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a b s t r a c t 

Being able to predict software quality is essential, but also it pose significant challenges in software engi- 

neering. Historical software project datasets are often being utilized together with various machine learn- 

ing algorithms for fault-proneness classification. Unfortunately, the missing values in datasets have nega- 

tive impacts on the estimation accuracy and therefore, could lead to inconsistent results. As a method 

handling missing data, K nearest neighbor ( K NN) imputation gradually gains acceptance in empirical 

studies by its exemplary performance and simplicity. To date, researchers still call for optimized param- 

eter setting for K NN imputation to further improve its performance. In the work, we develop a novel 

incomplete-instance based K NN imputation technique, which utilizes a cross-validation scheme to opti- 

mize the parameters for each missing value. An experimental assessment is conducted on eight qual- 

ity datasets under various missingness scenarios. The study also compared the proposed imputation ap- 

proach with mean imputation and other three K NN imputation approaches. The results show that our 

proposed approach is superior to others in general. The relatively optimal fixed parameter settings for 

K NN imputation for software quality data is also determined. It is observed that the classification accu- 

racy is improved or at least maintained by using our approach for missing data imputation. 

© 2017 Elsevier Inc. All rights reserved. 
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. Introduction 

In the domain of empirical software engineering and its related

oftware quality estimation, researchers have devoted to predicting

mportant quality-related variables, such as the fault count or if the

ault-proneness exists, etc. Most empirical software engineering es-

imation builds statistical or machine learning models on histori-

al data ( Sentas and Angelis, 2006 ). Meanwhile, the software com-

unity has accumulated a myriad of software project quality re-

ated data for academic research, such as the PROMISE data repos-

tories. Unfortunately, due to scarcity of software engineering data

 Myrtveit et al., 2001 ), the significant occurrence of missing values

n software datasets or known as “missingness” gradually becomes

n unavoidable issue ( Khoshgoftaar and Van Hulse, 2008 ). In ad-

ition, many properties in software engineering datasets are often

ndirectly measured, which leads to more frequent and complex

issingness pattern to occur ( Mockus, 2008 ). 

Many estimation models cannot directly handle the missing

ata values; therefore, it leaves the data-preprocessing step very

ecessary for modern estimation process in software engineer-
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ng. For example, a well-known technique called listwise dele-

ion, had been widely adopted for handling missing values dur-

ng data-preprocessing, but it potentially impairs the complete-

ess of data and introduces undesirable biases in estimation

 Huang et al., 2015 ). By contrast, missing data imputation meth-

ds replace missing variables by artificial estimates ( Song et al.,

008 ); at the same time maintain the data completeness. Nowa-

ays, more complex imputation approaches, such as random for-

st ( Stekhoven and Bühlmann, 2012 ), neural network ( Rey-del-

astillo and Cardeñosa, 2012 ), decision trees ( Deb and Liew, 2016 ),

nd low-rank matrix factorization ( Jing et al., 2016 ), have been pro-

osed to handle the missingness issue in the applications of bioin-

ormatics, education, ecology, energy, traffic and software engineer-

ng, etc. 

When compared to mean imputation (MEI), novel approaches

re still lacking popularity in software engineering estimation (SEE)

 Khatibi Bardsiri et al., 2013; Kocaguneli et al., 2013a ), one of which

s the K nearest neighbor ( K NN) imputation. The main advantage of

 NN imputation is that it is simple and free of parametric assump-

ions required otherwise. It could adapt to distinct types of vari-

bles or features known to be important in estimation. K NN im-

utation had been specially applied in real-world application as a

ata-preprocessing step in governmental or national surveys, such

s reported in Chen and Shao (20 0 0) . Its performance has also

een widely analyzed in the domain of SEE ( Strike et al., 2001;

wala et al., 2005 ). Since most of the empirical software engi-

eering datasets are relatively small or medium-sized, the newer

obust approaches, like random forest, neural network, and low-

ank matrix factorization as less than relevant. The cost of apply-

ng these sophistical approaches in practice is also unpredictable.

he majority of the previous SEE studies only applied K NN imputa-

ion with fixed parameters when dealing with incomplete software

easurement data. 

Song and Shepperd (2007) once evaluated a K NN imputation

pproach with several key features classification in small-sized

oftware effort datasets. More recently, Van Hulse and Khoshgof-

aar (2014) extended the flexibility of K NN imputation for the soft-

are quality datasets, using incomplete-instance for missing data

mputation instead of complete-instance to provide a relatively su-

erior performance. Unfortunately, the parameter setting of the

ormer K NN imputation approaches was generally predetermined

or each imputation, regardless of its features or the types of miss-

ngness being imputed. While in the specialized K NN imputation

tudies, numerous efforts have been made to improve the impu-

ation performance. The major improvement drives from two re-

earch directions ( Zhang, 2012 ): 

- Searching for the most similar K nearest neighbors for a given

missing value; 

- Final adaptation from the selected neighbors. 

Both two directions are about the parameter setting in K NN es-

imator, including the distance measure, the choice of K , and the

daptation method. The 1st direction is the K NN algorithm ker-

el. Literature review shows that the current rule of searching the

eighbors in SEE is mostly based on Minkowski distance measure.

ome specialized studies of K NN imputation show that the grey

elational analysis (GRA) based distance, is more appropriate to

apture the ‘nearness’ ( Huang and Lee, 20 04 ). Caruana (20 01) has

ointed out that the K NN imputation could not always be supe-

ior with any possible distance measures. The choice of the K is

ubject to controversy recently. The related studies often prepopu-

ate that the K from limited experience and empirical studies, other

esearchers argues the potential choices of K to be 
√ 

N , N > 100

 Lall and Sharma, 1996 ), where N is the sample size of the dataset

eing investigated. 
The 2nd direction is computation using the selected neighbors.

issing data imputation using median/mean is a naive and effec-

ive adaptation in some cases. Using rank or distance as weight is

lso popular in literature ( Kocaguneli et al., 2012b ). Unfortunately,

here is no such a guarantee that one of these adaptations results

he best option. Therefore, researchers turned to build ensembles

f multi-adaptation methods to empirically find the best one un-

er certain circumstance ( Kocaguneli et al., 2012b; 2013b ). 

In this study, we focus and present a novel approach named as

ross-validation based K NN imputation (CVB k NNI) to conquer the

ajor drawback of existing K NN imputation approaches: an inabil-

ty of adapting the parameter setting to the data. CVB k NNI utilizes

 cross-validation scheme to search for the optimal parameter set-

ing for estimating each missing value. CVB k NNI is also compared

ith three other K NN imputation approaches in the presence of

rtificial missingness scenarios. This empirical study: 

- Introduce CVB k NNI, a novel approach with an adaptive param-

eter setting, applicable to software quality prediction and mod-

eling. The internal design of CVB k NNI includes both imputation

ordering and various parameters of K NN imputation estimator.

Based on the estimators returned from the CVB k NN algorithm,

a fixed parameter setting is discovered to be recommendable

for K NN imputation in software quality datasets. 

- Validate that the missingness scenario could be a critical fac-

tor that significantly impacts the imputation performance un-

der certain circumstance. A thorough statistical analysis is pre-

sented to compare with the different K NN imputation ap-

proaches under different missingness scenarios. 

In the remaining parts of the work, background and review

re presented in Section 2 . Section 3 introduces the CVB k NNI, the

ovel missing data imputation technique proposed in this study.

he experimental design is described in Section 4 . Section 5 fur-

her presents the experimental results. Section 6 discusses the

nown threats to validity in this empirical study. At last, the work

s concluded with future work in Section 7 . 

. Background 

In this section, we define the terminology and provide a sim-

le review. This section covers three aspects: an introduction to

he missingness mechanisms and patterns, the review of recent

pecialized K nearest neighbor ( K NN) imputation studies and the

issing data treatments (MDTs) research in software engineering

stimation (SEE). 

The missingness mechanisms (MM) and patterns (MP) explain

ow the missingness is summarized and classified in literature.

electing the proper approach to deal with missing values is re-

ated to the assumption of the mechanism and pattern ( Song et al.,

005 ). The introduction of MM, MP and ratio helps build different

issingness scenarios. The performance of different MDTs could be

urther validated under these scenarios then. In the section of ex-

eriment design, the incomplete datasets are synthetized according

o the various missingness scenarios. 

The K NN imputation, free of data distribution assumption, is

n important single hot-deck imputation technique. Popular single

mputation approaches also contain mean imputation (MEI), me-

ian imputation and the ones based on stochastic regression meth-

ds, etc. Single imputation cannot tolerate the variability of char-

cterization of the imputed values. Concisely, it is unable to pro-

ide valid confidence intervals of the imputed values. Therefore,

ts simultaneous accuracy as well as robustness become a concern

ut difficult to address adequately. As an alternative of single data

mputation, multiple imputation generates many different imputed

atasets and then computes the final estimation result of the com-

lete dataset by applying appropriate adaptation strategy, which
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is considered more complex in its application. Novel techniques,

for example, iterative imputation, gain increasing popularity in re-

cent years, and they improve the estimation accuracy by iteratively

searching for the optimal estimates until convergence. 

As the specialized K NN imputation research has been evolved

in years, yet it has been applied in contemporary SEE studies.

Huang et al. (2015) has found that MEI monopolizes the imputa-

tion approaches in recent software effort estimation studies. A re-

view of the other MDTs in SEE studies is presented at last. 

2.1. Missingness mechanisms and patterns 

Missingness mechanisms (MMs) and patterns (MP) make as-

sumptions about the distribution and types of missing values

( Song et al., 2008 ). The judgment of MM helps assess what im-

putation approach may be adopted ( Song et al., 2005 ). The MM

concerns if the missingness is related to the key variable or not.

It is critical as it determines how difficult handling missing val-

ues is ( Song and Shepperd, 2007 ). There are three mechanisms

( Little and Rubin, 2002 ): missing completely at random (MCAR),

missing at random (MAR) and non-ignorable (NI). To present the

MM with formal notations, assume the real-valued software data

we intend to collect as X = { x i } , 1 ≤ i ≤ N, and X has observed and

missing parts. Consider the missing parts in X have the values

that are unobserved, we use the missing data indicator M = { m i } ,
where m i = { 0 if x i isunobserved 

1 if x i is observed 

, to denote the observation out-

come. The missingness mechanism is characterized by the condi-

tional probability distribution of M given X , i.e. p ( M | X, ψ), where

ψ refers to the unknown parameters. 

MCAR means there is no difference between the distribution of

observed and missing values ( Song et al., 2008 ). In other words,

missingness does not depend on either observed values or missing

values of X , thus p( M| X, ψ ) = p( M, ψ ) . 

MAR means that missingness only depends on the observed

values of other variable(s), not the missing ones. It does not fulfil

the condition of MCAR (it must depend on at least one variable).

Assuming that m is a potential value (vector) for M , then ∀ m ∈ {1,

0} N and ∀ x, y ∈ R 

N with H( x, y ) = m : p( M = m | x ) = p( M = m | y ) ,
where H ( x, y ) denotes the Hamming difference vector of variables

x and y , that has 0 in the positions where x and y differ and 1 in

the positions where they coincide. 

NI represents the situation that neither MCAR nor MAR holds

( Valdiviezo and Van Aelst, 2015 ). Missingness only depends on the

unobserved values, i.e. their real values. Even accounting for all the

available observed information, the reason for observations being

missing still depends on the unseen missingness. 

Generally, there are two types of multivariate missingness pat-

terns (MPs): monotone and general (non-monotone) ( Song and

Shepperd, 2007; Van Buuren, 2012 ). An MP is said to be mono-

tone if an instance x i , could be ordered such that if x i, p is missing

then all values in x i with p ′ > p are missing simultaneously. It could

occur in longitudinal studies. In software quality datasets, if a ma-

jor basic measure is missing, all the following derived ones will

not exist. In the general pattern, missing data can occur anywhere

and no special structure appears regardless of how the variables

are arranged. The type of MP may affect the selection of MDTs.

Strike et al. (2001) found the MDTs tend to perform worse with

monotone pattern. This issue will be discussed in the experiment

analysis. 

Some imputation approaches cannot handle specific MMs or

MPs appropriately ( Song and Shepperd, 2007 ). MCAR could be

tested by Little and Rubin (2002) ’s multivariate test under certain

strict conditions. Unfortunately, it is hardly applicable to validate

the exact MM and MP before adopting an MDT ( Song et al., 2005 ).

Identifying MM is difficult since the prior distribution is in general
nknown. Hardly it is possible to guarantee that none of MCAR, NI

r MAR could exist in software quality data. Generally, the MM in

eal datasets is often to be either NI or MAR, while the MP often

onsists both general and monotone, but not always tenable ( Song

t al., 20 05; 20 08; Strike et al., 20 01 ). Song et al. (20 08) illustrated

ow NI and MAR may happen in software practice. Suppose un-

er the politic pressure, software engineers prefer not to report

any high fault rates and then intend to make the values missing.

hile some software metrics are too difficult and time-consuming

o collect, which, therefore, may cause the values missing as well.

hey explain how NI could happen when missingness depends on

ts real values. MAR could occur if only the small-sized projects

ere less likely to report fault rates than the large well-organized

rojects. It exemplifies MAR that missingness depends on the non-

issing project feature: size. Therefore, this study simulates the

Ps (monotone and general) and MMs (MCAR, MAR, and NI) si-

ultaneously to conduct the experiments. 

