; and x;,
the lower distance between them, the higher similarity they repre-
sent. The distance measure used in the design of the CVBKNNI in-
cludes both the traditional Minkowski distance measure and trans-
formed grey relational based measure.

- Minkowski distance

The most commonly used distance measures in former empiri-
cal software engineering estimation (SEE) studies generally belong
to Minkowski distance, in which Euclidean distance and Manhattan

distance gain the most popularity (Azzeh, 2012; Kocaguneli et al.,
2012a; Li et al., 2009b). The Minkowski distance between x; and x;
could be generalized as:

d(X,‘,Xj) = (|Xi,l —Xj1 |q + |Xi_2 —Xj_2|q +---+ |X,‘_p —Xj<p|q

q\ /4
+"‘+|Xi,M_Xj.M| ) (1)

where q is the Minkowski coefficient. Euclidean and Manhattan
distance are the special cases of Minkowski distance when qg=2 or
1, respectively. Consider one historical project (instance) x; and one
rest project x; in the same data, the weighted Euclidean/Manhattan
distance between numeric features is defined as

M 2
deuclidean(xis Xj) = \/Zp=1 Wp(xi,p - xj.p) B (2)

M
dmanhattan(xi’ xj) = ZP=1 Wp|xi.P - Xj,Pi’ (3)

where M denotes the total number of features in the data,
and wp is the normalized weight of pth feature. In addition to
Minkowski distance, researchers have also proposed other similar-
ity/dissimilarity measures, in which grey relational analysis (GRA)
based ones obtain a lot of attention in the recent literature (see
Section 2.3).

- Grey relational analysis

Grey relational analysis (GRA) quantifies the impacts of differ-
ent factors and the relationship among data instances. It has two
fundamental measures: grey relational coefficient (GRC) and grey
relational grade (GRG) (Zhang, 2012). Given instance x; as an ex-
ample, x; = {X;1,X2.X3,.... Xy}, and x; as a random one of the
rest N — 1 instances, the GRC in pth feature between x; and x; is
defined as follows:

Ami A
GRC(xy . X; ) = ——min T O 2max__ (4)
|Xl.p —Xj_p| + P Amax
where pe[0, 1] (p is a  distinguishing  coeffi-
cient, normally, set =05 (Huang and Lee, 2004)),
Amin = MiNyje(1 Njnj2Milvref1 M Xer — Xjrl, and Amax =

MaXy jc[1 Njnj2MaXyre(1m) ¥ — Xj;| (The smallest and largest
value in matrix|x; , — x; |). And the weighted GRG is defined as:

GRG(x;. x;) = Z'::l WyGRC(Xi . X1 )- (5)

GRG is a similarity measure, which means that if GRG(xy, X;)
is larger than GRG(x;, x3), the difference between x; and x, is
smaller than that of x; and x3. Clearly, the GRG takes a value be-
tween 0 and 1. Therefore, the weighted distance between x; and x;
could be transformed to d(x;, x;) = 1 — GRG(x;, x;)(Pan et al., 2015).
GRA is advantageous since it measure the similarities among ob-
servations by analyzing the relational structure. Compared with
Minkowski distance, the degree of ‘nearness’ that GRA captures
will be more stable and consistent as the number of features in-
creases. Meanwhile, each feature always has different relevance or
weight in terms of calculating distance. In order to have the above-
mentioned w, during each missingness imputation, mutual infor-
mation (MI) based feature relevance is considered in the process
of estimating missing values in this study.

322. K

The option of K is highly dependent on the selected dataset,
which is also critical to KNN imputation. Most researchers only
consider K=1 (Walkerden and Jeffery, 1999), some take into ac-
count of K=1, 2, or 3 (Mendes et al., 2003). Li et al. (2009b) and
Khatibi Bardsiri et al. (2013) recommended locating the best
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K from 1 to 5. Instead of having the same number of near-
est neighbors, it is worthy to automatically find the best K
(Kocaguneli et al., 2012a). Duda and Hart (1973) and Maier et al.
(2009) suggested the upper limit of K being the square root of
the number of instances, which limits the choices of K. In this
study, the optimal choice of K is determined by 10-fold cross-
validation. The upper limit of K is rounded to the nearest odd
neighbor of +/N for the ease of computing. The range of K is in
{2g+1|lgeN,0<q < @}, which contains all possible odd num-
bers.

3.2.3. Adaptation technique

Adaptation is the last procedure to obtain the estimate given
the retrieved instances. In this study, there are five common ways
of adaptations for estimating numerical values: mean, median
(Shepperd and Schofield, 1997), inverse distance weighted mean
(IDWM) (Mair et al., 2000), inverse rank weighted mean (IRWM)
(Kocaguneli et al., 2012b; Mendes et al., 2003) and Dudani mea-
sure (Dudani, 1976; Pan et al., 2015).

The classic measure of central tendency, mean, treats all analo-
gies equally influential. Median is more robust to outliers than
mean. IDWM makes closer neighbors have stronger influence,
which is defined as:
= i1 1/(8 +d (%, x') )i 6)

i 1/(8 +d(x. 1))

where ' is the value being estimated, d(x;, x') is the weighted dis-
tance between x’ and x, the kth nearest instance of x’, and § is a
small constant (8 is set to 106 in the study). Note that X’ is the
instance with the missing value, y, is the corresponding feature
value to x;. IRWM, like IDWM, allows higher ranking analogies to
have more influence than lower ranking ones. y, is ranked based
on the corresponding d(x;, ') in an ascending order. The top and
bottom-ranked neighbors have weights of K/ Z’,f:l k and 1/ 25:1 k,
respectively. The final IRWM estimate is defined as:

7 = i K—k+ 1y,
Yicik

On the contrary, the Dudani measure is less used in SEE; how-
ever, it was proved to be efficiency in studies (Garcia-Laencina
et al., 2009; Pan et al., 2015). It was proposed to weigh evidence
of a neighbor in KNN classification problems (Dudani, 1976). The
weight of kth nearest neighbor is defined in Eq. (8):

(7)

MaXye1,xyd (X X') — d (% X') ,
n - o maXVks[LK]d(st X )
MaXyye(1,k1d Xk, X') — Milyyepq g d Ky, X')
Wy = # Minyye kd (X, X')
1, MaXve(1.xyd (Xe. X')
= mln\-/ke[lj(]d(xkv X’)

(8)

The final Dudani estimate based on the calculated weights is:

K

N W,

§ = Zk’,(1 kY k 9)
Zk:] Wy

3.3. CVBKNN algorithm

In this subsection, the detailed algorithm presents how the in-
troduced components work in CVBKNNI in software quality data.
CVBKNNI uses incomplete-instances for imputation. Imputing miss-
ing values from incomplete-instances could cause the results have
lower bias and higher variance. Using feature relevance in distance
calculation in KNN imputation could balance the bias-variance
trade-off. This work adopts mutual information (MI) to calculate

the feature relevance wp (Li et al., 2009a). MI calculates the de-
pendency among variables to indicate the relevance.

The entropy, H(X), of a random variable X, measures the un-
certainty of the variable. If a discrete random variable X has
alphabet and the pdf is p(x) = Pr{X = x},x € x, then the entropy
HX) =- Y p®)logp(x) (Kullback, 1997; Pan et al., 2015). Given

Xex

two random variables X and Y (Y has ¢ alphabet and y € ¢), their
joint entropy H is defined in terms of the joint pdf p(x, y), ex-
pressed as Eq. (10):

H(X,Y)=—-) > p(xy)logp(x.y) (10)
XeX ye

The conditional entropy calculates the resulted uncertainty on
Z (Z has y alphabet and ze y) given Y, which is:

H(Z|Y) ==Y "> p(y.2)logp(zly) (11)
yeg zey

where p(z|y) is the conditional pdf of Z given Y. Furthermore, the
definition of MI | between two variables X and Y is defined as:

pP&.y)

IX;Y) = 12
X;Y) XEEX E; px.y)log vy (12)
For continuous random variables, Eq. (12) is transformed into

p&.y)
IX;Y 1 dxd 13
XY)= //p(xy) °8 6o p() Y (13)

To apply MI in continuous variables, this study adopts the
mRMR package (Peng et al., 2005). The parameter of wj is defined
as:

_ U frarget)
Zi:] I(fp; ftarget)

where P,P <M —1, is the number of features in Xtrain, f,, there-
fore, is one feature in Xtrain and fiarget is Ytrain.

Assume that the features and instances in Table 2 are going to
be rearranged by imputation ordering process. The x7 », i.e. f, in x7,
is going to be imputed firstly (the MR of f, is the minimum among
fo. f3, f4 andfs, and x7 , is the only missing value in f,). Then, the
corresponding sub-data matrix (all available incomplete-instances)
for cross-validation is filled with light and medium gray in Table 2.
The sub-matrix in light gray is corresponding to Xtrain, and the
column values in medium grey is to Ytrain. The cross-validation
scheme searches all the possible parameter combinations to find
the optimal one with the minimum validation error. Using the op-
timal estimator on the test instance D (filled with dark black in
Table 2), together with Dy, obtains the estimated )?7,2. After x7 »
is imputed, x3 3 is going to be imputed next (the MR of f3 is the
minimum among f3, f4 and fs, and the MR of x5 is the minimum
between x3 and xs). This process continues until all the missing
values are imputed.

