
IBM  

ibm.com/redbooks

Developing and Porting 
C and C++ Applications 
on AIX

Keigo Matsubara
Edison Kwok

Inge Rodriguez
Murali Paramasivam

Detailed explanations about 32- and 64-bit 
process models

Effective management of shared 
objects and libraries

Exploring parallel 
programming using OpenMP

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/




Developing and Porting C and C++ Applications on 
AIX

June 2003

International Technical Support Organization

SG24-5674-01



© Copyright International Business Machines Corporation 2000, 2003. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Second Edition (June 2003)

This edition applies to C for AIX (program number 5765-F57) and VisualAge C++ for AIX Version 
6.0 (product number 5765-F56) installed on AIX 5L Version 5.2 (product number 5765-E62).

Note: Before using this information and the product it supports, read the information in 
“Notices” on page xvii.



Contents

Figures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Tables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Notices  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii
Trademarks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

Preface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix
The team that wrote this redbook. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix
Become a published author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xx
Comments welcome. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

Summary of changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii
June 2003, Second Edition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii
September 2000, First Edition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiv

Chapter 1.  C and C++ compilers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1  C for AIX Version 6.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1  New or improved optimization features. . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2  ISO C Standard conformance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3  GNU C compatibility  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1.4  Enhanced language level support. . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2  VisualAge C++ for AIX Version 6.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2.1  New or improved optimization features. . . . . . . . . . . . . . . . . . . . . . . 16
1.2.2  OpenMP support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2.3  Automatic parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.2.4  Improved template handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.2.5  C99 features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.2.6  GNU G++ compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3  Installing the compilers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.1  Install compiler filesets  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.2  Retaining a previous version of the compiler  . . . . . . . . . . . . . . . . . . 22

1.4  Activating the compilers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.4.1  What is LUM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.4.2  Configuring LUM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.5  Activating the LUM server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.6  Enrolling a product license  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.6.1  Enrolling a concurrent license . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.6.2  Enrolling a simple nodelock license  . . . . . . . . . . . . . . . . . . . . . . . . . 29
© Copyright IBM Corp. 2000, 2003. All rights reserved. iii



1.7  Invoking the compilers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.7.1  Default compiler drivers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.8  Where to find help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.8.1  Online documentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.8.2  Viewing online documentation remotely . . . . . . . . . . . . . . . . . . . . . . 31
1.8.3  Where to find help on the Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.8.4  Applying fixes and service updates. . . . . . . . . . . . . . . . . . . . . . . . . . 35

Chapter 2.  Compiling and linking  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.1  32- and 64-bit development environments  . . . . . . . . . . . . . . . . . . . . . . . . 38

2.1.1  The 64-bit advantage  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.1.2  Compiler support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.1.3  Utility commands support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2  Compiling and linking: A quick overview . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.2.1  Building C and C++ programs with system libraries . . . . . . . . . . . . . 43
2.2.2  Objects and libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.2.3  Difference between shared object and library on AIX . . . . . . . . . . . . 49
2.2.4  Difference between shared and static objects on AIX. . . . . . . . . . . . 51

2.3  Resolving symbols at link-time  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.3.1  The -L linker option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.3.2  Searching objects and libraries at link-time. . . . . . . . . . . . . . . . . . . . 56
2.3.3  LIBPATH environment variable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.3.4  Link-time and load-time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.4  Supported link methods on AIX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.4.1  AIX default linking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.4.2  Static linking  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.4.3  Lazy loading  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.5  Run-time linking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.5.1  How to use run-time linking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.5.2  Examining the executable and shared objects using dump  . . . . . . . 75
2.5.3  Enabling the main program object as run-time linking  . . . . . . . . . . . 78
2.5.4  Rebinding symbols at the program load-time . . . . . . . . . . . . . . . . . . 79
2.5.5  Extended search order with the -brtl linker option. . . . . . . . . . . . . . . 81

2.6  Dynamic loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
2.7  Commands when manipulating objects and libraries  . . . . . . . . . . . . . . . . 85

2.7.1  dump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
2.7.2  genkld . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
2.7.3  ldd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
2.7.4  nm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
2.7.5  rtl_enable  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
2.7.6  slibclean  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

2.8  Creating shared objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
2.8.1  Import and export files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
iv Developing and Porting C and C++ Applications on AIX



2.8.2  A self-contained shared object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
2.8.3  Interdependent shared objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
2.8.4  Initialization and termination routines . . . . . . . . . . . . . . . . . . . . . . . . 99

2.9  Shared libraries in a development environment  . . . . . . . . . . . . . . . . . . . . 99
2.9.1  Production and development environments . . . . . . . . . . . . . . . . . . 100
2.9.2  Private shared objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
2.9.3  NFS consideration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
2.9.4  Sufficient free disk space on the target directory and /tmp . . . . . . . 102

Chapter 3.  Understanding user process models . . . . . . . . . . . . . . . . . . . 105
3.1  User process models on AIX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.1.1  How to determine hardware bit mode . . . . . . . . . . . . . . . . . . . . . . . 107
3.1.2  How to determine kernel bit mode  . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.1.3  How to determine user process bit mode . . . . . . . . . . . . . . . . . . . . 108

3.2  The 32-bit user process model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.2.1  Default memory model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.2.2  Large memory model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
3.2.3  Very large memory model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
3.2.4  Using the large and very large memory model . . . . . . . . . . . . . . . . 121
3.2.5  Checking large memory model executables . . . . . . . . . . . . . . . . . . 124
3.2.6  Resource limits in 32-bit model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
3.2.7  Large file support in a 32-bit model. . . . . . . . . . . . . . . . . . . . . . . . . 129

3.3  The 64-bit user process model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
3.3.1  The first 16 segments (0 - 4 GB). . . . . . . . . . . . . . . . . . . . . . . . . . . 132
3.3.2  Application text, data, and heap (4 GB - 448 PB) . . . . . . . . . . . . . . 133
3.3.3  Default shared memory segments (448 - 512 PB) . . . . . . . . . . . . . 135
3.3.4  Privately loaded objects (512 - 576 PB) . . . . . . . . . . . . . . . . . . . . . 135
3.3.5  Shared text and data (576 - 640 PB)  . . . . . . . . . . . . . . . . . . . . . . . 135
3.3.6  System reserved (640 - 960 PB). . . . . . . . . . . . . . . . . . . . . . . . . . . 136
3.3.7  User process stack (960 PB - 1 EB) . . . . . . . . . . . . . . . . . . . . . . . . 136
3.3.8  Resource limits in 64-bit mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
3.3.9  Large file support in 64-bit model . . . . . . . . . . . . . . . . . . . . . . . . . . 139

3.4  Introduction to shared memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
3.4.1  The shmat services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
3.4.2  The mmap services. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
3.4.3  Difference between shmat and mmap services  . . . . . . . . . . . . . . . 147
3.4.4  Shared memory limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

3.5  Shared memory segments allocation order. . . . . . . . . . . . . . . . . . . . . . . 149
3.5.1  Order in the 32-bit default memory model. . . . . . . . . . . . . . . . . . . . 153
3.5.2  Order in the 32-bit very large memory model with DSA . . . . . . . . . 154
3.5.3  Extended mode shared memory segments  . . . . . . . . . . . . . . . . . . 155
3.5.4  Order in the 64-bit memory model  . . . . . . . . . . . . . . . . . . . . . . . . . 156

3.6  Large page support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
 Contents v



3.6.1  Large page support overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
3.6.2  Large page application usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
3.6.3  Large page usage security capability  . . . . . . . . . . . . . . . . . . . . . . . 161
3.6.4  Configuring system to use large pages. . . . . . . . . . . . . . . . . . . . . . 162
3.6.5  Other system changes for large pages . . . . . . . . . . . . . . . . . . . . . . 164
3.6.6  Large page usage considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 164

Chapter 4.  Managing the memory heap  . . . . . . . . . . . . . . . . . . . . . . . . . . 165
4.1  Malloc subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

4.1.1  malloc(), calloc(), valloc(), and alloca() . . . . . . . . . . . . . . . . . . . . . . 167
4.1.2  mallopt(), mallinfo, and mallinfo_heap()  . . . . . . . . . . . . . . . . . . . . . 168
4.1.3  disclaim(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

4.2  Memory allocators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
4.2.1  The 3.1 memory allocator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
4.2.2  The default memory allocator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
4.2.3  The default memory allocator with the malloc buckets extension . . 173
4.2.4  The debug malloc allocator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
4.2.5  User-defined malloc replacement . . . . . . . . . . . . . . . . . . . . . . . . . . 178
4.2.6  Malloc multiheap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

4.3  Use of MALLOCDEBUG options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
4.3.1  MALLOCDEBUG with the debug memory allocator . . . . . . . . . . . . 182
4.3.2  MALLOCDEBUG with memory allocators other than debug. . . . . . 190

4.4  Heap management using MEMDBG . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
4.4.1  How to handle a user-created heap  . . . . . . . . . . . . . . . . . . . . . . . . 200
4.4.2  A user-defined heap allocated from shared memory segments . . . 202

Chapter 5.  Creating DLPAR-aware applications . . . . . . . . . . . . . . . . . . . . 207
5.1  Dynamic logical partitioning overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
5.2  The process flow of a DLPAR operation . . . . . . . . . . . . . . . . . . . . . . . . . 210
5.3  DLPAR-safe and DLPAR-aware applications . . . . . . . . . . . . . . . . . . . . . 214

5.3.1  DLPAR-safe  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
5.3.2  DLPAR-aware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

5.4  Integrating a DLPAR operation into the application  . . . . . . . . . . . . . . . . 217

Chapter 6.  Programming hints and tips  . . . . . . . . . . . . . . . . . . . . . . . . . . 219
6.1  Programming recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

6.1.1  Variables and data structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
6.1.2  Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
6.1.3  Pointers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
6.1.4  Arithmetic operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
6.1.5  Selection and iteration statements  . . . . . . . . . . . . . . . . . . . . . . . . . 223
6.1.6  Expression  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
6.1.7  Memory usage  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
6.1.8  Built-in functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
vi Developing and Porting C and C++ Applications on AIX



6.1.9  Virtual functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
6.2  Diagnosing compile-time errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

6.2.1  Anatomy of a message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
6.2.2  Useful options and compiler aids  . . . . . . . . . . . . . . . . . . . . . . . . . . 228
6.2.3  Migrating from 32-bit to 64-bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

6.3  Diagnosing link-time errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
6.3.1  Unresolved symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
6.3.2  Duplicate symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
6.3.3  Insufficient memory for the linker process. . . . . . . . . . . . . . . . . . . . 243
6.3.4  The c++filt utility  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

6.4  Diagnosing run-time errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
6.4.1  Uninitialized variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
6.4.2  Run-time checking  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
6.4.3  Unsignedness preservation in C . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
6.4.4  ANSI aliasing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
6.4.5  #pragma option_override  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

Chapter 7.  Debugging your applications  . . . . . . . . . . . . . . . . . . . . . . . . . 249
7.1  Working with core files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

7.1.1  Core file naming  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
7.1.2  Creating core files with assert(). . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
7.1.3  Creating core files with coredump()  . . . . . . . . . . . . . . . . . . . . . . . . 251
7.1.4  Including shared memory information in the core file . . . . . . . . . . . 253
7.1.5  Gathering core files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
7.1.6  AIX error log entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
7.1.7  Lightweight core file support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

7.2  Using the printf()-debug method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
7.3  Preparing your application for debugging . . . . . . . . . . . . . . . . . . . . . . . . 259
7.4  Using dbx  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

7.4.1  Starting a dbx session. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
7.4.2  Customizing a dbx session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
7.4.3  Working with breakpoints: The stop subcommand . . . . . . . . . . . . . 263
7.4.4  Redirection of library location in object files with the -p flag . . . . . . 263
7.4.5  Using dbx with gcc  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

7.5  Debugging with the truss command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
7.6  Using the trace facility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

7.6.1  Introduction to trace  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
7.6.2  Tracing an application on the command line. . . . . . . . . . . . . . . . . . 268
7.6.3  Tracing an application with subroutine calls . . . . . . . . . . . . . . . . . . 271

Chapter 8.  Introduction to POSIX threads. . . . . . . . . . . . . . . . . . . . . . . . . 275
8.1  Overview of threads  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

8.1.1  Relationship between a process and a user thread  . . . . . . . . . . . . 276
 Contents vii



8.2  POSIX threads (Pthreads) on AIX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
8.2.1  Advantages of using Pthreads  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
8.2.2  The POSIX threads API  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
8.2.3  Multi- and single-threaded processes . . . . . . . . . . . . . . . . . . . . . . . 280

8.3  Pthread management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
8.3.1  Creating and terminating Pthreads . . . . . . . . . . . . . . . . . . . . . . . . . 284
8.3.2  Joining Pthreads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
8.3.3  Detaching a Pthread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
8.3.4  Thread stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

8.4  Data synchronization between Pthreads. . . . . . . . . . . . . . . . . . . . . . . . . 296
8.4.1  Synchronizing Pthreads with mutexes  . . . . . . . . . . . . . . . . . . . . . . 297
8.4.2  Synchronizing Pthreads with condition variables  . . . . . . . . . . . . . . 303
8.4.3  Synchronizing Pthreads with read-write locks. . . . . . . . . . . . . . . . . 310

8.5  Thread-specific data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
8.5.1  Allocating thread-specific data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
8.5.2  Accessing thread-specific data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
8.5.3  Deleting thread-specific data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
8.5.4  Thread-safe and reentrant functions . . . . . . . . . . . . . . . . . . . . . . . . 319

8.6  Pthread cancellation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
8.7  Pthread priority and scheduling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

8.7.1  Thread models in AIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
8.7.2  Scheduling Pthreads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
8.7.3  Scheduling limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

8.8  Pthread specific environment variables in AIX  . . . . . . . . . . . . . . . . . . . . 328
8.9  User API for Solaris threaded applications . . . . . . . . . . . . . . . . . . . . . . . 332

8.9.1  Application binary interface (ABI)  . . . . . . . . . . . . . . . . . . . . . . . . . . 333

Chapter 9.  Program parallelization using OpenMP  . . . . . . . . . . . . . . . . . 335
9.1  Introduction to OpenMP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
9.2  The OpenMP programming model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
9.3  Classification of OpenMP directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

9.3.1  The OpenMP directive format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
9.4  Parallel region construct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
9.5  Work-sharing constructs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340

9.5.1  for construct  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
9.5.2  sections construct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
9.5.3  single construct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

9.6  Combined parallel work-sharing constructs  . . . . . . . . . . . . . . . . . . . . . . 347
9.6.1  parallel for construct  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
9.6.2  parallel sections construct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

9.7  Synchronization constructs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
9.7.1  master construct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
9.7.2  critical construct  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
viii Developing and Porting C and C++ Applications on AIX



9.7.3  barrier directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
9.7.4  atomic construct  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
9.7.5  flush directive  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
9.7.6  ordered construct  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

9.8  Data environment: The threadprivate directive . . . . . . . . . . . . . . . . . . . . 354
9.9  Data-sharing attribute clauses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

9.9.1  private clause  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
9.9.2  firstprivate clause  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
9.9.3  lastprivate clause  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
9.9.4  shared clause . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
9.9.5  default clause  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
9.9.6  reduction clause  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
9.9.7  copyin clause  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
9.9.8  copyprivate clause  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

9.10  Run-time library functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
9.10.1  Execution environment functions  . . . . . . . . . . . . . . . . . . . . . . . . . 364
9.10.2  Lock functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
9.10.3  Example usage of run-time library functions . . . . . . . . . . . . . . . . . 370

9.11  Environment variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
9.11.1  OMP_SCHEDULE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
9.11.2  OMP_NUM_THREADS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
9.11.3  OMP_DYNAMIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
9.11.4  OMP_NESTED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

Chapter 10.  Dealing with C++ templates . . . . . . . . . . . . . . . . . . . . . . . . . . 377
10.1  What is a template. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
10.2  AIX template implementations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

10.2.1  Generated function bodies  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
10.3  Simple code layout method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

10.3.1  Disadvantages of the simple method  . . . . . . . . . . . . . . . . . . . . . . 381
10.4  Template instantiation file method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383

10.4.1  The -qtempinc option  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
10.4.2  Contents of the tempinc directory . . . . . . . . . . . . . . . . . . . . . . . . . 385
10.4.3  Forcing template instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386

10.5  Template registry: The preferred method . . . . . . . . . . . . . . . . . . . . . . . 387
10.5.1  The -qtemplateregistry option . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
10.5.2  The -qtemplaterecompile option . . . . . . . . . . . . . . . . . . . . . . . . . . 388

10.6  Standard C++ Library and STL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
10.6.1  Standard Template Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
10.6.2  A STL example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392

Chapter 11.  Creating shared objects from C++ source codes  . . . . . . . . 393
11.1  Creating shared objects from C++ source codes  . . . . . . . . . . . . . . . . . 394
 Contents ix



11.1.1  Creating a C++ shared object . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
11.1.2  Generating an export file. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
11.1.3  The -qmkshrobj option  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
11.1.4  Mixing C and C++ object files . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
11.1.5  Order of initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

11.2  Shared objects with templates  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
11.2.1  Templates and makeC++SharedLib . . . . . . . . . . . . . . . . . . . . . . . 402
11.2.2  Templates and -qmkshrobj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404

Chapter 12.  Packaging your applications . . . . . . . . . . . . . . . . . . . . . . . . . 405
12.1  Understanding the AIX standard packaging . . . . . . . . . . . . . . . . . . . . . 406

12.1.1  Filesets and package files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
12.1.2  Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
12.1.3  Managing filesets  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
12.1.4  Viewing the TOC file (.toc)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
12.1.5  Viewing package files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415

12.2  Packaging applications using mkinstallp . . . . . . . . . . . . . . . . . . . . . . . . 418
12.2.1  mkinstallp  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
12.2.2  Packaging examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
12.2.3  Verification of packages  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
12.2.4  Optional installation control executable files . . . . . . . . . . . . . . . . . 426

Appendix A.  Previous versions of C and C++ compiler products  . . . . . 429
Compiler product similarities  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430

Multiple command line drivers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
Installation directory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431

IBM C compilers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
IBM XL C Version 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
IBM C for AIX Version 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432
IBM C for AIX Version 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
IBM C for AIX Version 4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
IBM C for AIX Version 5.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
C compiler summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435

IBM C++ compilers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
IBM C Set ++ for AIX Version 3  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
IBM C and C++ compilers Version 3.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
IBM VisualAge C++ Professional for AIX Version 4 . . . . . . . . . . . . . . . . . 437
IBM VisualAge C++ Professional for AIX Version 5 . . . . . . . . . . . . . . . . . 438
C++ compiler summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439

Appendix B.  Useful information for linking and loading on AIX . . . . . . . 441
A brief history of UNIX programming development  . . . . . . . . . . . . . . . . . . . . 442
Historical view of linking and loading in AIX . . . . . . . . . . . . . . . . . . . . . . . . . . 443
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
x Developing and Porting C and C++ Applications on AIX



Appendix C.  Subroutine references for shmat and mmap services. . . . 447
References for shmat services. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448

The ftok() subroutine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
The shmat() routine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
The shmctl() subroutine  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454
The shmget() routine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
The shmdt() subroutine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460

References for mmap services. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
The mmap() subroutine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
The mprotect() subroutine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467
The msync() subroutine  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469
The munmap() subroutine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471

Appendix D.  Subroutine references for POSIX threads. . . . . . . . . . . . . . 473
Subroutines defined in the POSIX thread standard . . . . . . . . . . . . . . . . . . . . 474
Subroutines defined in the UNIX 98 Specification . . . . . . . . . . . . . . . . . . . . . 479
Extensions to POSIX thread. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481

Appendix E.  Supported IBM SMP directives  . . . . . . . . . . . . . . . . . . . . . . 483
IBM SMP directives  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484

The IBM SMP directives syntax  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485

Appendix F.  Sample compiler listing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489
Compiler listing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490

Abbreviations and acronyms  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495

Related publications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
IBM Redbooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497

AIX official publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
pSeries hardware related publications  . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
C for AIX official publications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
VisualAge C++ for AIX official publications . . . . . . . . . . . . . . . . . . . . . . . . 499
Other publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499

Referenced Web sites  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
How to get IBM Redbooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500

IBM Redbooks collections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
 Contents xi



xii Developing and Porting C and C++ Applications on AIX



Figures

1-1 Core and orthogonal extensions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2-1 Object files and a library archive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2-2 Compiling and linking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2-3 An XCOFF format executable file and exec()  . . . . . . . . . . . . . . . . . . . . 63
2-4 Static and shared text code in the executable file . . . . . . . . . . . . . . . . . 65
2-5 The -bdynamic and -bstatic linker options . . . . . . . . . . . . . . . . . . . . . . . 66
2-6 Function calling relationship. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
2-7 Function calling relationship after rebinding symbols  . . . . . . . . . . . . . . 81
2-8 Function calling relationship for an interdependent shared object . . . . . 98
3-1 Hardware, kernel, and user process relationships . . . . . . . . . . . . . . . . 106
3-2 Default memory model (segment usage). . . . . . . . . . . . . . . . . . . . . . . 110
3-3 Default memory model (detail) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
3-4 Large memory model (segment usage) . . . . . . . . . . . . . . . . . . . . . . . . 116
3-5 Very large memory model (0 < maxdata < 0xB0000000)  . . . . . . . . . . 118
3-6 Very large memory model (0xB0000000 =< maxdata < 0xD0000000) 119
3-7 Very large memory model (maxdata = 0). . . . . . . . . . . . . . . . . . . . . . . 120
3-8 Data and stack resource limits (default 32-bit process model)  . . . . . . 126
3-9 The 64-bit memory model (1EB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
3-10 The 64-bit memory model (4 GB, the first 16 segments) . . . . . . . . . . . 132
3-11 Shared memory segments between two processes  . . . . . . . . . . . . . . 143
5-1 Process flow of a DLPAR operation. . . . . . . . . . . . . . . . . . . . . . . . . . . 211
6-1 Structure padding in 32-bit mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
6-2 Structure padding in 64-bit mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
6-3 Structure with user-defined paddings in both 32-bit and 64-bit mode . 239
7-1 Definition of HkWord  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
8-1 Two user threads in a process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
8-2 Five Pthreads created by pthread_create() . . . . . . . . . . . . . . . . . . . . . 285
8-3 Thread stacks (default 32-bit process model)  . . . . . . . . . . . . . . . . . . . 293
8-4 Thread models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
9-1 Concept of barrier  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
11-1 Illustration of objects in fish.o and animals.o . . . . . . . . . . . . . . . . . . . . 399
12-1 Relationship among filesets, packages, and bundles  . . . . . . . . . . . . . 406
12-2 State diagram between applied and committed state  . . . . . . . . . . . . . 410
12-3 Relationship between APARs and update fileset. . . . . . . . . . . . . . . . . 411
12-4 Sample .toc file  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
12-5 Directory structure for packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
© Copyright IBM Corp. 2000, 2003. All rights reserved. xiii



xiv Developing and Porting C and C++ Applications on AIX



Tables

1-1 C for AIX Version 6.0 packages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1-2 VisualAge C++ for AIX Version 6.0 packages . . . . . . . . . . . . . . . . . . . . 19
1-3 License certificate locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1-4 Compiler driver extensions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2-1 C and C++ data type sizes in bits  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2-2 XCOFF headers and loading target segments  . . . . . . . . . . . . . . . . . . . 62
2-3 Supported link methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2-4 LDLAZYDEBUG environment variable values. . . . . . . . . . . . . . . . . . . . 68
2-5 Linker options equivalent to -G  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
2-6 IMPid values for imported symbols  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
2-7 Directive lines for import files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3-1 Shared memory limits  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
4-1 Memory allocators and MALLOCTYPE . . . . . . . . . . . . . . . . . . . . . . . . 170
4-2 Default configuration values for malloc buckets. . . . . . . . . . . . . . . . . . 176
4-3 User-defined replacement subroutines  . . . . . . . . . . . . . . . . . . . . . . . . 179
4-4 MALLOCDEBUG options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
5-1 Applications that should be DLPAR-aware  . . . . . . . . . . . . . . . . . . . . . 216
6-1 ISO C99 integer constant type selection . . . . . . . . . . . . . . . . . . . . . . . 236
8-1 Filesets for Solaris user thread library . . . . . . . . . . . . . . . . . . . . . . . . . 333
9-1 OpenMP components  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
9-2 OpenMP directive categories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
11-1 Order of initialization of objects in prriolib.a . . . . . . . . . . . . . . . . . . . . . 401
12-1 Fileset state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
12-2 Fields description of the .toc file. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
12-3 Definition of entries in <fileset_name>.inventory . . . . . . . . . . . . . . . . . 417
12-4 Template file keywords  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
12-5 Optional installation control executable files  . . . . . . . . . . . . . . . . . . . . 427
A-1 IBM C compilers for AIX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
A-2 C++ compiler products. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
B-1 Definitions of terms regarding linking and loading process on AIX . . . 443
C-1 Values for the third parameter of shmat()  . . . . . . . . . . . . . . . . . . . . . . 452
C-2 Values for the third parameter of shmctl() . . . . . . . . . . . . . . . . . . . . . . 455
C-3 Values for the third parameter of shmget()  . . . . . . . . . . . . . . . . . . . . . 458
C-4 Values for the sixth parameter of mmap() . . . . . . . . . . . . . . . . . . . . . . 465
C-5 The third parameter of msync() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470
D-1 Thread management sub-routines. . . . . . . . . . . . . . . . . . . . . . . . . . . . 474
D-2 Execution scheduling sub-routines  . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
D-3 Synchronization sub-routines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
© Copyright IBM Corp. 2000, 2003. All rights reserved. xv



D-4 Thread-specific data sub-routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
D-5 Read-write lock sub-routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480
D-6 Additional POSIX threads sub-routines defined in UNIX 98  . . . . . . . . 481
D-7 Non-portable thread routines in AIX. . . . . . . . . . . . . . . . . . . . . . . . . . . 482
E-1 Regular expressions for countable loops. . . . . . . . . . . . . . . . . . . . . . . 484
E-2 Supported IBM pragma directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486
xvi Developing and Porting C and C++ Applications on AIX



Notices

This information was developed for products and services offered in the U.S.A. 

IBM may not offer the products, services, or features discussed in this document in other countries. Consult 
your local IBM representative for information on the products and services currently available in your area. 
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM 
product, program, or service may be used. Any functionally equivalent product, program, or service that 
does not infringe any IBM intellectual property right may be used instead. However, it is the user's 
responsibility to evaluate and verify the operation of any non-IBM product, program, or service. 

IBM may have patents or pending patent applications covering subject matter described in this document. 
The furnishing of this document does not give you any license to these patents. You can send license 
inquiries, in writing, to: 
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions 
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES 
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, 
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, 
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer 
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made 
to the information herein; these changes will be incorporated in new editions of the publication. IBM may 
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at 
any time without notice. 

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any 
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the 
materials for this IBM product and use of those Web sites is at your own risk. 

IBM may use or distribute any of the information you supply in any way it believes appropriate without 
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published 
announcements or other publicly available sources. IBM has not tested those products and cannot confirm 
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on 
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them 
as completely as possible, the examples include the names of individuals, companies, brands, and products. 
All of these names are fictitious and any similarity to the names and addresses used by an actual business 
enterprise is entirely coincidental. 

COPYRIGHT LICENSE: 
This information contains sample application programs in source language, which illustrates programming 
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in 
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application 
programs conforming to the application programming interface for the operating platform for which the 
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, 
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, 
modify, and distribute these sample programs in any form without payment to IBM for the purposes of 
developing, using, marketing, or distributing application programs conforming to IBM's application 
programming interfaces. 
© Copyright IBM Corp. 2000, 2003. All rights reserved. xvii



Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States, 
other countries, or both: 

AIX 5L™
AIX®
C Set ++®

™
^™
IBM eServer™

IBM®
Open Class®
OS/2®
PartnerWorld®
POWER4™
PowerPC®

pSeries™
Redbooks (logo)™
Redbooks™
RISC System/6000®
VisualAge®
zSeries™

The following terms are trademarks of other companies:

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other 
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the 
United States, other countries, or both.

Intel, Intel Inside (logos), MMX and Pentium are trademarks of Intel Corporation in the United States, other 
countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SET and the SET Logo are trademarks owned by SET Secure Electronic Transaction LLC.

Other company, product and service names may be trademarks or service marks of others.
xviii Developing and Porting C and C++ Applications on AIX



Preface

This IBM Redbook will help experienced UNIX application developers who are 
new to the AIX operating system. The book explains the many concepts in detail, 
including the following:

� Enhancements and new features provided by the latest C and C++ compilers 
for AIX

� Compiling and linking tasks required to effectively use and manage shared 
libraries and run-time linking

� Use of process heap and shared memory in the 32- and 64-bit user process 
models

� A new programming paradigm in a partitioned environment where resources 
can be dynamically changed

� Parallel programming using POSIX threads and OpenMP

The following chapters are also useful for system administrators who are 
responsible for the software problem determination and application software 
release level management on AIX systems:

� Chapter 3, “Understanding user process models” on page 105

� Chapter 7, “Debugging your applications” on page 249

� Chapter 12, “Packaging your applications” on page 405

This publication expands on the information found in the AIX 5L Porting Guide, 
SG24-6034.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world 
working at the International Technical Support Organization, Austin Center.

Keigo Matsubara is an advisory IT specialist at the International Technical 
Support Organization (ITSO), Austin Center. Before joining the ITSO, he worked 
in the System and Web Solution Center in Japan as a Field Technical Support 
Specialist (FTSS) for pSeries™. He has been working for IBM® for 11 years.

Edison Kwok is a senior Software Developer in the IBM Toronto Software 
Laboratory in Canada. He has eight years of experience in C and C++ compiler 
development on the zSeries™ and pSeries platforms. He holds a degree in 
© Copyright IBM Corp. 2000, 2003. All rights reserved. xix



electrical engineering from the University of Victoria. His area of expertise 
include compiler construction, C language standard, and C and C++ 
programming on various UNIX operating systems and the mainframe.

Inge Rodriguez is an IT specialist from IBM Germany. She has 20 years of 
experience in UNIX application development. She has been working for IBM for 
three years. Her main responsibility is support for ISVs regarding application 
development and porting. She holds a MSc in Medical Computer Science of 
University Heidelberg.

Murali Paramasivam is a Software Engineer from IBM India. He has nearly 
three years of application development experience in C and C++ on various 
UNIX operating systems. He holds an engineering degree in Material Science 
and Metallurgy. His areas of expertise include shared libraries, multi-threaded 
programming, and C/C++ compilation and linking concepts in AIX®. 

Thanks to the following people for their contributions to this project:

International Technical Support Organization, Austin Center
Scott Vetter and Wade Wallace

IBM Austin
Alfredo Mendoza, Ann Wigginton, Betty Riggle, Donald Stence, David Hepkin, 
Gary Hook, Joel H Schopp, Julie Craft, Kedron J Touvell, Kenji Kindo, Kevin W 
Monroe, Luke Browning, Mark Rogers, Michael Mall, Nathan Fontenot, Randy 
Swanberg, Richard Cutler, Sara D Epsztein, Steven Molis

IBM Japan
Hajime Mita and Tomoyuki Niijima

IBM Toronto
Steven E. Hikida, Wang Chen, Sean Perry, Roger E. Pett.

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook 
dealing with specific products or solutions, while getting hands-on experience 
with leading-edge technologies. You'll team with IBM technical professionals, 
Business Partners and/or customers. 

Your efforts will help increase product acceptance and customer satisfaction. As 
a bonus, you'll develop a network of contacts in IBM development labs, and 
increase your productivity and marketability. 
xx Developing and Porting C and C++ Applications on AIX



Find out more about the residency program, browse the residency index, and 
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks™ to be as helpful as possible. Send us your comments 
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. JN9B Building 003 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493
 Preface xxi

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html


xxii Developing and Porting C and C++ Applications on AIX



Summary of changes

This section describes the technical changes made in this edition of the book and 
in previous editions. This edition may also include minor corrections and editorial 
changes that are not identified.

Summary of Changes
for SG24-5674-01
for Developing and Porting C and C++ Applications on AIX
as created or updated on March 25, 2009.

June 2003, Second Edition
This revision reflects the addition, deletion, or modification of new and changed 
information described below.

New information
The following chapters are new:

� Chapter 2, “Compiling and linking” on page 37

� Chapter 3, “Understanding user process models” on page 105

� Chapter 4, “Managing the memory heap” on page 165

� Chapter 5, “Creating DLPAR-aware applications” on page 207

� Chapter 6, “Programming hints and tips” on page 219

� Chapter 7, “Debugging your applications” on page 249

� Chapter 9, “Program parallelization using OpenMP” on page 335

� Chapter 12, “Packaging your applications” on page 405

Changed information
The following chapters were rewritten in order to cover new features and 
enhancements provided by the latest products:

� Chapter 1, “C and C++ compilers” on page 1

� Chapter 8, “Introduction to POSIX threads” on page 275
© Copyright IBM Corp. 2000, 2003. All rights reserved. xxiii



Unchanged information
The following chapters and appendixes are unchanged but reviewed again:

� Chapter 10, “Dealing with C++ templates” on page 377

� Chapter 11, “Creating shared objects from C++ source codes” on page 393

� Appendix A, “Previous versions of C and C++ compiler products” on page 429

� Appendix E, “Supported IBM SMP directives” on page 483

September 2000, First Edition
The first version of this book, C and C++ Application Development on AIX, 
SG24-5674 was written by the following authors:

Richard Cutler, Francois Armingaud, Eduardo Conejo, Kumaravel Nagarajan

The following list shows contributors for the first version of this book, C and C++ 
Application Development on AIX, SG24-5674:

IBM Toronto
Derek Truong, Mark Changfoot, Paul Pacholski, Rene Matteau
xxiv Developing and Porting C and C++ Applications on AIX



Chapter 1. C and C++ compilers

This chapter focuses on the latest versions of the IBM C and C++ compiler 
products for AIX: C for AIX Version 6.0 and VisualAge C++ for AIX Version 6.0. 
The latest compiler products offer enhanced support in optimizations, 
POWER4™ architecture exploitation, the latest ISO C and C++ Standard 
conformance, as well as compatibility features targeted to GNU C/C++ portability, 
explained in the first two sections:

� Section 1.1, “C for AIX Version 6.0” on page 2

� Section 1.2, “VisualAge C++ for AIX Version 6.0” on page 16

The other sections provide a comprehensive guide to installing and configuring 
the compiler products on your AIX systems:

� Section 1.3, “Installing the compilers” on page 19

� Section 1.4, “Activating the compilers” on page 23

� Section 1.5, “Activating the LUM server” on page 26

� Section 1.6, “Enrolling a product license” on page 27

� Section 1.7, “Invoking the compilers” on page 29

� Section 1.8, “Where to find help” on page 31

For a description of the previous versions of IBM C and C++ compiler products, 
please refer to Appendix A, “Previous versions of C and C++ compiler products” 
on page 429 for details.

1

© Copyright IBM Corp. 2000, 2003. All rights reserved. 1



1.1  C for AIX Version 6.0
The C for AIX Version 6.0 compiler is the latest IBM C compiler product available 
on AIX. It offers several new enhancements over the previous versions, 
particularly in the area of optimization features and new PowerPC® architecture 
support. This compiler is supported on AIX Version 4.3.3 or later.

C programs written using Version 4 or 5 of IBM C for AIX are source compatible 
with IBM C for AIX Version 6.0. C programs written using either Version 2 or 3 of 
IBM Set ++ for AIX or the XL C compiler component of AIX Version 3.2 are 
source compatible with IBM C for AIX Version 6.0 with exceptions to detect 
invalid programs or areas where results are undefined. Source compatibility, 
however, does not guarantee a program will perform in an identical manner; new 
option defaults can sometimes influence how a program behaves. Always consult 
the official documentation when migrating to a new version of the product.

If installed, the compiler is installed under /usr/vac by default and uses the 
/etc/vac.cfg configuration file. To install to an alternate directory, or to retain the 
installation of a previous version of C for AIX compiler, refer to 1.3.2, “Retaining a 
previous version of the compiler” on page 22.

The C for AIX Version 6.0 compiler uses the LUM licensing system, which is 
explained in the following sections, to control usage of the product.

� Section 1.4, “Activating the compilers” on page 23

� Section 1.5, “Activating the LUM server” on page 26

� Section 1.6, “Enrolling a product license” on page 27

1.1.1  New or improved optimization features
A number of optimization features have been introduced or improved in C for AIX 
Version 6.

Interprocedural analysis
Interprocedural analysis, or IPA, is an optimization performed across function 
boundaries. In a traditional compilation, only intraprocedural analysis is done, 
where each function is optimized individually within a single compilation unit. IPA 
takes optimization one step further by analyzing all functions in the entire 
application.
2 Developing and Porting C and C++ Applications on AIX



In addition to the usual optimizations performed by the optimizer, IPA also 
performs many optimizations interprocedurally, including:

� Inlining across compilation units

� Program partitioning

� Global variables coalescing

� Code straightening

� Dead code elimination

� Constant propagation

� Copy propagation

Keep in mind that because the compiler is performing extra processing with 
-qipa, compilation time is expected to increase. However, with C for AIX Version 
6.0, a new suboption, -qipa=threads, has been introduced to take advantage of 
multi-threaded interprocedural analysis. You can also specify -qipa=threads=N, 
where N is the number of threads used by the compiler for IPA analysis and code 
generation. Please refer to C for AIX Compiler Reference, SC09-4960 for more 
details.

Profile-directed feedback
With profile-directed feedback, or PDF, special instrumentation code is inserted 
in the executable to gather information about the program’s execution pattern. 
Information gathered from the execution is then fed back to the compiler for a 
second compilation, and the compiler performs optimization based on the code 
execution frequency and conditional branch pattern.

In order to gain the most using this feature, make sure the program execution is 
performed as close to the intended conditions as possible. That is, choose input 
parameters and a data set that are representative and meaningful.

Only use PDF towards the very end of a development cycle, where the program 
is fully functional at a high optimization level.

New options and pragmas
C for AIX Version 6.0 introduces several new performance related options and 
pragmas:

� -qarch=pwr4

� -qtune=pwr4

� -qhot

� -qlargepage
 Chapter 1. C and C++ compilers 3



� -qsmallstack

� -qunwind

� -qtocmerge

� -qreport

� -qipa=threads=N

� #pragma execution_frequency

� #pragma pack

� #pragma snapshot

For a detailed description of these options, please refer to the C for AIX Compiler 
Reference, SC09-4960. For detailed explanation about the tuning considerations 
on the POWER4 processor, please refer to The POWER4 Processor Introduction 
and Tuning Guide, SG24-7041.

New built-in functions
Compiler built-in functions are often provided to allow programmers direct access 
to features or machine code instructions on the hardware architecture. They are 
directly mapped to hardware instructions, hence any overhead associated with 
function calls (for example, parameter passing, stack allocation and adjustment, 
and so on) are completely eliminated. Please refer to C for AIX Compiler 
Reference, SC09-4960 for a list of built-in functions supported in C for AIX 
Version 6.0.

1.1.2  ISO C Standard conformance
The IBM C for AIX Version 6.0 compiler supports the latest ISO/IEC 9899:1999 
International Standard, commonly referred to as C99. C99 includes many new 
features and enhancements to the original ISO/IEC 9899:1990 International 
Standard (C89), which extends the capability of the C language. We will discuss 
some useful features defined in this standard.

_Bool type
Similar to the C++ bool type, C99 supports _Bool type in addition to the long list 
of type specifiers already in the original C89 standard. Applications no longer 
need to define their own macros, as the system header file stdbool.h already 
defines the macros true and false.

Note: The -qarch=pwr4 and -qtune=pwr4 options are used to generate 
executable files optimized and tuned for the POWER4 processor.
4 Developing and Porting C and C++ Applications on AIX



long long data type
Unlike the -qlonglong option in the previous versions of the C for AIX compilers, 
the addition of the long long data type in C99 changes the semantics for integer 
constants. In C89, the type of an unsuffixed integer constant is either int, long int, 
or unsigned long int, whichever is large enough to represent the constant. 
However in C99, unsuffixed integer constants have type int, long int, or long long 
int instead. To illustrate this difference, consider the following example:

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{

printf("sizeof(2147483648) = %d\n", sizeof(2147483648));
exit(0);

}

In the above example, the constant 2147483648 is one greater than 
LONG_MAX. When compiled with -qlanglvl=stdc89, the execution of this 
example will print the value 4, since the type selected for the constant is 
unsigned long int. With -qlanglvl=stdc99, on the other hand, the result will be 8, 
and the constant will have long long int type.

Complex data types
C99 introduces native complex data types to the C language. There are three 
complex types: float _Complex, double _Complex, and long double _Complex, as 
well as three pure imaginary types: float _Imaginary, double _Imaginary, and long 
double _Imaginary. Collectively they are called complex floating types. Each 
complex type is logically the same as an array of two elements of the 
corresponding real floating type, where the first element is the real part of the 
complex number, and the second element the imaginary part. Therefore, the size 
of a complex type is double the size of its corresponding floating type.

The following shows how to declare a complex variable c, and initialize it to 
{1.0, 2.0i}:

double _Complex c = 1.0 + 2.0 * __I;

Basic arithmetic operators are supported natively in the language. There are also 
mathematical functions provided by the run-time library, by including the system 
header file complex.h. For more information on the semantics of the complex 
data types, please refer to C for AIX C/C++ Language Reference, SC09-4958.

inline function specifier
Function inlining reduces function call overhead, as well as allowing the optimizer 
to perform better optimizations at or near the function call site. The compiler 
 Chapter 1. C and C++ compilers 5



already does inline optimization with the -O option, so the use of this feature may 
not provide any further performance benefits.

restrict qualifier
If an object is modified through a restrict qualified pointer, than all access to that 
object must be based on, directly or indirectly, the same pointer, that is, no other 
pointers will access the object. This allows the compiler to perform better 
optimization. Please refer to the C for AIX C/C++ Language Reference, 
SC09-4958 for more details.

static keyword in array declaration
In a function declaration, array parameters are generated as pointers to the array 
element type. For example:

void func(int arr[])
{

...
}

and

void func(int *arr)
{

...
}

are equivalent declarations. In C99, you can use the storage class specifier static 
in an array parameter declaration, to indicate to the compiler that the argument in 
the function call is guaranteed to be non-NULL, and contains at least the 
specified number of elements. For example:

void vector_add(int a[static 10], const int b[static 10])
{

int i;
for (i = 0; i < 10; i++)

a[i] += b[i];
}

With this extra information, the compiler will be able to apply better optimization 
analysis and generate faster performing code.

Universal character name
Universal characters support, already available since C for AIX Version 5 with the 
-qlanglvl=ucs option, is now part of the C99 standard. It is used to write 
characters that are not in the basic character set. You can have universal 
characters in identifiers, string literals, and comments.
6 Developing and Porting C and C++ Applications on AIX



__func__
Similar to the C for AIX compiler predefined macro __FUNCTION__, __func__ is 
a compiler generated internal variable that has the following declaration:

static const char __func__[] = “function_name”;

where function_name is the name of the current function where __func__ is 
referenced. This is useful in writing debug code. See “Function-like macros with 
variable arguments” on page 9 for an example usage.

Hexadecimal floating point constant
Just as you can use hexadecimal integer constants to represent exactly the 
binary format of an integer, C99 allows you to have floating point constant 
specified in hexadecimal format. For example:

double d = 0x123.abcp+10;

Variable length arrays
The size of local automatic objects is determined at compile time, and the 
duration and scope of these objects end when you leave the function body where 
the object is declared. If the size requirement of an object is unknown at compile 
time, for example, an array of unknown number of elements, the programmer is 
responsible for dynamically allocating storage at run time, and freeing the 
storage before exiting the current scope. C99 introduces variable length arrays, 
where its usage removes the burden from the programming for allocating and 
remembering to free local automatic storage.

In the following example, the local array, new, is a variable length array:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void reverse(const char *str, int n)
{

int i;
char new[n];
for (i = 0; i < n; i++)

new[i] = str[n-i-1];
printf("%.*s\n", n, new);

}

int main(int argc, char *argv[])
{

reverse("Hello World", strlen("Hello World"));
exit(0);

}

 Chapter 1. C and C++ compilers 7



Without variable length array support, storage for the local array new would have 
to be dynamically allocated as follows:

char *new = (char *)malloc(n);

and freed explicitly at the end of function reverse:

free(new);

Compound literals
A compound literal is an unnamed object of type specified in parentheses. The 
value of the object is given in a braced initializer list. It is mainly used in situations 
where a temporary object would otherwise be required. In the following example, 
the emphasized line shows an example usage of compound literals:

#include <stdio.h>

typedef struct {
short serial;
char *name;

} Record;

void show(Record rec)
{

printf("Employee serial: %d\n", rec.serial);
printf("Employee name:   %s\n", rec.name);

}

int main(int argc, char *argv[])
{

show((Record){ 12345, "Elizabeth" });
exit(0);

}

Without a compound literal, a temporary object of type Record would be needed 
to be used in the function call:

Record tmp_rec = { 12345, “Elizabeth” };
show(tmp_rec);

Designated initialization
In C89, initializers must be specified in the order and sequence of the elements 
or members to be initialized. Although for static storage duration objects, where 
they are implicitly initialized to zero already, if you need to initialize only specific 
members or elements of the object, you have to supply enough initializers. For 
example, for the following structure declaration:

typedef struct {
short serial;
8 Developing and Porting C and C++ Applications on AIX



char *name;
int   salary;
char  addr[40];
char  city[20];
char  state[2];
char  zip[5];
short location;

} Record;

If all members are to be initialized with the default value of zero, except the last 
member, location, all initializers must still be supplied:

Record emp1 = { 0, 0, 0, "", "", "", "", 649 };

With a designated initializer, on the other hand, initializers are only needed for 
members that are required to be explicitly initialized:

Record emp2 = { .location = 649 };

This greatly reduces the risk of errors that are proven to be hard to debug.

Non-constant initializers for automatic aggregates
With C99, you can now initialize automatic storage duration aggregate members 
with non-constant initializers. For example:

#include <stdlib.h>

void func()
{

struct {
short serial;
char *name;

} rec = { .name = (char*)malloc(30) };
}

Function-like macros with variable arguments
Functions with variable arguments, for example:

extern int printf(const char *, ...);

eliminate the need for many versions of the same function that accepts different 
numbers of arguments. C99 extends the concept further and allows variable 
arguments in function-like macros. As shown in the following example, debug 
code can now be handled more elegantly:

#include <stdio.h>

#if !defined(DEBUG)
#define DBGMSG(fmt, ...) ((void)0)

#else
 Chapter 1. C and C++ compilers 9



#define DBGMSG(fmt, ...) ( \
fprintf(stderr, "In %s: ", __func__), \
fprintf(stderr, fmt, __VA_ARGS__) )

#endif

int main(int argc, char *argv[])
{

int rc = 55;
DBGMSG("return code = %d\n", rc);
return rc;

}

Pragma operator
The _Pragma operator allows you to code pragma directives in macros. In the 
following example, the declaration of struct S and the definition of its instance s 
are surrounded by two macros, PACK_1 and PACK_POP:

#define PACK_1   _Pragma("pack(1)")
#define PACK_POP _Pragma("pack(pop)")

PACK_1 struct S {
char ch;
int  i;

} s; PACK_POP

Mixed declarations and code
C99 allows declarations mixed with code similar to C++. For example:

void func()
{

int i;
i = 10;
int j;
j = 20;
...

}

1.1.3  GNU C compatibility
There are plenty of programs developed using the GNU C compiler (also known 
as gcc). The proliferation of the open source concept, together with the far 
reaching nature of the Web, spawns a whole new group of developers who 
collaborate across physical boundaries, and the choice of compiler for this group 
is the gcc compiler. This does not necessarily mean that gcc is superior; on the 
contrary, the IBM compiler optimization technologies are among the best in the 
industry. The main reason for the gcc compiler’s wide acceptance has to do with 
its many useful extensions, and the fact that it is freely available. Also, the GNU C 
10 Developing and Porting C and C++ Applications on AIX



and C++ compilers are available on various operating systems running on the 
many different types of hardware, providing cross platform development 
capabilities that are rivaled by no other.

The C for AIX Version 6 compiler supports many of the gcc extensions, and they 
allow you to port programs written for gcc to AIX more easily. The availability of 
each extension is indicated by a compiler predefined macro of the form 
__IBM_feature, where feature is the gcc feature name.

For example, the following code fragment written for gcc:

#if defined(__GNUC__)
extern char *func(const char *__s, int __c) __attribute__((__pure__));

#endif

will be successfully compiled with C for AIX Version 6, if the code is modified as 
follows:

#if defined(__IBM_ATTRIBUTES) || defined(__GNUC__)
extern char *func(const char *__s, int __c) __attribute__((__pure__));

#endif

To compile this code with previous versions of C for AIX compilers, it must be 
modified as follows:

#if defined(__IBM_ATTRIBUTES) || defined(__GNUC__)
extern char *func(const char *__s, int __c) __attribute__((__pure__));

#else
extern char *func(const char *__s, int __c);
#pragma isolated_call(func)

#endif

The identifier, __pure__, is one of function attributes supported by C for AIX 
Version 6 (see “Function attributes” on page 13).

Please refer to C for AIX Compiler Reference, SC09-4960 for the full list of 
supported GNU C compatibility.

Local labels
Ordinary labels has function scope, that is, they can only be defined once within 
a function body. This prevents the use of labels and goto statements inside 
macros, when the macro is expected to be expanded more than once in a 
function. As shown in the following example, a local label, on the other hand, is 
visible only within the block where it is declared, as well as in all nested blocks. A 
local label also hides the function scope label of the same name:

#include <stdio.h>
#include <stdlib.h>
 Chapter 1. C and C++ compilers 11



#define FIND(str, val, len) \
{ \

__label__ done; \
int i; \
for (i = 0; i < len; i++) \

if (str[i] == val) goto done; \
printf("%c not found in %s\n", val, str); \
done: \
printf("found %c in [%d]\n", val, i); \

}

int main(int argc, char *argv[])
{

FIND("hello", 'l', 5);
FIND("world", 'l', 5);
exit(0);

}

__typeof__ operator
Similar to the sizeof operator, the __typeof__ operator takes an expression or a 
type as an operand, but returns the type of the operand instead of the size. It can 
be used anywhere a typedef name is used. This operator is particularly useful in 
marcos, where the type of the macro argument is not known before hand. For 
example, instead of writing several versions of a SWAP_type macro for the 
different integral types:

#define SWAP_char(a,b) { char temp = a; a = b; b = temp; }
#define SWAP_short(a,b) { short temp = a; a = b; b = temp; }
...

you can use one SWAP macro that handles all types:

#define SWAP(a,b) { __typeof__(a) temp = a; a = b; b = temp; }

__alignof__ operator
Use the __alignof__ operator to find out the alignment of a type or an object. Due 
to the different alignment rules and packing supported by the C for AIX compiler, 
the alignment of an object may change depending on options or pragmas used, 
as shown in the following example:

#include <stdio.h>
#include <stdlib.h>

#pragma pack(2)
struct {

int i;
double d;

} s;
12 Developing and Porting C and C++ Applications on AIX



int main(int argc, char *argv[])
{

printf("alignment of double is %d\n", __alignof__(double));
printf("alignment of s.d is %d\n", __alignof__(s.d));
exit(0);

}

will yield:

alignment of double is 8
alignment of s.d is 2

Function attributes
Function attributes are used to help the compiler apply better optimization on 
function calls. The C for AIX Version 6.0 compiler supports three function 
attributes: noreturn, const, and pure.

The noreturn attribute indicates to the compiler that the function does not return 
control to the statement following the function call. The C library already has 
several functions, such as abort and exit, that behave as if the function is 
declared with the noreturn attribute; the compiler is already aware of these 
functions and is able to optimize the function calls accordingly (when the 
-qlibansi option is in effect). User defined functions that do not return control to 
the calling side can be declared with this attribute for better performance. This 
attribute is functionally equivalent to #pragma leaves.1

The const and pure attributes are equivalent, and are used to indicate to the 
compiler that the function does not have or rely on any side effects. The return 
value only depends on the parameters, and pointer arguments are not examined 
in the function body. The function does not call any non-const function, nor 
access any global or external storage. This attribute is functionally equivalent to 
#pragma isolated_call.2

To use the pure function attribute, see the example in 1.1.3, “GNU C 
compatibility” on page 10.

Variable attributes
Variable attributes (aligned, mode, or packed) are used to modify variable 
declarations.

1  The #pragma leaves directive specifies that a function never returns.
2  The #pragma isolated_call directive specifies that a function does not have or rely on side effects.
 Chapter 1. C and C++ compilers 13



The aligned attribute causes the complier to use a different alignment for variable 
or structure members. It specifies the minimum number of bytes to use for 
aligning the declaration, as shown in the following example:

#include <stdio.h>
#include <stdlib.h>

struct {
int i;
double __attribute__((__aligned__(16))) d;

} s;

int main(int argc, char *argv[])
{

printf("alignment of double is %d\n", __alignof__(double));
printf("alignment of s.d is %d\n", __alignof__(s.d));
exit(0);

}

will yield the result:

alignment of double is 8
alignment of s.d is 16

To change the packing of aggregate or structure members, or to use the smallest 
possible alignment, use the packed attribute, as shown in the following example:

#include <stdio.h>
#include <stdlib.h>

struct {
int i;
double __attribute__((__packed__)) d;

} s;

void main()
{

printf("alignment of double is %d\n", __alignof__(double));
printf("alignment of s.d is %d\n", __alignof__(s.d));

}

will yield the result:

alignment of double is 8
alignment of s.d is 1

The mode attribute lets you select an integer based on width, as shown in the 
following example (the supported widths are byte, word, and pointer):

#include <stdio.h>
#include <stdlib.h>
14 Developing and Porting C and C++ Applications on AIX



int __attribute__((__mode__(byte))) x;

void main()
{

printf("sizeof(int) is %d\n", sizeof(int));
printf("sizeof(x)   is %d\n", sizeof(x));

}

will yield the result:

sizeof(int) is 4
sizeof(x)   is 1

1.1.4  Enhanced language level support
Not only does the C for AIX Version 6.0 compiler support the latest ISO C 
language standard (C99), it also has several language extension modes that 
make the use of the C language ever more powerful. These extensions add 
flexibility and allow the programmer to achieve a programming task more easily.

Language levels are supported by the -qlanglvl compiler option. The two core 
levels, -qlanglvl=stdc89 and -qlanglvl=stdc99, strictly enforces the standards, and 
are used mainly for compiling standard conforming programs. To use extensions 
to the standard language levels, -qlanglvl=extc89 and -qlanglvl=extc99 add to the 
core levels orthogonal features that do not interfere with the core standard 
features (see Figure 1-1), that is, a standard conforming program will be 
compiled just as successfully with -qlanglvl=extc89 or -qlanglvl=extc99 as it will 
be with -qlanglvl=stdc89 or -qlanglvl=stdc99. Therefore, it is recommended that 
you use the extension language levels to compile programs that are written using 
other compilers such as gcc.

Figure 1-1   Core and orthogonal extensions

Orthogonal language extensions

Core language level
 Chapter 1. C and C++ compilers 15



1.2  VisualAge C++ for AIX Version 6.0
VisualAge C++ for AIX Version 6.0 offers a command-line compiler that supports 
the ISO/IEC 14882:1998 C++ International Standard. This latest version of the 
C++ compiler features a conforming C++ Standard Library, including the 
Standard Template Library (STL), enhanced optimization options that exploit the 
POWER4 architecture, OpenMP support, and more. It is supported on AIX 
Version 4.3.3 or later.

C++ programs written using Version 4 or 5 of IBM VisualAge C++ Professional 
for AIX are source compatible with VisualAge C++ for AIX Version 6.0. However, 
programs written using IBM C and C++ Compilers for AIX Version 3.6 and earlier 
are not source compatible, because the former compilers were based on the ISO 
C++ Draft. Also, the IBM Open Class® library has been removed and is no longer 
supported.

If installed, the compiler is installed under /usr/vacpp by default and uses the 
/etc/vacpp.cfg configuration file. To install to an alternate directory, or to retain the 
installation of a previous version of VisualAge C++ for AIX compiler, refer to 
1.3.2, “Retaining a previous version of the compiler” on page 22.

The VisualAge C++ for AIX Version 6.0 compiler uses the LUM licensing system 
to control usage of the product. Refer to the following sections:

� Section 1.4, “Activating the compilers” on page 23

� Section 1.5, “Activating the LUM server” on page 26

� Section 1.6, “Enrolling a product license” on page 27

1.2.1  New or improved optimization features
A number of optimization features have been introduced in VisualAge C++ for 
AIX Version 6.

Interprocedural Analysis
Interprocedural Analysis, or IPA, is now available in VisualAge C++ for AIX 
Version 6.0. IPA is an optimization performed on the entire application across 
function boundaries. See “Interprocedural analysis” on page 2 for more details.

Note: The Standard Template Library is discussed in more detail in 10.6, 
“Standard C++ Library and STL” on page 388.
16 Developing and Porting C and C++ Applications on AIX



New options and pragmas
In addition to the “New options and pragmas” on page 3 supported by C for AIX 
Version 6.0, VisualAge C++ for AIX Version 6.0 now supports the following 
options:

� -qsmp (previously supported by C for AIX only)

� -O4 and -O5 (previously supported by C for AIX only)

� -qipa (previously supported by C for AIX only)

� -qcache (previously supported by C for AIX only)

� -qkeepinlines

� -qtemplateregistry

� -qtemplaterecompile

� -qalign=bit_packed

� -qoldpassbyvalue

� -qlanglvl=ansiinit

� #pragma unroll (previously supported by C for AIX only)

For a detailed description of these options, please refer to the VisualAge C++ for 
AIX Compiler Reference, SC09-4959.

1.2.2  OpenMP support
New in VisualAge C++ for AIX Version 6.0, the compiler now supports the 
OpenMP Version 1.0 specification for shared memory parallel programming. 
OpenMP is an Application Program Interface specification that provides a simple 
and flexible interface, including a number of pragma directives, data scope 
attributes, library functions, and environment variables, for parallel application 
development. Applications that conform to the OpenMP specification is easily 
portable to other platforms that support the specification.

OpenMP support is enabled in the compiler by the -qsmp option, which was 
previously available with the C for AIX compiler only. To ensure strict compliance 
to the OpenMP specification, use the -qsmp=omp option. Bear in mind that 
-qsmp=omp disables automatic parallelization performed by the compiler. See 
1.2.3, “Automatic parallelization” on page 18. In either case, you must use one of 
the thread-safe compiler driver with the -qsmp option (see Table 1-4 on page 30).

For further information about OpenMP support, see Chapter 9, “Program 
parallelization using OpenMP” on page 335.
 Chapter 1. C and C++ compilers 17



1.2.3  Automatic parallelization
In addition to strict OpenMP specification support, the -qsmp option enables 
automatic parallelization for program loops. Each parallel portion of the program 
is executed in its own thread, perhaps in its own processor of a multi-processor 
machine. To use the -qsmp option, you must use one of the thread-safe compiler 
drivers, as described in Table 1-4 on page 30.

1.2.4  Improved template handling
VisualAge C++ for AIX Version 6.0 introduces two new options, 
-qtemplateregistry and -qtemplaterecompile, which completely eliminate the 
need to structure your template code for reduced compilation time.

The -qtemplateregistry option works by storing template instantiation information 
in a registry as compilation occurs. The registry is read for each compilation, and 
a check is done when an instantiation is encountered. If the instantiation has 
already been seen, nothing will happen; otherwise, the template will be 
instantiated in the object file. In either case, a record is added to the registry to 
keep track of the information about use and instantiation for each compilation 
unit.

Should a change to a compilation unit remove a template instantiation, 
recompiling the compilation will result in undefined symbols at link time, since 
other files now may require the missing template instantiation. In this case, use 
the -qtemplaterecompile option to cause a recompilation of all source files that 
rely on the template.

The -qtemplateregistry and -qtemplaterecompile options are discussed in more 
detail in 10.5, “Template registry: The preferred method” on page 387.

1.2.5  C99 features
The following C99 features are available in VisualAge C++ for AIX Version 6.0 
with the -qlanglvl=extended option:

� “restrict qualifier” on page 6

� “Function-like macros with variable arguments” on page 9

� “Pragma operator” on page 10

1.2.6  GNU G++ compatibility
The VisualAge C++ for AIX Version 6.0 compiler supports the same set of GNU 
C extension features described in 1.1.3, “GNU C compatibility” on page 10.
18 Developing and Porting C and C++ Applications on AIX



1.3  Installing the compilers
The installation of the C for AIX Version 6.0 and VisualAge C++ for AIX Version 
6.0 compilers is a very simple task. There are a number of steps that need to be 
performed to end up with correctly installed and working compilers.

1.3.1  Install compiler filesets
The first step in the installation process is to install the compiler product filesets 
onto the system. The filesets to be installed will vary, depending on the compiler 
product and the desired configuration.

Selecting the required filesets
The compiler products are either delivered on CD-ROM media, or downloaded 
from the official IBM Web site, and are accompanied by a license certificate for 
the number of licenses purchased. The CD-ROM media or download includes 
the compiler filesets along with a number of other filesets, some of which are 
optionally installable, and some of which are co-requisites of the compiler filesets 
and are installed automatically. Table 1-1 lists the main packages in the C for AIX 
Version 6.0 product, and Table 1-2 lists the main packages in the VisualAge C++ 
for AIX Version 6.0 product.

Table 1-1   C for AIX Version 6.0 packages

Table 1-2   VisualAge C++ for AIX Version 6.0 packages

Group Description

IMNSearch Search engine for HTML documentation

idebug Debugger with graphical user interface

memdbg Memory debugging toolkit

vac C for AIX compiler

xlopt Optimization library and run time

xlsmp Parallelization run-time component

Group Description

IMNSearch Search engine for HTML documentation

idebug Debugger with graphical user interface

memdbg Memory debugging toolkit

vac C for AIX compiler 
 Chapter 1. C and C++ compilers 19



In all cases, the target AIX system should already have the bos.adt.include fileset 
installed, which contains the system provided header files. The other filesets in 
the bos.adt package contain useful tools and utilities often used during 
application development, so it is a good idea to install the entire package. If your 
system does not have the filesets installed, you will need to locate your AIX 
installation media and install them prior to installing the compilers, since these 
filesets are AIX version specific and are not supplied with the compiler product.

When installing the C for AIX Version 6.0 product, installing the vac.C fileset will 
automatically install the minimum of additional required filesets. Installing the 
vacpp.cmp fileset will automatically include the minimum required filesets for 
VisualAge C++ for AIX. The additional filesets you may wish to install are the 
documentation filesets. Ensure that the vac.lic and vacpp.lic filesets are installed, 
as they contain the license files required when activating the compiler.

Regardless of the product or required configuration, the filesets can be installed 
using one of two methods, as discussed in the following sections.

Install using the Web-based System Manager
If your system has a graphical user interface, the filesets can be installed using 
the wsm command. The procedure is as follows:

1. Log in as the root user.

2. Insert the product CD-ROM media in the CD or DVD device.

3. Start the software installation taskguide with the following command:

# wsm install

vacpp VisualAge C++ for AIX compilera

vatools VisualAge® Tools Help

xlC C++ Application Development Toolkit

xlopt Optimization library and run time

xlsmp Parallelization run-time component

a. The vacpp group contains installp packages for part of the C++ compiler only;
it requires packages from the vac group.

Note: A single package can contain multiple filesets and a fileset can be 
included in only one package. For further information about AIX software 
packaging terminology, see Chapter 12, “Packaging your applications” on 
page 405.

Group Description
20 Developing and Porting C and C++ Applications on AIX



4. From the Software drop-down menu, select New Software (Install/Update) 
→ Install Additional Software → Advanced Method.

5. In the Install Software dialog, select the CD-ROM device as the software 
source. Then, select to install the specific software available from the software 
source.

6. Select the Browse button to generate a list of software on the media.

7. Select the desired filesets from the dialog. Press and hold down the control 
key while dragging the mouse cursor to select one or more additional objects.

8. Select the OK button once you have selected the desired filesets to return to 
the Software Install dialog.

9. Select the OK button to start the install.

10.Select the YES button to continue with the install. A pop-up window will 
appear and show the output of the installation process.

11.Select the Close button once the installation has completed.

Install using SMIT
If your system does not have a graphical user interface, or you do not wish to use 
a Web-based System Manger, you can install the required filesets using the smit 
command as follows:

1. Log in as the root user.

2. Insert the product CD-ROM media in the CD or DVD device.

3. Start the SMIT dialog with the following command:

# smit install_latest

4. Press the F4 key to generate a list of possible input devices.

5. Select the CD-ROM device.3

6. Press the F4 key to generate a list of available filesets.

7. Select the required filesets by highlighting them and then pressing the F7 key.

8. Press the Enter key once the required filesets have been selected.

9. Press the Enter key to start the install.

10.Press the Enter key to continue the install.

11.Press the F10 key to exit once the installation has completed.

3  A DVD-RAM or DVD-ROM device is also shown as CD-ROM device in the selection panel.
 Chapter 1. C and C++ compilers 21



1.3.2  Retaining a previous version of the compiler
Before installing the compiler, it is recommended that you uninstall any previous 
version of C for AIX and VisualAge C++ for AIX compilers already installed. 
However, you can install the compilers in another directory, and retain the 
previous installation. This is done by using the supplied Perl scripts, vacndi and 
vacppndi.

Ensure the Perl run-time environment fileset, perl.rte, is installed on your system. 
Install the vac.ndi fileset from the C for AIX CD-ROM media, or the vacpp.ndi 
fileset from the VisualAge C++ for AIX CD-ROM media, or both. You can then 
use the /usr/vac/bin/vacndi and /usr/vacpp/bin/vacppndi scripts to install just the 
compiler, or the compiler with help documentation and samples, to a location of 
your choice. Do not move or rename the directory or any of its components after 
installation; you must reinstall to a new location if you want to change the 
installed directory.

To install C for AIX compiler with help documentation and samples, run:

# perl /usr/vac/bin/vacndi -d source_path -b target_directory

where source_path is where the C for AIX product filesets are located, and 
target_directory is the installation directory. If the -b option is omitted, the default 
installation directory is used (that is, /usr/vac).

To install C for AIX compiler only without help documentation and samples, run:

# perl /usr/vac/bin/vacndi -d source_path -b target_directory -m

To install the VisualAge C++ for AIX compiler product, simply replace 
/usr/vac/bin/vacndi in the above commands with /usr/vacpp/bin/vacppndi.

After installation, check the ./vacndi.log or ./vacppndi.log log file and make sure 
the installation is performed successfully. To remove the installation, delete the 
target_directory directory as specified in the installation step.

Note: The compiler products cannot be used immediately after installation. 
Prior to invoking the compiler, a product licence must be enrolled with the 
License Use Management (LUM) system. See 1.4, “Activating the compilers” 
on page 23.
22 Developing and Porting C and C++ Applications on AIX



1.4  Activating the compilers
Once you have installed the desired compiler filesets onto the system, the next 
step in the process is to enroll a license for the product into the LUM system. This 
section describes the process of configuring a LUM server and enrolling a 
product license. If you already have a LUM environment enabled, you may go 
directly to 1.6, “Enrolling a product license” on page 27.

1.4.1  What is LUM
IBM License Use Management Runtime, referred to hereafter as License Use 
Management (LUM), contains the tools needed in an end-user environment to 
manage product licenses and to get up-to-date information about license usage.

LUM is the replacement for the iFOR/LS and Net/LS systems that were used in 
previous versions of AIX and with previous versions of the IBM compilers.

The LUM run time is included with AIX Version 4.3 and higher and is 
automatically installed. A comprehensive description of the functionality of LUM 
can be found in the LUM online documentation supplied on the AIX Version 4.3 
and higher product media in the ifor_ls.html.en_US.base.cli fileset, which is not 
automatically installed when installing AIX.

1.4.2  Configuring LUM
Normally, one or more LUM license servers need to be configured. However, no 
license server needs to be configured if the licensed product supplies a simple 
nodelock license certificate. Both the C for AIX Version 6.0 and VisualAge C++ 
for AIX Version 6.0 compiler products supply a simple nodelock license 
certificate.

The simplest method of licensing the latest compiler products is to use the simple 
nodelock license certificate. When this is done, there is no need to configure a 
LUM server; however, the installation of the certificate in large numbers of 
machines can be cumbersome.

If you wish to use the simple nodelock certificate, you can skip directly to 1.6, 
“Enrolling a product license” on page 27. If you wish to use the additional 
functionality available when using a license server, then the first step is to decide 
which server type is best suited for your environment.

There are two types of license servers:

� Concurrent nodelock license server

� Concurrent network license server
 Chapter 1. C and C++ compilers 23



A concurrent nodelock license server supports concurrent nodelock product 
licenses. A concurrent nodelock license is local to the node where the LUM 
enabled product has been installed. It allows a limited number of simultaneous 
users to invoke the enabled licensed product on the local system.

A concurrent network license server supports concurrent network product 
licenses. A concurrent network license is a network license that can temporarily 
grant a user on a client system the authority to run a LUM enabled product.

Either or both of the above license servers may be configured on a single 
system. The number of concurrent users for the product is specified during the 
enrollment of the product license certificate, as described in 1.6, “Enrolling a 
product license” on page 27.

The advantage of using a concurrent nodelock license server is that the server is 
installed on the same machine as the compiler, and, therefore, users can obtain 
compiler licenses even if the machine is temporarily disconnected from the 
network. The disadvantage, however, is that installation of licenses is 
cumbersome in environments with a large number of client machines.

The main advantage of using a central network license server is that the 
administration of product licenses is very simple. The disadvantage is that client 
machines must be able to contact the license server in order to use the licensed 
products.

Configuring LUM requires answering several questions on how you would like to 
set up the LUM environment. It is recommended that users read the LUM 
documentation supplied with the AIX product media prior to configuring LUM.

A LUM server can be configured in several different ways. You can issue 
commands on the command line with appropriate arguments to configure the 
LUM server. You can issue a command that starts a dialog and asks a number of 
questions to determine the appropriate configuration, or you can configure the 
server using a graphical user interface.