.2. K NN imputation improvement 

In this section, 12 former studies about specific improvements

n K NN imputation are chronologically selected and summarized

n Table 1 in terms of the imputation estimator design and the

xperimental data simulation (missingness injection) approaches.

ote that this is not an exhaustive search on recent studies. We

se the keywords combination: 

knn OR k-nn OR knni OR “nearest neighbo 

∗”) AND (imput ∗)
ND (missing) 

o search the related recent papers. Only the qualified works that

oncentrates on k NN imputation improvement for numeric vari-

bles are kept. The studies in Table 1 are simply summarized ac-

ording to the K NN imputation technique design and experiment

esign. In specific, García-Laencina et al. (2009) proposed a fea-

ure weighted distance measure based on mutual information (MI)

n K NN imputation. Their experiment validated that both missing

ata imputation and classification task were improved by their

echnique. Hron et al. (2010) adopted the Aitchison distance in

 NN imputation and found that it is not robust against outliers.

hang et al. (2011) proposed a nonparametric iterative imputa-

ion algorithm (NIIA) to impute missing value and found it outper-

orms the other methods in general. Zhang (2011) proposed shell

eighbors imputation (SNI) which fills in an incomplete instance

n a given dataset by only using its left and right nearest neigh-

ors with respect to each other. SNI was found to be better than

 traditional K NN imputation. Zhang (2012) changed the distance

easure to grey distance and found its advantage in capturing the

roximity relationship. Magnussen and Tomppo (2014) calibrated

 NN imputation with local linear regression in the context of for-

st science. The new technique presented improved correlation be-

ween imputation and its real value. Sahri et al. (2014) proposed

INNIM in the context of dissolved gas analysis, in which they

learly addressed two important components of imputation: or-

ering and estimator. Silva-Ramírez et al., (2015) combined multi-

layer perceptron and K NN algorithms in missing data imputation

nd conducted their experiment on simulated datasets with differ-

nt missingness patterns. Ma and Zhong (2016) proposed a corre-

ated degree model to extract K nearest neighbors for imputation

n the context of natural disaster science. Zhang et al., (2017) fur-

her incorporated correlation matrix in K NN imputation design and

ound its efficiency compared with the traditional K NN imputation.

Regarding to imputation ordering, one important component in

DT, 10 out of the 12 studies did not consider using it in K NN

mputation. As for the K NN parameter: distance measure, besides

he classic Euclidean distance and Manhattan distance measures,
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Table 1 

Major improvements of K NN imputation in selected studies. 

Imputation approach and the reference Imputation 

ordering 

Imputation approach Experiment data and the simulation 

The 3 parameters in K NN estimator Feature relevance 

Distance measure K Adaptation Data Data simulation 

CM- k NN ( Zhang et al., 2017 ) N Euclidean Various Mean N/A UCI and Libsvm N/A 

Novel K NN ( Ma and Zhong, 2016 ) N GRA By distance threshold IDWM N/A A drought case MCAR, NI, MAR 

FWG k NN ( Pan et al., 2015 ) Y GRA ∗ All possible neighbors Dudani-weighted mean Mutual information 5 UCI datasets MCAR, NI, MAR and 

missingness ratio 

MIMLP ( Silva-Ramírez et al., 2015 ) N A similarity function All possible neighbors Nearest N/A 18 datasets MCAR, NI, MAR 

IC k NNI ( Van Hulse and Khoshgoftaar, 2014 ) N Euclidean 5 Mean N/A 4 Software quality 

datasets 

MCAR, NI, MAR and 

missingness ratio 

FINNIM ( Sahri et al., 2014 ) Y Manhattan 1 ∼ 10 Mean Fisher score 3 DGA datasets N/A 

K NN with local linear regression 

( Magnussen and Tomppo, 2014 ) 

N Euclidean All possible neighbors Regression N/A 3 artificial datasets and 

2 inventory datasets 

Multiple sampling 

G k NN ( Zhang, 2012 ) N GRA 
√ 

N Mean, mode N/A 3 UCI datasets MAR 

NIIA ( Zhang et al., 2011 ) N GRA All possible neighbors Mean, mode Mutual information 3 UCI datasets Missingness ratio 

SNI ( Zhang, 2011 ) N Euclidean All possible neighbors Cluster mean N/A 6 UCI datasets Missingness ratio 

Iterative K NN ( Hron et al., 2010 ) N Euclidean Unknown Geometric mean N/A Simulated data Outlier ratio 

MI-based KNN ( García-Laencina et al., 2009 ) N Euclidean 2, 5 Dudani-weighted mean Mutual information 5 UCI datasets Missingness ratio 

∗ GRA: grey relational analysis, which could be used to measure distance. 
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4 out of 12 studies preferred the grey relational analysis (GRA)

based similarity measure to capture the ‘nearness’ of neighbors. In

terms of the choice of K , half of the studies predefined the value

of K and the other half preferred to use overall available neigh-

bors for adaptation. As for the adaptation methods, instead of us-

ing the mean, various methods are adopted, such as regression-

based, cluster-based and Dudani weighted mean, etc. Meanwhile,

less than half of the studies considered the issue of feature rele-

vance in searching of the nearest neighbors. 

As for the experiment design, the experiment data and data

simulation methods are quite consistent among the studies. The

UCI data, a famous machine learning data repository, has been

experimented on by half of them. The rest datasets belong to

diverse professional domains, such as biology, energy, and soft-

ware. Only Song and Shepperd (2007) and Van Hulse and Khosh-

goftaar (2014) evaluate their new proposed K NN imputation ap-

proaches in the domain of empirical SEE. The missingness in-

jection criteria for data simulation majorly consider the missing-

ness mechanism (MM) and ratio (MR), and only Song and Shep-

perd (2007) ’s research took into account of the missingness pat-

tern (MP). However, only Pan et al. (2015) and Song and Shep-

perd (2007) empirically analyzed the impact of missingness injec-

tion on imputation performance. 

To sum, for current K NN based missing data imputation re-

search, it is common to see the overall methodology design is frag-

mented. Researchers turn to prefer different experiment evaluation

criteria in studies, which, therefore, causes the corresponding tech-

nical contribution hardly justified. As for the improvement on K NN

imputation, none of the studies systematically analyze the impacts

imputation ordering in K NN imputation performance. There is still

no common solution to select the optimized K NN parameters for

imputation. Although researchers prefer to use various missingness

scenarios to test their techniques, the significance of the impacts of

the missingness scenarios are often neglected. 

Two of the recent imputation approaches in Table 1 , FWG k NN

imputation (FWG k NNI) and IC k NNI, which could be repeated

according to corresponding experiment design, are utilized in

our experimental design as competitors to CVB k NNI. Pan et al.

(2015) proposed a feature weighted grey based K NN iterative im-

putation (FWG k NNI) approach, in which they combined feature

relevance and grey relational analysis (GRA) based distance mea-

sure in the estimator. MEI is used to have a preliminary estimate

of the missing values. The nearest neighbors are extracted from

the dataset which contains all the available instances, except the

one that is to be imputed. The data is updated after each im-

putation iteration, and the iteration repeats until all the missing

values are imputed. The capacity of FWG k NNI is improved com-

pared with the 4 other competitors used in their study, includ-

ing F k MI ( Li et al., 2004 ), I k NNI ( Brás and Menezes, 2007 ), GBNN

( Huang and Lee, 2004 ) and G k NN ( Zhang, 2012 ). Missing data in-

jection with various MMs is also considered in their data simula-

tion. 

Van Hulse and Khoshgoftaar (2014) proposed an incomplete-

case (instance) based K NN imputation (IC k NNI) in the context of

software quality data, and raised the issue of missing data in em-

pirical SEE research once again. Instead of using all available com-

plete instances, IC k NNI searches the nearest neighbor of each in-

stance from the incomplete data. Their results showed that the

complete-case based K NN imputation (CC k NNI) is far less superior

than the imputation approach based on both incomplete and com-

plete instances, i.e . the IC k NNI. The parameters of IC k NNI is pre-

dominated as well: Euclidean distance, K = 5, with mean adapta-

tion. This paper did not consider comparing the IC k NNI with more

imputation approaches, even the MEI. 
c

.3. Studies of missing data treatment in software engineering 

stimation context 

Missing data treatment (MDT) has been mostly discussed in

he data-driven studies of social science, biology, psychology, trans-

ortation, and behavioral science ( Poloczek et al., 2014; Sahri et al.,

014; Suyundikov et al., 2015 ). MDT is considered as an evolv-

ng area in software engineering estimation (SEE) research for less

han 15 years. Less attention has been focused on MDT methods

hemselves. In a more recent study, Huang et al. (2015) found that

nly some of the former software effort estimation studies have

onsidered the significance of the MDTs, of which only Minku and

ao (2011) used K NN imputation in data-reprocessing during the

stimation modeling. By contrast, Troyanskaya et al. (2001) applied

 NN imputation in the estimation of missing DNA microarrays, and

inley et al. (2006) even explored its utility in the domain of forest

cience. 

Empirical analysis about missingness characteristics in software

uality data are even rare. Song et al. (2008) emphasized that

or large-sized samples with MCAR mechanism, listwise deletion

s considered appropriate, but the assumption of MCAR is ideal

nd less applicable in real software datasets. Additionally, if ei-

her NI or MAR exists, which is more probable, missing data im-

utation is relatively a better option then. However, imputation

eeds more thorough computational analysis ( Myrtveit et al., 2001;

trike et al., 2001 ), and the prediction error may be introduced

 Mittas and Angelis, 2010 ). MEI is efficient and has been involved

n SEE as the most popular imputation approach; however, it will

ause bias to data. MEI simply replaces the missing values with the

ean of other values in the same feature. 

K NN imputation is then used as an advanced imputation tech-

ique in SEE ( Minku and Yao, 2011 ). Strike et al. (2001) compared

nd tested various parameter settings in K NN imputation. The set-

ings took account of Euclidean and Manhattan distance measures.

he MM is simulated from 206 real-world software datasets. The

esults indicated that listwise deletion is reasonable but may not

rovide the best performance. They called for validating more ad-

anced imputation techniques on software engineering datasets.

yrtveit et al. (2001) evaluated the closest neighbor imputation on

 real-world incomplete dataset and showed that compared to list-

ise deletion, K NN imputation is the right option only when the

ataset has too much missingness. Cartwright et al. (2003) then

xamined MEI and K NN imputation for two real industrial incom-

lete datasets and found that K NN imputation provides better pre-

iction than MEI does. Twala et al. (2005) , on the other hand, rec-

mmended adopting MEI when massive missingness exists and us-

ng K NN imputation when sparse missingness exists. Song et al.

2005) argued that the impact of MM on imputation performance

s not always that obvious. Jönsson and Wohlin (2006) examined

hat K NN imputation performs better in high dimensional incom-

lete datasets. 

Li et al. (2007) found that more missingness in data could

orsen the accuracy of K NN imputation. They appealed to future

nvestigation of the impact of missingness scenarios with more dis-

ance and adaptation in K NN imputation. Continuously, Song et al.

2008) further confirmed that K NN imputation provides high ac-

uracy. Khoshgoftaar and Van Hulse (2008) analyzed the effective-

ess of various imputation approaches, including MEI, K NN impu-

ation and Bayes multiple imputation (BMI), on two real software

atasets. Their results indicate BMI is better than K NN imputation

nd MEI. Overall, most researchers did not consider improving K NN

mputation in the context of SEE. Even the performance of K NN

mputation against MEI is not consistent. As for the impact of MM

r MP on imputation in software measurement datasets, few con-

lusions have ever reached the topic. 



J. Huang et al. / The Journal of Systems and Software 132 (2017) 226–252 231 

 

p

 

 

 

 

3

 

s  

t  

t

3

 

l  

t  

c  

m  

i  

r  

i  

f  

i  

t  

m  

o  

i  

u  

t  

t  

a  

m  

t  

T  

p

3

 

p  

r  

c

3

 

G  

t  

s  

c  

f

 

c  

t  

d  

2

c

d

w  

d  

1  

r  

d

d

d

w  

a  

M  

i  

b  

S

 

e  

f  

r  

a  

r  

d

G

w  

c  

�  

m  

v

G  

 

i  

s  

t

c  

G  

s  

M  

w  

c  

w  

m  

m  

o

3

 

w  

c  

c  

K  
Based on the above discussion, the research questions (RQs) are

resented as follows: 

RQ1 : Is K NN imputation on software quality data improved by

using optimized and adaptive parameters? 