The detailed algorithm pseudocode is presented in Algorithm 1,
including two parts: ordering (Line 1-5) and estimating (Line 6-
20):

Steps 2-4 fulfil imputation ordering. Steps 7-13 fulfil building
specific sub-data Dy, in order to cross-validate the optimal KNN
parameters for estimating missing value x; ,. Steps 14-16 fulfil
finding the optimal KNN parameters using 10-fold cross-validation.
Note that in the part of estimating, to estimate each missing value,
the corresponding sub-data matrix (available-instances) is built to
cross-validate the optimal KNN parameters. Each time the unique
sub-data matrix is split into Xtrain and Ytrain, in which Ytrain and
the target missing value(s) belong to the same feature. MI is used
to measure the feature relevance between the Xtrain and Ytrain
each time to automatically obtain each feature weight in Xtrain,
i.e. wp in the distance measure. As for the time complexity of

p= (14)
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Table 2
Sample data-matrix after imputation ordering (N=7, M=6).
Fault-proneness (non-
1D fl ) J; /s s missingness)
X, 2 2 4 5 8 0
X, 4 3 4 8 1
X, 5 3 N/A 8 1 1
X, 1 1 5 8 N/A 0
X5 3 2 N/A N/A 6 0
X 4 1 7 N/A N/A 1

233

Algorithm 1. CVBKNNI pseudocode using Matlab notation

input : D=[X, Y] € RV*M
// D is the normalized incomplete data with N instances x and M

features f. X = [ry;x024;..52n] = [f1, f2, fa, ..., far—1] and the missing values
in X are denoted as Nall. Y = [y;;y2:ys;...;yy] = fur is the fault-proneness.
output: D, 0. // The complete [) after imputation

Initialize KNN parameters: K € {2q+ llge M. 0< ¢ < %}
Distance € { Euclidean, Manhattan, GRA},
Adaptation € {mean, median, [ DW M, IRW M, Dudani};

2 M RInstance; < MR of each instance x; in D, i € [1, N] ;
3 M RFeature, < MR of each feature f, in D, p€ [1,M —1] // No missingness in Y
4 Dirdered < Rearrange each f, and then x; in D according to MR, and M R; in ascending

10
11

12

13

14

16
17
18

19
20

order

Initialize M, the missing data indicator matrix of D, gepeq, with my;; = 0 if &y ; = NaN
and 1 otherwise

// Imputation on D,.4.,.s from left to right, top to bottom

while missing value x;, € Dopgerea (i.€. My p = 0) exists do
// Prepare sub-data matrix for estimating um;,
Find m; from M and set m, = 1, My = [mgmy;my;.omy| € ZNxNM
Dy + Complete values in x; // Data for estimating r,,
rowsTrain = {al(MM @ M,), = m;} // = is the Hadamard product
colsTrain = b such that m;, = 1
Diyain = Dorderea|rowsTrain, colsTrain| // Sub-matrix of Dggereq, for training
and validation
Ytrain = f,[rowsTrain] // Prepare Xtrain and Ytrain for 10-fold
stratified CV
Nirain «— Diypin — Yieain
forall K NN estimator combination in { K, MI weighted Distance, Adaptation} do
CV on Xtrain and Yirain to find the optimal parameter combination
{k,dis, ada} whose corresponding validation error MSFE is the global minimum
end
&;, + Estimate x;, on Dy using {k, MI weighted dis, ada} and Dy
Dordered 4 Dorderea +3ip ~ // Replace the missing value x;, in Digereqd With
the estimate
end
Diomptete + Rearrange Dy gereq to the original order of D
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Table 3

Feature definition for quality datasets using McCabe and Halstead’s procedural metric.

Metric Features Full name Description
McCabe LOC_TOTAL Lines of code (LOC) Measured according to McCabe’s line counting conventions,
equals to the sum of LOC_Code_and_Comment and
LOC_Executables
EDGE_COUNT Control flow graph edge count The number of edges of the graph
v(G) Cyclomatic complexity Number of linearly independent paths
ev(G) Essential complexity The extent to which a flow graph can be "reduced” by
decomposing all the sub-flow graphs
iv(G) Design complexity The v(G) of a module’s reduced flow graph
CALL_PAIRS Call pairs Executable calls between modules
CONDITION_COUNT Condition decision count Correlates to threshold for v(G)
DECISION_COUNT Decision count Correlates to threshold for v(G)
LOC_COMMENT lines of comment Count of lines of comment
LOC_BLANK blank lines Count of blank lines
LOC_CODE_AND_COMMENT Code and comment Count of source code and comment
PARAMETER_COUNT Formal parameter count Number of formal parameters
BRANCH_COUNT Logical branches Branch count of the flow graph
Halstead ~ UNIQ_OP Unique operators Number of distinct operators
UNIQ_OPND Unique operand Number of distinct operands
TOTAL_OP Total operator Total number of operators
TOTAL_OPND Total operand Total number of operands

NUMBER_OF_LINES
Fault-proneness

Number of lines

reported defects

Module has/has not one or more

End line minus the start line in the listing
Fault-prone (FP), regarded as ‘1’ in data, or non-fault-prone
(NFP), regarded as ‘0’

the proposed CVBKNNI, the complexity of distance calculation in
KNN is O(MN). The total processing time in terms of sorting the
distance is greater than O(NlogN) in general. For each KNN esti-
mator combination, the complexity of cross-validation scheme is
O(N). Therefore, the time complexity of imputing the whole data is
O(aMN3log N), where « is the number of KNN estimator combina-
tions.

4. Experiment design
4.1. Software quality datasets

Appropriate datasets should be used to evaluate the imputation
techniques. We consider the renowned tera-PROMISE Repository in
the study (Menzies et al., 2016). 8 software quality datasets are
selected from the repository, which are ant, arc, camel, ivy, PC5,
MC2, KC3 and MW1.

The former 4 datasets, ant, arc, camel and ivy, are parts of latest
Apache open source projects (Jureczko and Madeyski, 2010). The
features of these four datasets are collected through Chidamber
and Kemerer (CK) object-oriented code metric (Chidamber and Ke-
merer, 1994), one specially designed to analyze object-oriented
programming languages. It groups three stages of object-oriented
design: identification of classes (WMC, DIT, NOC, etc.), semantics
of classes (WMC, RFC, LCOM, etc.) and relationship between classes
(RFC, CBO, etc.). Similarly, all the derived measures are excluded
from original data; the remaining ones of each dataset are pre-
sented in Table 4 in detail.

The last 4 datasets, MC2, PC5, KC3, and MW]1, are generated
from NASA C-written projects, the features of which are calculated
by McCabe and Halstead’s procedural metric (Halstead, 1977; Mc-
Cabe, 1976), which takes into account of program complexity and
number of operators/operands. Their original data size in terms of
instance count varies from around 500 to 10,000. The McCabe met-
rics have 4 basic elements: cyclomatic complexity, design complex-
ity, essential complexity, and Lines of Code (LOC). And the Hal-
stead’s metrics have 3 elements: base measure, derived measure
and LOC. In this work, all the synthetic or derived features in the
original datasets are excluded if they could be computed directly
from the basic ones. The remaining features of data PC5, KC3, MC2,
and MWT1 are described in Table 3 in details.

In order to keep the scientific basis of empirical validation and
replication of SEE studies, necessary data integrity checks require
urgent intention (Shepperd et al., 2013). Besides excluding the de-
rived measures, the following procedures are also used to select
the proper instances:

(1) Exclude duplicate instances.

(2) Exclude the instance with implausible values, such as the
values in Halstead and McCabe’s metric or CK metric equal
to 0 ubiquitously.

(3) Exclude the instances in datasets of PC5, KC3, MC2 and MW1
that violate the referential integrity checks (Shepperd et al.,
2013) on NASA software quality data.

In the end, the simple description of all the cleansed datasets
are presented in Table 5.

4.2. Missingness simulation

Missingness simulation is often used to generate various miss-
ingness scenarios to test the performance of missing data im-
putation techniques. In this study, three missingness mechanisms
(MMs), two missingness patterns (MPs), and four missingness ra-
tios (MRs) shall be simulated to generate 24 incomplete dataset
versions. There is no missingness injected into the feature of Fault-
proneness. MR is set to be 2.5%, 5%, 10%, and 20%, respectively. The
above-mentioned three MMs (introduced in Section 2.1) are sim-
ulated after cleansing the original data. The procedures simulat-
ing each MM are presented as follows (Van Hulse and Khoshgof-
taar, 2014):

- Missing Completely At Random (MCAR): Missing values are
overall selected completely at random (exclude the ones from
the response feature: Fault-proneness). Assume we have N in-
stances and M features if we inject MR=5% random missing-
ness inside the data, there will be around 0.05 x N x (M —1)
missing values in total.

Non-ignorable (NI): A threshold set of t is chosen for each fea-
ture such that 75% of the instances had a value of x; , less than
t. After determining the threshold values for each feature, 40%
missingness is injected into the instances with feature value(s)
X p <t and the rest 60% missingness is injected into the in-
stances with x; , > t.
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Table 4
Feature definition for quality datasets using CK object-oriented metric.

Metric Features Full name Description
CK and its derivatives WMC Weighted methods per class Sum of the complexities of each method in a class
DIT Depth of inheritance tree Number of classes that a particular class inherits from
NOC Number of children Count of immediate subclasses of a class
CBO Coupling between objects Number of classes that are coupled to a class
RFC Response for class Number of elements in the response set of a class
LCOM Lack of cohesion of methods Number of method pairs in a class that have no common
references to instance variables minus the number of
method pairs that share references to instance variables
LCOM3 Lack of cohesion in methods Different version of LCOM suggested by
Henderson-Sellers (1996), which overcomes the
drawback of LCOM
IC Inheritance coupling This metric provides the number of parent classes to
which a given class is coupled.
CBM Coupling between methods A total number of new/redefined methods to which all the
inherited methods are coupled.
AMC Average method complexity Average method size for each class. The size of a method is
equal to the number of Java bytecodes in the method
Martin (1994) Ca Afferent couplings Number of classes that depend upon the measured class

Ce Efferent couplings
Bansiya and Davis (2002)  NPM

Number of public methods

Number of classes that the measured class depends upon
Count of all the methods in a class that is declared as
public

DAM Data access metric The ratio of the number of private (protected) attributes to
the total number of attributes declared in the class.

MOA Measure of aggregation The extent of the part-whole relationship, realized by
using attributes.

MFA Measure of functional abstraction The ratio of the number of methods inherited by a class to
the total number of methods accessible by the member
methods of the class.