Configuring a nodelock server
For small numbers of client machines (typically 10 or less), using a nodelock 
license server on each machine is the simplest method of configuring LUM.

Log in as the root user and perform the following commands to configure a 
machine as a nodelock license server:

# /usr/opt/ifor/ls/os/aix/bin/i4cfg -a n -S a
# /usr/opt/ifor/ls/os/aix/bin/i4cfg -start
24 Developing and Porting C and C++ Applications on AIX



The first command configures the local machine as a nodelock license server 
and sets the option that the LUM daemons should be started automatically when 
the system boots. The second command starts the LUM daemons.

Using the interactive configuration tool
As an alternative to using the above commands, you can use the 
/usr/opt/ifor/ls/os/aix/bin/i4config interactive configuration script to perform the 
same actions.

1. Log in as user ID root on the system where the license server will be installed.

2. Invoke the LUM configuration tool by entering the 
/usr/opt/ifor/ls/os/aix/bin/i4config command. This is the command line 
version of the LUM configuration tool. 

3. Answer the LUM configuration questions as appropriate. The answers to the 
configuration questions are dependent on the LUM environment you wish to 
create. 

The following are typical answers to the configuration questions of LUM in order 
to configure both concurrent nodelock and concurrent network license servers on 
a single system. You may change the various answers accordingly to suit your 
preferred system environment. For details on configuring LUM, please read the 
documentation that comes with LUM.

1. Select 4 “Central Registry (and/or Network and/or Nodelock) License Server” 
on the first panel.

2. Answer y to “Do you want this system be a Network License Server too?”

3. Answer y to “Do you want this system be a Nodelock License Server too?”

4. Answer n to “Do you want to disable remote administration of this Network 
License Server?”

5. Answer n to “Do you want to disable remote administration of this Nodelock 
License Server?”

6. Select 2 “Direct Binding only” as the mechanism to locate a license server.

7. Answer n to “Do you want to change the Network License Server ip port 
number?”

8. Answer n to “Do you want to change the Central Registry License Server ip 
port number?”

9. Answer n to “Do you want to change the Nodelock License Server ip port 
number?”

10.Select 1 “Default” as the desired server(s) logging level.

11.Enter blank to accept the default path for the default log file(s).
 Chapter 1. C and C++ compilers 25



12.Answer y to “Do you want to modify the list of remote Nodelock and/or 
Network License Servers this system can connect to in direct binding mode 
(both for administration purposes and for working as Network License 
Client)?”

13.Select 3 “Create a new list” to the direct binding list menu.

14.Enter the host name, without the domain, of the system you are configuring 
LUM when prompted for the “Server network name(s).”

15.Answer n to “Do you want to change the default ip port number?”

16.Select 3 “Create a new list” to the direct binding list menu.

17.Enter the host name, without the domain, of the system you are configuring 
LUM when prompted for the “Server network name(s).”

18.Answer n to “Do you want to change the default ip port number?”

19.Answer y to “Do you want the License Server(s) automatically start on this 
system at boot time?”

20.Answer y to continue the configuration setup and write the updates to the 
i4ls.ini file.

21.Answer y to “Do you want the License Server(s) start now?”

Both concurrent nodelock and concurrent network license servers should now be 
configured on your system.

For more information on configuring and using LUM, refer to the LUM online 
documentation supplied with AIX. As an alternative, the LUM manual, Using 
License Use Management Runtime for AIX, can be viewed online in PDF format 
at the following URL:

ftp://ftp.software.ibm.com/software/lum/aix/doc/V4.6.0/lumusg.pdf

1.5  Activating the LUM server
After configuring and starting the LUM server, you can enroll product licenses. 
Before attempting to enroll a license, you must first ensure that the LUM 
daemons are active. This can be done with the following command:

# /usr/opt/ifor/ls/os/aix/bin/i4cfg -list

Depending on the type of LUM server configured, the output will be similar to the 
following:

i4cfg Version 4.6.6 AIX -- LUM Configuration Tool
(c) Copyright 1995-2002, IBM Corporation, All Rights Reserved
US Government Users Restricted Rights - Use, duplication or disclosure
26 Developing and Porting C and C++ Applications on AIX

ftp://ftp.software.ibm.com/software/lum/aix/doc/V4.6.0/lumusg.pdf


restricted by GSA ADP Schedule Contract with IBM Corp.

Subsystem         Group            PID          Status
 i4llmd           iforls           24006        active

If no subsystem is listed as active, then start them with the following command:

# /usr/opt/ifor/ls/os/aix/bin/i4cfg -start

The only daemon that must be active is the Nodelock License Server Subsystem 
(i4llmd) daemon. The other daemons that may be active, depending on your 
configuration, are as follows:

� License Sever Subsystem (i4lmd)

� Central Registry Subsystem (i4gdb)

� Global Location Broker Data Cleaner Subsystem (i4glbcd)

1.6  Enrolling a product license
After LUM has been configured on your system, the product license certificates 
can be enrolled with the LUM license server. Three LUM product license 
certificates are provided with each of the compiler products:

1. Concurrent nodelock license certificate

2. Concurrent network license certificate

3. Simple nodelock license certificate

You should enroll the appropriate license certificate for the type of LUM 
environment you have configured.

The default locations of the license certificates for the compiler products are 
detailed in Table 1-3.

Table 1-3   License certificate locations

Compiler License certificate type Location

C for AIX Version 6.0 Concurrent Network /usr/vac/cforaix_c.lic

Concurrent Nodelock /usr/vac/cforaix_cn.lic

Simple Nodelock /usr/vac/cforaix_n.lic

VisualAge C++ for AIX 
Version 6.0

Concurrent Network /usr/vacpp/vacpp_c.lic

Concurrent Nodelock /usr/vacpp/vacpp_cn.lic

Simple Nodelock /usr/vacpp/vacpp_n.lic
 Chapter 1. C and C++ compilers 27



1.6.1  Enrolling a concurrent license
To enroll a Concurrent Network or Concurrent Nodelock license certificate, 
perform the following steps:

1. Log in as root on the system where the license server is installed.

2. Invoke the LUM configuration tool by entering the LUM Basic License Tool 
command as follows:

/usr/opt/ifor/ls/os/aix/bin/i4blt

The i4blt tool contains both a graphical user interface and a command line 
interface. Note that the LUM daemons must be running before starting the i4blt 
tool. Refer to 1.5, “Activating the LUM server” on page 26 for information on how 
to check the status of the LUM daemons.

If the X11 run time (X11.base.rte fileset) has been installed on your system, the 
GUI version of the tool will be invoked. Otherwise, the command line version will 
be invoked, and an error will occur since the appropriate command line 
parameters were not specified. 

Enrolling using the graphical user interface
When the GUI version of i4blt tool is available, follow these steps:

1. Select the Products pull-down and click on the Enroll Product item.

2. Click on the Import button. The Import panel should be displayed. 

3. In the Filter entry prompt, enter /usr/vacpp/*.lic if you are enrolling a 
license for VisualAge C++ for AIX or /usr/vac/*.lic if you are enrolling a 
license for C for AIX, and press Enter. This will show the various product 
license files in the Files panel. The three license files for the product, as 
detailed in Table 1-3 on page 27, should be displayed.

4. Select either the prod_c.lic or prod_cn.lic (where prod is either vacpp or 
cforaix) license by clicking on the entry.

5. Click OK. The Enroll Product panel should be re-displayed with information 
regarding the product indicated.

6. Click on the OK button of the Enroll Product panel. The Enroll Licenses panel 
should be displayed.

7. Fill in the information on the Administrator Information portion of the panel 
(optional.) 

8. Fill in the number of valid purchased licenses of the product under Enrolled 
Licenses in the Product information portion of the panel. (mandatory.)

9. Click on the OK button of the Enroll Licenses panel. The product should be 
successfully enrolled. You may terminate the i4blt tool.
28 Developing and Porting C and C++ Applications on AIX



Enrolling using the command line
When you use the command line interface of i4blt tool, follow these steps:

1. From the required product license file, as detailed in Table 1-3 on page 27, 
extract the i4blt command from the top of the file. 

2. Replace number_of_lics from the command with the number of valid 
purchased licenses of the product (mandatory).

3. Replace admin_name with the name of the administrator (optional).

4. Invoke this command as root from /var/ifor. The product should be 
successfully enrolled.

1.6.2  Enrolling a simple nodelock license
Read the instructions at the top of the simple nodelock license certificate file. In 
general, this type of license will be installed when no LUM system has been 
configured. This means enrolling the license is simply a case of placing the 
indicated license information line into the LUM nodelock file, /var/ifor/nodelock.

1.7  Invoking the compilers
Once a compiler product license has been enrolled, you are now ready to use the 
compilers. However, the compiler drivers are not installed in a directory that is 
searched with the default PATH environment variable. There are a number of 
methods for resolving this issue:

� Create symbolic links of the compiler drivers to /usr/bin using the ln 
command.

� Add the directory containing the compiler drivers to the default PATH 
environment variable set in the /etc/environment configuration file.

� Add the directory containing the compiler drivers to the PATH environment 
variable in each user’s .profile shell configuration file.

� Change the Makefiles used in your development environment to configure the 
compiler macro to use the absolute path. For example:

CC=/usr/vac/bin/cc

Note: Creating symbolic links is the preferred option since it resolves the 
problem for all users after a simple action by the root user.
 Chapter 1. C and C++ compilers 29



1.7.1  Default compiler drivers
The Version 6.0 compiler products include a number of default compiler 
configurations in the /etc/vac.cfg compiler configuration file. The default C++ 
command line driver is /usr/vacpp/bin/xlC. The three main C compiler command 
line drivers are as follows:

/usr/vac/bin/cc Extended mode C compiler.

/usr/vac/bin/xlc ANSI C compiler, using UNIX header files.

/usr/vac/bin/c89 ANSI C compiler, using ANSI C header files.

There are a number of additional command line drivers available, each one 
based on the basic cc, xlc, and xlC drivers described above, as described in 
Table 1-4.

Table 1-4   Compiler driver extensions

For example, to compile an ANSI C program using Draft 7 of the POSIX threads 
standard, use the xlc_r7 compiler driver. To compile a C++ program that uses 
128-bit floating point values, use the xlC128 compiler driver.

Command extension Meaning

_r Use the UNIX98 threads libraries.

_r7 Use the POSIX Draft 7 threads libraries.

_r4a

a. Compiler drivers with extension _r4 are not supported on AIX 5L Version 5.2
and later. AIX 5L Version 5.1 supports those compiler drivers only if DCE is in-
stalled on the system.

Use the POSIX Draft 4 (DCE)b threads libraries.

b. DCE stands for Distributed Computing Environment.

128 Enable 128 bit double precision floating point values and use 
appropriate libraries.

128_r Enable 128 bit double precision floating point values and use 
the UNIX98 threads libraries.

128_r7 Enable 128 bit double precision floating point values and use 
the POSIX Draft 7 threads libraries.

128_r4 Enable 128 bit double precision floating point values and use 
the POSIX Draft 4 (DCE) threads libraries.

Note: The use of compiler drivers with extensions _r4 and _r7 is discouraged 
when developing new applications.
30 Developing and Porting C and C++ Applications on AIX



1.8  Where to find help
The Version 6.0 compilers provide documentation in both HTML and PDF format. 
The default configuration makes it very easy to view the online documentation on 
the machine on which it is installed. There is also information available on the 
Web that provides useful information for developers using the AIX platform.

1.8.1  Online documentations
The Version 6.0 compiler documentation is written in HTML format. The HTML 
files are stored in a single file in ZIP format. The files are viewed using an HTML 
browser, which uses a cgi-bin script to extract and view the required files. There 
is no need to manually unpack the ZIP file.

If not already installed, the online help documentation can be found in the 
vac.html.en_US and vacpp.html.en_US filesets. Once installed, you can access 
the online help with the /usr/vac/bin/cforaixhelp and 
/usr/vacpp/bin/vacpphelp commands. The commands start the default 
Netscape browser (which is supplied on the AIX Bonus Pack media) with the 
correct URL.

If you are using the AIX CDE interface, the C for AIX compiler documentation can 
also be started by selecting Application Manager → C for AIX → Help 
Homepage, or Application Manager → VisualAge C++ Professional → Help 
Homepage for VisualAge C++ for AIX.

The official compiler documentations are also available in PDF format in 
/usr/vac/pdf and /usr/vacpp/pdf.

1.8.2  Viewing online documentation remotely
By default, it is not possible to view the online documentation from a remote 
machine. It can be done in a simple way by logging in to the machine that has the 
documentation installed, set the DISPLAY environment variable to use a remote 
X11 display, then view the documentation by invoking the same command used 
to view locally.

A better solution, particularly in larger environments or where remote clients do 
not have the capability to display X applications, is to configure the machine to 
allow remote viewing of the documentation.

Configuring the HTTP server
Suppose the machine that has the documentation filesets installed has a fully 
qualified domain name of docs.ibm.com. The following example demonstrates 
 Chapter 1. C and C++ compilers 31



the steps performed on that machine to allow remote clients to view the compiler 
documentation using their Web browser:

1. Log in as the root user.

2. Perform the following command:

# cp /etc/IMNSearch/httpdlite/httpdlite.conf \
/etc/IMNSearch/httpdlite/vacpp.conf

3. Edit /etc/IMNSearch/httpdlite/vacpp.conf, and make the following changes:

a. Change the HostName line from:

HostName localhost

to:

HostName docs.ibm.com

If the HostName line is not present, or has a comment symbol (#) at the 
start of the line, then simply add the following line to the file:

HostName docs.ibm.com

b. Change the Port line from:

Port 49213

to:

Port 49214

c. Add one or more Allow lines to specify which hosts are permitted to 
access the Web server. The Allow statement has the following syntax:

Allow network-ip network-mask

A client is only granted access if the following rule is met (& is a bitwise 
AND operation):

client-ip & network-mask == network-ip & network-mask

For example, if you wanted machines within a network address, such as 
9.x.x.x, to be able to access the help server, you would add the following 
statement to vacpp.conf:

Allow 9.0.0.0 255.0.0.0

d. Save the file and exit the editor. 

4. Edit the file /etc/inittab. There is a line that executes the httpdlite command 
with a configuration filename argument. The line is as follows:

httpdlite:23456789:once:/usr/IMNSearch/httpdlite/httpdlite -r 
/etc/IMNSearch/httpdlite/httpdlite.conf >/dev/console 2>&1

Make a copy of this line immediately below the original line. In the new line:

a. Change the first field from httpdlite to httpdlite2.
32 Developing and Porting C and C++ Applications on AIX



b. Change the part of the line that reads httpdlite.conf to vacpp.conf

The result should be as follows:

httpdlite2:23456789:once:/usr/IMNSearch/httpdlite/httpdlite -r 
/etc/IMNSearch/httpdlite/vacpp.conf >/dev/console 2>&1 

Save the file and exit from the editor. 

5. Reboot the system or run the following command to start the second instance 
of the httpdlite process:

/usr/IMNSearch/httpdlite/httpdlite -r /etc/IMNSearch/httpdlite/vacpp.conf 
>/dev/console 2>&1

The steps described above configure an instance of an HTTP server to respond 
on a specific port number to requests to access compiler documentation.

The following sections detail the additional steps required to configure the 
documentation for each compiler product to be served by the HTTP server.

Configuring the C++ documentation
The following steps are required to enable the online documentation for the 
VisualAge C++ for AIX Version 6 compiler to be served by the HTTP server:

1. Log in as the root user.

2. Change the directory to /var/vacpp/en_US.

3. Edit the hgssrch.htm file, and change the line:

<form action=”http://localhost:49213/cgi-bin/vacsrch.exe” method=”POST” 
target=”content”>

to:

<form action=”http://docs.ibm.com:49214/cgi-bin/vacsrch.exe” method=”POST” 
target=”content”>

Then, save the file and exit the editor. 

4. Issue the following command:

/usr/IMNSearch/cli/imndomap -u "VAC6ENUS" 
"http://docs.ibm.com:49214/cgi-bin/vahwebx.exe/en_US/vacpp6/Extract/0/" 
"VisualAge C++" 
 Chapter 1. C and C++ compilers 33



5. Users can point their browser at the following URL to browse and search the 
documentation:

http://docs.ibm.com:49214/cgi-bin/vahwebx.exe/en_US/vacpp/Extract/0/index.htm

Configuring the C compiler documentation
The following steps are required to enable the online documentation for the C for 
AIX Version 6 compiler to be served by the HTTP server:

1. Log in as the root user.

2. Change the directory to /var/vac/en_US.

3. Edit the hgssrch.htm file, and change the line:

<form action=”http://localhost:49213/cgi-bin/caixsrch.exe” method=”POST” 
target=”content”>

to:

<form action=”http://docs.ibm.com:49214/cgi-bin/caixsrch.exe” method=”POST” 
target=”content”>

Then, save the file and exit the editor. 

4. Issue the following command:

/usr/IMNSearch/cli/imndomap -u "CAIXENUS" 
"http://docs.ibm.com:49214/cgi-bin/vahwebx.exe/en_US/cforaix/Extract/0/" "C 
for AIX" 

5. Users can point their browser at the following URL to browse and search the 
documentation:

http://docs.ibm.com:49214/cgi-bin/vahwebx.exe/en_US/cforaix/Extract/0/index
.htm

1.8.3  Where to find help on the Web
IBM maintains many Web sites that provide useful information for developers 
using the AIX platform. The most important ones are described in the following 
sections.

AIX operating system documentation
The online documentation for the AIX operating system can be viewed at the 
following URL:

http://www.ibm.com/servers/aix/library/

The site contains up-to-date versions of the HTML documentation supplied with 
the AIX product media.
34 Developing and Porting C and C++ Applications on AIX

http://www.ibm.com/servers/aix/library/


As new releases of the AIX operating system become available, they generally 
add new functionality. As a developer, you might wish to use some of the new 
functionality, but the decision to do so may also be based on the minimum level of 
AIX required to use a particular feature. The IBM Redbook, AIX 5L Differences 
Guide Version 5.2 Edition, SG24-5765, is updated with each new release of AIX, 
and contains information on when particular features were introduced.

Compiler product information
The latest compiler products both have support Web sites that contain useful 
hints, tips, frequently asked questions, and links to other useful Web sites. The 
support page for the VisualAge C++ for AIX Version 6.0 compiler is:

http://www.ibm.com/software/ad/vacpp/support.html

The support page for the C for AIX Version 6.0 compiler is:

http://www.ibm.com/software/ad/caix/support.html

Information on the availability of IBM products for the AIX operating system, 
along with details of when support for products will be withdrawn, is available on 
the following Web site:

http://www.ibm.com/servers/aix/products/ibmsw/list/

PartnerWorld® for developers
PartnerWorld for Developers is a worldwide program supporting developers who 
build solutions using IBM technologies. The program covers all IBM platforms, 
not just AIX. Its Web site contains a lot of useful information for the AIX 
developer, including white papers, sample code, and technology articles. It can 
be located on the Web at the following URL:

http://www.ibm.com/partnerworld/developer

1.8.4  Applying fixes and service updates
From time to time, IBM issues fixes and corrective service updates to its products 
that are still being supported. You can download these updates for C for AIX 
under the “Support downloads” section of the support Web site at:

http://www.ibm.com/software/ad/caix/support.html

You will also find service updates for VisualAge C++ for AIX at:

http://www.ibm.com/software/ad/vacpp/support.html

You can also access the Fix Delivery Center for AIX 5L™ at:

http://techsupport.services.ibm.com/server/aix.fdc
 Chapter 1. C and C++ compilers 35

http://www.ibm.com/software/ad/vacpp/support.html
http://www.ibm.com/software/ad/caix/support.html
http://www.ibm.com/servers/aix/products/ibmsw/list/
http://www.ibm.com/software/ad/caix/support.html
http://www.ibm.com/software/ad/vacpp/support.html
http://www.developer.ibm.com
http://techsupport.services.ibm.com/server/aix.fdc


where you can search for available fixes and updates based on fileset name or 
APAR/PTF number.

Once you have downloaded the service update to the AIX system, which you are 
going to apply the service update, follow these steps to apply the update:

1. Log on as the root user.

2. If the downloaded files are in compressed tar format (with the .tar.Z suffix), 
uncompress and untar with the following commands:

# uncompress filename.tar.Z
# tar -xvf filename

3. Start the SMIT dialog with the following command:

# smit install_latest

4. Type the directory where the downloaded files reside as the INPUT device / 
directory for software and press Enter.

5. Press the F4 key to generate a list of available filesets, or press Enter to install 
the full product update.

6. If F4 is selected on the previous step, select the desired filesets by 
highlighting them and then pressing the F7 key.

7. Press the Enter key once the required filesets have been selected.

8. Press the Enter key to start the update.

9. Press the Enter key to continue the update.

10.Press the F10 key to exit once the update has completed.

If you installed the compiler to a non-default directory as described in 1.3.2, 
“Retaining a previous version of the compiler” on page 22, follow these 
instructions to apply the update:

1. Create a text file listing the filesets you want to update, one fileset per line.

2. Execute the vacndi or vacppndi script with the following command:

# perl /usr/vac/bin/vacndi -d source_path -b target_directory \
-u update_file

where source_path is where the downloaded filesets are located, and 
target_directory is the directory that contains the installation. update_file is 
the file created in step 1 above. To update VisualAge C++ for AIX, replace 
/usr/vac/bin/vacndi with /usr/vacpp/bin/vacppndi in the command in step 2.
36 Developing and Porting C and C++ Applications on AIX



Chapter 2. Compiling and linking

Developers porting code to the AIX operating system from other UNIX operating 
systems might, at first, have difficulties with the compile and linking tasks on AIX. 
This chapter helps the developers with the tasks on AIX by providing the 
following sections:

� Section 2.1, “32- and 64-bit development environments” on page 38
� Section 2.2, “Compiling and linking: A quick overview” on page 43
� Section 2.3, “Resolving symbols at link-time” on page 53
� Section 2.4, “Supported link methods on AIX” on page 63
� Section 2.5, “Run-time linking” on page 68
� Section 2.6, “Dynamic loading” on page 82
� Section 2.7, “Commands when manipulating objects and libraries” on 

page 85
� Section 2.8, “Creating shared objects” on page 92
� Section 2.9, “Shared libraries in a development environment” on page 99

For further information about the compile and linking tasks on AIX and how to 
manage shared libraries, please refer to AIX 5L Version 5.2 General 
Programming Concepts: Writing and Debugging Programs and the ld command 
section in AIX 5L Version 5.2 Reference Documentation: Commands Reference.

2

Note: The definitions shown in Table B-1 on page 443 are very useful in 
understanding the technical details of linking and loading process on AIX.
© Copyright IBM Corp. 2000, 2003. All rights reserved. 37



2.1  32- and 64-bit development environments
AIX, together with the C and C++ compilers, offer two different programming 
models:

� ILP32

� LP64

ILP32, which stands for integer/long/pointer 32, is the native 32-bit programming 
environment for AIX. It provides a 32-bit address space, with a theoretical 
memory limit of 4 GB.

LP64, or long/pointer 64, is the 64-bit programming environment for AIX. It can 
address memory beyond the 4 GB limit by providing a 64-bit address space. In 
general, except for the data type size and alignment difference, LP64 supports 
the same programming features as the ILP32 model, and backward compatibility 
with the most widely used int data type.

According to the C and C++ language standards, int and short should be at least 
16 bits, and long should be at least as long as int, but not smaller than 32 bits. 
This relationship among the integral data types still holds true in the LP64 model:

sizeof(char) <= sizeof(short) <= sizeof(int) <= sizeof(long)

The LP64 data model is the de facto standard on 64-bit UNIX-based systems 
provided by all major system vendors. Applications that transition to the LP64 
data model are therefore highly portable to other LP64 vendor platforms.

Table 2-1 on page 39 lists the basic C and C++ data types on AIX and their 
corresponding sizes in bits for both the ILP32 and LP64 programming models.
38 Developing and Porting C and C++ Applications on AIX



Table 2-1   C and C++ data type sizes in bits

2.1.1  The 64-bit advantage
The primary objective for developing in 64-bit is to take advantage of the newer, 
faster 64-bit hardware1 and operating systems2, and to make complex, memory 
demanding applications (for example, database and scientific computational 
applications) perform more efficiently. It offers the following benefits not found in 
32-bit systems:

� Full 64-bit addressing that expands the address space available to 
applications beyond the 4 GB limit

� Large process data space mapped in a large virtual address space

� Support for large data structures and executable files

� Large file support using standard system library calls

� Large file caches on systems with large physical memory

� 64-bit data elements with instructions for performing efficient arithmetic and 
logical computations as operations, using full-register widths, the full-register 
set, and new instructions

� Greater scalability of system derived data types, for example, time_t and 
dev_t

Data type ILP32 LP64

char 8 8

short 16 16

int 32 32

long 32 64

long long 64 64

pointer 32 64

float 32 32

double 64 64

long doublea

a. The size of long double is controlled by the -qlongdouble option, or when you
invoke the compiler with the 128 suffix (see Table 1-4 on page 30).

64 or 128 64 or 128

1  Refer to 3.1.1, “How to determine hardware bit mode” on page 107.
2  Refer to 3.1.2, “How to determine kernel bit mode” on page 107.
 Chapter 2. Compiling and linking 39



In addition, by keeping data in memory rather than writing out to disk, I/O bound 
applications can realize improved performance, since disk I/O is usually more 
time-consuming than memory access.

2.1.2  Compiler support
The compiler drivers (see 1.7.1, “Default compiler drivers” on page 30) by default 
invoke the compiler and linker in 32-bit mode. The following features are provided 
to enable 64-bit development:

� Predefined __64BIT__ macro when invoked for 64-bit compilations

� OBJECT_MODE environment variable

� The -q64 option

� -qarch support for 64-bit suboption

The compilers can be invoked for 64-bit or 32-bit mode by setting an environment 
variable, or by using a command line option to set the compilation mode of the 
compiler. Inconsistent options for compilation mode are resolved in the following 
order:

1. OBJECT_MODE environment variable

2. Configuration file

3. Command line options

Please refer to the VisualAge C++ for AIX Compiler Reference, SC09-4959 for 
more details on the options supported.

__64BIT__ preprocessor macro
Like many of the features supported by the compilers, the preprocessor macro 
__64BIT__ is defined when compiling in 64-bit mode. The purpose of the macro 
is to allow the programmer to select different data structures or lines of code for 
32-bit and 64-bit execution in the same source file.

The macro can be tested using conditional directives. For example:

#if defined(__64BIT__)
/* 64-bit specific data structures or code */

#else
/* 32-bit mode */

#endif

This ability to choose execution mode (of the final executable) at compile time 
using the __64BIT__ macro implies that there is no need to test execution mode 
at run time. It also eliminates the need of maintaining different variations of 
40 Developing and Porting C and C++ Applications on AIX



common header files. All the library header files are already coded in such a way 
that they can be compiled regardless of the mode.

Command line options
The compilers can be invoked for 64-bit or 32-bit mode by setting an 64-bit mode 
support in the C and C++ compilers is mainly provided by the two compiler 
options, -q64 and -q32, respectively.

When used in conjunction with the -qarch option, they determine the mode and 
instruction set for the target architecture. The -q32 and -q64 options take 
precedence over the setting of the -qarch option. Conflicts between the -q32 and 
-q64 options are resolved by the last option wins rule. Setting -qarch=com will 
ensure future compatibility for applications, whereas specific settings will be 
more hardware architecture dependent.

Please refer to the “Acceptable Compiler Mode and Processor Architecture 
Combinations” section of the VisualAge C++ for AIX Compiler Reference, 
SC09-4959 for valid combinations of the -q32, -q64, -qarch, and -qtune compiler 
options.

OBJECT_MODE environment variable
Having to specify an option every time you compile can become cumbersome 
and prone to mistakes (for example, inadvertently mixing 32-bit and 64-bit 
objects in the link edit step, which is not supported). If you are always compiling 
in one mode during a development session, you can set the OBJECT_MODE 
environment variable to change the default compilation mode. Permissible values 
for the OBJECT_MODE environment variable are:

(unset) Generate and/or use 32-bit objects.

32 Generate and/or use 32-bit objects.

64 Generate and/or use 64-bit objects.

32_64 Accept both 32- and 64-bit objects.

Note: Unlike the -X option for the utility commands, the -q32 or -q64 compiler 
options do not allow a white space after -q; -q64 is valid whereas -q 64 is 
invalid.

Note: In 64-bit mode, -qarch=com is treated the same as -qarch=ppc.
 Chapter 2. Compiling and linking 41



The benefit of using OBJECT_MODE to control the development environment is 
that other utilities that are often used during development are also sensitive to 
this environment variable.

Linker command line options
The linker, ld, also supports 64-bit link editing with the -b64 option as well as the 
default 32-bit link editing with -b32. Since the compiler drivers automatically sets 
the linker option properly based on the -q64 and -q32 options, it is not necessary 
to specify these linker specific options.

2.1.3  Utility commands support
The following utility commands that deal with object files, by default, assumes the 
object file is in 32-bit XCOFF3 format:

ar Maintains the indexed libraries used by the linkage editor.

dump Dumps selected parts of an object file.

lorder Finds the best order for member files in an object library.

nm Displays information about symbols in object files, 
executable files, and object-file libraries.

ranlib Converts archive libraries to random libraries.

size Displays the section sizes of the XCOFF object files.

strip Reduces the size of an XCOFF object file by removing 
information used by the binder and symbolic debug 
program.

Note: The compiler and linker do not support OBJECT_MODE=32_64, and 
using this choice will generate the error message:

1501-254 OBJECT_MODE=32_64 is not a valid setting for the compiler.

Note: The use of OBJECT_MODE to determine the default mode can cause 
serious problems if a user is unaware of the current setting. For example, the 
user may not be aware that OBJECT_MODE has been set to 64 and may 
unexpectedly obtain 64-bit object files from a compiling source file that is not 
designed for 64-bit. We strongly urge users to be aware of the setting of 
OBJECT_MODE at the time and to set OBJECT_MODE to ensure that the 
compiler is invoked for the correct mode.

3  The eXtended Common Object File Format, XCOFF, is the object format for AIX. For a detailed 
description of the XCOFF format, see the AIX 5L Version 5.2 Files Reference.
42 Developing and Porting C and C++ Applications on AIX



To support the 64-bit XCOFF object format, these utility commands have been 
enhanced with the -X option. The -X option specifies the type of object file the 
utility should examine, and accepts one of the following values:

32 Processes only 32-bit object files

64 Processes only 64-bit object files

32_64 Processes both 32-bit and 64-bit object files

Before developing your 64-bit application, you must confirm whether the libraries 
that your application depends on are provided in 64-bit. Most C and C++ libraries 
provided by AIX are hybrid mode archives (both 32- and 64-bit objects are 
included). However, this may not be the case with third party vendor libraries. 
See “32- and 64-bit objects” on page 48 and “Hybrid mode library archives” on 
page 48 for further information about this topic.

2.2  Compiling and linking: A quick overview
This section provides a quick overview for developers about compiling and linking 
on AIX.

2.2.1  Building C and C++ programs with system libraries
It is quite straightforward to build (compiling and linking) C and C++ programs 
with system libraries on AIX. For example, to compile and link the very simple C 
program shown in Example 2-1, do the following:

$ cc helloworld.c

Example 2-1   helloworld.c

#include <stdlib.h>
#include <stdio.h>

int main(int argc, char *argv[])
{
    printf("Hello World\n");
    exit(0);
}

Note: These utility commands also refer to the OBJECT_MODE environment 
value; however, the -X option overrides the environment value setting.
 Chapter 2. Compiling and linking 43



Then, the compiler driver4 will generate an executable file in the current directory 
(if the executable file name is not specified with the -o option, the compiler driver 
uses the default executable file name a.out):

$ ls -l a.out
-rwx------   1 k5       k5             4429 Apr 09 16:18 a.out

If you execute the generated executable file, it prints the following output as 
expected:

$ ./a.out
Hello World

Internally, the compiler driver cc does the following processes in this example:

1. Pick up the default compiler and linker options listed in /etc/vac.cfg (see 
Example 2-2), then invokes several internal programs.

2. Generate an object file (in this example, the file name would be helloworld.o).

3. Invoke the linker, ld, and it links the object file with default libraries listed in 
/vac/vac.cfg, in order to generate the executable file, a.out.

4. Remove the object file helloworld.o and temporary files.

Example 2-2   The cc compiler driver stanza in /etc/vac.cfg

* C compiler, extended mode
cc:     use        = DEFLT
    crt        = /lib/crt0.o
    mcrt       = /lib/mcrt0.o
    gcrt       = /lib/gcrt0.o

libraries  = -L/usr/lpp/xlopt,-lxlopt,-lc
proflibs   = -L/lib/profiled,-L/usr/lib/profiled
options    = -qlanglvl=extended,-qnoro,-qnoroconst

These internal processes are shown if the -v compiler option is specified, as 
shown in the following example:

$ cc -v helloworld.c
exec: 
/usr/vac/exe/xlcentry(/usr/vac/exe/xlcentry,-D_AIX,-D_AIX32,-D_AIX41,-D_AIX43,-
D_AIX50,-D_AIX51,-D_AIX52,-D_IBMR2,-D_POWER,-qlanglvl=extended,-qnoro,-qnorocon
st,-ohelloworld.o,helloworld.c,/tmp/xlcW0m.58Ea,/tmp/xlcW1m.58Eb,/dev/null,hell
oworld.lst,/dev/null,/tmp/xlcW2m.58Ec,NULL)
exec: 
/usr/vac/exe/xlCcode(/usr/vac/exe/xlCcode,-qlanglvl=extended,-qnoro,-qnoroconst
,/tmp/xlcW0m.58Ea,/tmp/xlcW1m.58Eb,helloworld.o,helloworld.lst,/tmp/xlcW2m.58Ec
,NULL)

4  Select the appropriate compiler driver as explained in 1.7.1, “Default compiler drivers” on page 30.
44 Developing and Porting C and C++ Applications on AIX



exec: 
/bin/ld(/bin/ld,-b32,/lib/crt0.o,-bpT:0x10000000,-bpD:0x20000000,helloworld.o,-
L/usr/lpp/xlopt,-lxlopt,-lc,NULL)
unlink: helloworld.o
unlink: /tmp/xlcW0m.58Ea
unlink: /tmp/xlcW1m.58Eb
unlink: /tmp/xlcW2m.58Ec

Specifying a library name with the -l linker option
If your program needs to be linked with system libraries other than libc.a, specify 
the library name using the -l linker option.

For example, the following example shows you how to link a user program, foo.c, 
with the system provided mathematical library, /usr/lib/libm.a:

$ cc foo.c -lm

If the -l linker option is used, the linker treats it as a part of a library name. In this 
example, the linker automatically adds “lib” in front of “m” and adds “.a” after “m”, 
in order to complete the library file name. This is a generic behavior of linker on 
most UNIX operating systems.

When searching libraries to resolve symbols, the linker always looks into two 
directories, /usr/lib and /lib5, where most system libraries are installed.

This option can be specified more than once in the same command line. In the 
following example, libabc.a and libdef.a will be searched from the /usr/lib or /lib 
directories to resolve symbols:

$ cc foo.c -labc -ldef

To find the appropriate system library name, which contains functions or 
variables you are going to use in your application, please consult the AIX 5L 
Version 5.2 Technical Reference: Base Operating System and Extensions.

2.2.2  Objects and libraries
Compilers normally generate an object file from an input program source file. The 
term object file is a generic term for a file containing executable code, data, 
relocation information, a symbol table, and other information. Objects files are 

Note: The standard C library, libc.a, is defined in the compiler driver stanza as 
an automatically linked library in /etc/vac.cfg, as highlighted in Example 2-2 on 
page 44. Therefore, you do not have to specify the -lc option in most cases.

5  The /lib directory is actually a symbolic link to the /usr/lib directory on AIX.
 Chapter 2. Compiling and linking 45



defined by XCOFF6 (eXtended Common Object File Format) on AIX. Multiple 
object files can be archived into a single library archive file, which is sometimes 
simply called library. The merit of creating a library is that it is easy to handle a 
fewer number of library files than many object files. Once a library is created from 
several object files, you can erase those object files, as long as the program 
source files are kept.

For example, assuming that there are three C program source files, foo1.c, 
foo2.c, and foo3.c, in the current directory, to generate object files from these 
source files, do the following:

$ cc -c foo1.c foo2.c foo3.c

The cc compiler driver would generate three object files as follows:

$ ls *.o
foo1.o  foo2.o  foo3.o

To archive them into a library, named libfoo.a, do the following:

$ ar -vq lifoo.a foo1.o foo2.o foo3.o
ar: Creating an archive file lifoo.a.
q - foo1.o
q - foo2.o
q - foo3.o

Figure 2-2 on page 50 illustrates these processes to create a library.

6  For the complete definition of XCOFF, refer to the AIX 5L Version 5.2 Files Reference.

Note: If the libfoo.a library does not exist, this command creates it and enters 
copies of the files foo1.o, foo2.o, and foo3.o into it. If the libfoo.a library does 
exist, then this command adds the new members to the end of the library 
archive without checking for duplicate members. The -v option sets verbose 
mode, in which the ar command displays progress reports as it proceeds.
46 Developing and Porting C and C++ Applications on AIX



Figure 2-1   Object files and a library archive

Once the library is created, it can be maintained using the ar command as 
follows:

� To list the table of contents of a library, enter:

ar -v -t libfoo.a

This command lists the table of contents of the libfoo.a library, displaying a 
long listing similar to the output of the ls -l command. To list only the 
member file names, omit the -v option.

� To replace or add new members to a library, enter:

ar -v -r libfoo.a foo1.o foo4.o

This command replaces the foo1.o member and adds foo4.o to the end of the 
library.

� To update a member that has been changed, enter:

ar -v -r -u libfoo.a foo2.o

This command replaces the existing foo2.o member, but only if the foo2.o file 
has been modified since it was last added to the library.

� To extract library members, enter:

ar -v -x libfoo.a foo1.o foo3.o

This command copies the foo1.o and foo3.o members into individual files 
named foo1.o and foo3.o, respectively.

� To delete a member, enter:

ar -v -d libfoo.a foo2.o

Source files foo1.c

Compile

Archive

Object files

Library archive file: libfoo.a

foo1.o

foo2.c

foo2.o

foo3.c

foo3.o

foo3.o

foo2.o

foo1.o
 Chapter 2. Compiling and linking 47



This command deletes the foo2.o member from the libfoo.a library.

For further information about the usage of the ar command, please consult with 
AIX 5L Version 5.2 Reference Documentation: Commands Reference.

32- and 64-bit objects
As explained in 2.1, “32- and 64-bit development environments” on page 38, AIX 
provides two different development environments: 32- and 64-bit. Therefore, 
object files on AIX have two different bit modes: 32-bit object files and 64-bit 
object files. To build executable files, all the participated object files and archive 
members must be in the same bit mode, either 32 or 64.

To distinguish the bit mode of object files, use the file command as follows:

$ file *.o
foo2.o:         executable (RISC System/6000) or object module not stripped
foo3.o:         executable (RISC System/6000) or object module not stripped
foo4.o:         64-bit XCOFF executable or object module not stripped

In this example, foo4.o is a 64-bit object, whereas foo2.o and foo3.o are 32-bit.

Hybrid mode library archives
A library archive can contain both the 32- and 64-bit object modules as its 
members on AIX. This is called a hybrid mode library archive. In fact, most 
system libraries provided by AIX are hybrid mode.

As explained in 2.1.3, “Utility commands support” on page 42, utility commands 
that deal with object files, such as ar, dump, and nm, have been enhanced with the 
-X option in order to support the 64-bit XCOFF format object format.

For example, to list only 64-bit object modules contained in the standard C 
library, libc.a, do the following:

$ ar -X 64 -t /usr/lib/libc.a
frexp_64.o
itrunc_64.o
ldexp_64.o
modf_64.o
logb_64.o
scalb_64.o
finite_64.o
... rest of output is omitted on purpose ...

Note: The object files and libraries explained in this section are static 
(non-shared). Shared object files and libraries must be created and treated by 
specific ways, as explained in 2.8, “Creating shared objects” on page 92.
48 Developing and Porting C and C++ Applications on AIX



If you omit the -X 64 option, or specify -X 32, the command lists only 32-bit object 
modules contained in libc.a. If -X 32_64 is specified, the command lists both 32- 
and 64-bit object modules.

To determine if the functions you require are provided in 64-bit, use the nm 
command. The mathematical library (libm.a) provided by AIX supports both a 
32-bit and a 64-bit version of the acos() sub-routine in the following example 
output7:

$ nm -X 32 -g /usr/lib/libm.a | head -5
/usr/lib/libm.a[acos.o]:
._Errno U -
.acos T 0
acos D 704 12
guesses U -
$ nm -X 64 -g /usr/lib/libm.a | head -7
/usr/lib/libm.a[acos_64.o]:
._Errno U -
._restf27 U -
._savef26 U -
.acos T 0
acos D 744 24
guesses U -

2.2.3  Difference between shared object and library on AIX
If you are already familiar with other UNIX operating systems, there is nothing to 
be explained in the simple example used in 2.2.1, “Building C and C++ programs 
with system libraries” on page 43. However, it is worth mentioning that the 
program is linked with system provided several libraries, as shown in the 
following ldd8 command output:

$ ldd ./a.out
./a.out needs:
         /usr/lib/libc.a(shr.o)
         /unix
         /usr/lib/libcrypt.a(shr.o)

The two system libraries, libc.a and libcrypt.a, are needed by the executable file 
and they both contain a shared object, named shr.o; in other words, these two 
objects are dependent modules of the executable file. Although both libraries 
coincidently contain the same name object file in this case, the two shared 
objects with the same name shr.o are different modules. Most system libraries 
provided by AIX contain one or more shared objects.

7  The -g option instructs the nm command to handle all archive members contained in the specified 
library archive.
8  See 2.7.3, “ldd” on page 90 for further information about the ldd command.
 Chapter 2. Compiling and linking 49



Figure 2-2 illustrates the compile and link processes of our example program and 
references to shared objects contained in system libraries.

Figure 2-2   Compiling and linking

As shown in the following genkld9 command output, there are three shared 
object modules loaded into the system global memory from the libc.a system 
library on our test system:

$ genkld | grep 'libc.a'
        d2023070              1df /usr/lib/libc.a/dl.o
        d012cd7a              1da /usr/lib/libc.a/pse.o
        d01cfbe0           1e6257 /usr/lib/libc.a/shr.o

Although, our example program shown in Example 2-1 on page 43 needs only 
shr.o out of libc.a, the other two have been loaded since other programs needed 
them.

In fact, this is the marked difference between AIX and other UNIX operating 
systems. On other UNIX operating systems, shared libraries (also often referred 
to as dynamic link libraries or DLL) are actually shared objects, whereas 
multiple shared objects can be contained in a single library on AIX.10

9  The genkld command is used to list already loaded shared objects into the system memory. See 
2.7.2, “genkld” on page 88 for further information about this command.
10  Technically, a shared object contained in a shared library archive is referred to as an archive 
member that has been archived into the library from a separate object file with SHROBJ.

Source file shr.o

shrdl.o

shrpse.o

/usr/lib/libc.a

shr.o

/usr/lib/libcrypt.a

helloworld.c

Compile

a.out

Link

Object module file

Executable file

helloworld.o

References
50 Developing and Porting C and C++ Applications on AIX



The terms, shared library and shared object, are generally used interchangeably 
on other UNIX operating systems, whereas there is a distinct difference between 
the two terms on AIX:

Shared object A shared object is a single object file that has the 
SHROBJ flag in the XCOFF header (see Example 2-3 on 
page 52). A shared object normally has a name of the 
form name.o on AIX. This is the default file name 
extension generated by compilers.

Shared library A shared library refers to an ar format archive library 
file11, where one or more of the archive members is a 
shared object. Note that the library can also contain 
regular, non-shared object files, which are handled in the 
normal way by the linker. A shared library normally has a 
name of the form libname.a on AIX.

The magic number of the file is used by the linker to determine whether the file is 
valid object file or not. Therefore, it is possible not to use .o as the file name 
extension for shared objects, though it could be misleading. As for library name 
naming convention (libname.a), it is strongly recommended to use it; otherwise 
the linker cannot find the library location if the -l option is used.

2.2.4  Difference between shared and static objects on AIX
The AIX linking and loading mechanism uses an unique file name convention for 
the shared and static object. On many UNIX operating systems, a shared object 
file normally has a file name extension “.so” (stands for shared object) and a 
static object file has normally a file name extension “.o” (stands for object).

However, an object normally has a file name extension “.o” regardless of shared 
or static on AIX. Therefore, you cannot determine whether an object is shared or 
regular static object from the file name extension on AIX.

To determine whether the object file is shared or static, use the dump command. 
As highlighted in Example 2-3 on page 52, if the SHROBJ keyword is shown in 
the Flags line, then the object file is shared; otherwise, it is static.

11  An ar format archive file is a file that is created by the ar command.

Note: AIX also supports shared objects with a file name extension “.so” like 
other UNIX operating systems do, which are used for run-time linking (see 2.5, 
“Run-time linking” on page 68).
 Chapter 2. Compiling and linking 51



Example 2-3   SHROBJ flag in the XCOFF header of a shared object

$ dump -ov shr.o

shr.o:

                        ***Object Module Header***
# Sections      Symbol Ptr      # Symbols       Opt Hdr Len     Flags
         5      0x00251764          26925                72     0x3002
Flags=( EXEC DYNLOAD SHROBJ )
Timestamp = "Feb 03 08:59:14 2003"
Magic = 0x1df  (32-bit XCOFF)

                        ***Optional Header***
Tsize        Dsize       Bsize       Tstart      Dstart
0x00171bc0  0x00045ae0  0x00045bc8  0x00000000  0x00000000

SNloader     SNentry     SNtext      SNtoc       SNdata
0x0004      0x0000      0x0001      0x0002      0x0002

TXTalign     DATAalign   TOC         vstamp      entry
0x0005      0x0003      0x00043ad0  0x0001      0xffffffff

maxSTACK     maxDATA     SNbss       magic       modtype
0x00000000  0x00000000  0x0003      0x010b        RE

To determine whether archive members in a library are shared or static, use the 
dump command with the -g option.12 For example, the frexp.o archive member is 
static, whereas shr.o is shared in the /usr/lib/libc.a library, as shown in 
Example 2-4.

Example 2-4   SHROBJ flag in the XCOFF header of archive members in a library

$ dump -gov /usr/lib/libc.a

/usr/lib/libc.a[frexp.o]:

                        ***Object Module Header***
# Sections      Symbol Ptr      # Symbols       Opt Hdr Len     Flags
         3      0x0000030c             34                28     0x0000
Flags=( )
Timestamp = "Sep 15 16:12:35 2002"
Magic = 0x1df  (32-bit XCOFF)

                        ***Optional Header***
Tsize        Dsize       Bsize       Tstart      Dstart
0x00000108  0x00000080  0x00000000  0x00000000  0x00000108

12  The -g option instructs the dump command to examine archive members in the specified library.
52 Developing and Porting C and C++ Applications on AIX



... many output lines are omitted on purpose ...
/usr/lib/libc.a[shr.o]:

                        ***Object Module Header***
# Sections      Symbol Ptr      # Symbols       Opt Hdr Len     Flags
         5      0x00250c0c          26913                72     0x3002
Flags=( EXEC DYNLOAD SHROBJ )
Timestamp = "Sep 19 00:14:43 2002"
Magic = 0x1df  (32-bit XCOFF)

                        ***Optional Header***
Tsize        Dsize       Bsize       Tstart      Dstart
0x00171360  0x00045a08  0x00045bb8  0x00000000  0x00000000

SNloader     SNentry     SNtext      SNtoc       SNdata
0x0004      0x0000      0x0001      0x0002      0x0002

TXTalign     DATAalign   TOC         vstamp      entry
0x0005      0x0003      0x00043a00  0x0001      0xffffffff

maxSTACK     maxDATA     SNbss       magic       modtype
0x00000000  0x00000000  0x0003      0x010b        RE
... rest of output is omitted on purpose ...

2.3  Resolving symbols at link-time
On AIX, symbol resolution is performed at link-time and cannot be rebound at the 
program load-time, except for the two exceptions explained in the following 
sections:

� 2.5, “Run-time linking” on page 68

� 2.6, “Dynamic loading” on page 82

This means that once an executable file was generated, dependent shared 
objects and archive members in libraries must be referenced using the same 
path name all the time; otherwise, the executable cannot run.

However, this does not necessary mean that dependent shared objects and 
archive members in libraries must be in the same directory all the time. If no path 
information is associated those objects and members, the system loader will look 
for them in several directories specified by the -L linker option (see 2.3.1, “The -L 
linker option” on page 55) and the LIBPATH environment variable (see 2.3.3, 
“LIBPATH environment variable” on page 58), in addition to the default library 
search directories, /usr/lib and /lib.
 Chapter 2. Compiling and linking 53



This mechanism simplifies the work of the system loader when a module is 
loaded, and thus results in better execution performance, though it could be seen 
rigid and tedious from the application programmers’ view.

To demonstrate this behavior, we have copied libc.a to /tmp and build an 
executable file from the program shown in Example 2-1 on page 43 as follows:

$ cp /usr/lib/libc.a /tmp
$ ls -l /tmp/libc.a
-r-x------   1 k5       k5          6793964 Apr 18 15:35 /tmp/libc.a
$ chmod a+r /tmp/libc.a
$ ls -l /tmp/libc.a
-r-xr--r--   1 k5       k5          6793964 Apr 18 15:35 /tmp/libc.a
$ cc helloworld.c /tmp/libc.a

The executable file cannot run if /tmp/libc.a is removed as follows:

$ ./a.out
Hello World
$ rm -i /tmp/libc.a
rm: Remove /tmp/libc.a? y
$ ./a.out
exec(): 0509-036 Cannot load program ./a.out because of the following errors:
        0509-150   Dependent module /tmp/libc.a(shr.o) could not be loaded.
        0509-022 Cannot load module /tmp/libc.a(shr.o).
        0509-026 System error: A file or directory in the path name does not 
exist.

The reason is that the reference information to the removed /tmp/libc.a file was 
statically stored in the XCOFF header of the executable file, as emphasized in 
Example 2-5 on page 55.

The directory path names, except for the first (index 0) section, shown in the 
PATH column are called optional path components for dependent modules. In 
Example 2-5 on page 55, libc.a has the optional path component /tmp.

Note: Shared objects or libraries must be readable from other users; 
otherwise they are treated as private shared objects (see 2.9.2, “Private 
shared objects” on page 101 for more detail).
54 Developing and Porting C and C++ Applications on AIX



Example 2-5   dump -H output with the full directory path name

$ dump -H a.out

a.out:

                        ***Loader Section***
                      Loader Header Information
VERSION#         #SYMtableENT     #RELOCent        LENidSTR
0x00000001       0x00000007       0x00000010       0x00000031

#IMPfilID        OFFidSTR         LENstrTBL        OFFstrTBL
0x00000002       0x00000188       0x0000002a       0x000001b9

***Import File Strings***
INDEX  PATH                          BASE                MEMBER
0      /usr/lpp/xlopt:/usr/lib:/lib
1      /tmp                          libc.a              shr.o

If the same program is built as follows:

$ cc helloworld.c

the XCOFF header will not contain any path name information for libc.a as 
highlighted in the following (the compiler driver automatically add -lc before 
invoking the linker in this case):

***Import File Strings***
INDEX  PATH                          BASE                MEMBER
0      /usr/lpp/xlopt:/usr/lib:/lib
1                                    libc.a              shr.o

Since libc.a has no path information, the system loader will look for this library 
from the directories (/usr/lpp/xlopt:/usr/lib/:/lib) listed in the first (index 0) loader 
header section of the XCOFF header of the generated executable file.

2.3.1  The -L linker option
If the program is referencing libraries, then use the -L and -l linker options rather 
than specifying library file path names directly.

Note: It is always recommended to avoid having any optional path 
components when creating shared objects and libraries and building 
executable files, in order to avoid unnecessary dependency to the file path 
names of the dependent modules.
 Chapter 2. Compiling and linking 55



For example, if the referenced library, libabc.a, is placed in the /project/test/lib 
directory, specify the options as follows:

$ cc -o a.out main.c -labc -L/project/test/lib

The linker adds the /project/test/lib directory in front of the default directory 
search path in order to look for referenced shared objects and libraries.

In this case, the directory name, /project/test/lib, will be added to in front of the 
first entry for the first (index 0) loader header section of the XCOFF header of the 
generated executable file, as shown in Example 2-6.

Example 2-6   dump -H with the PATH information

$ dump -H a.out

a.out:

                        ***Loader Section***
                      Loader Header Information
VERSION#         #SYMtableENT     #RELOCent        LENidSTR
0x00000001       0x00000007       0x00000010       0x00000037

#IMPfilID        OFFidSTR         LENstrTBL        OFFstrTBL
0x00000002       0x00000188       0x0000002a       0x000001bf

                        ***Import File Strings***
INDEX  PATH                          BASE                MEMBER
0 /project/test/lib:/usr/lpp/xlopt:/usr/lib:/lib
1                                    libabc.a              shr.o

When executing the command, if libabc.a is found in the directories shown in the 
following directories, the command can run:

/project/test/lib:/usr/lpp/xlopt:/usr/lib:/lib

2.3.2  Searching objects and libraries at link-time
The linker can handle two types of files as input: object file or library. Those 
object files and libraries can be specified in the linker command line explained in 
this section.

Note: The shared objects and libraries must not have any optional path 
component information in the XCOFF loader header section to be searched 
from the directories listed in the first (index 0) loader header section of the 
executable file.
56 Developing and Porting C and C++ Applications on AIX



Object files
� Specify the absolute path name for the object file. For example:

$ cc -o a.out main.c /prod/obj/shr1.o

� Specify the relative path name for the object file. For example:

$ cc -o a.out main.c ../../prod/obj/shr1.o

� Specify the file name for the object file, if it resides in the current directory. For 
example:

$ ls main.c shr.o
main.c shr.o
$ cc -o a.out main.c shr1.o

Except for the last method, the generated executable file would have an optional 
path component for its dependent shared object shr.o in its XCOFF header, if 
shr.o is a shared object.

Libraries
� Specify the absolute path name for the library. For example:

$ cc -o a.out main.c /prod/lib/libabc.a

� Specify the relative path name for the library. For example:

$ cc -o a.out main.c ../../prod/lib/libabc.a

� Specify the file name for the library, if it resides in the current directory. For 
example:

$ ls main.c libabc.a
libabc.a  main.c
$ cc -o a.out main.c libabc.a

� Specify the library installed directory using the -L and -l linker options. For 
example:

$ cc -o a.out main.c -L/prod/lib -labc

Except for the last two methods, the generated executable file would have an 
optional path component for its dependent shared library libabc.a in its XCOFF 
header, if libabc.a is a shared library.

Note: The order of libraries and objects specified on the linker command line 
is not important unless run-time linking (see 2.5, “Run-time linking” on 
page 68) is used.
 Chapter 2. Compiling and linking 57



2.3.3  LIBPATH environment variable
If the LIBPATH13 environment variable is defined, the system loader refers to it in 
order to search referenced shared objects and libraries that contain shared 
archive members, when the executable file is invoked. The linker does not refer to 
LIBPATH in order to look for shared objects and libraries.

The syntax of LIBPATH is:

LIBPATH=/path1:/path2:/path3:…

If defined, the system loader does the following processes when loading 
modules:

1. Adds the text string value of LIBPATH in front of the PATH information stored 
in the first (index 0) loader header section of the XCOFF header of the 
executable.

2. The system loader will search shared objects and libraries referenced by the 
executable in the directories in the order of the list created in the previous 
step.

For example, if the LIBPATH environment variable is defined as follows when 
executing the program example used in 2.3.1, “The -L linker option” on page 55:

LIBPATH=/project/build/lib

then the system loader will search for the referenced shared objects and libraries 
in the following order:

1. /project/build/lib
2. /project/test/lib
3. /usr/lpp/xlopt
4. /usr/lib
5. /lib

Note: The linker -bnoipath options instructs the command to not include any 
file path name information in the resultant module. The default option, -bipath, 
preserves file path name information.

13  On some other UNIX operating systems the LD_LIBRARY_PATH variable is used for a similar 
purpose. On AIX, however, LD_LIBRARY_PATH has no meaning.

Note: When a non-root user is attempting to run a setuid or setgid executable, 
only the directories listed in the header section of the executable are 
searched; the LIBPATH variable is ignored, even if it is set.
58 Developing and Porting C and C++ Applications on AIX



For example, assuming the following:

� The shared object shr.o is linked with main.o in order to create the executable 
a.out.

� Both shr.o and main.o are located in the current directory.

then you can select the following two methods to specify the file name shr.o in the 
command line to build the executable:

1. cc -o a.out main.o shr.o
2. cc -o a.out main.o ./shr.o

The executable file generated using the first method would have the loader 
information for shr.o, as shown in Example 2-7. In this case, the system loader 
will look for shr.o in the /usr/lpp/xlopt, /usr/lib, and /lib directories. If shr.o is stored 
in one of these directories, there is no need to set LIBPATH. If shr.o is stored in 
other than these directories, set the LIBPATH environment variable accordingly.

Example 2-7   dump -H without dot in PATH

$ dump -H a.out

a.out:

                        ***Loader Section***
                      Loader Header Information
VERSION#         #SYMtableENT     #RELOCent        LENidSTR
0x00000001       0x00000007       0x00000010       0x00000036

#IMPfilID        OFFidSTR         LENstrTBL        OFFstrTBL
0x00000003       0x00000188       0x0000002a       0x000001be

                        ***Import File Strings***
INDEX  PATH                          BASE                MEMBER
0      /usr/lpp/xlopt:/usr/lib:/lib
1                                    libc.a              shr.o
2 shr.o

Note: The shared objects and libraries must not have any optional path 
component information in the XCOFF loader header section to be searched 
from the directories specified by the LIBPATH environment variable.
 Chapter 2. Compiling and linking 59



For example, if shr.o is stored in the current directory, run the executable file after 
setting the variable as follows:

$ LIBPATH=$PWD ./a.out

If you have moved shr.o to /project/lib, then do the following:

$ LIBPATH=/project/lib ./a.out

If the executable is generated using the second method, the last five lines in 
Example 2-7 on page 59 would be:

***Import File Strings***
INDEX  PATH                          BASE                MEMBER
0      /usr/lpp/xlopt:/usr/lib:/lib
1                                    libc.a              shr.o
2 . shr.o

The dot character in the PATH column for shr.o, which is an optional path 
component for shr.o, makes a big difference. When executing the executable 
generated with the second method, the system loader will not refer to LIBPATH 
nor the directories listed in the first (index 0) loader header section, in order to 
search shr.o. Therefore, shr.o must be located in the current directory whenever 
the executable file is invoked.

Using LIBPATH for modules could not be loaded
If a shared object cannot be found by the system loader when trying to start an 
executable, an error message similar to the following will be seen:

exec(): 0509-036 Cannot load program ex1 because of the following errors:
0509-022 Cannot load library libone.so.
0509-026 System error: A file or directory in the path name does not 

exist.

The missing objects will be listed with 0509-022 error messages. Use the find 
command to search the system for the missing shared objects. If the object is 
found, try setting the LIBPATH environment variable to include the directory that 
contains the shared object and restart the application. Also, ensure that the 
object or library has read permission for the user trying to start the application.

A similar error message is produced when the system loader finds the specified 
shared objects, but not all of the required symbols can be resolved. This can 
happen when an incompatible version of a shared object is used with an 
executable. The error message is similar to the following:

exec(): 0509-036 Cannot load program ./example because of the following errors:
0509-023 Symbol func1 in ex1 is not defined.
0509-026 System error: Cannot run a file that does not have a valid 

format.
60 Developing and Porting C and C++ Applications on AIX



The unresolved symbols are listed in the 0509-023 message lines. Write down 
the name of the unresolved symbol (func1), and use the dump -Tv command to 
determine which shared object the executable expects to resolve the symbol 
from. For example:

# dump -Tv example | grep func1
[4]     0x00000000    undef      IMP     DS EXTref libone.a(shr1.o) func1

This indicates that the executable is expecting to resolve the symbol func1 from 
the shared object shr1.o that is an archive member of libone.a. This information 
can help you start the problem determination process.

2.3.4  Link-time and load-time
Shared objects and libraries are used in two stages when creating and executing 
an executable on AIX:

1. At link-time, the link editor (the ld command) searches the specified shared 
objects and libraries to resolve all undefined symbols that are referenced in 
the generating executable file. If a shared object file or library contains the 
referenced symbols, the loader section of the XCOFF header of the created 
executable file should contain a reference to that shared object or library.

In other words, symbols are exported from those shared objects or libraries 
and imported from the executable file.

2. At the program load-time, the system loader (the kernel component that starts 
new processes) reads the XCOFF header information of the executable and 
attempts to locate any referenced shared libraries. Assuming all the 
referenced shared objects and libraries are found, the executable can be 
started. Then, the system loader attempts to load the sections in the 
executable file into the appropriate segments in the process address space, 
as explained in Table 2-2 on page 62. The program text in shared objects and 
libraries is loaded into the global system memory by the first program that 
needs it and is shared by all programs that use it.

Note: To solve typical link-time errors, see 6.3, “Diagnosing link-time errors” 
on page 239.
 Chapter 2. Compiling and linking 61



Table 2-2   XCOFF headers and loading target segments

For the detailed information about the each segment usage in the process 
address space, see Chapter 3, “Understanding user process models” on 
page 105.

Figure 2-3 on page 63 depicts the processes done by the system loader at the 
program load-time.

Program executable 
components

Corresponding 
section header 
name in the 
XCOFF format

Loading target segment in the 
process address space

Program text .text Process text segment

Program data 
(initialized and 
un-initialized)

.data and .bss Process data segment

Referenced shared 
objects

loader Shared library text segment 
(per-process shared library data 
segment will be also populated with the 
necessary data for the process)
62 Developing and Porting C and C++ Applications on AIX



Figure 2-3   An XCOFF format executable file and exec()

Technically, each section header in the XCOFF file provides an offset address to 
the actual section in the file. However, this is not shown in Figure 2-3 to avoid 
unnecessary complexity.

2.4  Supported link methods on AIX
In order to link application program code with objects and libraries, AIX supports 
several link methods shown in Table 2-3 on page 64 (for the definition of terms 
used in this table, see Table B-1 on page 443). These methods are not mutually 
exclusive, except for the combination of lazy loading and run-time link methods. 
Therefore, an executable can be generated using more than one link methods.

shr1_1.o

shr1_2.o

shr1_3.o

Library archive #1

shr2_1.o

shr2_2.o

Library archive #2

Process address space

Process data segment

Per-process shared
library data segment

Shared library text segment

Process text segment.text section

loader section(s)
.bss section
.data section

Sections header

Auxiliary header
Files header

XCOFF executable file exec()
 Chapter 2. Compiling and linking 63



Table 2-3   Supported link methods

2.4.1  AIX default linking
The linker can handle two types of files as input: object file or library. On AIX, 
object files and archive members in a library can be static or shared, as 
explained in 2.2.4, “Difference between shared and static objects on AIX” on 
page 51. Regardless of static or shared, the input file names are specified in the 
same way in the linker command line in the default link method, as explained in 
2.3.2, “Searching objects and libraries at link-time” on page 56.

It is imperative to understand that the default link method is used when 
generating an executable file, unless the following linker options are explicitly 
specified:

-bstatic Static linking
-blazy Lazy loading
-brtl Run-time linking

Shared and static objects
Static objects are always statically linked and contained in the generated 
executable file. Shared objects are usually dynamically linked, thus the shared 
library code is not contained in the generated executable file. However, shared 
objects can be linked statically (see 2.4.2, “Static linking” on page 66).

Link 
method

Symbol 
resolution

Symbol 
rebound

Module 
loading

Linker 
option

Explained section

Default link-time N/A program 
load-time

N/A Section 2.4.1, “AIX default linking” on 
page 64

Static link-time N/A program 
load-timea

a. Program text of statically linked objects and archive members are contained in the executable file.

-bstatic Section 2.4.2, “Static linking” on 
page 66

Lazy 
loadingb

b. The lazy loading is actually a variation of the default link method. Except for the timing when ref-
erenced shared modules are loaded, the behavior is quite similar to the default link method.

link-time N/A run time -blazy Section 2.4.3, “Lazy loading” on 
page 67

Run time link-time program 
load-time

program 
load-time

-brtl Section 2.5, “Run-time linking” on 
page 68

Dynamic 
loadingc

c. Dynamic loading is a programming scheme provided by a set of sub-routines rather than by linker
options or special object file types.

run time
N/A Section 2.6, “Dynamic loading” on 

page 82
64 Developing and Porting C and C++ Applications on AIX



Figure 2-4 depicts the difference between static and shared objects or archive 
members in the generated executable file. In this figure, the following commands 
are used in order to build the executable file a.out:

� Compile

cc -c main.c foo1.c foo2.c

� Link

cc main1.o foo1.o foo2.o -labc -L/project/lib

Figure 2-4   Static and shared text code in the executable file

If a shared object is linked, its shared program text is loaded into the system 
shared library segment and shared by all processes that reference it, as depicted 
in Figure 2-3 on page 63.

LDR_CNTRL=PREREAD_SHLIB
If not already loaded, a shared object is loaded into memory when the program 
that depends on the shared object is executed. The loading process is done by 
the kernel virtual memory manager (VMM) on a demand-page basis, and the 
actual loading page size depends on the current VMM setting defined by several 
options, which are set by either the vmo command on AIX 5L Version 5.2 or the 
vmtune command on other versions of AIX.

For detailed information about VMM, please refer to the AIX 5L Version 5.2 
Performance Management Guide.

Source files main.c

Compile:

Link:

Object files

Executable file

main.o

foo1.c

foo1.o

foo2.c

foo2.o

foo2.ofoo1.omain.o

mbr1.o

mbr2.o

mbr3.o

/project/lib/libabc.a

shr.o

/usr/lib/libc.a

References

mbr2.o

Loader section in the header

Static object or archive member

Shared object or archive member
 Chapter 2. Compiling and linking 65



In some cases, especially if shared libraries are written by C++ and there are 
many references between these libraries, it may be faster to read the library into 
memory rather at the program load-time than the default demand-page basis.

In this case, set the following environment variable:

LDR_CNTRL=PREREAD_SHLIB

2.4.2  Static linking
AIX supports the -bdynamic and -bstatic linker options to determine how shared 
objects and libraries should be treated by the linker.14 These options are toggles 
and can be used repeatedly in the same linker command line.

When -bdynamic is in effect, which is the default, shared objects are used in the 
usual way, whereas when -bstatic is in effect, all referenced objects are linked 
statically, even if those objects are shared objects.

For example, if a program is built using the command line shown in Figure 2-5, 
the three command line arguments, func1.o, -ldef, and -ljkl, are treated as static, 
whereas the other arguments, -labc and -lghi, are treated as shared. Therefore, 
the object module func1.o and referenced archive members in libraries, libdef.a 
and libjkl.a, are statically linked with main.o.

Figure 2-5   The -bdynamic and -bstatic linker options

If you use the -bstatic option, the -bdynamic option should be specified as the 
last option on the link line to ensure that the system libraries are treated as 
shared objects by the linker. Otherwise, all the object members in the system 
libraries are treated as static, and the executable produced will be larger than 
normal and may not work on future versions of AIX since it is statically linked with 
a specific version of system libraries. The -bdynamic added at the end of the 
command line ensures that the system libraries, such as libc.a, are processed as 
shared objects.

14  The -bdynamic and -bstatic linker options has been supported by AIX, starting from Version 4.3.

Note: We are assuming all objects and libraries except for main.o are shared 
in Figure 2-5. Non-shared objects or archive members are statically linked 
regardless of the effectiveness of -bdynamic.

$ cc -o a.out main.o -labc -bstatic func1.o -ldef -dynamic -lghi -static -ljkl -dynamic

Static linked Static linked
66 Developing and Porting C and C++ Applications on AIX



2.4.3  Lazy loading
Lazy loading,15 which is a variation of the default linking method, is a mechanism 
for deferring the loading of modules until one of its functions is required to be 
executed. By default, the system loader automatically loads all of the module’s 
dependants at the same time.

By linking a module with the -blazy linker option, the module is loaded only when 
a function within it is called for the first time; however, symbol resolution is 
performed at link-time.

Let us assume, for example, that main() calls myfunc1() while myfunc1() is in the 
libone.so shared module. If myfunc1() calls myfunc2() conditionally in shared 
module libtwo.so, then libtwo.so is a candidate for lazy loading. If myfunc2() is 
never called, then libtwo.so is not loaded at all. If myfunc2() is called, the lazy 
loading code executes the load() function to load libtwo.so, patches a function 
descriptor to make sure subsequent calls simply go directly to the function itself, 
and then invokes the called function. If for some reason the module cannot be 
loaded, the lazy loader's error-handler is invoked.

Using lazy loading does not usually change the behavior of a program, but there 
are the following exceptions:

� Any program that relies on the order that modules are loaded in is going to be 
affected, because modules can be loaded in a different order, and some 
modules might not be loaded at all.

� Be careful while comparing function pointers if you are using lazy loading. 
Usually a function has a unique address in order to compare two function 
pointers to determine whether they refer to the same function. When using 
lazy loading to link a module, the address of a function in a lazy loaded 
module is not the same address computed by other modules. Programs that 
depend upon the comparison of function pointers should not use lazy loading.

Note: Statically linking shared objects or shared archive members in the 64-bit 
development environment is not supported.

15  The lazy loading function has been supported by AIX, starting from Version 4.3.

Note: Lazy loading only works if the run-time linker (-brtl option) is not 
specified when building executables. A module is lazy loaded when all 
references to the module are function calls. If variables in the module are 
referenced, the module is loaded in the normal way.
 Chapter 2. Compiling and linking 67



� If any modules are loaded with relative path names and if the program 
changes working directories, the dependent module might not be found when 
it needs to be loaded. When you use lazy loading, you should use only 
absolute path names when referring to dependent modules at link-time.