RQ2 : Does the MM or the MP have an impact on the imputa-

tion accuracy? 

RQ3 : Is there a fixed parameter setting of K NN imputation rec-

ommended for incomplete software quality data? 

RQ4 : Is the classification performance maintained with the im-

puted dataset? 

The above RQs are answered in Section 5 . 

. Imputation strategy design 

This section presents the overall background used for the de-

ign of the new imputation strategy, CVB k NNI, including imputa-

ion ordering, estimator, and the complete algorithm. The parame-

ers used in the study will be described in detail in Section 3.2 . 

.1. Imputation ordering 

Imputation ordering assigns missing values different priority

evels ( Sahri et al., 2014 ). The ordering is potentially influential to

he final imputation results since each imputed value shall be in-

luded in the complete dataset iteratively for estimating the rest

issing values. The criterion in this study requires the data matrix

s arranged based on the missingness ratio (MR) in both instance-

ow and feature-column in ascending order ( Conversano and Sicil-

ano, 2009 ). The missingness ratio (MR) in feature-column of one

eature is defined as the number of missingness in the correspond-

ng feature divided by the number of overall instances, N . While

he MR in instance-row of one instance is defined as the number of

issingness in the corresponding instance divided by the number

f overall features, M. The prior ordering sequence of imputation

n this work is from left to right, i.e. feature by feature ( Van Bu-

ren, 2012 ). Then the instances are re-ordered from top to bot-

om, according to the ascending MR in instance (row). In practice,

here are small imputation sequence effects of some imputation

lgorithms. Evidence shows that the effects would not significantly

atter ( Van Buuren, 2012 ). Imputation ordering would maximize

he information availability during each missing value imputation.

he impact of imputation ordering on imputation accuracy shall be

resented in the section of the experimental analysis. 

.2. Imputation estimator 

The quality of K nearest neighbor ( K NN) algorithm is largely de-

endent on the parameter tuning. There are three necessary pa-

ameters in K NN imputation estimator: the distance measure, the

hoice of K , and the adaptation method. 

.2.1. Distance measure 

The distance measure is also referred as dissimilarity measure.

iven two different instances of numeric measurements x i and x j ,

he lower distance between them, the higher similarity they repre-

ent . The distance measure used in the design of the CVB k NNI in-

ludes both the traditional Minkowski distance measure and trans-

ormed grey relational based measure. 

- Minkowski distance 

The most commonly used distance measures in former empiri-

al software engineering estimation (SEE) studies generally belong

o Minkowski distance, in which Euclidean distance and Manhattan
istance gain the most popularity ( Azzeh, 2012; Kocaguneli et al.,

012a; Li et al., 2009b ). The Minkowski distance between x i and x j 
ould be generalized as: 

 

(
x i , x j 

)
= 

(∣∣x i, 1 − x j, 1 
∣∣q + 

∣∣x i, 2 − x j, 2 
∣∣q + · · · + 

∣∣x i,p − x j,p 

∣∣q 

+ · · · + 

∣∣x i,M 

− x j,M 

∣∣q 
)1 /q 

(1) 

here q is the Minkowski coefficient. Euclidean and Manhattan

istance are the special cases of Minkowski distance when q = 2 or

, respectively. Consider one historical project (instance) x i and one

est project x j in the same data, the weighted Euclidean/Manhattan

istance between numeric features is defined as 

 euclidean ( x i , x j ) = 

√ ∑ M 

p=1 
w p 

(
x i,p − x j,p 

)2 
, (2) 

 manhattan ( x i , x j ) = 

∑ M 

p=1 
w p 

∣∣x i,p − x j,p 

∣∣, (3) 

here M denotes the total number of features in the data,

nd w p is the normalized weight of p th feature. In addition to

inkowski distance, researchers have also proposed other similar-

ty/dissimilarity measures, in which grey relational analysis (GRA)

ased ones obtain a lot of attention in the recent literature (see

ection 2.3 ). 

- Grey relational analysis 

Grey relational analysis (GRA) quantifies the impacts of differ-

nt factors and the relationship among data instances. It has two

undamental measures: grey relational coefficient (GRC) and grey

elational grade (GRG) ( Zhang, 2012 ). Given instance x l as an ex-

mple, x l = { x l, 1 , x l, 2 , x l, 3 , ..., x l,M 

} , and x i as a random one of the

est N — 1 instances, the GRC in p th feature between x l and x i is

efined as follows: 

RC( x l,p , x i,p ) = 

�min + ρ�max ∣∣x l,p − x i,p 

∣∣ + ρ�max 

, (4) 

here ρ ∈ [0, 1] ( ρ is a distinguishing coeffi-

ient, normally, set ρ = 0 . 5 ( Huang and Lee, 2004 )),

min = min ∀ j ∈ [1 ,N] ∩ j 
 = l min ∀ r∈ [1 ,M] | x l,r − x j,r | , and �max =
ax ∀ j ∈ [1 ,N] ∩ j 
 = l max ∀ r∈ [1 ,M] | x l,r − x j,r | (The smallest and largest

alue in matrix | x l,r − x j,r | ). And the weighted GRG is defined as: 

RG ( x i , x j ) = 

∑ M 

p=1 
w p GRC 

(
x i,p , x j,p 

)
. (5)

GRG is a similarity measure, which means that if GRG ( x 1 , x 2 )

s larger than GRG ( x 1 , x 3 ), the difference between x 1 and x 2 is

maller than that of x 1 and x 3 . Clearly, the GRG takes a value be-

ween 0 and 1. Therefore, the weighted distance between x i and x j 
ould be transformed to d( x i , x j ) = 1 − GRG ( x i , x j ) ( Pan et al., 2015 ).

RA is advantageous since it measure the similarities among ob-

ervations by analyzing the relational structure. Compared with

inkowski distance, the degree of ‘nearness’ that GRA captures

ill be more stable and consistent as the number of features in-

reases. Meanwhile, each feature always has different relevance or

eight in terms of calculating distance. In order to have the above-

entioned w p during each missingness imputation, mutual infor-

ation (MI) based feature relevance is considered in the process

f estimating missing values in this study. 

.2.2. K 

The option of K is highly dependent on the selected dataset,

hich is also critical to K NN imputation. Most researchers only

onsider K = 1 ( Walkerden and Jeffery, 1999 ), some take into ac-

ount of K = 1, 2, or 3 ( Mendes et al., 2003 ). Li et al. (2009b) and

hatibi Bardsiri et al. (2013) recommended locating the best
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K from 1 to 5. Instead of having the same number of near-

est neighbors, it is worthy to automatically find the best K

( Kocaguneli et al., 2012a ). Duda and Hart (1973) and Maier et al.

(2009) suggested the upper limit of K being the square root of

the number of instances, which limits the choices of K . In this

study, the optimal choice of K is determined by 10-fold cross-

validation. The upper limit of K is rounded to the nearest odd

neighbor of 
√ 

N for the ease of computing. The range of K is in

{ 2 q + 1 | q ∈ N , 0 ≤ q ≤
√ 

N −1 
2 } , which contains all possible odd num-

bers. 

3.2.3. Adaptation technique 

Adaptation is the last procedure to obtain the estimate given

the retrieved instances. In this study, there are five common ways

of adaptations for estimating numerical values: mean, median

( Shepperd and Schofield, 1997 ), inverse distance weighted mean

(IDWM) ( Mair et al., 20 0 0 ), inverse rank weighted mean (IRWM)

( Kocaguneli et al., 2012b; Mendes et al., 2003 ) and Dudani mea-

sure ( Dudani, 1976; Pan et al., 2015 ). 

The classic measure of central tendency, mean, treats all analo-

gies equally influential. Median is more robust to outliers than

mean. IDWM makes closer neighbors have stronger influence,

which is defined as: 

ˆ y ′ = 

∑ K 
k =1 1 / 

(
δ + d 

(
x k , x 

′ ))y k ∑ K 
k =1 1 / ( δ + d ( x k , x ′ ) ) 

(6)

where ˆ y ′ is the value being estimated, d ( x k , x 
′ ) is the weighted dis-

tance between x ′ and x k , the k th nearest instance of x ′ , and δ is a

small constant ( δ is set to 10 −6 in the study). Note that x ′ is the

instance with the missing value, y k is the corresponding feature

value to x k . IRWM, like IDWM, allows higher ranking analogies to

have more influence than lower ranking ones. y k is ranked based

on the corresponding d ( x k , x ′ ) in an ascending order. The top and

bottom-ranked neighbors have weights of K/ 
∑ K 

k =1 k and 1 / 
∑ K 

k =1 k ,

respectively. The final IRWM estimate is defined as: 

ˆ y ′ = 

∑ K 
k =1 ( K − k + 1 ) y k ∑ K 

k =1 k 
(7)

On the contrary, the Dudani measure is less used in SEE; how-
ever, it was proved to be efficiency in studies ( García-Laencina
et al., 2009; Pan et al., 2015 ). It was proposed to weigh evidence
of a neighbor in K NN classification problems ( Dudani, 1976 ). The
weight of k th nearest neighbor is defined in Eq. (8) : 

ω k = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

max ∀ k ∈ [ 1 ,K ] d 
(
x k , x 

′ ) − d 
(
x k , x 

′ )
max ∀ k ∈ [ 1 ,K ] d ( x k , x ′ ) − min ∀ k ∈ [ 1 ,K ] d ( x k , x ′ ) 

, max ∀ k ∈ [ 1 ,K ] d 
(
x k , x 

′ )

 = min ∀ k ∈ [ 1 ,K ] d 

(
x k , x 

′ )
1 , max ∀ k ∈ [ 1 ,K ] d 

(
x k , x 

′ )
= min ∀ k ∈ [ 1 ,K ] d 

(
x k , x 

′ )
(8)

The final Dudani estimate based on the calculated weights is: 

ˆ y ′ = 

∑ K 
k =1 ω k y k ∑ K 

k =1 ω k 

(9)

3.3. CVB k NN algorithm 

In this subsection, the detailed algorithm presents how the in-

troduced components work in CVB k NNI in software quality data.

CVB k NNI uses incomplete-instances for imputation. Imputing miss-

ing values from incomplete-instances could cause the results have

lower bias and higher variance. Using feature relevance in distance

calculation in K NN imputation could balance the bias-variance

trade-off. This work adopts mutual information (MI) to calculate

i  
he feature relevance w p ( Li et al., 2009a ). MI calculates the de-

endency among variables to indicate the relevance. 

The entropy, H ( X ), of a random variable X , measures the un-

ertainty of the variable. If a discrete random variable X has χ
lphabet and the pdf is p(x ) = Pr { X = x } , x ∈ χ , then the entropy

(X ) = − ∑ 

x ∈ χ
p(x ) log p(x ) ( Kullback, 1997; Pan et al., 2015 ). Given

wo random variables X and Y ( Y has ζ alphabet and y ∈ ζ ), their

oint entropy H is defined in terms of the joint pdf p ( x, y ), ex-

ressed as Eq. (10) : 

(X, Y ) = −
∑ 

x ∈ χ

∑ 

y ∈ ζ
p(x, y ) log p(x, y ) (10)

The conditional entropy calculates the resulted uncertainty on

 ( Z has γ alphabet and z ∈ γ ) given Y , which is: 

(Z| Y ) = −
∑ 

y ∈ ζ

∑ 

z∈ γ
p(y, z) log p(z| y ) (11)

here p ( z | y ) is the conditional pdf of Z given Y . Furthermore, the

efinition of MI I between two variables X and Y is defined as: 

(X ;Y ) = 

∑ 

x ∈ χ

∑ 

y ∈ ζ
p(x, y ) log 

p(x, y ) 

p(x ) p(y ) 
(12)

For continuous random variables, Eq. (12) is transformed into 

(X ;Y ) = 

∫ 
X 

∫ 
Y 

p(x, y ) log 
p(x, y ) 

p(x ) p(y ) 
d xd y (13)

To apply MI in continuous variables, this study adopts the

RMR package ( Peng et al., 2005 ). The parameter of w p is defined

s: 

 p = 

I ( f p ; f target ) ∑ P 
p=1 I ( f p ; f target ) 

(14)

here P, P ≤ M − 1 , is the number of features in Xtrain, f p , there-

ore, is one feature in Xtrain and f target is Ytrain . 

Assume that the features and instances in Table 2 are going to

e rearranged by imputation ordering process. The x 7, 2 , i.e. f 2 in x 7 ,

s going to be imputed firstly (the MR of f 2 is the minimum among

 2 , f 3 , f 4 and f 5 , and x 7, 2 is the only missing value in f 2 ). Then, the

orresponding sub-data matrix (all available incomplete-instances)

or cross-validation is filled with light and medium gray in Table 2 .

he sub-matrix in light gray is corresponding to Xtrain , and the

olumn values in medium grey is to Ytrain . The cross-validation

cheme searches all the possible parameter combinations to find

he optimal one with the minimum validation error. Using the op-

imal estimator on the test instance D test (filled with dark black in

able 2 ), together with D train , obtains the estimated 


 

x 7 , 2 . After x 7, 2 

s imputed, x 3, 3 is going to be imputed next (the MR of f 3 is the

inimum among f 3 , f 4 and f 5 , and the MR of x 3 is the minimum

etween x 3 and x 5 ). This process continues until all the missing

alues are imputed. 