CAM Cohesion among methods of class Relatedness among methods of a class based on the
parameter list of the methods.

McCabe LoC Lines of code Number of lines of code in the Java binary code of the
class under investigation

MAX_CC Max/Avg v(G) Number of different paths in a method plus one

AVG_CC

Fault-proneness

Module has/has not reported defects

Fault-prone (FP), regarded as ‘1’ in data, or non-fault-prone
(NFP), regarded as ‘0’

Table 5
Data description after cleaning process (code metric, data name, number of features
and instances, and FP/NFP ratio).

Metric Dataset Name Number of FP/NFP*  Number of
Features Instances

Procedural PC5 19 258/919 1177

KC3 19 25/111 136

MW1 19 21/186 207

MC2 19 20/49 69
Object-oriented camel 21 171/625 796

ant 21 165/504 669

ivy 21 37/256 293

arc 21 20/149 169

* The ratio of FP/NFP: ratio between the number of instances with Fault-
proneness =1 and that with Fault-proneness = 0.

- Missing At Random (MAR): It is generated by making the dis-
tribution of missing values depends on the feature of Fault-
proneness. We implement a biased selection process where 25%
missingness is injected into the FP instances, i.e. Fault-proneness
equals to 1. And another 75% missingness is injected into the
instances who are NFP, i.e. Fault-proneness equals to O.

Secondly, during MM simulation on dataset instances, we use
the SPSS Missing Values Analysis module to simultaneously meet
the requirements of MP (Song and Shepperd, 2007). Therefore, un-
der each MM, there shall be two scenarios corresponding to the
two MPs. For the general pattern, the missingness is randomly in-
jected into each instance. As for the monotone pattern, the miss-
ingness in each instance is mostly continuously injected. To sum,
for one specific dataset, there are 24 simulated scenarios, or ver-
sions, as shown in Table 6.

Table 6
Simulated data scenarios for each dataset during experiment.
MR (%) MP MM
MCAR MAR NI
25 Monotone #1 #2 #3
General #4 #5 #6
5 Monotone #7 #8 #9
General #10 #11 #12
10 Monotone #13 #14 #15
General #16 #17 #18
20 Monotone #19 #20 #21
General #22 #23 #24

4.3. Performance measure and evaluation

Error measures are fundamental to justify the prediction per-
formance. RMSE (root mean square error) is adopted in the cross-
validation scheme in CVBKNNL For each true value e; that is sim-
ulated to be missing in D, the corresponding imputed value is ¢;,
then the RMSE is defined in Eq. (15):

RMSE = (15)

where T denotes the total number of missing values in D. The rel-
ative error metrics are not considered in the study due to they are
unbalanced, for example, MRE (mean of relative error) (Foss et al.,
2003). Instead, RMSE is a balanced metric and widely used in re-
cent studies (Pan et al.,, 2015; Zhang, 2012; Zhang et al., 2011).
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The incomplete dataset becomes a complete one after missing
data imputation. The machine learning classifiers are then con-
ducted to evaluate the impact of imputation on the performance of
Fault-proneness classification. Four widely used classification algo-
rithms, Discriminant analysis, KNN, Naive Bayes and SVM, are cho-
sen in the study. The classification accuracy (CA) is computed via
Eq. (16):

1d ,
CA = N;l(Fﬂ-,FR) (16)

where N is the number of instances, FP/ and FP; are the classifi-
cation results of the ith instance and the corresponding real class
label. [(FP,, FP/) = 1 if FP, = FP/, and I(FP, FP/) = 0 otherwise.

After measuring the performance, we test if the estimations of
one method are significantly better than the estimations of others.
To check for statistical significance, we use Wilcoxon signed-rank
test. It is a non-parametric statistical hypothesis test used when
comparing two related samples to assess whether their popula-
tion median ranks differ (i.e. it is a paired difference test). Mean-
while, it is inadequate to merely show statistical significance alone;
we also need to know whether the effect size is worthy of in-
terest (Sarro et al., 2016). To assess it, we employ non-parametric
Vargha-Delaney’s Ay, statistic (Arcuri and Briand, 2014). Given a
performance measure X, the A, statistic measures the probability
that algorithm A yields better X than another algorithm B, based
on the formula of A = (R;/M — (M + 1)/2)/N, where R; denotes
the rank sum of the first data group we are comparing, and M and
N are the number of observations in the first and second data sam-
ple, respectively. If the 2 algorithms are equivalent, then Ay, = 0.5.
If the first algorithm performs better than the second one, A;, is
considered small for 0.6 <Aq; < 0.7, medium for 0.7 < Ay, < 0.8,
and large for 0.8 < A, < 1. The detailed experiment is provided in
Section 5.1.

4.4. Experiment procedures

The experiment of the work includes 3 main tasks: simulating
missingness, missing data imputation using different techniques,
and the final performance evaluation. Missingness simulation is
conducted on the cleansed datasets, in which the process has been
discussed in Section 4.1. The simulation consists of 3 MMs (MCAR,
MAR, NI), 2 MPs (Monotone, General) and 4 MRs (2.5%, 5%, 10%,
20%), 24 scenarios in total as discussed in Section 4.2. Each sce-
nario of one dataset is replicated 30 times to reduce bias and ob-
tain a suitable sample size. The overall experiment process is de-
scribed in Fig. 1.

To have the same unit for distinctive data features, it is neces-
sary to transform the attribute values in the same range. In this
work, all of the data is normalized into the interval of [0, 1] fea-
ture by feature. The [0, 1] normalization is defined as in Eq. (17):

Xjp — Miny; X; ,

: (17)
maxv,-xi,p — MINy; X,"p

normyg q(x; ;) =

where ¥; , is the pth feature value of instance x;, i,j=1,2,....,N,
and p=1,2,....M.

After normalizing all the simulated datasets, the different KNN
imputation approaches are then used for preprocessing. The first
task is the verification of the effectiveness of CVBKNNIL. Moreover,
this study also implements three other KNN based imputation ap-
proaches, including FWGKNN (Pan et al., 2015), ICKNNI (Van Hulse
and Khoshgoftaar, 2014), as introduced in Section 2.3, and the de-
fault version of KNN imputation (DkNNI) approach implemented
by Matlab R2016b. DkNNI is implemented using Matlab knnimpute,
which is capable of replacing missing data with the corresponding

value from the incomplete nearest neighbor instance. According
to the documentation of Matlab, DkNNI is based on incomplete-
instance and it imputes each missing value using the closest neigh-
bor calculated from Euclidean distance. In the meantime, MEI is
also used as a benchmark imputation technique.

The imputed datasets are compared with the correspond-
ing original complete ones to validate imputation performance.
Wilcoxon signed-rank test tests whether the overall prediction per-
formance of CVBKNNI is significantly better than the rest four ones.
Meanwhile, this work also uses Wilcoxon signed-rank test to find if
there exists a significant difference in terms of imputation among
diverse scenarios.

For the adopted quality data, the target class for classification
is Fault-proneness. Researchers argue that the imputed complete
datasets should also be reliable and workable to be used for other
purpose (Sahri et al., 2014). In empirical software quality research,
data imputation may also serve the further Fault-proneness clas-
sification; therefore, the classification performance from imputed
data should not be worse than that from the original data. At this
stage, the four commonly used ML classifiers (Discriminant analy-
sis, KNN, Naive Bayes and SVM) are implemented on the estimated
complete datasets to test the performance of used imputation ap-
proaches, as a necessary data-preprocessing step, on classification
tasks.

5. Experiment results and analysis

In this section, the empirical results of various imputation ap-
proaches are fully presented. The comparison between CVBKNNI
and other imputation approaches is discussed then via statisti-
cal tests. Later, a detailed discussion about CVBKNNI and its inner
adaptive parameter setting is presented as well.

5.1. Overall imputation performance

Table 7 presents the overall RMSEs for each dataset under dif-
ferent missingness scenarios. The datasets are ordered by nature
and size. All the best estimation results are marked in green, the
second-best ones are marked in blue, while the worst results are
in red. It is obvious that CVBkKNNI surpasses the other four imputa-
tion approaches under each scenario regardless of the missingness
mechanism (MM), pattern (MP) or ratio (MR), especially when the
size of the dataset is relatively large (See Table 5). The second-best
imputation approach then strongly depends on the MP. FWGKNNI
performs better when the MP is general; while ICKNNI performs
relatively better when the MP is monotone. However, FWGkNNI,
compared with ICKNNI, is relatively more robust since when MP
is general, ICKNNI mostly performs the worst, even worse than
the benchmark approach mean imputation (MEI). Some exceptions
happen when the percentage of missing values is relatively small,
such as dataset KC3 and MC2. The ICKNNI was established to be
better than complete-instance K nearest neighbor (KNN) imputa-
tion; however, its performance in the software quality datasets
shows that it could be even worse in imputation capacity than
the benchmark imputation approaches, the default DkNNI and MEL
Meanwhile, in dataset camel and ant, the performance of ICKNNI
under monotone pattern is not strictly negatively correlated with
MR. It may due to the impacts of outliers in the dataset.

Table 7 also presents the Wilcoxon signed-rank test results to-
gether with the corresponding A;, effect size (see Table 7 footnote)
to compare the statistical significance and effect size of the im-
provements over the other imputation approaches due to CVBKNNL
For example, the dataset camel, as shown in Table 7, under gen-
eral pattern, MCAR mechanism and 2.5% missingness ratio, the 30
RMSEs of CVBKNNI (Avg: 0.088) are significantly less than the 30
RMSEs of FWGKNNI (Avg: 0.113), at the significance level of 0.01.
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Fig. 1. The overall experiment procedures.