The decision to enable lazy loading is made at link-time on a module-by-module 
basis. In a single program, you can mix modules that use lazy loading with 
modules that do not. When linking a single module, a reference to a variable in a 
dependent module prevents that module from being loaded lazily. If all references 
to a module are to function symbols, the dependent module can be loaded lazily.

Tracing the lazy loading execution
The environment variable LDLAZYDEBUG can be used to trace the lazy loading 
activity as it takes place. The value of this variable is the sum of one or more of 
the values shown in Table 2-4.

Table 2-4   LDLAZYDEBUG environment variable values

2.5  Run-time linking
As explained in 2.4.1, “AIX default linking” on page 64, all referenced symbols 
must be resolved at link-time when building executable files using the default, 
static, and lazy loading link methods on AIX. Those pre-resolved symbols cannot 
be rebound after the executable files are created.

The run-time link method, or run-time linking, enables a program to resolve its 
referenced symbols at the program load-time rather than link-time. It is the ability 
to resolve undefined and non-deferred symbols in shared modules after the 
program execution has already began. It is a mechanism for providing run-time 
definitions (for example, function definitions that are not available at the program 
link-time) and symbol rebinding capabilities. For example, if main() calls func1() 
in libfunc1.so, which then calls func2() in libfunc2.so, assuming that libfunc1.so 
and libfunc2.so were built to enable run-time linking, then the main application 

Value Description

1 Show load or look-up errors. If a requested symbol is not available in the 
loaded referenced module, a message is displayed before the error handler is 
called.

2 Write tracing messages to stderr instead of stdout.

4 Display the name of the module that is getting loaded.

8 Display the name of the called function.
68 Developing and Porting C and C++ Applications on AIX



could provide an alternate definition of func2() that would override the one 
originally found in libfunc2.so.

Please note that it is the main application that has to be built to enable run-time 
linking. Simply linking a module with the run-time link library is not enough. This 
structure allows a module to be built to support run-time linking, yet continue to 
function in an application that has not been so enabled.

In order to use the run-time link method, the following points must be understood:

� The run-time link method is enabled by the run-time link library 
(/usr/lib/librtl.a) specified by the -brtl option when generating the executable 
file. The -brtl option is mutually exclusive with the -blazy option.

� Only run-time linking shared objects are run-time linked. Objects or archive 
members other than run-time shared objects are linked in the default link 
method.

� Run-time linking shared objects must be created before linking them with the 
main program, as explained in “Creating run-time linking shared objects” on 
page 71.

� Run-time linking shared objects should use the file name convention 
libname.so. If this naming convention is used, it is easy to distinguish run-time 
linking shared objects from other types of objects and easy to specify the file 
path name on the command line (see 2.5.5, “Extended search order with the 
-brtl linker option” on page 81).

An advantage of using run-time linking is that developers do not need to maintain 
a list of module interdependencies and import/export lists (see 2.8.1, “Import and 
export files” on page 92). By using the -bexpall linker option, all shared objects 
can export all symbols, and the run-time linker can be used to resolve the 
inter-module dependencies.

Note: In AIX, even if the run-time link method is used, all symbols except for 
the deferred symbols (see “Displaying symbol definition with dump -Tv” on 
page 87 for the definition of deferred symbols) must be resolved at the 
program load-time. However, in some other UNIX operating systems, 
resolution of function symbols is deferred until the function is first called 
(references to variables must be resolved at load-time). This allows the 
definition for a function to be loaded after the module referring to that symbol 
is loaded on those operating systems.
 Chapter 2. Compiling and linking 69



2.5.1  How to use run-time linking
This section explains how to use run-time linking by providing several simple 
examples.

Sample program source files
Our example program is composed of four C program source files, main.c 
(shown in Example 2-8), func1.c (Example 2-9), func2.c, and func3.c 
(Example 2-10). The source file of func2.c is the same as func3.c, except that the 
function name is func2, not func3.

Example 2-8   Run-time linking example (main.c)

#include <stdio.h>
#include <stdlib.h>

extern void func1(void);

int main(int argc, char *argv[])
{
        func1();
}

Example 2-9   Run-time linking example (func1.c)

#include <stdio.h>
#include <stdlib.h>

void func1(void)
{
        printf("within function %s at line number: %d in %s\n"
                , __FUNCTION__, __LINE__, __FILE__);
        func3();
}

Example 2-10   Run-time linking example (func3.c)

#include <stdio.h>
#include <stdlib.h>

void func3(void)
{
        printf("within function %s at line number: %d in %s\n"
                , __FUNCTION__, __LINE__, __FILE__);
}

70 Developing and Porting C and C++ Applications on AIX



If this simple application is statically built as follows:

$ cc -c main.c func1.c func2.c func3.c
main.c:
func1.c:
func2.c:
func3.c:
$ ls main.o func1.o func2.o func3.o
func1.o  func2.o  func3.o  main.o
$ cc main.o func1.o func2.o func3.o

then the generated executable file a.out prints the following output:

$ ./a.out
within function func1 at line number: 7 in func1.c
within function func3 at line number: 7 in func3.c

Please note the function func2 in func2.c is not called at all in this application. 
This function is intentionally included in this example in order to show the 
important aspect of run-time linking in later sections.

Creating run-time linking shared objects
In order to use run-time linking, run-time linking shared objects must be created 
before linking them with the main program. To create a run-time linking shared 
object, do the following:

1. Compile the source file and create an object file.

2. Re-link the object file with the -G linker option and create a run-time linking 
shared object (.so).

3. Archive the created run-time linking shared object into a library archive 
(libname.a). This is an optional step.

In fact, these steps are very similar to the steps to create regular (run-time linking 
disabled) shared objects except for the specified linker options (see 2.8, 
“Creating shared objects” on page 92).

For example, to create three run-time linking shared objects from func1.c, 
func2.c, and func3.c, do the following:

$ cc -c func1.c func2.c func3.c
func1.c:
func2.c:
func3.c:

Note: Multiple object files can be combined into a single run-time linking 
shared object file.
 Chapter 2. Compiling and linking 71



$ ld -G -o func1.so func1.o -bnoentry -bexpall
$ ld -G -o func2.so func2.o -bnoentry -bexpall -lc
$ ld -G -o func3.so func3.o -bnoentry -bexpall -lc
$ ls *.o *.so
func1.o   func1.so  func2.o   func2.so  func3.o   func3.so

The following linker options are specified in this example:

-bnoentry Indicates that the output file has no entry point. To retain 
any needed symbols, specify them with the -u flag or with 
an export file. You can also use the -r flag or the -bnogc or 
-bgcbtpass options to keep all external symbols in some 
or all object files. If neither the -bnoentry nor the -bnox 
option is used and the entry point is not found, a warning 
is issued.

-bexpall Exports all global symbols, except imported symbols, 
unreferenced symbols defined in archive members, and 
symbols beginning with an underscore (_). You may 
export additional symbols by listing them in an export file. 
This option does not affect symbols exported by the 
-bautoexp option. This option only applies to AIX Version 
4.2 and later.

When you use this option, you may be able to avoid using 
an export file. On the other hand, using an export file 
provides explicit control over which symbols are exported, 
and allows you to use other global symbols within your 
shared object without worrying about conflicting with 
names exported from other shared objects. The default is 
-bnoexpall.

-lc Specifies referenced libraries. As for func2.o and func3.o, 
the standard C library must be specified to resolve the 
symbol of printf(). In the case of func1.o, there is no need 
to specify any libraries, since it does not call any 
functions, except for func3.

-G The -G linker option is equivalent to specifying all the 
options shown in Table 2-5 on page 73.
72 Developing and Porting C and C++ Applications on AIX



Table 2-5   Linker options equivalent to -G

For the detailed information about these linker options, please refer to the ld 
command section in the AIX 5L Version 5.2 Reference Documentation: 
Commands Reference.

Creating an executable with run-time linking shared objects
In order to create an executable linked with run-time linking shared objects, do 
the following:

1. Compile the main program source file, which contains main(), and create an 
object file.

2. Re-link this object file with the -G linker option and create a run-time linking 
shared object (.so).

3. Link the object file compiled from the main program source file with run-time 
linking shared objects as well as the -brtl linker option specified.

Option Description

-berok Enables creation of the object file, even if there are unresolved 
references

-brtl Enables run-time linking. All shared objects listed on the command line 
(those that are not part of an archive member) are listed in the output 
file. The system loader loads all such shared modules when the 
program runs, and the symbols exported by these shared objects may 
be used by the run-time linker.

-bsymbolic Assigns this attribute to most symbols exported without an explicit 
attribute.

-bnortllib Removes a reference to the run-time linker libraries. This means that 
the module built with the -G option (which contains the -bnortllib option) 
will be enabled for run-time linking, but the reference to the run-time 
linker libraries will be removed. Note that the run-time libraries should 
be referenced to link the main executable only.

-bnoautoexp Prevent automatic exportation of any symbol.

-bM:SRE Build this module to be shared and reusable.

Note: Compiler drivers also have the -G option. Do not use the compiler -G 
option to create run-time linking shared objects from object files.
 Chapter 2. Compiling and linking 73



If the object file created from the main program source file does not have be 
run-time linking enabled, then the required task is shorten as follows:

Use an appropriate compiler driver, not the linker, to compile the main program 
source file, which contains main(), then link the object file with run-time linking 
shared objects by specifying the -brtl option.

As for our program example, we have built the executable a.out as follows using 
the later simple method:

$ ls *.o *.so
func1.o   func1.so  func2.o   func2.so  func3.o   func3.so
$ cc main.c func1.so func2.so func3.so -brtl
$ ls a.out
a.out

If executed, the program would print the following error message and fail to 
execute, since the dependent module func1.so could not be found by the system 
loader:

$ ./a.out
exec(): 0509-036 Cannot load program ./a.out because of the following errors:
        0509-150   Dependent module func1.so could not be loaded.
        0509-022 Cannot load module func1.so.
        0509-026 System error: A file or directory in the path name does not 
exist.

If LIBPATH is set as follows, it executes as expected:

$ LIBPATH=$PWD ./a.out
within function func1 at line number: 7 in func1.c
within function func3 at line number: 7 in func3.c

If the linker command (ld) was used instead of the compiler driver (cc) as follows:

$ cc -c main.c
$ ld main.o func1.so func2.so func3.so -brtl

then the program would print the following error message, since the generated 
executable would not contain the necessary start up routine:

$ LIBPATH=$PWD ./a.out
exec(): 0509-036 Cannot load program ./a.out because of the following errors:
        0509-151 The program does not have an entry point or
                   the o_snentry field in the auxiliary header is invalid.
        0509-194 Examine file headers with the 'dump -ohv' command.
74 Developing and Porting C and C++ Applications on AIX



2.5.2  Examining the executable and shared objects using dump
By using the dump command, you can examine whether the generated executable 
is linked using run-time linking or not. For example, the dump command with the 
-H option shows the header information for our example application a.out, as 
shown in Example 2-11.

Example 2-11 includes two important lines (highlighted):

� The run-time linking shared object func2.so is included in the dependent 
module list, though any symbols in this module are not referenced in the 
application at all.

� The run-time linker, the archive member shr.o in librtl.a, is included in the 
dependent module list.

Example 2-11   dump -H a.out

$ dump -H a.out

a.out:

                        ***Loader Section***
                      Loader Header Information
VERSION#         #SYMtableENT     #RELOCent        LENidSTR
0x00000001       0x00000009       0x00000011       0x0000005e

#IMPfilID        OFFidSTR         LENstrTBL        OFFstrTBL
0x00000006       0x000001c4       0x0000002a       0x00000222

                        ***Import File Strings***
INDEX  PATH                          BASE                MEMBER
0      /usr/lpp/xlopt:/usr/lib:/lib
1                                    func1.so
2                                    func2.so
3                                    func3.so
4                                    libc.a              shr.o
5                                    librtl.a            shr.o

Note: If this executable was compiled without -brtl, func2.so would not be 
included in the dependent module list.
 Chapter 2. Compiling and linking 75



The dump command with the -Tv option shows the referenced symbols 
information for our example application a.out, as shown in Example 2-12.

A very important fact in Example 2-12 is that there is no entry for the function 
func3, which is called from func1 in func1.c. As explained in 2.3, “Resolving 
symbols at link-time” on page 53, all symbols must be resolved at the program 
link-time, and all the resolved symbol information will be shown in the XCOFF 
loader section of the generated executable on AIX by default. However, in the 
case of run-time linking, symbols to be resolved by the run-time linker will not be 
shown in the XCOFF loader section of the generated executable, thus func3 is 
not shown in Example 2-12.

Example 2-12   dump -Tv a.out (1)

$ dump -Tv a.out

a.out:

                        ***Loader Section***

                        ***Loader Symbol Table Information***
[Index]      Value      Scn     IMEX Sclass   Type           IMPid Name

[0]     0x20000448    .data              RW SECdef        [noIMid] __rtinit
[1]     0x00000000    undef      IMP     RW EXTref   libc.a(shr.o) errno
[2]     0x00000000    undef      IMP     DS EXTref   libc.a(shr.o) exit
[3]     0x00000000    undef      IMP     DS EXTref   libc.a(shr.o) __mod_init
[4]     0x00000000    undef      IMP     BS EXTref   libc.a(shr.o) __crt0v
[5]     0x00000000    undef      IMP     BS EXTref   libc.a(shr.o) __malloc_user_defined_name
[6]     0x00000000    undef      IMP     DS EXTref        func1.so func1
[7]     0x00000000    undef      IMP     DS EXTref librtl.a(shr.o) __rtld
[8]     0x20000458    .data    ENTpt     DS SECdef        [noIMid] __start

Example 2-13 on page 77 shows the header information for the dependent 
shared object module func1.so. The double dot characters (..) in the last line 
indicate that at least one run-time linking shared objects are required in order to 
resolve unresolved symbols in this module.

Note: The order of run-time linking shared objects listed in the executable’s 
header is same with the order of object files specified in the linker command 
line when generating the executable file:

$ cc main.c func1.so func2.so func3.so -brtl
76 Developing and Porting C and C++ Applications on AIX



Example 2-13   dump -H func1.so

$ dump -H func1.so

func1.so:

                        ***Loader Section***
                      Loader Header Information
VERSION#         #SYMtableENT     #RELOCent        LENidSTR
0x00000001       0x00000003       0x00000006       0x00000015

#IMPfilID        OFFidSTR         LENstrTBL        OFFstrTBL
0x00000002       0x000000b0       0x00000000       0x00000000

                        ***Import File Strings***
INDEX  PATH                          BASE                MEMBER
0      /usr/lib:/lib
1                                    ..

Example 2-14 shows the loader section information for the dependent shared 
object module func1.so. There are two imported symbols, printf and func3, in this 
module.16 The double dot characters (..) in the IMPid column indicate that the 
symbol will be resolved by the run-time linker at the program load-time.

Example 2-14   dump -Tv func1.so

$ dump -Tv func1.so

func1.so:

                        ***Loader Section***

                        ***Loader Symbol Table Information***
[Index]      Value      Scn     IMEX Sclass   Type           IMPid Name

[0]     0x00000050    .data      EXP     DS SECdef        [noIMid] func1
[1]     0x00000000    undef      IMP     DS EXTref              .. printf
[2]     0x00000000    undef      IMP     DS EXTref              .. func3

Figure 2-6 on page 78 depicts the function calling relationship for our application 
built in this section. The run-time linking shared object func2.so is referenced by 
the executable file (a.out) and will be loaded into the system memory by the 
system loader at the program execution time, even if a symbol in this object is not 
referenced by the executable.

16  See “Displaying symbol definition with dump -Tv” on page 87 how to interpret columns shown in 
the dump -Tv output.
 Chapter 2. Compiling and linking 77



Figure 2-6   Function calling relationship

2.5.3  Enabling the main program object as run-time linking
If you closely examine Example 2-12 on page 76, you notice that func1.so was 
not linked as a run-time linking shared object. The IMPid column of the func1 
symbol shows the file name of func1.so, thus it is treated as a regular shared 
object. The reason is that the object file created from the main program source 
file, which includes main(), had not been run-time linking enabled, therefore all 
dependent modules that were required to resolve symbols referenced by main.o 
had to be loaded at the program load-time by the system loader.

In order to enable the main program object as a run-time linking shared object, 
we could have done the following (highlighted lines and command options are 
different):

$ cc -c main.c func1.c func2.c func3.c
main.c:
func1.c:
func2.c:
func3.c:
$ ld -G -o main.so main.o -bexpall
ld: 0711-327 WARNING: Entry point not found: __start
$ ld -G -o func1.so func1.o -bnoentry -bexpall
$ ld -G -o func2.so func2.o -bnoentry -bexpall -lc
$ ld -G -o func3.so func3.o -bnoentry -bexpall -lc
$ cc -o a.out main.so func1.so func2.so func3.so -brtl

After specifying LIBPATH, the program prints the following output as expected:

$ LIBPATH=$PWD ./a.out
within function func1 at line number: 7 in func1.c
within function func3 at line number: 7 in func3.c

Example 2-15 on page 79 shows the referenced symbol information for a.out 
generated by the compiler driver. Please note that Example 2-15 on page 79 
does not contain the symbol information for either func1 or func3.

main() {
func1();

}

func1() {
func3();

}

func2() {
printf();

}

func3() {
printf();

}

main.o func1.so func3.sofunc2.so

Unreferenced
78 Developing and Porting C and C++ Applications on AIX



Example 2-15   dump -Tv a.out (2)

$ dump -Tv a.out

a.out:

                        ***Loader Section***

                        ***Loader Symbol Table Information***
[Index]      Value      Scn     IMEX Sclass   Type           IMPid Name

[0]     0x200003e8    .data              RW SECdef        [noIMid] __rtinit
[1]     0x00000000    undef      IMP     RW EXTref   libc.a(shr.o) errno
[2]     0x00000000    undef      IMP     DS EXTref   libc.a(shr.o) exit
[3]     0x00000000    undef      IMP     DS EXTref   libc.a(shr.o) __mod_init
[4]     0x00000000    undef      IMP     BS EXTref   libc.a(shr.o) __crt0v
[5]     0x00000000    undef      IMP     BS EXTref   libc.a(shr.o) __malloc_user_defined_name
[6]     0x00000000    undef      IMP     DS EXTref         main.so main
[7]     0x00000000    undef      IMP     DS EXTref librtl.a(shr.o) __rtld
[8]     0x200003f8    .data    ENTpt     DS SECdef        [noIMid] __start

Although, it is technically possible to link all dependent shared objects in an 
application using run-time linking, it should be avoided in order for the application 
performance. In general, to take advantage of the AIX architecture, the shared 
modules should be as self contained as possible. Run-time linking should be 
used only when necessary. Application program code ported from other UNIX 
operating systems often does not have this sort of organization and can therefore 
require extra effort to enable it on AIX. It is important to emphasize the fact that 
the performance and efficiency of AIX is best explained by a well organized 
application structure with a well defined interface between modules.

2.5.4  Rebinding symbols at the program load-time
Example 2-16 on page 80 and Example 2-17 on page 80 respectively show the 
symbol information for func2.so and func3.so used in 2.5.1, “How to use run-time 
linking” on page 70. Although these objects themselves are run-time linking 
enabled, they have no dependent run-time linking shared object.
 Chapter 2. Compiling and linking 79



Example 2-16   dump -Tv func2.so

$dump -Tv func2.so

func2.so:

                        ***Loader Section***

                        ***Loader Symbol Table Information***
[Index]      Value      Scn     IMEX Sclass   Type           IMPid Name

[0]     0x00000000    undef      IMP     DS EXTref   libc.a(shr.o) printf
[1]     0x00000050    .data      EXP     DS SECdef        [noIMid] func2

Example 2-17   dump -Tv func3.so

$ dump -Tv func3.so

func3.so:

                        ***Loader Section***

                        ***Loader Symbol Table Information***
[Index]      Value      Scn     IMEX Sclass   Type           IMPid Name

[0]     0x00000000    undef      IMP     DS EXTref   libc.a(shr.o) printf
[1]     0x00000050    .data      EXP     DS SECdef        [noIMid] func3

If func2.so and func3.so are swapped as follows, the new func2.so will contain 
the function func3 and the new func3.so will contain func2:

$ mv func3.so temp.so
$ mv func2.so func3.so
$ mv temp.so func2.so

After func2.so and func3.so swapped, the run-time linker looks for the symbol 
definition for func3 and found in the new func2.so in the order of func1.so, 
func2.so, and func3.so. The referenced symbol func3 is rebound at the program 
load-time without re-linking the application, thus the executable prints the 
following output:

$LIBPATH=$PWD ./a.out
within function func1 at line number: 7 in func1.c
within function func3 at line number: 7 in func3.c

Figure 2-7 on page 81 depicts the function calling relationship for our application 
after swapping func2.so and fun3.so. Now, new func2.so, which was originally 
func3.so, contains func3, and new func3.so, which was originally func2.so, 
contains func2.
80 Developing and Porting C and C++ Applications on AIX



Figure 2-7   Function calling relationship after rebinding symbols

The run-time linking shared object func3.so is required by the executable file 
(a.out) and will be loaded into the system memory by the system loader at the 
program execution time, even if no symbol in this object is not referenced by the 
executable.

2.5.5  Extended search order with the -brtl linker option
When an executable file is linked in the run-time link method by specifying the 
-brtl linker option, the linker uses the extended search order to look for the shared 
objects and libraries to resolve symbols. In order to exploit this extended search 
order, run-time linking shared objects must follow the file name convention 
libname.so.

If the -brtl linker option is specified, the linker looks for libname.so, as well as 
libname.a, in the directories specified by the -L linker option in addition to the 
default directory search path (/usr/lib and /lib). The -lname linker option can be 
also used to specify libname.so as well as libname.a.

For example, if a run-time linking shared object named libfunc1.so, which is 
stored in the /project/lib directory, is linked when generating the executable file 
a.out, there are several methods to specify the object:

� cc main.c /project/lib/libfunc1.so -brtl

This method almost invalidates the merit of the run-time link method. 
Although libfunc1.so is loaded at the program load-time, it must reside in the 
/project/lib directory when the executable is invoked.

� cp /project/lib/libfunc1.so .; cc main.c libfunc1.so -brtl

This method is useful if all the run-time linking shared objects are located in 
the current directory. However, once a stable version is developed, those 
objects are most likely deployed in a specific directory. Therefore, it is less 
useful compared to the third method.

main() {
func1();

}

func1() {
func3();

}

func3() {
printf();

}

func2() {
printf();

}

main.o func1.so func3.sofunc2.so

Unreferenced
 Chapter 2. Compiling and linking 81



� cc main.c -lfunc1 -L/project/lib -brtl

This is the recommended method to generate an executable file using the 
run-time link method. The linker looks for the specified run-time shared 
objects in the order explained in 2.3.1, “The -L linker option” on page 55.

To follow the libname.so naming convention, either rename the run-time linking 
shared object files or archive them into a library.

2.6  Dynamic loading
Dynamic loading is the process in which one can attach a shared library to the 
address space of the process during execution, look up the address of a function 
in the library, call that function, and then detach the shared library when it is no 
longer needed. It is implemented as an interface to the services of the dynamic 
linker. This gives programmers extra control in managing the memory allocated 
to the shared library segment in an effective manner.

The dlopen() family of subroutines is supported on the AIX operating system. 
The functions include:

� dlopen()

� dlclose()

� dlsym()

� dlerror()

dlopen()
The dlopen() subroutine is used to open a shared object, and dynamically map it 
into the running programs address space. The syntax of the subroutine is as 
follows:

#include <dlfcn.h>

void *dlopen (FilePath, Flags);
const char *FilePath;
int Flags;

The FilePath parameter is the full path to a shared object, for example, shrobj.o, 
or libname.so. It can also be a pathname to an archive library that includes the 

Note: This method can be used only if the run-time shared object’s file 
name follows the libname.so naming convention.
82 Developing and Porting C and C++ Applications on AIX



required shared object member name in parenthesis, for example, 
/lib/libc.a(shr1.o).

The Flags parameter specifies how the named shared object should be loaded. 
The Flags parameter must be set to RTLD_NOW or RTLD_LAZY. If the object is 
a member of an archive library, the Flags parameter must be OR’ed with 
RTLD_MEMBER.

The subroutine returns a handle to the shared library that gets loaded. This 
handle is then used to with the dlsym subroutine to reference the symbols in the 
shared object. On failure, the subroutine returns NULL. If this is the case, the 
dlerror() subroutine can be used to print an error message.

dlsym()
The dlopen() subroutine is used to load the library. If successful, it returns a 
handle for use with the dlsym() routine to search for symbols in the loaded 
shared object. Once the handle is available, the symbols (including functions and 
variables) in the shared object can be found easily. For example:

lib_func = dlsym(lib_handle, "locatefn");
error = dlerror();
if (error) {

fprintf(stderr, "Error:%s \n",error);
exit(1);

}

The dlsym() subroutine accepts two parameters. The first is the handle to the 
shared object returned from the dlopen() subroutine. The other is a string 
representing the symbol to be searched for. 

If successful, the dlsym() subroutine returns a pointer that holds the address of 
the symbol that is referenced. On failure, the dlsym subroutine returns NULL. 
This, again, can be used with the dlerror subroutine to print an error message as 
shown above.

dlclose()
The dlclose() subroutine is used to remove access to a shared object that was 
loaded into the processes’ address space with the dlopen subroutine. The 
subroutine takes as its argument the handle returned by dlopen().

Note: On AIX, the handle from dlopen() is specific to an instance of dlopen(). 
The dlclose() call only closes the instance of the object to which the handle 
refers.
 Chapter 2. Compiling and linking 83



dlerror()
The dlerror() subroutine is used to obtain information about the last error that 
occurred in a dynamic loading routine (that is, dlopen, dlsym, or dlclose). The 
returned value is a pointer to a null-terminated string without a final newline. 
Once a call is made to this subroutine, subsequent calls without any intervening 
dynamic loading errors will return NULL.

Applications can avoid calling the dlerror() subroutine, in many cases, by 
examining errno after a failed call to a dynamic loading routine. If errno is 
ENOEXEC, the dlerror() subroutine will return additional information. In all other 
cases, it will return the string corresponding to the value of errno.

Using dynamic loading subroutines
In order to use the dynamic loading subroutines, an application must be linked 
with the libdl.a library. The shared objects used with the dynamic loading 
subroutines can be traditional AIX shared objects or shared objects that have 
been enabled for run-time linking with the -G linker option.

When the dlopen() subroutine is used to open a shared object, any initialization 
routines specified with the -binitfini option, as described in 2.8.4, “Initialization 
and termination routines” on page 99, will be called before dlopen returns. 
Similarly, any termination routines will be called by the dlclose subroutine.

Advantages of dynamic loading
Use of dynamic loading allows several benefits for application developers:

� The ability to share commonly-used code across many applications, leading 
to disk and memory savings.

� It allows the implementation of services to be hidden from applications.

� It allows the re-implementation of services, for example, to permit bug and 
performance fixes or to allow multiple implementations selectable at run time.

The following example program is used to demonstrate the use of dynamic 
loading subroutines:

/* File: main.c */

#include <stdio.h>
#include <stdlib.h>
#include <dlfcn.h>

int main(int argc, char *argv[])
{

Note: The dlerror() subroutine is not thread-safe.
84 Developing and Porting C and C++ Applications on AIX



void *handle;
void (*fct)();

printf("hello from main()\n");

if ((handle = dlopen("libfoo.so", RTLD_NOW)) == NULL) {
perror("dlopen");
exit(1);

}
if ((fct = (void (*)())dlsym(handle, "foo_")) == NULL) {

perror("dlsym");
exit(1);

}
(*fct)();
printf("exit from main()\n");
dlclose(handle);

}

/* File : foo.c - Shared library libfoo.so */

#include <stdio.h>
#include <stdlib.h>

void foo_(void)
{

printf("hello from foo_()\n");
}

Compile the program as follows:

$ cc -c foo.c
$ ld -o libfoo.so foo.o -bM:SRE -bnoentry -bexpall -lc
$ cc -o main main.c

The program will print the following output if libfoo.so is successfully found and 
loaded by the dynamic linker:

hello from main()
hello from foo_()
exit from main()

2.7  Commands when manipulating objects and libraries
This section explains how to use the following commands, which are necessary 
to manipulate objects and libraries on AIX by providing the following subsections:

� Section 2.7.1, “dump” on page 86
� Section 2.7.2, “genkld” on page 88
 Chapter 2. Compiling and linking 85



� Section 2.7.3, “ldd” on page 90
� Section 2.7.4, “nm” on page 90
� Section 2.7.5, “rtl_enable” on page 91
� Section 2.7.6, “slibclean” on page 91

2.7.1  dump
The dump command is used to examine the header information of executable files 
and shared objects. The main options that are useful when working with shared 
libraries are the -H option and the -Tv options.

Displaying header information with dump -H
Use the dump -H command to determine which shared objects an executable or 
shared object depends on for symbol resolution at run time. The interesting 
information is in the last section of output, as shown under the ***Import File 
Strings*** header in Example 2-18.

Example 2-18   Sample dump -H output

$ dump -H func1.so

func1.so:

                        ***Loader Section***
                      Loader Header Information
VERSION#         #SYMtableENT     #RELOCent        LENidSTR
0x00000001       0x00000003       0x00000006       0x00000023

#IMPfilID        OFFidSTR         LENstrTBL        OFFstrTBL
0x00000003       0x000000b0       0x00000000       0x00000000

                        ***Import File Strings***
INDEX  PATH                          BASE                MEMBER
0      /usr/lib:/lib
1                                    libc.a              shr.o
2                                    ..

The number of INDEX entries will depend on how many shared objects the target 
depends on for symbol resolution.

The INDEX 0 entry is a colon separated list of directories shown as /usr/lib:/lib in 
Example 2-18. If the LIBPATH environment variable is not set when the 
executable is started, the directories listed in the first (index 0) entry will be used 
in order to look for the shared objects listed in subsequent entries. If LIBPATH is 
86 Developing and Porting C and C++ Applications on AIX



defined, the directories listed in it will be used before the directories in the first 
(index 0) entry.

The format of the interesting columns is as follows:

PATH Optional path name component of the shared object or library. A 
pathname will be present if a path name was specified on the 
linker command line. It is recommended to avoid having this 
optional path name. See 2.3.1, “The -L linker option” on page 55 
and 2.3.3, “LIBPATH environment variable” on page 58 for further 
detailed information how this optional path name component will 
be selected depending on the linker command line file name 
selections.

BASE The name of the archive library containing the shared archive 
member, or the name of the shared object itself.

MEMBER The archive member name of the shared library. In the case of 
non-archived shared objects, this column will be blank.

Displaying symbol definition with dump -Tv
Use the dump -Tv command to examine the symbol information of a shared object 
or executable. It displays information on the symbols the object is exporting. It 
also lists the symbols the object or executable will try and import at load time 
and, if known, the name of the shared object that contains those symbols. The 
interesting columns are IMEX, IMPid, and Name, as highlighted in Example 2-19.

Example 2-19   Sample dump -Tv output

$ dump -Tv func1.so

func1.so:

                        ***Loader Section***

                        ***Loader Symbol Table Information***
[Index]      Value      Scn     IMEX Sclass   Type           IMPid Name

[0]     0x00000000    undef      IMP     DS EXTref   libc.a(shr.o) printf
[1]     0x00000050    .data      EXP     DS SECdef        [noIMid] func1
[2]     0x00000000    undef      IMP     DS EXTref              .. func3

Note: If there is a .. entry in the BASE column, the shared object is enabled for 
the run-time linking (see 2.5, “Run-time linking” on page 68).
 Chapter 2. Compiling and linking 87



The values in these columns have the following meaning:

Name The symbol name.

IMEX Determines whether a symbol is exported from the object 
file or archive member (EXP) or imported from the other 
object files or archive members (IMP).

IMPid For exported symbols, the value is not used and is always 
[noIMid]. For imported symbols, there are three patterns 
for the value, as shown in Table 2-6.

Table 2-6   IMPid values for imported symbols

2.7.2  genkld
The genkld command is used to list the shared objects that are loaded in the 
system shared library segment. The output is quite lengthy and has three 
columns, the virtual address of the object within the system segment, the size of 
the object, and the name of the file that was loaded, as shown in Example 2-20.

Example 2-20   genkld output example (1)

$ genkld | pg
Virtual Address              Size File

        d1febce0            19907 /usr/lib/libcurses.a/shr.o
... rest of the output is omitted on purpose ...

If the file name does not have a slash character at its end, then it is a shared 
archive member of a library archive. In Example 2-20, shr.o is a shared archive 
member of /usr/lib/libcurses.a.

Value Description

File name If the file name is in the form of libabc.a(def.o), then the symbol is imported 
from the def.o member of the libabc.a library. If the file name is without 
parentheses, then the symbol is imported from that shared object file. In 
both cases, the dependent shared object or archive member will be loaded 
by the system loader upon the program execution time.

.. The symbol will be resolved by the run-time linker. After resolving the 
symbol, the run-time linker tells the system loader to load an appropriate 
shared object or archive member.

[noIMid] The symbol is a deferred symbol and will not be resolved by the run-time 
linker. It is the application’s responsibility to resolve deferred symbols in 
order to avoid the application abend due to the unresolved symbols. In 
order for the programatic symbol resolution, use the dynamic loading (see 
2.6, “Dynamic loading” on page 82).
88 Developing and Porting C and C++ Applications on AIX



If the file name has a slash character at its end, it is a shared object file, as 
shown in Example 2-21.

Example 2-21   genkld output example (2)

$ genkld | head -1; genkld | grep NIS
Virtual Address              Size File
        d00e7000             2237 /usr/lib/security/NIS/
$ ls -l /usr/lib/security/NIS
-r-xr-xr-x   1 root     system         8760 Sep 15 2002  /usr/lib/security/NIS
$ file /usr/lib/security/NIS
/usr/lib/security/NIS:  executable (RISC System/6000) or object module

The virtual address of a 32-bit shared object starts from 0xD, whereas the 
address of a 64-bit shared object typically starts from 0x90000000, as shown in 
Example 2-22.

Example 2-22   genkld output example (3)

$ genkld | head -1; genkld | grep 'libc.a'
Virtual Address              Size File
        d01bb3b8              1df /usr/lib/libc.a/dl.o
        d014d0c2              1da /usr/lib/libc.a/pse.o
        d01d0be0           1e5907 /usr/lib/libc.a/shr.o
 90000000022aca0           20d75e /usr/lib/libc.a/shr_64.o

The 0xD segment is the system-wide 32-bit shared text segment, which is 
shared by all the 32-bit processes on the system. As for 64-bit processes, shared 
objects can be loaded into the system-wide 64-bit shared text segments, which 
can be located from 0x9000_0000_0000_0000 to 0x9FFF_FFFF_FFFF_FFFF 
(576 - 640 PB); however, they are most likely loaded into the first segment in this 
address range.

For further information about the system-wide shared text segments, see 3.2, 
“The 32-bit user process model” on page 109 and 3.3, “The 64-bit user process 
model” on page 130.
 Chapter 2. Compiling and linking 89



2.7.3  ldd
The ldd17 command lists the shared objects and archive members that will be 
loaded to start the executable. The following example shows what shared object 
modules and shared libraries (dependencies) are required to run the executable 
file helloworld:

# ldd helloworld

helloworld needs:
         ./libone.so
         ./libtwo.so
         /usr/lib/libc.a(shr.o)
         /usr/lib/librtl.a(shr.o)

The command reports dependencies by traversing valid XCOFF header 
information of the specified executable file.

2.7.4  nm
The nm command displays information about symbols in the specified file, which 
can be an object file, an executable file, or shared object. For example:

$ nm libone.so

.myfunc1             T         144

.myfunc1             t         144      40

.myfunc2             T           0

.myfunc2             T         184

.myfunc2             t         184      40

.printf              T         104

.printf              t         104      40
TOC                  d          52
_$STATIC             d           0      40
_$STATIC             d          52       4
glink.s              f           -
glink.s              f           -
glink.s              f           -
myfunc1              U           -
myfunc1              d          60       4
myfunc2              D          40      12
myfunc2              d          64       4
printf               U           -
printf               d          56       4
source1.c            f           -

17  The ldd command is supported on AIX 5L Version 5.2 and later.
90 Developing and Porting C and C++ Applications on AIX



If the file contains no symbol information, the nm command reports the fact, but 
does not interpret it as an error condition. The nm command reports numerical 
values in decimal notation by default. Unlike the dump command, nm does not 
display the shared object or archive member name that is expected to supply the 
symbol.

2.7.5  rtl_enable
The rtl_enable command is used to convert a shared library that is not enabled 
for run-time linking into a run-time linking enabled one.

2.7.6  slibclean
The slibclean command can be used by the root user to unload all shared 
objects with a use count value of zero from the system shared library segment. 
This command is useful in an environment when shared libraries are under 
development. You can run the slibclean command followed by the genkld 
command to ensure that the shared objects under development are not loaded in 
the system shared library segment. This means that any application started after 
this will automatically use the latest version of the shared objects since the 
system loader will search for and load them. It also prevents multiple versions of 
the same objects existing in the system segment.

During the development of shared objects, you may sometimes see an error 
message similar to the following when creating a new version of an existing 
shared object:

# make libone.so
        cc -O -c source1.c
        cc -berok -G -o libone.so source1.o
ld: 0711-851 SEVERE ERROR: Output file: libone.so
        The file is in use and cannot be overwritten.
make: 1254-004 The error code from the last command is 12.

The error message means that the target shared object file is in use and it has 
been loaded into the system shared library segment. Once loaded, the file is 
marked as in use, even if the use count is already zero. Running the slibclean 
command will unload all of the unused shared objects from the system. An 
alternative (and simpler) method of avoiding this problem is to use the rm -f 
command to remove the shared object before creating it.

However, frequent slibclean invocation on production systems should be 
avoided, because it may affect the system performance by unloading frequently 
used, but unused when the command is issued, shared objects and libraries on 
the system. It is recommended to issue slibclean on production systems that 
 Chapter 2. Compiling and linking 91



are in a software maintenance phase, especially before the deinstallation of no 
longer required applications or the updating of installed applications.

2.8  Creating shared objects
This section explains how to create shared objects on AIX. Once shared objects 
are created, you can archive them into a library using the ar command (see 
2.2.2, “Objects and libraries” on page 45).

In order to create a shared object, the following tasks are required:

1. Compile the source code files and create object files. Use the appropriate 
compiler driver to do so, for example, cc -c foo.c.

2. Create an export file to explicitly control exported symbols from the shared 
object, which you are going to create.

3. Re-link the created object file(s) to a shared object file. It is possible to 
combine multiple object files into a single shared object file. The following 
linker options are used in this step:

-bE:export_file Specifies the export file name created in the previous 
step.

-bM:SRE Marks the resultant object file as a re-entrant shared 
object module.

-bnoentry Indicates that the output object file has no entry point.

4. Create an import file to explicitly control how exported symbols in the shared 
object will be imported by other modules. This is an optional step.

2.8.1  Import and export files
An export file is a text file containing a list of symbols. It is used to control which 
symbols are visible outside the shared object. The symbols not specified in the 
export file are only visible to other routines within the shared object. The use of 
export files allows a developer to create a shared object that has a well defined 
interface. Only the symbols listed in the export file can be referenced by 

Note: The root authority is required to use the slibclean command.

Note: Steps 2 and 4 can be skipped if the -bexpall linker option is used. 
However, if this option is used, you cannot precisely control the symbol 
exporting (see “The -bexpall linker option” on page 94).
92 Developing and Porting C and C++ Applications on AIX



executables and other shared objects that are linked with the object. Export files 
are normally identified by the file name extension .exp.

An import file is a text file that lists the names of symbols that the shared object 
may reference. It allows the object to be created without the source of those 
symbols being available. Once an export file is created, an import file can be 
created from the export file by adding several directive lines starting from “#!”. 
Table 2-7 shows the supported directives for import files.

Table 2-7   Directive lines for import files

Directive Description

#! (Nothing after the #!) Use null path, null file, and null number. This is treated as 
a deferred import by the system loader.

#!() Use -bipath, -bifile, and -bimember. This line can be used if the import file is 
specified as an InputFile parameter on the command line. The file must begin 
with #! in this case. This line can also be used to restore the default name if it 
was changed by another #! line.

#!path/file(member) Use the specified path, file, and archive member.

#!path/file Use the specified path and file, and a null member.

#!file Use a null path, the specified file, and a null member. At run time, a list of 
directories is searched to find the shared object.

#!(member) Use -bipath, -bifile, and the specified member. At run time, a list of directories is 
searched to find the shared object.

#!file (member) Use a null path and the specified file and member. At run time, a list of 
directories is searched to find the shared object.

#!.1 (A single dot) This name refers to the main executable. Use this file name when 
you are creating a shared object that imports symbols from multiple main 
programs with different names. The main program must export symbols 
imported by other modules, or loading will fail. This import file name can be 
used with or without the run-time linker.

#!..1 (Two dots) Use this name to list symbols that will be resolved by the run-time 
linker. Use this file name to create shared objects that will be used by programs 
making use of the run-time linker. If you use a module that imports symbols from 
.. in a program that was not linked with the -brtllib option, symbols will be 
unresolved, and references to such symbols will result in undefined behavior.

1. These directive lines have been supported on AIX since Version 4.2.
 Chapter 2. Compiling and linking 93



The creation and use of import files are not mandatory except for the following 
situation:

� Limiting accessible symbols exported from shared objects so that only 
specified symbols listed in the import file will be imported.

� Creating multiple shared objects that have dependencies on each other (see 
2.8.3, “Interdependent shared objects” on page 96).

� Accessing special symbols such as symbols in the main program. In this 
case, use the #!. directive line in the import file before the symbols that will be 
imported from the main program.

If run-time linking (explained in 2.5, “Run-time linking” on page 68) or dynamic 
loading (explained in 2.6, “Dynamic loading” on page 82) is not used, all 
referenced external symbols must be accessible and resolvable when the 
module is linked.

If symbols are listed after the #! directive in an import file, the linker considers 
those symbols to be created declared differently, so they must be programatically 
resolved and handled by a set of library calls provided by dynamic loading. If 
symbols are listed after the #!.. directive in an import file, the linker considers 
those symbols to be declared to be handled by the run-time linker.

The -bexpall linker option
If you are creating a shared object and want all symbols to be exported, then you 
do not need to create an export file. You can use the -bexpall linker option, which 
will automatically export all global symbols (except imported symbols, 
unreferenced symbols defined in archive members, and symbols beginning with 
an underscore). Additional symbols may be exported by listing them in an export 
list. Any symbol with a leading underscore will not be exported by this option. 
These symbols must be listed in an exports list to be exported.

The -bexpfull option
The new -bexpfull18 link option operates like -bexpall, except that it actually 
exports all symbols and does not skip symbols that begin with an underscore.

Creating an export list using CreateExportList
You can use the /usr/vac/bin/CreateExportList shell script supplied with the C for 
AIX Version 6 compiler to automatically generate the symbols that should be 
included in an export list. It can save a considerable amount of time if you need to 
create shared objects.

18  The -bexpfull linker option is supported on AIX 5L Version 5.2 and later and on AIX 5L Version 5.1 
with 5100-02 Recommended Maintenance Level and later.
94 Developing and Porting C and C++ Applications on AIX



To use this command, do the following:

1. Compile all of the source files that will be included in the shared object.

2. Create a single file that lists the names of all of the object files that will be 
included in the shared object. For example, create a file called object.list that 
contains the following lines:

source1.o
source2.o

3. Invoke CreateExportList as follows:

/usr/vac/bin/CreateExportList file.exp -f object.list

where file.exp is the name of the export file you want to create, and object.list 
is the file that contains the list of object file names.

4. Edit the resulting export file to remove the symbol names you wish to keep 
private within the shared object.

5. Edit the export file to include the #!pathname(member) lines at the 
appropriate positions in order to use the file as an import file.

2.8.2  A self-contained shared object
The scenario described in this section for creating a self-contained shared object 
uses the following source code files:

The file source1.c is as follows:

/* source1.c : First shared library source */
void private(void)
{

printf(“private\n”);
}
int addtot(int a, int b)
{

int c;
c = a + b;
return c;

}

The file source2.c is as follows:

/* source2.c : Second shared library source */
#include <stdio.h>
int disptot(int a)
{

printf(“The total is : %d \n”,a);
}

 Chapter 2. Compiling and linking 95



To create a self-contained shared object, do the following:

1. Create the object files that will be combined together to create the shared 
object. This is achieved by using the -c compiler option. For example:

cc -c source1.c source2.c

2. Create an export file that lists the symbol names that should be visible outside 
the shared object. In this example, the symbols addtotal and displaytotal are 
the names of the functions that will be called by the main application. The 
symbol names can also include variable names in addition to function names. 
Create the libadd.exp export file as follows:

addtot
disptot

3. Create the shared object shrobj.so with the following command:

cc -o shrobj.o source1.o source2.o -bE:libadd.exp -bM:SRE -bnoentry

Use the dump command to examine the exported symbols from this shared 
object, as shown in the following example:

$ dump -Tv shrobj.o

shrobj.o:

                        ***Loader Section***

                        ***Loader Symbol Table Information***
[Index]      Value      Scn     IMEX Sclass   Type           IMPid Name

[0]     0x00000000    undef      IMP     DS EXTref   libc.a(shr.o) printf
[1]     0x2000020c    .data      EXP     DS SECdef        [noIMid] addtot
[2]     0x20000218    .data      EXP     DS SECdef        [noIMid] disptot

Two symbols, addtot and disptot, are exported from the created shared object 
shrobj.o as we expected (see “Displaying symbol definition with dump -Tv” on 
page 87 how to interpret the command output).

2.8.3  Interdependent shared objects
The process for creating interdependent shared objects is similar to the process 
of creating a self-contained shared object but requires the use of an import file. 
Suppose there are two shared objects, shr1.o and shr2.o, and each references 
symbols in the other. When creating the first shared object (shr1.o), the second 

Note: If you do not have to precisely control which symbols will be exported, 
you can skip the step 2 and use the following command line in step 3:

$ cc -o shrobj.o source1.o source2.o -bexpall -bM:SRE -bnoentry
96 Developing and Porting C and C++ Applications on AIX



shared object may not exist. This means that when the command to create the 
first shared object is executed, there will be unresolved symbols since, at this 
point, the second shared object does not exist. To avoid this paradox, create and 
use import files for these object files.

Consider the following files for use in this example scenario:

The file source1.c is as follows:

/* source1.c : First shared library source */
int function1(int a)
{

int c;
c = a + function2(a);
return c;

}

int function3(int a)
{

int c;
c = a / 2;
return c;

}

The file source2.c is as follows:

/* source2.c : Second shared library source */
int function2(int a)
{

int c;
c = function3(a + 5);
return c;

}

In this example, each source file needs to be made into a separate, shared 
object. Note that the resulting shared objects are interdependent, since:

� Subroutine function1 in source1.c calls function2 in source2.c.

� Subroutine function2 in source2.c calls function3 in source1.c.

Create the export file libone.exp to define exporting symbols of the shared object 
shr1.o, which we are going to create from source1.c:

function1
function3

then insert the following directive at the beginning of libone.exp in order to use 
the file as an import file:

#!libone.a(shr1.o)
 Chapter 2. Compiling and linking 97



Create the export file libtwo.exp to define exporting symbols of the shared object 
shr2.o, which we are going to create from source2.c:

function2

then insert the following directive at the beginning of libtwo.exp in order to use the 
file as an import file:

#!libtwo.a(shr2.o)

To create two libraries, libone.a and libtwo.a, which contain only one archive 
member, shr1.o and shr2.o respectively, do the following:

cc -c source1.c source2.c
cc -o shr1.o source1.o -bE:libone.exp -bI:libtwo.exp -bM:SRE -bnoentry
ar rv libone.a shr1.o
cc -o shr2.o source2.o -bE:libtwo.exp -bI:libone.exp -bM:SRE -bnoentry
ar rv libtwo.a shr2.o

Note the use of the file libone.exp as an export file when creating the first shared 
object and as an import file when creating the second. If the file was not used 
when creating the second shared library, the creation of the second shared 
object would have failed with an error message complaining of unresolved 
symbols as follows:

cc -o shr2.o source2.o -bE:libtwo.exp -bM:SRE -bnoentry
ld: 0711-317 ERROR: Undefined symbol: .function3
ld: 0711-345 Use the -bloadmap or -bnoquiet option to obtain more information.

Figure 2-8 depicts the function calling relationship between these two shared 
objects.

Figure 2-8   Function calling relationship for an interdependent shared object

A single import file can be used to list all symbols that are imported from different 
modules. In this case, the import file is just a concatenation of the individual 
export files for each of the shared objects. For example, Example 2-23 on 
page 99 could have been used for the combined import file when linking two 
shared objects in the previous example.

function1 {
function2();

}
function 3 {

;
}

function2 {
function3();

}

libone.a(shr1.o) libtwo.a(shr2.o)
98 Developing and Porting C and C++ Applications on AIX



Example 2-23   Combined import file

#!libone.a(shr1.o)
function1
function3
* a comment line starts with an asterix character. blank lines are ignored.

#!libtwo.a(shr2.o)
function2

2.8.4  Initialization and termination routines
Optional shared object initialization and termination routines can be specified 
when creating the shared object. You can use one or the other, or both. The 
routines may be useful for initializing dynamic data structures or reading 
configuration information. The initialization routines are called by the program 
startup code and are performed before the application main routine is started. 
Termination routines are called when the program makes a graceful exit. They 
will not be called if the program exits due to receipt of a signal.

The -binitfini linker option is used to specify the names of the routines along with 
a priority number. The priority is used to indicate the order that the routines 
should be called in when multiple shared objects with initialization or termination 
routines are used.

2.9  Shared libraries in a development environment
When an application is started, the system loader reads the loader section of the 
header of the executable file. It reads the dependency information for any shared 
objects the executable requires and attempts to load the code for those shared 
objects into the system shared library segment if they are not already loaded. 
Shared objects that are loaded into the system shared library segment have an 
attribute called the use count. Each time an application program that uses the 
shared object is started, the use count is incremented. When an application 
terminates, the use count for any shared objects it was using is decreased by 
one. When the use count for a shared object in the system shared library 
segment reaches zero, the shared object is not unloaded, but instead remains in 
memory. This reduces the overhead of starting any applications that use the 
shared object since they will not have to load the object into the system shared 
segment again.

Note: It is recommended to create a single self-contained shared object 
instead of multiple interdependent shared objects whenever possible, in order 
to avoid the complexity and the possible application performance degrade.
 Chapter 2. Compiling and linking 99



To relinquish the unused shared objects or library archive members residing in 
the system memory, you need to either explicitly call the slibclean command 
(requires root authority on the system) or remove the shared objects or libraries 
using the rm command.

However, this default behavior of shared objects and libraries on AIX can be 
difficult to control, especially in the development environment where shared 
objects or libraries can be constantly changed and altered so that new versions 
should be used. Furthermore, multiple application developers might be working 
with their own version of a single shared library in a large development 
environment.

In order to effectively manage shared objects and libraries in the development 
environment, there are several methods, including the following:

� Use the -L and -l linker options and the LIBPATH environment variable.

� Use private shared objects and libraries.

2.9.1  Production and development environments
If your application development directory structure does not match the directory 
structure used when your application is installed in a production environment, 
then, potentially, you need to adjust the arguments used with the linker to ensure 
that the resulting executables have the desired library search path.

When the application is installed in a production environment, for example, after 
being installed on the production system, the directory structure may be different. 
The method to use when compiling the executables will depend on the degree of 
freedom the customer is permitted when installing the application. For example, 
some applications expect that the executables and libraries must be installed in a 
specific directory, such as /opt/productname. Some applications allow the 
binaries and libraries to be installed in any directory structure.

� If the libraries for the application need to be installed in a specific directory, 
then you can either:

– Create the shared libraries and then copy them to the same directory 
structure to be used when the product is installed in a production 
environment. In this case, use the -L option to specify the directory where 
the linker looks for shared objects and libraries. For example:

cc -o ../bin/app1 main.c -llibone -L/product/lib

Note: To solve typical link-time and run-time errors, see 6.3, “Diagnosing 
link-time errors” on page 239 and 6.4, “Diagnosing run-time errors” on 
page 244.
100 Developing and Porting C and C++ Applications on AIX



– Create the shared libraries, but leave them in the development directory 
structure. When compiling the applications, use absolute pathnames to 
specify the shared libraries along with the -bnoipath linker option to 
prevent the pathname being included in the header section of the final 
executable. At the same time, use the -L option to specify the directory 
where the libraries will exist on a production system. For example:

cc -o ../bin/app1 main.c -bnoipath ../lib/libone.a -L/product/lib

� If your application allows the executables and libraries to be installed in any 
directory structure, then the LIBPATH environment variable must be used 
accordingly on the production system to look for the dependent shared 
objects and libraries.

2.9.2  Private shared objects
When used under normal circumstances, a shared object is loaded into the 
system global shared object segment. Subsequent executables that use the 
shared object benefit from the fact that it is already loaded.

In a development environment, particularly on a system with multiple developers, 
it may be preferable to use a private copy of a shared object. This may be useful 
when developing and testing new functionality in a shared object that is specific 
to a particular version of the application that a single developer is working on. 

If the shared object or library has the access permissions modified as detailed 
below, then when the system loader starts an application that uses this shared 
object, the shared object text will be loaded into the process private segment 
rather than the system shared object segment. The shared object data will also 
be loaded into the process private segment instead of its normal location of the 
process shared object data segment. This means every application that uses 
private shared objects and libraries will have its own private copy of the shared 
object text and data while sacrificing the smaller size of a process private data 
segment.

Note: In either case, all dependent shared objects and libraries should be 
installed in /product/lib (or /usr/lib, /lib) on the production system.

Note: It is always recommended to avoid having any optional path 
components (see “Displaying header information with dump -H” on page 86) 
when creating shared objects and libraries and building executable files, in 
order to avoid unnecessary dependency to the file path names of the 
dependent modules.
 Chapter 2. Compiling and linking 101



When the program exits, all private shared objects required by the program will 
be released from the memory.

To use a private copy of the shared text and data, modify the access permissions 
as follows:

� Remove the read permission for other of the shared object as follows:

chmod o-r foo.o

� Remove the read permission for other of the shared library as follows:

chmod o-r libfoo.a

2.9.3  NFS consideration
Often, an application runs on NFS clients, whereas the actual executable file for 
the application and referenced shared objects or libraries stored on the NFS 
server. AIX tries to maintain the reliability of the running process by copying 
modules to the NFS client’s paging space.

Although the likelihood of a shared module changing from a running process is 
minimal, this behavior avoids the potential of a process abend due to an NFS 
client and server losing synchronization in their respective understandings of the 
contents of a particular file. If a shared object referenced by the application is 
updated on the NFS server, and the inode does not change, then the kernel 
believes that the existing copy is current, and therefore will not pick up the new 
file. In this case, the slibclean command must be executed on the NFS client to 
pick up the new module on the NFS server. This is only effective if the module in 
question is no longer in use by any running process on the client.

2.9.4  Sufficient free disk space on the target directory and /tmp
The linker19 maps the output file into its shared memory segment using shmat() 
(see “Mapping files with shmat()” on page 144 for detailed information about the 
shmat() services). The pages are flushed to disk when the linker exits. If the 
output file is on a remote file system, or on a file system that does not support 
mapping, a temporary file is created locally, which is then copied to the remote 

Note: Private shared objects are not shown in the genkld command output, 
even if they are loaded into memory.

Note: If the read permission for other of a library is removed, all the shared 
archive members in the library are considered private.

19  The linker, ld, is a 32-bit program.
102 Developing and Porting C and C++ Applications on AIX



file system. The temporary file will be created in the directory defined by the 
TMPDIR environment value, or in /tmp, if TMPDIR is not defined. Therefore, it is 
recommended to have enough free disk space on the target directory and /tmp in 
a development environment for this action.
 Chapter 2. Compiling and linking 103



104 Developing and Porting C and C++ Applications on AIX



Chapter 3. Understanding user process 
models

This chapter explains several memory models available on AIX and how these 
models affect the heap and shared memory usage in your applications by 
providing the following sections:

� Section 3.1, “User process models on AIX” on page 106
� Section 3.2, “The 32-bit user process model” on page 109
� Section 3.3, “The 64-bit user process model” on page 130
� Section 3.4, “Introduction to shared memory” on page 140
� Section 3.5, “Shared memory segments allocation order” on page 149
� Section 3.6, “Large page support” on page 157

For further information about the topics explained in this chapter, please refer to 
the following sections in AIX 5L Version 5.2 General Programming Concepts: 
Writing and Debugging Programs:

� “Shared Libraries and Shared Memory”
� “System Memory Allocation Using the malloc Subsystem”

3

© Copyright IBM Corp. 2000, 2003. All rights reserved. 105



3.1  User process models on AIX
Starting with AIX Version 4.3, AIX supports two user process models, 32- and 
64-bit, which we explain in the following sections:

� Section 3.2, “The 32-bit user process model” on page 109

� Section 3.3, “The 64-bit user process model” on page 130

Before explaining these models in detail, we provide a short introduction in this 
section. As shown in Figure 3-1, there are four combinations of kernel and 
hardware support of 32- and 64-bit support.

Figure 3-1   Hardware, kernel, and user process relationships

If the hardware bit mode is 32-bit, then 64-bit user processes cannot run on the 
32-bit kernel (represented as A in Figure 3-1), also the 64-bit kernel cannot run 
on the 32-bit hardware (B).

If the hardware bit mode is 64-bit, then both 32- and 64-bit user processes can 
run regardless of the kernel type, though 64-bit user processes performance can 
be slightly degraded on the 32-bit kernel (C).

32 64

32

32

64

32

32 64

32

64

32 64

64

64

User process

Kernel

Hardware

A B C D

Note: AIX has been supporting the 64-bit user process model starting with 
Version 4.3. 64-bit application programs developed on AIX Version 4.3 are 
source-compatible with AIX 5L Version 5.1 and later; however, they are not 
binary-compatible. Therefore, those programs must be recompiled on AIX 5L 
Version 5.1 and later before execution.
106 Developing and Porting C and C++ Applications on AIX



3.1.1  How to determine hardware bit mode
To determine the hardware bit mode on your system, run either of the following 
commands, depending on the operating system versions:

� AIX 5L Version 5.2:

getconf HARDWARE_BITMODE

� AIX 5L Version 5.1 and AIX Version 4.31:

bootinfo -y

The command requires the root user authority.

These commands return either 32 (32-bit hardware) or 64 (64-bit hardware). The 
following example shows the command output executed on an AIX 5L Version 
5.2 partition on the pSeries 690:

# oslevel; getconf HARDWARE_BITMODE
5.2.0.0
64

If you need to know the hardware bit mode where your application is running, you 
can use the sysconf() routine with the _SC_AIX_HARDWARE_BITMODE 
parameter, as shown in the following code fragment:

#include <unistd.h>
long bit_mode;
bit_mode = sysconf(_SC_AIX_HARDWARE_BITMODE);

If the application is running on the 32-bit hardware, it returns 32. If running on the 
64-bit hardware, it returns 64.

3.1.2  How to determine kernel bit mode
To determine the kernel bit mode on your system, run either of the following 
commands, depending on the operating system versions:

� AIX 5L Version 5.2:

getconf KERNEL_BITMODE

1  Prior to Version 4.3, AIX did not support 64-bit hardware models.

Note: In general, you do not have to know the hardware bit mode within your 
application source code, since the difference of hardware bit-modes does not 
affect user processes.
 Chapter 3. Understanding user process models 107



� AIX 5L Version 5.12:

bootinfo -K

The command requires the root user authority.

These commands return either 32 (32-bit kernel) or 64 (64-bit kernel). The 
following example shows the command output executed on an AIX 5L Version 
5.2 partition with the 64-bit kernel on the pSeries 690:

# oslevel; getconf KERNEL_BITMODE
5.2.0.0
64

If you need to know the kernel bit mode, where your application is running, you 
can use the sysconf() routine with the _SC_AIX_KERNEL_BITMODE parameter 
as shown in the following code fragment:

#include <unistd.h>
long bit_mode;
bit_mode = sysconf(_SC_AIX_KERNEL_BITMODE);

If the application is running on the 32-bit kernel, it returns 32. If running on the 
64-bit kernel, it returns 64.

3.1.3  How to determine user process bit mode
To determine the user process bit mode, run the file command with the 
executable file of the corresponding user process.

If the executable file is 64-bit, then the command prints 64-bit XCOFF 
executable, as shown in the following example:

$ cc -o helloworld32 helloworld.c
$ cc -q64 -o helloworld64 helloworld.c
$ file helloworld*
helloworld.c:   C program text
helloworld32:   executable (RISC System/6000) or object module not stripped
helloworld64:   64-bit XCOFF executable or object module not stripped

2  Prior to Version 5.1, AIX supported 32-bit kernels (UP or MP) only.

Note: In general, except for developing kernel extensions, you do not have to 
know the kernel bit mode within your application source code, since the 
difference of kernel bit-modes does not affect user processes.
108 Developing and Porting C and C++ Applications on AIX



3.2  The 32-bit user process model
This section provides a brief explanation about 32-bit user process models. 
Every 32-bit user process has its own address space, whose maximum size is 4 
GB. An address space is prepared by the kernel as part of the process 
initialization tasks as a subset of virtual memory address on the system. A 32-bit 
address space is composed of up to sixteen 256 MB memory chunks called 
segments. Each segment has a specific purpose illustrated in several figures in 
the following sections. A segment is divided into smaller size memory chunks 
called pages. A page is an atomic unit, with which the virtual memory manager 
(VMM) in the kernel uses to satisfy many different memory requests.

On AIX, the default page size is 4 KB, unless the large page support3 is used. If 
the default page size, 4 KB, is used, a segment contains 256 MB / 4 KB = 256 / 4 
x 1024 = 64 K = 65,536 pages.

In the 32-bit user process model, there are several variations, called large 
memory model and very large memory model, depending on the required heap 
size for the process. We also explain these models in the following sections:

� Section 3.2.2, “Large memory model” on page 116

� Section 3.2.3, “Very large memory model” on page 117

3.2.1  Default memory model
Figure 3-3 on page 111 illustrates the segment usage of the default 32-bit 
memory model. This is the default memory model, unless you explicitly set a 
linker option (-b:maxdata) when generating executables or set an environment 
value (LDR_CNTRL) when executing 32-bit executables.

Note: The -q64 option instructs the compiler to generate a 64-bit executable 
file (see 2.1.2, “Compiler support” on page 40). Although you can generate 
64-bit executable files on 32-bit hardware systems, you cannot run them on 
32-bit hardware systems.

3  See 3.6, “Large page support” on page 157 for more detail about the large page support.
 Chapter 3. Understanding user process models 109



Figure 3-2   Default memory model (segment usage)4

The usage of each segment is briefly described in the following:

� The first segment, 0x0, is reserved by system for the kernel text and data. 
Therefore, access from the user process to the segment 0x0 is prohibited.5

� The 0x1 segment contains user process text. If another process shares the 
same executable file, there will be only one instance of the text pages for that 
executable file on the system.

� The 0x2 segment contains user data, heap, and stack. We provide detailed 
information about this segment in “Process private segment (0x2)” on 
page 111.

� The 0xD segment contains shared library text. This segment is shared by all 
32-bit user processes. The virtual addresses of loaded shared text objects 
can be examined using the genkld command. For further information about 
the usage of genkld, see 2.7.2, “genkld” on page 88.

� The 0xF segment contains per-process shared library data.

4  The access to the 0xE segment from a user process has been supported on AIX Version 4.2.1 and 
later.
5  User processes can access to kernel data only through the system calls with specific ways.

Per-process shared library data

Kernel text and data

UsageSegment
number

0x0

0x1

0x2

0x3

0x4

0x5

0x6

0x7

0x8

0x9

0xA

0xB

0xC

0xD

0xE

0xF

User text

User stack, data

Shared library text

Available for the user process
if shmat() or mmap() is called.
110 Developing and Porting C and C++ Applications on AIX



� Segments 0x3 - 0xC and 0xE are attached to the address space if the 
process called shmat() or mmap() routines to allocate shared memory 
segments. These segments are allocated in order, starting from 0x3 towards 
0xE excluding 0xD, unless DSA (Dynamic Segment Allocation) is used. 
Further detailed explanation is provided in 3.5.1, “Order in the 32-bit default 
memory model” on page 153 and 3.5.2, “Order in the 32-bit very large 
memory model with DSA” on page 154.

Process private segment (0x2)
The process private segment, 0x2, is the most interesting segment for 
application developers on AIX. In this segment, many memory components that 
are mandatory for a user process are allocated (see Figure 3-3). In this figure, 
white rectangles represent un-allocated virtual address pages; if a process 
touches these address ranges, it receives the SIGSEGV6 signal and dumps a 
core file. Highlighted rectangles represent allocated virtual address pages. You 
may notice that a 32-bit address space is quite vacant in most cases.

Figure 3-3   Default memory model (detail)

6  Signal for segmentation violation

0xF

0x8
0x9
0xA
0xB
0xC
0xD
0xE

0x7
0x6
0x5
0x4
0x3
0x2
0x1
0x0

User text:

Shared memory:

Shared library text:

Shared library data:
Per-process loader heap

uthread block

ublock

Primary thread
kernel stack

errno
errnop

User stack

User data

User

Kernel

256 MB (offset)

0 MB (offset)

: Allocated virtual address pages 

: Un-allocated virtual address pages 

Process private segment (0x2)
 Chapter 3. Understanding user process models 111



First of all, some pages within this segment are prepared by the kernel as a part 
of the process initialization tasks. The access to those pages from the user 
process is prohibited (represented as several highlighted rectangles under the 
Kernel in the right most rectangle). The information contained in this area are 
only accessible from the user process through system calls.

The rest of the pages within this segment can be accessed by the process, 
though there is a big hole between the process heap (represented as “User data” 
in the figure) and stack. If the process touches pages in this hole, it receives the 
SIGSEGV signal and dumps a core file.

User data contains three different memory components: initialized data, 
un-initialized data,7 and heap. To demonstrate how they are mapped into virtual 
pages, we have prepared a simple program shown in Example 3-2 on page 113.

When compiled and executed, it prints addresses of several predefined symbols 
in the XCOFF format, as shown in Example 3-1. Those symbols, starting from 
the underscore character, are well explained in “XCOFF Object (a.out) File 
Format”, AIX 5L Version 5.2 Files Reference. We only explain _data and _edata 
here; the _data symbol defines the starting address of the initialized data in the 
executable file, while the _edata symbol defines the first location address after 
the initialized data in the executable file.

The size command tells you the size of the .text, .data, and .bss segments of the 
specified executable file.8

Example 3-1   Addresses of several predefined symbols

$ size -fx a.out
a.out: 428(.text) + 234(.data) + 8(.bss) + 2db(.loader) = 0x93f
$ a.out
_text =                 0x10000128
_etext =                0x10000550
_data =                 0x20000550
_edata =                0x20000784
argv[] =                0x2ff22a14
environ[] =             0x2ff22ff4
errnop =                0x2ff22ffc
errno =                 0x2ff22ff8
i_initialized =         0x200006f0
l_uninitialized =       0x20000788
str_buf =               0x2ff219b0
heap_mem =              0x20000798

7  The un-initialized data is generally referred to as BSS (block started by symbol) in computer 
science terminology.
8  The -x option instructs the command to display data in the hexadecimal format.
112 Developing and Porting C and C++ Applications on AIX



As for the addresses of _data and _edata, we can easily subtract 0x20000550 
from 0x20000784 using the bc command, as shown in the following example:

$ bc
ibase=F
obase=F
20000784 - 20000550
234
^D

To quit the command, type Control-D. The ibase=F and obase=F keywords 
instruct the command to treat both input and output as hexadecimal numbers. 
The answer is 0x234, which is equivalent to the .data segment size in the 
executable file reported by the size command.

After the initialized data, un-initialized data (BSS) is loaded into the memory as 
shown by the address of l_uninitilized. Then heap starts as shown by the address 
of heap_mem. It grows toward the last address of this segment (0x2FFFFFFF).

On the other hand, the stack grows from a relatively higher address toward the 
first address of this segment (0x20000000). The user process stack contains 
several predefined symbols, such as argv, environ, errno, and so on. The user 
process stack grows, if the process calls functions or allocates auto storage class 
symbols.

Example 3-2   underscore_symbols_32.c9

#include <stdlib.h>
#include <stdio.h>
#include <errno.h>

extern int errnop;
extern int errno;
extern _text;
extern _etext;
extern _data;
extern _edata;

Note: You need to use upper-case characters (A - F) to represent 
hexadecimal 0xA - 0xF with the bc command.

Note: Thread stacks for Pthreads, except the initial thread within a 
multi-threaded processes, are allocated in the process heap. See 8.3.4, 
“Thread stack” on page 292 for further information about the thread stack for 
multi-threaded processes.

9  Extern symbols start with underscore are run-time symbols prepared by the system loader.
 Chapter 3. Understanding user process models 113



extern char *environ[];

int     i_initialized = 1;      /* initialized global variable. */
long    l_uninitialized;        /* uninitialized global variable. */

int
main(int argc, char *argv[])
{
    char    str_buf[BUFSIZ];    /* auto storage class variable. */
    char    *heap_mem;          /* heap memory. */

    if ((heap_mem = malloc(BUFSIZ)) == (void *)NULL) {
        sprintf(str_buf, "malloc() failed with errno = %d", errno);
        perror(str_buf);
    }

    printf("_text =\t\t\t0x%08p\n", &_text);
    printf("_etext =\t\t0x%08p\n", &_etext);
    printf("_data =\t\t\t0x%08p\n", &_data);
    printf("_edata =\t\t0x%08p\n", &_edata);

    printf("argv[] =\t\t0x%08p\n", argv);
    printf("environ[] =\t\t0x%08p\n", environ);
    printf("errnop =\t\t0x%08p\n", &errnop);
    printf("errno =\t\t\t0x%08p\n", &errno);

    printf("i_initialized = \t0x%08p\n", &i_initialized);
    printf("l_uninitialized = \t0x%08p\n", &l_uninitialized);
    printf("str_buf = \t\t0x%08p\n", str_buf);
    printf("heap_mem = \t\t0x%08p\n", heap_mem);

    exit(0);
}

Because the process heap and stack share the same segment, the heap size 
must be smaller than 256 MB in the default memory model. This is the reason 
why the default definition of user soft data limit is 131,072 KB = 128 MB (see 
Example 3-6 on page 125).