The detailed algorithm pseudocode is presented in Algorithm 1 ,

ncluding two parts: ordering (Line 1–5) and estimating (Line 6–

0): 

Steps 2–4 fulfil imputation ordering. Steps 7–13 fulfil building

pecific sub-data D train in order to cross-validate the optimal K NN

arameters for estimating missing value x i, p . Steps 14–16 fulfil

nding the optimal K NN parameters using 10-fold cross-validation.

ote that in the part of estimating, to estimate each missing value,

he corresponding sub-data matrix (available-instances) is built to

ross-validate the optimal K NN parameters. Each time the unique

ub-data matrix is split into Xtrain and Ytrain , in which Ytrain and

he target missing value(s) belong to the same feature. MI is used

o measure the feature relevance between the Xtrain and Ytrain

ach time to automatically obtain each feature weight in Xtrain ,

.e. w p in the distance measure. As for the time complexity of
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Table 2 

Sample data-matrix after imputation ordering ( N = 7, M = 6). 

Algorithm 1. CVB k NNI pseudocode using Matlab notation 
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Table 3 

Feature definition for quality datasets using McCabe and Halstead’s procedural metric. 

Metric Features Full name Description 

McCabe LOC_TOTAL Lines of code (LOC) Measured according to McCabe’s line counting conventions, 

equals to the sum of LOC_Code_and_Comment and 

LOC_Executables 

EDGE_COUNT Control flow graph edge count The number of edges of the graph 

v(G) Cyclomatic complexity Number of linearly independent paths 

ev(G) Essential complexity The extent to which a flow graph can be "reduced" by 

decomposing all the sub-flow graphs 

iv(G) Design complexity The v(G) of a module’s reduced flow graph 

CALL_PAIRS Call pairs Executable calls between modules 

CONDITION_COUNT Condition decision count Correlates to threshold for v(G) 

DECISION_COUNT Decision count Correlates to threshold for v(G) 

LOC_COMMENT lines of comment Count of lines of comment 

LOC_BLANK blank lines Count of blank lines 

LOC_CODE_AND_COMMENT Code and comment Count of source code and comment 

PARAMETER_COUNT Formal parameter count Number of formal parameters 

BRANCH_COUNT Logical branches Branch count of the flow graph 

Halstead UNIQ_OP Unique operators Number of distinct operators 

UNIQ_OPND Unique operand Number of distinct operands 

TOTAL_OP Total operator Total number of operators 

TOTAL_OPND Total operand Total number of operands 

NUMBER_OF_LINES Number of lines End line minus the start line in the listing 

Fault-proneness Module has/has not one or more 

reported defects 

Fault-prone ( FP ), regarded as ‘1’ in data, or non-fault-prone 

( NFP ), regarded as ‘0’ 
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the proposed CVB k NNI, the complexity of distance calculation in

K NN is O ( MN ). The total processing time in terms of sorting the

distance is greater than O ( N log N ) in general. For each K NN esti-

mator combination, the complexity of cross-validation scheme is

O ( N ). Therefore, the time complexity of imputing the whole data is

O ( αMN 

3 log N ), where α is the number of K NN estimator combina-

tions. 

4. Experiment design 

4.1. Software quality datasets 

Appropriate datasets should be used to evaluate the imputation

techniques. We consider the renowned tera-PROMISE Repository in

the study ( Menzies et al., 2016 ). 8 software quality datasets are

selected from the repository, which are ant, arc, camel, ivy, PC5,

MC2, KC3 and MW1. 

The former 4 datasets, ant, arc, camel and ivy, are parts of latest

Apache open source projects ( Jureczko and Madeyski, 2010 ). The

features of these four datasets are collected through Chidamber

and Kemerer (CK) object-oriented code metric ( Chidamber and Ke-

merer, 1994 ), one specially designed to analyze object-oriented

programming languages. It groups three stages of object-oriented

design: identification of classes (WMC, DIT, NOC, etc.), semantics

of classes (WMC, RFC, LCOM, etc.) and relationship between classes

(RFC, CBO, etc.). Similarly, all the derived measures are excluded

from original data; the remaining ones of each dataset are pre-

sented in Table 4 in detail. 

The last 4 datasets, MC2, PC5, KC3, and MW1, are generated

from NASA C-written projects, the features of which are calculated

by McCabe and Halstead’s procedural metric ( Halstead, 1977; Mc-

Cabe, 1976 ), which takes into account of program complexity and

number of operators/operands. Their original data size in terms of

instance count varies from around 500 to 10,0 0 0. The McCabe met-

rics have 4 basic elements: cyclomatic complexity, design complex-

ity, essential complexity, and Lines of Code (LOC). And the Hal-

stead’s metrics have 3 elements: base measure, derived measure

and LOC. In this work, all the synthetic or derived features in the

original datasets are excluded if they could be computed directly

from the basic ones. The remaining features of data PC5, KC3, MC2,

and MW1 are described in Table 3 in details. 
In order to keep the scientific basis of empirical validation and

eplication of SEE studies, necessary data integrity checks require

rgent intention ( Shepperd et al., 2013 ). Besides excluding the de-

ived measures, the following procedures are also used to select

he proper instances: 

(1) Exclude duplicate instances. 

(2) Exclude the instance with implausible values, such as the

values in Halstead and McCabe’s metric or CK metric equal

to 0 ubiquitously. 

(3) Exclude the instances in datasets of PC5, KC3, MC2 and MW1

that violate the referential integrity checks ( Shepperd et al.,

2013 ) on NASA software quality data. 

In the end, the simple description of all the cleansed datasets

re presented in Table 5 . 

.2. Missingness simulation 

Missingness simulation is often used to generate various miss-

ngness scenarios to test the performance of missing data im-

utation techniques. In this study, three missingness mechanisms

MMs), two missingness patterns (MPs), and four missingness ra-

ios (MRs) shall be simulated to generate 24 incomplete dataset

ersions. There is no missingness injected into the feature of Fault-

roneness . MR is set to be 2.5%, 5%, 10%, and 20%, respectively. The

bove-mentioned three MMs (introduced in Section 2.1 ) are sim-

lated after cleansing the original data. The procedures simulat-

ng each MM are presented as follows ( Van Hulse and Khoshgof-

aar, 2014 ): 

- Missing Completely At Random (MCAR): Missing values are

overall selected completely at random (exclude the ones from

the response feature: Fault-proneness ). Assume we have N in-

stances and M features if we inject MR = 5% random missing-

ness inside the data, there will be around 0 . 05 × N × ( M − 1 )

missing values in total. 

- Non-ignorable (NI): A threshold set of t is chosen for each fea-

ture such that 75% of the instances had a value of x i, p less than

t . After determining the threshold values for each feature, 40%

missingness is injected into the instances with feature value(s)

x i, p < t and the rest 60% missingness is injected into the in-

stances with x i, p ≥ t . 



J. Huang et al. / The Journal of Systems and Software 132 (2017) 226–252 235 

Table 4 

Feature definition for quality datasets using CK object-oriented metric. 

Metric Features Full name Description 

CK and its derivatives WMC Weighted methods per class Sum of the complexities of each method in a class 

DIT Depth of inheritance tree Number of classes that a particular class inherits from 

NOC Number of children Count of immediate subclasses of a class 

CBO Coupling between objects Number of classes that are coupled to a class 

RFC Response for class Number of elements in the response set of a class 

LCOM Lack of cohesion of methods Number of method pairs in a class that have no common 

references to instance variables minus the number of 

method pairs that share references to instance variables 

LCOM3 Lack of cohesion in methods Different version of LCOM suggested by 

Henderson-Sellers (1996) , which overcomes the 

drawback of LCOM 

IC Inheritance coupling This metric provides the number of parent classes to 

which a given class is coupled. 

CBM Coupling between methods A total number of new/redefined methods to which all the 

inherited methods are coupled. 

AMC Average method complexity Average method size for each class. The size of a method is 

equal to the number of Java bytecodes in the method 

Martin (1994) Ca Afferent couplings Number of classes that depend upon the measured class 

Ce Efferent couplings Number of classes that the measured class depends upon 

Bansiya and Davis (2002) NPM Number of public methods Count of all the methods in a class that is declared as 

public 

DAM Data access metric The ratio of the number of private (protected) attributes to 

the total number of attributes declared in the class. 

MOA Measure of aggregation The extent of the part-whole relationship, realized by 

using attributes. 

MFA Measure of functional abstraction The ratio of the number of methods inherited by a class to 

the total number of methods accessible by the member 

methods of the class. 

CAM Cohesion among methods of class Relatedness among methods of a class based on the 

parameter list of the methods. 

McCabe LOC Lines of code Number of lines of code in the Java binary code of the 

class under investigation 

MAX_CC Max/Avg v(G) Number of different paths in a method plus one 

AVG_CC 

Fault-proneness Module has/has not reported defects Fault-prone ( FP ), regarded as ‘1’ in data, or non-fault-prone 

( NFP ), regarded as ‘0’ 

Table 5 

Data description after cleaning process (code metric, data name, number of features 

and instances, and FP / NFP ratio). 

Metric Dataset Name Number of 

Features 

FP / NFP ∗ Number of 

Instances 

Procedural PC5 19 258/919 1177 

KC3 19 25/111 136 

MW1 19 21/186 207 

MC2 19 20/49 69 

Object-oriented camel 21 171/625 796 

ant 21 165/504 669 

ivy 21 37/256 293 

arc 21 20/149 169 

∗ The ratio of FP / NFP : ratio between the number of instances with Fault- 

proneness = 1 and that with Fault-proneness = 0. 
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Table 6 

Simulated data scenarios for each dataset during experiment. 

MR (%) MP MM 

MCAR MAR NI 

2 .5 Monotone #1 #2 #3 

General #4 #5 #6 

5 Monotone #7 #8 #9 

General #10 #11 #12 

10 Monotone #13 #14 #15 

General #16 #17 #18 

20 Monotone #19 #20 #21 

General #22 #23 #24 

4
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c

- Missing At Random (MAR): It is generated by making the dis-

tribution of missing values depends on the feature of Fault-

proneness . We implement a biased selection process where 25%

missingness is injected into the FP instances, i.e. Fault-proneness

equals to 1. And another 75% missingness is injected into the

instances who are NFP , i.e. Fault-proneness equals to 0. 

Secondly, during MM simulation on dataset instances, we use

he SPSS Missing Values Analysis module to simultaneously meet

he requirements of MP ( Song and Shepperd, 2007 ). Therefore, un-

er each MM, there shall be two scenarios corresponding to the

wo MPs. For the general pattern, the missingness is randomly in-

ected into each instance. As for the monotone pattern, the miss-

ngness in each instance is mostly continuously injected. To sum,

or one specific dataset, there are 24 simulated scenarios, or ver-

ions, as shown in Table 6 . 
.3. Performance measure and evaluation 

Error measures are fundamental to justify the prediction per-

ormance. RMSE (root mean square error) is adopted in the cross-

alidation scheme in CVB k NNI. For each true value e i that is sim-

lated to be missing in D , the corresponding imputed value is ˆ e i ,

hen the RMSE is defined in Eq. (15) : 

MSE = 

√ 

1 

T 

T ∑ 

i =1 

(
e i − ˆ e i 

)2 
(15) 

here T denotes the total number of missing values in D . The rel-

tive error metrics are not considered in the study due to they are

nbalanced, for example, MRE (mean of relative error) ( Foss et al.,

003 ). Instead, RMSE is a balanced metric and widely used in re-

ent studies ( Pan et al., 2015; Zhang, 2012; Zhang et al., 2011 ). 
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The incomplete dataset becomes a complete one after missing

data imputation. The machine learning classifiers are then con-

ducted to evaluate the impact of imputation on the performance of

Fault-proneness classification. Four widely used classification algo-

rithms, Discriminant analysis, K NN, Naive Bayes and SVM, are cho-

sen in the study. The classification accuracy (CA) is computed via

Eq. (16) : 

A = 

1 

N 

N ∑ 

i =1 

l(F P i , F P i 
′ ) (16)

where N is the number of instances, F P ′ 
i 

and FP i are the classifi-

cation results of the i th instance and the corresponding real class

label. l(F P i , F P 
′ 
i 
) = 1 if F P i = F P ′ 

i 
, and l(F P i , F P 

′ 
i 
) = 0 otherwise. 

After measuring the performance, we test if the estimations of

one method are significantly better than the estimations of others.