Similarly, under monotone pattern, all else are equal, the 30 RM-
SEs of CVBKNNI (Avg: 0.093) are significantly less than the 30 RM-
SEs of ICKNNI (Avg: 0.111). The test results further confirm the im-
putation excellency of CVBKNNI since, in most cases, the RMSEs
of CVBKNNI are significantly less than those of FWGKNNI, ICKNNI,
DKNNI and MEIL Some reasonable exceptions exist in the small-
sized datasets or under monotone pattern. As for A;, effect size
shown in Table 7 (presented in different brackets), large effect
size 0.8 <A, < 1 dominates the results mostly, especially in the 4
object-oriented datasets, which means CVBKNNI overall yields bet-
ter performance. Table 8 further organizes all the results of effect
size in detailed counts and ratios. For each dataset, we count the
number of large, medium, small and rest effect size of CVBKNNI vs.
the other imputation approaches under all missingness scenarios.
All the effect size calculated is at least 0.5. For dataset MC2, a rel-
atively smaller one, the corresponding effect size is generally small.
But this phenomenon does not happen in small-sized dataset arc.
For large-sized dataset PC5, the effect size is merely medium in
general.

To further intuitively present the imputation accuracy, Figs. 2-9
present the boxplots of the corresponding RMSE results. For exam-
ple, in Fig. 2, the first sub-boxplot presents the RMSE results of the
5 imputation approaches on the 30 simulated versions of dataset
camel under general MP and MCAR mechanism at MR=5%. To
save space, only the boxplots of RMSEs of the large-sized datasets:
camel, ant, PC5 and MW1, at MR=5% and 20% are presented. The
results shown in the boxplots are consistent with the findings in
Table 7. The overall performance of CVBKNNI basically answers to
the RQ1, that setting adaptive parameters for estimating each miss-
ing value could largely improve KNN imputation performance.

Another important issue of performance, time, is also tested in
the experiment. The complicated strategy of CVBKNNI causes the
algorithm to be time-consuming, but it also provides better accu-
racy. Use datasets of camel, ivy, PC5 and MW1 as examples, the
imputation algorithm running time is summarized in Table 9. We
run the algorithms on an Intel Core i7-4770 3.40GHz CPU with
8GB memory, Windows 7 64-bit system and Matlab R2016b soft-
ware. Since the algorithm running time under different MMs and
MPs is relatively unchanged given a specific MR, Table 9 provides
the average running time of the 5 imputation algorithms under 3
MMs and 2 MPs. Compared to the other four algorithms, CVBKNNI
indeed cost lots of time to proceed, but it is still acceptable. The
datasets of camel and PC5 are the largest ones in the experiment.
Consider under the worst-case MR=20%, there are in total 3184

missing values for camel data and 4237 ones for PC5 data, the im-
putation time of CVBkNNI is still within 3mins

From the results showing in boxplots, the median values under
NI mechanism are always slightly larger than that under MCAR or
MAR mechanism. In Table 7, the average RMSEs under monotone
pattern are generally large than that under general pattern within
the same dataset. This section also uses Wilcoxon signed-rank test
to answer RQ2: if the MM, or MP indeed has a significant impact
on the imputation results. Table 10 and Table 11 summarize the
comparison results. The comparison between each pair of MMs
is presented in Table 10. The five imputation approaches used in
the study (CVBKNNI, FWGKNNI, ICkKNNI, DkNNI and MEI) are de-
noted as 1, 2, 3, 4 and 5 accordingly. As shown in Table 10, in
dataset camel, under general pattern and 2.5% missingness ratio,
all the five imputation approaches perform significantly different
between MCAR and NI, as well as between MAR and NI; however,
none of which performs significantly different between MCAR and
MAR. Table 10 shows various imputation approaches perform sim-
ilarly under MCAR or MAR; while the significant difference exists
when mechanism is NI. The significance may increase as the MR
increases as well.

The comparison in terms of the MP is presented in Table 11.
The difference in object-oriented datasets is more significant than
that in procedural datasets. When MR increases in small-sized
datasets, the difference is even more clear. Therefore, the impact
of MP may depend on the data. The performance of ICKNNI is
highly influenced by the MP, which is consistent with the findings
in Table 7.

5.2. The impact of feature relevance and imputation ordering

This section and the following one focus on empirically ana-
lyzing the estimator of CVBKNNI. The two components used in
CVBKNNI, MlI-based feature relevance, and MR-based imputation
ordering, are both inherited from former empirical research evi-
dence. This section aims at verifying the impact of the two com-
ponents on imputation accuracy. Table 12 gives an example of
a comparison in terms of various configurations of CVBKNNI, i.e.
with (w/) or without (w/o) MI-based feature relevance, and w/ or
w/o MR-based imputation ordering, at MR=10%. To save space,
Table 12 only lists the results of four datasets with MR=10%.
When MR=2.5%, or 5% or 20%, the results are like those in
Table 12. The configuration with both MI-based feature rele-
vance and imputation ordering is the CVBKNNI used in this study
(Marked in bold in Table 12).
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Fig. 3. The imputation RMSEs of data camel at MR = 20%, range in [0.05, 0.35].