We provide detailed information about how heap and stack grows in this segment 
in 3.2.6, “Resource limits in 32-bit model” on page 125.
114 Developing and Porting C and C++ Applications on AIX



Environment variables
Environment variables are accessible from a process using either of the 
following, regardless of user process models, including 64-bit:

� The environ extern symbol (see Example 3-2 on page 113).

� The third parameter of the main() routine. This parameter is commonly 
represented as envp, as shown in the following example:

int main(int argc, char *argv[], char *envp[]);

� The getenv() sub-routine call.

On AIX, environment variables are copied into the process stack by the system 
loader as a part of the process initialization tasks. The maximum size of 
environment variables per process are defined by a system-wide configuration 
value, ncargs, as shown in the following example:10

# lsattr -El sys0 -a ncargs
ncargs 6 ARG/ENV list size in 4K byte blocks True

The default value 6 means 6 pages x 4 [KB/page] = 24 KB. If a process is given 
environment variables that require more than ncargs x 4 KB, those environment 
values that exceeded the value will not be copied into virtual pages and cannot 
be accessed by the process.

If you need to increase ncargs, do either of the following as the root user:

� Use the chattr command:

# chattr -El sys0 -a ncargs=N

where N is the number of pages that can be used for environment variables 
per-process basis.

� Use SMIT

Select System Environments → Change / Show Characteristics of 
Operating System, then specify an appropriate number in the “ARG/ENV list 
size in 4K byte block” field, and then press Enter.

In both ways, the minimum value is 6, and the maximum value is 128 (512 KB). 
This change takes affect immediately and is preserved over boot.

10  The ncargs system parameter has been supported on AIX since Version 5L Version 5.1.

Note: The default value ncargs = 6 is sufficient for most processes. Change it 
only when your applications absolutely require a larger size of environment 
variables. If there are many processes that require a large size of environment 
variables, those processes may consume a significant amount of memory.
 Chapter 3. Understanding user process models 115



3.2.2  Large memory model
Although many 32-bit applications do not require a heap size more than 256 MB, 
there has been a huge demand to run 32-bit user processes with a larger size of 
initialized data, process heap, or process stack. To address this demand, AIX has 
been supporting another memory model called large memory model, as a 
variation of the 32-bit user process model.

The concept of the large memory model is simple. By sacrificing segments 
available for shared memory segments, the user process running in the large 
memory model can place its heap on those segments (see Figure 3-4).

In Figure 3-4, four segments (0x3 - 0x6) are reserved for heap, so seven 
segments (0x7 - 0xC and 0xE) are available for shared memory segments.

Because the process heap and initialized and un-initialized data are moved from 
the 0x2 segment to 0x3, the user stack can enjoy more room in the 0x2 segment 
in this model.

Figure 3-4   Large memory model (segment usage)

To apply the large memory model to your application programs, see 3.2.4, “Using 
the large and very large memory model” on page 121.

Per-process shared library data

Kernel text and data

UsageSegment
number

0x0

0x1

0x2

0x3

0x4

0x5

0x6

0x7

0x8

0x9

0xA

0xB

0xC

0xD

0xE

0xF

User text

User stack

Process heap

Shared library text

Available for the user process
if shmat() or mmap() is called.

1

2

3

4

116 Developing and Porting C and C++ Applications on AIX



3.2.3  Very large memory model
In addition to the large memory model, AIX 5L Version 5.2 supports another 
model, called very large memory model, as a variation of the 32-bit user process 
model. AIX 5L Version 5.1 also supports some of the features provided by the 
very large memory model; it does support up to 2 GB heap memory, but not up to 
3.25 GB.

Although the concept of the very large memory model remains the same, there 
are three different allocation mechanisms, depending on the maxdata value 
setting explained in 3.2.6, “Resource limits in 32-bit model” on page 125:

� “Heap size less than 2.5 GB” on page 117

� “Heap size greater than 2.5 GB” on page 118

� “Heap size less than 256 MB” on page 119

To apply the very large memory model to your application programs, see 3.2.4, 
“Using the large and very large memory model” on page 121.

Heap size less than 2.5 GB
The big difference between the very large memory model and the large memory 
model is that segments can be dynamically allocated. In the large memory 
model, the allocation of segments are rigid, and there is no way to alter this 
segment allocation while executing the application program. The very large 
memory model relaxes this limitation by providing a new function, called dynamic 
segment allocation (DSA).

With DSA, segments are dynamically allocated to either the process heap or 
shared memory segments in the address space. Once a segment is allocated to 
either the process heap or shared memory segments, it cannot be returned to 
the free pool of segments, even if all virtual pages in the segment are 
relinquished.

In Figure 3-5 on page 118, we are assuming that a process is running with 
maxdata=0xA0000000 and the DSA option specified, which means the process 
can acquire heap memory up to 10 segments (2.5 GB).

Note: In the large memory model, the soft data limit of a process has a slightly 
different effect (see 3.2.6, “Resource limits in 32-bit model” on page 125).

Note: In the very large memory model, the soft data limit of a process has a 
slightly different effect (see 3.2.6, “Resource limits in 32-bit model” on 
page 125).
 Chapter 3. Understanding user process models 117



Another big difference between the very large and large memory models is the 
direction of how shared memory segments are allocated. In this figure, shared 
memory segments will be allocated in the segments, starting from 0xE, 0xC, 0xB, 
and on towards 0x3, if the target segments are not already allocated to the 
process heap. To understand how these segments are allocated, see 3.5.2, 
“Order in the 32-bit very large memory model with DSA” on page 154.

Figure 3-5   Very large memory model (0 < maxdata < 0xB0000000)

Because of the process heap, initialized and un-initialized data are moved from 
the 0x2 segment to 0x3, and the user stack can enjoy more room in the 0x2 
segment in this model.

Heap size greater than 2.5 GB
If a process is running with maxdata=0xB0000000 and greater with DSA, then 
the address space has a significant change; there are no shared text segments 
available, as shown in Figure 3-6 on page 119. Therefore, all the shared text and 
data that are referenced by the process will be loaded into the 0x2 segment, as 
private shared objects, even if the other processes has already loaded shared 

Note: AIX 5L Version 5.1 supports this model only when maxdata is less than 
or equal to 0x80000000.

Per-process shared library data

Kernel text and data

UsageSegment
number

0x0

0x1

0x2

0x3

0x4

0x5

0x6

0x7

0x8

0x9

0xA

0xB

0xC

0xD

0xE

0xF

User text

User stack

Shared library text

Available for the user process
if shmat() or mmap() is called
(Dynamic Segment Allocation).

Available for user heap
(Dynamic Segment Allocation).

1

2

3

4

5

6

7

8

9

10

9

8

7

6

5

4

3

2

1

10

11
118 Developing and Porting C and C++ Applications on AIX



objects into the system memory. The process performance might be affected by 
this change.

However, by sacrificing segments 0xD - 0xF, the process can acquire heap 
memory up to 13 segments (3.25 GB). Also, shared memory segments will be 
allocated in the segments, starting from 0xF, 0xE, 0xD, and on towards 0x3, if the 
target segments are not already allocated to the process heap. To understand 
how these segments are allocated, see 3.5.2, “Order in the 32-bit very large 
memory model with DSA” on page 154.

Figure 3-6   Very large memory model (0xB0000000 =< maxdata < 0xD0000000)

Heap size less than 256 MB
If a process is running with maxdata=0 with DSA, then all the following memory 
components are packed into the 0x2 segment:

� Initialized data
� Uninitialized data
� Process heap
� Process stack
� Shared library text
� Shared library data

Kernel text and data

UsageSegment
number

0x0

0x1

0x2

0x3

0x4

0x5

0x6

0x7

0x8

0x9

0xA

0xB

0xC

0xD

0xE

0xF

User text

User stack

Available for the user process
if shmat() or mmap() is called
(Dynamic Segment Allocation).

Available for user heap
(Dynamic Segment Allocation).

1

2

3

4

5

6

7

8

9

10

11
12

13

Shared library text and data are
also loaded into segment 0x2.

13

12

11

10

9

8

7

6

5

4

3
2

1

 Chapter 3. Understanding user process models 119



Apparently, this does not provide much room for the process heap; in fact, it is 
smaller than the default memory model. However, it ensures that all 13 segments 
(3.25 GB) are available for shared memory segments in the address space. 
Some application programs that manage their own memory requests on shared 
memory segments can exploit this memory model. To understand how these 
segments are allocated, see 3.5.2, “Order in the 32-bit very large memory model 
with DSA” on page 154.

Figure 3-7   Very large memory model (maxdata = 0)

Note: If you decide to apply this memory model to your application, it is your 
responsibility to ensure that the process heap and stack usage are well 
managed. You must be aware that the 0x2 segment can be easily corrupted in 
this model.

Note:

� On AIX 5L Version 5.1, shared library text and data will be loaded into 
segments 0xD and 0xF in this model (maxdata=0 with DSA).

� This model does not support large pages (see 3.6, “Large page support” 
on page 157).

Kernel text and data

UsageSegment
number

0x0

0x1

0x2

0x3

0x4

0x5

0x6

0x7

0x8

0x9

0xA

0xB

0xC

0xD

0xE

0xF

User text

User stack, data

Available for the user process
if shmat() or mmap() is called
(Dynamic Segment Allocation).

13

12

11

10

9

8

7

6

5

4

3
2

1

Shared library text and data are
also loaded into segment 0x2.
120 Developing and Porting C and C++ Applications on AIX



3.2.4  Using the large and very large memory model
To use the large memory model, any one of the following methods are supported:

� Specify the -bmaxdata:0xN0000000 linker option when linking your source 
codes (where N is hexadecimal from 0 to 8).

� After compiling the source code, binary-edit the XCOFF header file of the 
generated executable file using the /usr/ccs/bin/ldedit command. For 
example:

$ /usr/ccs/bin/ldedit -bmaxdata:0x60000000 a.out

� Specify the LDR_CNTRL environment value when running the executable. 
For example:

$ LDR_CNTRL=MAXDATA=0x80000000 a.out

To use the very large memory model, the following methods are supported:

� Specify the -bmaxdata:0xN00000000/dsa compiler option when compiling 
your source codes (where N is hexadecimal from 0 to D).

� After compiling the source code, binary-edit the XCOFF header file of the 
generated executable file using the /usr/ccs/bin/ldedit command. For 
example:

$ /usr/ccs/bin/ldedit -bmaxdata:0x80000000/dsa a.out

� Specify the LDR_CNTRL environment value when running the executable. 
For example:

$ LDR_CNTRL=MAXDATA=0xC0000000@DSA a.out

To demonstrate the usage, we have prepared the short example program shown 
in Example 3-3. When executed, it takes an integer as a command line 
parameter, which will be used as an index to allocate memory with a size of 
multiplies of 256 MB from the process heap.

Example 3-3   grabheap_32.c

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <errno.h>

#define ONE_SEG (256 * 1024 * 1024)

Note: When using the LDR_CNTRL environment variable, the keyword DSA 
must be upper case character, while dsa must be lower case characters in the 
other two methods.
 Chapter 3. Understanding user process models 121



int main(int argc, char *argv[])
{
    char    *p;
    char    buf[BUFSIZ];
    int     rc;
    size_t  sz, sz_7;

    if (argc != 2) {
        fprintf(stderr, "Usage: %s digit-number\n", argv[0]);
        exit(1);
    }
    sz = atoi(argv[1]);

    if (sz > 7) {
        sz_7 = sz - 7;

        if ((p = malloc(7 * ONE_SEG)) == (void *)NULL) {
            sprintf(buf, "1st malloc() with 7 x 256 MB failed with errno = %d"
                    , errno);
            perror(buf);
        } else {
            printf("1: starting address of 7 x 256 MB memory heap is 0x%08p\n"
                , p);
            printf("1: ending address of 7 x 256 MB memory heap is 0x%08p\n"
                , p + (7 * ONE_SEG));
        }
        if ((p = malloc(sz_7 * ONE_SEG)) == (void *)NULL) {
            sprintf(buf, "2nd malloc() with %d x 256 MB failed with errno = %d"
                    , sz_7, errno);
            perror(buf);
        } else {
            printf("2: starting address of %d x 256 MB memory heap is 0x%08p\n"
                , sz_7, p);
            printf("2: ending address of %d x 256 MB memory heap is 0x%08p\n"
                , sz_7, p + (sz_7 * ONE_SEG) - 1);
        }
    } else {
        if ((p = malloc(sz * ONE_SEG)) == (void *)NULL) {
            sprintf(buf, "malloc() with %d x 256 MB failed with errno = %d"
                    , sz, errno);
            perror(buf);
        } else {
            printf("starting address of %d x 256 MB memory heap is 0x%08p\n"
                , sz, p);
            printf("ending address of %d x 256 MB memory heap is 0x%08p\n"
                , sz, p + (sz * ONE_SEG) - 1);
        }
    }
122 Developing and Porting C and C++ Applications on AIX



    exit(0);
}

The following example shows the output when we run Example 3-3 on page 121 
using the very large memory model on AIX 5L Version 5.1:

$ oslevel -r
5100-03
$ cc grabheap_32.c
$ LDR_CNTRL=MAXDATA=0xD0000000@DSA ./a.out 7
starting address of 7 x 256 MB memory heap is 0x30000968
ending address of 7 x 256 MB memory heap is 0xa0000967
$ LDR_CNTRL=MAXDATA=0xD0000000@DSA ./a.out 8
1: starting address of 7 x 256 MB memory heap is 0x30000968
1: ending address of 7 x 256 MB memory heap is 0xa0000967
2nd malloc() with 1 x 256 MB failed with errno = 12: Not enough space

The second call of malloc() failed with errno = 12 (ENOMEM), because it 
requested another 256 MB in addition to the already acquired 7 x 256 MB (1.75 
GB) heap memory. Although AIX 5L Version 5.1 supports the heap size up to 2 
GB, there is always a very small amount of overhead memory (initialized and 
un-initialized data) required in the beginning of segment 0x3 in the large and very 
large memory model regardless of operating system versions.

The following example shows the output when we run Example 3-3 on page 121 
using the very large memory model on AIX 5L Version 5.2:

$ oslevel
5.2.0.0
$ cc grabheap_32.c
$ LDR_CNTRL=MAXDATA=0xD0000000@DSA ./a.out 12
1: starting address of 7 x 256 MB memory heap is 0x30000988
1: ending address of 7 x 256 MB memory heap is 0xa0000987
2: starting address of 5 x 256 MB memory heap is 0a0000998
2: ending address of 5 x 256 MB memory heap is 0xf0000997

The first call of malloc() acquired memory from the segment 0x3 to 0xA and the 
second call acquired memory from the segment 0xA to 0xF; the outcome is clear. 
This process successfully acquired 12 x 256 MB = 3 GB memory in total. In fact, 
the program could have requested more memory, roughly 256 MB; therefore, it 
could have acquired roughly 3.25 GB memory in total.

If your application needs a heap size larger than 2 GB in the very large memory 
model, then it must call system heap allocation routines, such as malloc() and 
calloc(), more than once, like we did in Example 3-3 on page 121. The reason for 
this limitation is that the sbrk() system call, which is internally called from system 
heap allocation routines, takes a signed integer value as a parameter. Therefore, 
it cannot extend the break value more than 2 GB within a single call.
 Chapter 3. Understanding user process models 123



For further information about the use of the system heap, see Chapter 4, 
“Managing the memory heap” on page 165.

3.2.5  Checking large memory model executables
After compiling your source code with the -bmaxdata:0xN0000000 option, use 
the file command with the modified /etc/magic file to check if the o_maxdata 
field in the XCOFF header of executable is correctly set. On AIX, instead of the 
/etc/magic file, the file command consults with a locale message file (depending 
on the current locale setting) by default. Therefore, to have the command refer to 
the modified /etc/magic file, do the following:

1. Log in to the system as the root user.

2. Create a backup of the original /etc/magic:

# cp -p /etc/magic /etc/magic.orig

3. Edit the file and add highlighted lines in Example 3-4 using a text editor, then 
save the file and exit.

4. Run the file command against the executable file with the -m /etc/magic 
option.

Example 3-4   Excerpt of modified /etc/magic

0   short       0x01df      executable (RISC System/6000) or object module
>12 long        >0      not stripped
>18 byte        0x14        LP_TEXT
>18 byte        0x18        LP_DATA
>19 byte        >0x3F       /DSA
>76 long        0x00000000  (maxdata=0)
>76 long        0x10000000  (maxdata=1)
>76 long        0x20000000  (maxdata=2)
>76 long        0x30000000  (maxdata=3)
>76 long        0x40000000  (maxdata=4)
>76 long        0x50000000  (maxdata=5)
>76 long        0x60000000  (maxdata=6)
>76 long        0x70000000  (maxdata=7)
>76 long        0x80000000  (maxdata=8)
>76 long        0x90000000  (maxdata=9)
>76 long        0xA0000000  (maxdata=A)
>76 long        0xB0000000  (maxdata=B)
>76 long        0xC0000000  (maxdata=C)
>76 long        0xD0000000  (maxdata=D)
0   short       0x01f7      64-bit XCOFF executable or object module
>18 byte        0x14        LP_TEXT
>18 byte        0x18        LP_DATA
>19 byte        >0x3F       /DSA
124 Developing and Porting C and C++ Applications on AIX



>20 long        >0      not stripped

Example 3-5 shows the sample output from the executable file compiled with the 
-bmaxdata:0x80000000/dsa option.

Example 3-5   Checking large memory executable with modified /etc/magic

$ cc -bmaxdata:0x80000000 helloworld.c
$ file a.out
a.out:          executable (RISC System/6000) or object module not stripped
$ file -m /etc/magic a.out
a.out:          executable (RISC System/6000) or object module not stripped /DSA (maxdata=8)

For further information about the /etc/magic file and XCOFF format, please refer 
to the AIX 5L Version 5.2 Files Reference.

3.2.6  Resource limits in 32-bit model
The resource limits are used to regulate several resources consumed by a 
process on UNIX operating systems. Although the resource limits are set on a 
per-user basis, they are applied on a per-process basis. Therefore, if a user is 
executing hundreds of processes, the user may consume huge amounts of 
resources, even if the resource setting values for the user are relatively small 
numbers.

To display the current user’s resource limits, use the ulimit command (see 
Example 3-6).

Example 3-6   Default resource limits setting

$ ulimit -Ha
time(seconds)        unlimited
file(blocks)         2097151
data(kbytes)         unlimited
stack(kbytes)        unlimited
memory(kbytes)       unlimited
coredump(blocks)     unlimited
nofiles(descriptors) unlimited
$ ulimit -Sa
time(seconds)        unlimited
file(blocks)         2097151
data(kbytes)         131072
stack(kbytes)        32768
memory(kbytes)       32768
coredump(blocks)     2097151
nofiles(descriptors) 2000
 Chapter 3. Understanding user process models 125



The -H option instructs the command to display hard resource limits, while the -S 
option instructs the command to display soft resource limits.11 The hard resource 
limit values are set by the root user using the chuser command for each user. 
The soft resource limit values can be relaxed by the individual user using the 
ulimit command, as long as the values are smaller than or equal to the hard 
resource limit values.

Although there are seven types of resource limits displayed in Example 3-6 on 
page 125, we only discuss the data and stack resource limits, which regulate 
process heap and stack usage. For further information about resource limits, 
please refer to the command reference of ulimit, found in the AIX 5L Version 5.2 
Reference Documentation: Commands Reference.

Resource limits in the default memory model
In the default memory model, soft data and stack resource limits are strictly 
enforced. During the process initialization tasks, the kernel sets soft data and 
stack resource limits in the process address space (see Figure 3-8 on page 126). 
While the process is running, the heap and stack can grow up to the soft data 
limits from opposite directions, as represented by arrows in the figure.

Figure 3-8   Data and stack resource limits (default 32-bit process model)

11  Resource limits are defined in the /etc/security/limits file on a per-user basis.

User stack

Initialized data 0 MB (offset)

256 MB (offset)

/etc/security/limitsUninitialized data

Heap
user:

fsize = XXXX
core = XXXX
cpu = XXXX
data= XXXX
rss = XXXX
stack = XXXX

Current heap size

Current stack size

Soft stack limit

Soft data limit

Process private segment (0x2)

: Accessible virtual memory pages

: Access-prohibited virtual memory pages

(break value)
126 Developing and Porting C and C++ Applications on AIX



If either the data or stack soft limit is set to unlimited before the program 
execution, or if the setrlimit() routine is called to set these limit values to unlimited 
while the process is running, it is your responsibility to prevent the process stack 
from being overwritten by the over-grown process heap.

Resource limits in the very large and large memory model
When you execute a program that uses the large memory model, the operating 
system attempts to modify the soft limit on the data size to match the maxdata 
value. If the maxdata value is greater than the current hard limit on the data size, 
either the program will not execute, if the environment variable XPB_SUS_ENV 
has the value set to ON, or the soft limit will be set to the current hard limit. If the 
maxdata value is smaller than the size of the program’s static data, the program 
will not execute.

To demonstrate this behavior, we have prepared a simple program, shown in 
Example 3-10 on page 128. When compiled and executed, it prints the soft and 
hard resource limit values by calling the getrlimit() sub-routine.

When we have executed this program in the default memory model, it prints the 
values shown in Example 3-7 on page 127.

Example 3-7   Verifying resource limits in default memory model

$ a.out
Resource name                   Soft                    Hard
RLIMIT_CORE               1073741312              2147483647
RLIMIT_CPU                2147483647              2147483647
RLIMIT_DATA                134217728              2147483647
RLIMIT_FSIZE              1073741312              1073741312
RLIMIT_NOFILE                   2000              2147483647
RLIMIT_STACK                33554432              2147483647
RLIMIT_RSS                  33554432              2147483647

You will find that this output resembles Example 3-6 on page 125.

On AIX, all hard resource limit values are set to unlimited by default, except for 
the file resource limit. The value unlimited is defined as 0x7FFFFFFF in the 
/usr/include/sys/resource.h include file when the program is running in the 32-bit 
user process model (see Example 3-8).

Example 3-8   RLIM_INFINITY definition

#if defined(__64BIT__) && !defined(__64BIT_KERNEL)
#define RLIM_INFINITY   0x7fffffffffffffffL
#else
#define RLIM_INFINITY   0x7FFFFFFF
 Chapter 3. Understanding user process models 127



#endif /* __64BIT__ */

When we have executed this program in the large memory model, it prints the 
values shown in Example 3-10 on page 128. As shown in this example, the soft 
data limit value is set to RLIM_INFINITY without using either the ulimit 
command or the setrlimit() sub-routine.

Example 3-9   Verifying resource limits in large memory model without DSA

$ LDR_CNTRL=MAXDATA=0x80000000 a.out
Resource name                   Soft                    Hard
RLIMIT_CORE               1073741312              2147483647
RLIMIT_CPU                2147483647              2147483647
RLIMIT_DATA               2147483645              2147483647
RLIMIT_FSIZE              1073741312              1073741312
RLIMIT_NOFILE                   2000              2147483647
RLIMIT_STACK                33554432              2147483647
RLIMIT_RSS                  33554432              2147483647

In fact, when we executed the program shown in Example 3-3 on page 121 using 
the large and very large memory models, we did not increase the soft data limit 
value.

Example 3-10 is a program that calls the getrlimit() routine to print current soft 
and hard resource limit values.

Example 3-10   printlimits.c

#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <sys/time.h>
#include <sys/resource.h>

#define pr_limit(XXX)   print_limit(#XXX, XXX)

void
print_limit(const char *name, int resource)
{
    int rc;
    char    buf[BUFSIZ];
    struct  rlimit  rlimit;

    if ((rc = getrlimit(resource, &rlimit)) < 0) {
        sprintf(buf, "getrlimit() failed with errno = %d, at %d in %s"

, errno, __LINE__, __FILE__);
        perror(buf);
    } else {
128 Developing and Porting C and C++ Applications on AIX



        printf("%-14s\t%20ld\t%20ld\n"
, name, rlimit.rlim_cur, rlimit.rlim_max);

    }
}

int
main(int argc, char *argv[])
{
    printf("%-14s\t%20s\t%20s\n", "Resource name", "Soft", "Hard");
    pr_limit(RLIMIT_CORE);
    pr_limit(RLIMIT_CPU);
    pr_limit(RLIMIT_DATA);
    pr_limit(RLIMIT_FSIZE);
    pr_limit(RLIMIT_NOFILE);
    pr_limit(RLIMIT_STACK);
    pr_limit(RLIMIT_RSS);
}

3.2.7  Large file support in a 32-bit model
In the computer industry, the term large file is generally considered to refer to a 
file larger than 2 GB. In the 32-bit user process model, the data type off_t is 
defined as signed long type. Therefore, by default, 32-bit processes can handle 
files up to 2 GB -1 byte, which is addressable by the off_t type. If a 32-bit process 
attempts to seek a file pointer more than 2 GB, then the system call fails with 
errno EOVERFLOW. This limitation exists on all UNIX operating systems that 
conform to the POSIX standards.

Beginning with AIX Version 4.2.1, there are two methods to work around the 
addressability of large files in the 32-bit user process model:

� If the -D_LARGE_FILE option is specified when compiling the program, the 
off_t type is redefined as long long (64-bit signed integer). Also, most system 
calls and library routines are redefined to support large files.

� In some circumstances, your existing 32-bit user programs might be 
corrupted by defining the _LARGE_FILE macro, especially if off_t is 
interchangeably used with the int or long type within your source codes. In 
this case, you can modify your source codes to explicitly call 64-bit versions of 
file I/O related system calls and library routines, such as fopen64(), lseek64(), 
and so on. Also, variables defined as the off_t type must be carefully 
converted to off64_t.

Using one of the above methods, 32-bit processes can handle large files as long 
as the following conditions are met:
 Chapter 3. Understanding user process models 129



� The file hard and soft limits have been relaxed. The default value of file limit is 
2,097,151 disk blocks = 1 GB (see Example 3-6 on page 125).

� JFS2 or large file enabled JFS is used.

For further information about large file support of the 32-bit user process, please 
refer to the “Writing Programs That Access Large Files” section in AIX 5L Version 
5.2 General Programming Concepts: Writing and Debugging Programs.

3.3  The 64-bit user process model
This section provides a brief explanation about the 64-bit user process model. 
The 64-bit user process model shares the same concept of segments and pages 
with the 32-bit user process model. The difference is the number of available 
segments in the address space. In the 64-bit user process model, an address 
space is composed of 232 segments, while it is composed of 24 = 16 segments in 
the 32-bit user process model.

Therefore, the 64-bit user process can address up to 1 EB (exabytes), which is 
easily returned by the following simple calculation:

232 segments x 256 [MB/segment] = 232 x 28 x 220 bytes = 232+8+20 = 260 = 1 EB

To address this tremendous huge space, the pointer type is defined as 64-bit in 
the 64-bit user process model. The program shown in Example 3-11 prints 8 
bytes in the 64-bit user process model, while it prints 4 bytes in the 32-bit user 
process model:

$ cc -q64 sizeofpointer.c
$ a.out
size of pointer data type is 8 byte.
$ cc sizeofpointer.c
$ a.out
size of pointer data type is 4 byte.

Example 3-11   sizeofpointer.c

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{
    char *p;

    printf("size of pointer data type is %d byte.\n", sizeof(p));
    exit(0);
130 Developing and Porting C and C++ Applications on AIX



}

Figure 3-9 on page 131 illustrates the segment usage in the 64-bit user process 
model. The address space is divided into the areas explained in the following 
sections:

� Section 3.3.1, “The first 16 segments (0 - 4 GB)” on page 132 (see 
Figure 3-10 on page 132)

� Section 3.3.2, “Application text, data, and heap (4 GB - 448 PB)” on page 133

� Section 3.3.3, “Default shared memory segments (448 - 512 PB)” on 
page 135

� Section 3.3.4, “Privately loaded objects (512 - 576 PB)” on page 135

� Section 3.3.5, “Shared text and data (576 - 640 PB)” on page 135

� Section 3.3.6, “System reserved (640 - 960 PB)” on page 136

� Section 3.3.7, “User process stack (960 PB - 1 EB)” on page 136

Figure 3-9   The 64-bit memory model (1EB)

: System reserved (access prohibited)

0x0000 0000 0000 0000

0x0100 0000 0000 0000

0x0200 0000 0000 0000

0x0300 0000 0000 0000

0x0400 0000 0000 0000

0x0500 0000 0000 0000

0x0600 0000 0000 0000

0x0700 0000 0000 0000

0x0800 0000 0000 0000

0x0900 0000 0000 0000

0x0A00 0000 0000 0000

0x0B00 0000 0000 0000

0x0C00 0000 0000 0000

0x0D00 0000 0000 0000

0x0E00 0000 0000 0000

0x0F00 0000 0000 0000

0x1000 0000 0000 0000

44
8 

P
B

32
0 

P
B

64 PB
64 PB
64 PB

64 PB

1 
E

B

User process stack

Shared library
text and data

Privately loaded objects

Shared memory (default)

Application text,
Application data and heap

The first 16 segments (4 GB)
 Chapter 3. Understanding user process models 131



3.3.1  The first 16 segments (0 - 4 GB)
These segments are exempt from general use in order to keep the compatibility 
with the 32-bit user process model. Therefore, access to the segments 0x0, 0x1, 
0xD, and 0xE are prohibited; these segments are reserved by the system. The 
0x2 segment contains a few pages that are set up by the system loader upon the 
exec() time. Necessary data, such as command line argument values, 
environment variables, and errno, are stored in these pages (see Example 3-12 
on page 134). The access to the rest of the 0x2 segment is prohibited.

Segments 0x3 - 0xC and 0xE are only accessible if you specify the attaching 
memory address with the shmat() routine. You may use these segments to share 
shared memory segments between 32-bit and 64-bit processes.

In general, hardcoding the attaching memory address with the shmat() routine is 
bad programming. Unless it is absolutely required, your 64-bit application should 
not specify the attaching memory address with the shmat().

Figure 3-10 illustrates the usage of first 16 segments (4 GB) in the 64-bit user 
process model.

Figure 3-10   The 64-bit memory model (4 GB, the first 16 segments)

: System reserved (access prohibited)

0x0000 0000 0000 0000

0x0000 0000 1000 0000

0x0000 0000 2000 0000

0x0000 0000 3000 0000

0x0000 0000 4000 0000

0x0000 0000 5000 0000

0x0000 0000 6000 0000

0x0000 0000 7000 0000

0x0000 0000 8000 0000

0x0000 0000 9000 0000

0x0000 0000 A000 0000

0x0000 0000 B000 0000

0x0000 0000 C000 0000

0x0000 0000 D000 0000

0x0000 0000 E000 0000

0x0000 0000 F000 0000

0x0000 0001 0000 0000

4 
G

B

Only part of segment is visible

Kernel text and data

Shared memory (when address specified)

Shared memory (when address specified)
132 Developing and Porting C and C++ Applications on AIX



3.3.2  Application text, data, and heap (4 GB - 448 PB)
When a 64-bit program is executed, the user text is mapped into the first segment 
in this area. Also, user data is mapped into another segment in this area.

In both cases, if a segment is not sufficient to contain text or data, another 
segment will be contiguously attached to the process address space.

To demonstrate this behavior, we prepared a program listed in Example 3-13 on 
page 134. We compiled and ran this program, as shown in Example 3-12 on 
page 134. In this example, the user text is loaded into the first segment 
(0x0000000100000000) in this area. The user data is loaded into the second 
segment (0x0000000110000000) in this area. The heap memory acquired by 
malloc() is also allocated in this segment.
 Chapter 3. Understanding user process models 133



Example 3-12   Segment mapping in the 64-bit user process model

$ cc -q64 underscore_symbols_64.c
$ file a.out
a.out:          64-bit XCOFF executable or object module not stripped
$ a.out
_text =         0x00000001000001f8
_etext =        0x00000001000005e8
_data =         0x00000001100005e8
_edata =        0x0000000110000838
argv[] =        0x00000000200fe8d0
environ[] =     0x00000000200fefd8
errnop =        0x00000000200fefe8
errno =         0x00000000200fefe0
&heap_mem =     0x0fffffffffffff70
heap_mem =      0x0000000110000850

Example 3-13 is a program simplified from the one listed in Example 3-2 on 
page 113 to demonstrate the segment mapping in the 64-bit user process model.

Example 3-13   underscore_symbols_64.c12

#include <stdlib.h>
#include <stdio.h>
#include <errno.h>

extern int errnop;
extern _text;
extern _etext;
extern _data;
extern _edata;
extern char *environ[];

int
main(int argc, char *argv[])
{
    char    buf[BUFSIZ];
    char    *heap_mem;          /* heap memory. */

    if ((heap_mem = malloc(BUFSIZ)) == (void *)NULL) {
        sprintf(buf, "malloc() failed with errno = %d", errno);
        perror(buf);
    }

    printf("_text =\t\t0x%016p\n", &_text);
    printf("_etext =\t0x%016p\n", &_etext);
    printf("_data =\t\t0x%016p\n", &_data);

12  Extern symbols that start with underscore are run-time symbols prepared by the system loader.
134 Developing and Porting C and C++ Applications on AIX



    printf("_edata =\t0x%016p\n", &_edata);

    printf("argv[] =\t0x%016p\n", argv);
    printf("environ[] =\t0x%016p\n", environ);
    printf("errnop =\t0x%016p\n", &errnop);
    printf("errno =\t\t0x%016p\n", &errno);

printf("&heap_mem =\t0x%016p\n", &heap_mem);
    printf("heap_mem =\t0x%016p\n", heap_mem);

    exit(0);
}

As we demonstrate in the later section, the 64-bit user process model gives you a 
very flat memory model that is easy to use, as long as there are enough physical 
pages to be allocated on the system (see 3.3.8, “Resource limits in 64-bit mode” 
on page 136).

3.3.3  Default shared memory segments (448 - 512 PB)
If a 64-bit process calls shmat() or mmap() routines without specifying the 
attaching memory address, segments in this area will be attached to the address 
space contiguously.

See 3.4.4, “Shared memory limits” on page 147 for the IPC limitation in the 64-bit 
user process model.

3.3.4  Privately loaded objects (512 - 576 PB)
If objects are loaded into the address space in the following cases, those objects 
will be loaded into the segments in this area:

� Objects are explicitly loaded by load() and dlopen().

� The file permission modes of shared objects are r-xr-x--- (no read and 
execute permission bits are set for others).

� All the global shared text and data segments are full (very unlikely in the 
64-bit user process model).

For further information about the private shared objects, see 2.9.2, “Private 
shared objects” on page 101.

3.3.5  Shared text and data (576 - 640 PB)
On the first load of a shared library object, the shared library text is loaded into a 
segment in this area. This segment will be shared by all 64-bit user processes on 
 Chapter 3. Understanding user process models 135



the system. Also, shared library data will be created in another segment in this 
area per process basis at the same time. 

In both cases, if there is a segment that has enough free space to contain shared 
text or shared library data, that segment will be used. Otherwise, another 
segment will be attached to the process address space.

The virtual addresses of loaded shared text objects can be examined using the 
genkld command. For further information about the usage of genkld, see 2.7.2, 
“genkld” on page 88.

3.3.6  System reserved (640 - 960 PB)
All the segments in this area are reserved by the system and prohibited from the 
user process access.

3.3.7  User process stack (960 PB - 1 EB)
By default, a 64-bit user process uses the last segment in this area for the user 
process stack. The stack grows from the last address, 
0x0FFF_FFFF_FFFF_FFFF, toward the first address in this area. The address of 
the heap_mem pointer depicts this behavior (see Example 3-12 on page 134).

To use more than one segment for user process stack, you need to specify the 
-bmaxstacksize linker option. For example, to specify two segments for the user 
process stack, you need to compile your program as follows:

$ cc -q64 -bmaxstacksize:0x20000000 hello.c

3.3.8  Resource limits in 64-bit mode
Unlike the 32-bit user process model, the data resource limit value always 
defines the actual upper limit of allocatable heap memory in the 64-bit user 
process memory model.

With the default soft data limit of 128 MB (see Example 3-6 on page 125), your 
application can only allocate memory from a process heap up to 128 MB. To 
demonstrate this, we have simplified grabheap_32.c (Example 3-3 on page 121) 
to get rid of the complexity, because the 64-bit user process memory model is flat 

Note: Thread stacks for Pthreads, except the initial thread within a 
multi-threaded processes, are allocated in the process heap. See 8.3.4, 
“Thread stack” on page 292 for further information about the thread stack in 
multi-threaded processes.
136 Developing and Porting C and C++ Applications on AIX



(Example 3-14). If we compile and run this program under the default soft data 
limit, it fails to acquire a 256 MB heap:

$ cc grabheap_64.c
$ file a.out
a.out:          64-bit XCOFF executable or object module not stripped
$ a.out 1
malloc() with 1 x 256 MB failed with errno = 12: Not enough space

Example 3-14   grabheap_64.c

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <errno.h>

#define ONE_SEG (256 * 1024 * 1024)

int main(int argc, char *argv[])
{
    char    *p;
    char    buf[BUFSIZ];
    size_t  sz;

    if (argc != 2) {
        fprintf(stderr, "Usage: %s digit-number\n", argv[0]);
        exit(1);
    }
    sz = atoi(argv[1]);

    if ((p = malloc(sz * ONE_SEG)) == (void *)NULL) {
        sprintf(buf, "malloc() with %d x 256 MB failed with errno = %d"
                , sz, errno);
        perror(buf);
    } else {
        printf("starting address of %d x 256 MB memory heap is 0x%016p\n"
            , sz, p);
        printf("ending address of %d x 256 MB memory heap is 0x%016p\n"
            , sz, p + (sz * ONE_SEG) - 1);
    }

    exit(0);
}

Once the soft data limit is relaxed, the program can acquire a 256 MB heap:

$ ulimit -Sd unlimited
$ ulimit -Sa
time(seconds)        unlimited
file(blocks)         2097151
 Chapter 3. Understanding user process models 137



data(kbytes)         unlimited
stack(kbytes)        32768
memory(kbytes)       32768
coredump(blocks)     2097151
nofiles(descriptors) 2000
$ file a.out
a.out:          64-bit XCOFF executable or object module not stripped
$ a.out 1
starting address of 1 x 256 MB memory heap is 0x0000000110000850
ending address of 1 x 256 MB memory heap is 0x000000012000084f

If the soft data limit is set to unlimited, it is set to 9,223,372,036,854,775,807 byte 
= 0x7FFF_FFFF_FFFF_FFFF byte in the 64-bit user process model.13 
Example 3-15 shows the soft resource limit value in the 64-bit user process 
model (the source code is the same one listed in Example 3-10 on page 128).

Example 3-15   Soft data limit set to RLIM_INIFINITY in 64-bit mode14

$ cc -q64 printlimits.c
$ file a.out
a.out:          64-bit XCOFF executable or object module not stripped
$ a.out
Resource name                   Soft                    Hard
RLIMIT_CORE               1073741312     9223372036854775807
RLIMIT_DATA                134217728     9223372036854775807
RLIMIT_DATA                134217728     9223372036854775807
RLIMIT_FSIZE              1073741312              1073741312
RLIMIT_NOFILE                   2000     9223372036854775807
RLIMIT_STACK                33554432     9223372036854775807
RLIMIT_RSS                  33554432     9223372036854775807
$ ulimit -Sd unlimited
$ a.out | egrep '^(Resource|RLIMIT_DATA)'
Resource name                   Soft                    Hard
RLIMIT_DATA      9223372036854775807     9223372036854775807

Therefore, a 64-bit user process can acquire as much heap memory as it 
requests once the soft data limit is set to unlimited. In the following example, we 
specified 409600 as the command line parameter and the program successfully 
acquired 409,600 x 256 MB = 100 TB:

$ a.out 409600
starting address of 409600 x 256 MB memory heap is 0x0000000110000850
ending address of 409600 x 256 MB memory heap is 0x0000640110000850

13  The value 0x7FFF_FFFF_FFFF_FFFF is defined as RLIM_INIFINITY for the 64-bit user process 
model in /usr/include/sys/resource.h (see Example 3-8 on page 127).
14  The actual numerical limits might be changed in the future release of AIX. These values are 
applicable on AIX starting from Version 4.3 to 5.2.
138 Developing and Porting C and C++ Applications on AIX



Although the malloc() routine does not actually allocate virtual pages (virtual 
pages are allocated when the program touches them the first time), requesting 
this huge amount of memory puts unnecessary stress on the system.

The 64-bit user process model gives you a very flat memory model that is easy to 
use, but it is your responsibility to request the proper size of heap memory in your 
application. You may consider selecting one of the following methods to place a 
safety mechanism on your 64-bit programs:

� Specify the -bmaxdata:0xNNNNNNNNNNNNNNNN linker option when 
compiling your source codes.

� After compiling the source code, binary-edit the XCOFF header file of the 
generated executable file using the /usr/ccs/bin/ldedit command. For 
example:

$ /usr/ccs/bin/ldedit -bmaxdata:0xNNNNNNNNNNNNNNNN a.out

� Specify the LDR_CNTRL environment value when running the executable. 
For example:

$ LDR_CNTRL=MAXDATA=0xNNNNNNNNNNNNNNNN a.out

� Call the setrlimit() sub-routine in your application to explicitly set the soft data 
limit.

The appropriate value of 0xNNNNNNNNNNNNNNNN varies, depending on your 
application’s needs and the physical memory size; however, the following 
numbers can be good starting points:

0x0000000040000000 1 GB

0x0000001000000000 64 GB

0x0000002000000000 128 GB

3.3.9  Large file support in 64-bit model
In the 64-bit user process model, the data type off_t is always defined as long 
long. Therefore, 64-bit processes can handle large files as long as the following 
conditions are met:

� The file’s hard and soft limits have been relaxed. The default value of file limit 
is 2,097,151 disk blocks = 1 GB (see Example 3-6 on page 125).

� JFS2 or large file enabled JFS is used.
 Chapter 3. Understanding user process models 139



3.4  Introduction to shared memory
The Inter-Process Communication (IPC) facilities are used by processes to 
communicate with each other and to synchronize their activities.15 IPC facilities, 
semaphores, message queues, and shared memory are quite common services 
in the modern UNIX operating systems, including AIX. In this section, we focus 
on the shared memory on AIX.

The shared memory is usually used for the following purposes:

� Sharing memory segments between processes

Mapped shared memory segments can serve as a large pool for exchanging 
data among processes. The mechanism does not provide locks or access 
control among the processes by default. Therefore, processes using shared 
memory areas must set up a signal or semaphore control method to prevent 
access conflicts and to keep one process from changing data that another is 
using. Shared memory segments can be most beneficial when the amount of 
data to be exchanged between processes is too large to transfer with 
message queues or when many processes have to share common data. 

� Mapping files into memory segments

Memory mapped files provide a mechanism for a process to access files by 
directly incorporating file data into the process address space. The use of 
mapped files can significantly reduce I/O data movement because the file 
data does not have to be copied into process data buffers, as is done by the 
read and write subroutines. When more than one process maps the same file, 
its contents are shared among them, therefore providing a low-overhead 
mechanism by which processes can synchronize and communicate.

However, once shared memory segments are attached to the address space of 
your application process, those segments do not have to be shared with other 
processes. Therefore, some applications exploit shared memory segments as if 
they are an extended memory heap (see 4.4, “Heap management using 
MEMDBG” on page 199 for detail).

AIX supports the following two well-known services for memory mapping:

� Section 3.4.1, “The shmat services” on page 141

� Section 3.4.2, “The mmap services” on page 145

Both services address the same type of memory usage, but shmat is normally 
used to create and use shared memory segments within a program, and the 

15  Signals are also commonly used for IPC in the UNIX operating systems. However, we do not 
discuss signals in this redbook, because the signal management on AIX conforms very well to many 
UNIX standards, such as POSIX.
140 Developing and Porting C and C++ Applications on AIX



mmap is mostly used for mapping files into the process address space, although 
it can be used for creating shared memory segments as well as mapping files.

The term shared memory segments is widely used to refer to the memory chunks 
allocated by these two services on UNIX operating systems, including AIX. 
Although a shared memory segment smaller than 256 MB usually consumes a 
256 MB segment on AIX, if the EXTSHM=ON environment variable is not defined, 
the term is not the same concept referenced by segments (explained in 3.2, “The 
32-bit user process model” on page 109).

For further information about the topics explained in this section, please refer to 
the “Shared Libraries and Shared Memory” section in AIX 5L Version 5.2 General 
Programming Concepts: Writing and Debugging Programs.

3.4.1  The shmat services
The shmat services supported by AIX include the following routines:

shmat() Attaches a shared memory segment to a process.

shmctl() Controls shared memory operations.

shmget() Gets or creates a shared memory segment.

shmdt() Detaches a shared memory segment from a process.

ftok() Provides the key that the shmget() subroutine uses to 
create the shared segment.

These subroutine references are provided in Appendix C, “Subroutine references 
for shmat and mmap services” on page 447.

Terms used in the shmat services
In the shmat services, the following terms are frequently used:

key The unique identifier of a particular shared segment. It is 
associated with the shared segment as long as the 
shared segment exists. In this respect, it is similar to the 
file name of a file.

shmid The identifier assigned to the shared segment for use 
within a particular process. It is similar in use to a file 
descriptor for a file.

attach Specifies that a process must attach a shared segment in 
order to use it. Attaching a shared segment is similar to 
opening a file.
 Chapter 3. Understanding user process models 141



detach Specifies that a process must detach a shared segment 
once it is finished using it. Detaching a shared segment is 
similar to closing a file.

There are some well-established programming disciplines about the use of these 
routines. We introduce a few of them in this section.

Mapping memory with shmat()
The following pseudo-code shows how to use shared memory segments with 
shmat services:

1. Create a key to uniquely identify the shared segment. Use the ftok() 
subroutine to create the key. For example, to create the mykey key using a 
variable, proj (integer type), and a file name of /path/some_file, insert the 
following statement:

mykey = ftok(“/path/some_file”, proj);

2. Either:

a. Create a shared memory segment with the shmget() subroutine. For 
example, to create a shared segment that contains 4096 bytes and assign 
its ID to an integer variable, mem_id, insert the following statement: 

mem_id = shmget(mykey, 4096, IPC_CREAT | permission_modes);

You must define appropriate permission_modes ORing with S_ macros 
(see Appendix C, “Subroutine references for shmat and mmap services” 
on page 447).

b. Get a previously created shared segment with the shmget() subroutine. 
For example, to get a shared segment that is already associated with the 
mykey key and assign the ID to an integer variable, mem_id, insert the 
following statement: 

mem_id = shmget(mykey, 0, IPC_ACCESS);

3. Attach the shared segment to the process with the shmat() subroutine. For 
example, to attach a previously created segment, insert the following 
statement:

ptr = shmat(mem_id, 0, SHM_MAP);

If you specify address 0 as the second parameter of shmat(), then the 
operating system will select the attaching target address. This is the 
recommended programming manner.

The variable ptr is a pointer to a structure that defines the fields in the shared 
segment. Use this structure to store and retrieve data in the shared segment. 
The definition of the structure should be the same for all processes using the 
segment.
142 Developing and Porting C and C++ Applications on AIX



4. Work with the data in the segment through ptr. 

5. Detach from the segment using the shmdt() subroutine: 

shmdt(ptr);

6. If the shared segment is no longer needed, remove it from the system with the 
shmctl() subroutine: 

shmctl(mem_id, IPC_RMID, ptr);

If a shared memory segment is created accordingly, multiple processes can 
attach it into their address space, as illustrated in Figure 3-11. In this figure, two 
processes, A and B, are sharing the sheared memory segment, which is 
attached to 0x3 in the process A’s address space and attached to 0x4 in the 
process B’s address space. If the process A writes data in this memory area, the 
process B can instantly read the data value from it.

Although it is a very efficient way to transfer data between processes, a data 
synchronization algorithm must be used between processes. Semaphores are 
commonly used to implement this data synchronization algorithm.

Figure 3-11   Shared memory segments between two processes

Shared memory:

0xF

0x8
0x9
0xA
0xB
0xC
0xD
0xE

0x7
0x6
0x5
0x4
0x3
0x2
0x1
0x0

User text:

Shared library text:

Per-process shared

: Allocated virtual address pages 

: Un-allocated virtual address pages 

Process A

0xF

0x8
0x9
0xA
0xB
0xC
0xD
0xE

0x7
0x6
0x5
0x4
0x3
0x2
0x1
0x0

Process B

library data:

Per-process private
data:

User text:

Per-process shared
library data:

Per-process private
data:
 Chapter 3. Understanding user process models 143



The shared memory segments created by the following methods can be shared 
between processes:

� The MAP_SHARED flag is specified with mmap().

� Appropriate permission modes are specified with shmget().

� After creating a shared memory segment with shmget(), its permission modes 
are altered accordingly with the IPC_SET command flag with shmctl().

Mapping files with shmat()
The following pseudo-code shows how to map files with shmat services. To do 
so, you need to map the file first, then set the end of the mapped file using 
lseek(). The shmat services do not provide any mechanisms to detect the end of 
mapped file.

1. To create the mapped data file: 

a. Open (or create) the file and save the file descriptor: 

if ((fildes = open(filename, O_RDWR)) < 0) {
printf("cannot open file\n");
exit(1);

}

b. Map the file to a segment with the shmat subroutine: 

file_ptr = shmat(fildes, 0, SHM_MAP);

The SHM_MAP constant is defined in the /usr/include/sys/shm.h file. This 
constant indicates that the file is a mapped file. Include this file and the 
other shared memory header files in a program with the following 
directives: 

#include <sys/shm.h>

2. To detect the end of the mapped file: 

a. Use the lseek() subroutine to go to the end of file: 

eof = file_ptr + lseek(fildes, 0, SEEK_END);

This example sets the value of eof to an address that is 1 byte beyond the 
end of file. Use this value as the end-of-file marker in the program. 

b. Use file_ptr as a pointer to the start of the data file, and access the data as 
if it were in memory: 

while (file_ptr < eof) {
.
.
.
(references to file using file_ptr)

}

144 Developing and Porting C and C++ Applications on AIX



c. Close the file when the program is finished working with it: 

close(fildes);

3.4.2  The mmap services
The mmap services supported by AIX include the following routines:

mmap()  Maps an object file into virtual memory.
madvise()  Advises the system of a process' expected paging behavior.
mincore()  Determines residency of memory pages.
mprotect()  Modifies the access protections of memory mapping.
msync()  Synchronizes a mapped file with its underlying storage device.
munmap()  Unmaps a mapped memory segment.

These subroutine references are provided in Appendix C, “Subroutine references 
for shmat and mmap services” on page 447.

There are some well-established programming disciplines for the use of these 
routines. We introduce a few of them in this section.

Mapping files with mmap()
The following pseudo-code shows how to map files with the mmap services:

1. Create a file descriptor, fd, for a file system object using the open() routine:

fd = open(pathname, permissions);

2. Determine the file length by using the lseek() routine. For example:

len = lseek(fd, 0, SEEK_END)

Note: 

� A file system object should not be simultaneously mapped using 
both the shmat and mmap services.

� Unexpected results may occur when references are made beyond 
the end of the object.a In the current implementation, mapping files 
with the shmat services allocate only enough 256 MB segments to 
hold the existing file. If the process attempts to access the memory 
area beyond the allocated shared memory segments using a 
pointer, the SIGSEGV signal will be delivered to the process.

a. When a process maps a file using shmat(), only enough 256 MB seg-
ments to hold the file will be allocated in the current AIX implementation. If
the memory area beyond the allocated shared memory segments is refer-
enced by a pointer, the SIGSEGV signal will be delivered to the process.
 Chapter 3. Understanding user process models 145



3. Map the file into the process address space with the mmap subroutine. For 
example, to map the file for the file descriptor fd, starting at address addr, 
using len bytes of size, with the access permissions defined by prot and 0 
bytes of offset, use the statement:

ptr = mmap(addr, len, prot, MAP_FILE, fd, 0)

This specifies the creation of a new mapped file segment by mapping the file 
associated with the fd file descriptor. The mapped segment can extend 
beyond the end of the file, both at the time when the mmap subroutine is 
called and while the mapping persists. This situation could occur if a file with 
no contents was created just before the call to the mmap subroutine, or if a 
file was later truncated.

If you specify address 0 as the first parameter of mmap(), then the operating 
system will select the attaching target address. This is the recommended 
programming manner.

4. Work with the data in the segment.

5. The file descriptor can be closed by using:

close(fd);

6. Detach from the segment using the munmap subroutine: 

munmap(addr, len);

Mapping memory with mmap()
The following pseudo-code shows how to map memory segments with mmap 
services:

1. If you specify MAP_ANONYMOUS instead of MAP_FILE for the mmap()’s 
fourth parameter, then the file descriptor parameter must be specified as -1. 
This is called an anonymous memory segment, because there is no file system 
object associated. All pages in the anonymous memory segment are 0-filled:

ptr = mmap(addr, len, prot, MAP_ANONYMOUS, -1, 0)

This memory segment pointed to by ptr can be shared only with the 
descendants of the current process.

2. Work with the data in the segment.

3. Detach the segment from the address space using the munmap() subroutine:

munmap(addr, len);

Note: A file system object should not be simultaneously mapped using both 
the shmat and mmap services.
146 Developing and Porting C and C++ Applications on AIX



3.4.3  Difference between shmat and mmap services
Although both the shmat and mmap services can be used for the purposes 
explained in 3.4, “Introduction to shared memory” on page 140, there are 
significant differences between these two services:

� The address for a shared memory segment mapped by shmat() must be 
SHMLBA (256 MB) aligned if the EXTSHM=ON environment variable is not 
set, while mmap() works on a page-size alignment (4 KB).

� The mmap() memory mappings are a process resource and thus are cleaned 
up at process exit-time. The shmget() shared memory segments are a 
system-wide resource and are not cleaned up at process exit-time.

Therefore, use the shmat services under the following circumstances:

� When mapping shared memory regions that need to be shared among 
unrelated processes (no parent-child relationship). 

� When mapping entire files.

Use the mmap services under the following circumstances:

� Portability of the application is a concern.

� Many files are mapped simultaneously.

� Only a portion of a file needs to be mapped.

� Page-level protection needs to be set on the mapping.

� Private mapping (MAP_PRIVATE) is required.

3.4.4  Shared memory limits
Shared memory limits vary, depending on AIX versions, as shown in Table 3-1 on 
page 148.

Note: Section 3.4.4, “Shared memory limits” on page 147 and 3.5, “Shared 
memory segments allocation order” on page 149 are only applicable to the 
shared memory segments created by shmat().
 Chapter 3. Understanding user process models 147



Table 3-1   Shared memory limits

To confirm system constants regarding shared memory, it is recommended to 
call the vmgetinfo()16 routine instead of hardcoding numerical values (see the 
program example shown in Example 3-17 on page 149).

Example 3-16 shows the output from this program. Please compare the values in 
this example with values for AIX 5L Version 5.2 in the Table 3-1.

Example 3-16   Output from vmgetinfo() routine

$ a.out
/* Shared memory limits */
max # of shared memory id's =                           131072
64bit proc max shm segment size =                        1099511627776
32bit proc max shm segment size =                        2147483648
min shared memory segment size =                         1
max # of shm segs per 64bit proc =                      268435456
max # of shm segs per 32bit proc (without EXTSHM=ON) =  11

Example 3-17 on page 149 shows an example program to call the vmgetinfo() 
routine.

Description AIX V4.3.0 4.3.1 4.3.2, 4.3.3 5.1 5.2

Maximum segment size 
(32-bit)

256 MB 2 GB 2 GB 2 GB 2 GB

Maximum segment size 
(64-bit)

256 MB 2 GB 2 GB 64 GB 1 TB

Minimum segment size 1 1 1 1 1

Maximum number of shared 
memory IDs

4096 4096 131072 131072 131072

Maximum number of 
segments per process 
(32-bit)

11 11 11 11 11

Maximum number of 
segments per process 
(64-bit)

268435456 268435456 268435456 268435456 268435456

16  The vmgetinfo() routine is supported on AIX 5L Version 5.2 and later.
148 Developing and Porting C and C++ Applications on AIX



Example 3-17   vmgetinfo.c17

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <errno.h>
#include <sys/vminfo.h>

int main(int argc, char *argv[])
{
    int                 rc;
    char                buf[BUFSIZ];
    struct ipc_limits   ipc_lim;

    if ((rc = vmgetinfo(&ipc_lim, IPC_LIMITS, sizeof(struct ipc_limits))) != 0)
{

        sprintf(buf, "vmgetinfo() at %d in %s failed with errno = %d"
            , __LINE__, __FILE__, errno);
        perror(buf);
        exit(1);
    }

    printf("/* Shared memory limits */\n");
    printf("max # of shared memory id's =\t\t\t\t%lld\n", ipc_lim.shmmni);
    printf("64bit proc max shm segment size =\t\t\t%lld\n", ipc_lim.shmmax64);
    printf("32bit proc max shm segment size =\t\t\t%u\n", ipc_lim.shmmax32);
    printf("min shared memory segment size =\t\t\t\t%u\n", ipc_lim.shmmin);
    printf("max # of shm segs per 64bit proc =\t\t\t%lld\n", ipc_lim.shmseg64);
    printf("max # of shm segs per 32bit proc (without EXTSHM=ON) =\t%u\n"

, ipc_lim.shmseg32);

    exit(0);
}

3.5  Shared memory segments allocation order
This section explains how shared memory segments are allocated in the process 
address space. To demonstrate the allocation order, we have prepared the 
program shown in Example 3-19 on page 151. To compile this program, type the 
following command:

$ cc -DCALL_SHMDT grabshm.c

If -DCALL_SHMDT is not specified, then the shmdt() and shmctl() routines will 
not be called in the program; it then leaves shared memory segments after the 

17  The structure type ipc_limits is defined in the /usr/include/sys/vminfo.h header file.
 Chapter 3. Understanding user process models 149



execution. If the program is executed by the ausres01 user, it then leaves the 
shared memory segments highlighted in Example 3-18.

Example 3-18   ipcs -m

$ ipcs -m
IPC status from /dev/mem as of Sun Feb  9 18:21:48 CST 2003
T        ID     KEY        MODE       OWNER    GROUP
Shared Memory:
m         0 0xe4663d62 --rw-rw-rw-   imnadm   imnadm
m         1 0x9308e451 --rw-rw-rw-   imnadm   imnadm
m         2 0x52e74b4f --rw-rw-rw-   imnadm   imnadm
m         3 0xc76283cc --rw-rw-rw-   imnadm   imnadm
m         4 0x298ee665 --rw-rw-rw-   imnadm   imnadm
m         5 0xffffffff --rw-rw----     root   system
m         6 0xffffffff --rw-rw----     root   system
m     48159 0xffffffff --rw------- ausres01  itsores
m     48160 0xffffffff --rw------- ausres01  itsores
m     48161 0xffffffff --rw------- ausres01  itsores
m     48162 0xffffffff --rw------- ausres01  itsores

To remove stale shared memory segments, type ipcrm -m shared_memory_ID. 
The shared_memory_IDs are shown in the second column in the example. If you 
need to remove many shared memory segments, do the following:

$ ipcs -m | grep user_name | awk '{print $2}' | while read id
> do
> ipcrm -m $id
> done

Where user_name is the user name of the application process that acquired the 
shared memory segments.

Example 3-19 on page 151 is a sample program to allocate shared memory 
segments. When executed, it requires two arguments:

Usage: a.out [-m|-s] digit-number

If you specify the -m option, then it tries to allocate multiplies of a 1 MB shared 
memory segment. If -s specified, it tries to allocate multiplies of a 256 MB shared 
memory segment. The argument digit-number specifies how many shared 
memory segments should be allocated.

In this program, the created shared memory segments cannot be shared with 
other processes, because the IPC_PRIVATE flag is specified with the shmget() 
routine. Also, please note that the attaching target address is specified as 
(void *)0 with the shmat() routine, so that we instruct the system to select the 
attaching target address of shared memory segments.
150 Developing and Porting C and C++ Applications on AIX



Example 3-19   grabshm.c

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <strings.h>
#include <errno.h>
#include <sys/ipc.h>
#include <sys/shm.h>

#define MAX_SHM_SEGMENTS 131072
#define ONE_MB (1024 * 1024)
#define ONE_SEG (256 * 1024 * 1024)

char *size_of(int i)
{
    if (i == ONE_MB) {
        return("1 MB");
    } else if (i == ONE_SEG) {
        return("256 MB");
    } else {
        exit(1);
    }
}

int main(int argc, char *argv[])
{
    char    *shmptr[MAX_SHM_SEGMENTS];
    char    buf[BUFSIZ];
    int     shmid[MAX_SHM_SEGMENTS];
    int     size_flag;
    int     cnt, max, rc;

    if (argc != 3) {
        fprintf(stderr, "Usage: %s [-m|-s] digit-number\n", argv[0]);
        exit(1);
    } else {
        if (!strcmp(argv[1], "-m")) {
            size_flag = ONE_MB;
        } else if (!strcmp(argv[1], "-s")) {
            size_flag = ONE_SEG;
        } else {
            fprintf(stderr, "Usage: %s [-m|-s] digit-number\n", argv[0]);
            exit(1);
        }
        max = atoi(argv[2]);
    }

    for (cnt = 0; cnt < max; cnt++) {
 Chapter 3. Understanding user process models 151



        if ((shmid[cnt] = shmget(IPC_PRIVATE, size_flag
                            , IPC_CREAT | S_IRUSR | S_IWUSR)) < 0) {
            sprintf(buf

, "[%2d] shmget(\"%s\") at %d in %s failed with errno = %d"
                    , cnt, size_of(size_flag), __LINE__, __FILE__, errno);
            perror(buf);
        }
        if ((shmptr[cnt] = shmat(shmid[cnt], (void *)0, 0)) == (void *) -1) {
            sprintf(buf, "[%2d] shmat() at %d in %s failed with errno = %d"
                , cnt, __LINE__, __FILE__, errno);
            perror(buf);
        } else {
            printf(

"[%2d] beginning address of %s shared memory segment is 0x%016p\n"
, cnt, size_of(size_flag), shmptr[cnt]);
printf(
"[%2d] ending address of %s shared memory segment is 0x%016p\n"
, cnt, size_of(size_flag), shmptr[cnt] + (size_flag - 1));

        }
    }

    /* if you comment out the following code block,
     * you need to explicitly remove the allocated shared memory segment
     * by calling ipcrm -m ID.
     */
#if defined(CALL_SHMDT)
    for (cnt = 0; cnt < max; cnt++) {
        if ((rc = shmdt(shmptr[cnt])) == -1) {
            sprintf(buf, "[%2d] shmdt() at %d in %s failed with errno = %d"
                , cnt, __LINE__, __FILE__, errno);
            perror(buf);
        }

        if (shmctl(shmid[cnt], IPC_RMID, 0) < 0) {
            sprintf(buf, "[%2d] shmctl() at %d in %s failed with errno = %d"
                , cnt, __LINE__, __FILE__, errno);
            perror(buf);
        }
    }
#endif

    exit(0);
}

Please note that this program is written in order to demonstrate the order of 
shared memory segments allocation. If you need to allocate a larger size of 
shared memory segment, you can get it with the one shmget() call.
152 Developing and Porting C and C++ Applications on AIX



3.5.1  Order in the 32-bit default memory model
If the program shown in Example 3-19 on page 151 is executed in the 32-bit 
default memory model, then segments 0x3 - 0xE will be sequentially used, 
excluding 0xD.

Example 3-20 shows the output from this program, when we have attempted to 
allocate twelve 256 MB shared memory segments. Because the 32-bit user 
process model supports up to 11 shared memory segments by default, if the 
EXTSHM=ON environment variable is not specified, the last attempt to allocate 
the 12th shared memory segment would fail.

Example 3-20   Acquiring twelve 256 MB shared memory segments18

$ a.out -s 12
[ 0] beginning address of 256 MB shared memory segment is 0x0000000030000000
[ 0] ending address of 256 MB shared memory segment is 0x000000003fffffff
[ 1] beginning address of 256 MB shared memory segment is 0x0000000040000000
[ 1] ending address of 256 MB shared memory segment is 0x000000004fffffff
...
[ 9] beginning address of 256 MB shared memory segment is 0x00000000c0000000
[ 9] ending address of 256 MB shared memory segment is 0x00000000cfffffff
[10] beginning address of 256 MB shared memory segment is 0x00000000e0000000
[10] ending address of 256 MB shared memory segment is 0x00000000efffffff
[11] shmat() at 58 in grabshm.c failed with errno = 24: Too many open files
[11] shmdt() at 76 in grabshm.c failed with errno = 22: Invalid argument

Example 3-21 shows the output from this program, when we have attempted to 
allocate twelve 1 MB shared memory segments. Because the 32-bit user process 
model supports up to 11 shared memory segments, by default, if the 
EXTSHM=ON environment variable is not specified, the last attempt to allocate 
the 12th shared memory segment would fail, even if the total shared memory 
size is just 11 MB.

Example 3-21   Acquiring twelve 1 MB shared memory segments

$ a.out -m 12
[ 0] beginning address of 1 MB shared memory segment is 0x0000000030000000
[ 0] ending address of 1 MB shared memory segment is 0x00000000300fffff
[ 1] beginning address of 1 MB shared memory segment is 0x0000000040000000
[ 1] ending address of 1 MB shared memory segment is 0x00000000400fffff
...
[ 9] beginning address of 1 MB shared memory segment is 0x00000000c0000000
[ 9] ending address of 1 MB shared memory segment is 0x00000000c00fffff
[10] beginning address of 1 MB shared memory segment is 0x00000000e0000000
[10] ending address of 1 MB shared memory segment is 0x00000000e00fffff

18  The value 24 of errno means EMFILE (too many open files) and the value 22 of errno means 
EINVAL (invalid argument).
 Chapter 3. Understanding user process models 153



[11] shmat() at 58 in grabshm.c failed with errno = 24: Too many open files

You may notice the system selected different segments for allocating just 1MB 
size shared memory segments. For example, the 0x300FFFFF - 0x3FFFFFFF 
address cannot be used to allocate another shared memory segment.

3.5.2  Order in the 32-bit very large memory model with DSA
If the program shown in Example 3-19 on page 151 is executed in the 32-bit very 
large memory model with DSA, then segments 0xF - 0x3 would be sequentially 
used; however, higher address segments cannot be used, depending on the 
maxdata variable.

Example 3-22 shows the output from this program, when we have attempted to 
allocate eleven 1 MB shared memory segments with 
LDR_CNTRL=MAXDATA=0x80000000@DSA. Because the 0x3 segment is 
always reserved for the process heap in the very large memory model, the 11th 
attempt to allocate another shared memory segment failed.

Example 3-22   LDR_CNTRL=MAXDATA=0x80000000@DSA

$ LDR_CNTRL=MAXDATA=0x80000000@DSA a.out -m 11
[ 0] beginning address of 1 MB shared memory segment is 0x00000000e0000000
[ 0] ending address of 1 MB shared memory segment is 0x00000000e00fffff
[ 1] beginning address of 1 MB shared memory segment is 0x00000000c0000000
[ 1] ending address of 1 MB shared memory segment is 0x00000000c00fffff
...
[ 8] beginning address of 1 MB shared memory segment is 0x0000000050000000
[ 8] ending address of 1 MB shared memory segment is 0x00000000500fffff
[ 9] beginning address of 1 MB shared memory segment is 0x0000000040000000
[ 9] ending address of 1 MB shared memory segment is 0x00000000400fffff
[10] shmat() at 58 in grabshm.c failed with errno = 24: Too many open files
[10] shmdt() at 76 in grabshm.c failed with errno = 22: Invalid argument

Example 3-23 on page 155 shows the output from this program, when we have 
attempted to allocate fourteen 1 MB shared memory segments with 
LDR_CNTRL=MAXDATA=0@DSA. Because the program ran out of all the 
available 13 segments, the 14th attempt to allocate another shared memory 
segment failed.

Note: If segments 0x3 - 0xE were attached to the process address heap for 
the process heap before allocating shared memory segments, this program 
could have failed earlier.
154 Developing and Porting C and C++ Applications on AIX



Example 3-23   LDR_CNTRL=MAXDATA=0@DSA

$ LDR_CNTRL=MAXDATA=0@DSA a.out -m 14
[ 0] beginning address of 1 MB shared memory segment is 0x00000000f0000000
[ 0] ending address of 1 MB shared memory segment is 0x00000000f00fffff
[ 1] beginning address of 1 MB shared memory segment is 0x00000000e0000000
[ 1] ending address of 1 MB shared memory segment is 0x00000000e00fffff
...
[11] beginning address of 1 MB shared memory segment is 0x0000000040000000
[11] ending address of 1 MB shared memory segment is 0x00000000400fffff
[12] beginning address of 1 MB shared memory segment is 0x0000000030000000
[12] ending address of 1 MB shared memory segment is 0x00000000300fffff
[13] shmat() at 58 in grabshm.c failed with errno = 24: Too many open files

3.5.3  Extended mode shared memory segments
As explained in the previous sections, up to 11 shared memory segments are 
available in the 32-bit default memory model and up to 13 shared memory 
segments are available in the 32-bit very large memory model.

Although most 32-bit applications are satisfied with this limitation, some 
applications require more shared memory segments. To address this 
requirement, AIX supports another type of shared memory segments in the 
32-bit user process called extended mode shared memory segments 
(EXTSHM).19

The extended mode shared memory segment capability is a process basis 
dynamic feature. To use the capability, simply define the following environment 
variable before executing your applications:

EXTSHM=ON

Once defined, a 32-bit process can have shared memory segments up to 
131,072 on AIX Version 4.3.2 and later.

Example 3-24 on page 156 shows the output from the program, when we have 
attempted to allocate 100 1 MB shared memory segments with EXTSHM=ON.

19  The extended mode shared memory segment capability has been supported since AIX Version 
4.2.1.

Note:

� The keyword must be upper case characters. EXTSHM=on is invalid.