To check for statistical significance, we use Wilcoxon signed-rank

test. It is a non-parametric statistical hypothesis test used when

comparing two related samples to assess whether their popula-

tion median ranks differ (i.e. it is a paired difference test). Mean-

while, it is inadequate to merely show statistical significance alone;

we also need to know whether the effect size is worthy of in-

terest ( Sarro et al., 2016 ). To assess it, we employ non-parametric

Vargha–Delaney’s ˆ A 12 statistic ( Arcuri and Briand, 2014 ). Given a

performance measure X , the ˆ A 12 statistic measures the probability

that algorithm A yields better X than another algorithm B, based

on the formula of ˆ A 12 = ( R 1 / M − ( M + 1 ) / 2 ) / N , where R 1 denotes

the rank sum of the first data group we are comparing, and M and

N are the number of observations in the first and second data sam-

ple, respectively. If the 2 algorithms are equivalent, then 

ˆ A 12 = 0 . 5 .

If the first algorithm performs better than the second one, ˆ A 12 is

considered small for 0 . 6 ≤ ˆ A 12 < 0 . 7 , medium for 0 . 7 ≤ ˆ A 12 < 0 . 8 ,

and large for 0 . 8 ≤ ˆ A 12 ≤ 1 . The detailed experiment is provided in

Section 5.1 . 

4.4. Experiment procedures 

The experiment of the work includes 3 main tasks: simulating

missingness, missing data imputation using different techniques,

and the final performance evaluation. Missingness simulation is

conducted on the cleansed datasets, in which the process has been

discussed in Section 4.1 . The simulation consists of 3 MMs (MCAR,

MAR, NI), 2 MPs (Monotone, General) and 4 MRs (2.5%, 5%, 10%,

20%), 24 scenarios in total as discussed in Section 4.2 . Each sce-

nario of one dataset is replicated 30 times to reduce bias and ob-

tain a suitable sample size. The overall experiment process is de-

scribed in Fig. 1 . 

To have the same unit for distinctive data features, it is neces-

sary to transform the attribute values in the same range. In this

work, all of the data is normalized into the interval of [0, 1] fea-

ture by feature. The [0, 1] normalization is defined as in Eq. (17) :

nor m [0 , 1] 

(
x i, j 

)
= 

x j,p − min ∀ i x i,p 

max ∀ i x i,p − min ∀ i x i,p 

(17)

where x i, p is the p th feature value of instance x i , i, j = 1 , 2 , ...., N,

and p = 1 , 2 , ...., M. 

After normalizing all the simulated datasets, the different K NN

imputation approaches are then used for preprocessing. The first

task is the verification of the effectiveness of CVB k NNI. Moreover,

this study also implements three other K NN based imputation ap-

proaches, including FWG k NN ( Pan et al., 2015 ), IC k NNI ( Van Hulse

and Khoshgoftaar, 2014 ), as introduced in Section 2.3 , and the de-

fault version of K NN imputation (D k NNI) approach implemented

by Matlab R2016b. D k NNI is implemented using Matlab knnimpute ,

which is capable of replacing missing data with the corresponding

R  
alue from the incomplete nearest neighbor instance. According

o the documentation of Matlab, D k NNI is based on incomplete-

nstance and it imputes each missing value using the closest neigh-

or calculated from Euclidean distance. In the meantime, MEI is

lso used as a benchmark imputation technique. 

The imputed datasets are compared with the correspond-

ng original complete ones to validate imputation performance.

ilcoxon signed-rank test tests whether the overall prediction per-

ormance of CVB k NNI is significantly better than the rest four ones.

eanwhile, this work also uses Wilcoxon signed-rank test to find if

here exists a significant difference in terms of imputation among

iverse scenarios. 

For the adopted quality data, the target class for classification

s Fault-proneness . Researchers argue that the imputed complete

atasets should also be reliable and workable to be used for other

urpose ( Sahri et al., 2014 ). In empirical software quality research,

ata imputation may also serve the further Fault-proneness clas-

ification; therefore, the classification performance from imputed

ata should not be worse than that from the original data. At this

tage, the four commonly used ML classifiers (Discriminant analy-

is, K NN, Naive Bayes and SVM) are implemented on the estimated

omplete datasets to test the performance of used imputation ap-

roaches, as a necessary data-preprocessing step, on classification

asks. 

. Experiment results and analysis 

In this section, the empirical results of various imputation ap-

roaches are fully presented. The comparison between CVB k NNI

nd other imputation approaches is discussed then via statisti-

al tests. Later, a detailed discussion about CVB k NNI and its inner

daptive parameter setting is presented as well. 

.1. Overall imputation performance 

Table 7 presents the overall RMSEs for each dataset under dif-

erent missingness scenarios. The datasets are ordered by nature

nd size. All the best estimation results are marked in green, the

econd-best ones are marked in blue, while the worst results are

n red. It is obvious that CVB k NNI surpasses the other four imputa-

ion approaches under each scenario regardless of the missingness

echanism (MM), pattern (MP) or ratio (MR), especially when the

ize of the dataset is relatively large (See Table 5 ). The second-best

mputation approach then strongly depends on the MP. FWG k NNI

erforms better when the MP is general; while IC k NNI performs

elatively better when the MP is monotone. However, FWG k NNI,

ompared with IC k NNI, is relatively more robust since when MP

s general, IC k NNI mostly performs the worst, even worse than

he benchmark approach mean imputation (MEI). Some exceptions

appen when the percentage of missing values is relatively small,

uch as dataset KC3 and MC2. The IC k NNI was established to be

etter than complete-instance K nearest neighbor ( K NN) imputa-

ion; however, its performance in the software quality datasets

hows that it could be even worse in imputation capacity than

he benchmark imputation approaches, the default D k NNI and MEI.

eanwhile, in dataset camel and ant, the performance of IC k NNI

nder monotone pattern is not strictly negatively correlated with

R. It may due to the impacts of outliers in the dataset. 

Table 7 also presents the Wilcoxon signed-rank test results to-

ether with the corresponding ˆ A 12 effect size (see Table 7 footnote)

o compare the statistical significance and effect size of the im-

rovements over the other imputation approaches due to CVB k NNI.

or example, the dataset camel, as shown in Table 7 , under gen-

ral pattern, MCAR mechanism and 2.5% missingness ratio, the 30

MSEs of CVB k NNI (Avg: 0.088) are significantly less than the 30

MSEs of FWG k NNI (Avg: 0.113), at the significance level of 0.01.
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Fig. 1. The overall experiment procedures. 
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imilarly, under monotone pattern, all else are equal, the 30 RM-

Es of CVB k NNI (Avg: 0.093) are significantly less than the 30 RM-

Es of IC k NNI (Avg: 0.111). The test results further confirm the im-

utation excellency of CVB k NNI since, in most cases, the RMSEs

f CVB k NNI are significantly less than those of FWG k NNI, IC k NNI,

 k NNI and MEI. Some reasonable exceptions exist in the small-

ized datasets or under monotone pattern. As for ˆ A 12 effect size

hown in Table 7 (presented in different brackets), large effect

ize 0 . 8 ≤ ˆ A 12 ≤ 1 dominates the results mostly, especially in the 4

bject-oriented datasets, which means CVB k NNI overall yields bet-

er performance. Table 8 further organizes all the results of effect

ize in detailed counts and ratios. For each dataset, we count the

umber of large, medium, small and rest effect size of CVB k NNI vs.

he other imputation approaches under all missingness scenarios.

ll the effect size calculated is at least 0.5. For dataset MC2, a rel-

tively smaller one, the corresponding effect size is generally small.

ut this phenomenon does not happen in small-sized dataset arc.

or large-sized dataset PC5, the effect size is merely medium in

eneral. 

To further intuitively present the imputation accuracy, Figs. 2 –9

resent the boxplots of the corresponding RMSE results. For exam-

le, in Fig. 2 , the first sub-boxplot presents the RMSE results of the

 imputation approaches on the 30 simulated versions of dataset

amel under general MP and MCAR mechanism at MR = 5%. To

ave space, only the boxplots of RMSEs of the large-sized datasets:

amel, ant, PC5 and MW1, at MR = 5% and 20% are presented. The

esults shown in the boxplots are consistent with the findings in

able 7 . The overall performance of CVB k NNI basically answers to

he RQ1, that setting adaptive parameters for estimating each miss-

ng value could largely improve K NN imputation performance. 

Another important issue of performance, time, is also tested in

he experiment. The complicated strategy of CVB k NNI causes the

lgorithm to be time-consuming, but it also provides better accu-

acy. Use datasets of camel, ivy, PC5 and MW1 as examples, the

mputation algorithm running time is summarized in Table 9 . We

un the algorithms on an Intel Core i7-4770 3.40 GHz CPU with

GB memory, Windows 7 64-bit system and Matlab R2016b soft-

are. Since the algorithm running time under different MMs and

Ps is relatively unchanged given a specific MR, Table 9 provides

he average running time of the 5 imputation algorithms under 3

Ms and 2 MPs. Compared to the other four algorithms, CVB k NNI

ndeed cost lots of time to proceed, but it is still acceptable. The

atasets of camel and PC5 are the largest ones in the experiment.

onsider under the worst-case MR = 20%, there are in total 3184

(

issing values for camel data and 4237 ones for PC5 data, the im-

utation time of CVB k NNI is still within 3mins 

From the results showing in boxplots, the median values under

I mechanism are always slightly larger than that under MCAR or

AR mechanism. In Table 7 , the average RMSEs under monotone

attern are generally large than that under general pattern within

he same dataset. This section also uses Wilcoxon signed-rank test

o answer RQ2: if the MM, or MP indeed has a significant impact

n the imputation results. Table 10 and Table 11 summarize the

omparison results. The comparison between each pair of MMs

s presented in Table 10 . The five imputation approaches used in

he study (CVB k NNI, FWG k NNI, IC k NNI, D k NNI and MEI) are de-

oted as 1, 2, 3, 4 and 5 accordingly. As shown in Table 10 , in

ataset camel, under general pattern and 2.5% missingness ratio,

ll the five imputation approaches perform significantly different

etween MCAR and NI, as well as between MAR and NI; however,

one of which performs significantly different between MCAR and

AR. Table 10 shows various imputation approaches perform sim-

larly under MCAR or MAR; while the significant difference exists

hen mechanism is NI. The significance may increase as the MR

ncreases as well. 

The comparison in terms of the MP is presented in Table 11 .

he difference in object-oriented datasets is more significant than

hat in procedural datasets. When MR increases in small-sized

atasets, the difference is even more clear. Therefore, the impact

f MP may depend on the data. The performance of IC k NNI is

ighly influenced by the MP, which is consistent with the findings

n Table 7 . 

.2. The impact of feature relevance and imputation ordering 

This section and the following one focus on empirically ana-

yzing the estimator of CVB k NNI. The two components used in

VB k NNI, MI-based feature relevance, and MR-based imputation

rdering, are both inherited from former empirical research evi-

ence. This section aims at verifying the impact of the two com-

onents on imputation accuracy. Table 12 gives an example of

 comparison in terms of various configurations of CVB k NNI, i.e.

ith (w/) or without (w/o) MI-based feature relevance, and w/ or

/o MR-based imputation ordering, at MR = 10%. To save space,

able 12 only lists the results of four datasets with MR = 10%.

hen MR = 2.5%, or 5% or 20%, the results are like those in

able 12 . The configuration with both MI-based feature rele-

ance and imputation ordering is the CVB k NNI used in this study

Marked in bold in Table 12 ). 
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Fig. 2. The RMSEs of data camel at MR = 5%, range in [0.05, 0.35]. 

Fig. 3. The imputation RMSEs of data camel at MR = 20%, range in [0.05, 0.35]. 
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Table 7 

Overall average RMSE results of all datasets under various scenarios 1 . 