J. Huang et al./The Journal of Systems and Software 132 (2017) 226-252 239
Table 7
Overall average RMSE results of all datasets under various scenarios’.
Imputation Approaches and MMs
Data  MP MR (%) MCAR MAR NI
CVBANNIFWGKNNI  ICANNI  DANNI MEI  [CVBANNI FWGANNI ICANNI  DANNI MEI  |CVBANNIFWGANNI ICANNI ~ DKNNI  MEI
25 0.088  0.1137 0209  0.197  0.197° [ 0080  0.115° 0203~ 0.194"  0.194" | 0.114 0.149° 0247° 0230° 0231
General 5 0.094 0.122: 0.213: 0.199: 0.199: 0.088 0.118: 0.209:: 0.194: 0.195: 0.118 0.157: 0.251: 0.235: 0.236:
10 0.105  0.128 0213 0.197 0.197 0.107  0.130 0.215 0.198 0.198 0.134 0171 0.255 0.241 0.242
20 0.124 0138 02157 01977  0.98" | 0.25  0.140" 0216  0.198"  0.199" | 0.169  0.1957 0260 0.250" 0.251"
camel 2.5 0.093  0.1247 [[0.1117] 0.1337 | 02237 | 0.107 0.139" [[0.1207] 0.137" | 02327 | 0.118 0.164" [0.1447] 0.163" | 0256
Monotone > 0.109 0.135: 0.171: 04205: 0.226: 0.118 0.146: 04173*: 0.206:: 0.233: 0.121 0,162: [0.142:] 0,164: 0.254:
10 0.112  0.144 0.176 0.214 0.231 0.114  0.145™ [[0.127] 0.149 0.230 0.149  0.183 0.192 0.226 0.270
20 0.120  0.148” [[0.135] | 0.154 | 0.230™ | 0.122 0.149™ " 0.183" 0212 | 0230 | 0194 02337 0236" 0258 [ 0.292"
25 0.095 0.1207 02037 0.190°  0.195 | 0099 [0.1207] 0.194" 0.176°  0.180" | 0.123  0.160T 0.230° 0221 0227
General 5 0.100  0.24 0204  0.90" 01957 | 0098 0123 02007 0.1827 0187 [ 0127 064" 02347 02257 0.230"
10 0.110  0.129 0.204 0.188 0.192 0.107  0.127 0.201 0.184 0.187 0.139  0.170 0.232 0.227 0.233
20 0.129  0.139" 0206~  0.188"  0.92" | 0029  0.138"  0204"  0.1877  0.91" | 0171  0.185" 02357 0235”7 | 02417
ant 25 0.115  0.1457 [[0.1297] 0.155" | 0214~ | 0.123 0.155 | (0.1317) 0.165° | 02287 | 0.140  0.175° | [0.166°] 0.189" | 0.250"
Monotone 5 0.126 0.158: 0.1651 0.198: 0.222: 0.126 0.160: 0.164:: 0.193: 0.226: 0.135 0.170‘: [0,162:] 0.184: 0.247:
10 0.125  0.157 0.161 0.190 0.223 0.123  0.158 0.135 0.162 0.225 0.155  0.186 0.191 0218 0.260
20 0.129  0.159” [0.144™ | 0.164" = 0223 | 0.125 0.160" " 0.176™ 0202 | 0223 | 0192 02227 02357 02517 | 0.280"
2.5 0.090  0.1257 0205  0.196°  0.198" | 0.088 0.114™  0.190" 0.1817  0.187" | 0.107  0.171 0241 0237 02417
General 5 0.090 0.126: 0.200;‘ 0A191: 0194: 0.094 0.120:‘ 0.197:: 0.184: 0,189: 0.121 0.176‘: 0.252: 0.242: 0245;
10 0.109  0.134 0.205 0.192 0.195 0.107  0.134 0.203 0.189 0.194 0.147  0.186 0.255 0.245 0.249
. 20 0.131  0.143" 0204  0.192"  0.195" | 0.135 0.148" 0208  0.193"  0.199" | 0.186 0208 0.260" 02557 0.259"
vy 2.5 0.131 | 0.165° [[0.156"] 0.187" 0224 | 0.113 0.163" [[0.1307]  0.157° | 0.228" [ 0.131  0.198" | 0.162" 0.194" | 0277
Monotone 3 0.118 0.156: (0.126) 0155: 0225: 0.118 0A164: 0.163:: 0.199: 0.231: 0.136 0,201: 0.190: 0.233: 0.279:
10 0.121 | 0.164 0.164 0.198 0.229 0.127  0.170 0.165 0.198 0.233 0.156 0207 | [0.170"] 0.189 0.284
20 0.122  0.164" | 0.136"  0.156" | 0228 | 0.128 0177 0.184" 0209 | 02337 | 0213  0249" | 02417 0259 0306
2.5 0.096 [0.1367] 0216° 0208 0216 | 0.104 [0.136] 0209° 0205° | 0212 | 0112 0.196° 0269 0270 | 0273
General 5 0.086  0.131" 0.220: 0208 0.211" [ 0.100 0.143: 0226" 0211 02167 | 0138  0.198" 0.273: 0269" 02727
10 0.108  0.145 0.228 0.213 0215 0.122  0.155 0.234 0217 0.221 0.152 0207 0.281 0277 0.281
arc 20 0.148 [0.156;] 0.231‘: 04216:: 0.218: 0.154 [0.163:] 04234*_’ 0.216: 0.220: 0214 0.243: 0.292: 0.292: 0.297:
25 0.123 | 0.195 0.168°  0.209 0.243 0.133  0.192 [0.1697 0.203 0.239 0.117  0.194 0.180 0.212 0.298
Monotone > 0.128 0.200: (0.148:) [0.164:] 0.244:1 0.129 0.196: 0.169:: 0.197: 0.243: 0.135 0.204: 0.166: 0.175: 0.307:
10 0.135 | 0.200 0.170 0.201 0.250 0.125  0.199 0.175 0212 0.253 0.173 0246 0.209 0.229 0.328
20 0.132  0.195" | 0179 0204 02517 | 0138 @ 02137 | 01777  0.1907 | 0253 | 0240 0283 | (0.249)  (0.259") 0332
25 0.063 [0.0807] 0.093" [0.0887] [0.08971] 0.062 (0.076) [0.087 ] [0.0837] [0.085 1] 0.080 [0.1217] 0.128" @ 0.128"  0.130"
General 5 0.064 [0.082:] 0094:: 0A088:: 0089: 0.065 [0.081::] 0.092:: [0,086:] 0.087: 0.096 [0A123‘:] 0134: 0.131: 0133:
10 0.065  0.080 0.092 0.086 0.087 0.069  0.082 0.093 0.088 0.089 0.103  [0.1257] 0.132 0.129 0.131
PCS 20 0.071  [0.0797] 0.090"  0.084™ 0.085: 0.073  [0.080"] 0.093™ 0.086*: 0.087‘: 0.118 (0.127;) [0.1327]  [0.130™] [0.132:‘]
25 0.057 | {0.061} | {0.057} {0.057} [(0.0707) | 0.054 = {0.058} | {0.053} [0.0697] (0.063) [ 0.087  (0.1127) | {0.091}  (0.097) | (0.118")
Monotone 5 0.062 :0071:3 (0.071:) [0.083::] (0.076::) 0.065 (0A078*:) {0.068} [0.080:] [0.081:] 0.082  (0.108 :) (0.089™) (0.095:) [0.117:]
10 0.060 | (0.0717) {0.065™"} [0.075"] [[0.0787] | 0.061  (0.075™) | (0.067") 0.079 [0.080°] | 0.089  [0.109™] | {0.091} {0.097"} [0.1157]
20 0.063  [0.075"] | (0.066)  0.075" | 0.079" | 0.064  [0.078"  (0.074") [0.079"] [0.079"]| 0.116 (0:128") (0.130") (0.130") [0.132"]
MWl General 2% 0.083 0.132: 0A183: 0A170: 0479: 0.092 0139:: 0.205:: 0.185: 0.200: 0.117 0.176: 0207: 0.207: 0228:
5 0.092  0.132 0.188 0.171 0.180 0.104  0.139 0.204 0.185 0.194 0.126  0.186 0.234 0.221 0.233
10 0.106  0.130"  0.179"  0.165°  0.1727 | 0.119  0.146" 0206  0.187°  0.197 | 0.153  0.198" 0237 0226 0237
20 0.119  0.136" 0.180" 0.65" 0.171" | 0.129 0.150" 02117  0.188"  0.194" | 0.194 02147 02417 02357 [0.246"
25 0.105  0.1407 [ (0.1157) 0.138" | 0.164" | 0.122 [0.1627] | {0.1307} [0.1537] | 0.197" | 0.133  [0.1867]  (0.151) (0.1647) | 0.222°
Monotone 3 0.114 0.148*: (0.125:‘) 04144: 0.170: 0.130 04167: [0.145:] 04165; 0.205: 0.142 0.192: 0.154™) [0.175:] 0.231‘:
10 0.122 | 0.161 0.141 0.158 0.182 0.124  0.168™ [[0.139"] 0.158 0.201 0.168  0.205 {0.173}  [0.195™] = 0.239
20 0.124  0.159”" | (0.130")  0.150" | 0.180" | 0.129 0.193™ | 01617 0.1757 | 0.196" | 0202  0238" | {0.205} (0.2137)  0.262"
2.5 0.113  0.165" 0.183" 0.176" 0.195" | 0.111 0.159™  0.185" | 0.182"  0.192” | 0.141 0221 0216~ 02297 0.258"
General 5 0.113 0.162: 0.212*: 01947 0.194" [ 0.118 0.170: 0.218: 0203"  0202" | 0.166 0.239*: 0.271: 0262 0269
10 0.115  0.160 0.209 0.188 0.189 0.121  0.165 0.215 0.194 0.195 0.187 0248 0.270 0.266 0.270
KC3 20 0.134  0.1617 0.216" 04186*: 04133: 0.131 0.166: 0217"  0.191” 0.193: 0.227 0.264:‘ 0.278: 0.274: 0A27s:
25 0.114 | (0.153) {0.117°} (0.146)) | 0.171 0.135  (0.1717) | {0.138}  (0.151) | 0.194 0.154  (0.2017) [{0.161"} [0.2027] | 0.236
Monotone > 0.133 [0.184:] {0.142:} [04171:] 0.197: 0.140 04197: (0.149™) 0.1812 0.212: 0.167 0.224: {0.169} [0.205:] 0.253‘:
10 0.136 | 0.183" [(0.142") 0.167 0.198 0.137  0.175 {0.141} = 0.168 0.192 0.192  0.260 {0.195}  (0.217") = 0.280
20 0.140 0206  0.154"  0.1757  0217" | 0139 @ 0.196" [ [0.1497] 0.176” | 0209 | 0205 0273 | {0.208°} (0.218")  0.288"
2.5 0.103  {0.1147} (0.123") (0.1407) [[0.1367] | 0.092  {0.1057} (0.1117) [0.126"] | [0.1407]] 0.184  (0.2217) (0.2007) | {0.199} [0.2437]
General 5 0.107 (0.124‘:) 0.150:: 0.145: 0.148:: 0.100 (0.115:) [0.128:] [0.142:] [0.146:] 0.205 0.2322 [0.227;] (0.224) 0.252:
10 0.123  [0.138"]  0.171 0.160 0.161 0.126  (0.135")  0.168 0.159 0.158 0220 (0.236™) [0.2557] [0.2497] 0.253
MC2 20 0.145  (0.149)  0.179"  0.168" 0.170: 0145 {0.146} 0.180"  0.166™ 0.167: 0246 {0.248} [0.264" (0.257") [0.262™]
2.5 0.144 | {0.192}  {0.163} | {0.150} (0.2217) | 0.132  {0.1557} | {0.142} @ (0.143) [ (0.1707)| 0.168  (0.195") {0.177} [ {0.175} [0.2207]
Monotone 0.138 {0.164:*) {0.144}  (0.162) (0.183::) 0.148 {0,168:} {0150} | {0.151} (0.180:) 0.171 (0.196::) (0.178)  [0.185] [0.217:]
10 0.125 | (0.1497) | {0.131} [0.145"] [[0.167"] | 0.131  {0.147"} | {0.132} [0.1657] [0.1637]| 0.185  (0.205") | {0.185} [0.198] [0.220™]
20 0.134  (0.150) ' (0.139") [0.150] [0.164] | 0.127  (0.143) | {0.131°} 0.159"  [0.15577] 0221  (0.232") = (0.227) {0.231"} [0.244"]

(O/[1: Curly brackets for effect size 0.5 < A;; < 0.6, parentheses for small effect size 0.6 <A, < 0.7, square brackets for medium effect size 0.7 < A;,

for large effect size 0.8 < Ap < 1.

**Left-tail Wilcoxon signed-rank test, significant at the level of 0.01; *Significant at the level of 0.05.
! The minimum RMSEs in each condition are in green; the maximum RMSEs are in red; while the 2nd smallest RMSEs are marked in blue.

Left-tail Wilcoxon signed-rank test is also used to test if the
RMSEs are reduced with imputation ordering, as well as if the RM-
SEs are reduced with feature relevance considered in measuring
distance. For example, in dataset camel, under the general MP and
MCAR, the average RMSEs of the CVBKNNI is measured as 0.105
(Also shown in Table 7), which is significantly less than that with-
out feature relevance (0.112) at the significant level of 0.05. Simi-
larly, if imputation ordering is excluded in the CVBKNNI, the corre-
sponding RMSEs (Avg: 0.106) after the CVBKNNI with feature rele-

< 0.8, and no brackets

vance are significantly less than those (Avg: 0.113) without feature
relevance. Therefore, from the results, if the component of feature
relevance is excluded, the imputation accuracy of the CVBKNNI is
reduced in most cases. However, if feature relevance is included,
the average imputation performance of the CVBKNNI with ordering
is slightly better than that without ordering, especially when the
MM is NI Imputation ordering may not have an overall significant
impact on the performance of the CVBKNNI, but at least, it reduces
the average RMSE in general.



240

RMSEs

RMSEs

0.3

02

0.1

03

02

0.15

01

J. Huang et al./The Journal of Systems and Software 132 (2017) 226-252

Table 8

Counts and ratios of Vargha-Delaney’s Ay, statistic from the overall RMSE results.