� Do not insert this line into the /etc/environment file on your system. Some 
32-bit applications do not support this capability. Please consult with the 
publications shipped with the software products installed on your system.
 Chapter 3. Understanding user process models 155



Example 3-24   Acquiring 100 shared memory segments with EXTSHM=ON

$ EXTSHM=ON a.out -m 100
[ 0] beginning address of 1 MB shared memory segment is 0x0000000030000000
[ 0] ending address of 1 MB shared memory segment is 0x00000000300fffff
[ 1] beginning address of 1 MB shared memory segment is 0x0000000030100000
[ 1] ending address of 1 MB shared memory segment is 0x00000000301fffff
...
[98] beginning address of 1 MB shared memory segment is 0x0000000036200000
[98] ending address of 1 MB shared memory segment is 0x00000000362fffff
[99] beginning address of 1 MB shared memory segment is 0x0000000036300000
[99] ending address of 1 MB shared memory segment is 0x00000000363fffff

Restrictions of extended shared memory segments
Although they seem very convenient, the extended shared memory segments 
have some restrictions, which are described in the following:

� The EXTSHM environment variable will be ignored and has no effect in the 
64-bit user process model.

� When attaching a segment larger than 268,431,360 bytes (256 MB - 4 KB), 
the EXTSHM environment variable will be ignored, and the process attaches 
the segment with a granularity of 256 MB.

� When calling the mmap() routine, the EXTSHM environment variable will be 
ignored, and the process attaches the segment with a granularity of 256 MB.

� The SHM_SIZE parameter of shmctl() is not supported for segments created 
with EXTSHM=ON.

� No raw I/O is allowed for segments created with EXTSHM=ON.

3.5.4  Order in the 64-bit memory model
Example 3-25 shows the output from this program, when we have attempted to 
allocate twelve 1 MB shared memory segments in the 64-bit user process model. 
Each 1 MB shared memory segment is allocated into separate 256 MB 
segments, starting from 0x0700_0000_0000_0000.

Example 3-25   Acquiring 12 shared memory segments in 64-bit mode

$ cc -q64 -DCALL_SHMDT grabshm.c
$ file a.out
a.out:          64-bit XCOFF executable or object module not stripped
$ a.out -m 12
[ 0] beginning address of 1 MB shared memory segment is 0x0700000000000000
[ 0] ending address of 1 MB shared memory segment is 0x07000000000fffff
[ 1] beginning address of 1 MB shared memory segment is 0x0700000010000000
[ 1] ending address of 1 MB shared memory segment is 0x07000000100fffff
156 Developing and Porting C and C++ Applications on AIX



...
[10] beginning address of 1 MB shared memory segment is 0x07000000a0000000
[10] ending address of 1 MB shared memory segment is 0x07000000a00fffff
[11] beginning address of 1 MB shared memory segment is 0x07000000b0000000
[11] ending address of 1 MB shared memory segment is 0x07000000b00fffff

Although it is technically possible that a 64-bit process can request shared 
memory segments up to 131,072 on AIX Version 4.3.2 or later, it is your 
responsibility to assure that your application will not consume all the available 
system memory.

3.6  Large page support
Historically, AIX supported 4 KB page size only. Starting with AIX 5L Version 5.1 
plus 5100-02 Recommended Maintenance Level, AIX supports alternate page 
size (called large pages), in addition to the traditional 4 KB page size. The large 
page size on systems using the POWER4 processor is 16 MB, but the large page 
size may be different size on future architectures. It is recommended to call the 
sysconf() routine with the _SC_LARGE_PAGESIZE parameter in your 
applications, in order to determine the supported large page size.

To verify you are using POWER4 processor systems, run the lscfg -vpl procX 
command, where X is the instance number of processors. The following example 
shows the output of this command executed on an AIX 5L Version 5.2 partition 
on the pSeries 690:

# lsdev -Cc processor
proc0      Available 00-00         Processor
proc1      Available 00-01         Processor
# lscfg -vpl proc0
  proc0            U1.18-P1-C1  Processor

        Device Specific.(YL)........U1.18-P1-C1

PLATFORM SPECIFIC

  Name:  PowerPC,POWER4
    Node:  PowerPC,POWER4@0
    Device Type:  cpu
    Physical Location: U1.18-P1-C1

Note: The EXTSHM environment variable will be ignored and has no effect in 
the 64-bit user process model.
 Chapter 3. Understanding user process models 157



The following sections are excerpted from the technical white paper, AIX Support 
for Large Pages, found at:

http://www.ibm.com/servers/aix/whitepapers/large_page.html

3.6.1  Large page support overview
Large page usage is primarily intended to provide performance improvements to 
high performance computing (HPC) applications. Memory access intensive 
applications that use large amounts of virtual memory may obtain performance 
improvements by using large pages. The large page performance improvements 
are attributable to reduced translation look-aside buffer (TLB) misses due to the 
TLB being able to map a larger virtual memory range. Large pages also improve 
memory prefetching by eliminating the need to restart prefetch operations on 
4 KB boundaries.

The POWER4 large page architecture requires that all virtual pages in a 256 MB 
segment be the same size. AIX uses this architecture to support a mixed mode 
process model. Some segments in a process are backed with 4 KB pages and 
16 MB pages back other segments. Applications may request that their heap 
segments be backed with large pages. Applications may also request that shared 
memory segments be backed with large pages. Other segments in a process are 
backed with 4 KB pages.

AIX supports large page usage with both 32- and 64-bit applications. Both the 
32- and 64-bit versions of the AIX kernel support large pages.

AIX maintains separate 4 KB and 16 MB size physical memory pools. The 
customer specifies the amount of physical memory in the 16 MB memory pool 
using the vmo command on AIX 5L Version 5.2.20 This amount of physical 
memory is allocated to the 16 MB memory pool at boot time. The remaining 
physical memory is used to back 4 KB virtual pages. The size of the 16 MB pool 
is fixed at boot time and cannot be changed without rebooting the system.

On AIX Versions of 5.1 and 5.2, large pages are not paged and treated as pinned 
memory. Therefore, an application’s data backed by large pages remains in 
physical memory until the application completes.21 A security access control 
prevents unauthorized applications from using large pages. This prevents 
unauthorized applications from using large page physical memory and 
preventing authorized users from using large pages for their applications.

20  On AIX 5L Version 5.1, use the vmtune command instead of vmo.
21  The implementation of large pages may be changed in the future versions of AIX. Do not depend 
on large pages being pinned when developing your applications.
158 Developing and Porting C and C++ Applications on AIX

http://www.ibm.com/servers/aix/whitepapers/large_page.html


3.6.2  Large page application usage
Applications may use large pages in two ways. An application may request that 
large pages back its data and heap segments. An application may also request 
shared memory segments be backed by large pages.

Large page data/heap segments
An application may request that its initialized program data, uninitialized program 
data (BSS), and heap segments be backed with large pages. There are two ways 
to request large pages back an application’s data/heap segments:

� The executable file can be marked to request large pages.

� An environment variable can be set to request large pages.

A program’s large page data/heap use is established when the program is 
exec()ed. A program cannot switch modes after it has begun executing. Large 
page use is inherited by children processes on fork().

Marking an executable for large page use
The XCOFF header in an executable file contains a new flag to indicate that the 
program wants to use large pages to back its data and heap segments. This flag 
can be set when the application is linked by specifying the -blpdata option on the 
ld command. The flag can also be set or cleared using the ldedit command. 
The ldedit –blpdata filename command sets the large page data/heap flag in 
the specified file. The ldedit –bnolpdata filename clears the large page flag. 
The ldedit command may also be used to set an executable’s maxdata value. To 
check if the flags are correctly set, see 3.2.5, “Checking large memory model 
executables” on page 124.

Environment variables for large page use
An environment variable is provided to allow users to indicate they want an 
application to use large pages for an application’s data and heap segments. The 
environment variable takes precedence over the executable large page flag. 
Large page usage is provided as options on the LDR_CNTRL environment 
variable.

LDR_CNTRL=LARGE_PAGE_DATA=Y
Specifies that the exec()ed program should use large 
pages for its data and heap segments. This is the same 
as marking the executable to use large pages.

LDR_CNTRL=LARGE_PAGE_DATA=N
Specifies that the exec()ed program should not use large 
pages for its data and heap segments. This overrides the 
setting in a executable marked to use large pages.
 Chapter 3. Understanding user process models 159



LDR_CNTRL=LARGE_PAGE_DATA=M
Specifies that the exec()ed program should use large 
pages in a mandatory mode for its data and heap 
segments.

You can separate multiple options on the LDR_CNTRL environment variables by 
using an ‘@’ character. For example, the following LDR_CNTRL environment 
variable setting requests large page usage along with the maxdata option:

LDR_CNTRL=MAXDATA=0x80000000@LARGE_PAGE_DATA=Y

Users are advised to be cautious in their use of the environment variable to 
specify large page usage. Performance tests have shown there can be a 
significant performance loss in environments where a number of shell scripts or 
small, short running applications are invoked. One example saw a shell script’s 
execution time increase over 10 times when the large page environment variable 
was specified. Customers are advised to only set the large page environment 
variable around specific applications that can benefit from large page usage.

Advisory and mandatory modes
An application can indicate that it wants to use large pages for data/heap 
segments in either advisory or mandatory mode. In advisory mode, the 
application will use large pages if possible. The conditions needed to use large 
pages are:

� The user ID is authorized to use large pages.

� The system is running on a machine that has the POWER4 large page 
architecture feature.

� The customer defined a large page memory pool.

� There are enough pages in the large page memory pool to back the entire 
segment with large pages.

If all of these conditions are met, the application’s data/heap segments will be 
backed with large pages. Otherwise, the application’s data/heap segments will be 
backed with 4 KB pages.

In advisory mode, an application may have some of its heap segments backed by 
large pages and some of them backed by 4 KB pages. 4 KB pages are used to 
back segments when there are not enough large pages available to back the 
segment. Executable programs marked to use large pages use large pages in 
advisory mode.

In mandatory mode, the brk() or sbrk() system calls, which are internally called 
from the malloc() subroutine, will fail if the application requests a heap segment 
and there are not enough large pages to satisfy the request. Customers that use 
the mandatory mode must monitor the size of the large page pool and ensure it 
160 Developing and Porting C and C++ Applications on AIX



does not run out of large pages. Otherwise, their mandatory large page mode 
applications may fail.

Large page data/heap segments fully backed
The POWER4 architecture requires all pages in a segment (256 MB) be backed 
with the same size physical pages. AIX backs the entire 256 MB segment with 
large pages when an application requests a large page heap segment. Even if 
only a few bytes are needed in the new heap segment, the entire 256 MB 
segment is backed. AIX does this to avoid terminating applications when they 
want to grow a heap segment (such as when using malloc() or sbrk()) and there 
are no large pages available to back the new space. This supports the advisory 
mode of large page usage. It also eliminates the need for installations to closely 
monitor the size of their large page physical memory pools.

Using large pages to back shared memory segments
AIX uses the POWER4 large page architecture feature to provide large page 
backing for shared memory segments. Applications can request their shared 
memory segments be backed with large pages by specifying both the 
SHM_LGPAGE and SHM_PIN flags on the shmget() function.

The request to use large pages to back a shared segment is advisory. Large 
pages will back a shared memory segment under the same conditions as 
advisory mode large page data/heap usage. A shared segment is silently backed 
with 4 KB pages if large pages are not available.

The physical memory to back large page shared memory and large page 
data/heap segments comes from the large page physical memory pool. 
Customers must size their large page physical memory pool to contain enough 
large pages for both shared memory and data/heap large page usage.

3.6.3  Large page usage security capability
AIX provides a security mechanism to control the use of large page physical 
memory by non-root users. The large page physical memory pool is a fixed size, 
pinned memory system resource. The security mechanism prevents 
unauthorized users from using the large page pool and thus preventing its use by 
the intended users or applications.

Non-root users must have a CAP_BYPASS_RAC_VMM capability in order to use 
large pages. A system administrator can grant this capability to a user by using 
the chuser command. The following command grants the ability to use large 
pages to user lpuserid:

chuser capabilities=CAP_BYPASS_RAC_VMM,CAP_PROPAGATE lpuserid
 Chapter 3. Understanding user process models 161



Both large page data/heap and large page shared memory segments are 
controlled by this capability.

3.6.4  Configuring system to use large pages
The customer must configure the system to use large pages. The customer must 
specify the amount of physical memory to be used to back large pages. The 
default is to not have any memory allocated to the large page physical memory 
pool.

AIX 5L Version 5.2
The vmo command is used to configure the size of the large page physical 
memory pool on AIX 5L Version 5.2.22 The following command will allocate 256 
pages x 16 MB = 4 GB to the large page physical memory pool:

vmo -r -o lgpg_regions=256 -o lgpg_size=1677216 -o v_pinshm=1

Where:

-r Updates the /etc/tunable/nextboot file so that the 
modified tunable values will take effect after the next 
system reboot.

-o lgpg_regions=256 Specifies the reserved memory blocks for large 
pages.

-o lgpg_size=1677216 Specifies the large page size in bytes. The allowable 
value is 16777216 (16 MB) on POWER4-based 
systems.

-o v_pinshm=1 Allows pinning of shared memory segments.

You must run the bosboot command and reboot before the new size large page 
memory pool takes effect.

AIX 5L Version 5.1
The vmtune command is used to configure the size of the large page physical 
memory pool on AIX 5L Version 5.1.23 The following command will allocate 256 
pages x 16 MB = 4 GB to the large page physical memory pool:

vmtune -g 16777216 –L 256

The -g option specifies the large page size in bytes. The allowable value is 
16777216 (16 MB) on POWER4-based systems. The -L option is the number of 
the -g sized blocks that are allocated to the large page physical memory pool.

22  The vmo command is included in the bos.perf.tune fileset.
23  The vmtune command is located in the /usr/samples/kernel directory.
162 Developing and Porting C and C++ Applications on AIX



You must run the bosboot command and reboot before the new size large page 
memory pool takes effect.

If you want to use large pages for shared memory in your applications, the 
application source codes must be modified to use the SHM_PIN shmget() 
system call flag. The following vmtune command makes the necessary changes 
in the kernel to support the SHM_PIN flag:

vmtune –S 1

Considerations when determining large page pool size
Here are some things to consider when determining the size of the large page 
physical memory pool:

� Memory allocated to the large page physical memory pool is not available to 
back 4 KB pages. Allocating too much physical memory to large pages will 
degrade system performance to the point of not having enough memory to 
back 4 KB pages. During system boot, AIX reserves enough physical memory 
for 4 KB pages to ensure that the system will boot. However, system failures 
may occur after booting if there is not enough physical memory to back 4 KB 
pages.

� The size of the large page physical memory pool is fixed at boot time and 
remains the same for the entire boot. A reboot is required to change the size 
of the large page memory pool.

� Large pages are only used for applications that explicitly request them. There 
is no need for a large page memory pool if your applications do not request 
them.

� Advisory mode large page applications will use large pages if there are large 
pages available. If not, advisory mode large page applications will use 4 KB 
pages. However, the inverse is not true. A 4 KB application will not use large 
pages if the system runs low on 4 KB pages.

� Mandatory mode large page applications will fail if the application requests a 
large page and one is not available.

Note: The vmtune command must be called after every system boot. To place 
a permanent change into the system, insert the following lines into /etc/inittab:

vmtune -g 16777216 –L 256
vmtune –S 1
 Chapter 3. Understanding user process models 163



3.6.5  Other system changes for large pages
The mprotect() function can not be used against a large page. It returns a -1 
return code with an EINVAL errno if called to modify the protection attributes of a 
large page.

Some debug malloc tools use mprotect() to diagnose memory management 
problems. These tools will not work properly with large pages. Such applications 
must use 4 KB pages.

Multi-threaded applications may use large pages for their data/heap segments. 
However, when large pages are used, the libpthreads library does not place a 
protected red zone page at the bottom of a pthread’s stack.

The sysconf(_SC_LARGE_PAGESIZE) function call will return the large page 
size on systems that have large pages.

The vmgetinfo() function returns information about large page pools size and 
other large page related information.

3.6.6  Large page usage considerations
Large page is a special purpose performance improvement feature. It is not 
recommended for general use. Large page usage provides performance value to 
a select set of applications. These are primarily long running memory access 
intensive applications that use large amounts of virtual memory.

Not all applications benefit by using large pages. Some applications can be 
severely degraded by the use of large pages. Applications that do a large number 
of fork()s (such as shell scripts) are especially prone to performance degradation 
when large pages are used. Tests have shown a tenfold increase in shell script 
execution time when the LDR_CNTRL environment specifies the large page 
usage variable. Consider marking specific executable files to use large pages 
rather than using the LDR_CNTRL environment variable. This limits large page 
usage to the specific applications that benefit from large page usage.

Consider the overall performance effect that large pages may have on your 
system. While some specific applications may benefit from large page use, the 
overall performance of your system may be degraded by large page usage due to 
having reduced the amount of 4 KB page storage available in the system. 
Consider using large pages when your system has sufficient physical memory 
such that reducing the number of 4 KB pages does not significantly impact 
overall system performance.
164 Developing and Porting C and C++ Applications on AIX



Chapter 4. Managing the memory heap

The term heap, or memory heap, generally means a free memory pool, from 
which a process can dynamically allocate chunks of memory. Although the 
management of the memory heap is the most basic programming task on any 
operating system environments, the mismanagement of the memory heap is a 
quite common mistake when developing applications using the C and C++ 
languages.

AIX provides a useful feature, called malloc debug, to diagnose these misuse of 
the memory heap without recompiling or modifying application source codes.

The first two sections in this chapter provide basic information about the malloc 
subsystem on AIX, and the third section explains how to use the malloc debug 
feature. The last section contains the use of library functions to transparently use 
process heap or shared memory segments to satisfy memory requests.

� Section 4.1, “Malloc subsystem” on page 166

� Section 4.2, “Memory allocators” on page 169

� Section 4.3, “Use of MALLOCDEBUG options” on page 182

� Section 4.4, “Heap management using MEMDBG” on page 199

4

© Copyright IBM Corp. 2000, 2003. All rights reserved. 165



4.1  Malloc subsystem
A process can dynamically allocate chunks of memory from the process heap by 
calling malloc subsystem subroutines. If the subroutine call succeeds, a process 
will be given the requested amount of virtual memory pages from the operating 
system, and those pages will be contiguously mapped in the process address 
space.

On AIX, the mapping addresses of newly allocated virtual pages are varied, 
depending on the user process model. For the detailed explanation about the 
available address range of the process heap, see 3.2, “The 32-bit user process 
model” on page 109 and 3.3, “The 64-bit user process model” on page 130.

The malloc subsystem performs the following fundamental memory operations:

Allocation Allocates the specified size of virtual memory.

Deallocation Deallocates (frees) the previous acquired memory space.

Reallocation Reallocates (adjusts) the size of the previous acquired 
memory space.

The malloc subsystem provides the following subroutines grouped by the 
function categories:

� Allocation

– malloc()

– calloc()

– alloca()

– valloc()

� Deallocation

– free()

� Reallocation

– realloc()

� Other purposes

– mallopt()

– mallinfo()

– mallinfo_heap()

– disclaim()

Once virtual memory pages are allocated by calling either malloc(), calloc(), or 
valloc() sub-routines, those routines internally call the system call sbrk() and 
166 Developing and Porting C and C++ Applications on AIX



increase the break value, which defines the maximum address of the process 
data segment (see Figure 3-8 on page 126).

If the process calls the free() sub-routine with the address of previously allocated 
memory, the corresponding virtual memory pages are marked free and placed in 
the list,1 with which the malloc subsystem manages free virtual pages. The 
reference to free virtual pages should return a segmentation violation 
(SIGSEGV) to the caller.

If the process again requests to allocate memory through the malloc subsystem 
after that, the subsystem will try to allocate the requested memory size from the 
list. If sufficient chunks of memory are available in the list, the subsystem returns 
it. Otherwise, sbrk() is again internally called by the subsystem to increase the 
break value.

4.1.1  malloc(), calloc(), valloc(), and alloca()
Use the malloc() or calloc() subroutines to request only as much space as you 
actually need. Never request and then initialize a maximum-sized array when the 
actual situation uses only a fraction of it.

When a process touches a new page to initialize the array elements, the process 
effectively forces the VMM to steal a page of real memory from someone. Later, 
this results in a page fault when the process that owned that page tries to access 
it again. The difference between the malloc() and calloc() subroutines is not just 
in the interface.

Because the calloc() subroutine zeroes the allocated storage, it touches every 
page that is allocated, whereas the malloc() subroutine touches only the first 
page. If you use the calloc() subroutine to allocate a large area and then use only 
a small portion at the beginning, you place an unnecessary load on the system. 
Not only do the pages have to be initialized, but if their real-memory frames are 
reclaimed, the initialized and never-to-be-used pages must be written out to 
paging space. This situation wastes both I/O and paging space.

The valloc() subroutine, found in many BSD systems, is supported as a 
compatibility interface in the Berkeley compatibility library (libbsd.a). The valloc() 
subroutine calls the malloc() subroutine and automatically page-aligns requests 
that are greater than one page. The only difference between the valloc() 
subroutine in the libbsd.a library and the one in the standard C library (described 
above) is in the value returned when the size parameter is zero. The valloc() 
subroutine has the same effect as malloc(), except that the allocated memory is 
aligned to a multiple of the value returned by sysconf(_ SC_PAGESIZE).

1  Technically, it is an internal data structure, not a linked-list.
 Chapter 4. Managing the memory heap 167



The alloca() subroutine allocates the number of bytes of space specified by the 
Size parameter in the stack frame of the caller. This space is automatically freed 
when the subroutine that called the alloca subroutine returns to its caller.

If alloca() is used in the code and compiled with the C++ compiler, 
#pragma alloca would also have to be added before the usage of alloca() in the 
code. Alternatively, the -ma option would have to be used while compiling the 
code.

4.1.2  mallopt(), mallinfo, and mallinfo_heap()
The mallopt() and mallinfo() subroutines are provided for source-level 
compatibility with the System V malloc subroutines. Nothing done with the 
mallopt() subroutine affects how memory is allocated by the system, unless the 
M_MXFAST option is used.

The mallinfo() subroutine can be used to obtain information about the heap 
managed by the malloc() subroutine. Refer to the malloc.h file for details of the 
mallinfo structure.

The mallinfo_heap() subroutine provides information about a specific heap if 
malloc multiheap is enabled (see 4.2.6, “Malloc multiheap” on page 181). The 
mallinfo_heap() subroutine returns a structure that details the properties and 
statistics of the heap specified by the user. Refer to the malloc.h file for details 
about the mallinfo_heap structure.

4.1.3  disclaim()
If a large structure is used early and then left untouched for the remainder of the 
process life, it should be released. It is not sufficient to use the free() subroutine 
to free the space that was allocated with the malloc() or calloc() subroutines on 
AIX, unless the MALLOCDISCLAIM environment variable is defined. The free() 
subroutine releases only the address range that the structure occupied from the 
process address space. To release the real memory and paging space, use the 

Note: When MALLOCTYPE is set to buckets and the memory request is 
within the range of block sizes defined for the buckets, the memory request is 
serviced but the heap statistics that are reported by mallinfo() are not updated. 
See 4.2.3, “The default memory allocator with the malloc buckets extension” 
on page 173 for a detailed explanation about malloc buckets.

Note: The mallinfo_heap() subroutine should not be used with the 3.1 memory 
allocator explained in 4.2.1, “The 3.1 memory allocator” on page 171.
168 Developing and Porting C and C++ Applications on AIX



disclaim() subroutine to disclaim the space as well. The call to disclaim() should 
be before the call to free().

When the disclaim() routine is called with the specific range of memory address, 
it instructs VMM to relinquish physical in-memory pages, and disk blocks in the 
paging space. The resultant address-range is logically 0 again, just like it was 
when it was created, before any accesses were made to it.

This is a very useful optimization technique that some applications can use to get 
performance gains. For example, assume that an application has just finished 
using a buffer that is a small portion of a virtual memory address range, and it 
needs to manipulate the other data in the same address range. In this case, the 
application can call disclaim() specifying that memory range, which will be 
replenished with 0-filled pages on subsequent accesses. The call to disclaim() 
avoids the unnecessary page-in of staled data from the paging space.

MALLOCDISCLAIM
If the MALLOCDISCLAIM environment variable is set as shown in the following 
example before a process start-up, all calls to the free() subroutine automatically 
instruct the malloc subsystem to call the disclaim() subroutine internally:

MALLOCDISCLAIM=true

This is useful in circumstances where a process has a high paging-space usage, 
but is not actually using the memory.

For a detailed description of the malloc subsystem subroutines, please refer to 
the “System Memory Allocation Using the malloc subsystem” section in AIX 5L 
Version 5.2 General Programming Concepts: Writing and Debugging Programs.

4.2  Memory allocators
There are several internal mechanisms, called memory allocators, in the malloc 
subsystem on AIX. Each memory allocator implements a different memory 
allocation policy. The allocation policy refers to a set of data structures and 
algorithms to represent the heap and to implement allocation, deallocation, and 
reallocation.

Note: It is not supported to insert MALLOCDISCLAIM=true in 
/etc/environment.
 Chapter 4. Managing the memory heap 169



The malloc subsystem on AIX supports the following memory allocators:

� 3.1 memory allocator

� Default memory allocator

� Default memory allocator with the malloc buckets extension

� Debug memory allocator

It is also supported to implement the user-defined memory allocator on AIX (see 
4.2.5, “User-defined malloc replacement” on page 178).

The programming interface to the malloc subsystem is the same regardless of 
the selected memory allocator. The selection of memory allocators is made on a 
per-process basis by setting the MALLOCTYPE environment value when a 
program is executed. There are several environment variables that affect the 
behavior of the selected memory allocator.

Table 4-1 explains how to specify the MALLOCTYPE environment variable in 
order to select a memory allocator (related environment variables and sections 
are also shown).

Table 4-1   Memory allocators and MALLOCTYPE

MALLOCTYPE= Memory allocator Related environment 
variables

Detailed explanation found in

3.1 3.1 memory 
allocator

� MALLOCDEBUG Section 4.2.1, “The 3.1 memory 
allocator” on page 171

(null)1 Default memory 
allocator2

� MALLOCDEBUG
� MALLOCMULTIHEAP

Section 4.2.2, “The default 
memory allocator” on page 172

buckets Default memory 
allocator with the 
malloc buckets 
extension

� MALLOCDEBUG
� MALLOCMULTIHEAP
� MALLOCBUCKETS

Section 4.2.3, “The default 
memory allocator with the 
malloc buckets extension” on 
page 173

debug Debug malloc 
allocator

� MALLOCDEBUG Section 4.2.4, “The debug 
malloc allocator” on page 176

user:archive_name2 User-defined 
memory allocator3

N/A Section 4.2.5, “User-defined 
malloc replacement” on 
page 178

1. The default memory allocator is selected by un-setting the MALLOCTYPE environment variable.
2. Where the archive_name specifies the library archive name that contains the user-defined malloc 

subsystem replacement subroutines.
3. A user-defined memory allocator can also be specified in the program code, as explained in 4.2.5, 

“User-defined malloc replacement” on page 178.
170 Developing and Porting C and C++ Applications on AIX



By default, the default memory allocator is always selected unless the 
MALLOCTYPE environment variable is explicitly set. For example, to specify the 
default memory allocator with the malloc extension, do the following on the Korn 
shell command line:

$ export MALLOCTYPE=buckets

To reset to the default memory allocator, do the following:

$ export MALLOCTYPE=

4.2.1  The 3.1 memory allocator
The 3.1 memory allocator is mainly provided to support applications that were 
originally developed on AIX Version 3. Some of those applications may depend 
on the behavior of the memory allocator on AIX Version 3 and may misbehave 
when used with the other memory allocators. Use this memory allocator only 
when it is absolutely required by a specific set of applications.

To select the 3.1 memory allocator, set the MALLOCTYPE environment variable 
before executing programs on the Korn shell prompt:

$ export MALLOCTYPE=3.1

The 3.1 memory allocator maintains the process heap as a set of 28 hash 
buckets, each of which points to a linked list. Hashing is a method of transforming 
a search key into an address for the purpose of storing and retrieving items of 
data. The method is designed to minimize the average search time. A bucket is 
one or more fields in which the result of an operation is kept. Each linked list 
contains blocks of a particular size. The index into the hash buckets indicates the 
size of the blocks in the linked list. The size of the block is calculated using the 
following formula:

size = 2 i + 4

where i identifies the bucket. This means that the blocks in the list anchored by 
bucket zero are 20 + 4 = 16 bytes long. Therefore, given that a prefix is 8 bytes in 
size, these blocks can satisfy requests for blocks between 0 and 8 bytes long.

To use the 3.1 memory allocator, keep the following points in mind:

� The 3.1 memory allocator supports the 32-bit user process environment only. 
It does not support the 64-bit user process environment.

Note: These memory allocators are mutually exclusive.
 Chapter 4. Managing the memory heap 171



� The 3.1 memory allocator does not support the following environment 
variables. If these are set, the 3.1 memory allocator simply ignores them:

– MALLOCMULTIHEAP

– MALLOCBUCKETS

� The algorithm can use as much as twice the amount of memory actually 
requested by the application. An extra page is required for buckets larger than 
4096 bytes because objects of larger page are page-aligned. Because the 
prefix immediately precedes the block, an entire page is required solely for 
the prefix.

The 3.1 memory allocator supports the MALLOCDEBUG environment variable 
with the following keywords:

� log
� verbose
� trace

4.2.2  The default memory allocator
The default allocation policy maintains the free space in the heap as a binary 
tree, in which nodes are sorted vertically by length and horizontally by address. 
The data structure imposes no limitation on the number of block sizes supported 
by the tree, allowing a wide range of potential block sizes. Tree-reorganization 
techniques optimize access times for node location, insertion, and deletion, and 
also protect against fragmentation.

To select the default memory allocator, the MALLOCTYPE environment variable 
must be unset before executing programs. To confirm if it is unset, do following on 
the Korn shell prompt:

$ echo $MALLOCTYPE

$

The echo command should return a blank line, as shown in the above example.

The default memory allocator supports the following:

� Both the 32- and 64-bit user process environment

� The MALLOCMULTIHEAP environment variable

� The MALLOCDEBUG environment variable with the following keywords:

– log

– verbose

– arena_check
172 Developing and Porting C and C++ Applications on AIX



– trace

The default memory allocator does not support the MALLOCBUCKETS 
environment variable. If it is set, the allocator simply ignores it.

4.2.3  The default memory allocator with the malloc buckets extension
The default memory allocator with the malloc buckets extension, or simply malloc 
buckets, provides an optional buckets-based extension of the default allocator. It 
is intended to improve malloc subsystem performance for applications that issue 
large numbers of small allocation requests. When malloc buckets is enabled, 
allocation requests that fall within a predefined range of block sizes are 
processed by malloc buckets. All other requests are processed in the usual 
manner by the default allocator.

To select malloc buckets, set the MALLOCTYPE environment variable before 
executing programs on the Korn shell prompt:

$ export MALLOCTYPE=buckets

Additional user configuration can be done by explicitly setting the 
MALLOCBUCKETS environment value (see “MALLOCBUCKETS” on page 174).

Bucket composition and sizing
A bucket consists of a block of memory that is subdivided into a predetermined 
number of smaller blocks of uniform size, each of which is an allocatable unit of 
memory. Each bucket is identified using a bucket number. The first bucket is 
bucket 0, the second bucket is bucket 1, the third bucket is bucket 2, and so on. 
The first bucket is the smallest, and each succeeding bucket is larger in size than 
the preceding bucket, using a formula described later in this section. A maximum 
of 128 buckets is available per heap.

The block size for each bucket is a multiple of a bucket-sizing factor. The 
bucket-sizing factor equals the block size of the first bucket. Each block in the 
second bucket is twice this size, each block in the third bucket is three times this 
size, and so on. Therefore, a given bucket's block size is determined as follows:

block size = (bucket number + 1) * bucket sizing factor

For example, a bucket-sizing factor of 16 would result in a block size of 16 bytes 
for the first bucket (bucket 0), 32 bytes for the second bucket (bucket 1), 48 bytes 
for the third bucket (bucket 2), and so on.

The bucket-sizing factor must be a multiple of 8 for 32-bit implementations and a 
multiple of 16 for 64-bit implementations in order to guarantee that addresses 
returned from malloc subsystem functions are properly aligned for all data types.
 Chapter 4. Managing the memory heap 173



The bucket size for a given bucket is determined as follows:

bucket size = number of blocks per bucket *
(malloc overhead + ((bucket number + 1) * bucket sizing factor))

The preceding formula can be used to determine the actual number of bytes 
required for each bucket. In this formula, malloc overhead refers to the size of an 
internal malloc construct that is required for each block in the bucket. This 
internal construct is 8 bytes long for 32-bit applications and 16 bytes long for 
64-bit applications. It is not part of the allocatable space available to the user, but 
is part of the total size of each bucket.

The default memory allocator with the malloc buckets extension supports the 
following:

� Both the 32- and 64-bit user process environment

� The MALLOCMULTIHEAP environment variable

� The MALLOCDEBUG environment variable with the following keywords:

– log

– verbose

– arena_check

– trace

MALLOCBUCKETS
The number of blocks per bucket, number of buckets, and bucket-sizing factor are 
all set with the MALLOCBUCKETS environment variable. The syntax of the 
variable is as follows (multiple keywords can be separated by a comma):

MALLOCBUCKETS=[[ number_of_buckets:N | bucket_sizing_factor:N | 
blocks_per_bucket:N | bucket_statistics:[stdout|stderr|path_name]],...]

Where:

number_of_buckets:N
This option can be used to specify the number of buckets 
available per heap, where N is the number of buckets. The 
value specified for N will apply to all available heaps.
The default value for number_of_buckets is 16. The 
minimum value allowed is 1. The maximum value allowed 
is 128.

bucket_sizing_factor:N
This option can be used to specify the bucket-sizing 
factor, where N is the bucket-sizing factor in bytes. The 
value specified for bucket_sizing_factor must be a multiple 
of 8 for 32-bit implementations and a multiple of 16 for 
174 Developing and Porting C and C++ Applications on AIX



64-bit implementations.
The default value for bucket_sizing_factor is 32 for 32-bit 
implementations and 64 for 64-bit implementations.

blocks_per_bucket:N
This option can be used to specify the number of blocks 
initially contained in each bucket, where N is the number 
of blocks. This value is applied to all of the buckets. The 
value of N is also used to determine how many blocks to 
add when a bucket is automatically enlarged because all 
of its blocks have been allocated. The default value for 
blocks_per_bucket is 1024.

bucket_statistics:[stdout|stderr|path_name]
The bucket_statistics option will cause the malloc 
subsystem to output a statistical summary for malloc 
buckets upon normal termination of each process that 
calls the malloc subsystem while malloc buckets is 
enabled. This summary shows buckets-configuration 
information and the number of allocation requests 
processed for each bucket. If multiple heaps have been 
enabled by way of malloc multiheap, the number of 
allocation requests shown for each bucket will be the sum 
of all allocation requests processed for that bucket for all 
heaps.

The buckets statistical summary will be written to one of 
the following output destinations, as specified with the 
bucket_statistics option.

stdout Standard output

stderr Standard error

path_name A user-specified path name

If a user-specified path name is provided, statistical output 
will be appended to the existing contents of the file (if 
any).

Standard output should not be used as the output 
destination for a process whose output is piped as input 
into another process.

The buckets_statistics option is disabled by default.
 Chapter 4. Managing the memory heap 175



If the MALLOCBUCKETS environment variable is not set, then the default values 
shown in Table 4-2 are assumed.

Table 4-2   Default configuration values for malloc buckets

4.2.4  The debug malloc allocator
Debugging applications that are mismanaging memory allocated via the malloc 
subsystem can be difficult and tedious. Most often, the problem is that data is 
written past the end of an allocated buffer. Since this has no immediate 
consequence, problems do not become apparent until much later when the 
space that was overwritten (usually belonging to another allocation) is used and 
no longer contains the data originally stored there.

The AIX malloc subsystem includes the debug memory allocator2 to allow users 
to identify memory overwrites, over-reads, duplicate frees, and reuse of freed 
memory allocated by malloc(). This memory allocator is sometimes referred to as 
debug malloc.

Memory problems detected by the debug memory allocator result in an abort() or 
a segmentation violation (SIGSEGV). In most cases, when an error is detected 
the application stops immediately and a core file is produced.

Note: 

1. One additional allocation request will always be shown in the first bucket for 
the atexit() subroutine that prints the statistical summary.

2. For multi-threaded processes, additional allocation requests will be shown 
for some of the buckets due to malloc subsystem calls issued by the 
Pthread library.

Configuration option Default value (32-bit) Default value (64-bit)

Number of buckets per 
heap

16 16

Bucket sizing factor 32 bytes 64 bytes

Allocation range 1 to 512 bytes (inclusive) 1 to 1024 bytes (inclusive)

Number of blocks initially 
contained in each bucket

1024 1024

Bucket statistical summary disabled disabled

2  The debug memory allocator has been supported on AIX since Version 4.3.3.
176 Developing and Porting C and C++ Applications on AIX



To select the debug memory allocator, set the MALLOCTYPE environment 
variable before executing programs on the Korn shell prompt:

$ export MALLOCTYPE=debug

Additional user configuration can be done by explicitly setting the 
MALLOCDEBUG environment value as follows:

MALLOCDEBUG=<options...>

where options is a comma-separated list of one or more predefined configuration 
options:

� align:N

� validate_ptrs

� postfree_checking

� allow_overreading

� override_signal_handling

� record_allocations

� report_allocations

More than one option can be specified (and in any order) as long as options are 
comma-separated, as shown in the following example:

MALLOCDEBUG=align:0,validate_ptrs,report_allocations

Each configuration option should only be specified once when setting 
MALLOCDEBUG. If a configuration option is specified more than once per 
setting, only the final instance will apply. For a further detailed explanation about 
these options, see 4.3.1, “MALLOCDEBUG with the debug memory allocator” on 
page 182.

The debug memory allocator is not appropriate for full-time, constant, or 
system-wide use. Although it is designed for minimal performance impact upon 
the application being debugged, it may have significant negative impact upon 
overall system throughput if it is used widely throughout a system. In particular, 
setting MALLOCTYPE=debug in the /etc/environment file (to enable debug 
malloc for the entire system) is unsupported, and will likely cause significant 
system problems, such as excessive use of paging space. The debug memory 
allocator should only be used to debug single applications or small groups of 
applications at the same time.

Note: The debug memory allocator does not support the several 
MALLOCDEBUG options explained in 4.3.2, “MALLOCDEBUG with memory 
allocators other than debug” on page 190.
 Chapter 4. Managing the memory heap 177



In addition, please note that the debug memory allocator is not appropriate for 
use in some debugging situations. Because the debug memory allocator places 
each individual memory allocation on a separate page, programs that issue 
many small allocation requests will see their memory usage increase 
dramatically. These programs may encounter new failures as memory allocation 
requests are denied due to a lack of memory or paging space. These failures are 
not necessarily errors in the program being debugged, and they are not errors in 
the debug memory allocator.

4.2.5  User-defined malloc replacement
If none of memory allocators provided by AIX did not satisfy the specific memory 
management requirement for your applications, you can implement your own 
memory allocator, called a user-defined memory allocator, on AIX. This 
functionality is referred to as a user-defined malloc replacement.

Once the user-defined memory allocator has been prepared, all the calls to the 
malloc subsystem from user applications, such as malloc(), free(), and so on, are 
transparent; no modification is necessary.

In the C and C++ program languages linkage mechanism, it is always possible to 
override system subroutines (external linkage symbols) by user-defined functions 
(internal linkage symbols). For example, the sample source code shown in 
Example 4-1 defines a fake version of malloc(), which simply returns the address 
of global character array (as long as the program requires only one memory area 
up to size of BUFSIZ, this fake version of malloc() is sufficient for this program). If 
compiled and executed, the program prints the following output:

$ cc fake_malloc.c
$ a.out
p = 1234567890
$ echo $?
0

Example 4-1   fake_malloc.c

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>

char global_buf[BUFSIZ];

/* fake malloc() routine. */
void *malloc(size_t sz)
{
    /* return the address of global character array. */
    return((void *)global_buf);
}

178 Developing and Porting C and C++ Applications on AIX



int
main(int argc, char *argv[])
{
    char *p;

    if ((p = (char *)malloc(BUFSIZ)) == (char *)NULL) {
        perror("malloc() failed.\n");
        exit(1);
    }
    /* write some data to the address pointed by p. */
    strcpy(p, "1234567890");
    /* print the written data. */
    printf("p = %s\n", p);

    exit(0);
}

It must be clear that this overriding of external symbol names is different from the 
user-defined malloc replacement. If programmed appropriately, the user-defined 
memory allocator will be used for all the malloc subsystem calls, not only from 
user codes, but also from functions within shared libraries (many subroutines 
within shared libraries provided by AIX call the malloc subsystem internally).

To implement user-defined memory allocators, the following requirements must 
be satisfied:

� A user defined memory memory allocator must provide both the 32- and 
64-bit object modules. Both modules must be placed in a library archive file 
and the 32-bit shared object must be named mem32.o and the 64-bit shared 
object must be named mem64.o.

� A user-defined memory memory allocator should be thread-safe. This is the 
programmer’s responsibility; there are no automatic checks to verify it.

� A user-defined memory memory allocator must implement the functions with 
those names that start with double underscore characters, as shown in 
Table 4-3.

Table 4-3   User-defined replacement subroutines

Function name, proto-type declaration Description

void *__malloc__(size_t) A user-defined replacement of malloc().

void __free__(void *) A user-defined replacement of free().

void *__realloc__(void *, size_t) A user-defined replacement of realloc().

void *__calloc__(size_t, size_t) A user-defined replacement of calloc().
 Chapter 4. Managing the memory heap 179



� The shared objects (mem32.o for 32-bit and mem64.o for 64-bit) must export 
the following symbols:

– __malloc__ 

– __free__ 

– __realloc__ 

– __calloc__ 

– __mallinfo__ 

– __mallopt__ 

– __malloc_init__ 

– __malloc_prefork_lock__ 

– __malloc_postfork_unlock__

The shared objects can optionally export __malloc_once__.

To select the user-defined memory allocator, set the MALLOCTYPE environment 
variable before executing programs on the Korn shell prompt:

$ export MALLOCTYPE=user:archive_name

Where the archive_name specifies the library archive name that contains the 
user-defined malloc subsystem replacement subroutines.

int __mallopt__(int, int) A user-defined replacement of mallopt().

struct mallinfo __mallinfo__() A user-defined replacement of mallinfo().

void __malloc_once__() Will be called once before any other 
user-defined malloc entry point is called.

void __malloc_init__(void) Called by the Pthread initialization routine 
to initialize the user-defined memory 
allocator in the multi-threaded 
programming environment.1

void __malloc_prefork_lock__(void) Called by Pthread when the fork() 
subroutine is called.1

void __malloc_postfork_unlock__(void) Called by Pthread when the fork() 
subroutine is called.1

1. These functions are mandatory in the multi-threaded environment.

Function name, proto-type declaration Description
180 Developing and Porting C and C++ Applications on AIX



A user-defined memory allocator can also be specified in the program code by 
declaring the global symbol _malloc_user_defined_name, as shown in the 
following example:

char *_malloc_user_defined_name=”archive_name”;

If both the MALLOCTYPE environment variable and the global symbol are used 
to specify the archive_name, the name specified by MALLOCTYPE will override 
the one specified by the global symbol.

4.2.6  Malloc multiheap
Historically, the malloc subsystem was designed for the non-threaded 
programming environment. Therefore, there was an single memory pool, or 
memory heap, per-process basis. After the evolution of the multi-threaded 
programming environment, it was realized that the single heap does not satisfy 
the memory allocation requests from multi-threaded applications, because a 
single malloc() call from a user thread can lock the entire malloc subsystem and 
the other user threads would be starving; thus, malloc() calls within a process 
would be serialized.

By providing multiple heaps, malloc multiheap efficiently supports the memory 
allocation requests from multi-threaded applications; thus, the malloc multiheap 
has a finer locking mechanism than the single heap malloc subsystem. The 
potential performance enhancement is particularly likely for multi-threaded C++ 
programs, because these may make use of the malloc subsystem whenever a 
constructor or destructor is called. 

Beginning with Version 5.1, the malloc multiheap is enabled by default in the 
malloc subsystem on AIX. Therefore, it does not require any user settings, 
though it can be tuned using the MALLOCMULTIHEAP environment variable. To 
set the MALLOCMULTIHEAP environment variable, use the following syntax:

MALLOCMULTIHEAP=[[heaps:N],[considersize],...]

Where:

heaps:N The heaps:N option can be used to change the maximum 
number of heaps to any value from 1 through 32, where N 
is the number of heaps. If n is set to a value outside the 
given range, the default value of 32 is used.

Note: User-defined memory allocators written in C++ are not supported, 
because the C++ standard library libC.a depends on the standard malloc 
subsystem provided by the C standard library libc.a.
 Chapter 4. Managing the memory heap 181



considersize By default, malloc multiheap selects the next available 
heap. If the considersize option is specified, malloc 
multiheap will use an alternate heap-selection algorithm 
that tries to select an available heap that has enough free 
space to handle the request. This may minimize the 
working set size of the process by reducing the number of 
sbrk subroutine calls. However, because of the additional 
processing required, the considersize heap-selection 
algorithm is somewhat slower than the default heap 
selection algorithm.

Multiple keywords are separated by a comma.

4.3  Use of MALLOCDEBUG options
This section explains the use of the MALLOCDEBUG environment variable by 
providing the following sections:

� Section 4.3.1, “MALLOCDEBUG with the debug memory allocator” on 
page 182

� Section 4.3.2, “MALLOCDEBUG with memory allocators other than debug” 
on page 190

4.3.1  MALLOCDEBUG with the debug memory allocator
The debug memory allocator supports the following options specified by the 
MALLOCDEBUG environment variable:

� “align:N” on page 183

� “validate_ptrs” on page 185

� “postfree_checking” on page 186

� “allow_overreading” on page 188

� “override_signal_handling” on page 188

� “record_allocations” on page 189

� “report_allocations” on page 189

Note: The malloc multiheap is enabled internally on AIX beginning with 
Version 5.1 with the default value of 32. Therefore, echo $MALLOCMULTIHEAP 
prints a blank line by default.
182 Developing and Porting C and C++ Applications on AIX



align:N
By default, malloc() returns a pointer aligned on a 2-word3 boundary in the 32-bit 
and 4-word boundary in the 64-bit user process environment. The align:N option 
can be used to change the default alignment, where N is the number of bytes to 
be aligned and can be any power of 2 between 0 and 4096 inclusive (for 
example, 0, 1, 2, 4, …). The values 0 and 1 are treated as the same, that is, there 
is no alignment, so any memory accesses outside the allocated area will cause 
an abort(). 

The following formula can be used to calculate how many bytes of over-reads or 
over-writes the debug memory allocator will allow for a given allocation request 
when MALLOCDEBUG=align:N and size is the number of bytes to be allocated:

((((size / N) + 1) * N) - size) % N

The example program shown in Example 4-2 demonstrates the effect of the 
align:N option. This program allocates a character string array size of 10 bytes, 
then prompts user to input some data, which will be stored in the previously 
allocated array.

Example 4-2   debug_malloc_align.c

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#define MAX_SIZE 10
#define EXIT_CODE -1

int main(int argc, char *argv[])
{

char *ptr = (char *)NULL;
char str[BUFSIZ];

if ((ptr = (char *)malloc(MAX_SIZE)) == (char *)NULL) {
perror("malloc() failed.\n");
exit(EXIT_CODE);

}
printf("Enter the value for ptr: ");
gets(str);
strcpy(ptr, str);

Note: The debug memory allocator does not support the MALLOCDEBUG 
options explained in 4.3.2, “MALLOCDEBUG with memory allocators other 
than debug” on page 190.

3  The term word means an implementation dependent unit of memory. On AIX, a word is 32 bits (4 
bytes).
 Chapter 4. Managing the memory heap 183



printf("ptr points at : %p\n", ptr);
printf("The value stored in ptr is : %s\n", ptr);
free(ptr);

}

Before executing the program, set the following environment variables to enable 
the align:N option from the command prompt:

$ export MALLOCTYPE=debug
$ export MALLOCDEBUG=align:2

Applying the above mentioned formula for align:2, the number of bytes of 
over-read or over-write allowed is:

align:2 ((((10/2) + 1) * 2) - 10) % 2 = 0

Therefore, the debug memory allocator will not allow any over-reads or 
over-writes. If executed, the program would print the following output (the 
character string 12345678901 is user input):

$ a.out
Enter the value for ptr: 12345678901
Segmentation fault(coredump)

The program is terminated by a segmentation fault, because the length of ptr is 
12 (11 printable characters plus the NULL-termination character ‘0x0’).

If align:4 or align:8 is specified, the allowed over-read or over-write memory byte 
region size would be 2 or 6 bytes, as shown in the following calculation:

align:4 ((((10/4) + 1) * 4) - 10) % 4 = 2

align:8 ((((10/8) + 1) * 8) - 10) % 8 = 6

For example, if align:4 is specified, the same program prints the following output 
(no segmentation fault occurs):

$ export MALLOCTYPE=debug
$ export MALLOCDEBUG=align:4
$ a.out
Enter the value for ptr: 12345678901
ptr points at : 20001ff4
The value stored in ptr is : 12345678901

The following points should be considered while setting the align:N option:

� For allocated space to be word aligned, specify align:N with a value of 4.

� If the align:N option is not explicitly set, it defaults to 8.
184 Developing and Porting C and C++ Applications on AIX



validate_ptrs
By default, free() does not validate its input pointer to ensure that it actually 
references memory previously allocated by malloc(). If the parameter passed to 
free() is a NULL value, free() will return to the caller without taking any action. If 
the parameter is invalid, the results will be undefined. A core dump may or may 
not occur in this case, depending upon the value of the invalid parameter. 
Specifying the validate_ptrs option will cause free() to perform extensive 
validation on its input parameter. If the parameter is found to be invalid (that is, it 
does not reference memory previously allocated by a call to malloc() or realloc()), 
debug malloc will print an error message stating why it is invalid. The abort() 
function is then called to terminate the process and produce a core file.

The example program shown in Example 4-3 demonstrates the effect of the 
validate_ptrs option. This is slightly modified from Example 4-2 on page 183 and 
calls the free() subroutine twice at the end of the program. Though the second 
call of free() is an error, it does not abort the execution of the program in normal 
situations.

Example 4-3   debug_malloc_vptr.c

/*This program is a slightly modified version of debug_mallo_align.c. We are 
just trying to free the ptr memory even after it is freed by the first free() 
call*/

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#define MAX_SIZE 10
#define EXIT_CODE -1

int main(int argc, char*argv[])
{

char *ptr = NULL;
char str[BUFSIZ];
if ((ptr = (char *)malloc(MAX_SIZE)) == (char *)NULL) {

perror("malloc() failed.\n");
exit(EXIT_CODE);

}
printf("Enter the value for ptr: ");
gets(str);
strcpy(ptr, str);
printf("ptr points at : %p\n", ptr);
printf("The value stored in ptr is : %s\n", ptr);
free(ptr);
free(ptr); /* This is invalid call. ptr is already freed. */

}

 Chapter 4. Managing the memory heap 185



Before executing the program, set the following environment variables to enable 
the validate_ptr option from the command prompt:

$ export MALLOCTYPE=debug
$ export MALLOCDEBUG=validate_ptrs

If executed, the program would print the following output (the character string 
1234567890 is user input):

$ a.out
Enter the value for ptr: 1234567890
ptr points at : 20001ff0
The value stored in ptr is : 1234567890
Debug Malloc: Buffer (0x20001ff0) has already been free'd.
IOT/Abort trap(coredump)

As highlighted in the output, the debug memory allocator has detected the invalid 
second free() call.

postfree_checking
By default, the malloc subsystem allows the calling program to access memory 
that has previously been freed. This should result in an error in the calling 
program. If the postfree_checking option is specified, any attempt to access 
memory after it is freed will cause the debug memory allocator to report the error 
and abort the program; then a core file will be produced.

If the same program shown in Example 4-3 on page 185 is executed with the 
postfree_checking by setting the following environment variables:

$ export MALLOCTYPE=debug
$ export MALLOCDEBUG=postfree_checking

then it will result in a segmentation fault, though the reason for that is not clearly 
reported in the following output:

$ a.out
Enter the value for ptr: 1234567890
ptr points at : 20001ff0
The value stored in ptr is : 1234567890
Segmentation fault(coredump)

The postfree_checking option identifies the access (if any) to the memory after it 
is freed, but the validate_ptrs option does not. The example program shown 
Example 4-4 on page 187 illustrates the difference between the 

Note: Specifying the postfree_checking option automatically enables the 
validate_ptrs option. 
186 Developing and Porting C and C++ Applications on AIX



postfree_checking and validate_ptrs options. This program is trying to access the 
ptr memory after it is freed by the free() call.

Example 4-4   debug_malloc_pfc.c

#include <stdio.h>
#include <stdlib.h>
#include <errono.h>
#define MAX_SIZE 10
#define EXIT_CODE -1

int main(int argc, char *argv[])
{

char *ptr = (char *)NULL;
char str[BUFSIZ];
if ((ptr = (char *)malloc(MAX_SIZE)) == (char *)NULL) {

perror("malloc() failed.\n");
exit(EXIT_CODE);

}
printf("Enter the value for ptr: ");
gets(str);
strcpy(ptr, str);
printf("ptr points at : %p\n", ptr);
printf("The value stored in ptr is : %s\n", ptr);
free(ptr);
/* Wrong. trying to access memory after it is freed. */
printf("The value stored in ptr is : %s\n", ptr); 

}

Before executing the program, set the following environment variables to enable 
the validate_ptr option from the command prompt:

$ export MALLOCTYPE=debug
$ export MALLOCDEBUG=validate_ptrs

If executed, the program would print the following output (the highlighted 
character string 12345 is a user input):

$ a.out
Enter the value for ptr: 12345
ptr points at : 20001ff0
The value stored in ptr is : 12345

Apparently the debug memory allocator with the validate_ptr option did not detect 
the error. The reason is that the validate_ptrs option checks for the validity of ptr 
only when it is passed to a free() function call.
 Chapter 4. Managing the memory heap 187



If the same program is executed with the validate_ptrs option, the program would 
print the following output (the highlighted character string 12345 is a user input):

$ export MALLOCTYPE=debug
$ export MALLOCDEBUG=postfree_checking
$ a.out
Enter the value for ptr: 12345
ptr points at : 20001ff0
The value stored in ptr is : 12345
Segmentation fault(coredump)

With the postfree_checking option set, the debug memory allocator identifies the 
erroneous access to the memory after it is freed.

allow_overreading
By default, the debug memory allocator will respond with a segmentation 
violation and if the program attempts to read past the end of allocated memory. 
The allow_overreading option instructs the debug memory allocator to ignore 
over-reads of this nature so that other types of errors, which may be considered 
more serious, can be detected first.

override_signal_handling
The debug memory allocator reports errors in one of two ways:

� Memory access errors (such as trying to read or write past the end of 
allocated memory) will cause a segmentation violation (SIGSEGV), resulting 
in a core dump.

� For other types of errors (such as trying to free space that was already freed), 
the debug memory allocator will print an error message, then call abort(), 
which will send a SIGIOT signal to terminate the current process.

If the calling program is blocking or catching the SIGSEGV and/or the SIGIOT 
signals, the debug memory allocator will be prevented from reporting errors. The 
override_signal_handling option provides a means of addressing this situation 
without recording and rebuilding the application. 

If the override_signal_handling option is specified, the debug memory allocator 
will perform the following actions upon each call to one of the memory allocation 
routines (malloc(), free(), realloc(), or calloc()): 

1. Disables any existing signal handlers set up by the application.

2. Sets the action for both SIGIOT and SIGSEGV to the default (SIG_DFL).

3. Unblocks both SIGIOT and SIGSEGV.
188 Developing and Porting C and C++ Applications on AIX



When using the override_signal_handling option, keep in mind the following:

� If an application signal handler modifies the action for SIGSEGV between 
memory allocation routine calls and then attempts an invalid memory access, 
the debug memory allocator will be unable to report the error (the application 
will not exit and no core file will be produced). 

� The override_signal_handling option may be ineffective in a multi-threaded 
application environment because the debug memory allocator uses 
sigprocmask() and many multi-threaded processes use pthread_sigmask().

� If a user thread calls sigwait() without including SIGSEGV and SIGIOT in the 
signal set and the debug memory allocator subsequently detects an error, the 
user thread will hang because the allocator can only generate SIGSEGV or 
SIGIOT.

record_allocations
The record_allocations option instructs the debug memory allocator to create an 
allocation record for each malloc() request. Each record contains the following 
information: 

� The original address returned to the caller from malloc().

� Up to six function trace backs starting from the call to malloc().

Each allocation record will be retained until the memory associated with it is 
freed.

report_allocations
The report_allocations option instructs the debug memory allocator to report all 
active allocation records at application exit. An active allocation record will be 
listed for any memory allocation that was not freed prior to application exit.

To demonstrate how the report_allocations works, we have slightly modified the 
example program shown in Example 4-3 on page 185 by removing two free() 
lines (highlighted in the example).

Before executing the program, set the following environment variables to enable 
the validate_ptr option from the command prompt:

$ export MALLOCTYPE=debug
$ export MALLOCDEBUG=report_allocations

Note: Specifying the report_allocations option automatically enables the 
record_allocations option.
 Chapter 4. Managing the memory heap 189



If executed, the program would print the following output (the highlighted 
character string 12345678901 is a user input):

$ a.out
Enter the value for ptr: 12345678901
ptr points at : 20003ff0
The value stored in ptr is : 12345678901
Current allocation report:
    Allocation #1: 0x20003FF0
        Allocation size: 0xA
        Allocation traceback:
        0x100001B4  __start
        0x1000035C  main
        0xD01D7104  malloc

    Allocation #2: 0x20001FF0
        Allocation size: 0x10
        Allocation traceback:
        0x1000035C  main
        0xD01D7104  malloc
        0xD01D6C28  init_malloc
        0xD01D6120  check_environment
        0xD022BA10  malloc_debug_start
        0xD01E42D4  atexit

Total allocations: 2.

The output contains the allocation report (Allocation #1) for the un-freed memory 
in the program (the memory address printed for Allocation #1 is same as the 
address location of ptr: 0x20003FF0). Because this memory has not been freed, 
the debug memory allocator detects it and then prints the allocation report.

4.3.2  MALLOCDEBUG with memory allocators other than debug
The options shown in Table 4-4 on page 191, which can be specified by the 
MALLOCDEBUG environment value, are supported by 3.1, default, and default 
with malloc buckets extension memory allocators:

Note: One allocation record will always be listed for the atexit() handler that 
prints the allocation records, as shown in the previous output (Allocation #2).
190 Developing and Porting C and C++ Applications on AIX



Table 4-4   MALLOCDEBUG options

Multiple options can be specified by separating them using a comma as follows:

MALLOCDEBUG=option1,option2,...

verbose
The verbose option instructs memory allocators that information on errors that 
occurred in the malloc subsystem will be reported and actions can be performed 
if specified.

The verbose option is not enabled by default, but can be enabled and configured 
prior to process startup by setting the MALLOCDEBUG environment variable as 
follows:

MALLOCDEBUG=verbose

All errors caught in the malloc subsystem are output to standard error, along with 
detailed information.

The verbose option allows the user to provide a function that the malloc 
subsystem will call when it encounters an error. Before returning, the malloc 
subsystem calls the user-provided function, if it is specified.

A global function pointer is available for use by the user. In the code, the following 
function pointer should be set to the user’s function:

extern void (*malloc_err_function)(int, ...)

The following user-defined function must be implemented:

void malloc_err_function(int, ...)

For example, to use the user-defined function abort_sub, the following code must 
be inserted into the user’s application:

malloc_err_function = &abort_sub;

Option Feature name Related section

verbose Malloc report “verbose” on page 191

arenaa

a. The arena option is not supported by the 3.1 memory allocator.

“arena” on page 192

trace Malloc trace “trace” on page 193

log Malloc log “log” on page 196
 Chapter 4. Managing the memory heap 191



A sample program shown in Example 4-5 illustrates the use of the verbose 
option. When executed, the program prints the following error message:4

$ MALLOCDEBUG=verbose a.out
Malloc Report: Corruption in the Yorktown Malloc arena has been detected.
IOT/Abort trap(coredump)

The default memory allocator with the verbose option has detected the 
corruption in this output.

Example 4-5   debug_malloc_verbose.c

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <malloc.h>

int main(int argc, char *argv[])
{
    char *ptr;
    char buf[BUFSIZ];

    if ((ptr = (char *)malloc(1200)) == (char *)NULL) {
        sprintf(buf, "malloc() failed at %d in %s with errno = %d"
            , __LINE__, __FILE__, errno);
        perror(buf);
    }
    free(ptr);
    memset(ptr - 8, (char)-1, 40);
    free(ptr - 4096);

    exit(0);
}

arena
The arena option instructs the malloc subsystem to check the structures that 
contain the free blocks before every allocation request is processed. This option 
will ensure that the arena is not corrupted. Also, the arena will also be checked 
when an error occurs.

The checkarena option checks for NULL pointers in the free tree or pointers that 
do not fall within a certain range. If an invalid pointer is encountered during the 
descent of the tree, the program might perform a core dump depending on the 
value of the invalid address.

4  Yorktown is an internal name used in the AIX development to refer to the default memory allocator.
192 Developing and Porting C and C++ Applications on AIX



The arena option is not enabled by default, but can be enabled and configured 
prior to process startup by setting the MALLOCDEBUG environment variable as 
follows:

MALLOCDEBUG=checkarena

A sample program shown in Example 4-6 illustrates the use of the arena option. 
When executed, the program prints the following error message:

$ MALLOCDEBUG=verbose,arena a.out
Malloc Report: The address passed to free, 0x1ffff5f8, is outside the valid 
range of addresses allocated by malloc (errno = 0).
IOT/Abort trap(coredump)

Example 4-6   debug_malloc_arena.c

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <malloc.h>

int main(int argc, char *argv[])
{
    char *ptr;
    char buf[BUFSIZ];

    if ((ptr = (char *)malloc(16)) == (char *)NULL) {
        sprintf(buf, "malloc() failed at %d in %s with errno = %d"
            , __LINE__, __FILE__, errno);
        perror(buf);
        exit(1);
    }
    free(ptr-4096);

    exit(0);
}

trace
The trace option instructs the malloc subsystem to use the trace facility. Traces of 
the malloc(), realloc(), and free() subroutines are recorded for use in problem 
determination and performance analysis.

The trace option is not enabled by default, but can be enabled and configured 
prior to process startup by setting the MALLOCDEBUG environment variable as 
follows:

MALLOCDEBUG=trace
 Chapter 4. Managing the memory heap 193



The trace option supports the following trace hook IDs:

� HKWD_LIB_MALL_COMMON (hook ID: 60a)

When tracing is enabled for HKWD_LIB_MALL_COMMON, the input 
parameters, as well as return values for each call to malloc(), realloc(), and 
free() subroutines, are recorded in the trace subsystem. In addition to 
providing trace information about the malloc subsystem, the trace option also 
performs checks of its internal data structures. If these structures have been 
corrupted, these checks will likely detect the corruption and provide temporal 
data, which is useful in problem determination.

� HKWD_LIB_MALL_INTERNAL (hook ID: 60b)

When tracing is enabled for HKWD_LIB_MALL_INTERNAL and corruption is 
detected, information about the internal data structures are logged through 
the trace subsystem.

To use the trace option, do the following:

1. Start the trace subsystem before executing the target application. If you use 
the command line interface, type the following command as the root user:

# trace -j’60a,60b’ -a

If you use SMIT, run smit -C trace and select START Trace, and then select 
the hook keywords 60a and 60b in the high-lighted field in Example 4-7.

Example 4-7   Start trace

START Trace

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

                                                        [Entry Fields]
  EVENT GROUPS to trace                              []                      +
  ADDITIONAL event IDs to trace                      []                      +
  Event Groups to EXCLUDE from trace                 []                      +
  Event IDs to EXCLUDE from trace                    []                      +
  Trace MODE                                         [alternate]             +
  STOP when log file full?                           [no]                    +
  LOG FILE                                           [/var/adm/ras/trcfile]
  SAVE PREVIOUS log file?                            [no]                    +
  Omit PS/NM/LOCK HEADER to log file?                [yes]                   +
  Omit DATE-SYSTEM HEADER to log file?               [no]                    +
  Run in INTERACTIVE mode?                           [no]                    +
  Trace BUFFER SIZE in bytes                         [131072]                 #
  LOG FILE SIZE in bytes                             [1310720]                #
  Buffer Allocation                                  [automatic]             +

F1=Help             F2=Refresh          F3=Cancel           F4=List
194 Developing and Porting C and C++ Applications on AIX



F5=Reset            F6=Command          F7=Edit             F8=Image
F9=Shell            F10=Exit            Enter=Do

2. Run the target application. You should remember the process ID of the 
application.

3. Stop the trace subsystem. If you use the command line interface, type the 
following command as the root user:

# trcstop

If you use SMIT, run smit -C trace and select STOP Trace.

4. Generate a trace report. If you use the command line, type the following 
command as the root user:

# trcrpt -O exec=y -O pid=y -O tid=y -O svc=y -O timestamp=1

If you use SMIT, run smit -C trace and select Generate a Trace Report.

Example 4-8   Trace output of the trace option

Fri Feb 28 14:29:20 2003
System: AIX 5.2 Node: murumuru
Machine: 000C91AD4C00
Internet Address: 0903046A 9.3.4.106
The system contains 2 cpus, of which 2 were traced.
Buffering: Kernel Heap
This is from a 32-bit kernel.
Tracing only these hooks, 60a,60b

/usr/bin/trace -j60a 60b -a

ID  PROCESS NAME   I SYSTEM CALL     ELAPSED   APPL    SYSCALL KERNEL  INTERRUPT

001 --1-                            0.000000                   TRACE ON channel 0
                                                               Fri Feb 28 14:29:20 2003
60A --1-                            5.561069   HKWD_LIBC_MALL_COMMON
                                               function=malloc() [Default Allocator]
                                               size=000A
                                               returnptr=20000728
60A --1-                            5.561261   HKWD_LIBC_MALL_COMMON
                                               function=free() [Default Allocator]
                                               inptr=20000728
60A --1-                           10.131345   HKWD_LIBC_MALL_COMMON
                                               function=malloc() [Default Allocator]
                                               size=0290
                                               returnptr=20005878
 Chapter 4. Managing the memory heap 195



log
The log option instructs the malloc subsystem to record information on the 
number of active allocations of a given size and stack trace back of a user 
program. This data can be used in problem determination and performance 
analysis, if the user program is modified accordingly.

Data recorded with the log option
If the log option is enabled, the following data is recorded for each malloc or 
realloc subroutine invocation:

� The size of the allocation.

� The stack trace back of the invocation. The depth of the trace back that is 
recorded is a configurable option.

� The number of currently active allocations that match the size and stack trace 
back.

The data is stored into the following global structure:5

struct malloc_log *malloc_log_table;
#ifndef MALLOC_LOG_STACKDEPTH
#define MALLOC_LOG_STACKDEPTH 4
#endif

struct malloc_log {
size_t size;
size_t cnt;
uintptr_t callers [MALLOC_LOG_STACKDEPTH];

}
size_t malloc_log_size;

The size of the malloc_log structure can change. If the default call-stack depth is 
greater than 4, the structure will have a larger size. The current size of the 
malloc_log structure is stored in the globally exported malloc_log_size variable. 
A user can define the MALLOC_LOG_STACKDEPTH macro to the stack depth 
that was configured at process start time.

The malloc_log_table can be accessed in the following ways:

� Using the get_malloc_log() sub-routine as follows:

#include <malloc.h>
size_t get_malloc_log (void *addr,void *buf,size_t bufsize);

This function copies the data from malloc_log_table into the provided buffer. 
The data can then be accessed without modifying the malloc_log_table. The 
data represents a snapshot of the malloc log data for that moment of time.

5  This is included in the /usr/include/malloc.h header file.
196 Developing and Porting C and C++ Applications on AIX



� Using the get_malloc_log_live() sub-routine as follows:

#include <malloc.h>
struct malloc_log *get_malloc_log_live (void *addr);

The advantage of this method is that no data needs to be copied, therefore 
performance suffers less. Disadvantages of this method are that the data 
referenced is volatile and the data may not encompass the entire malloc 
subsystem, depending on which malloc algorithm is being used.

To clear all existing data from the malloc log tables, use the reset_malloc_log() 
subroutine as follows:

#include malloc.h
void reset_malloc_log(void *addr);

The sample program shown in Example 4-9 on page 198 demonstrates the use 
of the get_malloc_log_live() sub-routine. After it is compiled, the program would 
print the following output, if the log option is enabled:

$ cc get_malloc_live.c
$ export MALLOCTYPE=
$ export MALLOCDEBUG=log
$ a.out
i is 1217.
The size of the allocations is 8.
The number of matching allocations is 1.
i is 1241.
The size of the allocations is 16.
The number of matching allocations is 1.
i is 3293.
The size of the allocations is 8.
The number of matching allocations is 1.

The program has a for loop to dump the content of log_ptr, if there are referenced 
slots in the data structure referenced by log_ptr.