10 0.106 0.130** 0.179** 0.165** 0.172** 0.119 0.146** 0.206** 0.187** 0.197** 0.153 0.198** 0.237** 0.226** 0.237** 
20 0.119 0.136** 0.180** 0.165** 0.171** 0.129 0.150** 0.211** 0.188** 0.194** 0.194 0.214** 0.241** 0.235** 0.246** 

Monotone 

2.5 0.105 0.140** (0.115**) 0.138** 0.164** 0.122 [0.162**] {0.130*} [0.153**] 0.197** 0.133 [0.186**] (0.151**) (0.164**) 0.222** 
5 0.114 0.148** (0.125*) 0.144** 0.170** 0.130 0.167** [0.145**] 0.165* 0.205** 0.142 0.192** (0.154**) [0.175**] 0.231** 

10 0.122 0.161** 0.141** 0.158** 0.182** 0.124 0.168** [0.139**] 0.158** 0.201** 0.168 0.205** {0.173} [0.195**] 0.239** 
20 0.124 0.159** (0.130*) 0.150** 0.180** 0.129 0.193** 0.161** 0.175** 0.196** 0.202 0.238** {0.205} (0.213**) 0.262** 

KC3 

General 

2.5 0.113 0.165** 0.183** 0.176** 0.195** 0.111 0.159** 0.185** 0.182** 0.192** 0.141 0.221** 0.216** 0.229** 0.258** 
5 0.113 0.162** 0.212** 0.194** 0.194** 0.118 0.170** 0.218** 0.203** 0.202** 0.166 0.239** 0.271** 0.262** 0.269** 

10 0.115 0.160** 0.209** 0.188** 0.189** 0.121 0.165** 0.215** 0.194** 0.195** 0.187 0.248** 0.270** 0.266** 0.270** 
20 0.134 0.161** 0.216** 0.186** 0.188** 0.131 0.166** 0.217** 0.191** 0.193** 0.227 0.264** 0.278** 0.274** 0.278** 

Monotone 

2.5 0.114 (0.153) {0.117*} (0.146*) 0.171** 0.135 (0.171**) {0.138} (0.151) 0.194** 0.154 (0.201**) {0.161**} [0.202**] 0.236** 
5 0.133 [0.184**] {0.142**} [0.171**] 0.197** 0.140 0.197** (0.149**) 0.181** 0.212** 0.167 0.224** {0.169} [0.205**] 0.253** 

10 0.136 0.183** (0.142**) 0.167** 0.198** 0.137 0.175** {0.141} 0.168** 0.192** 0.192 0.260** {0.195} (0.217**) 0.280** 
20 0.140 0.206** 0.154** 0.175** 0.217** 0.139 0.196** [0.149**] 0.176** 0.209** 0.205 0.273** {0.208*} (0.218**) 0.288** 

MC2 

General 

2.5 0.103 {0.114*} (0.123*) (0.140**) [0.136**] 0.092 {0.105*} (0.111**) [0.126**] [0.140**] 0.184 (0.221**) (0.200*) {0.199} [0.243**] 
5 0.107 (0.124**) 0.150** 0.145** 0.148** 0.100 (0.115*) [0.128**] [0.142**] [0.146**] 0.205 0.232** [0.227*] (0.224) 0.252** 

10 0.123 [0.138*] 0.171** 0.160** 0.161** 0.126 (0.135*) 0.168** 0.159** 0.158** 0.220 (0.236**) [0.255**] [0.249**] 0.253** 
20 0.145 (0.149) 0.179** 0.168** 0.170** 0.145 {0.146} 0.180** 0.166** 0.167** 0.246 {0.248} [0.264**] (0.257*) [0.262**] 

Monotone 

2.5 0.144 {0.192} {0.163} {0.150} (0.221**) 0.132 {0.155**} {0.142} (0.143) (0.170**) 0.168 (0.195*) {0.177} {0.175} [0.220**] 
5 0.138 {0.164*}  {0.144} (0.162) (0.183**) 0.148 {0.168*} {0.150} {0.151} (0.180**) 0.171 (0.196**) (0.178) [0.185] [0.217**] 

10 0.125 (0.149**) {0.131} [0.145**] [0.167**] 0.131 {0.147*} {0.132} [0.165*] [0.163**] 0.185 (0.205**) {0.185} [0.198] [0.220**] 
20 0.134 (0.150**) (0.139*) [0.150**] [0.164**] 0.127 (0.143**) {0.131*} 0.159** [0.155**] 0.221 (0.232**) (0.227) {0.231*} [0.244**] 

Data MP MR (%) 
Imputation Approaches and MMs 

MCAR MAR NI 
CVBkNNI FWGkNNI ICkNNI DkNNI MEI CVBkNNI FWGkNNI ICkNNI DkNNI MEI CVBkNNI FWGkNNI ICkNNI DkNNI MEI 

camel 

General 

2.5 0.088 0.113** 0.209** 0.197** 0.197** 0.080 0.115** 0.203** 0.194** 0.194** 0.114 0.149** 0.247** 0.230** 0.231** 
5 0.094 0.122** 0.213** 0.199** 0.199** 0.088 0.118** 0.209** 0.194** 0.195** 0.118 0.157** 0.251** 0.235** 0.236** 

10 0.105 0.128** 0.213** 0.197** 0.197** 0.107 0.130** 0.215** 0.198** 0.198** 0.134 0.171** 0.255** 0.241** 0.242** 
20 0.124 0.138** 0.215** 0.197** 0.198** 0.125 0.140** 0.216** 0.198** 0.199** 0.169 0.195** 0.260** 0.250** 0.251** 

Monotone 

2.5 0.093 0.124** [0.111**] 0.133** 0.223** 0.107 0.139** [0.120**] 0.137** 0.232** 0.118 0.164** [0.144**] 0.163** 0.256** 
5 0.109 0.135** 0.171** 0.205** 0.226** 0.118 0.146** 0.173** 0.206** 0.233** 0.121 0.162** [0.142**] 0.164** 0.254** 

10 0.112 0.144** 0.176** 0.214** 0.231** 0.114 0.145** [0.127**] 0.149** 0.230** 0.149 0.183** 0.192** 0.226** 0.270** 
20 0.120 0.148** [0.135**] 0.154** 0.230** 0.122 0.149** 0.183** 0.212** 0.230** 0.194 0.233** 0.236** 0.258** 0.292** 

ant 

General 

2.5 0.095 0.120** 0.203** 0.190** 0.195** 0.099 [0.120**] 0.194** 0.176** 0.180** 0.123 0.160** 0.230** 0.221** 0.227** 
5 0.100 0.124** 0.204** 0.190** 0.195** 0.098 0.123** 0.200** 0.182** 0.187** 0.127 0.164** 0.234** 0.225** 0.230** 

10 0.110 0.129** 0.204** 0.188** 0.192** 0.107 0.127** 0.201** 0.184** 0.187** 0.139 0.170** 0.232** 0.227** 0.233** 
20 0.129 0.139** 0.206** 0.188** 0.192** 0.129 0.138** 0.204** 0.187** 0.191** 0.171 0.185** 0.235** 0.235** 0.241** 

Monotone 

2.5 0.115 0.145** [0.129**] 0.155** 0.214** 0.123 0.155 (0.131**) 0.165** 0.228** 0.140 0.175** [0.166**] 0.189** 0.250** 
5 0.126 0.158** 0.165** 0.198** 0.222** 0.126 0.160** 0.164** 0.193** 0.226** 0.135 0.170** [0.162**] 0.184** 0.247** 

10 0.125 0.157** 0.161** 0.190** 0.223** 0.123 0.158** 0.135** 0.162** 0.225** 0.155 0.186** 0.191** 0.218** 0.260** 
20 0.129 0.159** 0.144** 0.164** 0.223** 0.125 0.160** 0.176** 0.202** 0.223** 0.192 0.222** 0.235** 0.251** 0.280** 

ivy 

General 

2.5 0.090 0.125** 0.205** 0.196** 0.198** 0.088 0.114** 0.190** 0.181** 0.187** 0.107 0.171** 0.241** 0.237** 0.241** 
5 0.090 0.126** 0.200** 0.191** 0.194** 0.094 0.120** 0.197** 0.184** 0.189** 0.121 0.176** 0.252** 0.242** 0.245** 

10 0.109 0.134** 0.205** 0.192** 0.195** 0.107 0.134** 0.203** 0.189** 0.194** 0.147 0.186** 0.255** 0.245** 0.249** 
20 0.131 0.143** 0.204** 0.192** 0.195** 0.135 0.148** 0.208** 0.193** 0.199** 0.186 0.208** 0.260** 0.255** 0.259** 

Monotone 

2.5 0.131 0.165** [0.156**] 0.187** 0.224** 0.113 0.163** [0.130**] 0.157** 0.228** 0.131 0.198** 0.162** 0.194** 0.277** 
5 0.118 0.156** (0.126) 0.155** 0.225** 0.118 0.164** 0.163** 0.199** 0.231** 0.136 0.201** 0.190** 0.233** 0.279** 

10 0.121 0.164** 0.164** 0.198** 0.229** 0.127 0.170** 0.165** 0.198** 0.233** 0.156 0.207** [0.170**] 0.189** 0.284** 
20 0.122 0.164** 0.136** 0.156** 0.228** 0.128 0.177** 0.184** 0.209** 0.233** 0.213 0.249** 0.241** 0.259** 0.306** 

arc 

General 

2.5 0.096 [0.136**] 0.216** 0.208** 0.216** 0.104 [0.136**] 0.209** 0.205** 0.212** 0.112 0.196** 0.269** 0.270** 0.273** 
5 0.086 0.131** 0.220** 0.208** 0.211** 0.100 0.143** 0.226** 0.211** 0.216** 0.138 0.198** 0.273** 0.269** 0.272** 

10 0.108 0.145** 0.228** 0.213** 0.215** 0.122 0.155** 0.234** 0.217** 0.221** 0.152 0.207** 0.281** 0.277** 0.281** 
20 0.148 [0.156*] 0.231** 0.216** 0.218** 0.154 [0.163**] 0.234** 0.216** 0.220** 0.214 0.243** 0.292** 0.292** 0.297** 

Monotone 

2.5 0.123 0.195** 0.168* 0.209** 0.243** 0.133 0.192** [0.169*] 0.203** 0.239** 0.117 0.194** 0.180** 0.212** 0.298** 
5 0.128 0.200** (0.148**) [0.164**] 0.244** 0.129 0.196** 0.169** 0.197** 0.243** 0.135 0.204** 0.166** 0.175** 0.307** 

10 0.135 0.200** 0.170** 0.201** 0.250** 0.125 0.199** 0.175** 0.212** 0.253** 0.173 0.246** 0.209** 0.229** 0.328** 
20 0.132 0.195** 0.179** 0.204** 0.251** 0.138 0.213** 0.177** 0.190** 0.253** 0.240 0.283** (0.249) (0.259*) 0.332** 

PC5 

General 

2.5 0.063 [0.080**] 0.093** [0.088**] [0.089**] 0.062 (0.076**) [0.087**] [0.083**] [0.085**] 0.089 [0.121**] 0.128** 0.128** 0.130** 
5 0.064 [0.082**] 0.094** 0.088** 0.089** 0.065 [0.081**] 0.092** [0.086**] 0.087** 0.096 [0.123**] 0.134** 0.131** 0.133** 

10 0.065 0.080** 0.092** 0.086** 0.087** 0.069 0.082** 0.093** 0.088** 0.089** 0.103 [0.125**] 0.132** 0.129** 0.131** 
20 0.071 [0.079**] 0.090** 0.084** 0.085** 0.073 [0.080**] 0.093** 0.086** 0.087** 0.118 (0.127**) [0.132**] [0.130**] [0.132**] 

Monotone 

2.5 0.057 {0.061} {0.057} {0.057} (0.070**) 0.054 {0.058} {0.053} [0.069*] (0.063*) 0.087 (0.112**) {0.091} (0.097) (0.118*) 
5 0.062 {0.071*} (0.071**) [0.083**] (0.076**) 0.065 (0.078**) {0.068} [0.080**] [0.081**] 0.082 (0.108**) (0.089**) (0.095**) [0.117**] 

10 0.060 (0.071**) {0.065**} [0.075**] [0.078**] 0.061 (0.075**) (0.067**) 0.079** [0.080**] 0.089 [0.109**] {0.091} {0.097**} [0.115**] 
20 0.063 [0.075**] (0.066) 0.075** 0.079** 0.064 [0.078**] (0.074**) [0.079**] [0.079**] 0.116 (0.128**) (0.130**) (0.130**) [0.132**] 

MW1 General 2.5 0.083 0.132** 0.183** 0.170** 0.179** 0.092 0.139** 0.205** 0.185** 0.200** 0.117 0.176** 0.207** 0.207** 0.228** 
5 0.092 0.132** 0.188** 0.171** 0.180** 0.104 0.139** 0.204** 0.185** 0.194** 0.126 0.186** 0.234** 0.221** 0.233** 

{}/()/[]: Curly brackets for effect size 0 . 5 ≤ ˆ A 12 < 0 . 6 , parentheses for small effect size 0 . 6 ≤ ˆ A 12 < 0 . 7 , square brackets for medium effect size 0 . 7 ≤ ˆ A 12 < 0 . 8 , and no brackets 

for large effect size 0 . 8 ≤ ˆ A 12 ≤ 1 . 
∗∗Left-tail Wilcoxon signed-rank test, significant at the level of 0.01; ∗Significant at the level of 0.05. 

1 The minimum RMSEs in each condition are in green; the maximum RMSEs are in red; while the 2nd smallest RMSEs are marked in blue. 
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Left-tail Wilcoxon signed-rank test is also used to test if the

MSEs are reduced with imputation ordering, as well as if the RM-

Es are reduced with feature relevance considered in measuring

istance. For example, in dataset camel, under the general MP and

CAR, the average RMSEs of the CVB k NNI is measured as 0.105

Also shown in Table 7 ), which is significantly less than that with-

ut feature relevance (0.112) at the significant level of 0.05. Simi-

arly, if imputation ordering is excluded in the CVB k NNI, the corre-

ponding RMSEs (Avg: 0.106) after the CVB k NNI with feature rele-
ance are significantly less than those (Avg: 0.113) without feature

elevance. Therefore, from the results, if the component of feature

elevance is excluded, the imputation accuracy of the CVB k NNI is

educed in most cases. However, if feature relevance is included,

he average imputation performance of the CVB k NNI with ordering

s slightly better than that without ordering, especially when the

M is NI. Imputation ordering may not have an overall significant

mpact on the performance of the CVB k NNI, but at least, it reduces

he average RMSE in general. 
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Table 8 

Counts and ratios of Vargha–Delaney’s ˆ A 12 statistic from the overall RMSE results. 