Data Imputation approaches  Counts and ratios of Vargha-Delaney’s A;, Effect Size
05<A, <06 06<Ap<07 07<Ap<08 08<Ap<l1
camel  CVBKNNI vs. FWGKNNI ~ 0/24! 0/24 0/24 24/24
CVBKNNI vs. ICKNNI 0/24 0/24 6/24 18/24
CVBKNNI vs. DkNNI 0/24 0/24 0/24 24/24
CVBKNNI vs. MEI 0/24 0/24 0/24 24/24
ant CVBKNNI vs. FWGKNNI  0/24 0/24 1/24 23/24
CVBKNNI vs. ICKNNI 0/24 1/24 3/24 20/24
CVBKNNI vs. DkNNI 0/24 0/24 0/24 24/24
CVBKNNI vs. MEI 0/24 0/24 0/24 24/24
ivy CVBKNNI vs. FWGKNNI  0/24 0/24 0/24 24/24
CVBKNNI vs. ICKNNI 0/24 1/24 324 20/24
CVBKNNI vs. DkNNI 0/24 0/24 0/24 24/24
CVBKNNI vs. MEI 0/24 0/24 0/24 24/24
arc CVBKNNI vs. FWGKNNI  0/24 0/24 4[24 20/24
CVBKNNI vs. ICKNNI 0/24 2/24 1/24 21/24
CVBKNNI vs. DkNNI 0/24 1/24 1/24 22[24
CVBKNNI vs. MEI 0/24 0/24 0/24 24/24
PC5 CVBKNNI vs. FWGKNNI  3/24 8/24 11/24 2/24
CVBKNNI vs. ICKNNI 6/24 6/24 2/24 10/24
CVBKNNI vs. DkNNI 2/24 324 9/24 10/24
CVBKNNI vs. MEI 0/24 4/24 10/24 10/24
MW1 CVBKNNI vs. FWGKNNI  0/24 0/24 2/24 22[24
CVBKNNI vs. ICKNNI 324 524 2/24 14/24
CVBKNNI vs. DkNNI 0/24 2/24 324 19/24
CVBKNNI vs. MEI 0/24 0/24 0/24 24/24
KC3 CVBKNNI vs. FWGKNNI  0/24 3/24 1/24 20/24
CVBKNNI vs. ICKNNI 8/24 2/24 1/24 13/24
CVBKNNI vs. DkNNI 0/24 4[24 3/24 17/24
CVBKNNI vs. MEI 0/24 0/24 0/24 24/24
MC2 CVBKNNI vs. FWGKNNI  9/24 13/24 1/24 1/24
CVBKNNI vs. ICKNNI 9/24 6/24 4/24 5/24
CVBKNNI vs. DkNNI 524 524 8/24 6/24
CVBKNNI vs. MEI 0/24 4[24 13/24 724
1 There are 2 MPs, 3 MMs and 4 MRs, in total, 24 scenarios.
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Fig. 4. The imputation RMSEs of data ant at MR = 5%, range in [0.07, 0.32].
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Table 9 Table 11
Average algorithm running time in seconds on 4 selected datasets. The comparison between general pattern and monotone pattern at the
significance level of 0.05'.

Data MR (%)  Avg. algorithm running time (in seconds)

CVBKNNI FWGKNNI  ICKNNI DKNNI MEI

Data MM General and monotone

MR=25% MR=5% MR=10% MR=20%

camel 2.5 50.8839  0.7549 0.0082  0.0091  0.0004
5 86.1633  0.9416 0.0110 00143  0.0004 camel MCAR 345 235 2345 2345
10 129.7130 13375 0.0165  0.0224  0.0004 MAR 1245 125 345 345
20 167.8360  1.8559 0.0282 00385  0.0004 NI 345 345 12345 1235
ivy 25 37.0678  0.8673 0.0141 00094  0.0002 ant MCAR 2345 1235 1235 2345
5 489862  0.7437 0.0137 00076  0.0002 MAR 1235 1235 12345 2345
10 88.9723  1.0780 0.0112 00138  0.0002 NI 345 345 1235 125
20 111.3102  1.3277 0.0170 00194  0.0002 ivy MCAR 1235 12345 1235 12345
PC5 25 451913  0.6650 0.0087 00107  0.0004 MAR 12345 1235 12345 2345
5 741314 0.8746 0.0126 00186  0.0004 NI 1345 1235 2345 1235
10 103.4838  1.1381 0.0172 00223  0.0004 arc MCAR 23 12345 1235 1235
20 147.9999  1.5946 0.0290  0.0409  0.0004 MAR 1235 1235 235 12345
KC3 25 11.7655  0.3755 0.0027 00023  0.0002 NI 34 345 12345 2345
5 21.0672  0.4802 0.0036  0.0040  0.0002 PC5 MCAR 34 3 2345 1345
10 339020 0.7103 0.0066  0.0093  0.0002 MAR 235 N/A 3 13
20 515934  0.8911 0.0101 00127  0.0002 NI N/A 34 34 N/A
MW1  MCAR 13 13 123 234
MAR 13 123 234 234
NI 34 34 34 234
5.3. Parameter setting in CVBkNNI KC3 MCAR 3 3 134 235
MAR 3 13 134 2345
Moreover, the selected parameter combinations in CVBKNNI for MC2 I\N/[IC AR w: ;‘/1 A ;4 34
estimating missing values in a dataset are summarized as well. MAR N/A 1 N/A 3
Table 13 lists the mostly selected distance measure, K and adapta- NI N/A 4 12345 N/A

tion method under each missingness scenario in the 30-time repli- .
cated camel, ant, PC5 and MW1 datasets.

The results in Table 13 show that GRA-based distance measure
obviously takes the majority. For relatively small-sized MW1 data,

1=CVBKNNI, 2 =FWGKNNI, 3 =ICkNNI, 4 =DkNNI, 5= MEL

the use of GRA-based distance measure is slightly overwhelmed dani measure is more popular than both mean and IDWM. Neither
by Manhattan distance. For the choice of K, most of the imputa- IRWM nor median is selected. Figs. 10 and 11 further present the
tion parameters prefer K=3. As for the adaptation method, Du- histograms of the distribution of each utilized parameter. The re-
Table 10
The comparison between each pair of MMs at the significance level of 0.05'.
Data MP MM MR =2.5% MR =5% MR = 10% MR = 20%
MAR NI MAR NI MAR NI MAR NI

camel  General MCAR N/A 12345 N/A 12345 NJA 12345 NJA 12345

MAR - 12345 - 12345 - 12345 - 12345

Monotone ~ MCAR 2 12345 2 12345 34 12345 34 12345

MAR - 245 - 345 - 12345 - 12345

ant General MCAR 45 12345 45 12345 NJA 12345 NJA 12345

MAR - 12345 - 12345 - 12345 - 12345

Monotone MCAR N/A 12345 N/A 5 34 12345 34 12345

MAR - 3 - 5 - 12345 - 12345

ivy General MCAR N/A 12345 N/A 12345 N/A 12345  N/A 12345

MAR - 12345 - 12345 - 12345 - 12345

Monotone  MCAR 34 25 34 12345 NJA 125 234 12345

MAR - 2345 - 12345 - 125 - 12345

arc General MCAR  N/A 2345 N/A 12345 1 12345 N/A 12345

MAR - 2345 - 12345 - 12345 - 12345

Monotone MCAR N/A 5 4 5 N/A 12345 NJA 12345

MAR - 5 - 5 - 12345 - 12345

PC5 General MCAR N/A 12345 N/A 12345 NJA 12345 NJA 12345

MAR - 2345 - 12345 - 12345 - 12345

Monotone MCAR N/A 4 N/A  NA N/A 1235 N/A 12345

MAR - N/A - N/A - 12 - 12345

MW1  General MCAR N/A 1245 N/A 12345 12345 12345 12345 12345

MAR - 1245 - 12345 - 12345 - 12345

Monotone  MCAR N/A  NJA 145 1235 N/A 12345 12345 12345

MAR - N/A - 2 - 12345 - 12345

KC3 General MCAR N/A 1245 N/A 12345 NJA 12345 5 12345

MAR - 12345 - 12345 - 12345 - 12345

Monotone  MCAR N/A  NJA N/A  N/A N/A 12345 NJA 12345

MAR - N/A - N/A - 12345 - 12345

MC2 General MCAR 1 1235 3 12345 N/A 12345 N/A 12345

MAR - 1235 - 12345 - 12345 - 12345

Monotone MCAR N/A  NJA N/A  N/A N/A 1234 N/A 12345

MAR - N/A - N/A - 1235 - 12345

1

1=CVBKNNI, 2 = FWGKNNI, 3 =ICkNNI, 4 = DkNNI, 5= MEIL



0.22

0.2

0.18

0.12

RMSEs

0.1

0.08

0.04

0.02

RMSEs
1)
N

sults on
rameter

J. Huang et al./The Journal of Systems and Software 132 (2017) 226-252

Table 12

A comparison in terms of different configurations of CVBKNNI at MR = 10%.

Data MP MM w/ MlI-based feature relevance w/o Ml-based feature relevance
w/ imputation w/o imputation w/ imputation wj/o imputation
ordering' ordering ordering ordering
camel  General MCAR  0.105> 0.106 0.112* 0.113*
MAR 0.107 0.107 0.120* 0.120*
NI 0.134 0.154* 0.134 0.154*
Monotone ~ MCAR  0.112 0.113 0.114 0.115
MAR 0.114 0.116 0.121* 0.127*
NI 0.149 0.151* 0.149 0.151*
ant General MCAR  0.110 0.109 0.115* 0.116*
MAR 0.107 0.107 0.118* 0.118*
NI 0.139 0.141% 0.150* 0.153*
Monotone ~ MCAR  0.125 0.125 0.138* 0.135
MAR 0.123 0.125 0.138* 0.132*
NI 0.155 0.157 0.161* 0.164*
PC5 General MCAR  0.065 0.068" 0.082* 0.080*
MAR 0.069 0.069 0.069 0.069
NI 0.103 0.104 0.104 0.107
Monotone ~ MCAR  0.060 0.061 0.067 0.069"
MAR 0.061 0.061 0.078* 0.075*
NI 0.089 0.098* 0.090 0.099*
MW1 General MCAR  0.106 0.106 0.106 0.108
MAR 0.119 0.120 0.125* 0.123
NI 0.153 0.159* 0.153 0.159*
Monotone MCAR 0.122 0.124 0.122 0.122
MAR 0.124 0.126 0.129* 0.129*
NI 0.168 0.182* 0.183* 0.184*
1 CVBKNNI configuration.
2 The results in terms of RMSEs are consistent with those in Table 7.
* Left-tail Wilcoxon signed-rank test at the significant level of 0.05.
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Fig. 7. The imputation RMSEs of data PC5 at MR =20%, range in [0.02, 0.22].