Note: Do not set the MALLOCTYPE=log environment variable before invoking 
the compiler, because it does not support this environment variable. If set, it 
prints the following message:

cc: 1501-230 Internal compiler error; please contact your Service 
Representative.
 Chapter 4. Managing the memory heap 197



Example 4-9   get_malloc_log_live.c

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <malloc.h>

int main(int argc, char *argv[])
{
    char *ptr1 = (char *)NULL, *ptr2 = (char *)NULL, *ptr3 = (char *)NULL;
    int i;

    struct malloc_log *log_ptr;

    ptr1 = (char *)malloc(8);
    ptr2 = (char *)malloc(16);
    ptr3 = (char *)malloc(8);

    log_ptr = get_malloc_log_live(ptr1);

    for (i = 0; i < DEFAULT_RECS_PER_HEAP; i++) {
        if (log_ptr->cnt > 0) {
            printf("i is %d.\n", i);
            printf("The size of the allocations is %d.\n", log_ptr->size);
            printf("The number of matching allocations is %d.\n"
                , log_ptr->cnt);
        }
        log_ptr++;
    }
    exit(0);
}

Enabling malloc log
The log option is not enabled by default, but can be enabled and configured prior 
to process startup by setting the MALLOCDEBUG environment variable as 
follows:

MALLOCDEBUG=log

To enable the trace option with user-specified configuration options, set the 
MALLOCDEBUG environment variable as follows:

MALLOCDEBUG=log:records_per_heap:stack_depth

Note: The records_per_heap and stack_depth parameters must be specified 
in order. Leaving a value blank will result in setting that parameter to the 
default value.
198 Developing and Porting C and C++ Applications on AIX



The predefined MALLOCDEBUG configuration options include the following:

records_per_heap Used to specify the number of malloc log records that are 
stored for each heap. This parameter affects the amount 
of memory that is used by malloc log. The default value is 
4096, the maximum value is 65535.

stack_depth Used to specify the depth of the function-call stack that is 
recorded for each allocation. This parameter affects the 
amount of memory used by malloc log, as well as the size 
of the malloc_log structure. The default value is 4, the 
maximum is 32.

Limitations
The performance of all programs can degrade when the trace option is enabled, 
due to the cost of storing data to memory. Memory usage will also increase.

4.4  Heap management using MEMDBG
The memdbg package provided by IBM C and C++ compiler products provides 
several useful features, including the user-created heap (explained in this 
section), to deal with managing the process heap. The user-created heap can be 
used in your application source codes in order to replace the malloc subsystem 
calls, such as malloc() and calloc(). It could be seen as a wrapper to the interface 
to the malloc subsystem and shmat services.

If applications are modified to use the user-created heap, then they can use not 
only the default process heap, but also the shared memory segments for memory 
allocation requests.

The user-defined memory allocation functions are provided by the libhu.a library 
and defined in the header file umalloc.h. You can either handle user-created 
heaps or the default process heap with the following functions:

� _ucalloc()
� _umalloc()
� _uheapmin()

As shown in Example 4-10 on page 200, the following filesets must be installed 
on the AIX 5L Version 5.2 system in order to use these functions:

� memdbg.adt
� memdbg.aix50.adt
� memdbg.msg.en_US
 Chapter 4. Managing the memory heap 199



Example 4-10   /usr/lib/libhm.a and memdgb.* package

# ls -l /usr/lib/libhu.a
lrwxrwxrwx   1 bin      bin              20 Jan 29 19:47 /usr/lib/libhu.a@ -> 
/usr/vac/lib/libhu.a*
# lslpp -w /usr/lib/libhu.a
  File                                        Fileset               Type
  ----------------------------------------------------------------------------
  /usr/lib/libhu.a                            memdbg.adt            Symlink
# lslpp -w /usr/vac/lib/libhu.a
  File                                        Fileset               Type
  ----------------------------------------------------------------------------
  /usr/vac/lib/libhu.a                        memdbg.aix50.adt      Symlink
# lslpp -L memdbg.*
  Fileset                      Level  State  Type  Description (Uninstaller)
  ----------------------------------------------------------------------------
  memdbg.adt                 4.4.3.0    C     F    User Heap/Memory Debug Toolkit
  memdbg.aix50.adt           4.4.3.0    C     F    User Heap/Memory Debug Toolkit
                                                   for AIX 5.0
  memdbg.msg.en_US           4.4.3.0    C     F    User Heap/Memory Debug
                                                   Messages--U.S. English

More further information about these subroutines, please refer to Chapter 4, 
“Using Memory Heaps”, in VisualAge C++ Professional for AIX Programming 
Tasks and Library Reference, SC09-4963.

4.4.1  How to handle a user-created heap
To use a user-created heap, there are some basic tasks, as summarized in the 
following:

1. Allocate memory chunks to be used for the user-created heap, depending on 
the type of memory source:

– Call the system malloc() sub-routine to request memory from the process 
heap.

Note: Although these sub-routines are convenient to use, the following points 
must be understood before using these sub-routines:

� Application source codes must be modified to call these routines.

� These subroutines are not considered as a user-created malloc 
replacement (see 4.2.5, “User-defined malloc replacement” on page 178). 
Therefore, the user processes still require the default process heap for the 
memory allocation requests made by functions in shared libraries, even if 
you have specified to use shared memory segments for the user-created 
heap.
200 Developing and Porting C and C++ Applications on AIX



– Call the shmget() and shmat() sub-routines to request from the shared 
memory segments.

2. Call the _ucreate() sub-routine to create a handle to refer to the allocated 
memory. The created handle will be used to refer to the allocated memory 
pool in the subsequent _umalloc() subroutine calls.

3. Use the user-created heap.

– Call the _umalloc() subroutine with the handle instead of the system 
malloc() subroutine.

– Call the _ucalloc() subroutine with the handle instead of the system 
calloc() subroutine.

– Call the _ufree() subroutine with the handle instead of the system free() 
subroutine.

4. Release the user heap memory before the process exit.

a. Deallocate the all acquired memory within the user-created heap by the 
_ufree() function

b. Destroy the user-created heap with the _udestroy() function with the 
handle.

c. Deallocate the memory chunks allocated in the first step depending on the 
type of memory source:

• Call the system free() sub-routine to free memory from the process 
heap.

• Call the shmdt() and shmctl() sub-routines to remove the allocated 
shared memory segments from the process address space.

Managing the user-created heap size
Once a user-created heap is fully utilized, further allocation requests from that 
heap will fail, unless you have added more memory chunks using the 
_uaddmem() sub-routine. So make sure to allocate a block of memory large 
enough to satisfy all the memory requests in your program.

Changing the default heap source
The use of _umalloc() and _ucalloc() does not conflict with the malloc subsystem 
subroutines, such as malloc() and calloc(). If malloc() is called within a user 
program, then the default process heap would be used to satisfy the memory 

Note: For any memory object allocated by _umalloc() or _ucalloc(), you 
can find out from what heap it was allocated by calling the _mheap() 
sub-routine.
 Chapter 4. Managing the memory heap 201



request, even if the program has allocated a user-created heap in the shared 
memory segments.

However, if the _udefault() sub-routine with a handle parameter that points to the 
shared memory segments is called within a user program, then subsequent calls 
to malloc() and calloc() would start use of the user-created heap.

The default heap source changes only for the Pthread that has called _udefault() 
within a process. You can use a different default heap for each thread of your 
multi-threaded application program.

The _udefault() function call returns the current default heap, so that the value 
can be saved and be used later to restore the default heap source. The default 
process heap is specified by the _RUNTIME_HEAP6 macro.

Gathering statistical data about user-created heaps
The _ustats() sub-routine reports the following statistical data about the specified 
user-created heap:

� How much memory the heap holds (excluding memory used for overhead)?

� How much memory is currently allocated from the heap?

� What type of memory is in the heap?

� The size of the largest contiguous piece of memory available from the heap?

4.4.2  A user-defined heap allocated from shared memory segments
An sample program shown in Example 4-12 on page 203 demonstrates how to 
use a user-defined heap. The program allocate 512 MB memory in shared 
memory segments, then calls the following sub-routines in turn:

_ucreate() Creates a handle to refer to the user-created heap.

_umalloc() Allocates memory size of 100000 bytes from the 
user-created heap.

_ustats() Prints the usage of the user-created heap.

_ufree() Un-allocates the previously created memory object using 
_umalloc() from the user-created heap.

_udestroy() Destroys the user-create heap.

Note: The default heap source can be changed only when _udefault() is 
called.

6  The _RUNTIME_HEAP macro is defined in the umalloc.h header file.
202 Developing and Porting C and C++ Applications on AIX



To compile this program, do the following:

$ cc user_heap.c -lhu

When executed, it prints the output shown in Example 4-11. It allocated a 
memory chunk size of 100016 bytes (16 bytes are used for overhead to maintain 
the statistics data) out of shared memory segments size of 512 MB.

Example 4-11   Output from _ustats()

$ a.out
----------------------------------------------------------
Heap information from _ustats():
..heapstat._provided            =  536870384
..heapstat._used                =          0
..heapstat._max_free            =  536870384
----------------------------------------------------------
----------------------------------------------------------
Heap information from _ustats():
..heapstat._provided            =  536870384
..heapstat._used                =     100016
..heapstat._max_free            =  536770368
----------------------------------------------------------
----------------------------------------------------------
Heap information from _ustats():
..heapstat._provided            =  536870384
..heapstat._used                =          0
..heapstat._max_free            =  536870384
----------------------------------------------------------

Example 4-12   user_heap.c

#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <umalloc.h>
#include <sys/shm.h>

#define TWOSEGS 0x20000000

void heapstate(Heap_t usrheap)
{
    _HEAPSTATS heapstat;

    _ustats(usrheap, &heapstat);
    printf("----------------------------------------------------------\n");
    printf("Heap information from _ustats():\n");
    printf("..heapstat._provided\t\t= %10u\n", heapstat._provided);
    printf("..heapstat._used\t\t= %10u\n", heapstat._used);
    printf("..heapstat._max_free\t\t= %10u\n", heapstat._max_free);
 Chapter 4. Managing the memory heap 203



printf("----------------------------------------------------------\n");

    return;
}

int main(void)
{
    int     shmid, rc;
    char    buf[BUFSIZ];
    char    *ptr1, *ptr2, *shmptr;
    Heap_t  myheap;

    if ((shmid = shmget(IPC_PRIVATE, TWOSEGS, IPC_CREAT|S_IRUSR|S_IWUSR))
        < 0) {
        sprintf(buf, "shmget() failed at %d in %s with errno = %d"
            , __LINE__, __FILE__, errno);
        perror(buf);
        exit(1);
    }
    if ((shmptr = shmat(shmid, (void *)0, 0)) == (void *) -1) {
        sprintf(buf, "shmat() failed at %d in %s with errno = %d"
            , __LINE__, __FILE__, errno);
        perror(buf);
        exit(1);
    }
    /* create a user-created heap. */
    if ((myheap = _ucreate(shmptr, TWOSEGS, _BLOCK_CLEAN
        , _HEAP_SHARED|_HEAP_REGULAR, NULL, NULL)) == (void *)NULL) {
        sprintf(buf, "_ucreate() failed at %d in %s with errno = %d"
            , __LINE__, __FILE__, errno);

perror(buf);
        exit(1);
    }
    heapstate(myheap);
    ptr1 = _umalloc(myheap, 100000);       /*allocate from user heap. */
    heapstate(myheap);
    _ufree(ptr1);
    heapstate(myheap);
    /* destroy user heap. */
    if (_udestroy(myheap, _FORCE)) {
        sprintf(buf, "_destroy() failed at %d in %s with errno = %d"
            , __LINE__, __FILE__, errno);
        perror(buf);
        exit(1);
    }

    if ((rc == shmdt(shmptr)) == -1) {
        sprintf(buf, "shmdt() at %d in %s failed with errno = %d"
            , __LINE__, __FILE__, errno);
204 Developing and Porting C and C++ Applications on AIX



        perror(buf);
    }
    if (shmctl(shmid, IPC_RMID, 0) < 0) {
        sprintf(buf, "shmctl() at %d in %s failed with errno = %d"
            , __LINE__, __FILE__, errno);
        perror(buf);
    }

    exit(0);
}

 Chapter 4. Managing the memory heap 205



206 Developing and Porting C and C++ Applications on AIX



Chapter 5. Creating DLPAR-aware 
applications

This chapter provides a brief overview for understanding the new programming 
paradigm available in a partitioned environment where resources can be 
dynamically changed/triggered by DLPAR operations. We discuss the following 
topics:

� Section 5.1, “Dynamic logical partitioning overview” on page 208

� Section 5.2, “The process flow of a DLPAR operation” on page 210

� Section 5.3, “DLPAR-safe and DLPAR-aware applications” on page 214

� Section 5.4, “Integrating a DLPAR operation into the application” on page 217

For further detailed information about the dynamic logical partitioning and the 
new programming paradigm, please refer the following publications:

� The Complete Partitioning Guide for IBM  ̂pSeries Servers, 
SG24-7039

� IBM Hardware Management Console for pSeries Installation and Operations 
Guide, SA38-0590

5

© Copyright IBM Corp. 2000, 2003. All rights reserved. 207



5.1  Dynamic logical partitioning overview
DLPAR, or dynamic logical partitioning, supports the following dynamic resource 
change in a partition without requiring a partition reboot:

� Resource addition

� Resource removal

By achieving the resource changes sequentially in the following order on two 
partitions in a system, the specified resource can be moved from a partition to 
another partition:

1. Resource removal from a partition

2. Resource addition to another partition

This resource movement is implemented as single task on the IBM Hardware 
Management Console for pSeries (hereafter referred to as HMC), although it is 
actually composed of two separate tasks on two partitions internally.

A resource is either of the following types:

� CPU

The granularity of a CPU resource of a DLPAR operation is one CPU. More 
than one CPU can be specified as a resource of a DLPAR operation.

A partition must be assigned at least the minimum number of processors 
specified in the partition profile, and it can be assigned up to the maximum 
number of processors specified in the partition profile.

Therefore, you can dynamically add or remove processors for that partition 
within the range of the minimum and maximum values.

� Memory

The granularity of a memory resource of a DLPAR operation is 256 MB1. 
Multiplies of 256 MB memory can be specified as a resource of a DLPAR 
operation.

A partition must be assigned at least the minimum size of memory specified in 
the partition profile, and it can be assigned up to the maximum size of 
memory specified in the partition profile.

Therefore, you can dynamically add or remove memory for that partition 
within the range of the minimum and maximum values.

1  This memory chunk is referred to as a logical memory block (LMB).
208 Developing and Porting C and C++ Applications on AIX



� I/O resource

The granularity of an I/O resource of a DLPAR operation is a PCI slot with a 
PCI adapter. Multiple I/O slots can be specified as a resource of a DLPAR 
operation. If a PCI adapter has multiple ports, all the ports and devices 
configured beneath the ports are treated as a resource.

For example, if a 10/100 4-Port Ethernet adapter (FC 4961) is selected, both 
Ethernet devices (entX0) and interfaces (enX) configured on this adapter are 
treated as a single resource.

A partition must be assigned all the adapters specified as required in the 
partition profile, and it can be assigned adapters specified as desired in the 
partition profile. Therefore, you can dynamically add or remove only adapters 
specified as desired for that partition.

You cannot remove I/O slots listed as required; however, you can remove I/O 
slots listed as desired, or those that were added as a result of a DLPAR 
operation. In other words, a partition can currently contain an I/O slot that is 
not listed as either desired or required in the active partition profile.

Resources removed from a partition are marked free (free resources) and owned 
by the global firmware of system; you can consider these resources as kept in 
the “free resource pool.” Free resources can be added to any partition in a 
system as long as the system has enough free resources.

It is imperative to understand that the DLPAR function is not solely provided by 
AIX 5L Version 5.2, but it is supported by the integration of following components:

� Hardware

A partitioning-capable pSeries server model is required.

� Firmware

Depending on the models you have selected, a firmware update might be 
required.

� HMC

HMC software Release 3 Version 1 or later is required.

� Operating system

AIX 5L Version 5.2 or later is required.

Note: A DLPAR operation can perform only one type of resource change. You 
cannot add and remove memory to and from the same partition in a single 
DLPAR operation. Also, you cannot move CPU and memory from a partition to 
another partition in a single DLPAR operation.
 Chapter 5. Creating DLPAR-aware applications 209



If one of these components does not satisfy the requirement to support DLPAR, 
the function is not available. For example, if a partition is installed with AIX 5L 
Version 5.1, that partition does not support DLPAR, although the other partitions 
installed with AIX 5L Version 5.2 support DLPAR.

5.2  The process flow of a DLPAR operation
A DLPAR operation initiated on the HMC is transferred to the target partition 
through Resource Monitoring and Control (RMC). The request produces a 
DLPAR event on the partition. After the event has completed, regardless of the 
result from the event, a notification will be returned to the HMC in order to mark 
the completion of the DLPAR operation. This means that a DLPAR operation is 
considered as a single transactional unit; thus, only one DLPAR operation is 
performed at a time.
210 Developing and Porting C and C++ Applications on AIX



A DLPAR operation is executed in the process flow, as illustrated in Figure 5-1.

Figure 5-1   Process flow of a DLPAR operation2

The following steps explain the process flow of a DLPAR operation:

1. The system administrator initiates a DLPAR operation request on the HMC 
using either the graphical user interface or command line interface.

2. The requested DLPAR operation is verified on the HMC with the current 
resource assignment to the partition and free resources on the managed 
system before being transferred to the target partition. In other words, the 
HMC provides the policy that determines whether or not a DLPAR operation 
request is actually performed on the managed system.

3. If the request is a resource addition, the HMC communicates with the global 
firmware in order to allocate free resources to the target partition through the 
service processor indicated as arrow A in Figure 5-1.

2  A managed system is a partitioning partitioning-capable pSeries server system managed by the HMC.

B: DLPAR operation request via RMC from the HMC

IBM.DRM

RMC

Platform-dependent
device driver Kernel

RTAS

Global firmware / Hypervisor

CSP

Ethernet

AIX 5L Version 

Managed system

HMC

Serial Line

drmgr

Platform-dependent
commands

C: DLPAR operation result from the partition

GUI or command

A: Resource query and allocate
requests to the CSP before
the DLPAR operation over
the serial line

D: Resource reclaim request
to the CSP after the DLPAR
operation over the serial line

5.2 Partition
 Chapter 5. Creating DLPAR-aware applications 211



If enough free resources exist on the system, the HMC assigns the requested 
resource to the specified partition and updates the partition’s object to reflect 
this addition, and then creates associations between the partition and the 
resource to be added.

4. After the requested DLPAR operation has been verified on the HMC, it will be 
transferred to the target partition using Resource Monitoring and Controlling 
(RMC), which is an infrastructure implemented on both the HMC and AIX 
partitions, as indicated as arrow B in Figure 5-1 on page 211. The RMC is 
used to provide a secure and reliable connection channel between the HMC 
and the partitions.

5. The request is delivered to the IBM.DRM resource manager running on the 
partition, which is in charge of the dynamic logical partitioning function in the 
RMC infrastructure in AIX. As shown in the following example, it is running as 
the IBM.DRMd daemon process and is included in the devices.chrp.base.rte 
fileset on AIX 5L Version 5.2 or later:

# lssrc -ls IBM.DRM
Subsystem         : IBM.DRM
PID               : 18758
Cluster Name      : IW
Node Number       : 1
Daemon start time : Wed Aug 21 16:44:12 CDT 2002

Information from malloc about memory use:
   Total Space    : 0x003502c0 (3474112)
   Allocated Space: 0x0030b168 (3191144)
   Unused Space   : 0x00043e40 (278080)
   Freeable Space : 0x00000000 (0)

Class Name(Id)    : IBM.DRM(0x2b) Bound
# ps -ef | head -1 ; ps -ef | grep DRMd | grep -v grep
     UID   PID  PPID   C    STIME    TTY  TIME CMD
    root 18758 10444   0   Aug 21      -  0:22 /usr/sbin/rsct/bin/IBM.DRMd
# lslpp -w /usr/sbin/rsct/bin/IBM.DRMd
  File                                        Fileset               Type
  ---------------------------------------------------------------------------
  /usr/sbin/rsct/bin/IBM.DRMd
                                       devices.chrp.base.rte        File

Note: The connection channel established by RMC only exists between 
the HMC and the partition where the DLPAR operation is targeted to. There 
are no connection paths required between partitions for DLPAR operation 
purposes.
212 Developing and Porting C and C++ Applications on AIX



Resource managers are sub-systems used in the RMC infrastructure. For 
further information about RMC and its sub-components, please refer to the 
following publications:

– A Practical Guide for Resource Monitoring and Control (RMC), 
SG24-6615

– IBM Reliable Scalable Cluster Technology for AIX 5L: Administration 
Guide, SA22-7889

6. The IBM.DRM resource manager invokes the drmgr command, which is an 
platform-independent command designed as the focal point of the dynamic 
logical partitioning support on AIX.

As shown in the following example, the drmgr command is installed in the 
/usr/sbin directory provided by the bos.rte.methods fileset:

# whence drmgr
/usr/sbin/drmgr
# lslpp -w /usr/sbin/drmgr
  File                                        Fileset               Type
  
---------------------------------------------------------------------------
  /usr/sbin/drmgr                             bos.rte.methods       File

7. The drmgr command invokes several platform-dependent commands3 
depending on the resource type (CPU, memory, or I/O resource) and request 
(resource addition or removal) in order to instruct the kernel to process the 
actual resource change with necessary information.

8. The kernel does many internal tasks.

9. After the DLPAR event has completed, regardless of the result, a notification 
will be returned to the HMC in order to mark the completion of the DLPAR 

Note: The absence of the IBM.DRM resource manager in the lssrc -a 
output does not always mean that the partition has not been configured 
appropriately for the dynamic logical partitioning. The resource manager 
will be automatically configured and started by RMC after the first partition 
reboot if the network configuration is correctly set up on the partition and 
the HMC.

Note: The drmgr command should not be invoked by the system 
administrator in order to directly perform resource changes in a partition. It 
must be invoked in the context explained here to do so.

3   On the current partitioning-capable pSeries server models, the platform-dependent commands are 
included in the bos.chrp.base.rte fileset and installed in the /usr/lib/boot/bin directory.
 Chapter 5. Creating DLPAR-aware applications 213



operation, indicated as arrow C in Figure 5-1 on page 211. The notification 
also includes the exit code, standard out, and standard error from the drmgr 
command. The system administrator who has initiated the DLPAR operation 
will see the exit code and outputs on the HMC.

10.If the request is a resource removal, the HMC communicates with the global 
firmware in order to reclaim resources to the free resource pool from the 
source partition through the service processor, indicated as arrow D in 
Figure 5-1 on page 211.

The HMC unassigns the resource from the partition and updates the 
partition’s object to reflect this removal, and then removes associations 
between the partition and the resource that was just removed.

A DLPAR operation can take a considerable amount of time, depending on the 
availability and the capability to configure or deconfigure a specific resource.

5.3  DLPAR-safe and DLPAR-aware applications
The dynamic logical partitioning function on AIX 5L Version 5.2 is designed and 
implemented to not impact the existing applications. In fact, most applications are 
not affected by any DLPAR operations results. Therefore, those applications are 
called DLPAR-safe applications.

There are two types of application classifications regarding DLPAR operations:

DLPAR-safe Applications that do not fail as a result of DLPAR 
operations. The application’s performance may suffer 
when resources are removed, or it may not scale as 
resources are added.

DLPAR-aware Applications that incorporate DLPAR operations that allow 
the application to adjust its use of the system resources 
equal to the actual capacity of the system. DLPAR-aware 
applications are always DLPAR-safe.

5.3.1  DLPAR-safe
Although, most applications are DLPAR-safe without requiring any modification, 
there are certain instances where programs may not be inherently DLPAR-safe.

There are two cases where DLPAR operations may introduce undesirable effects 
into the application:

� Programs that are optimized for uni-processor may have problems when a 
processor is added to the system resources.
214 Developing and Porting C and C++ Applications on AIX



� On programs that are indexed by CPU numbers, the increased processor 
number may cause the code to go down an unexpected code path during its 
run-time checks.

In addition, applications that use uni-processor serialization techniques may 
experience unexpected problems. In order to resolve these concerns, system 
administrators and application developers need to be aware of how their 
applications get the number of processors.

5.3.2  DLPAR-aware
DLPAR-aware applications adapt to system resource changes caused by DLPAR 
operations. When these operations occur, the application will recognize the 
resource change and accommodate accordingly. 

Two techniques can be used to make applications DLPAR-aware:

� The first method is to consistently poll for system resource changes. Polling is 
not the recommended way to accommodate for DLPAR operations, but it is 
valid for systems that do not need to be tightly integrated with DLPAR. 
Because the resource changes may not be immediately discovered, an 
application that uses polling may have limited performance. Polling is not 
suitable for applications that deploy processor bindings, because they 
represent hard dependencies.

� Applications have other methods to react to the resource change caused by 
DLPAR operations. See 5.4, “Integrating a DLPAR operation into the 
application” on page 217.

Several applications should be made DLPAR-aware, because they need to scale 
with the system resources. These types of applications can increase their 
performance by becoming DLPAR-aware. Table 5-1 on page 216 lists some 
examples of applications that should be made DLPAR-aware.

Note: These are only a few types of common applications affected by DLPAR 
operations. The system administrator and application developer should be 
sensitive to other types of programs that may need to scale with resource 
changes.
 Chapter 5. Creating DLPAR-aware applications 215



Table 5-1   Applications that should be DLPAR-aware

Applications should also be made DLPAR-aware, if they cause DLPAR requests 
to fail.

The following application specific conditions can cause DLPAR remove requests 
to fail:

� Processor bindings

� Large amounts of pinned memory

Processor bindings and attachments are obstacles to CPU removal, since they 
represent work units that cannot be rescheduled on other processors. 
DLPAR-aware programs remove these obstacles by unbinding, re-binding, or 
terminating before the operating system attempts to remove the resource. AIX 
provides several interfaces for binding and attaching to processors including 
bindprocessor(), ra_exec(), ra_fork(), and ra_attachrset(). If the bindprocessor() 
interface is used, then the target processor is always the Nth online processor.   
The other interfaces target logical processors, so there is a direct correlation 
between the processor being removed and the attachment, which is not 
necessarily the case with bindprocessor(). It should be noted that 
bindprocessor() bindings may also be resolved through application handlers that 
may have already been provided for dynamic processor deallocation (for 
example, CPU Guard).

Applications that pin large amounts of memory may cause DLPAR memory 
removal failures, since they impede the system's capability to pin new memory 
pages, which is a critical component of the DLPAR support for memory.   AIX has 
the capability to migrate pinned memory, but it must ensure that the target of the 
migration is also pinned, so it must be able to pin memory on demand to satisfy 
DLPAR memory remove requests. DLPAR-aware applications that pin lots of 
memory should resize their buffers so that portions of them can be unpinned, 

Application type Reason

Database 
applications

The application needs to scale with the system. For example, 
the number of threads may need to scale with the number of 
available processors, or the number of large pinned buffers 
may need to scale with the available system memory.

License Managers Licenses are distributed based on the number of available 
processors or the memory capacity.

Workload Managers Jobs are scheduled based on system resources, such as 
available processors and memory.

Tools Certain tools may report processor and memory statistics or 
rely on available resources.
216 Developing and Porting C and C++ Applications on AIX



before the operating system attempts to remove memory. Applications pin 
memory through the plock() and shmget(SHM_PIN) interfaces.

Applications that have processor attachments and pin memory are DLPAR-safe 
and they should be made DLPAR-aware.

Applications are not impacted by the dynamic reconfiguration of I/O resources, 
because access to the device is controlled through the device support layer, 
which is not manipulated by DLPAR. The system administrator is expected to 
unload device drivers before initiating DLPAR remove requests and, in a similar 
vein, he is expected to manually configure them after performing DLPAR add 
requests to make them available to applications. The DLPAR support for I/O 
resources is therefore DLPAR-safe. For example, DLPAR I/O remove requests 
will fail If a device driver that is associated with the I/O resource is loaded. The 
device driver does not have to be open for the DLPAR remove operation to fail. It 
simply has to be loaded.

5.4  Integrating a DLPAR operation into the application
The DLPAR operation can be integrated into the application using the following 
two methods:

� Script-based DLPAR event handling

If the application is externally controlled to use a specific number of threads or 
to size its buffers, use this method. In order to facilitate this method, a new 
command, drmgr, is provided. The drmgr command is the central focal point of 
the dynamic logical partitioning function of AIX.

� API-based DLPAR event handling

If the application is directly aware of the system configuration, and the 
application source code is available, use this method.

Applications can monitor and respond to various DLPAR events, such as a 
memory addition or processor removal, by utilizing these two methods. Although, 
at the high-level, both methods share the same DLPAR events flow explained in 
the following section, several key differences exist between these two methods.

One difference is that the script-based method externally reconfigures the 
application once a DLPAR event takes place, while the API-based method can be 
directly integrated into the application by registering a signal handler using the 
dr_reconfig system call, so that the process can be notified with the 
SIGRECONFIG signal when the DLPAR event occurs.
 Chapter 5. Creating DLPAR-aware applications 217



Note: The DLPAR events of I/O resources are not notified applications in AIX 
5L Version 5.2.
218 Developing and Porting C and C++ Applications on AIX



Chapter 6. Programming hints and tips

In developing your application with C or C++, you may encounter problems while 
compiling, linking, or executing for the first time.

This chapter starts off by offering some general programming tips that would 
make an application perform better on AIX:

� Section 6.1, “Programming recommendations” on page 220

The next sections continue to describe some of the more common errors that you 
may encounter during the different phases of the development cycle:

� Section 6.2, “Diagnosing compile-time errors” on page 227

� Section 6.3, “Diagnosing link-time errors” on page 239

� Section 6.4, “Diagnosing run-time errors” on page 244

All the options and #pragma directives referred to in this chapter are explained in 
more details in the C for AIX Compiler Reference, SC09-4960 and VisualAge 
C++ for AIX Compiler Reference, SC09-4959.

6

© Copyright IBM Corp. 2000, 2003. All rights reserved. 219



6.1  Programming recommendations
C and C++ are very powerful high level programming languages. Two 
applications can be performing the same tasks, but written in completely different 
ways using the many different features in the language. Programming style is 
very personal, but there are programming practices that, when followed, will help 
get the best results from the optimization techniques used by the compiler. This 
section offers some tips and guidelines that will allow you to write programs that 
exploit the C for AIX and VisualAge C++ for AIX compilers.

6.1.1  Variables and data structures
In C and C++, the default storage duration, scope, and linkage of variables and 
objects depend on where they are declared. However, storage duration can be 
explicitly overridden with storage class specifiers. Whenever possible, it is 
recommended that you use local variables of the automatic storage class.

Several optimizations performed by the compiler rely on data flow analysis. For 
example, whether a store into a variable is redundant and can be removed, 
because a later store will invalidate the first store, before the variable is 
referenced:

int func1()
{

int x;
x = 1;
func();
x = 2;
return x;

}

In this example, the first assignment, x = 1, can be safely removed, since the 
second assignment will overwrite it, and the call to function func() will not access 
variable x. Had variable x been declared as global, the compiler would not have 
made the same assumption, since it is now possible for the function func() to be 
referencing the global variable x.

Data flow analysis also helps in determining whether branches can be 
eliminated. For example:

void func2()
{

int x;
x = 1;
func();
if (x == 1)

printf("true\n");
220 Developing and Porting C and C++ Applications on AIX



else
printf("false\n");

}

Again, since the function call to func() cannot possibly be updating the local 
variable x, the compiler can safely remove the conditional statement, and 
generate code for the true part of the statement only.

Using local, automatic storage variables is not always possible. If two functions 
within the same source file need to share data, it is recommended that you use 
variables with static storage. Static storage class variables and objects have 
internal linkage, that is, the variable is accessible within the compilation unit only, 
and not visible externally. The compiler in this case can use this information to 
better optimize your program, since static variables appear as local within the 
compilation unit.

If you must use external variables that are shared between more than one 
compilation units, try to group the variables into structures to avoid excessive 
memory access.

6.1.2  Functions
Without knowing what a function does, that is, if the function is not defined in the 
current compilation unit, the compiler has to assume the worse, that calling the 
function may have side effects. A side effect, according to the standard, is a 
change in the state of the execution environment. Several operations can 
produce a side effect:

� Accessing a volatile object

� Modifying an external object

� Modifying a static object

� Modifying a file

� Calling a function that does any of the above

If a function requires input, it is recommended that you pass the input as 
arguments, rather than having the function access the input from global 
variables. If your function has no side effects, that is, it does not violate any of the 
points above, you can use the #pragma isolated_call directive to specify that the 
compiler may take a more aggressive approach in optimization. This generally 
improves the execution performance. See C for AIX Compiler Reference, 
SC09-4960 for more details on the directive. Functions that are marked with the 
#pragma isolated_call directive are allowed to modify storage pointed to by 
pointer arguments (that is, reference arguments).
 Chapter 6. Programming hints and tips 221



If a function is only required in the current compilation unit, declaring it as static 
will speed up calls to the function.

In C++, use virtual functions only when absolutely necessary. The location of 
virtual functions are not known until execution time. The compiler generates an 
indirect call to virtual functions via entries in a virtual function table, which gets 
populated with the location of the virtual functions at load time. To reduce code 
bloat, avoid declaring virtual functions inline, which tends to make the virtual 
function table bigger and causes the virtual function defined in all compilation 
units that use the class.

6.1.3  Pointers
The use of pointers causes uncertainty in data flow analysis, which can 
sometimes inhibit optimization performed by the compiler. If a pointer is assigned 
to the address of a variable, both the pointer and the variable can now be used to 
change or reference the same memory location in an expression. For example:

void func()
{

int i = 55, a, b;
int *p = &i;

a = *p;
i = 66;
b = *p;

}

At first glance, it looks as if the expression *p does not need to be evaluated the 
second time, and the variable a and b would have the same value. However, 
since p and the address of i refer to the same memory location, the assignment i 
= 66 invalidates the first *p evaluation and b = *p must be evaluated again.

When the compiler knows nothing about where a pointer can point to, it will have 
to make the pessimistic assumption that the pointer can point to any variable.1 
For example:

int rc;

void foo(int *p)
{

rc = 55;
*p = *p + 1;

1  In the standard conforming language levels, e.g. -qlanglvl=stdc89 and -qlanglvl=stdc99, or when 
the -qalias=ansi option is in effect, a pointer can only point to variables of the same type. This is 
referred to as type-based aliasing. The only exception is with character pointers and pointers to void; 
they can point to any type. The use of -qalias=ansi to correct programming mistakes is not 
recommended, as it inhibits optimization opportunities and degrades execution performance.
222 Developing and Porting C and C++ Applications on AIX



rc = 66;
}

In this case, the compiler has to assume that when the function foo is called, 
pointer p can potentially point to the variable rc. The first assignment, rc = 55, is 
relevant and cannot be safely removed, since *p on the following line can be 
referring to rc.

If p is guaranteed not to be pointing to rc, you can use the #pragma disjoint 
directive to inform the compiler:

#pragma disjoint(*p, rc)

Marking variables that do not share physical memory storage with the #pragma 
disjoint directive allows the compiler to explore more optimization opportunities, 
and the performance gain can be quite substantial with complex applications. 
However, if the directive is used inappropriately on variables that may share 
physical storage, the program may yield incorrect results.

6.1.4  Arithmetic operations
Multiplication in general is faster than division. If you need to perform many 
divisions with the same divisor, it is recommended that you assign the reciprocal 
of the divisor to a temporary variable, and change all your divisions to 
multiplications with the temporary variable. For example, instead of:

double preTax(double total)
{

return total / 1.0825;
}

this will perform faster:

double preTax(double total)
{

return total * (1.0 / 1.0825);
}

The division (1.0 / 1.0825) will be evaluated once at compile time only due to 
constant folding.

6.1.5  Selection and iteration statements
When using the if selection statement, order your conditional expressions 
efficiently by putting the most decisive test first. For example:

struct {
char *name;
short len;
 Chapter 6. Programming hints and tips 223



_Bool active;
} rec;
...
if (rec.active == true && rec.len == 9 && !memcmp(rec.name, “Elizabeth”, 9))
...

Also, order your case statements or if-else if conditions in a way that the most 
likely occurring conditions appear first. For example:

typedef enum { VOWEL, CONSONANT, DIGIT, PUNCTUATION } _Type;
struct {

char  ch;
_Type type;

} word;
...
switch (word.type) {

case VOWEL:
...

break;
case CONSONANT:

...
break;

case PUNCTUATION:
...

break;
case DIGIT:

...
break;

}

and:

if (!error) {
/* most likely condition first */

} else {
/* error condition that does not happen too often */

}

When using iteration statements such as for loop, do loop, and while loop, move 
invariant expressions (expressions that do not change with loop iterations, nor 
depend on the loop index of a for loop) out of the loop body.

6.1.6  Expression
The C and C++ compilers are able to recognize common sub-expressions, when 
the sub-expression either:

� Appears at the left end of the expression

� Within parentheses
224 Developing and Porting C and C++ Applications on AIX



For example, the compiler recognizes the sub-expression a + b in the two 
assignments:

x = a + b + c;
y = d * (a + b);

and evaluates the two sub-expressions only once. Essentially, it is logically 
transforming the two lines into:

temp = a + b;
x = temp + c;
y = d * temp;

The use of the temp illustrates how the compiler can keep the result of the 
sub-expression evaluation in a register, and simply reuse the register for both 
assignments.

6.1.7  Memory usage
Avoid heap storage fragmentation with frequent allocations of small, temporary 
objects using memory allocation functions such as malloc() and calloc().

while (list) {
char *temp = (char*)malloc(list->len+1);
strcpy(temp, list->element);
PrettyPrint(temp);
free(temp);
list = list->next;

}

In the example above, if the size of the longest element is known beforehand, you 
can replace the call to malloc() and obtain storage from the stack instead by 
using an array of characters:

char temp[MAX_ELEMENT_SIZE];

If the size is unknown, you can make use of the C99 feature, “Variable length 
arrays” on page 7 to allocate storage dynamically for the array:

char temp[list->len+1];

In either case, the storage is obtained from the stack and not from the heap, and 
it is freed automatically when the scope of the variable terminates.

6.1.8  Built-in functions
For performance reasons, a large number of the library functions are also 
provided as compiler built-ins. A compiler built-in avoids any overhead associated 
with function calls (for example, parameter passing, stack allocation and 
 Chapter 6. Programming hints and tips 225



adjustment, and so on) by expanding the function body at the call site. Various 
hardware instruction built-ins are also provided to allow programmers direct 
access to hardware instructions.

To use the built-in version of library functions, you need to include the appropriate 
library header files. Including the proper header files also prevents parameter 
type mismatch and ensures optimal performance.

6.1.9  Virtual functions
In general, when writing C++ code, you should try and avoid the use of virtual 
functions. They are normally encoded as indirect function calls, which are slower 
than direct function calls.

Usually, you should not declare virtual functions inline. In most cases, declaring 
virtual functions inline does not produce any performance advantages. Consider 
the following code sample:

class Base {
public:

virtual void foo() { /* do something. */ }
};

class Derived: public Base {
public:

virtual void foo() { /* do something else. */ }
};

int main(int argc, char *argv[])
{

Base*  b = new Derived(); 
b->foo(); // not inlined.

}

In this example, b->foo() is not inlined because it is not known until run time 
which version of foo() must be called. This is by far the most common case.

There are cases, however, where you might actually benefit from inlining virtual 
functions, for example, if Base::foo() was a really hot function, it would get inlined 
in the following code:

int main(int argc, char *argv[])
{

Base  b;
b.foo();

}

226 Developing and Porting C and C++ Applications on AIX



If there is a non-inline virtual function in the class, the compiler generates the 
virtual function table in the first file that provides an implementation for a virtual 
function; however, if all virtual functions in a class are inline, the virtual table and 
virtual function bodies will be replicated in each compilation unit that uses the 
class. The disadvantage to this is that the virtual function table and function 
bodies are created with internal linkage in each compilation unit. This means that 
even if the -qfuncsect option is used, the linker cannot remove the duplicated 
table and function bodies from the final executable. This can result in a very 
bloated executable size.

6.2  Diagnosing compile-time errors
During compilation, the compiler emits diagnostic messages to the standard 
error device file (the terminal by default) whenever it encounters programming 
errors caused by invalid syntax or incorrect usage of features. There are various 
compiler diagnostic aids that can help you in determining where the error 
occurred.

6.2.1  Anatomy of a message
A compiler error message has the following format, which provides enough 
information about the location and reason for the error:

“file”, line line.column: 15cc-nnn (sev) msg

Where:

file The name of the source file where the error occurred.

line The line in the source file where the error occurred.

column The column on the line where the error occurred.

cc A two-digit code identifying the compiler component that 
issued the diagnostic message:

00 Optimizer or code generator

01 Compiler services

05 C compiler

06 C compiler

40 C++ compiler

47 Munch utility

86 Interprocedural analysis (IPA)

nnn The message number.
 Chapter 6. Programming hints and tips 227



sev The severity of the error.

I Informational

W Warning

E Error

S Severe error

U Unrecoverable error

msg Short message describing the error.

6.2.2  Useful options and compiler aids
The C and C++ compilers offer several options that help you detect and correct 
programming errors in you program.

The -qsrcmsg option
By default, compiler diagnostic messages are issued in the format depicted in 
6.2.1, “Anatomy of a message” on page 227. Sometimes it may not be apparent 
what the problem is with the short explanation in the message text. The C 
compiler -qsrcmsg option prints the source line and a finger line pointing to 
where the compiler thinks the error is to the stderr file, giving a more precise 
explanation by showing the actual source line containing the error. For example:

7 |         char new[n];
.................a..

a - 1506-195 (S) Integral constant expression with a value greater than zero is 
required.

The source line shown will be after macro expansion.

Compiler listing
You can use the -qsource option to ask for a compiler listing. A compiler listing 
contains several sections that are useful in determining what has gone wrong in 
a compilation. Diagnostic messages, if present, are written to the compiler listing 
as well. See Example F-1 on page 490 for a sample compiler listing.

� SOURCE SECTION

Shows the source code with line numbers. Lines containing macros will have 
additional lines showing the macro expansion. By default, this section only 
lists the main source file. Use the -qshowinc option to expand all header files 
as well.

� OPTIONS SECTION

Shows any non-default options that were in effect for the compilation. To list 
all options in effect, specify the -qlistopt option.
228 Developing and Porting C and C++ Applications on AIX



� FILE TABLE SECTION

Lists all the files used in the compilation. Each file is associated with a file 
number, and it always begin with the main source file with file number 0. It 
shows, for each file, from which file and line the file was included. If the 
-qshowinc option is also in effect, each source line in the SOURCE SECTION 
will have a file number to indicate which file the line came from.

� COMPILATION EPILOGUE SECTION

Shows a summary of the diagnostic messages by severity level, the number 
of lines read, and whether the compilation was successful or not.

� ATTRIBUTE AND CROSS REFERENCE SECTION

The -qattr and -qxref options will cause this section to be produced. 
Independently, they provide information on all identifiers used in the 
compilation. This is where you will find pertinent information about variables 
on their type, storage duration, scope, and where they are defined and 
referenced.

� OBJECT SECTION

The -qlist option will cause this section to be produced. It shows the pseudo 
assembly code generated by the compiler. This section is invaluable for 
diagnosing execution time problems, if you suspect the program is not 
performing as expected due to code generation error.

The -qinfo option
The -qinfo option causes the compiler to produce additional informational 
messages for possible programming errors. The extra diagnostic messages can 
help you in debugging your program.

Messages related to the same problem area are grouped together, and each 
group is controlled via a suboption. For instance, the -qinfo=ini suboption 
diagnoses possible problems with variables that are not explicitly initialized but 
should be. For a list of the groups (suboptions) supported, refer to the VisualAge 
C++ for AIX Compiler Reference, SC09-4959.

One new info group introduced in the Version 6 C compiler is the -qinfo=c99 
suboption. It diagnoses C code that may have different behavior between the 
-qlanglvl=stdc89 and -qlanglvl=stdc99 language levels. For example:

$ cat test.c
#include <stdio.h>

int main()
{

printf("sizeof(2147483648) = %d\n", sizeof(2147483648));
return 0;
 Chapter 6. Programming hints and tips 229



}
$ cc -qinfo=c99 -c test.c
"test.c", line 4.48: 1506-786 (I) Integral constant "2147483648" has an implied 
type of unsigned long int under the C89 language level. It has an implied type 
of long long int under C99.

The -qsuppress option
When you use diagnostic aids like the -qinfo option, you can sometimes get 
numerous messages that you may not be interested in at the moment, clobbering 
the terminal or listing file. Use the -qsuppress option to stop those messages 
from being emitted by the compiler. You can suppress more than one message 
by listing the message numbers in a colon separated list.

The -qflag option
In some instances, you may want to ignore all messages below a certain severity 
level. For example, during a production build, warning messages that are 
deemed to be harmless by development teams will only clobber log files and 
cause unnecessary concerns from the build team. You can use the -qflag option 
to stop diagnostic messages from being emitted to the terminal and the listing 
file. Similarly, the -w compiler flag suppresses informational and warning 
messages from being emitted, and is the same as specifying the -qflag=e:e 
option. See 6.2.1, “Anatomy of a message” on page 227 for a list of single letter 
severity codes that you can use with the -qflag option.

The -qhaltonmsg option
On the contrary, with the C++ compiler, if you want to stop the compilation when 
a certain message is encountered, use the -qhaltonmsg option. The message is 
issued with a higher severity level and compilation terminates.

The -qhalt and -qmaxerr options
To stop a compilation in general when a message of a certain severity level or 
higher is encountered, use the -qhalt option. See 6.2.1, “Anatomy of a message” 
on page 227 for a list of single letter severity codes that you can use with the 
-qhalt option.

The -qmaxerr option allows you to stop the compilation when the specified 
number of times messages of a certain severity level or higher is reached. This 
option takes precedence over the -qhalt option.

6.2.3  Migrating from 32-bit to 64-bit
When migrating a 32-bit program to 64-bit, the data model differences (as 
described briefly in 2.1, “32- and 64-bit development environments” on page 38) 
230 Developing and Porting C and C++ Applications on AIX



may result in unexpected behavior at execution time. In 64-bit mode, the size of 
pointers and long data type are now 8 bytes long, and can lead to several 
conversion or truncation problems. The -qwarn64 option can be used to detect 
these portability errors.

int and long types
In 32-bit mode, both int and long data types are 32 bits in size. Because of this 
similarity, these types may have been used interchangeably. As shown in 
Table 2-1 on page 39, the data type long is 64 bits in length in 64-bit mode. A 
general guideline is to review the existing use of long data types throughout the 
source code. If the values to be held in such variables, fields, and parameters will 
fit in the range of [-231...231-1] or [0...232-1], then it is probably best to use int or 
unsigned int instead. Also, review the use of the size_t type (used in many 
subroutines), since it is typedef as unsigned long.

long to int truncation
Truncation problems can occur when converting between 64-bit and 32-bit data 
objects. Since int and long are 32 bits in 32-bit mode, a mixed assignment or 
conversion between these data types did not represent any problem. It does, 
however, in 64-bit mode, as long is larger in size than int. When converting from 
long to int, either implicitly or explicitly through a cast, truncation may now occur:

void foo(long l)
{

int i = l;
}

Without an explicit cast, the compiler is unable to determine whether the 
narrowing assignment is intended. If the value l is always within the range 
representable by an int, or if the truncation is intended by design, use a cast to 
silence the -qwarn64 message that you will receive for this code.

Unexpected result due to conversion to long
Due to the difference in size for int and long in 64-bit mode, conversions to long 
from other integral types may result in different execution behavior from 32-bit 
mode in some boundary cases.

When a signed char, signed short, or signed int is converted to unsigned long, 
sign extension may result in a different unsigned value in 64-bit mode. For 
example:

#include <stdio.h>
void foo(int i)
{

unsigned long l = i;
printf("%lu (0x%lx)\n", l, l);
 Chapter 6. Programming hints and tips 231



}
void main()
{

foo(-1);
}

This program will yield 4294967295 (0xffffffff) in 32-bit mode but 
18446744073709551615 (0xffffffffffffffff) in 64-bit mode due to sign 
extension.

When an unsigned int variable with values greater than INT_MAX is converted to 
signed long, you will get different results between 32-bit and 64-bit mode. For 
example:

#include <stdio.h>
#include <limits.h>
void foo(unsigned int i)
{

long l = i;
printf("%ld (0x%lx)\n", l, l);

}
void main()
{

foo(INT_MAX + 1);
}

In 32-bit mode, the value INT_MAX+1 will wrap around and yield -2147483648 
(0x80000000). The same value can be represented in 64-bit mode by a 8-byte 
signed long and will result in the correct value of 2147483648 (0x80000000).

When a signed long long variable with values greater than UINT_MAX or less 
than 0 is converted to unsigned long, truncation will no longer occur in 64-bit 
mode. For example:

#include <stdio.h>
#include <limits.h>
void foo(signed long long ll)
{

unsigned long l = ll;
printf("%lu (0x%lx)\n", l, l);

}
void main()
{

foo(-1);
foo(UINT_MA X+ 1ll);

}

232 Developing and Porting C and C++ Applications on AIX



This program will yield:

4294967295 (0xffffffff)
0 (0x0)

in 32-bit mode and in 64-bit mode:

18446744073709551615 (0xffffffffffffffff)
4294967296 (0x100000000)

When an unsigned long long variable with values greater than UINT_MAX is 
converted to unsigned long, truncation will no longer occur in 64-bit mode:

#include <stdio.h>
#include <limits.h>
void foo(unsigned long long ll)
{

unsigned long l = ll;
printf("%ld (0x%lx)\n", l, l);

}
void main()
{

foo(UINT_MAX + 1ull);
}

The higher order word is truncated and will result in 0 (0x0) in 32-bit mode, but 
yield the correct result of 4294967296 (0x100000000) without truncation in 64-bit 
mode.

When a signed long long variable with values less than INT_MIN or greater than 
INT_MAX is converted to signed long, truncation will no longer occur in 64-bit 
mode. For example:

#include <stdio.h>
#include <limits.h>
void foo(signed long long ll)
{

signed long l = ll;
printf("%ld (0x%lx)\n", l, l);

}
void main()
{

foo(INT_MIN - 1ll);
foo(INT_MAX + 1ll);

}

This program will yield (in 32-bit):

2147483647 (0x7fffffff)
-2147483648 (0x80000000)
 Chapter 6. Programming hints and tips 233



and in 64-bit mode:

-2147483649 (0xffffffff7fffffff)
2147483648 (0x80000000)

And finally, when an unsigned long long variable with values greater than 
INT_MAX is converted to signed long, truncation will no longer occur in 64-bit 
mode. For example:

#include <stdio.h>
#include <limits.h>
void foo(unsigned long long ll)
{

signed long l = ll;
printf("%ld (0x%lx)\n", l, l);

}
void main()
{

foo(INT_MAX + 1ull);
}

In 32-bit mode, the value INT_MAX+1ull will wrap around and yield -2147483648 
(0x80000000). The same value can be represented in 64-bit mode by a 8-byte 
signed long and will result in the correct value of 2147483648 (0x80000000).

Pointer assignment and arithmetic
When migrating a program from 32-bit environment to 64-bit environment, it is 
crucial to avoid pointer corruption. Some of the possible problems are:

� Assigning an int (32 bits) or a 32-bit hexadecimal constant to a pointer type 
variable (64 bits) or casting a pointer to an int will yield an invalid address, and 
will cause errors when the pointer is dereferenced. Also, the comparison of an 
int to a pointer may cause unexpected results.

� Pointers are converted to int or unsigned int with the expectation that the 
pointer value will be preserved, as casting a pointer to an int will result in data 
truncation.

� Without proper function prototypes, functions that return pointers will return 
truncated return values, as the functions are implicitly declared to return an int 
that is just 32 bits, instead of the expected 64 bits of a pointer.

� The code assumes that pointers and int are the same size in an arithmetic 
context, as pointer arithmetic usually is a source of problems in migration. The 
ISO C standard dictates that incrementing a pointer yields adding the size of 
the data type to which it points to the pointer value. For example, if the 
variable p is a pointer to long, then the operation (p+1) increments the value 
of p by 4 bytes in 32-bit mode but by 8 bytes in 64-bit mode. Therefore, casts 
234 Developing and Porting C and C++ Applications on AIX



between long* to int* are problematic because of the size differences of 
pointer objects (32 bits versus 64 bits).

Incorrect pointer to int and int to pointer conversions
When a pointer is explicitly converted to an int, truncation of the high order word 
occurs. When an int is explicitly converted to a pointer, the pointer may not be 
correct and may cause invalid memory access if dereferenced. For example:

#include <stdio.h>
#include <stdlib.h>
void main()
{

int i, *p, *q;

p = (int*)malloc(sizeof(int));
i = (int)p;
q = (int*)i;
p[0] = 55;

printf("p = %p q = %p\n", p, q);
printf("p[0] = %d q[0] = %d\n", p[0], q[0]);

}

In 32-bit mode, the pointers p and q are pointing to the same memory location. 
However, the pointer q is likely pointing to an invalid address in 64-bit mode, and 
could result in a segmentation fault when q is dereferenced.

Integer constants
A loss of data can occur in some constant expressions because of lack of 
precision. These types of problems are very hard to find and may have gone 
unnoticed so far. You should therefore be very explicit about specifying the 
type(s) in your constant expressions and use constant suffix {u,U,l,L,ll,LL} to 
specify exactly its type. You might also use casts to specify the type of a constant 
expression.

This is especially true when migrating to 64-bit, because integer constants may 
have different types when compiled in 64-bit mode. The ISO C standard states 
that the type of an integer constant, depending on its format and suffix, is the first 
(that is, smallest) type in the corresponding list (see Table 6-1 on page 236) that 
will hold the value. The quantity of leading zeros does not influence the type 
selection.
 Chapter 6. Programming hints and tips 235



Table 6-1   ISO C99 integer constant type selection

For example, a hexadecimal constant that could only be represented by an 
unsigned long in 32-bit will now fit within a long in 64-bit. The change in type of 
the constant in an expression may cause unexpected results.

Data alignment
Modern processor designs usually require data in memory to be aligned to their 
natural boundaries in order to gain the best possible performance. The compiler 
in most cases guarantees data objects to be properly aligned by inserting 
padding bytes immediately before the misaligned data. Although the padding 
bytes do not affect the integrity of the data, they can cause the layout and hence 
the size of structures and unions to be different than expected.

Because the size of pointers and long is doubled in 64-bit mode, structures and 
unions containing them as members will become bigger than in 32-bit mode. For 
example, consider the structure in Example 6-1 on page 237.

Suffix Decimal constant Octal or hexadecimal 
constant

unsuffixed int
long
long long

int
unsigned int
long
unsigned long
long long
unsigned long long

u or U unsigned int
unsigned long
unsigned long long

unsigned int
unsigned long
unsigned long long

l or L long
long long

long
unsigned long
long long
unsigned long long

Both u or U and l or L unsigned long
unsigned long long

unsigned long
unsigned long long

ll or LL long long long long
unsigned long long

Both u or U and ll or LL unsigned long long unsigned long long
236 Developing and Porting C and C++ Applications on AIX



Example 6-1   Structure alignment 

#include <stdio.h>
#include <stddef.h>
void main()
{

struct T {
char c;
int *p;
short s;

} t;
printf("sizeof(t) = %d\n", sizeof(t));
printf("offsetof(t, c) = %d sizeof(c) = %d\n",

offsetof(struct T, c), sizeof(t.c));
printf("offsetof(t, p) = %d sizeof(p) = %d\n",

offsetof(struct T, p), sizeof(t.p));
printf("offsetof(t, s) = %d sizeof(s) = %d\n",

offsetof(struct T, s), sizeof(t.s));
}

When Example 6-1 is compiled and executed in 32-bit mode, the following result 
indicates paddings have been inserted before the member p, and after the 
member s:

sizeof(t) = 12
offsetof(t, c) = 0 sizeof(c) = 1
offsetof(t, p) = 4 sizeof(p) = 4
offsetof(t, s) = 8 sizeof(s) = 2

Three padding bytes are inserted before the member p to ensure p is aligned to 
its natural 4-byte boundary. The alignment of the structure itself is the alignment 
of its strictest member. In this example, it is 4-byte due to the same member p. 
Therefore, two padding bytes are inserted at the end of the structure to make the 
total size of the structure a multiple of 4-byte (see Figure 6-1). This is required so 
that if you declare an array of this structure, each elements of the array will be 
aligned properly.

Figure 6-1   Structure padding in 32-bit mode

0 1 2 3 4 5 6 87 109 11

padding p s

padding

c

 Chapter 6. Programming hints and tips 237



However, when Example 6-1 on page 237 is compiled and executed in 64-bit 
mode, the size of the structure doubles, which is caused by more paddings 
required to make the member p to fall on a natural alignment boundary of 8-byte 
(see Figure 6-2):

sizeof(t) = 24
offsetof(t, c) = 0 sizeof(c) = 1
offsetof(t, p) = 8 sizeof(p) = 8
offsetof(t, s) = 16 sizeof(s) = 2

Figure 6-2   Structure padding in 64-bit mode

And imagine if this structure is shared or exchanged among 32-bit and 64-bit 
processes, the data fields (and paddding) of one environment will not match the 
expectations of the other.

To eliminate the difference, and to allow the structure to be shared, you can 
reorder the fields in the data structure to get the alignments in both 32-bit and 
64-bit environments to match. However, this may not be possible in all cases. It 
depends a great deal on the data types used in the structure, and the way in 
which the structure as a whole is used (for example, whether the structure is 
used as a member of another structure or array).

If you are unable to reorder the members of a structure, or if reordering alone 
cannot provide correct alignment, you can introduce user-defined paddings to 
cause the members of the structure to fall on their natural boundaries. 
Depending on the data types involved, a conditional compile section may be 
necessary. A conditional compile section will be required when the structure uses 
data types that have different sizes in the 32-bit and 64-bit environments. 

For example, if the structure layout of the Example 6-1 on page 237 is changed 
to the following:

struct T {
char c;
short s;

#if !defined(__64BIT__)
char pad1[4];

#endif
int *p;

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2221

c padding p s padding

23
238 Developing and Porting C and C++ Applications on AIX



#if !defined(__64BIT__)
char pad2[4];

#endif
} t;

The structure will have the same size and member layout in both 32-bit and 64-bit 
environments:

sizeof(t) = 16
offsetof(t, c) = 0 sizeof(c) = 1
offsetof(t, s) = 2 sizeof(s) = 2
offsetof(t, p) = 8 sizeof(p) = 4

Note that this output is from a 32-bit execution. The size of the member p, 
sizeof(p), will be 8 in 64-bit mode. Figure 6-3 shows the member layout of the 
structure with user-defined padding.

Figure 6-3   Structure with user-defined paddings in both 32-bit and 64-bit mode

When inserting paddings to structures, use an array of char to avoid any further 
alignment requirement on the paddings themselves. The natural alignment of a 
char is 1-byte, meaning it can reside anywhere in memory. 

6.3  Diagnosing link-time errors
The C and C++ compiler drivers (see 1.7.1, “Default compiler drivers” on 
page 30) handle object file linking by invoking the system link editor ld with the 
appropriate options and flags. There is no need to use ld directly to link edit your 
C and C++ object files. This section describes some of the more common 
link-time errors that you may encounter during development.

Important: This example is for illustrative purposes only. Sharing pointers 
between 32-bit and 64-bit processes is not recommended and will likely yield 
incorrect results.

0 1 2 3 4 98765 10 11 12 13 14 15

c s ppad1 pad2

ppadding

padding

64-bit

32-bit
 Chapter 6. Programming hints and tips 239



6.3.1  Unresolved symbols
When linking your application with many libraries, particularly those supplied by a 
third party product, such as a database, it is not unusual during the development 
cycle to see a linker error warning about unresolved symbols.

The system link editor accepts input such as object files, shared object files, 
archive object files, libraries, and import and export files, resolves external 
symbol references, and creates a single executable object file that can be run. 
When an external symbol cannot be resolved, the link would fail and an 
executable is not generated.

Unresolved symbol errors can occur in many situations, the most common being 
missing input files. For example, if you call a library function that is not in the 
default C run-time library libc.a, you need to specify the archive library file in 
which the symbol is found:

$ cat test.c
#include <stdio.h>
#include <math.h>
void main()
{

printf("%f\n", pow(2.0,3.0));
}
$ cc test.c
ld: 0711-317 ERROR: Undefined symbol: .pow
ld: 0711-345 Use the -bloadmap or -bnoquiet option to obtain more information.
$ cc test.c -lm

This is especially true when using functions provided by third-party libraries. 
Aside from searching the product documentation, finding the library file in which 
an unresolved symbol is defined can be quite a daunting task. You can include all 
supplied libraries in the link command and let the link editor find out where the 
symbol is, or you may use the nm command to try find it yourself.

The linker supports options that can be used to generate linker log files. These 
log files can then be analyzed to determine the library or object file that 
references the unresolved symbol. This can help in tracking interdependent or 
redundant libraries being used in error.

The -bnoquiet option writes each binder sub command and its results to standard 
output. It gives a better of picture of the unresolved symbol references if any 
exists and also the list of symbols imported from the specified library modules.

The -bmap:filename option is used to generate an address map. Unresolved 
symbols are listed at the top of the file, followed by imported symbols.
240 Developing and Porting C and C++ Applications on AIX



The -bloadmap:filename option is used to generate the linker log file. It includes 
information on all of the arguments passed to the linker along with the shared 
objects being read and the number of symbols being imported. If an unresolved 
symbol is found, the log file produced by the -bloadmap option lists the object file 
or shared object that references the symbol. In the case of using libraries 
supplied by a third-party product, you can then search the other libraries supplied 
by the product in an effort to determine which one defines the unresolved 
symbol. This is particularly useful when dealing with database products that 
supply many tens of libraries for use in application development.

If errors show up during linking or loading in a version controlled application 
development environment, then try linking outside the version control system. If 
errors happen only when linking or loading under version control, then check with 
your version control system vendor for known linker/loader problems.

6.3.2  Duplicate symbols
Duplicate symbol errors usually indicate a programming error. It is invalid to have 
multiple external function definitions of the same name. The link editor in this 
case will use the first definition that it encounters, and the result may not be 
desirable. Change the name of the function or use the static function.

The use of template functions in C++ may generate duplicate symbol errors at 
link time. This happens when the template is implicitly instantiated in multiple 
source files. For example:

// t.h
template <class T> class A {
public:

int f();
};

template <class T> int A<T>::f()
{

return 55;
}

// file1.C
#include "t.h"
int func();
int main()
{

A<int> a;
int obj1 = a.f() + func();
return obj1;

}

 Chapter 6. Programming hints and tips 241



#include "t.h"
int func()
{

A<int> a;
int obj2 = a.f();
return obj2;

}

$ xlC -c file1.C file2.C
file1.C:
file2.C:
$ xlC file1.o file2.o
ld: 0711-224 WARNING: Duplicate symbol:
.A<int>::f()
ld: 0711-345 Use the -bloadmap or -bnoquiet option to obtain more information.

Using nm, you will note that the symbol A<int>::f() is defined in both object files:

$ nm -g file1.o
.A<int>::f() T  100
.func() U -
.main T 0
A<int>::f() D 180 12
main D 168 12
$ nm -g file2.o
.A<int>::f() T 68
.func() T 0
A<int>::f() D 148 12
func() D 136 12

In this case, since the duplicate symbol A<int>::f() has the same definition, it is 
safe to suppress the link editor message with -bhalt:5:

$ xlC -bhalt:5 file1.C file2.C
file1.C:
file2.C:

The -bhalt link editor option specifies the maximum error level for the linking 
process to continue, and suppresses any error below the maximum. The 
recommended solution to fixing this error is to use the -qtemplateregistry 
compiler option described in 10.5, “Template registry: The preferred method” on 
page 387, and to take advantage of the improved template handling provided by 
the VisualAge C++ for AIX Version 6 compiler. See the VisualAge C++ for AIX 
Compiler Reference, SC09-4959 for details on the option.
242 Developing and Porting C and C++ Applications on AIX



6.3.3  Insufficient memory for the linker process
The linker can run out of memory when trying to link very large files. When this 
happens, linking fails with the following error:

ld: 0711-101 fatal error, allocation of bytes fail in routine initsymtab_info. 
There is not enough memory.

This may be because of low paging space or because of low resource limits for 
the user invoking the command. The AIX linker offers a great deal more 
functionality than traditional UNIX linkers, but it does require a reasonable 
amount of virtual memory, particularly when linking large applications with many 
libraries.

If this type of error is encountered, check the following and increase the space, if 
necessary:

� The available paging space on the machine.

� The resource limits for the user invoking the linker using the ulimit command 
(see 3.2.6, “Resource limits in 32-bit model” on page 125 for information on 
how to use the command).

If the problem is not solved by these activities, you may consider running the 
linker process in the 32-bit large memory model, as explained in 3.2.4, “Using the 
large and very large memory model” on page 121.

6.3.4  The c++filt utility
The C++ programming language allows function and operator overloading. An 
overloaded function is a function with the same name as a previously declared 
function, but with a different parameter list. To distinguish overloaded function 
names, the compiler uses name mangling to encode the names into unique 
names so that the link editor will not mistake them as duplicate symbols. The 
mangled name contains further information about the function and its 
parameters.

The c++filt utility is provided with the VisualAge C++ for AIX compiler product to 
convert these mangled names to their original source code names. With the 
-bloadmap:filename link editor option, function names appearing in the loadmap 
file, filename, are in mangled form. Use the c++filt utility to get the original 
function names:

ld: 0711-228 WARNING: Duplicate symbols were found while resolving symbols.
    The following duplicates were found:
 Symbol                    Source-File(Object) OR Import-File{Shared-object}
 ------------------------- -------------------------------------------------
 .f__1AXTi_Fv              file1.C(file1.o)
 Chapter 6. Programming hints and tips 243



    ** Duplicate **        file2.C(file2.o)

The c++filt command waits for input from the standard input. If you type in 
mangled function names, it prints the original functions to the standard output:

$ c++filt
f__1AXTi_Fv
A<int>::f()

To quit the command, type ^D (Control-D).

6.4  Diagnosing run-time errors
Although your program may compile and link successfully, you may still 
encounter unexpected results during execution. Programming errors that do not 
violate the syntax of the language are not necessarily flagged by the compiler. 
This section describes some of the most common errors, how to detect them, 
and what you can do to rectify the problem.

6.4.1  Uninitialized variables
Unlike variables with static storage duration, according to the C and C++ 
programming language standards, an automatic (that is, stack allocated) storage 
duration object is not implicitly initialized, and its initial value is indeterminate. In 
other words, there is no guarantee that if an auto variable is used before it is set, 
it will yield the same result in every execution of the program. For example, when 
you first execute the following program, it may seem to be working correctly:

$ cat initauto.c
#include <stdio.h>
void func(int *p)
{

if (p == NULL)
printf("NULL pointer.\n");

else
*p = 0xdeadbeef;

}

void main()
{

int *ptr;
func(ptr);

}
$ cc initauto.c
$ a.out
NULL pointer.
244 Developing and Porting C and C++ Applications on AIX



However, there is still the potential that, given the right conditions, the program 
will start to fail and yield unexpected results.

The C and C++ compilers provide the -qinitauto option, which causes the 
compiler to generate extra code to initialize all automatic variables to a specified 
initial value. Due to the extra code that the option generates, it reduces the 
run-time performance of your program, and its use is only recommended for 
debugging only. For example, compile and execute the above program with 
-qinitauto=FE and you will receive a different result indicating a potential problem:

$ cc -qinitauto=FE initauto.c
$ a.out
Segmentation fault(coredump)

To find out where auto variables are used before being set, use the -qinfo=gen 
compiler option:

$ cc -qinfo=gen initauto.c
"initauto.c", line 13.10: 1506-438 (I) The value of the variable "ptr" may be 
used before being set.

6.4.2  Run-time checking
The -qcheck option inserts run-time checking code into the program executable. 
The following checks are supported:

NULL pointer Checks if the pointers used in any pointer referencing 
have addresses greater than 512.

Array bounds Checks for array indexing to be within the array bounds, 
when the size of the array is known at compile time.

Divide by zero Checks for integer divide by zero.

Depending on the suboptions specified, if a violation occurs, a run-time 
SIGTRAP exception is raised. You can provide your own signal handler to handle 
the exception:

$ cat check.c
#include <stdio.h>

#ifdef DEBUG
#include <signal.h>
#define SIGNAL(sig, handler) signal(sig, handler)
void trap_handler(int sig)
{

printf("SIGTRAP handled\n");
exit(-1);

}
#else
 Chapter 6. Programming hints and tips 245



#define SIGNAL(sig, handler) ((void)0)
#endif

void func(int *p)
{

printf("p has address %p\n", p);
*p = 0xdeadbeef;

}

void main()
{

SIGNAL(SIGTRAP, trap_handler);
func(NULL);

}
$ cc -DDEBUG -qcheck check.c
$ a.out
p has address 0
SIGTRAP handled

Similar to the -qinitauto option, the -qcheck option reduces the run-time 
performance of your program. It is recommended that you use it only for 
debugging.

6.4.3  Unsignedness preservation in C
If you use the cc command, specify the -qlanglvl=extended option, or the 
-qupconv option, and the C compiler will use unsignedness preservation in 
integral promotion. This was the semantic used prior to the c89 standard, also 
commonly referred to as K&R C.

Unsignedness preservation promotes unsigned integral types smaller than int, 
that is, unsigned char and unsigned short, to unsigned int. On the contrary, c89 
and c99 mandate value preservation, where they are promoted to int. 
Unsignedness preservation may result in unexpected execution behavior. For 
example:

$ cat upconv.c
#include <stdio.h>
void main()
{

unsigned char zero = 0;
if (-1 < zero)

printf("NOUPCONV: Value-preserving rules in effect \n");
else

printf("UPCONV: Unsignedness-preserving rules in effect \n");
}
$ cc upconv.c
$ a.out
246 Developing and Porting C and C++ Applications on AIX



UPCONV: Unsignedness-preserving rules in effect
$ cc -qnoupconv upconv.c
$ a.out
NOUPCONV: Value-preserving rules in effect

6.4.4  ANSI aliasing
The standard conforming language levels supported by the C and C++ compilers 
enforce a type-based aliasing rule during optimization. Type-based aliasing, 
sometimes referred to as ANSI-aliasing, restricts the lvalues2 that can be safely 
used to access a data object. In essence, it mandates that a pointer can only 
point to an object of the same type. In other words, any pointer cast followed by a 
dereference violates this rule. The only exceptions are:

� The sign and type qualifiers are not subject to type-based aliasing

� A character pointer can point to any type.

For example, the following program gives different results when optimization is in 
effect:

$ cat ansialias.c
#include <stdio.h>

unsigned int rc;
unsigned int function( float *ptr )
{

rc = 0;
*ptr = 1;
return rc;

}

void main()
{

unsigned int x = function((float *)&rc);
printf("x = %x rc = %x\n", x, rc);

}
$ c89 ansialias.c
$ a.out
x = 3f800000 rc = 3f800000
$ c89 -O ansialias.c
$ a.out
x = 0 rc = 3f800000

When optimization is turned on with -O, the compiler assumes that the pointer ptr 
cannot be pointing to the external variable rc due to type-based aliasing. Hence, 
it can return the value 0 to the caller because of the rc = 0 assignment.