Data Imputation approaches Counts and ratios of Vargha–Delaney’s ˆ A 12 Effect Size 

0 . 5 ≤ ˆ A 12 < 0 . 6 0 . 6 ≤ ˆ A 12 < 0 . 7 0 . 7 ≤ ˆ A 12 < 0 . 8 0 . 8 ≤ ˆ A 12 ≤ 1 

camel CVB k NNI vs. FWG k NNI 0/24 1 0/24 0/24 24/24 

CVB k NNI vs. IC k NNI 0/24 0/24 6/24 18/24 

CVB k NNI vs. D k NNI 0/24 0/24 0/24 24/24 

CVB k NNI vs. MEI 0/24 0/24 0/24 24/24 

ant CVB k NNI vs. FWG k NNI 0/24 0/24 1/24 23/24 

CVB k NNI vs. IC k NNI 0/24 1/24 3/24 20/24 

CVB k NNI vs. D k NNI 0/24 0/24 0/24 24/24 

CVB k NNI vs. MEI 0/24 0/24 0/24 24/24 

ivy CVB k NNI vs. FWG k NNI 0/24 0/24 0/24 24/24 

CVB k NNI vs. IC k NNI 0/24 1/24 3/24 20/24 

CVB k NNI vs. D k NNI 0/24 0/24 0/24 24/24 

CVB k NNI vs. MEI 0/24 0/24 0/24 24/24 

arc CVB k NNI vs. FWG k NNI 0/24 0/24 4/24 20/24 

CVB k NNI vs. IC k NNI 0/24 2/24 1/24 21/24 

CVB k NNI vs. D k NNI 0/24 1/24 1/24 22/24 

CVB k NNI vs. MEI 0/24 0/24 0/24 24/24 

PC5 CVB k NNI vs. FWG k NNI 3/24 8/24 11/24 2/24 

CVB k NNI vs. IC k NNI 6/24 6/24 2/24 10/24 

CVB k NNI vs. D k NNI 2/24 3/24 9/24 10/24 

CVB k NNI vs. MEI 0/24 4/24 10/24 10/24 

MW1 CVB k NNI vs. FWG k NNI 0/24 0/24 2/24 22/24 

CVB k NNI vs. IC k NNI 3/24 5/24 2/24 14/24 

CVB k NNI vs. D k NNI 0/24 2/24 3/24 19/24 

CVB k NNI vs. MEI 0/24 0/24 0/24 24/24 

KC3 CVB k NNI vs. FWG k NNI 0/24 3/24 1/24 20/24 

CVB k NNI vs. IC k NNI 8/24 2/24 1/24 13/24 

CVB k NNI vs. D k NNI 0/24 4/24 3/24 17/24 

CVB k NNI vs. MEI 0/24 0/24 0/24 24/24 

MC2 CVB k NNI vs. FWG k NNI 9/24 13/24 1/24 1/24 

CVB k NNI vs. IC k NNI 9/24 6/24 4/24 5/24 

CVB k NNI vs. D k NNI 5/24 5/24 8/24 6/24 

CVB k NNI vs. MEI 0/24 4/24 13/24 7/24 

1 There are 2 MPs, 3 MMs and 4 MRs, in total, 24 scenarios. 

Fig. 4. The imputation RMSEs of data ant at MR = 5%, range in [0.07, 0.32]. 
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Fig. 5. The imputation RMSEs of data ant at MR = 20%, range in [0.07, 0.32]. 

Fig. 6. The imputation RMSEs of data PC5 at MR = 5%, range in [0.02, 0.22]. 



242 J. Huang et al. / The Journal of Systems and Software 132 (2017) 226–252 

Table 9 

Average algorithm running time in seconds on 4 selected datasets. 

Data MR (%) Avg. algorithm running time (in seconds) 

CVB k NNI FWG k NNI IC k NNI D k NNI MEI 

camel 2 .5 50 .8839 0 .7549 0 .0082 0 .0091 0 .0 0 04 

5 86 .1633 0 .9416 0 .0110 0 .0143 0 .0 0 04 

10 129 .7130 1 .3375 0 .0165 0 .0224 0 .0 0 04 

20 167 .8360 1 .8559 0 .0282 0 .0385 0 .0 0 04 

ivy 2 .5 37 .0678 0 .8673 0 .0141 0 .0094 0 .0 0 02 

5 48 .9862 0 .7437 0 .0137 0 .0076 0 .0 0 02 

10 88 .9723 1 .0780 0 .0112 0 .0138 0 .0 0 02 

20 111 .3102 1 .3277 0 .0170 0 .0194 0 .0 0 02 

PC5 2 .5 45 .1913 0 .6650 0 .0087 0 .0107 0 .0 0 04 

5 74 .1314 0 .8746 0 .0126 0 .0186 0 .0 0 04 

10 103 .4838 1 .1381 0 .0172 0 .0223 0 .0 0 04 

20 147 .9999 1 .5946 0 .0290 0 .0409 0 .0 0 04 

KC3 2 .5 11 .7655 0 .3755 0 .0027 0 .0023 0 .0 0 02 

5 21 .0672 0 .4802 0 .0036 0 .0040 0 .0 0 02 

10 33 .9020 0 .7103 0 .0066 0 .0093 0 .0 0 02 

20 51 .5934 0 .8911 0 .0101 0 .0127 0 .0 0 02 

 

 

 

 

 

 

 

 

 

Table 11 

The comparison between general pattern and monotone pattern at the 

significance level of 0.05 1 . 

Data MM General and monotone 

MR = 2 .5% MR = 5% MR = 10% MR = 20% 

camel MCAR 345 235 2345 2345 

MAR 1245 125 345 345 

NI 345 345 12345 1235 

ant MCAR 2345 1235 1235 2345 

MAR 1235 1235 12345 2345 

NI 345 345 1235 125 

ivy MCAR 1235 12345 1235 12345 

MAR 12345 1235 12345 2345 

NI 1345 1235 2345 1235 

arc MCAR 23 12345 1235 1235 

MAR 1235 1235 235 12345 

NI 34 345 12345 2345 

PC5 MCAR 34 3 2345 1345 

MAR 235 N/A 3 13 

NI N/A 34 34 N/A 

MW1 MCAR 13 13 123 234 

MAR 13 123 234 234 

NI 34 34 34 234 

KC3 MCAR 3 3 134 235 

MAR 3 13 134 2345 

NI N/A 34 34 34 

MC2 MCAR N/A N/A 3 3 

MAR N/A 1 N/A 3 

NI N/A 4 12345 N/A 

1 

1 = CVB k NNI, 2 = FWG k NNI, 3 = IC k NNI, 4 = D k NNI, 5 = MEI. 

d  

I  

h  
5.3. Parameter setting in CVBkNNI 

Moreover, the selected parameter combinations in CVB k NNI for

estimating missing values in a dataset are summarized as well.

Table 13 lists the mostly selected distance measure, K and adapta-

tion method under each missingness scenario in the 30-time repli-

cated camel, ant, PC5 and MW1 datasets. 

The results in Table 13 show that GRA-based distance measure

obviously takes the majority. For relatively small-sized MW1 data,

the use of GRA-based distance measure is slightly overwhelmed

by Manhattan distance. For the choice of K , most of the imputa-

tion parameters prefer K = 3. As for the adaptation method, Du-
Table 10 

The comparison between each pair of MMs at the significan

Data MP MM MR = 2.5% MR =
MAR NI MAR 

camel General MCAR N/A 12345 N/A 

MAR – 12345 –

Monotone MCAR 2 12345 2 

MAR – 245 –

ant General MCAR 45 12345 45 

MAR – 12345 –

Monotone MCAR N/A 12345 N/A 

MAR – 3 –

ivy General MCAR N/A 12345 N/A 

MAR – 12345 –

Monotone MCAR 34 25 34 

MAR – 2345 –

arc General MCAR N/A 2345 N/A 

MAR – 2345 –

Monotone MCAR N/A 5 4 

MAR – 5 –

PC5 General MCAR N/A 12345 N/A 

MAR – 2345 –

Monotone MCAR N/A 4 N/A 

MAR – N/A –

MW1 General MCAR N/A 1245 N/A 

MAR – 1245 –

Monotone MCAR N/A N/A 145 

MAR – N/A –

KC3 General MCAR N/A 1245 N/A 

MAR – 12345 –

Monotone MCAR N/A N/A N/A 

MAR – N/A –

MC2 General MCAR 1 1235 3 

MAR – 1235 –

Monotone MCAR N/A N/A N/A 

MAR – N/A –

1 

1 = CVB k NNI, 2 = FWG k NNI, 3 = IC k NNI, 4 = D k NNI, 5 = M
ani measure is more popular than both mean and IDWM. Neither

RWM nor median is selected. Figs. 10 and 11 further present the

istograms of the distribution of each utilized parameter. The re-
ce level of 0.05 1 . 

 5% MR = 10% MR = 20% 

NI MAR NI MAR NI 

12345 N/A 12345 N/A 12345 

12345 – 12345 – 12345 

12345 34 12345 34 12345 

345 – 12345 – 12345 

12345 N/A 12345 N/A 12345 

12345 – 12345 – 12345 

5 34 12345 34 12345 

5 – 12345 – 12345 

12345 N/A 12345 N/A 12345 

12345 – 12345 – 12345 

12345 N/A 125 234 12345 

12345 – 125 – 12345 

12345 1 12345 N/A 12345 

12345 – 12345 – 12345 

5 N/A 12345 N/A 12345 

5 – 12345 – 12345 

12345 N/A 12345 N/A 12345 

12345 – 12345 – 12345 

N/A N/A 1235 N/A 12345 

N/A – 12 – 12345 

12345 12345 12345 12345 12345 

12345 – 12345 – 12345 

1235 N/A 12345 12345 12345 

2 – 12345 – 12345 

12345 N/A 12345 5 12345 

12345 – 12345 – 12345 

N/A N/A 12345 N/A 12345 

N/A – 12345 – 12345 

12345 N/A 12345 N/A 12345 

12345 – 12345 – 12345 

N/A N/A 1234 N/A 12345 

N/A – 1235 – 12345 

EI. 
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Table 12 

A comparison in terms of different configurations of CVB k NNI at MR = 10%. 

Data MP MM w/ MI-based feature relevance w/o MI-based feature relevance 

w/ imputation 

ordering 1 
w/o imputation 

ordering 

w/ imputation 

ordering 

w/o imputation 

ordering 

camel General MCAR 0 .105 2 0 .106 0 .112 ∗ 0 .113 ∗

MAR 0 .107 0 .107 0 .120 ∗ 0 .120 ∗

NI 0 .134 0 .154 ∗ 0 .134 0 .154 ∗

Monotone MCAR 0 .112 0 .113 0 .114 0 .115 

MAR 0 .114 0 .116 0 .121 ∗ 0 .127 ∗

NI 0 .149 0 .151 ∗ 0 .149 0 .151 ∗

ant General MCAR 0 .110 0 .109 0 .115 ∗ 0 .116 ∗

MAR 0 .107 0 .107 0 .118 ∗ 0 .118 ∗

NI 0 .139 0 .141 ∗ 0 .150 ∗ 0 .153 ∗

Monotone MCAR 0 .125 0 .125 0 .138 ∗ 0 .135 ∗

MAR 0 .123 0 .125 0 .138 ∗ 0 .132 ∗

NI 0 .155 0 .157 0 .161 ∗ 0 .164 ∗

PC5 General MCAR 0 .065 0 .068 ∗ 0 .082 ∗ 0 .080 ∗

MAR 0 .069 0 .069 0 .069 0 .069 

NI 0 .103 0 .104 0 .104 0 .107 

Monotone MCAR 0 .060 0 .061 0 .067 ∗ 0 .069 ∗

MAR 0 .061 0 .061 0 .078 ∗ 0 .075 ∗

NI 0 .089 0 .098 ∗ 0 .090 0 .099 ∗

MW1 General MCAR 0 .106 0 .106 0 .106 0 .108 

MAR 0 .119 0 .120 0 .125 ∗ 0 .123 

NI 0 .153 0 .159 ∗ 0 .153 0 .159 ∗

Monotone MCAR 0 .122 0 .124 0 .122 0 .122 

MAR 0 .124 0 .126 0 .129 ∗ 0 .129 ∗

NI 0 .168 0 .182 ∗ 0 .183 ∗ 0 .184 ∗

1 CVB k NNI configuration. 
2 The results in terms of RMSEs are consistent with those in Table 7 . 
∗ Left-tail Wilcoxon signed-rank test at the significant level of 0.05. 