overall the best solution.

figures are consistent with Table 13. A combination of pa-
setting (GRA-based distance measure, K=3, with Dudani
adaptation measure) is overall the most frequent for the imputa-
tion. However, there is still no guarantee that any combination is
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Since the estimator of GRA-based distance measure, K=3 with
Dudani adaptation method is the most widely selected setting
in most cases, this work also evaluates the imputation approach
with this selected estimator predefined. This new approach is

named as G3D, representing the three predefined parameters. Like
Section 5.1, the imputation performance of G3D on each dataset is
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Fig. 9. The imputation RMSEs of data MW1 at MR = 20%, range in [0.05, 0.3].
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Table 13
The mostly selected parameter setting under each scenario.
Data examples ~ MP MR (%) MM
MCAR MAR NI
Distance K Adaptation  Distance K Adaptation  Distance K  Adaptation
camel General 25 GRA! 3 Dudani GRA 3 Dudani GRA 3 Dudani
5 GRA 3 Dudani GRA 3 Dudani GRA 5 Dudani
10 GRA 3 Dudani GRA 3 Dudani GRA 3 Dudani
20 GRA 3 Dudani GRA 3 Dudani GRA 3 Dudani
Monotone 2.5 GRA 5 IDWM GRA 7 IDWM GRA 5 Dudani
5 GRA 5 IDWM GRA 5 IDWM GRA 3 Dudani
10 GRA 7 IDWM GRA 5 IDWM GRA 3 Dudani
20 GRA 5 IDWM GRA 3 Dudani GRA 3 Dudani
ant General 25 GRA 5 Dudani GRA 5 Dudani GRA 5 Dudani
5 GRA 3 Dudani GRA 3 Dudani GRA 5 Dudani
10 GRA 3 Dudani GRA 3 Dudani GRA 3 Dudani
20 GRA 3 Dudani GRA 3 Mean GRA 3 Dudani
Monotone 2.5 GRA 19 IDWM GRA 11 IDWM GRA 5 Dudani
5 GRA 19 Dudani GRA 17 IDWM GRA 5 Dudani
10 GRA 17 Dudani GRA 7 IDWM GRA 5 IDWM
20 GRA 7 IDWM GRA 15 Dudani GRA 3 Dudani
PC5 General 25 GRA 3 Dudani GRA 3 Dudani GRA 3 Mean
5 GRA 3 Mean GRA 3 Dudani GRA 3 Mean
10 GRA 3 Dudani GRA 3 Dudani GRA 3 Dudani
20 GRA 3 Mean GRA 3 Mean GRA 3 Mean
Monotone 2.5 GRA 3 Mean GRA 3 Dudani GRA 3 Dudani
5 GRA 3 Dudani GRA 3 Mean GRA 3 Dudani
10 GRA 3 Mean GRA 3 Mean GRA 3 Mean
20 GRA 3 Dudani GRA 1 Mean GRA 3 Mean
MW1 General 2.5 Manhattan 3 Dudani Manhattan 3 Dudani Manhattan 3 Dudani
5 Manhattan 3 Dudani GRA 3 Dudani Manhattan 3 Dudani
10 Manhattan 3 Dudani GRA 3 Dudani Manhattan 3 Dudani
20 GRA 3 Dudani Euclidean 3 Dudani GRA 3 Dudani
Monotone 2.5 Manhattan 5 Dudani Manhattan 3 Dudani Manhattan 3 Dudani
5 Manhattan 5 Dudani Manhattan 5 Dudani Manhattan 3 Dudani
10 GRA 3 Dudani Manhattan 3 Dudani Manhattan 3 Dudani
20 Manhattan 3 IDWM Manhattan 3 IDWM GRA 3 Dudani
! GRA denotes the distance measure of d(x;, x;) = 1 — GRG(x;, x;), as introduced in Section 3.2.1.
Table 14
The imputation performance of G3D compared with others'?,
MR G3D MR G3D
Data MP o) [T MCAR MAR NI Data MP %) | MCAR MAR NI
2.5 0.098%%> 10.091%%* [ 0.115%%> 2.5 0.065%*%> 0.069°%> 0.086>*
General > 0403?2':’: 0.097:2’:-2 0.1242'::5 Genral 5 0.0692‘2':’: 0.0682'2':': 0.0972’2‘1*2
10 0.111%* 0.117>* | 0.139>>* 10 0.066°"* 0.070°>* 0.104°°*
camel 20 0.137°*% | 0.136** | 0.171%*4* PCS 20 0.072%% | 0.074%34° | 0.119"%34°
2.5 0.110%%? 0.127** | 0.130***° 2.5 0.058° 0.061 0.091°
Monotone 5 0.1232‘2'1’2 0.1352;3;‘"5 0.132%43 Monotone 5 0.063%* 0.070° 0.090%4°
10 | 0.128% 0.131%* | 0.153%% 10 0.066* 0.067%* | 0.093***
20 0.132%* 1 0.135%* | 0.176***° 20 0.067>* | 0.067%** | 0.118"23*
25 | 0.104%% [ 0.113**% | 0.123% 2.5 | 0.088%% [ 0.094*3% [ 0.112%%%
General > 0.11223«:’: 0.1162’2’:’2 0.137?2:": General 5 0.099?2«:’: 0.111?2*:’: 0.130?2:‘5
10 0.1225>* 0.1197>* | 0.150>>* 10 0.1117>% 0.1275>% 0.161°°*
ant 20 0.139%47 0.136** | 0.172*%** | mMw1 20 0.131%34° | 0.137%3*° | 0.196***°
25 0.133%% 0.141*% | 0.148%% 25 0.120%* | 0.133** 0.145°
Monotone 5 0.143%%% | 0.151*% | 0.147%4° Monotone 5 0.127* 0.140%* | 0.154**°
10 | 0.141%% | 0.141>* | 0.166>** 10 0.132*%° | 0.137>*° | 0.173>*
20 | 0.144>% | 0.143235 | 0.180%**° 20 0.129%* | 0.139%%* | 0.206>*
2.5 0.091%*%> 1 0.099%%> | 0.114*>* 2.5 0.127%*%> 1 0.110%* | 0.141***
General > 0.0952’2’:': 0.0992’2’:-2 0.1282‘2‘2 General 5 0.1252'2':’: 0.1232’2':’2 0.1672'3‘:'2
10 0.112%>% 0.114%>% 0.151 10 0.125%>* 0.1274>% 0.188>>"
. 20 0.140%4° 0.142°4 | 0.189%34° 20 0.138%34° | 0.141%3%° | 0.220*3%°
vy 25 | 00347 [ 0.26 | 0142005 | KO 25 0.127 0.136" | 0.159"
Monotone 5. | 01197247 10.132247 | 0,147 Monotone 0.147°% 1014455 [ 10.168°%
10 0.129%>% 0.134>>% 1 0.160*>* 10 0.146°* 0.140°* 0.204°
20 0.131%% | 0.136>3*° | 0.194'2343 20 0.147%43 0.149%4° 0.205%°
25 | 0.099%% [0.100%* | 0.116** 2.5 0.110 0.099° 0.192>
General > 0.089:’:’: 0.09412;33"';‘55 0.1432:": General 5 0.1322 0.126 0.21122;‘;55
10 0.1067*  10.116>"* |  0.149™" 10 0.151 0.146° 02175
arc 20 | 0.146™%° | 0.147224° | 02122347 ) 20 0.155*° | 0.155% | 0237
2.5 [ 0.104™3% 10.130%% [ 0.122%%* 25 0.160 0.123° 0.185%
Monotone 5 0.129:3’:': 0.1312’2’:'2 0.1402'2‘:'2 Monotone 5 0.138455 0.1362 0.2022
10 0.135%% 0.130>>* | 0.174>% 10 0.125% 0.131 0.200
20 | 0.136%*° | 0.144%3% | 0.215%34° 20 0.146>° 0.134%4° 0.231%

1 Filled in green: G3D performs better than CVBKNNI; Filled in blue: G3D performs better than FWGKNNI (Compare with Table 8).
2 1=CVBkNNI, 2 =FWGKNNI, 3 =ICkNNI, 4=DkNNI, 5=MEL
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Fig. 10. The parameter distribution of CVBKNNI on data ivy at MR = 10%.

summarized in terms of various missingness scenarios. The results
are shown in Table 14. The performance is also compared with
CVBKNNI, FWGKNNI, ICKNNI, DkNNI and MEL As shown in Table 14,
the imputation accuracy of G3D is consistent in general, especially
in object-oriented datasets. It is less superior than CVBkKNNI but
superior to FWGKNNI, ICKNNI, DkNNI and MEI in most cases. Al-
though G3D is not the optimal solution by all means, it is recom-
mended being applied in the incomplete software quality datasets
as an alternative to the traditional KNN imputation strategies. It
answers to RQ3.

Left-tail Wilcoxon signed-rank tests are also used to verify if
the performance of G3D. For example, in camel data, under the
missingness scenario of general MP, MCAR mechanism and 2.5%

MR, the average RMSE of 30 replications is 0.098, the ‘2,3,4,5" in
the top-right position denotes that the corresponding 30 RMSE
values from G3D imputation are significantly less than that from
FWGKNNI, ICKNNI, DkNNI and MEI (See the footnote of Table 14).
Therefore, in general, the performance of G3D is better than that
of FWGKNNI, ICKNNI, DkNNI and MEI, especially in object-oriented
datasets. In arc dataset, some of the average RMSE values are even
smaller than that of CVBKNNI; however, this relationship is not
significant. In the procedural datasets, the size of which is rela-
tively smaller than that of object-oriented datasets. G3D is more
frequently not the overall suboptimal imputation. All in all, there
is no straightforward evidence that G3D would perform differently
under different MMs. It performs worse than ICKNNI in procedural
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Fig. 11. The parameter distribution of CVBKNNI on data KC3 at MR = 10%.

datasets if the MP is monotone. But in general, G3D, a KNN im-
putation approach based on MI-based GRA distance measure, K=3
with Dudani adaptation, is better than FWGKNNI, ICKNNI, DkNNI
and MEI in most cases in terms of imputation accuracy.