2  An lvalue is an expression with an object type. It is a locator value representing an object.
 Chapter 6. Programming hints and tips 247



If you use the cc compiler driver, or specify the -qalias=noansi option, the 
compiler makes the worst case aliasing assumptions, and assumes that a pointer 
of a given type can point to an external object or any object whose address is 
already taken, regardless of type. This will correct the programming error in the 
above example. However, it also greatly reduces optimization opportunities and 
degrades run-time performance. It is therefore recommended that you change 
you program to conform to type-based aliasing rule.

6.4.5  #pragma option_override
Unfortunately, it may not be easy to fix all programming errors in a complex 
application, especially when the error only shows up when optimization is used. 
In this case it may be worth while to turn off optimization for the function where 
the programming error is, while the rest of the program still benefits from 
optimization.

Use the #pragma option_override directive to specify alternate optimization 
options for specific functions. In the example in 6.4.4, “ANSI aliasing” on 
page 247, adding the directive:

#pragma option_override(function, “opt(level,0)”)

to the source will correct the programing error:

$ c89 -O ansialias.c
$ a.out
x = 3f800000 rc = 3f800000

The #pragma option_override directive is also useful in finding out, by a process 
of elimination, which function is causing the problem. By selectively turning off 
optimization for each function within the directive until the problem disappears, it 
will let you identify where the programming error resides.
248 Developing and Porting C and C++ Applications on AIX



Chapter 7. Debugging your applications

This chapter describes several methods for debugging C and C++ applications 
by providing the following sections:

� Section 7.1, “Working with core files” on page 250

� Section 7.2, “Using the printf()-debug method” on page 258

� Section 7.4, “Using dbx” on page 259

� Section 7.5, “Debugging with the truss command” on page 264

� Section 7.6, “Using the trace facility” on page 267

For further information about the debugging methods on AIX, please refer to AIX 
5L Version 5.2 General Programming Concepts: Writing and Debugging 
Programs.

7

© Copyright IBM Corp. 2000, 2003. All rights reserved. 249



7.1  Working with core files
A core file is generated when various errors occur in an application and the 
process aborts. The reasons can be errors such as memory-address violations, 
illegal instructions, bus errors, and user-generated quit signals. The core file 
contains a memory image of the aborted process. For a detailed definition of the 
contents of a core file, please refer to AIX 5L Version 5.2 Files Reference.

Even if the application does not stop, it might be useful to have a core file as an 
image of the memory state of the process in a specific time. Core files can be 
used for debugging and examination by yourself on your system or by remote 
technical support specialists on their system. For the distribution of a core file, 
there is a special way to collect all needed information.

7.1.1  Core file naming
Before AIX 5L Version 5.1, a core file was always stored in a file named core. If 
the same or another application generated another core file before you renamed 
the previous one, the original content was lost.

Beginning with AIX 5L Version 5.1, you can enable a unique naming of core files, 
but be aware that the default behavior is to name the files core. You apply the 
new enhancement by setting the environment variable CORE_NAMING to a 
non-NULL value, for example:

CORE_NAMING=yes

After setting CORE_NAMING, you can disable this feature by setting the variable 
to the NULL value. For example, if you are using the Korn shell, do the following:

export CORE_NAMING=

After setting CORE_NAMING, all new core will be stored in files of the format 
core.pid.ddhhmmss, where:

pid Process ID

dd Day of the month

hh Hours

mm Minutes

ss Seconds
250 Developing and Porting C and C++ Applications on AIX



In the following example, two core files are generated by a process identified by 
PID 30480 at different times:

$ ls -l core*
-rw-r--r--   1 ausres01 itsores        8179 Jan 28 2003  core.30480.28232347
-rw-r--r--   1 ausres01 itsores        8179 Jan 28 2003  core.30482.28232349

The time stamp used is in GMT1 and your time zone will not be used.

7.1.2  Creating core files with assert()
The assert() macro, provided by the assert.h header file, is a common way to 
produce a core file, when you are sure where the application logic goes wrong. 
For example, if you are sure the integer variable cnt should not be greater than 
100 in the certain point of your code, you can insert the following line into your 
source code:

#include <assert.h>
int func(void)
{

...
/* You are sure that cnt should not be greater than 100 in here. */
assert(cnt <= 100);
...
/* Application logic continues. */

}

If the variable cnt is greater than 100 in the highlighted line in the above example, 
the assert() macro calls the abort() routine and generates a core file and the 
process dies.

7.1.3  Creating core files with coredump()
If you have an application behaving unexpectedly, you can have a core file 
without terminating the application process by adding the coredump() 
sub-routine in your source code. The generated core file, which contains the 
memory image of the process, can be used for debugging the problem with dbx.

In a multi-threaded process, only one thread at a time should attempt to call 
coredump(). Subsequent calls to coredump() while a core dump (initiated by 
another thread) is in progress will fail.

To use coredump(), you must compile your source code with the -bM:UR options; 
otherwise, the routine will fail with an error code of ENOTSUP.

1  Greenwich Mean Time
 Chapter 7. Debugging your applications 251



The syntax of coredump() is:

#include <core.h>
int coredump(struct coredumpinfo *coredumpinfop)

By specifying a file name and its string length in the coredumpinfo structure 
parameter, you can specify any file name as the generating core file. For 
example, if we compile the source file shown in Example 7-1 with cc -bM:UR 
coredump.c, then run a.out, then the core file, mycore, will be generated as 
shown in the following example:

$ cc -bM:UR coredump.c
$ ./a.out; echo $?
0
$ ls -l mycore
-rw-r--r--   1 ausres01 itsores  8183 Feb 05 10:55 mycore

Example 7-1   coredump.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <core.h>

int
main(int argc, char *argv[])
{
    int rc;
    struct coredumpinfo cdinfo;

    cdinfo.name = "mycore";
    cdinfo.length = strlen("mycore");

    if ((rc = coredump(&cdinfo)) == -1) {
        perror("coredump()");
    }

    exit(0);
}

For more information about coredump(), please refer to AIX 5L Version 5.2 
Technical Reference: Base Operating System and Extensions.
252 Developing and Porting C and C++ Applications on AIX



7.1.4  Including shared memory information in the core file
On AIX, by default, the detailed information about shared memory segments and 
thread stacks are not collected when generating core files. If you need to have 
core files that contain detailed information (called full-core), there are two ways 
to do so.

System wide full-core setting
Use the chdev command to change the full core attribute setting system wide. 
The default value is not to take full core dump, as shown in the following example:

# lsattr -El sys0 -a fullcore
fullcore false Enable full CORE dump True

To change the setting, issue the chdev -l sys0 -a fullcore=true command as 
the root user.

Add a signal handler with the SA_FULLDUMP flag
You can modify your application source code by adding a signal handler with the 
SA_FULLDUMP flag set for the signal that will cause the core file. To register a 
signal handler, use the sigaction().

7.1.5  Gathering core files
All associated information of a core file can be packed and archived in a pax file, 
which can be stored on disk or tape or sent to another system for investigation. At 
the time of the writing of this redbook, the Distributed Debugger only supports 
debugging of core files on the machine that created them.

The snapcore command
Use the snapcore command to gather the core file, its program binary executable 
file, and its dependent library files. The syntax of the command is:

snapcore core_filename [program_filename]

Specify the full path names for core file and program file name. Without defining 
the program name, snapcore will read the program name out of the core file and 
search it in the directories defined by PATH.

The command will produce a compressed pax file in the /tmp/snapcore directory 
by default. Use the -d directory option to specify an alternative directory. In the 

Note: The full-core setting is required to debug multi-threaded applications 
with most debugging methods.
 Chapter 7. Debugging your applications 253



following example, a core file generated by prog1 and its dependent library files 
are archived in a compressed pax file, /tmp/snapcore/core.31442.pax.Z:

$ snapcore core.31374.29164438 prog1
Core file "core.31374.29164438" created by "prog1"
pass1() in progress ....

Calculating space required .
Total space required is 6578 kbytes ..
Checking for available space ...
Available space is 119148 kbytes

pass1 complete.
pass2() in progress ....

Collecting fileset information .
Collecting error report of CORE_DUMP errors ..

Creating readme file ..
Creating archive file ...
Compressing archive file ....

pass2 completed.
Snapcore completed successfully. Archive created in /tmp/snapcore.
$ ls -l /tmp/snapcore
total 5960
-rw-r--r--   1 ausres01 itsores     3049565 Jan 29 10:52 snapcore_31442.pax.Z

You can check what files are gathered in the archive file, as shown in the 
following example:

$ uncompress -c /tmp/snapcore/snapcore_31442.pax.Z | pax
core.31374.29164438
README
lslpp.out
errpt.out
prog1
./usr/lib/libc.a
./usr/lib/libcrypt.a
./usr/ccs/lib/libc.a

For more information about the snapcore command refer to AIX 5L Version 5.2 
Reference Documentation: Commands Reference.

The check_core command
You can determinate the program that caused the core and the dependent 
libraries for an existing core file by using the check_core2 command.

2  The check_core command is included in the bos.rte.serv_aid fileset.
254 Developing and Porting C and C++ Applications on AIX



The following example shows that the core file, core.31374.29164438, was 
generated by the program file, prog1, and its dependent libraries:

$ /usr/lib/ras/check_core core.31374.29164438
/usr/lib/libc.a
/usr/lib/libcrypt.a
prog1

7.1.6  AIX error log entry
Each core dump creates a new entry in the AIX error log. It can be useful for 
identifying an application that dumps. Use the following command for examining 
all entries caused by an core dump:

errpt -aJ CORE_DUMP

Use the -s mmddhhmmyy option to filter error log entries starting after the given 
time (mm = month, dd = day, hh = hours, mm = minutes, yy = year).

If you use the -A option instead of -a, you will see a more condensed output. 
Example 7-2 shows that the program prog1 identified with PID 31242 generated 
a core file because of the signal 11 (SIGSEGV) delivery.

Example 7-2   AIX error log: CORE_DUMP

$ errpt -A -J CORE_DUMP -s 0129130003
-----------------------------------------------------------------------
LABEL:          CORE_DUMP
Date/Time:       Wed Jan 29 13:20:35 CST
Type:            PERM
Resource Name:   SYSPROC
Description
SOFTWARE PROGRAM ABNORMALLY TERMINATED
Detail Data
SIGNAL NUMBER
          11
USER'S PROCESS ID:
       31242
FILE SYSTEM SERIAL NUMBER
          13
INODE NUMBER
        2048
PROGRAM NAME
prog1
ADDITIONAL INFORMATION
main 10C
main F8
__start 8C
 Chapter 7. Debugging your applications 255



7.1.7  Lightweight core file support
Besides the standard core file format, you can use the lightweight core file 
format, which complies with the Parallel Tools Consortium Lightweight Core File 
Format. If a multi-threaded program crashes or hangs, it is nearly impossible to 
find out how far the execution got. Dumping out the memory information of many 
processors requires time and disk space. The resulting information in a standard 
core file is of little use for this case. The lightweight core file format is a platform 
independent format with a snapshot of the current location of an application. The 
lightweight core file is a high level, symbolic collection of the program state. It is 
an ASCII file, readable by humans and analysis programs. Running prog2 from 
Example 7-3 on page 257, we receive the lightweight core file named lwcore:

$ more lwcore
+++PARALLEL TOOLS CONSORTIUM LIGHTWEIGHT COREFILE FORMAT version 1.0
+++LCB 1.0 Wed Feb 12 08:19:07 2003 Generated by IBM AIX 5.1
#
+++ID Node 0 Process 30820 Thread 1
***FAULT "SIGSEGV - Segmentation violation"
+++STACK
main : 0x0000004c
---STACK
---ID Node 0 Process 30820 Thread 1
---LCB
+++PARALLEL TOOLS CONSORTIUM LIGHTWEIGHT COREFILE FORMAT version 1.0
+++LCB 1.0 Wed Feb 12 08:31:09 2003 Generated by IBM AIX 5.1
#
+++ID Node 0 Process 37548 Thread 1
***FAULT "SIGSEGV - Segmentation violation"
+++STACK
main : 0x0000004c
---STACK
---ID Node 0 Process 37548 Thread 1
---LCB

Creating a lightweight core file with install_lwcf_handler()
The install_lwcf_handler() subroutine provides a lightweight core file instead of a 
standard core file when an application crashes. It is part of the PTools Library 
(libptools_ptr.a). There are two ways to create the lightweight core file:

� Call the install_lwcf_handler() subroutine directly in your application to 
register a signal handler (Example 7-3 on page 257).

� Use the linker option -binitfini:install_lwcf_handler, so that the function will be 
called by starting the program automatically. In this way, you do not have to 
change your application code.
256 Developing and Porting C and C++ Applications on AIX



The default file name for the lightweight core file is lw_core. Use the 
LIGHTWEIGHT_CORE environment variable to change it to your desired file 
name, or set it to STDERR to redirect the lightweight core file content to the 
standard error.

Example 7-3   prog2.c with install_lwcf_handler() subroutine

#include <stdlib.h>
#include <stdio.h>

void install_lwcf_handler (void);

main(int argc, char *argv[])
{
        int     i,j;
        char s[10];

        install_lwcf_handler();
        printf("I will start counting!\n");
        while (i >= j) {
                s[j] = j;
                j--;
                i++;
        }
        printf("My result is %s\n",s);
        exit(0);
}
$ cc prog2.c -o prog2 -lptools_ptr
$ export LIGHTWEIGHT_CORE="lwcore";
$ prog2
I will start counting!
$ 

Please refer to AIX 5L Version 5.2 Technical Reference: Base Operating System 
and Extensions for more information.

Creating a lightweight core file with mt_trce()
The mt_trce() subroutine provides a lightweight core file with the trace back 
information of all threads allocated in the process space. Threads, except for the 
calling thread, are suspended during the execution of the mt_trce() subroutine.

Refer to the AIX 5L Version 5.2 Technical Reference: Base Operating System 
and Extensions for a complete overview of this topic.
 Chapter 7. Debugging your applications 257



7.2  Using the printf()-debug method
The printf()-debug method is easy to understand and is still the most common 
method used to debug applications. To use the method, define the following 
macro in your codes:

#if !defined(DEBUG)
#define DBGMSG(MSGSTR) ((void)0)
#else
#define DBGMSG(MSGSTR) {\
        fprintf(stderr,"In %s() at line %d in file %s: %s"\
                , __FUNCTION__, __LINE__, __FILE__, (MSGSTR));\
        }
#endif

then call this macro where you would like to print messages, for example:

int main(int argc, char *argv[])
{

DBGMSG("Hi there!\n");
exit(0);

}

If you compile the source code with the -DDEBUG compiler option, then it will 
print a debug message very similar to the following line:

In main() at line 16 in file printf-debug.c: Hi there!

Although it is a very commonly used method in the early development cycle, it 
has the following disadvantages:

� You may need to recompile your source code every time you want to insert 
new printf()-debug lines.

� Debugging multi-threaded applications with the printf()-debug method is not 
trivial.

� Because it may cause many calls to printf(), the application performance get 
degraded in most cases.

� If you insert the DBGMSG macro too many times, it can be hard to trace the 
huge quantity of debug messages.

Function-like macros introduced by C99 are very useful when defining the debug 
macro (see “Function-like macros with variable arguments” on page 9).
258 Developing and Porting C and C++ Applications on AIX



7.3  Preparing your application for debugging
To fully exploit any debugger, you need to compile your application with the -g 
compiler option and without optimization. Otherwise, the debugger cannot 
resolve referenced symbols in your application, and you cannot refer to variables 
or functions by their name while debugging.

If you run the strip command to strip symbol information from your application 
program, the debugger cannot resolve referenced symbols in your application 
either.

The latest C and C++ compilers on AIX support the following useful options:

-qfullpath This puts the full path of the source files into the debug 
information. This can be very useful if you have a very 
large source tree, since the debugger does not need to 
ask for the location of the source file.

-qlinedebug This eliminates the variable descriptions from the debug 
information. This is recommended if the code is 
optimized, since the variable monitoring in optimized code 
will generally give incorrect results. This option 
significantly reduces the size of the debug information, 
especially in C++ programs.

-qdbxextra This include debug information for all symbols in your 
program, regardless of whether they are referenced. 
Normally, only debug information for referenced symbols 
is included. This option will significantly increase the size 
of the resulting executable. 

When debugging information is created in an application, the size of the 
executable may grow dramatically. A C++ executable may grow in size by a factor 
of 10 or more when debug information is generated. Intelligent use of 
-qlinedebug and turning off debug information in uninteresting areas of the code 
may help in this case.

7.4  Using dbx
The symbolic debugger, dbx, is the most commonly used debugger on UNIX 
operating systems, including AIX. The command provides many useful functions 
to debug application problems, including:

� Examines object and core files

� Provides a controlled environment for running a program
 Chapter 7. Debugging your applications 259



� Sets break points

� Traces program flow

� Supervises symbolic variables

Although the usage of dbx is well explained in Chapter 3, “Debugging Programs”, 
in AIX 5L Version 5.2 General Programming Concepts: Writing and Debugging 
Programs, we describe the basic use of dbx and show useful customization 
examples.

7.4.1  Starting a dbx session
If an application aborted and generated a core file, run dbx as follows:

dbx ObjectFile CoreFile

If you do not specify the core file name, then the core file in the current directory 
is assumed to be the correct file. After starting a dbx session, it prints the 
sub-command prompt (dbx). The following example shows that the core file, 
core.30330.30144523, generated by prog1, is core dumped at line number 13 in 
main() because of the segmentation fault:

$ dbx prog1 core.30330.30144523
Type 'help' for help.
reading symbolic information ...
[using memory image in core.30330.30144523]

Segmentation fault in main at line 13
   13                   s[j] = j;

To exit from a dbx session, type quit on the dbx sub-command prompt:

(dbx) quit

Attaching to a running process
If you need to debug a running process, for example, your application seems to 
run into an endless loop, you can attach a dbx session to the process by 
specifying the process ID (PID) with the -a option, as shown in the following 
example:

$ dbx -a 25952
Waiting to attach to process 25952 ...
Successfully attached to prog6.
Type 'help' for help.
reading symbolic information ...
stopped in main at line 15

Note: dbx does not support lightweight core file.
260 Developing and Porting C and C++ Applications on AIX



   15           while (i >= j) {
(dbx) quit
[2] + Killed                   prog6 &

7.4.2  Customizing a dbx session
The dbx command reads in an initial configuration file, .dbxinit, in the following 
order:

1. The current directory

2. User’s home directory

If the .dbxinit file is found in the current directory, the command does not read the 
one in the user’s home directory. Or, you can explicitly specify the file name using 
the -c option.

By defining aliases of frequently used sub-commands or macros, you can 
customize your dbx session.

After starting the dbx session, you can also instruct dbx to dynamically read the 
configuration file by using the source sub-command as follows:

(dbx) source /home/ausres01/.dbxinit

The following settings are useful to customize your dbx session.

Displaying more readable output of structure
Using the print sub-command, you can print the value of a variable in a dbx 
session. If you have to print complex C or C++ structures or unions, it could be 
difficult to read and interpret the resulting output. Use the following 
sub-command to display more readable output.

Set $pretty=”on”
Use the set $pretty=”on” sub-command to make your output more readable. 
Every value is print on its own line, with its scope value indented, as shown in the 
following example:

(dbx) set $pretty="off"
(dbx) print names[0]
(effort = (low = (0, 0), name1 = "Fabian", name2 = "Julian", name3 = "Manuel", 
high = (
(a = (0), b = 0)

Note: If you type the quit sub-command on the sub-command prompt, the 
attached process will be killed as well as the dbx session. To exit from the dbx 
session without terminating the attached process, use the detach 
sub-command.
 Chapter 7. Debugging your applications 261



(a = (0), b = 0)
)), range = (0))
(dbx) set $pretty="on"
(dbx) print names[0]
{
    effort = {
        low[0] = 0
        low[1] = 0
        name1 = "Fabian"
        name2 = "Julian"
        name3 = "Manuel"
        high[0] = {
            a[0] = 0
            b = 0
        }
        high[1] = {
            a[0] = 0
            b = 0
        }
    }
    range[0] = 0
}

Set $pretty=”verbose”
You can also use the set $pretty=”verbose” sub-command for other printing 
styles, with each value on its own line and with qualified names:

(dbx) set $pretty="verbose"
(dbx) print names[0]
effort.low[0] = 0
effort.low[1] = 0
effort.name1 = "Fabian"
effort.name2 = "Julian"
effort.name3 = "Manuel"
effort.high[0].a[0] = 0
effort.high[0].b = 0
effort.high[1].a[0] = 0
effort.high[1].b = 0
range[0] = 0
(dbx)

Command line editor mode
You can set the dbx’s sub-command line editor mode to either vi or emacs by 
using the sub-command set edit [vi/emacs] or set -o [vi/emacs].
262 Developing and Porting C and C++ Applications on AIX



7.4.3  Working with breakpoints: The stop subcommand
The stop subcommand halts the application program when certain conditions are 
fulfilled. The program is stopped when:

� The Condition is true when the if Condition flag is used. 

� The Procedure is called if the in Procedure flag is used. 

� The Variable is changed if the Variable parameter is specified. 

� The SourceLine line number is reached if the at SourceLine flag is used. 

7.4.4  Redirection of library location in object files with the -p flag
If you examine a core file, dbx has to resolve all references for libraries and 
shared objects loaded by the application when the core file is generated. The 
information is kept in the loader section of the core file. All file names except the 
main executable module are treated as absolute path names. The dbx command 
uses this table, not the LIBPATH environment variable. 

If you bring the core file to another system to examine it, the libraries can be 
missing or in another location. Starting with AIX 5L Version 5.2, the -p flag of dbx 
allows you to map the old library names to the new ones. You do not need to alter 
the core file.

In the following example, the ./libone.so library (listed as entry 5) is used, which is 
located in the current directory:

(dbx) map
Entry 1:
   Object name: prog8
   Text origin:     0x10000000
...
Entry 5:
   Object name: ./libone.so
   Text origin:     0xd00d7000
   Text length:     0x2fd
   Data origin:     0xf0323210
   Data length:     0x34
   File descriptor: 0x8

(dbx)

If the library is no longer at its original location, you will get an error upon the dbx 
session start:

$ dbx prog8 core
Type 'help' for help.
 Chapter 7. Debugging your applications 263



reading symbolic information ...dbx: fatal error: 1283-012 cannot open 
./libone.so

To solve this problem, use the -p option to map the missing library to its new 
location, as shown in the following example:

$ dbx -p ./libone.so=./lib/libone.so prog8 core
Type 'help' for help.
[using memory image in core]
reading symbolic information ...

Segmentation fault in func8 at 0xd00d7158
0xd00d7158 (func8+0x30) 98640048        stb   r3,0x48(r4)
(dbx) map
Entry 1:
   Object name: prog8
...
Entry 5:
   Object name: ./lib/libone.so
   Text origin:     0xd00d7000
   Text length:     0x2fd
   Data origin:     0xf0323210
   Data length:     0x34
   File descriptor: 0x9

You can also put the mapping information in a file and call the -p flag as 
-pfilename.

7.4.5  Using dbx with gcc
Starting with AIX 5L Version 5.2, dbx has been modified to support broad 
compatibility with the GNU C compiler (gcc), so the command now can be used 
to debug applications compiled with gcc.

To debug application compiled with dbx, you have to specify the -gxcoff option 
when building an executable file as follows:

$ gcc -gxcoff prog.c -o prog

7.5  Debugging with the truss command
The truss command traces library and system calls and signal activity for a 
process.3 It allows you to see all the system calls being made by a process, the 
parameters passed by those calls, and any data or errors returned from those 

3  The truss command has been supported on AIX, starting from Version 5.1. Several enhancements 
have been made in AIX 5L Version 5.2.
264 Developing and Porting C and C++ Applications on AIX



calls. You can watch what your application is requesting from AIX and the results 
of those requests on live.

To demonstrate how it works, we present an application, which is composed of 
the four source files shown in Example 7-4.

Example 7-4   Source codes of prog_to_truss

/* main.c */
int main(int argc, char *argv[])
{
    func9_1(1);
    func9_3(2);
    exit(0);
}
/* sample9a.c */
void func9_1(int i)
{
    int     offset;

    offset = 10;
    func9_2(i);
    func9_3(i + offset);
}
/* sample9b.c */
void func9_2(int i)
{
    func9_3(i);
}
/* sample9c.c */
#include <stdio.h>
#include <stdlib.h>

void func9_3(int i)
{
    printf("I am here in func9_3 with %d !!\n", i);
}

We have built the application, prog_to_truss, as follows:

$ cc -G -o libs91.so sample9a.c
$ cc -G -o libs92.so sample9b.c
$ cc -G -o libs93.so sample9c.c
$ cc -brtl prog9.c  -L. libs91.so libs92.so libs93.so -o prog_to_truss

The prog_to_truss application contains an object module, main.o, and references 
to three run-time linking shared objects (see 2.5, “Run-time linking” on page 68).
 Chapter 7. Debugging your applications 265



By default, truss does not trace library calls. In the following example, we have 
specified the -t!__loadx option, which means that any calls of the system call 
__loadx will be excluded from the output. Because the program calls three 
functions in run-time linking shared objects, if we do not specify this option, the 
output becomes very unclear for our demonstration:

$ truss -t!__loadx prog_to_truss
execve("./prog_to_truss", 0x2FF229FC, 0x2FF22A04)  argc: 1
sbrk(0x00000000)                                = 0x2000050C
sbrk(0x00000004)                                = 0x2000050C
sbrk(0x00010010)                                = 0x20000510
kioctl(1, 22528, 0x00000000, 0x00000000)        = 0
I am here in func9_3 with 1 !!
kwrite(1, 0xF01B5168, 24)                       = 24
I am here in func9_3 with 11 !!
kwrite(1, 0xF01B5168, 25)                       = 25
I am here in func9_3 with 2 !!
kwrite(1, 0xF01B5168, 24)                       = 24
kfcntl(1, F_GETFL, 0x00000000)                  = 67110914
kfcntl(2, F_GETFL, 0xF01B5168)                  = 67110914
_exit(0)

In the following example, we have specified the -u’*’ option to display the tracing 
output of any library function calls:

$ truss -t!__loadx -u'*' prog_to_truss
execve("./prog_to_truss", 0x2FF229FC, 0x2FF22A04)  argc: 1
sbrk(0x00000000)                                = 0x2000050C
sbrk(0x00000004)                                = 0x2000050C
sbrk(0x00010010)                                = 0x20000510
->librtl.a:func9_1(0x1)
->librtl.a:func9_3(0x1)
kioctl(1, 22528, 0x00000000, 0x00000000)        = 0
I am here in func9_3 with 1 !!
kwrite(1, 0xF01B5168, 24)                       = 24
<-librtl.a:func9_3() = 18               0.000000
->librtl.a:func9_3(0xb)
I am here in func9_3 with 11 !!
kwrite(1, 0xF01B5168, 25)                       = 25
<-librtl.a:func9_3() = 19               0.000000
<-librtl.a:func9_1() = 19               0.000000
->librtl.a:func9_3(0x2)
I am here in func9_3 with 2 !!
kwrite(1, 0xF01B5168, 24)                       = 24
<-librtl.a:func9_3() = 18               0.000000
->librtl.a:exit(0x0)
kfcntl(1, F_GETFL, 0x00000000)                  = 67110914
kfcntl(2, F_GETFL, 0xF01B5168)                  = 67110914
_exit(0)
266 Developing and Porting C and C++ Applications on AIX



As shown in the high-lighted lines, func9_3() called three times with an integer 
parameter, 1 (0x1), 11 (0xb), and 2 (0x2). Apparently, these values are passed by 
the parent function, func9_2(), as shown in Example 7-4 on page 265.

For further information about the truss command and its enhancements, please 
refer to the AIX 5L Differences Guide Version 5.2 Edition, SG24-5765 and the 
AIX 5L Version 5.2 Reference Documentation: Commands Reference.

7.6  Using the trace facility
The trace facility is a flexible system monitoring service that supplies a stream of 
events. It is up to you what information you extract. Trace provides detailed 
information about system activity based on a collection of pre-defined system 
events. You can add new trace hooks into your application in order to examine 
the application behavior. By utilizing trace hooks, your application may be 
debugged without having core files.

Please refer to the “Analyzing Performance with the Trace Facility” section of the 
AIX 5L Version 5.2 Performance Management Guide for further information.

7.6.1  Introduction to trace
Events are the basics of every trace running. These events are compiled into 
kernel or application code, but are only traced if tracing is active. You activate 
tracing with the trace command or the trcstart() subroutine. Tracing is stopped 
with the trcstop command or the trcstop() subroutine. 

When tracing is active, you suspend or resume it with the trcoff and trcon 
commands or with the trcoff() and trcon() subroutines.

During the tracing, the events are stored in the trace log file. The recorded events 
can be selected and formatted with the trcrpt command to be a 
human-readable report.

Trace hooks
The events monitored by trace are the trace hooks. Each hook is assigned to a 
unique number. The trace hooks are defined in the /usr/include/sys/trchkid.h 
header file.

You can define additional user trace hooks used for tracing your application. The 
range for user defined hooks is between 0x010 and 0x0FF.

Note: Tracing may impact system performance, if many events are traced.
 Chapter 7. Debugging your applications 267



Trace report
Once the trace events are stored in the log file, use the trcrpt command to 
produce a human-readable report.

7.6.2  Tracing an application on the command line
This is the most common and useful way of tracing user defined trace hooks in 
user applications.

Defining the trace hook in the application
Before starting trace, you have to modify your application code. The trace 
interfaces in your application will be only active if the trace daemon is active and 
is collecting data.

We use the example source code shown in Example 7-5 to demonstrate a simple 
usage of trace hook in the application source code.

Example 7-5   Sample source code using trchook (prog11.c)

#include <stdlib.h>
#include <stdio.h>

int main(int argc, char *argv[])
{
    unsigned int d1,d2,d3,d4,d5;

 int a,b;

    trchook(0x02010000,d1,d2,d3,d4,d5); /* trace hook 0x020 */
    trchook(0x02110000,d1,d2,d3,d4,d5); /* trace hook 0x021 */

    a = 13;
    b = 3;
    trchook(0x02220000,(a+b),d2,d3,d4,d5);/* trace hook 0x022 */

    exit(0);
}

The trchook() subroutine has the following syntax:

void trchook(unsigned int HkWord, unsigned int d1
, unsigned int d2, unsigned int d3
, unsigned int d4, unsigned int d5);

where HkWord is an unsigned integer consisting of a hook ID (HkID), a hook type 
(Hk_Type), and two bytes of data from the calling program (HkData). A hook ID is 
a 12-bit value. For user programs, the hook ID may be a value from 0x010 to 
0x0FF. Hook identifiers are defined in the /usr/include/sys/trchkid.h file. Hk_Type 
268 Developing and Porting C and C++ Applications on AIX



is a 4-bit value that identifies the amount of trace data to be recorded (see 
Figure 7-1).

Figure 7-1   Definition of HkWord

Defining trace templates 
Prepare the trace report by naming the desired messages in the output by 
defining your user trace hooks (in our example, hook id 020, 021, and 022).

The trace templates for the trcrpt command are stored in the /etc/trcfmt file. 
Instead of using the default /etc/trcfmt file, we have made our own copy file, 
mytrcfmt, so that we can refer to this file by using the -t filename option.

In our example, we have inserted the following definition entries in mytrcfmt:

020 1.0 L=APPL "USER EVENT - HKWD_USER2" O2.0      \n \
               "Program runs over here"
021 1.0 L=INT  "USER EVENT - HKWD_USER2" O2.0      \n \
               "Simulatied Interrupt"
022 1.0 L=APPL "USER EVENT - HKWD_USER2" O2.0      \n \
               "Program runs over here value:" U4

Please refer to AIX 5L Version 5.2 Files Reference for the complete definition of 
trace templates.

Tracing the application
We have compiled the program as follows:

$ cc prog11.c -o prog11

HkWord

12 bit HkID 4 bit 
Hk_Type

2 Bytes HkData

Value Records                                                                     
1     Hookword                                                                
9     Hookword and a time stamp                                   
2     Hookword and one data word                                 
A     Hookword, one data word and a time stamp          
6     Hookwordamd up to five data words                       
E     Hookword, up to five data words and a time stamp
 Chapter 7. Debugging your applications 269



2

Then we start to trace it as follows:

$ trace
-> trcon
-> ! prog11
-> trcoff
-> q

When invoked, the trace command gives you the sub-command prompt “->”. 
The trcon sub-command starts the collection of trace hooks. We started the 
program, prog11, and stopped the collection with the trcoff sub-command.

Reporting output of the trace events
The following example shows the trace report of newly defined trace hooks:

# trcrpt -d 020,021,022 -t mytrcfmt
Mon Feb  3 17:31:25 2003
System: AIX lpar02 Node: 5
Machine: 0021768A4C00
Internet Address: 09030442 9.3.4.66
The system contains 2 cpus, of which 2 were traced.
Buffering: Kernel Heap
This is from a 32-bit kernel.
Tracing all hooks.

trace

ID     ELAPSED_SEC DELTA_MSEC   APPL SYSCALL KERNEL  INTERRUPT

006    0.864997761 864.997761 TRACEBUFFER WRAPAROUND 0002
006    1.802352538 937.354777 TRACEBUFFER WRAPAROUND 0003
006    2.789985334 987.632796 TRACEBUFFER WRAPAROUND 0004
006    3.687272139 897.286805 TRACEBUFFER WRAPAROUND 0005
006    4.454988847 767.716708 TRACEBUFFER WRAPAROUND 0006
006    4.657498888 202.510041 TRACEBUFFER WRAPAROUND 0007
020    4.669032274*  USER EVENT - HKWD_USER2

Program runs over here
021    4.669032274* USER EVENT - HKWD_USER2

Simulatied Interrupt
022    4.669032274* USER EVENT - HKWD_USER2

Program runs over here value: 16
006    4.749999720 80.967446     TRACEBUFFER WRAPAROUND 0008
006    5.695142879 945.143159                 TRACEBUFFER WRAPAROUND 0009
005    5.695142879*                           LOGFILE WRAPAROUND 0001
006    6.534979135 839.836256                 TRACEBUFFER WRAPAROUND 000A
002    6.609241540 74.262405                  TRACE OFF channel 0000 Mon Feb  3 
17:31:33 2003
70 Developing and Porting C and C++ Applications on AIX



7.6.3  Tracing an application with subroutine calls
You can include the trace control, starting the trace, enable and resume data 
collection, as well as trace stopping completely inside the application.

Defining the trace hook in the application
In the prog10.c sample, we use a predefined macro called TRCHKL1T (see 
Example 7-6). The TCHKL1T macro found in /usr/include/sys/trcmacros.h is 
defined to call the utrchook() subroutine, which is similar to the trchook() 
subroutine used in our previous example, but used for non generic hook events. 
The utrchook() subroutine is called by the macro with hook ID 0x010 and HType 
2.

In Example 7-6, instead of using trcon() and trcoff() subroutines, we use ioctl() 
calls for the trcon and trcoff functions. trcon() and trcoff() subroutines perform the 
following tasks:

1. Opens the trace control device (/dev/systrctl).

2. Issues the appropriate ioctl() subroutine. 

3. Closes the control device. 

4. Returns to the calling program. 

So, using the ioctl()-calls directly tunes the trace, because we do not need 
additional I/O and system calls.

Example 7-6   Sample source code using TRCHKL1T (prog10.c)

#include <stdlib.h>
#include <stdio.h>
#include <sys/trcctl.h>
#include <sys/trcmacros.h>
#include <sys/trchkid.h>

#include <sys/trchkid.h>
char *ctl_file = "/dev/systrctl";
int ctlfd;
int i;

main(int argc, char *argv[])
{
    printf("Configuring trace collection \n");
    if (trcstart("-ad")) {
        perror("trcstart");
        exit(1);
    }

    printf("Opening the trace device  \n");
 Chapter 7. Debugging your applications 271



    if ((ctlfd = open(ctl_file, 0)) < 0) {
        perror(ctl_file);
        exit(1);
    }

    printf("Turning  trace on \n");
    if (ioctl(ctlfd, TRCON, 0)) {
        perror("TRCON");
        exit(1);
    }

    for (i=1;i <6; i++) {
        TRCHKL1T(HKWD_USER1, i);
    }

    printf("Turning trace off\n");
    if (ioctl(ctlfd, TRCSTOP, 0)) {
        perror("TRCOFF");
        exit(1);
    }

    printf("Stopping the trace daemon \n");
    if (trcstop(0)) {
        perror("trcstop");
        exit(1);
    }

    exit(0);
}

We have compiled the application as follows:

$ cc prog10.c -o prog10 -lrts

Tracing the application
When the application starts, it automatically starts and stops the trace:

$ prog10
Configuring trace collection
Opening the trace device
Turning  trace on
Turning trace off
Stopping the trace daemon

Reporting the output of the trace events
After defining the template for hook ID 0x010, we can generate the trace report, 
as shown in Example 7-7 on page 273.
272 Developing and Porting C and C++ Applications on AIX



Example 7-7   Trace report for the hook ID 010

$ trcrpt -d 010 -t mytrcfmt

Mon Feb  3 18:20:06 2003
System: AIX lpar02 Node: 5
Machine: 0021768A4C00
Internet Address: 09030442 9.3.4.66
The system contains 2 cpus, of which 2 were traced.
Buffering: Kernel Heap
This is from a 32-bit kernel.
Tracing all hooks.

/usr/sbin/trace -ad

ID     ELAPSED_SEC     DELTA_MSEC   APPL    SYSCALL KERNEL  INTERRUPT

001    0.000000000       0.000000                   TRACE ON channel 0
                                                    Mon Feb  3 18:20:06 2003
010    0.000004057       0.004057   USER EVENT - HKWD_USER1
                                    The # of loop iterations =1
                                    The elapsed time of the last loop =
010    0.000005344       0.001287   USER EVENT - HKWD_USER1
                                    The # of loop iterations =2
                                    The elapsed time of the last loop = [1 usec]
010    0.000006565       0.001221   USER EVENT - HKWD_USER1
                                    The # of loop iterations =3
                                    The elapsed time of the last loop = [1 usec]
010    0.000007785       0.001220   USER EVENT - HKWD_USER1
                                    The # of loop iterations =4
                                    The elapsed time of the last loop = [1 usec]
010    0.000009020       0.001235   USER EVENT - HKWD_USER1
                                    The # of loop iterations =5
                                    The elapsed time of the last loop = [1 usec]
002    0.000043623       0.034603 TRACE OFF channel 0000 Mon Feb  3 18:20:06 
2003

For more information about the trace facility, please refer to the “Trace Facility” 
section of AIX 5L Version 5.2 General Programming Concepts: Writing and 
Debugging Programs and the “Analyzing Performance with the Trace Facility” 
section of AIX 5L Version 5.2 Performance Management Guide. See the AIX 5L 
Version 5.2 Files Reference for the trcfmt file format.
 Chapter 7. Debugging your applications 273



274 Developing and Porting C and C++ Applications on AIX



Chapter 8. Introduction to POSIX 
threads

This chapter gives you an introduction to parallel programming on AIX using 
POSIX threads by providing several example programs that explain the following 
concepts:

� Creating and joining POSIX threads
� Mutexes (mutual exclusive locks)
� Condition variables
� Read-write locks
� Thread-specific data
� Thread scheduling
� Environment variables

For further information about POSIX thread programming on AIX, please refer to 
the following sections in AIX 5L Version 5.2 General Programming Concepts: 
Writing and Debugging Programs:

� “Parallel Programming”
� “Programming on Multiprocessor Systems”
� “Threads Programming Guidelines”

8

© Copyright IBM Corp. 2000, 2003. All rights reserved. 275



8.1  Overview of threads
A thread is a single, sequential flow of control within a process. Within each 
thread, there is a single point of execution. On most UNIX operating systems, 
including AIX, a thread possesses the following characteristics:

� It has its own independent flow of control within a process.

� It shares resources with other threads within a process.

� It can voluntary terminate before the process termination, or all the threads 
within a process terminate when the process terminates.

Most traditional programs execute as a process with a single thread. From a 
programmer’s point of view, a thread can be considered as a procedure that can 
concurrently and independently run from the main processing flow.

8.1.1  Relationship between a process and a user thread
A process is a running program instance, which contains the following resources:

� Address space, including program text, shared library, global data, and so on.

� File descriptors

� Signal handlers

� Environment (variable) and working directory

� Set of identifiers (PID, GID, and so on)

� Inter-process communication (IPC) facilities, such as message queues, pipes, 
semaphores, and shared memory segments.

Multiple user threads can exist within a process and use these process 
resources, yet are able to be scheduled by the operating system and run as 
independent entities within a process. A user thread can posses an independent 
flow of control and can be scheduled because it maintains its own resources:

� Priority

� Program counter, stack pointer, and other registers

� Stack

� Scheduling priorities

� Signal mask

� Thread ID

� errno1

1  See “Use of errno in multi-threaded programming” on page 283.
276 Developing and Porting C and C++ Applications on AIX



Figure 8-1 illustrates the relationship between a process and two user threads.

Figure 8-1   Two user threads in a process

A process can have multiple user threads, all of which share the resources within 
a process and all of which execute within the same address space. At any given 
point in time, there are multiple points of execution within a multi-threaded 
process.

Because user threads within the same process share resources, changes made 
by one user thread to a process resource will be transparently seen by all other 
user threads. Also, because multiple user threads can read and write the same 
memory locations within a process address space, the synchronization of data 
must be explicitly taken among these threads.

The cost to create or manage user threads is relatively cheap compared with 
processes in terms of CPU cycles. Also, the creation of a user thread requires a 
very small amount of memory compared with a process creation. With careful 
design and coding, the use of user threads gives programmers the ability to write 
multi-threaded applications that run on both uni- and multi-processor systems, 
taking advantage of the additional processors on SMP systems. Additionally, 
multi-threaded applications can increase performance even in a uniprocessor 

main()
{

...

...
func1(a, b, c);
...
func2(d, e, f);
...

}

func1()
a, b, c

func2()
d, e, f

User process address space

User thread 1

User thread 2

Program text

Process heap

Shared library
text and data

User process resource

pthread_create()

Thread (1) resource

Thread (2) resource
 Chapter 8. Introduction to POSIX threads 277



environment when the application performs operations that are likely to block or 
cause delays, such as file or socket I/O.

8.2  POSIX threads (Pthreads) on AIX
AIX supports the following standards:

� The Single UNIX Specification Version 2

The specification includes the POSIX thread standard, known as the IEEE 
POSIX 1003.1c standard.2 Thread implementations that conform to this 
standard are referred to as POSIX threads or Pthreads.3

� The Open Group UNIX 98 specification4

The specification defines many additional functions on the former UNIX 95 
specification, as well as extended threads functions over POSIX threads, 
based on industry input from major UNIX vendors.

On AIX, POSIX threads are defined as a set of C language programming types 
and sub-routine calls, implemented with a header file (/usr/include/pthread.h) and 
the POSIX thread library (/usr/lib/libpthreads.a).

AIX provides binary compatibility for existing multi-threaded applications that 
were written for the draft of Version 7 of the POSIX threads standard. The 
compatibility POSIX thread library, /usr/lib/libpthreads_compat.a, is only provided 
for backward compatibility for those applications. The compatibility POSIX thread 
library supports 32-bit applications only.

Both libraries are included in the bos.rte.libpthreads fileset, which is installed by 
default, as shown in the following example:

# lslpp -w /usr/lib/libpthreads*.a
  File                                        Fileset               Type
  ----------------------------------------------------------------------------
  /usr/lib/libpthreads.a                      bos.rte.libpthreads   Symlink
  /usr/lib/libpthreads_compat.a               bos.rte.libpthreads   Symlink

2  AIX has been supporting the IEEE POSIX 1003.1c standard since Version 4.3. Later, it was 
included in the Single UNIX Specification Version 2, which AIX has been supporting since Version 
5.1.
3  Currently, AIX does not support the POSIX thread option real-time extension.
4  AIX has been supporting the UNIX 98 specification since Version 4.3.
278 Developing and Porting C and C++ Applications on AIX



8.2.1  Advantages of using Pthreads
The following are the advantages of using Pthreads:

� The primary purpose of using Pthreads is to realize potential performance 
gains. POSIX threads can be created and managed with much less operating 
system overhead and system resources than creating and managing a 
process.

� Inter-thread communication is more efficient and, in many cases, easier to 
use than inter-process communication.

� Multi-threaded applications offer potential performance gains over 
non-threaded applications in several other ways:

– Overlapping CPU work with I/O: For example, a program may have 
sections where it is performing a long I/O operation. While one Pthread is 
waiting for an I/O system call to complete, CPU intensive work can be 
performed by other Pthreads.

– Priority/Real-time scheduling: High priority jobs can be scheduled to 
supersede or interrupt lower priority jobs.

– Asynchronous event handling: Jobs that service events of indeterminate 
frequency and duration can be interleaved. For example, a Web server 
can both transfer data from previous requests and manage the arrival of 
new requests.

� POSIX threads provide the infrastructure to parallelize applications using 
OpenMP, as explained in Chapter 9, “Program parallelization using OpenMP” 
on page 335.

8.2.2  The POSIX threads API
The POSIX threads API is defined in the ANSI/IEEE POSIX 1003.1 standard. All 
identifiers in the Pthreads library begin with pthread_. The POSIX threads API 
contains over 60 subroutines. Brief descriptions about the POSIX threads 
sub-routines supported on AIX are provided in Appendix D, “Subroutine 
references for POSIX threads” on page 473.

Naming conventions
All the POSIX threads sub-routines are categorized into several groups 
distinguished by the following function name prefixes:

pthread_ Threads and miscellaneous subroutines (see Table D-1 
on page 474 and Table D-6 on page 481)

pthread_attr_ Thread attributes objects (see Table D-2 on page 476)

pthread_mutex_ Managing mutexes (see Table D-3 on page 477)
 Chapter 8. Introduction to POSIX threads 279



pthread_mutexattr_ mutex attribute objects (see Table D-3 on page 477)

pthread_cond_ Condition variables (see Table D-3 on page 477)

pthread_condattr_ Condition attribute objects (see Table D-3 on page 477)

pthread_rwlock_ Read/Write lock objects (see Table D-5 on page 480)

pthread_rwlockattr_ Read/Write lock attributes (see Table D-5 on page 480)

pthread_key_ Thread-specific data keys (see Table D-4 on page 479)

8.2.3  Multi- and single-threaded processes
On AIX, the scheduling entity is a kernel thread. A single kernel thread can be 
mapped to multiple user threads (Pthreads) within a process (detailed 
information about the relationship between kernel threads and user threads is 
provided in 8.7.1, “Thread models in AIX” on page 322).

In order to illustrate how multi-threaded applications run on AIX, we have 
excerpted several lines from the ps -emo THREAD command output, as shown in 
Example 8-1 on page 281. The -o THREAD option instructs the ps command to 
display thread-level information; without this option, the command displays 
process-level information only.

Each column in the output represents the following:

USER The login name of the process owner.
PID The process ID of the process.
PPID The process ID of the parent process.
TID The thread ID of the kernel thread. 
S The state of the process or kernel thread.
C The CPU utilization of the process or kernel thread.
PRI The priority of the process or kernel thread.
SC The suspend count of the process or kernel thread.
WCHAN The wait channel of the process or kernel thread.
FLAG The flags of the process or kernel thread.
TTY The controlling terminal of the process.
BND The CPU to which the process or kernel thread is bound.
CMD The command being executed by the process.
280 Developing and Porting C and C++ Applications on AIX



Example 8-1   ps -emo THREAD

# ps -emo THREAD
USER   PID  PPID    TID ST  CP PRI SC    WCHAN        F     TT BND COMMAND

    root     1     0      - A    0  60  1        -   200003      -   - /etc/init
       -     -     -    259 S    0  60  1        -   410410      -   - -
... (some lines are omitted) ...

root 10432 13686      - A    0  60 11 f015ab98   240001      -   - /usr/sbin/rpc.mountd
       -     -     -  19881 S    0  60  1 f015ab98   c10400      -   - -
       -     -     -  23811 Z    0  60  1        -   c00001      -   - -
       -     -     -  49449 Z    0  60  1        -   c00001      -   - -
       -     -     -  53961 Z    0  60  1        -   c00001      -   - -
       -     -     -  54215 Z    0  60  1        -   c00001      -   - -
       -     -     -  55603 S    0  60  1        -   418400      -   - -
       -     -     -  60085 Z    0  60  1        -   c00001      -   - -
       -     -     -  60705 Z    0  60  1        -   c00001      -   - -
       -     -     -  62039 Z    0  60  1        -   c00001      -   - -
       -     -     -  63481 Z    0  60  1        -   c00001      -   - -
       -     -     -  63955 Z    0  60  1        -   c00001      -   - -
... (some lines are omitted) ...

root 16266 13686      - A    0  60  1 c0042100   240001      -   - /usr/sbin/qdaemon
       -     -     -  22197 S    0  60  1 c0042100    10400      -   - -
... (rest of lines are omitted) ...

In this example, the rpc.mountd daemon process (PID 10432) is a multi-threaded 
process, since it contains 11 lines underneath the highlighted line, while the 
qdaemon daemon process (PID 16266) is a single-threaded process, since it has 
only one line that represents the kernel thread for the process’s initial thread.

Two kernel threads (TID 19881 and 55603) of PID 10432 shown the status S, 
which means the kernel thread is in the sleeping status. Other kernel threads did 
not exist at the time the ps command was invoked, though TIDs were displayed.

the process could be verified by inspecting the /proc file system.5 The /proc file 
system is a system interface to represent process information. The process 
information for the process <PID> is shown as several files and sub-directories 
under the /proc/<PID> directory.

As shown in Example 8-2 on page 282, there were only two sub-directories, 
19881 and 55603, under the /proc/10432/lwp directory6 at the moment the ps 
command was invoked. The sub-directory names, 19881 and 55603, were the 
same TIDs for the PID 10432 in Example 8-1.

5  AIX has been supporting the /proc file system since AIX 5L Version 5.1.
6  LWP stands for light-weight process. In the /proc file system semantic, kernel threads are 
represented as LWPs.
 Chapter 8. Introduction to POSIX threads 281



Example 8-2   Inspecting the /proc file system

# ls /proc/10432
as       ctl      fd/      map      psinfo   status
cred     cwd@     lwp/     object/  sigact   sysent
# ls /proc/10432/lwp
19881/  55603/
# ls -lR /proc/10432/lwp
total 0
dr-xr-xr-x   1 root     system            0 Feb 21 18:41 19881/
dr-xr-xr-x   1 root     system            0 Feb 21 18:41 55603/
/proc/10432/lwp/19881:
total 0
--w-------   1 root     system            0 Feb 21 18:41 lwpctl
-r--r--r--   1 root     system          120 Feb 21 18:41 lwpsinfo
-r--------   1 root     system         1200 Feb 21 18:41 lwpstatus

/proc/10432/lwp/55603:
total 0
--w-------   1 root     system            0 Feb 21 18:41 lwpctl
-r--r--r--   1 root     system          120 Feb 21 18:41 lwpsinfo
-r--------   1 root     system         1200 Feb 21 18:41 lwpstatus

For further information about the /proc file system, please refer to the AIX 5L 
Version 5.2 Files Reference.

Although the rpc.mountd daemon process (PID 10432) was easily determined to 
be a multi-threaded process in Example 8-1 on page 281, in order to determine if 
the qdaemon daemon process (PID 16266) is non-threaded, use the ldd7 
command against the executable file, as shown in Example 8-3. Because 
qdaemon does not depend on the POSIX thread library, we are sure that it is not 
a multi-threaded program.

Example 8-3   Inspecting an executable file using ldd

# ldd /usr/sbin/qdaemon
/usr/sbin/qdaemon needs:
         /usr/lib/libc.a(shr.o)
         /usr/lib/libqb.a(shr.o)
         /unix
         /usr/lib/libcrypt.a(shr.o)

Initial thread
When a process is created, one user thread is automatically created. This user 
thread is called the initial thread. It ensures the compatibility between the 

7  The ldd command is supported on AIX 5L Version 5.2 and later. On earlier versions of AIX, use the 
dump -H command.
282 Developing and Porting C and C++ Applications on AIX



non-threaded processes with a unique implicit Pthread and the multi-threaded 
processes. The initial thread has some special properties, not visible to the 
programmer, that ensure binary compatibility between the non-threaded 
processes and the multi-threaded operating system. It is also the initial thread 
that executes the main function in multi-threaded programs.

Use of errno in multi-threaded programming
In the multi-process UNIX programming semantic, a system call or sub-routine 
would set a non-zero value to the global variable errno in case of failure. This is 
still true in multi-threaded programming, though there is a subtle difference.

Within a multi-threaded process, each Pthread has its own errno to avoid being 
overwritten by the other Pthreads. On AIX, the Pthread-basis errno is 
implemented as a macro to a function pointer to an internal function, as shown in 
Example 8-4, which is excerpted from /usr/include/errno.h.8 In the multi-threaded 
programming on AIX, the _THREAD_SAFE macro is always defined.

Example 8-4   Definition of errno

#if defined(_THREAD_SAFE) || defined(_THREAD_SAFE_ERRNO)
/*
 * Per thread errno is provided by the threads provider. Both the extern int
 * and the per thread value must be maintained by the threads library.
 */
extern  int *_Errno( void );
#define errno   (*_Errno())
#else
extern int errno;
#endif  /* _THREAD_SAFE || _THREAD_SAFE_ERRNO */

Although the process level global symbol errno is still accessible from Pthreads 
within a process, references to it is unreliable and useless in the multi-threaded 
programming.

Therefore, all the multi-threaded applications that reference to errno must have 
the following directive:

#include <errno.h>

and must not have the following declaration:

extern int errno;

8  In the POSIX thread standard, the Pthread-basis errno is defined as implementation-dependent.
 Chapter 8. Introduction to POSIX threads 283



8.3  Pthread management
This section explains some of the basic Pthread management routines used for 
creating, joining, exiting, and detaching Pthreads.

8.3.1  Creating and terminating Pthreads
In order to create new Pthreads (besides the initial thread), the program must call 
the pthread_create() sub-routine. Example 8-5 is our first multi-threaded sample.

Example 8-5   create_5threads.c

#include <pthread.h> /* #A */
#include <stdio.h>
#include <stdlib.h>
#define NUM_OF_THREADS     6
#define EXIT_CODE -1

void *thr_func(void *id)
{
    int j;

    for (j = 0; j < 500000; j++) {
        ; /* #B */

}
    printf("Hello world from Pthread %d!\n", (int *)id);
    pthread_exit(NULL); /* #C */
}

int main (int argc, char *argv[])
{
    int rc, i;
    pthread_t tid[NUM_OF_THREADS];

    for (i = 1; i < NUM_OF_THREADS; i++) {
        printf("Creating Pthread: %d\n", i);

rc = pthread_create(&tid[i], NULL, thr_func, (void *)i); /* #D */
        if (rc != 0) {
            fprintf(stderr

, "pthread_create() failed with rc = %d at %d in %s.\n"

Note: Avoid directly referencing the internal function, because this is 
implementation-dependent and may be subject to change in future versions of 
AIX. Use the errno macro to assure the portability of your multi-threaded 
applications.
284 Developing and Porting C and C++ Applications on AIX



                , rc, __LINE__, __FILE__);
            exit(EXIT_CODE);
        }
    }
    pthread_exit(NULL);
}

This program creates five Pthreads, as illustrated in Figure 8-2.

Figure 8-2   Five Pthreads created by pthread_create()

The highlighted lines with comments #A, #B, #C, and #D in Example 8-5 on 
page 284 explain the following important programming manners when 
developing multi-threaded applications:

� Comment #A

To use the Pthread subroutines, the pthread.h header file must be included as 
the first header file in the each source file using the Pthreads library. This is 
because it defines some important macros that affect other system header 
files. Having the pthread.h header file as the first included file ensures the 
usage of thread-safe subroutines.

i = 1 i = 2 i = 3 i = 4 i = 5

Pthread termination with pthread_exit()

Process creation

Process termination

executing
thr_func()

Created Pthreads
with pthread_create()

In
iti

al
 th

re
ad
 Chapter 8. Introduction to POSIX threads 285



� Comment #B

A Pthread’s life-cycle can be very short; it may terminate just after it is 
created. In this example, a delay loop commented as #B is necessary to 
demonstrate that created Pthreads run in parallel. If this loop is removed or 
the program is compiled with optimizing options, all the created Pthreads 
could terminate before other Pthreads could be created.

The programmer must be aware of this volatile nature of Pthreads.

� Comment #C

If a Pthread calls pthread_exit(), it terminates; this marks the end of Pthread’s 
life-cycle. Thread resources for the Pthread will be freed after the termination. 
However, other resources created by the terminating Pthread, such as file 
descriptors and sockets, will not be freed.

� Comment #D

Most Pthreads library sub-routines return an integer value, which is 
interpreted as an error code. A value of zero indicates that the call was 
successful. Other values are passed or retrieved through appropriately typed 
arguments.

Also, the initial thread executing the main() function could have executed other 
functions after creating the other Pthreads. Therefore, there were six 
independent control flows in the process, as depicted in Figure 8-2 on page 285.

Compiling multi-threaded programs
To compile multi-threaded programs, use one of the compiler drivers with the _r 
suffix (see Table 1-4 on page 30). To compile the program shown in Example 8-5 
on page 284, we used cc_r, as shown in the following example:

$ cc_r create_5threads.c

The created executable file, a.out, is a 32-bit multi-threaded program, as shown 
in the following:

$ file a.out
a.out:          executable (RISC System/6000) or object module not stripped
$ ldd a.out
a.out needs:
         /usr/lib/threads/libc.a(shr.o)
         /usr/lib/libpthreads.a(shr_comm.o)
         /usr/lib/libpthreads.a(shr_xpg5.o)
         /unix

Note: The POSIX thread library is automatically linked when programs are 
compiled with _r compiler drivers. Therefore, the -lpthreads linker option is not 
required.
286 Developing and Porting C and C++ Applications on AIX



         /usr/lib/libcrypt.a(shr.o)

Running multi-threaded programs
We ran this application on an AIX 5L Version 5.2 partition on the pSeries 690, 
which is assigned two processors:

# lsdev -Cc processor
proc0 Available 00-00 Processor
proc1 Available 00-01 Processor

At the first invocation of this program, it produced the following output:

$ a.out
Creating Pthread: 1
Creating Pthread: 2
Creating Pthread: 3
Hello world from Pthread 1!
Hello world from Pthread 2!
Hello world from Pthread 3!
Creating Pthread: 4
Creating Pthread: 5
Hello world from Pthread 4!
Hello world from Pthread 5!

At the second invocation of this program, it produced the following output:

$ a.out
Creating Pthread: 1
Creating Pthread: 2
Creating Pthread: 3
Creating Pthread: 4
Creating Pthread: 5
Hello world from Pthread 2!
Hello world from Pthread 4!
Hello world from Pthread 5!
Hello world from Pthread 1!
Hello world from Pthread 3!

Apparently, the execution order of Pthreads is different between these two 
outputs. In fact, it could be any order and you cannot predict which Pthread is 
scheduled first in a multi-threaded process.
 Chapter 8. Introduction to POSIX threads 287



Passing arguments to Pthreads
We discuss several aspects of the pthread_create() sub-routine in the following 
sections:

Syntax
#include <pthread.h>
int pthread_create (thread, attr, start_routine (void), arg)
pthread_t *thread;
const pthread_attr_t *attr;
void **start_routine (void);
void *arg;

Parameters
thread Points to where the thread ID will be stored.

attr Specifies the thread attributes object to use in creating the 
thread. If the value is NULL, the default attributes values 
will be used.

start_routine Points to the routine to be executed by the thread.

arg Points to the single argument to be passed to the 
start_routine routine.

Return values
If successful, the pthread_create function returns zero. Otherwise, an error 
number is returned to indicate the error.

Error codes
The pthread_create function will fail if:

EAGAIN If WLM9 is running, the limit on the number of threads in 
the class may have been met.

EINVAL The value specified by attr is invalid.

EPERM The caller does not have the appropriate permission to 
set the required scheduling parameters or scheduling 
policy.

To pass multiple arguments the start_routine, create a structure that contains all 
of the arguments, and then pass a pointer to the structure as the last parameter 
of the pthread_create() routine.

9  Work Load Manager
288 Developing and Porting C and C++ Applications on AIX



For example, assuming that the following structure is defined:

struct thread_data {
   int  thread_id;
   char *msg;
} thread_data_array[NUM_OF_THREADS];

then pass the structure to the pthread_create() routine as follows:

pthread_create(&tid[t], NULL, thr_func, (void *)&thread_data_array[i]);

8.3.2  Joining Pthreads
The pthread_join() subroutine will block the calling Pthread until the Pthread you 
specify has terminated, and then, optionally, store the terminated Pthread’s 
return value. Calling pthread_join() detaches the specified Pthread automatically.

When a Pthread is created, one of its attributes defines whether it is joinable or 
detached. Detachable means that it cannot be joined. To explicitly create a 
Pthread as joinable or detached, the second argument in the pthread_create() 
routine is used. The pthread_detach() routine can be used to explicitly detach a 
Pthread even though it was created as joinable. The following example 
demonstrates how to wait for Pthread completions by using the pthread_join() 
routine. The Pthreads in this example are explicitly created in a joinable state so 
that they can be joined later:

/* File: pthread-join.c*/
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#define NUM_OF_THREADS 3
#define EXIT_CODE -1

void *Func_Join(void *t)
{
   printf("The argument is %d\n", t);
   pthread_exit((void *) 0);
}

int main(int argc, char *argv[])
{

pthread_t thread[NUM_OF_THREADS];
pthread_attr_t attr;
int rc, t, status;

/* Initialize and set thread detached attribute */
pthread_attr_init(&attr);
/*Creates a thread as Joinable*/
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);
 Chapter 8. Introduction to POSIX threads 289



for (t = 0; t < NUM_OF_THREADS; t++) {
printf("Creating thread %d\n", (t+1));
rc = pthread_create(&thread[t], &attr, Func_Join, (void*)t);
if (rc) {

fprintf(stderr, "pthread_create() failed with rc = %d.\n", rc);
exit(EXIT_CODE);

}
}

/* Free attribute and wait for the other threads */
pthread_attr_destroy(&attr);
for (t = 0; t < NUM_OF_THREADS; t++) {

rc = pthread_join(thread[t], (void **)&status);
if (rc) {

fprintf(stderr, "pthread_join() failed with rc = %d.\n", rc);
exit(EXIT_CODE);

}
printf("Joining the thread %d \n",(t+1));

}
pthread_exit(NULL);

}

When executed, the above program printed the following output on our system:

Creating thread 1
Creating thread 2
The argument is 0
Creating thread 3
The argument is 1
Joining the thread 1
The argument is 2
Joining the thread 2
Joining the thread 3

As shown in the example above, to explicitly create a Pthread as joinable, the 
following steps are followed:

1. Declare a Pthread attribute variable of the pthread_attr_t data type.

2. Initialize the attribute variable with the pthread_attr_init() routine.

3. Set the attribute detached status (PTHREAD_CREATE_JOINABLE) with the 
pthread_attr_setdetachstate() routine (by default, the Pthread is joinable).

4. When done, free the library resources used by the attribute with the 
pthread_attr_destroy() routine.
290 Developing and Porting C and C++ Applications on AIX



The following factors need to be considered when deciding whether a Pthread 
has to be joined or not:

� If a Pthread requires joining, consider (as shown above) creating it as 
joinable. This provides portability, as not all implementations may create 
Pthreads as joinable by default.

� If you know in advance that a Pthread will never need to join with another 
Pthread, consider creating it in a detached state. Some system resources 
may be able to be freed.

8.3.3  Detaching a Pthread
We have seen how Pthreads can be joined using the pthread_join() function. In 
fact, Pthreads that are in a joinable state must be joined by other Pthreads, or 
else their memory resources will not be fully cleaned out. This is similar to what 
happens with processes whose parents did not clean up after them (also called 
orphan or zombie processes). 

If we have a Pthread that we wish would exit whenever it wants without the need 
to join it, we should put it in the detached state. This can be done either with an 
thread attribute object with a PTHREAD_CREATE_DETACHED attached to the 
pthread_create() function, or by using the pthread_detach() function. 

The pthread_detach() function gets one parameter, of type pthread_t, that 
denotes the Pthread we wish to put in the detached state. For example, we can 
create a Pthread and immediately detach it with code similar to the following 
example:

pthread_t a_thread; /* store the thread's structure here. */
int rc; /* return value for pthread functions. */
extern void* thread_loop(void*); /* declare the thread's main function. */

/* create a new thread. if succeeded, detach the newly created thread. */
if ((rc = pthread_create(&a_thread, NULL, thread_loop, NULL)) == 0) {

rc = pthread_detach(a_thread);
}

By default, the Pthread that is created using the pthread_create() routine is 
joinable (the detach state is set to PTHREAD_CREATE_JOINABLE) and the 
scope is set to the process level (PTHREAD_SCOPE_PROCESS), which means 
that the user Pthread is not bound to a particular kernel thread. This is often 
referred to as the M:N thread model, where M is the number of user threads and 
N is the number of kernel threads.
 Chapter 8. Introduction to POSIX threads 291



8.3.4  Thread stack
When a Pthread is created, its own thread stack is also created. All auto storage 
class variables for the Pthread are allocated in its thread stack. When the 
Pthread terminates, all data allocated in its thread stack will be unallocated.

On AIX, thread stacks (except for the initial thread’s stack) are created in the 
process heap. The thread stack of the initial thread is created when the process 
is created.10

By default, a thread stack size is 96 KB in the 32-bit user process model while it 
is 192 KB in 64-bit. The thread stack size can be tuned through either 
environment variables or through function calls, as explained in “Changing a 
thread stack size” on page 295. At the end of a thread stack, there is a 4 KB 
read/write protected page referred to as a guard page or red zone (see 
“AIXTHREAD_GUARDPAGES” on page 331 for further information about the 
guard page).

Figure 8-3 on page 293 illustrates how multiple thread stacks are allocated in the 
process heap in the 32-bit default memory model. The default thread stack size 
of 96 KB plus additional memory for the several necessary data structures will be 
consumed from the process heap every time a new Pthread is created. If a 
Pthread terminates, then the memory area for the terminated Pthread can be 
used again if another Pthread is created.

10  For 32-bit process processes see 3.2.6, “Resource limits in 32-bit model” on page 125; for 64-bit 
processes, see 3.3.8, “Resource limits in 64-bit mode” on page 136.
292 Developing and Porting C and C++ Applications on AIX



Figure 8-3   Thread stacks (default 32-bit process model)

Because the creation of Pthreads consumes the process heap, depending on 
number of Pthreads in a process, you may need to consider the large or very 
large memory model,11 when developing 32-bit multi-threaded applications. 
When developing 64-bit multi-threaded applications, the data resource limit value 
only affects the maximum number of Pthreads within a process.12

To demonstrate how many Pthreads can be created in the 32-bit user process 
model, we have prepared a short example program, which is shown in 
Example 8-6 on page 294.

To compile the program, do the following:

$ cc_r -D_LARGE_THREADS max_threads.c

If the _LARGE_THREADS macro is defined, the PTHREAD_THREADS_MAX 
compilation time symbolic constant macro, which defines the maximum number 
of Pthreads per process, is set to 32767. If not defined, 
PTHREAD_THREADS_MAX is set to 512, which is a sufficient number for most 
multi-threaded applications, regardless of 32- or 64-bit applications.

11  See 3.2.2, “Large memory model” on page 116 and 3.2.3, “Very large memory model” on 
page 117.
12  See 3.3.8, “Resource limits in 64-bit mode” on page 136.

Initialized data 0 MB (offset)

256 MB (offset)

Un-initialized data

Process private segment (0x2)

: Accessible virtual memory pages

: Access-prohibited virtual memory pages

Initial thread stack

P
ro

ce
ss

 h
ea

p pThread#1

Guard page (4KB)

pThread attribute

misc. data, page alignment

misc. data, page alignment

thread stack (96KB)

pThread#2
pThread#3

pThread#N
 Chapter 8. Introduction to POSIX threads 293



When executed, the program would print the number of Pthreads in the angle 
brackets (highlighted in the example) within the process after failing to create 
another Pthread, as shown in the following example:13

$ a.out
[ 1131]: pthread_create() failed with rc=11 at 21 in max_threads.c
$ for i in 1 2 3 4 5 6 7 8
do
echo "LDR_CNTRL=MAXDATA=0x${i}0000000"
LDR_CNTRL=MAXDATA=0x${i}0000000 a.out
done
LDR_CNTRL=MAXDATA=0x10000000
[ 2281]: pthread_create() failed with rc=11 at 21 in max_threads.c
LDR_CNTRL=MAXDATA=0x20000000
[ 4583]: pthread_create() failed with rc=11 at 21 in max_threads.c
LDR_CNTRL=MAXDATA=0x30000000
[ 6884]: pthread_create() failed with rc=11 at 21 in max_threads.c
LDR_CNTRL=MAXDATA=0x40000000
[ 9186]: pthread_create() failed with rc=11 at 21 in max_threads.c
LDR_CNTRL=MAXDATA=0x50000000
[11268]: pthread_create() failed with rc=11 at 21 in max_threads.c
LDR_CNTRL=MAXDATA=0x60000000
[13788]: pthread_create() failed with rc=11 at 21 in max_threads.c
LDR_CNTRL=MAXDATA=0x70000000
[15523]: pthread_create() failed with rc=11 at 21 in max_threads.c
LDR_CNTRL=MAXDATA=0x80000000
[18391]: pthread_create() failed with rc=11 at 21 in max_threads.c

Example 8-6   max_threads.c

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>

void *thread_func(void *j)
{
    sleep(60);
    pthread_exit(0);
}

int main()

13  The return code 11 means EAGAIN (resource temporary unavailable).

Note: The numbers shown in this example should be considered theoretical 
maximum values. If a process allocates memory objects from its heap, uses 
many initialized or un-initialized data, or increases thread stack sizes, these 
numbers could be much smaller ones.
294 Developing and Porting C and C++ Applications on AIX



{
    int i, rc;
    pthread_t tid[PTHREAD_THREADS_MAX];

    for (i = 0; i < PTHREAD_THREADS_MAX; i++) {
        if ((rc = pthread_create(&tid[i], NULL, thread_func, (void *)i)) != 0){
            fprintf(stderr
                , "[%5d]: pthread_create() failed with rc=%d at %d in %s\n"
                , i, rc, __LINE__, __FILE__);
            exit(1);
        }
    }

    for (i = 0; i < PTHREAD_THREADS_MAX; i++) {
        pthread_join(tid[i], NULL);
    }
}

Changing a thread stack size
On AIX, the minimum thread stack size for a Pthread is 8 KB and the maximum 
size is 256 MB. These values are defined by the compilation time symbolic 
constants PTHREAD_STACK_MIN and PTHREAD_STACK_MAX, respectively.