Fig. 7. The imputation RMSEs of data PC5 at MR = 20%, range in [0.02, 0.22]. 
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ults on figures are consistent with Table 13 . A combination of pa-

ameter setting (GRA-based distance measure, K = 3, with Dudani

daptation measure) is overall the most frequent for the imputa-

ion. However, there is still no guarantee that any combination is
verall the best solution. n  

S  
Since the estimator of GRA-based distance measure, K = 3 with

udani adaptation method is the most widely selected setting

n most cases, this work also evaluates the imputation approach

ith this selected estimator predefined. This new approach is

amed as G3D, representing the three predefined parameters. Like

ection 5.1 , the imputation performance of G3D on each dataset is
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Fig. 8. The imputation RMSEs of data MW1 at MR = 5%, range in [0.05, 0.3]. 

Fig. 9. The imputation RMSEs of data MW1 at MR = 20%, range in [0.05, 0.3]. 
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Table 13 

The mostly selected parameter setting under each scenario. 

Data examples MP MR (%) MM 

MCAR MAR NI 

Distance K Adaptation Distance K Adaptation Distance K Adaptation 

camel General 2 .5 GRA 1 3 Dudani GRA 3 Dudani GRA 3 Dudani 

5 GRA 3 Dudani GRA 3 Dudani GRA 5 Dudani 

10 GRA 3 Dudani GRA 3 Dudani GRA 3 Dudani 

20 GRA 3 Dudani GRA 3 Dudani GRA 3 Dudani 

Monotone 2 .5 GRA 5 IDWM GRA 7 IDWM GRA 5 Dudani 

5 GRA 5 IDWM GRA 5 IDWM GRA 3 Dudani 

10 GRA 7 IDWM GRA 5 IDWM GRA 3 Dudani 

20 GRA 5 IDWM GRA 3 Dudani GRA 3 Dudani 

ant General 2 .5 GRA 5 Dudani GRA 5 Dudani GRA 5 Dudani 

5 GRA 3 Dudani GRA 3 Dudani GRA 5 Dudani 

10 GRA 3 Dudani GRA 3 Dudani GRA 3 Dudani 

20 GRA 3 Dudani GRA 3 Mean GRA 3 Dudani 

Monotone 2 .5 GRA 19 IDWM GRA 11 IDWM GRA 5 Dudani 

5 GRA 19 Dudani GRA 17 IDWM GRA 5 Dudani 

10 GRA 17 Dudani GRA 7 IDWM GRA 5 IDWM 

20 GRA 7 IDWM GRA 15 Dudani GRA 3 Dudani 

PC5 General 2 .5 GRA 3 Dudani GRA 3 Dudani GRA 3 Mean 

5 GRA 3 Mean GRA 3 Dudani GRA 3 Mean 

10 GRA 3 Dudani GRA 3 Dudani GRA 3 Dudani 

20 GRA 3 Mean GRA 3 Mean GRA 3 Mean 

Monotone 2 .5 GRA 3 Mean GRA 3 Dudani GRA 3 Dudani 

5 GRA 3 Dudani GRA 3 Mean GRA 3 Dudani 

10 GRA 3 Mean GRA 3 Mean GRA 3 Mean 

20 GRA 3 Dudani GRA 1 Mean GRA 3 Mean 

MW1 General 2 .5 Manhattan 3 Dudani Manhattan 3 Dudani Manhattan 3 Dudani 

5 Manhattan 3 Dudani GRA 3 Dudani Manhattan 3 Dudani 

10 Manhattan 3 Dudani GRA 3 Dudani Manhattan 3 Dudani 

20 GRA 3 Dudani Euclidean 3 Dudani GRA 3 Dudani 

Monotone 2 .5 Manhattan 5 Dudani Manhattan 3 Dudani Manhattan 3 Dudani 

5 Manhattan 5 Dudani Manhattan 5 Dudani Manhattan 3 Dudani 

10 GRA 3 Dudani Manhattan 3 Dudani Manhattan 3 Dudani 

20 Manhattan 3 IDWM Manhattan 3 IDWM GRA 3 Dudani 

1 GRA denotes the distance measure of d( x i , x j ) = 1 − GRG ( x i , x j ) , as introduced in Section 3.2.1 . 

Table 14 

The imputation performance of G3D compared with others 1,2 . 

1 Filled in green: G3D performs better than CVB k NNI; Filled in blue: G3D performs better than FWG k NNI (Compare with Table 8 ). 
2 1 = CVB k NNI, 2 = FWG k NNI, 3 = IC k NNI, 4 = D k NNI, 5 = MEI. 
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Fig. 10. The parameter distribution of CVB k NNI on data ivy at MR = 10%. 
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summarized in terms of various missingness scenarios. The results

are shown in Table 14 . The performance is also compared with

CVB k NNI, FWG k NNI, IC k NNI, D k NNI and MEI. As shown in Table 14 ,

the imputation accuracy of G3D is consistent in general, especially

in object-oriented datasets. It is less superior than CVB k NNI but

superior to FWG k NNI, IC k NNI, D k NNI and MEI in most cases. Al-

though G3D is not the optimal solution by all means, it is recom-

mended being applied in the incomplete software quality datasets

as an alternative to the traditional K NN imputation strategies. It

answers to RQ3. 

Left-tail Wilcoxon signed-rank tests are also used to verify if

the performance of G3D. For example, in camel data, under the

missingness scenario of general MP, MCAR mechanism and 2.5%
R, the average RMSE of 30 replications is 0.098, the ‘2,3,4,5’ in

he top-right position denotes that the corresponding 30 RMSE

alues from G3D imputation are significantly less than that from

WG k NNI, IC k NNI, D k NNI and MEI (See the footnote of Table 14 ).

herefore, in general, the performance of G3D is better than that

f FWG k NNI, IC k NNI, D k NNI and MEI, especially in object-oriented

atasets. In arc dataset, some of the average RMSE values are even

maller than that of CVB k NNI; however, this relationship is not

ignificant. In the procedural datasets, the size of which is rela-

ively smaller than that of object-oriented datasets. G3D is more

requently not the overall suboptimal imputation. All in all, there

s no straightforward evidence that G3D would perform differently

nder different MMs. It performs worse than IC k NNI in procedural



J. Huang et al. / The Journal of Systems and Software 132 (2017) 226–252 247 

Fig. 11. The parameter distribution of CVB k NNI on data KC3 at MR = 10%. 
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atasets if the MP is monotone. But in general, G3D, a K NN im-

utation approach based on MI-based GRA distance measure, K = 3

ith Dudani adaptation, is better than FWG k NNI, IC k NNI, D k NNI

nd MEI in most cases in terms of imputation accuracy. 

.4. Classification accuracy 

This part assesses the imputation effectiveness from another

erspective, which compares different ML classifiers ( K NN, Dis-

riminant analysis, Naive Bayes and SVM) built on the complete

ata constructed after the imputation. It answers to RQ4 to com-

are and verify CA. Since the classification models cannot be ex-

austively applied, most studies regarded this procedure as an aux-

liary step evaluating the imputation performance. 
To present the impact of imputation on fault-proneness classifi-

ation accuracy, four ML classifiers on the two relatively large im-

uted datasets: PC5 and camel, are conducted. To save space, only

he data versions with MR = 10% are analyzed for comparison. The

ther missingness scenarios are kept as well. For each classifier, CA

s computed after a 10-fold cross-validation. G3D is also included

n the experiment. 

Table 15 presents the results of CA. Note that ‘No imputation’

eans we use the original data (w/o missingness simulation) for

lassification. ‘No imputation’, therefore, is a benchmark in the

omparison. The imputed data is less distorted if the classification

erformance on which is as usual as that on the corresponding

riginal one. The results clearly show that the classifiers based on
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Table 15 

The comparison of CA using different ML classifiers on data camel and PC5 with MR = 10%. 

1 The maximum CAs in each condition are in green; the minimum CAs are in red; while the 2nd largest CAs are marked in blue. 
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either the original dataset or the incomplete one with MEI used

generally present relatively worse classification performance. In

terms of the CA after imputation, CVB k NNI and G3D are generally

superior to others in most cases. And the IC k NNI has a suboptimal

performance. In terms of the classifiers, K NN, Discriminant analy-

sis, and Naïve Bayes are more sensitive to imputation approaches

than SVM. The performance of SVM is even not sensitive to MM or

MP. In general, the results show that appropriate imputation ap-

proach could be beneficial to the CA of specific classifier. To sum,

when using CVB k NNI and G3D as the imputation approach on the

incomplete data, the classification bias could also be maintained or

even reduced in commonly used classification tasks. 

6. Threats to validity 

The threats to validity are generally distributed into four

groups: conclusion, internal, construct, and external validity. The

conclusion validity is related to the ability to draw significant cor-

rect conclusions; regarding which, we carefully applied the statis-

tical tests, showing statistical significance for the obtained results.

Moreover, we have used two relatively large datasets (camel and

PC5) to mitigate the threats related to the number of observations

composing the datasets. 
The construct validity refers to the agreement between a theo-

etical concept and a specific measure. As to the evaluation of dif-

erent K nearest neighbor ( K NN) imputation approaches, we made

se of one balanced performance measure and 8 public software

uality datasets. The data repository used in the work has been

reviously used in numerous empirical quality studies. 

As the study concentrates on a structural investigation of

 novel K NN imputation approach, the internal validity on ex-

eriment design is presented in one aspect: CVB k NNI is a

omputation-consuming way to improve imputation accuracy.

owever, if the imputation accuracy is the top priority, the value

f CVB k NNI is then obvious. The proposal of G3D stands as an al-

ernative to mitigate this issue as well. 

The threats to external validity are controlled well in this study.

ight object-oriented and procedural software quality datasets are

xamined in the study. Meanwhile, 3 missingness mechanisms

MMs), 2 missingness patterns (MPs), and 4 missingness ratios

MRs) are also considered during missingness simulation for test-

ng the performance of the proposed imputation approach under

arious conditions. One issue is that we did not consider adopting

ore different kinds of imputation approaches, for example, the

ayes multiple imputation (BMI), as the competitor to CVB k NNI.

his study only focuses on the improvement and comparison of



J. Huang et al. / The Journal of Systems and Software 132 (2017) 226–252 249 

K  

p

7

 

(  

p  

p  

i  

a  

t  

t  

a  

o  

t  

c  

t  

t  

p

 

 

 

 

 

 

 

 

 

 

 

w  

o  

t  

h  

e  

t  

o

A

 

t  

G  

K  

s  

7

R

A  

A  

B  

B  

C  

 

C  

 

C  

C  

C  

D  

D  

D  

F  

F  

G  

 

H  

H  

H  

 

H  

H  

J  

 

 

J  

J  

 

K  

 

K  

K  

K  

K  

 

K  

 

K
L  

L  

 

 

L  

 

 

L  

 

L  

L  

M  

M  

M  

M  

 

 NN related imputation approaches. In the future work, more com-

arison studies shall be explored. 

. Conclusions and future work 

This empirical study proposes a novel K Nearest Neighbor

 K NN) based imputation approach: called CVB k NNI, and its im-

roved performance has been validated in the software quality

rediction domain. CVB k NNI is different to other approaches since

t does not have predetermined fixed estimator, and instead it

daptively selects the optimal estimator for each missing value in

he dataset. The estimator of CVB k NNI includes a pool of three dis-

ance measures, multiple choices of K values together with five

daptation methods. Our result shows that CVB k NNI outperforms

ther competing approaches in overall imputation accuracy. From

he returned estimator of the CVB k NNI, the optimal parameter

ombination of K NN imputation for software quality dataset is

hen correctly determined, which is named as G3D. Further evalua-

ions on the CVB k NNI have been performed, specifically on incom-

lete datasets and compared several other competing approaches. 

In particular, 4 findings are noteworthy from the study: 

(1) Our proposed cross-validation based K NN imputation could

further improve the imputation performance on software

quality datasets, in which calculating the feature relevance

during measuring the pair distance is very necessary. 

(2) The impact of missingness mechanisms and patterns on

imputation performance exists. Non-ignorable missingness 

mechanism could significantly impact the imputation accu-

racy. The impact of missingness pattern is related to the

dataset. 

(3) The performance of fault-proneness classification is accept-

able when CVB k NNI was used as the preprocessing method. 

(4) For K NN imputation using K = 3 and Dudani adaptation, to-

gether with the distance measure based on mutual infor-

mation weighted grey relational analysis, is considered ideal

and recommended for incomplete software quality datasets. 

CVB k NNI could be easily applicable to other domains in soft-

are engineering, which are subject to further investigations in

ur future work. Theoretically it would further improve imputa-

ion accuracy when dealing with incomplete datasets, but also

elps to find the optimal K NN imputation algorithm under differ-

nt circumstance. Besides, determining more meaningful parame-

er configurations or components to further improve the accuracy

f CVB k NNI is also being investigated. 
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