5.4. Classification accuracy

This part assesses the imputation effectiveness from another
perspective, which compares different ML classifiers (KNN, Dis-
criminant analysis, Naive Bayes and SVM) built on the complete
data constructed after the imputation. It answers to RQ4 to com-
pare and verify CA. Since the classification models cannot be ex-
haustively applied, most studies regarded this procedure as an aux-
iliary step evaluating the imputation performance.

To present the impact of imputation on fault-proneness classifi-
cation accuracy, four ML classifiers on the two relatively large im-
puted datasets: PC5 and camel, are conducted. To save space, only
the data versions with MR=10% are analyzed for comparison. The
other missingness scenarios are kept as well. For each classifier, CA
is computed after a 10-fold cross-validation. G3D is also included
in the experiment.

Table 15 presents the results of CA. Note that ‘No imputation’
means we use the original data (w/o missingness simulation) for
classification. ‘No imputation’, therefore, is a benchmark in the
comparison. The imputed data is less distorted if the classification
performance on which is as usual as that on the corresponding
original one. The results clearly show that the classifiers based on
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Table 15
The comparison of CA using different ML classifiers on data camel and PC5 with MR = 10%.
Classifiers and MP

Data MM Imputation General Monotone

Approaches KNN Discriminant Naive SVM KNN Discriminant Naive SVM
(K=5) Analysis Bayes (K=5) Analysis Bayes

No imputation 0.770" 0.785 0.775 0.792 0.776 0.786 0.770 0.792
CVBANNI 0.794 0.798 0.776 0.794 0.795 0.796 0.774 0.794
G3D 0.793 0.792 0.768 0.793 0.792 0.794 0.771 0.793
MCAR FWGKNNI 0.773 0.791 0.776 0.792 0.790 0.785 0.769 0.793
ICANNI 0.780 0.795 0.777 0.794 0.789 0.794 0.773 0.793
DANNI 0.779 0.793 0.771 0.793 0.779 0.795 0.769 0.793
MEI 0.771 0.792 0.771 0.793 0.770 0.791 0.770 0.791
No imputation 0.770 0.786 0.771 0.792 0.776 0.783 0.771 0.793
CVBANNI 0.794 0.797 0.772 0.794 0.795 0.796 0.777 0.794
G3D 0.794 0.793 0.772 0.794 0.795 0.795 0.768 0.794
camel MAR FWGANNI 0.784 0.792 0.770 0.793 0.790 0.785 0.770 0.793
ICANNI 0.785 0.797 0.783 0.797 0.789 0.788 0.773 0.793
DANNI 0.787 0.792 0.770 0.794 0.779 0.792 0.768 0.793
MEI 0.782 0.785 0.769 0.792 0.770 0.784 0.771 0.792
No imputation 0.776 0.783 0.775 0.793 0.774 0.791 0.773 0.792
CVBANNI 0.795 0.794 0.775 0.794 0.792 0.796 0.774 0.794
G3D 0.794 0.798 0.774 0.794 0.794 0.797 0.771 0.793
NI FWGKNNI 0.785 0.789 0.775 0.794 0.783 0.792 0.770 0.793
ICANNI 0.789 0.793 0.780 0.795 0.784 0.792 0.771 0.793
DANNI 0.780 0.794 0.772 0.792 0.783 0.790 0.765 0.794
MEI 0.776 0.788 0.768 0.792 0.772 0.786 0.768 0.794
No imputation 0.768 0.776 0.705 0.779 0.771 0.774 0.705 0.779
CVBANNI 0.781 0.783 0.709 0.780 0.790 0.781 0.708 0.780
G3D 0.778 0.779 0.707 0.780 0.782 0.782 0.712 0.781
MCAR FWGANNI 0.772 0.772 0.706 0.780 0.781 0.775 0.702 0.780
ICANNI 0.787 0.783 0.713 0.781 0.782 0.779 0.706 0.780
DANNI 0.785 0.776 0.702 0.780 0.779 0.777 0.703 0.780
MEI 0.766 0.774 0.709 0.780 0.760 0.779 0.706 0.780
No imputation 0.775 0.768 0.699 0.780 0.775 0.776 0.701 0.779
CVBANNI 0.776 0.786 0.704 0.781 0.786 0.789 0.707 0.780
G3D 0.785 0.779 0.705 0.781 0.777 0.776 0.710 0.781
PC5 MAR FWGANNI 0.765 0.773 0.699 0.779 0.782 0.776 0.706 0.779
ICANNI 0.786 0.786 0.704 0.780 0.776 0.775 0.710 0.779
DANNI 0.785 0.778 0.700 0.779 0.773 0.781 0.698 0.779
MEI 0.763 0.773 0.700 0.779 0.758 0.778 0.703 0.779
No imputation 0.776 0.775 0.706 0.779 0.768 0.774 0.694 0.779
CVBANNI 0.783 0.780 0.711 0.781 0.776 0.788 0.700 0.781
G3D 0.779 0.786 0.704 0.780 0.772 0.777 0.697 0.779
NI FWGANNI 0.759 0.775 0.709 0.780 0.768 0.777 0.695 0.780
ICANNI 0.787 0.784 0.717 0.784 0.776 0.776 0.700 0.779
DANNI 0.773 0.777 0.708 0.780 0.774 0.775 0.698 0.780
MEI 0.756 0.775 0.703 0.780 0.754 0.772 0.693 0.779

1The maximum CAs in each condition are in green; the minimum CAs are in red; while the 2nd largest CAs are marked in blue.

either the original dataset or the incomplete one with MEI used
generally present relatively worse classification performance. In
terms of the CA after imputation, CVBKNNI and G3D are generally
superior to others in most cases. And the ICKNNI has a suboptimal
performance. In terms of the classifiers, KNN, Discriminant analy-
sis, and Naive Bayes are more sensitive to imputation approaches
than SVM. The performance of SVM is even not sensitive to MM or
MP. In general, the results show that appropriate imputation ap-
proach could be beneficial to the CA of specific classifier. To sum,
when using CVBKNNI and G3D as the imputation approach on the
incomplete data, the classification bias could also be maintained or
even reduced in commonly used classification tasks.

6. Threats to validity

The threats to validity are generally distributed into four
groups: conclusion, internal, construct, and external validity. The
conclusion validity is related to the ability to draw significant cor-
rect conclusions; regarding which, we carefully applied the statis-
tical tests, showing statistical significance for the obtained results.
Moreover, we have used two relatively large datasets (camel and
PC5) to mitigate the threats related to the number of observations
composing the datasets.

The construct validity refers to the agreement between a theo-
retical concept and a specific measure. As to the evaluation of dif-
ferent K nearest neighbor (KNN) imputation approaches, we made
use of one balanced performance measure and 8 public software
quality datasets. The data repository used in the work has been
previously used in numerous empirical quality studies.

As the study concentrates on a structural investigation of
a novel KNN imputation approach, the internal validity on ex-
periment design is presented in one aspect: CVBKNNI is a
computation-consuming way to improve imputation accuracy.
However, if the imputation accuracy is the top priority, the value
of CVBKNNI is then obvious. The proposal of G3D stands as an al-
ternative to mitigate this issue as well.

The threats to external validity are controlled well in this study.
Eight object-oriented and procedural software quality datasets are
examined in the study. Meanwhile, 3 missingness mechanisms
(MMs), 2 missingness patterns (MPs), and 4 missingness ratios
(MRs) are also considered during missingness simulation for test-
ing the performance of the proposed imputation approach under
various conditions. One issue is that we did not consider adopting
more different kinds of imputation approaches, for example, the
Bayes multiple imputation (BMI), as the competitor to CVBKNNI.
This study only focuses on the improvement and comparison of
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KNN related imputation approaches. In the future work, more com-
parison studies shall be explored.

7. Conclusions and future work

This empirical study proposes a novel K Nearest Neighbor
(KNN) based imputation approach: called CVBKNNI, and its im-
proved performance has been validated in the software quality
prediction domain. CVBKNNI is different to other approaches since
it does not have predetermined fixed estimator, and instead it
adaptively selects the optimal estimator for each missing value in
the dataset. The estimator of CVBKNNI includes a pool of three dis-
tance measures, multiple choices of K values together with five
adaptation methods. Our result shows that CVBKNNI outperforms
other competing approaches in overall imputation accuracy. From
the returned estimator of the CVBKNNI, the optimal parameter
combination of KNN imputation for software quality dataset is
then correctly determined, which is named as G3D. Further evalua-
tions on the CVBKNNI have been performed, specifically on incom-
plete datasets and compared several other competing approaches.

In particular, 4 findings are noteworthy from the study:

(1) Our proposed cross-validation based KNN imputation could
further improve the imputation performance on software
quality datasets, in which calculating the feature relevance
during measuring the pair distance is very necessary.

(2) The impact of missingness mechanisms and patterns on
imputation performance exists. Non-ignorable missingness
mechanism could significantly impact the imputation accu-
racy. The impact of missingness pattern is related to the
dataset.

(3) The performance of fault-proneness classification is accept-
able when CVBKNNI was used as the preprocessing method.

(4) For KNN imputation using K=3 and Dudani adaptation, to-
gether with the distance measure based on mutual infor-
mation weighted grey relational analysis, is considered ideal
and recommended for incomplete software quality datasets.

CVBKNNI could be easily applicable to other domains in soft-
ware engineering, which are subject to further investigations in
our future work. Theoretically it would further improve imputa-
tion accuracy when dealing with incomplete datasets, but also
helps to find the optimal KNN imputation algorithm under differ-
ent circumstance. Besides, determining more meaningful parame-
ter configurations or components to further improve the accuracy
of CVBKNNI is also being investigated.
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