Although the default stack sizes of 96 KB for 32-bit and 192 KB for 64-bit 
applications suffice for most multi-threaded applications’ demand, the stack size 
can be changed using the two methods described in the next two sections.

Setting the AIXTHREAD_STKSIZE environment value
If this environment value is set before the execution of a multi-threaded 
application, then the default thread stack size of the application process will be 
set to the value specified by the environment value (see “AIXTHREAD_STK” on 
page 332). This is a process-basis setting.

Using the pthread_attr_setstacksize() sub-routine
By creating a thread attribute with the specified thread size before the creation of 
a Pthread, the new Pthread will have the specified thread size. The following 
pseudo-code explains how to use this sub-routine:

1. Create a thread attribute using pthread_attr_init().

2. Set the stack size in the thread attribute using pthread_attr_setstacksize().

3. Create a new Pthread using pthread_create() with the thread attribute.

This is a Pthread-basis setting and overrides the effect of the 
AIXTHREAD_STKSIZE environment value.
 Chapter 8. Introduction to POSIX threads 295



8.4  Data synchronization between Pthreads
Synchronization is a programming method that allows multiple Pthreads to 
coordinate their data accesses, therefore avoiding the situation where one 
Pthread can change a piece of data at the same time another one is reading or 
writing the same piece of data. This situation is commonly called a race 
condition.

Consider, for example, a single counter, X, that is incremented by two Pthreads, 
A and B. If X is originally 1, then by the time Pthreads A and B increment the 
counter, X should be 3. Both Pthreads are independent entities and have no 
synchronization between them. If both Pthreads are executed concurrently on 
two CPUs, or if the scheduling makes the Pthreads alternatively execute on each 
instruction, the following steps may occur: 

� Pthread A executes the first instruction and puts X, which is 1, into the 
Pthread A register. Then, Pthread B executes and puts X, which is 1, into the 
Pthread B register. 

� Next, Pthread A executes the second instruction and increments the content 
of its register to 2. Then, Pthread B increments its register to 2. Nothing is 
moved to memory X, so memory X stays the same. 

� Last, Pthread A moves the content of its register, which is now 2, into memory 
X. Then, Pthread B moves the content of its register, which is also 2, into 
memory X, overwriting Pthread A's value. 

Note that, in most cases, Pthread A and Pthread B will execute the three 
instructions one after the other, and the result would be 3, as expected. Race 
conditions are usually difficult to discover because they occur intermittently.

To avoid this race condition, each Pthread should lock the data before accessing 
the counter and updating memory X. For example, if Pthread A takes a lock and 
updates the counter, it leaves memory X with a value of 2. Once Pthread A 
releases the lock, Pthread B takes the lock and updates the counter, taking 2 as 
its initial value for X and incrementing it to 3, the expected result.

To write a program of any complexity using Pthreads, you will need to share data 
between Pthreads, or cause various actions to be performed in some coherent 
order across multiple Pthreads. To do this, you need to synchronize the activity of 
the Pthreads. Data synchronization among Pthreads can be done using any of 
the three types of locking primitive: mutexs, condition variables, and read-write 
locks, as explained in the following sections:

� Section 8.4.1, “Synchronizing Pthreads with mutexes” on page 297

� Section 8.4.2, “Synchronizing Pthreads with condition variables” on page 303

� Section 8.4.3, “Synchronizing Pthreads with read-write locks” on page 310
296 Developing and Porting C and C++ Applications on AIX



Although these sections provide enough information to understand the concept 
of these locking primitives, data synchronization in the multi-threaded 
programming environment can be a challenging task. For further information 
about it, please refer to the following publications:

� Programming with POSIX Threads, by Lewine

� POSIX Programmer’s Guide: Writing Portable UNIX Programs, by Butenhof

8.4.1  Synchronizing Pthreads with mutexes
One of the basic problems when running several Pthreads that use the same 
memory space is making sure that they do not interfere with each other. By this, 
we refer to the problem of using a data structure from two different Pthreads.

The mutual exclusion lock (mutex) is the simplest synchronization primitive 
provided by the Pthread library, and many of the other synchronization primitives 
are built upon it.

It is based on the concept of a resource that only one person can use, in a period 
of time, for example, a chair or a pencil. If one person sits in a chair, no one can 
sit on it until the first person stands up. This kind of primitive is quite useful for 
creating critical sections. A critical section is a portion of code that must run 
atomically because they normally are handling resources, such as file 
descriptors, I/O devices, or shared data. A critical section is a portion of code 
delimited by the instructions that lock and unlock a mutex variable. Ensuring that 
all Pthreads acting on the same resource or shared data obey this rule is a very 
good practice to avoid trouble when programming with Pthreads. A mutex is a 
lock that guarantees three things: 

Atomicity Locking a mutex is an atomic operation, meaning that the 
operating system (or Pthreads library) assures you that if 
you locked a mutex, no other Pthread succeeded in 
locking this mutex at the same time. 

Singularity If a Pthread managed to lock a mutex, it is assured that no 
other Pthread will be able to lock the Pthread until the 
original Pthread releases the lock. 

Non-busy wait If a Pthread attempts to lock a Pthread that was locked by 
a second Pthread, the first Pthread will be suspended 
(and will not consume any CPU resources) until the lock is 
freed by the second Pthread. At this time, the first Pthread 
will wake up and continue execution, having the mutex 
locked by it.

Very often, the action performed by a Pthread owning a mutex is the updating of 
global variables. This is a safe way to ensure that when several Pthreads update 
 Chapter 8. Introduction to POSIX threads 297



the same variable, the final value is the same as what it would be if only one 
Pthread performed the update. The variables being updated belong to a critical 
section. A typical sequence of using mutex is as follows:

1. Create and initialize the mutex variable.

2. Several Pthreads attempt to lock the mutex.

3. Only one succeeds and that Pthread owns the mutex.

4. The owner Pthread performs some set of actions.

5. The owner unlocks the mutex.

6. Another Pthread acquires the mutex and repeats the process.

7. Finally, the mutex is destroyed.

Creating and initializing a mutex
In order to create a mutex, we first need to declare a variable of type 
pthread_mutex_t, and then initialize it. The simplest way is by assigning it the 
PTHREAD_MUTEX_INITIALIZER constant. For example, statically, it is declared 
as follows:

pthread_mutex_t a_mutex = PTHREAD_MUTEX_INITIALIZER;

A mutex variable can also be dynamically initialized with the pthread_mutex_init() 
routine. This method permits the setting of mutex object attributes.

The pthread_mutexattr_init() and pthread_mutexattr_destroy() routines are used 
to create and destroy mutex attribute objects respectively.

Locking and unlocking a mutex
In order to lock a mutex, we may use the pthread_mutex_lock() function. This 
function attempts to lock the mutex, or block the Pthread if the mutex is already 
locked by another Pthread. In this case, when the mutex is unlocked by the first 
Pthread, the function will return with the mutex locked by the other Pthreads. 
Here is how to lock a mutex (assuming it was initialized earlier):

int rc = pthread_mutex_lock(&a_mutex);
if (rc) {

/* an error has occurred */
fprintf(stderr, "pthread_mutex_lock() failed with rc = %d.\n", rc);
pthread_exit(NULL);

}
/* mutex is now locked - do your stuff. */
...
298 Developing and Porting C and C++ Applications on AIX



After the Pthread did what it had to (change variables or data structures, handle 
file, or whatever it intended to do), it should free the mutex, using the 
pthread_mutex_unlock() function, as follows: 

rc = pthread_mutex_unlock(&a_mutex);
if (rc) {

fprintf(stderr, "pthread_mutex_unlock() failed with rc = %d.\n", rc);
pthread_exit(NULL);

}

Destroying a mutex
After we finished using a mutex, we should destroy it. Finished using it means no 
Pthread needs it at all. If only one Pthread is finished with the mutex, it should 
leave it alive for the other Pthreads that might need to use it. Once all Pthreads 
finished using it, the last one can destroy it using the pthread_mutex_destroy() 
function:

rc = pthread_mutex_destroy(&a_mutex);

The pthread_mutex_destroy function destroys the mutex object referenced by 
mutex; the mutex object becomes, in effect, uninitialized. An implementation may 
cause pthread_mutex_destroy() to set the object referenced by mutex to an 
invalid value. A destroyed mutex object can be re-initialized using 
pthread_mutex_init(); the results of otherwise referencing the object after it has 
been destroyed are undefined.

It is safe to destroy an initialized mutex that is unlocked. Attempting to destroy a 
locked mutex results in undefined behavior.

An example of using mutexs
The example program shown in Example 8-7 on page 300 illustrates the use of 
mutex variables in a multi-threaded program that increments a counter variable 
declared globally. Each Pthread works on the same data. The initial thread waits 
for all the other Pthreads to complete their executions, and then it prints the 
resulting sum.

This program demonstrates how to use mutexes to synchronize the operation of 
Pthreads. In this program, the main Pthread creates two Pthreads. Each Pthread 
tries to access a global variable counter, increment its value, and print it. A mutex 
is used to allow only a single Pthread to access the counter at any point of time.
 Chapter 8. Introduction to POSIX threads 299



Example 8-7   pthread_mutex.c

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>

#define EXIT_CODE -1

pthread_t tid1, tid2;    /* thread IDs. */
pthread_attr_t t_attr;   /* thread attribute structure. */
pthread_mutex_t mut1;    /* mutex. */
pthread_mutexattr_t attr;/* mutex attribute structure. */
int counter = 0; /* global data that will be accessed by two threads.*/

/* first thead executes this function. */
void* mythread1(void* arg)
{

int rc;
while (counter < 10) {

/* block until the mutex lock is obtained, lock when you get it. */
if ((rc = pthread_mutex_lock(&mut1)) != 0) {

fprintf(stderr
, "pthread_mutex_lock() failed with rc = %d.\n", rc);

exit(EXIT_CODE);
}
if (counter < 10) {

counter++;
}
fprintf(stderr,"Thread 1 = %02d\n ", counter);
/* release or unlock the mutex */
if ((rc = pthread_mutex_unlock(&mut1)) != 0) {

fprintf(stderr
, "pthread_mutex_unlock() failed with rc = %d.\n", rc);

exit(EXIT_CODE);
}
sleep(1);

}
}

/* second thread executes this function */
void* mythread2(void* arg)
{

int rc;
while (counter < 10) {

/* block untill the mutex lock is obtained, lock when you get it. */
if ((rc = pthread_mutex_lock(&mut1)) != 0) {

fprintf(stderr
, "pthread_mutex_lock() failed with rc = %d.\n", rc);

exit(EXIT_CODE);
300 Developing and Porting C and C++ Applications on AIX



}
if (counter < 10) {

counter++;
}
printf("Thread 2 = %02d\n", counter);
/* release or unlock the mutex */
if ((rc = pthread_mutex_unlock(&mut1)) != 0) {

fprintf(stderr
, "pthread_mutex_unlock() failed with rc = %d.\n", rc);

exit(EXIT_CODE);
}
sleep(1); 

}
}

/* main thread of execution. */
int main(int argc, char* argv[])
{

int rc, status;
    /* create the mutex attribute structure. */
    if ((rc = pthread_mutexattr_init(&attr)) != 0) {

fprintf(stderr, "pthread_mutexattr_init() failed with rc = %d.\n", rc);
exit(EXIT_CODE);

    }
    /* initialize the mutex to be used. */
    if ((rc = pthread_mutex_init(&mut1, &attr)) != 0) {

fprintf(stderr, "pthread_mutex_init() failed with rc = %d.\n", rc);
exit(EXIT_CODE);

    }
    /* initialize the attribute structure for the threads to be created. */
    if ((rc = pthread_attr_init(&t_attr)) != 0) {

fprintf(stderr, "pthread_attr_init() failed with rc = %d.\n", rc);
exit(EXIT_CODE);

    }
    /* create the first thread. */
    if ((rc = pthread_create(&tid1, &t_attr, mythread1, 0)) != 0) {

fprintf(stderr, "pthread_create(#1) failed with rc = %d.\n", rc);
exit(EXIT_CODE);

    }
    /* create the second thread */
    if ((rc = pthread_create(&tid2, &t_attr, mythread2, 0)) != 0) {

fprintf(stderr, "pthread_create(#2) failed with rc = %d.\n", rc);
exit(EXIT_CODE);

}
    pthread_attr_destroy(&t_attr);

pthread_join(tid1, (void **)&status);
    pthread_join(tid2, (void **)&status);

printf("\nSum is = %d\n", counter);
 Chapter 8. Introduction to POSIX threads 301



    pthread_mutex_destroy(&mut1);
    pthread_exit(NULL);
}

The output of the above program is:

Thread 1 = 01
Thread 2 = 02
Thread 1 = 03
Thread 2 = 04
Thread 1 = 05
Thread 2 = 06
Thread 1 = 07
Thread 2 = 08
Thread 1 = 09
Thread 2 = 10

Sum is = 10

Please note that the program examines the value of the counter again after it 
examines the value in the while condition (highlighted in Example 8-7 on 
page 300). If it does not, the program results in a potential race condition, so that 
the value of the counter could be 11 instead of 10.

Starvation and deadlock situations
We should remember that pthread_mutex_lock() might block for a undetermined 
duration if the mutex is already locked. If it remains locked forever, it is said that 
our Pthread is starved, that is, it tried to acquire a resource, but never got it. It is 
up to the programmer to ensure that such starvation will not occur. The Pthread 
library does not help us with that.

The Pthread library might, however, figure out a deadlock. A deadlock is a 
situation in which a set of Pthreads are all waiting for resources taken by other 
Pthreads, all in the same set. Naturally, if all Pthreads are blocked waiting for a 
mutex, none of them will ever come back to life again. The Pthread library keeps 
track of such situations, and thus would fail the last Pthread trying to call 
pthread_mutex_lock() with an error of type EDEADLK. The programmer should 
check for such a value, and take steps to solve the deadlock somehow.

The following code fragment will result in a deadlock:

pthread_mutex_t mutex_A;
pthread_mutex_t mutex_B;

int counter_A = 0;
int counter_B = 0;
302 Developing and Porting C and C++ Applications on AIX



/* func_1() will be executed by the Pthread #1. */
void func_1()
{
   pthread_mutex_lock(&mutex_A);
   counter_A++;

   pthread_mutex_lock(&mutex_B);
   counter_B++;
   pthread_mutex_unlock(&mutex_B);   

   pthread_mutex_unlock(&mutex_A);
}

/* func_2() will be executed by the Pthread #2. */
void func_2()
{
   pthread_mutex_lock(&mutex_B);
   counter_B++;

   pthread_mutex_lock(&mutex_A);
   counter_A++;
   pthread_mutex_unlock(&mutex_A);

   pthread_mutex_unlock(&mutex_B);
}

In the above example, while mutex_A is already locked by Pthread #1 executing 
func_1(), multex_B can be also locked by Pthread #2 executing func_B(). Both 
Pthreads wait for a mutex until the other Pthread releases it. To avoid this 
situation, both Pthreads must try to acquire to lock in the same order.

8.4.2  Synchronizing Pthreads with condition variables
Condition variables provide yet another way for Pthreads to synchronize. While 
mutexes implement synchronization by controlling Pthread access to data, 
condition variables allow Pthreads to synchronize based upon the actual value of 
data. Without condition variables, the programmer would need to have Pthreads 
continually polling (possibly in a critical section) to check if the condition is met. 
This can be very resource consuming since the Pthread would be continuously 
busy in this activity. A condition variable is a way to achieve the same goal 
without polling.

What is a condition variable
A condition variable is a mechanism that allows Pthreads to wait (without wasting 
CPU cycles) for some event to occur. Several Pthreads may wait on a condition 
 Chapter 8. Introduction to POSIX threads 303



variable, until some other Pthread signals this condition variable (thus sending a 
notification). At this time, one of the Pthreads waiting on this condition variable 
wakes up, and can act on the event. It is possible to also wake up all Pthreads 
waiting on this condition variable by using a broadcast method on this variable. 

Note that a condition variable itself does not provide any kind of locking. Thus, a 
mutex is used along with the condition variable to provide the necessary locking 
when accessing this condition variable. 

Creating and initializing a condition variable
Condition variables must be declared with pthread_cond_t, and must be 
initialized before they can be used. There are two ways to initialize a condition 
variable.

� Statically, when it is declared. For example,

pthread_cond_t a_cond_var = PTHREAD_COND_INITIALIZER;

� To initialize the condition variable at run time, use the pthread_cond_init() 
routine. This method permits setting condition variable object attributes. The 
pthread_condattr_init() and pthread_condattr_destroy() routines are used to 
create and destroy condition variable attribute objects.

Signalling a condition variable
In order to signal a condition variable, one should either use the 
pthread_cond_signal() function (to wake up only one Pthread waiting on this 
variable), or the pthread_cond_broadcast() function (to wake up all Pthreads 
waiting on this variable). Here is an example of using a signal, assuming 
a_cond_var is a properly initialized condition variable:

int rc = pthread_cond_signal(&a_cond_var);

Or by using the broadcast function: 

int rc = pthread_cond_broadcast(&a_cond_var);

When either function returns, the return code rc is set to 0 on success, and to a 
non-zero value on failure. In case of failure, the return code denotes the error that 
occurred; EINVAL denotes that the given parameter is not a condition variable 
and ENOMEM denotes that the system has run out of memory.

The success of a signaling operation does not mean any Pthread was awakened. 
It might be that no Pthread was waiting on the condition variable, and thus the 
signaling does nothing (that is, the signal is lost).

Note: The term signal, as used in this section, is a different concept from the 
one used in the UNIX signal mechanism.
304 Developing and Porting C and C++ Applications on AIX



Waiting on a condition variable
If one Pthread signals the condition variable, other Pthreads would probably want 
to wait for this signal. They may do so using one of two functions, 
pthread_cond_wait() or pthread_cond_timedwait(). Each of these functions takes 
a condition variable and a mutex (which should be locked before calling the wait 
function), unlocks the mutex, and waits until the condition variable is signaled, 
suspending the Pthread's execution. If this signaling causes the Pthread to 
awake (see the discussion about pthread_cond_signal() in “Signalling a condition 
variable” on page 304), the mutex is automatically locked again by the wait 
function, and the wait function returns.

The only difference between these two functions is that 
pthread_cond_timedwait() allows the programmer to specify a timeout for the 
waiting, after which the function always returns with a proper error value 
(ETIMEDOUT) to notify that condition variable was not signaled before the 
timeout passed. The pthread_cond_wait() would wait indefinitely if it was never 
signaled.

The code fragment shown in Example 8-8 depicts how to use 
pthread_cond_wait(). We make the assumption that a_cond_var is a properly 
initialized condition variable, and that request_mutex is a properly initialized 
mutex.

Example 8-8   An example of using pthread_cond_wait()

/* first, lock the mutex. */
int rc;
if ((rc = pthread_mutex_lock(&a_mutex)) != 0) {

/* an error has occurred. */
    fprintf(stderr, "pthread_mutex_lock() failed with rc = %d.\n", rc);
    pthread_exit(NULL);
}
/* mutex is now locked - wait on the condition variable.             */
/* During the execution of pthread_cond_wait, the mutex is unlocked. */
if ((rc = pthread_cond_wait(&a_cond_var, &a_mutex)) == 0) {

/* 
* we were awakened due to the condition variable, which had been signaled.
* The mutex is now locked again by pthread_cond_wait().
* do your stuff....
*/
...

}
/* finally, unlock the mutex. */
pthread_mutex_unlock(&a_mutex);

The code fragment shown in Example 8-9 on page 306 shows how to use 
pthread_cond_timedwait().
 Chapter 8. Introduction to POSIX threads 305



Example 8-9   An example using pthread_cond_timedwait()

#include <sys/time.h> /* struct timeval definition.  */
#include <unistd.h> /* declaration of gettimeofday().  */

struct timeval  now;            /* time when we started waiting.  */
struct timespec timeout;        /* timeout value for the wait function.*/
int             done;           /* are we done waiting?                */

/* first, lock the mutex. */
int rc = pthread_mutex_lock(&a_mutex);
if (rc) {

/* an error has occurred. */
fprintf(stderr, "pthread_mutex_lock() failed with rc = %d.\n", rc);
pthread_exit(NULL);

}
/* mutex is now locked. */

/* get current time. */ 
gettimeofday(&now);
/* prepare timeout value. */
/* t_sec member is represented in seconds, while tv_usec in microseconds. */
timeout.tv_sec = now.tv_sec + 5;
timeout.tv_nsec = now.tv_usec * 1000;

/* wait on the condition variable. */
/* we use a loop, since a UNIX signal might stop the wait before the timeout.*/
done = 0;
while (!done) {
    /* remember that pthread_cond_timedwait() unlocks the mutex on entrance. */
    rc = pthread_cond_timedwait(&a_cond_var, &a_mutex, &timeout);
    switch(rc) {

case 0:
/* 
* we were awakened due to the condition variable
* , which had been signaled.
* The mutex is now locked again by pthread_cond_wait().
* do your stuff....
*/
...
done = 0;
break;

case ETIMEDOUT: /* our time is up. */
done = 0;
break;

default:        /* some error occurred (e.g. we got a UNIX signal). */
break;      /* break this switch, but re-do the while loop.   */

    }
}

306 Developing and Porting C and C++ Applications on AIX



/* finally, unlock the mutex. */
pthread_mutex_unlock(&a_mutex);

It might be that a condition variable that has two or more Pthreads waiting on it is 
signaled many times, and yet one of the Pthreads waiting on it never awakens. 
This is because we are not guaranteed which of the waiting Pthreads is 
awakened when the variable is signaled. It might be that the awakened Pthread 
quickly comes back to waiting on the condition variables, and gets awakened 
again when the variable is signaled again, and so on. The situation for the 
un-awakened Pthread is called starvation. It is up to the programmer to make 
sure that this situation does not occur if it implies bad behavior.

When the mutex is being broadcast using pthread_cond_broadcast(), this does 
not mean all Pthreads are running together. Each of them tries to lock the mutex 
again before returning from their wait function, and thus they will start running 
one by one, each one locking the mutex, doing their work, and freeing the mutex 
before the next Pthread gets its chance to run.

Destroying a condition variable
After we are done using a condition variable, we should destroy it to free any 
system resources it might be using. This can be done using 
pthread_cond_destroy(). In order for this to work, there should be no Pthreads 
waiting on this condition variable. Here is how to use this function, again 
assuming a_cond_var is a pre-initialized condition variable:

int rc;

if ((rc = pthread_cond_destroy(&a_cond_var)) == EBUSY) {
/* some Pthread is still waiting on this condition variable. */

    /* handle this case here... */
}

What if some Pthread is still waiting on this variable? Depending on the case, it 
might imply some flaw in the usage of this variable, or just lack of proper Pthread 
cleanup code.

Using a condition variable
The example program shown in Example 8-10 on page 308 demonstrates the 
use of several Pthread condition variable routines. The main routine creates 
three Pthreads. Two Pthreads that execute the add_counter() function increment 
a variable, named count, whenever the associated mutex is held. The third 
Pthread that executes the monitor_counter() function waits until the count 
variable reaches a specified value.
 Chapter 8. Introduction to POSIX threads 307



Example 8-10   pthread_cond_variable.c

#include <pthread.h>
#include <stdio.h>

#define NUM_OF_THREADS  3
#define TOTAL_COUNT 5
#define MAX_COUNT 5
#define EXIT_CODE -1

int     count = 0;
int     thread_ids[3] = {0, 1, 2};
pthread_mutex_t a_mutex;
pthread_cond_t a_cond_var;

void *add_counter(void *arg)
{

unsigned int i, j;
double result = 0.0;
int *my_id = arg;

for (i = 0; i < TOTAL_COUNT; i++) {
pthread_mutex_lock(&a_mutex);
count++;

/*
* Check the value of count and signal waiting thread when condition is
* reached.  Note that this occurs while mutex is locked.
*/
if (count == MAX_COUNT) {

pthread_cond_signal(&a_cond_var);
printf(

"add_counter(): thread %d, count = %d, threshold reached.\n"
, *my_id, count);

}
printf("add_counter(): thread %d, count = %d, unlocking mutex.\n"

, *my_id, count);
pthread_mutex_unlock(&a_mutex);

/* Do some work so threads can alternate on mutex lock. */
for (j = 0; j < 1000; j++)

result += j;
}
pthread_exit(NULL);

}

void *monitor_counter(void *arg)
{

int *my_id = arg;
308 Developing and Porting C and C++ Applications on AIX



printf("Starting monitor_counter(): thread %d\n", *my_id);

/*
* Lock mutex and wait for signal.  Note that the pthread_cond_wait()
* routine will automatically and atomically unlock mutex while it waits.
* Also, note that if MAX_COUNT is reached before this routine is run by
* the waiting thread, the loop will be skipped to prevent
* pthread_cond_wait() from never returning.
*/
pthread_mutex_lock(&a_mutex);
while (count < MAX_COUNT) {

pthread_cond_wait(&a_cond_var, &a_mutex);
printf("monitor_counter(): thread %d Condition signal received.\n"

, *my_id);
}
pthread_mutex_unlock(&a_mutex);
pthread_exit(NULL);

}

int main (int argc, char *argv[])
{

int i, rc;
pthread_t threads[NUM_OF_THREADS];
pthread_attr_t attr;

/* Initialize mutex and condition variable objects. */
pthread_mutex_init(&a_mutex, NULL);
pthread_cond_init (&a_cond_var, NULL);

/*
* For portability, explicitly create threads in a joinable state
* so that they can be joined later.
*/
pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);
if ((rc = pthread_create(&threads[0], &attr, add_counter

, (void *)&thread_ids[0])) != 0) {
fprintf(stderr, "pthread_create(#1) is failed with rc = %d.\n", rc);
exit(EXIT_CODE);

}
if ((rc = pthread_create(&threads[1], &attr, add_counter

, (void *)&thread_ids[1])) != 0) {
fprintf(stderr, "pthread_create(#2) is failed with rc = %d.\n", rc);
exit(EXIT_CODE);

}
if ((rc = pthread_create(&threads[2], &attr, monitor_counter

, (void *)&thread_ids[2])) != 0) {
fprintf(stderr, "pthread_create(#3) is failed with rc = %d.\n", rc);
 Chapter 8. Introduction to POSIX threads 309



exit(EXIT_CODE);
}

/* Wait for all threads to complete */
for (i = 0; i < NUM_OF_THREADS; i++) {

if ((rc = pthread_join(threads[i], NULL)) != 0) {
fprintf(stderr, "pthread_join() is failed with rc = %d.\n", rc);
exit(EXIT_CODE);

}
}
printf ("Main(): Waited on %d threads. Done...\n", NUM_OF_THREADS);

/* Clean up and exit */
pthread_attr_destroy(&attr);
pthread_mutex_destroy(&a_mutex);
pthread_cond_destroy(&a_cond_var);
pthread_exit(NULL);

}

The output of this program is:

add_counter(): thread 0, count = 1, unlocking mutex.
add_counter(): thread 0, count = 2, unlocking mutex.
Starting monitor_counter(): thread 2
add_counter(): thread 0, count = 3, unlocking mutex.
add_counter(): thread 1, count = 4, unlocking mutex.
add_counter(): thread 0, count = 5, threshold reached.
add_counter(): thread 0, count = 5, unlocking mutex.
add_counter(): thread 1, count = 6, unlocking mutex.
add_counter(): thread 0, count = 7, unlocking mutex.
add_counter(): thread 1, count = 8, unlocking mutex.
monitor_counter(): thread 2 Condition signal received.
add_counter(): thread 1, count = 9, unlocking mutex.
add_counter(): thread 1, count = 10, unlocking mutex.
Main(): Waited on 3 threads. Done...

8.4.3  Synchronizing Pthreads with read-write locks
Another type of lock primitive, read-write locks allow a Pthread to exclusively lock 
some shared data while updating that data, or allow any number of Pthreads to 
have simultaneous read-only access to the data.

Unlike a mutex, a read-write lock distinguishes between reading data and writing 
data. A mutex excludes all other Pthreads. A read-write lock allows other 
Pthreads access to the data, providing no Pthread is modifying the data. Thus, a 
read-write lock is less primitive than either a mutex-condition variable pair or a 
semaphore.
310 Developing and Porting C and C++ Applications on AIX



Application developers should consider using a read-write lock rather than a 
mutex to protect data that is frequently referenced but seldom modified. Most 
Pthreads (readers) will be able to read the data without waiting and will only have 
to block when some other Pthread (a writer) is in the process of modifying the 
data. Conversely, a Pthread that wants to change the data is forced to wait until 
there are no readers. This type of lock is often used to facilitate parallel access to 
data on multiprocessor platforms or to avoid context switches on single 
processor platforms where multiple Pthreads access the same data.

If a read-write lock becomes unlocked and there are multiple Pthreads waiting to 
acquire the write lock, the implementation's scheduling policy determines which 
Pthread shall acquire the read-write lock for writing. If there are multiple Pthreads 
blocked on a read-write lock for both read locks and write locks, it is unspecified 
whether the readers or a writer acquires the lock first. However, for performance 
reasons, implementations often favor writers over readers to avoid potential 
writer starvation.

A read-write lock object is an implementation-dependent opaque object of type 
pthread_rwlock_t, as defined in pthread.h. There are two different sorts of locks 
associated with a read-write lock: a read lock and a write lock.

The pthread_rwlockattr_init() function initializes a read-write lock attributes object 
with the default value for all the attributes defined in the implementation. After a 
read-write lock attributes object has been used to initialize one or more 
read-write locks, changes to the read-write lock attributes object, including 
destruction, do not affect previously initialized read-write locks.

The read-write lock attribute can be any of the following:

PTHREAD_PROCESS_SHARED 
Any Pthread of any process that has access to the 
memory where the read-write lock resides can manipulate 
the read-write lock. 

PTHREAD_PROCESS_PRIVATE 
Only Pthreads created within the same process as the 
Pthread that initialized the read-write lock can manipulate 
the read-write lock. This is the default value. 

The pthread_rwlockattr_setpshared() function is used to set the process-shared 
attribute of an initialized read-write lock attributes object while the function 
pthread_rwlockattr_getpshared() obtains the current value of the process-shared 
attribute. A read-write lock attributes object is destroyed using the 
pthread_rwlockattr_destroy() function. 
 Chapter 8. Introduction to POSIX threads 311



A Pthread creates a read-write lock using the pthread_rwlock_init() function. The 
attributes of the read-write lock can be specified by the application developer; 
otherwise, the default implementation-dependent read-write lock attributes are 
used if the pointer to the read-write lock attributes object is NULL. In cases where 
the default attributes are appropriate, the PTHREAD_RWLOCK_INITIALIZER 
macro can be used to initialize statically allocated read-write locks. 

A Pthread that wants to apply a read lock to the read-write lock can use either 
pthread_rwlock_rdlock() or pthread_rwlock_tryrdlock(). If 
pthread_rwlock_rdlock() is used, the Pthread acquires a read lock if a writer does 
not hold the write lock and there are no writers blocked on the write lock. If a read 
lock is not acquired, the calling Pthread blocks until it can acquire a lock. 
However, if pthread_rwlock_tryrdlock() is used, the function returns immediately 
with the error EBUSY if any Pthread holds a write lock or there are blocked 
writers waiting for the write lock.

A Pthread that wants to apply a write lock to the read-write lock can use either of 
two functions: pthread_rwlock_wrlock() or pthread_rwlock_trywrlock(). If 
pthread_rwlock_wrlock() is used, the Pthread acquires the write lock if no other 
reader or writer Pthreads holds the read-write lock. If the write lock is not 
acquired, the Pthread blocks until it can acquire the write lock. However, if 
pthread_rwlock_trywrlock() is used, the function returns immediately with the 
error EBUSY if any Pthread is holding either a read or a write lock.

The pthread_rwlock_unlock() function is used to unlock a read-write lock object 
held by the calling Pthread.

Supported read-write lock sub-routines are listed in Table D-5 on page 480.

For further information about the read-write lock programming on AIX, please 
refer to the “Threads Programming Guidelines” section in AIX 5L Version 5.2 
General Programming Concepts: Writing and Debugging Programs.

8.5  Thread-specific data
POSIX provides a mechanism that enables applications to maintain specified 
data on a per-Pthread basis. The mechanism is motivated by the need of some 
modules (that is, groups of related functions) to maintain selected data across 
function invocations (that is, to maintain static data in the C programming 
language). If such a module is being used by multiple Pthreads of a 
multi-threaded process, then the module may need to maintain such data 
separately for each calling Pthread, depending on the particular application.
312 Developing and Porting C and C++ Applications on AIX



For example, consider a module consisting of the push, pop, and clear stack 
functions. Suppose that the module declares the stack and stack pointer as static 
data, instead of as function parameters. If the module is being used in a 
multi-threaded process, in which each Pthread needs its own stack and stack 
pointer, the module must have a mechanism for maintaining per-thread stacks 
and stack pointers.

In the POSIX model, per-thread data is maintained through a key/value 
mechanism, an approach designed for efficiency and ease of use. A key is an 
opaque object of type pthread_key_t. The value of a key is thread-specific, that 
is, each key that has been established for a multi-threaded process has a distinct 
value for each Pthread of the process. For this reason, the thread-specific data of 
a process is sometimes thought of as a matrix, with rows corresponding to keys 
and columns to Pthreads, although implementations need not work this way. A 
process can have up to PTHREAD_KEYS_MAX keys (or rows), where 
PTHREAD_KEYS_MAX is defined at least at 128 in the POSIX thread 
standard.14

Keys are of opaque data type so that operating system implementations can 
have the freedom in setting them up to offer efficient access to thread-specific 
data. Instead of holding thread-specific values directly, keys may hold means of 
accessing thread-specific values. Conceptually, a key isolates a row of the 
thread-specific data matrix, and then the key uses the Pthread ID of the calling 
Pthread (the Pthread calling pthread_getspecific() or pthread_setspecific()) to 
isolate an entry in the row, thus obtaining the desired key value.

Typically, the value associated with a given key for a given Pthread is a pointer to 
memory dynamically allocated for the exclusive use of the given Pthread (for 
example, per-thread stack and stack pointer). The scenario for establishment and 
use of thread-specific data can be described as follows. A module that needs to 
maintain static data on a per-thread basis creates a new thread-specific data key 
as a part of its initialization routine. At initialization, all Pthreads of the process 
are assigned null values for the new key. Then, upon each Pthread’s first 
invocation of the module (which can be determined by checking for a null key 
value), the module dynamically allocates memory for the exclusive use of the 

Note: If a Pthread executes only one function during its life-cycle, it less likely 
needs thread-specific data. Because each Pthread has its own thread stack, 
all auto storage class variables in that function are allocated in the thread 
stack, which would be automatically deallocated when the Pthread terminates 
(see 8.3.4, “Thread stack” on page 292).

14  Currently, AIX 5L Version 5.2 supports a maximum of 450 keys per process. However, it can be 
increased in the future versions of AIX. Call the sysconf() routine with _SC_THREAD_KEYS_MAX to 
determine the maximum number of keys.
 Chapter 8. Introduction to POSIX threads 313



calling Pthread, and stores a pointer to the memory as the calling Pthread’s value 
of the new key. Upon later invocations of the same module by the same Pthread, 
the module can access the Pthread’s data through the new key (that is, the 
Pthread’s value for the key). Other modules can independently create other 
thread-specific data keys for other per-thread data for their own use.

An application process could maintain thread-specific data in other ways. For 
example, it could use a hash function on a Pthread ID as a means of access to 
an area of thread-specific data. Then the application process would have to 
manage the use of sub-areas of the thread-specific data. The POSIX 
thread-specific data interfaces, on the other hand, provide Pthreads more direct 
access to sub-areas of their thread-specific data. Moreover, the sub-areas are 
independent; different parts of the application process can use different 
sub-areas without any need for process-wide cooperation.

8.5.1  Allocating thread-specific data
The pthread_key_create() function is used to allocate a new key. This key now 
becomes valid for all Pthreads in our process. When a key is created, the value it 
points to defaults to NULL. Later on, each Pthread may change its copy of the 
value as it wishes. The following code fragment shows how to use this function:

/* rc is used to contain return values of pthread functions. */
int rc;
/* define a variable to hold the key, once created.         */
pthread_key_t list_key;
/*
* cleanup_list() is a function that can clean up some data.
* it is specific to our program, not to thread-specific data.
*/
extern void* cleanup_list(void*);
/* create the key, supplying a function that'll be invoked when it's deleted.*/
rc = pthread_key_create(&list_key, cleanup_list);

Please note the following:

� After pthread_key_create() returns, the variable list_key points to the newly 
created key. 

� The function pointer, passed as a second parameter to pthread_key_create(), 
will be automatically invoked by the Pthread library when our Pthread exits, 
with a pointer to the key's value as its parameter. We may supply a NULL 
pointer as the function pointer, and then no function will be invoked for key. 
Note that the function will be invoked once in each Pthread, even though we 
created this key only once in one Pthread.

� If we created several keys, their associated destructor functions will be called 
in an arbitrary order, regardless of the order of keys creation. 
314 Developing and Porting C and C++ Applications on AIX



� If the pthread_key_create() function succeeds, it returns 0. Otherwise, it 
returns some error code. 

� There is a limit of PTHREAD_KEYS_MAX keys that may exist in our process 
at any given time. An attempt to create a key after PTHREAD_KEYS_MAX 
exits will cause a return value of EAGAIN from the pthread_key_create() 
function.

8.5.2  Accessing thread-specific data
After we have created a key, we may access its value using two Pthread 
functions: pthread_getspecific() and pthread_setspecific(). The first is used to get 
the value of a given key, and the second is used to set the data of a given key. A 
key's value is simply a void pointer (void *), so we can store in it anything that we 
want. The following code fragment shows you how to use these functions, 
assuming that a_key is a properly initialized variable of type pthread_key_t, 
which contains a previously created key:

/* this variable will be used to store return codes of pthread functions. */
int rc;

/* define a variable into which we'll store some data. */
int* p_num = (int *)malloc(sizeof(int));
if (!p_num) {
    perror("malloc() failed.\n");
    exit(1);
}
/* initialize our variable to some value. */
*p_num = 4;

/*
* now let’s store this value in our thread-specific data key.
* note that we don't store p_num in our key.
* we store the value that p_num points to.
*/
rc = pthread_setspecific(a_key, (void *)p_num);
....
....
/*
* and somewhere later in our code, get the value of key a_key and print it. 
*/
int* p_keyval = (int *)pthread_getspecific(a_key);

if (p_keyval != NULL) {
printf("value of 'a_key' is: %d\n", *p_keyval);

}

 Chapter 8. Introduction to POSIX threads 315



Note that if we set the value of the key in one Pthread, and try to get it in another 
Pthread, we will get a NULL, since this value is distinct for each Pthread.

There are two other cases where pthread_getspecific() might return NULL:

� The key supplied as a parameter is invalid (for example, its key was not 
created).

� The value of this key is NULL. This means it either was not initialized, or was 
set to NULL explicitly by a previous call to pthread_setspecific(). 

8.5.3  Deleting thread-specific data
The pthread_key_delete() function may be used to delete keys. It does not delete 
memory associated with this key or call the destructor function in C++ defined 
during the key's creation. Thus, we still need to do memory cleanup on our own if 
we need to free this memory during run time. However, with global variables (and 
thus also thread-specific data), we usually do not need to free this memory until 
the thread terminates, in which case the pthread library will invoke our destructor 
functions anyway. 

Using this function is simple. Assuming list_key is a pthread_key_t variable 
pointing to a properly created key, use this function like this:

int rc = pthread_key_delete(key);

The function will return 0 on success, or EINVAL if the supplied variable does not 
point to a valid thread-specific data key.

An example of using thread-specific data
The example program shown in Example 8-11 illustrates the use of 
thread-specific data routines. Each created Pthread maintains its own copy of the 
data structure tsd_data, which is declared globally.

Example 8-11   pthread_tsd.c

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>

#define EXIT_CODE -1
/*
 * Structure used as the value for thread-specific data key.
 */
typedef struct tsd_data {
    pthread_t   thread_id;
    char        *mesg;
} tsd_data_var;
316 Developing and Porting C and C++ Applications on AIX



pthread_key_t tsd_data_key;           /* thread-specific data key */
pthread_once_t key_once = PTHREAD_ONCE_INIT;

/*
 * init_routine() is an one-time initialization routine used with
* pthread_once().
*/
void init_routine(void)
{
    int rc;

    printf("Initializing key.\n");
    if ((rc = pthread_key_create(&tsd_data_key, NULL)) != 0) {

fprintf(stderr, “pthread_create() failed with rc = %d.\n”, rc);
exit(EXIT_CODE);

 }
}

/*
 * tsd_routine() is a routine that uses pthread_once() to dynamically
 * create a thread-specific data key.
 */
void *tsd_routine(void *arg)
{

tsd_data_var *value;
int rc;

if ((rc = pthread_once(&key_once, init_routine)) != 0) {
fprintf(stderr, “pthread_once() failed with rc = %d.\n”, rc);
exit(EXIT_CODE);

}
value = (tsd_data_var *)malloc(sizeof(tsd_data_var));
if (value == NULL) {

perror("Failed to allocate key value.");
exit(EXIT_CODE);

}
if ((rc = pthread_setspecific(tsd_data_key, value)) != 0) {

fprintf(stderr, “pthread_setspecific() failed with rc = %d.\n”, rc);
exit(EXIT_CODE); 

}
printf("%s set thread-specific data value %p\n", arg, value);
value->thread_id = pthread_self();
value->mesg = (char *)arg;
value = (tsd_data_var *)pthread_getspecific(tsd_data_key);
printf("%s Starting...\n", value->mesg);
sleep(2);
value = (tsd_data_var *)pthread_getspecific(tsd_data_key);
printf("%s Done...\n", value->mesg);
 Chapter 8. Introduction to POSIX threads 317



return NULL;
}

int main(int argc, char *argv[])
{
    pthread_t thread1, thread2;
    int rc;

if ((rc = pthread_create(&thread1, NULL, tsd_routine, "thread 1")) != 0) {
fprintf(stderr, “pthread_create(#1) failed with rc = %d.\n”, rc);
exit(EXIT_CODE);

 }
if ((rc = pthread_create(&thread2, NULL, tsd_routine, "thread 2")) != 0) {

fprintf(stderr, “pthread_create(#2) failed with rc = %d.\n”, rc);
exit(EXIT_CODE);

 }
    pthread_exit (NULL);
}

The output of Example 8-11 on page 316 is:

Initializing key.
thread 1 set thread-specific data value 20209d58
thread 1 Starting...
thread 2 set thread-specific data value 20209d68
thread 2 Starting...
thread 1 Done...
thread 2 Done...

In Example 8-11 on page 316, the following two new Pthread routines are called: 
pthread_once() and pthread_self().

We have called the pthread_once() routine to dynamically create a Pthread 
specific data key. The pthread_once() routine calls an initialization routine 
executed by one Pthread a single time. This routine allows you to create your 
own initialization code that is guaranteed to be run only once, even if called 
simultaneously by multiple Pthreads or multiple times in the same Pthread.

For example, a mutex or a thread-specific data key must be created exactly once. 
Calling pthread_once() prevents the code that creates a mutex or thread-specific 
data from being called by multiple Pthreads. Without this routine, the execution 
must be serialized so that only one Pthread performs the initialization. Other 
Pthreads that reach the same point in the code are delayed until the first Pthread 
has finished the call to pthread_once().

This routine initializes the control record if it has not been initialized and then 
determines if the client one-time initialization routine has executed once. If it has 
not executed, this routine calls the initialization routine specified in init_routine(). 
318 Developing and Porting C and C++ Applications on AIX



If the client one-time initialization code has executed once, this routine returns. 
The pthread_once_t data structure is a record that allows client initialization 
operations to guarantee mutual exclusion of access to the initialization routine, 
and that each initialization routine is executed exactly once.

This variable must be initialized using the pthread_once_init macro, as follows: 

pthread_once_t key_once = PTHREAD_ONCE_INIT;

Similarly, we have called the pthread_self() routine to get the unique identifier of 
the Pthread that is getting executed.

8.5.4  Thread-safe and reentrant functions
One very important point to take care of when building multi-threaded programs 
is the resource handling. To avoid getting in trouble, be sure to call only 
thread-safe and reentrant functions in multi-threaded applications. Reentrance 
and thread-safety are separate concepts: A function can be either reentrant, 
thread-safe, both, or neither.

Reentrant A reentrant function does not hold static data over 
successive calls, nor does it return a pointer to static data. 
All data is provided by the caller of the function. A 
reentrant function must not call non-reentrant functions.

Thread-safe A thread-safe function protects shared resources from 
concurrent access by locks. Thread-safety concerns only 
the implementation of a function and does not affect its 
external interface. The use of global data is 
thread-unsafe. It should be maintained per-Pthread or 
encapsulated so that its access can be serialized.

Reentrant and thread-safe libraries are useful in a wide range of parallel (and 
asynchronous) programming environments, not just within Pthreads. Thus, it is a 
good programming practice to always use and write reentrant and thread-safe 
functions.

Some of the standard C subroutines are non-reentrant, such as the ctime() and 
strtok() subroutines. The reentrant version of the subroutines typically have the 
name of the original subroutine with a suffix _r (underscore r).
 Chapter 8. Introduction to POSIX threads 319



When writing multi-threaded programs, the reentrant versions of subroutines 
should be used instead of the original version. For example, the following code 
fragment:

token[0] = strtok(string, separators);
i = 0;
do {

i++;
token[i] = strtok(NULL, separators);

} while (token[i] != NULL);

must be replaced by the following code fragment in the multi-threaded 
programming:

char *pointer;
...
token[0] = strtok_r(string, separators, &pointer);
i = 0;
do {

i++;
token[i] = strtok_r(NULL, separators, &pointer);

} while (token[i] != NULL);

Thread-unsafe libraries may be used by only one Pthread in a program. The 
uniqueness of the Pthread using the library must be ensured by the programmer; 
otherwise, the program will have unexpected behavior or may even crash.

In order to determine which sub routines provided by the AIX base operating 
system are reentrant or thread-safe, please refer to the “Threads Programming 
Guidelines” section in AIX 5L Version 5.2 General Programming Concepts: 
Writing and Debugging Programs.

8.6  Pthread cancellation
POSIX provides facilities for canceling Pthreads. The facilities enable a Pthread 
to cancel another specified Pthread within the same process. The facilities are 
aimed at allowing applications to cancel cooperating Pthreads.

A Pthread that is the target of cancellation must be cooperative in the following 
sense. Each Pthread controls its own cancelability state and type. The 
cancelability state can be enabled or disabled. For the enabled state, the type 
can be asynchronous (cancellation requests accepted at any time) or deferred 
(cancellation accepted only at designated cancellation points). By default, 
Pthreads are initialized with state enabled and type deferred. An uncooperative 
Pthread could disable cancellation, and thus thwart cancellation requests.
320 Developing and Porting C and C++ Applications on AIX



An application is expected to make cancellation graceful by specifying 
cancellation cleanup handlers. The cleanup handlers perform actions such as 
unlocking mutexes owned by the target Pthread (the Pthread being canceled), 
signaling conditions that the target Pthread may have caused to become true, 
releasing resources, and so on. These actions enable other Pthreads in the 
application to make progress after the cancellation occurs.

The Pthread cancellation facilities specified in POSIX include the following 
functions:

� Canceling execution of a specified Pthread using the pthread_cancel() 
routine. The cancellation occurs in accordance with the target Pthread’s 
cancelability state and type. If and when cancellation does occur, cancellation 
cleanup handlers are invoked in last-in-first-out (LIFO) order, followed by 
thread-specific data destructor functions in unspecified order. Then the 
Pthread is terminated.

� Setting the cancelability state of the calling Pthread using the 
pthread_setcancelstate() routine to either enabled or disabled.

� Setting the cancelability type of the calling Pthread using 
pthread_setcanceltype() to either asynchronous or deferred.

� Creating a cancellation point using the pthread_testcancel() routine. To 
designate a point in its execution as a cancellation point, a Pthread simply 
makes a call to the pthread_testcancel() function at that point.

� Establishing cancellation cleanup handlers using the pthread_cleanup_push() 
and pthread_cleanup_pop() routines. The pthread_cleanup_push() function is 
used to identify a specified routine as a cleanup handler. Conceptually, the 
routine is pushed onto the top of the calling Pthread’s cancellation cleanup 
stack. The pthread_cleanup_pop() function is used to remove and optionally 
execute the cleanup handler at the top of the cancellation cleanup stack.

In order to determine which subroutines provided by the AIX base operating 
system can be canceled (cancellation point(s) can occur when a Pthread is 
executing that subroutine), please refer to the “Thread Programming Guidelines” 
section in AIX 5L Version 5.2 General Programming Concepts: Writing and 
Debugging Programs.

8.7  Pthread priority and scheduling
By default, each Pthread within a process has its own a dynamic or floating 
priority on AIX. This mechanism ensures that all Pthreads on a system have an 
opportunity to run and not be locked out by other Pthreads. As individual 
Pthreads consume CPU time, they are charged. Pthreads that are not ready to 
run, and that are not given a processor upon which they consume cycles, are not 
 Chapter 8. Introduction to POSIX threads 321



charged. Over time, CPU intensive Pthreads use more CPU cycles, are charged 
more, and their priority degrades. Pthreads that run only briefly before being 
preempted or relinquishing control of the processor tend to retain a fairly 
constant priority. The net result is that I/O intensive tasks stay near a constant 
priority, and computational tasks become lower in priority. The I/O intensive tasks 
usually run briefly. The computational tasks run for most or all of their allotted 
processor time. This allows all processes on the system to be responsive, 
ensures that every task is treated fairly with respect to CPU utilization, and 
prevents long-running tasks from hogging the system at the expense of others.

It is also possible to fix the priority of a Pthread at a specific value. This facility 
allows processes with Pthreads that must run at a certain response level to 
accomplish tasks in a predicable manner. While a normal process can fix the 
priority of a Pthread up to a certain level, at high priority levels the root user 
authority is required.

8.7.1  Thread models in AIX
Pthreads (user threads) are mapped to underlying kernel threads. A thread 
model refers to the way this mapping is done. A light-weight process (LWP) 
refers to a kernel thread.

There are three possible thread models, corresponding to three different ways to 
map Pthreads to kernel threads (see Figure 8-4 on page 323).

� The M:1 model15

Also known as the library thread scheduling, it refers to the case where 
threads share a pool of available LWPs.

In the M:1 model, all user threads run on one VP and are linked to exactly one 
LWP; the mapping is handled by a POSIX thread library scheduler. All user 
threads programming facilities are completely handled by the library. This 
model can be used on any system, especially on traditional single-threaded 
systems.

� The 1:1 model16

The 1:1 model is sometimes referred to as bound thread scheduling. In this 
model, each user thread is bound to a VP and linked to exactly one kernel 
thread (LWP). The VP is not necessarily bound to a real CPU (unless binding 
to a processor was done). Each VP can be thought of as a virtual CPU 
available for executing user code and system calls. A thread that is bound to a 
VP is said to have system scope, because it is directly scheduled with all the 

15  This was a thread model on AIX Version 3.2 when DCE is installed.
16  This was the thread model on AIX Version 4.1 and 4.2.
322 Developing and Porting C and C++ Applications on AIX



other kernel threads by the kernel scheduler. Most of the user threads 
programming facilities are directly handled by the kernel threads.

� The M:N model

In the M:N model (this is also known as multiplexed thread scheduling), 
several user threads can share the same virtual processor or the same pool 
of VPs. A thread that is not bound to a VP is said to be a local or process 
scope, because it is not directly scheduled with all the other threads by the 
kernel scheduler. The Pthreads library will handle the scheduling of user 
threads to the VP and then the kernel will schedule the associated kernel 
thread. This is the most efficient and most complex thread model; the user 
threads programming facilities are shared between the threads library and the 
kernel threads.

The mapping of user threads to kernel threads is done using virtual 
processors. A virtual processor (VP) is a library entity that is usually implicit. 
For a user thread, the virtual processor behaves as a CPU for a kernel thread. 
In the library, the virtual processor is a kernel thread or a structure bound to a 
kernel thread, that is, user threads sit on top of virtual processors, which are 
themselves on top of kernel threads.

Figure 8-4   Thread models

Note: The M:N model is the default thread model on AIX, beginning with 
Version 4.3.

VPVPVP VPVPVPVP VP

User threads

Pthreads library Kernel threads (running)

CPU CPU CPU

VPVP

CPU

M:N thread model1:1 thread modelM:1 thread model

CPU CPU

VP

Kernel threads (runnable)
Virtual Processors

User threads sleeping (No VP)

Process A Process B Process A Process B Process BProcess A

Kernel scheduler

CPUCPUCPU

VP VP
 Chapter 8. Introduction to POSIX threads 323



Comparing bound and multiplexed threads
Bound thread scheduling differs from multiplexed thread scheduling in the 
following important ways:

� A bound thread is permanently associated to its kernel thread, hence, it is 
exempt from the intermediate level of scheduling provided by the POSIX 
threads library used under the M:1 and M:N thread models.

� A bound thread executes exactly when its associated kernel thread is 
scheduled by the kernel scheduler.

� A bound thread’s scheduling policy is related to the underlying kernel thread. 
In AIX, only kernel threads with root authority can use a fixed-priority 
scheduling policy.

Multiplexed thread scheduling has the following important characteristic: A 
multiplexed thread is subject to two levels of scheduling. First, the thread is 
assigned to a kernel thread and preempted by a POSIX thread library scheduler. 
Second, the kernel scheduler assigns the LWPs to processors and then 
preempts them.

8.7.2  Scheduling Pthreads
A kernel component, called scheduler, is used to share processor cycles among 
running processes. The kernel scheduler coordinates ready-to-run tasks of 
varying priorities, running at least 100 times every second to reevaluate tasks on 
the run queue and allow processes to run based on the scheduling policy.

Starting with Version 4.3, AIX supports Pthread scheduling at the process level. 
The user scheduler is provided by the Pthreads library and supports the M:N 
thread model on AIX. The Pthreads library scheduler has a pool of one or more 
virtual processors (VPs) upon which a user-space Pthread may run. You can 
think of a VP as a kernel-space thread. This mapping of the user thread to kernel 
thread provides more effective use of kernel resources for processes that create 
many threads, not all of which will be running at any given moment. For example, 
in a producer-consumer thread pair, we will often see only one task running while 
the other waits to send or receive data. The Pthread library scheduler itself is 
also created as a Pthread in a process and runs on its own VP.

The Pthreads library allows the programmer to control the execution scheduling 
of the Pthreads. The control can be performed in two different ways: 

� By setting scheduling attributes when creating a Pthread. 

� By dynamically changing the scheduling attributes of a created Pthread. 
324 Developing and Porting C and C++ Applications on AIX



A Pthread has three scheduling parameters:

Scope The contention scope of a Pthread is defined by the 
thread model used in the Pthreads library.

Policy The scheduling policy of a Pthread defines how the 
scheduler treats the Pthread once it gains control of the 
CPU.

Priority The scheduling priority of a Pthread defines the relative 
importance of the work being done by each Pthread.

The scheduling parameters can be set before the Pthread's creation or during 
the Pthread's execution. In general, controlling the scheduling parameters of 
Pthreads is important only for Pthreads that are compute-intensive. Thus, the 
Pthreads library provides default values that are sufficient for most cases. 

Controlling the scheduling of a Pthread is often a complicated task. Because the 
scheduler can handle all system or process-wide Pthreads, depending on the 
scope context, the scheduling parameters of a Pthread can interact with those of 
all other Pthreads in the process and in the other processes on the system. 

Scheduling policies
AIX also provides support for a number of scheduling policies. Each policy has 
certain characteristics that will benefit a specific workload, but not all policies are 
suitable for every task. We can create an application that assigns different 
policies to different Pthreads, tuning our application to make optimum use of the 
system. AIX provides the following policies at the system, or kernel, level:

� SCHED_FIFO
� SCHED_RR
� SCHED_OTHER
� SCHED_FIFO2
� SCHED_FIFO3

As long as a process is using process-level scope (that is, the M:N thread model 
is in effect), the process may modify the scheduling policy of the Pthreads within 
that process. If the process is using system-scope (the 1:1 model), then the root 
user authority is required to modify the scheduling or priority aspects of the 
Pthread. Root privileges are also required to modify the policy of a Pthread 
outside the scope of the process, or to set the priority of a Pthread or process to 
a fixed value.
 Chapter 8. Introduction to POSIX threads 325



SCHED_FIFO
SCHED_FIFO is First-In/First-Out scheduling. A Pthread with fixed priority and 
SCHED_FIFO scheduling will be allowed to run to completion unless it:

� It yields the processor voluntarily.

� It blocks because something it needs is not available.

� A kernel thread with a higher priority is available to run. 

Running Pthreads under a FIFO policy is discouraged because it prevents the 
system from balancing resource utilization in a way that lets all tasks run.

SCHED_RR
SCHED_RR is round-robin scheduling. Pthreads using this policy will receive a 
time slice (time slicing is a mechanism that ensures that every Pthread is allowed 
time to execute by preempting running Pthreads at fixed intervals) of the CPU. 
Only Pthreads with a fixed priority can take advantage of round-robin scheduling.

As each Pthread completes its allotted time on the processor, it is placed at the 
end of the queue. The Pthread at the front of the queue is allowed to run. This 
circular sharing of the processor ensures that systems that require a given 
number of Pthreads to execute on a regular basis will not starve any task.

SCHED_OTHER
SCHED_OTHER is the default scheduling policy used by AIX. Unlike 
first-in/first-out and round-robin, the SCHED_OTHER policy is used to manage 
Pthreads that have dynamic priority. In this policy the scheduler runs 100 times 
per second, and at each interval charges the Pthread(s) running on a 
processor(s) for its use of the CPU. Floating priorities are computed by using the 
Pthread priority, the CPU usage, and various tunable kernel parameters.

By default, a Pthread is created with a priority of 40 plus its nice value. The 
default nice value is 20 and can be changed within a relative range of plus or 
minus 20 using the nice command. This results in a default priority for a newly 
created Pthread of 60. If the Pthread has control of a processor when the 
scheduler next runs, the Pthread is charged and its priority is recalculated. The 
formula used to recalculate Pthread priority is:

recalculated_priority = P_nice + (C * R / 32)

Where:

P_nice 40 + NICE.
C (recent CPU usage)Old CPU Usage * D / 32 (default D is 16 and ranges from 

0-32).
R / 32 The CPU penalty factor, where R is a kernel tunable and 

ranges from 0-32.
326 Developing and Porting C and C++ Applications on AIX



The values for D and R are tunable. D defaults to 16 and may range from 0 to 32; 
R also defaults to 16 and ranges in value from 0 to 32.

SCHED_FIFO2
SCHED_FIFO2 is similar to SCHED_FIFO, but allows a Pthread that has slept 
for a short period of time to be added to the front of the run queue when it 
awakened. The time period is a kernel parameter that can be modified. This 
affinity limit is adjusted using the schedtune command:

/usr/samples/kernel/schedtune -a N

Where N is the number of clock ticks.

SCHED_FIFO3
SCHED_FIFO3 will always place an awakened Pthread at the front of the queue, 
regardless of how long it was asleep. While this is similar to FIFO2, we should 
remember that when a FIFO3 Pthread is on a run queue, the parameters of the 
queue are modified to prevent a FIFO2 Pthread from being put at the head of the 
queue.

Setting Pthread scheduling policies
Scheduling policies are inherited from the process that created the Pthread. If a 
different scheduling policy is required, the pthread_attr_setinheritsched() routine 
can be used to set the thread attribute prior to Pthread creation. Again, this 
applies to Pthreads in a process that uses the M:N model:

pthread_attr_setinheritsched(pthread_attr_t *thread_attr, int value)

Where:

thread_attr Thread attribute structure or object

Value Either PTHREAD_INHERIT_SCHED or 
PTHREAD_EXPLICIT_SCHED

If the Pthread is already created, the pthread_setschedparam() routine can be 
used to modify a Pthread's scheduling policy. The scheduling change is not 
realized until the next time the Pthread is put on the run queue. That is, if a 
Pthread is currently running and a call is made to pthread_setschedparam(), the 
change will not become effective until the Pthread has consumed its time slice:

pthread_setschedparam(pthread_t thread_id, int policy, *param)

Where:

thread_id Thread ID to operate on.
policy Scheduling policy, for example, SCHED_RR or 

SCHED_FIFO.
param This structure contains a policy field but is ignored.
 Chapter 8. Introduction to POSIX threads 327



8.7.3  Scheduling limitations
Thread scope affects how the underlying kernel thread's scheduling will behave. 
For system scope threads, there exists one kernel thread for every user thread, 
that is, pthread. Modifying a system scope thread's scheduling policy modifies 
the underlying kernel thread's scheduling policy; thus, system scope threads are 
limited to SCHED_OTHER unless the process has root privileges. Also, in the 
case of system scope threads, the other scheduling policies (FIFO and 
round-robin) require a fixed priority and root is the only user who can modify a 
thread's priority.

As stated earlier, process scope threads are threads that have M user threads to 
N kernel threads. The scheduling policy for process scope threads is handled at 
the library level and does not affect the underlying kernel thread(s). At the 
process level, the scheduling policy affects how the ready-to-run Pthreads are 
placed in the run queue. The scheduling policy of the underlying kernel thread 
(which implements the virtual processor, or VP) is managed by the kernel.

8.8  Pthread specific environment variables in AIX
Tuning multi-threaded applications for optimal performance can be challenging 
on any system. AIX provides a set of environmental variables that modify the 
behavior of various threading functions. Let us look at some of these variables 
one at a time.

AIXTHREAD_SCOPE
This environment variable controls the mapping of the application-level Pthreads 
to entries in the OS scheduling queue. The default thread scope for AIX is 
process, and this applies to the creation of Pthreads only when the attribute 
argument to pthread_create() is NULL; otherwise, the contents of the attribute 
structure determines the scope of the Pthread. This implies that a single process 
may contain Pthreads of both scopes.

AIXTHREAD_SCOPE permits exploring application behavior by being able to 
change the thread scope without having to modify the application. The default 
thread scope can be set by setting the variable in the environment:

AIXTHREAD_SCOPE=[P|S]

Where:

P For process scope
S For system scope
328 Developing and Porting C and C++ Applications on AIX



The preferred setting for any particular application is dependent upon its 
behavior. The performance difference between process and system scope, in 
current levels of AIX 5L, has become almost negligible for certain applications.

AIXTHREAD_MNRATIO
This environment variable controls the scaling factor used within the Pthread 
library when creating and terminating Pthreads. The default M:N ratio for current 
levels of the operating system is 8:1, that is, eight Pthreads for every kernel 
thread. This default ratio may not be suitable for all workloads, however, so the 
user can modify the M:N ratio by setting and exporting the environmental variable 
as follows:

AIXTHREAD_MNRATIO=M:N

Where:

M Number of user threads
N Number of kernel threads

AIXTHREAD_MNRATIO applies only to process-scope threads. It may be useful 
for applications with a very large number of Pthreads. 

SPINLOOPTIME
SPINLOOPTIME controls the number of times a Pthread will attempt to obtain a 
mutex before blocking on the mutex availability. For example, sometimes it makes 
more sense for a Pthread to keep trying just a bit longer to acquire a lock in 
hopes of the other Pthread releasing the lock while the current Pthread is awake 
and waiting. This can avoid the overhead of putting the Pthread to sleep, 
managing the event that occurs when the lock is released, and waking the 
Pthread up and setting it to run so that it can now acquire the lock.

On multiprocessor systems the default value for SPINLOOPTIME is 40. The spin 
loop time can be modified by setting and exporting the environmental variable:

SPINLOOPTIME=N

Where:

N Number of times to retry a busy lock before yielding to 
another Pthread.

YIELDLOOPTIME
Similar to SPINLOOPTIME, YIELDLOOPTIME controls the number of times a 
Pthread will yield itself before blocking on a mutex. In some cases, yielding the 
processor will permit other Pthreads time to run, thus reducing the amount of 
time the waiting Pthread will have to spin and/or wait for the mutex to be 
unlocked. This allows work to be accomplished while one Pthread is waiting for a 
 Chapter 8. Introduction to POSIX threads 329



resource to be available. It also keeps the Pthread from going to sleep; instead, 
the Pthread is put back on the run queue to try again to acquire the lock. Keeping 
the Pthread from going to sleep can result in improved overall performance, 
depending upon how much more time the Pthread needs to wait for the lock 
acquisition.

The default for YIELDLOOPTIME is 0. If the Pthread spins on the lock and 
cannot get it, it will be put to sleep. Increasing the value of this variable will 
prevent the Pthread from going to sleep quite so quickly. We can modify the value 
of yield loop time by setting and exporting the environmental variable:

AIXTHREAD_YIELDLOOPTIME=N

Where:

N Number of times to yield to acquire a busy mutex or spin 
lock

AIXTHREAD_MINKTHREADS
Sets the minimum number of kernel threads that should be used for a process. 
The default is eight, which means that an average threaded process will have at 
least eight kernel threads available as a resource for scheduling Pthreads. This 
environment variable can be set as follows:

AIXTHREAD_MINKTHREADS=N

Where:

N Number of kernel threads

AIXTHREAD_MUTEX_DEBUG
AIX is capable of maintaining, in running threaded processes, information 
regarding mutexes; this information is then available for application debugging. 
On current levels of AIX 5L, the default setting for this variable is OFF, but that 
was not always the case. Since maintaining this information is not free, we may 
observe unexplainable and undesirable performance characteristics. If we 
suspect that our application may be impacted, set this variable in our 
environment to ensure mutex debugging information is not being collected:

AIXTHREAD_MUTEX_DEBUG=[ON|OFF]

If you plan on debugging the Pthreads in your application, you will want to turn 
this variable ON.
330 Developing and Porting C and C++ Applications on AIX



AIXTHREAD_COND_DEBUG
Similar to AIXTHREAD_MUTEX_DEBUG, this variable controls the collection of 
debug information for condition variables. Its default setting is now OFF. For the 
same conditions described above, we can set the variable in our environment:

AIXTHREAD_COND_DEBUG=[ON|OFF]

AIXTHREAD_RWLOCK_DEBUG
Causes the Pthreads library to maintain a list of all read-write locks that can be 
viewed by debugging programs. Like the other two debugging variables above, 
the default for this is now OFF. Set the variable in your environment to ON for 
debugging the application.

AIXTHREAD_RWLOCK_DEBUG=[ON|OFF]

AIXTHREAD_GUARDPAGES
Each Pthread is created with its own stack; the stack size is controlled via the 
thread attributes or via (for a default value) an environment variable. Since the 
stack is allocated in the process heap, there is some potential for inadequately 
sized stacks to allow a Pthread to cause a stack to grow beyond its maximum 
size. To assist in detecting this behavior, and also to guard against errant 
memory writes, the stack can be protected by setting pages at the top of the 
stack as read-only. Any attempt to write onto these pages will result in the 
application receiving a segmentation violation signal, which will occur 
immediately. Debugging the application will allow us to investigate the conditions 
at the time of the stack overflow and decide on an appropriate course of action 
(increase the stack size, redesign part of the application, change where the data 
is stored, and so on).

To enable and set the number of guard pages, we need to export the 
environmental variable:

AIXTHREAD_GUARDPAGES=N

Where:

N Number of 4 KB size pages

The default value is 0, which means no guard pages are created. If the 
application specifies its own stack, or uses large pages17 for its process heap, no 
guard pages are created.

AIXTHREAD_SLPRATIO
The “sleep ratio” value tells the system how many kernel threads should be held 
in reserve for sleeping Pthreads. This tuning parameter allows greater 

17  See 3.6, “Large page support” on page 157.
 Chapter 8. Introduction to POSIX threads 331



management of kernel resources, as sleeping Pthreads do not require a 
matching kernel thread. And since Pthreads are (usually) woken one at a time, 
the scheduling and running of the Pthreads can be matched to existing resources 
without needing to acquire additional kernel threads.

One of the control variables that impact the scheduling of Pthreads is created 
with a process based contention scope. This environment variable will be set as 
follows:

AIXTHREAD_SLPRATIO=k:p

Where:

k The number of kernel threads that should be held in 
reserve for p sleeping pthreads

Any positive integer value may be specified for p and k. If k > p, then the ratio is 
treated as 1:1 (that is, you cannot specify more kernel threads than Pthreads). 
The default sleep ratio is 1:12.

AIXTHREAD_STK
Each Pthread has its own stack; the default size (on current levels of AIX) is 96 
KB for 32-bit applications and 192 KS for 64-bit applications. While we will find 
this default adequate for many applications, it is also true that there are 
exceptions. Instead of modifying code to adjust a parameter in the Pthread 
attribute structure and then recompiling and rebuilding our application, we can 
use this environment variable to specify stacks of up to 256MB in size. Keep in 
mind, however, that Pthreads stacks are created in the process heap, and thus 
impact the amount of space available for dynamically allocated memory.

We can modify the stack size for Pthreads created without specifying the stack 
size programmatically by exporting the environment variable:

AIXTHREAD_STK=N

Where:

N number of bytes

8.9  User API for Solaris threaded applications
The new user thread library provides for source compatibility with Solaris user 
thread routines. This allows applications that are run on Solaris systems to be 
recompiled without changing their application source code so that they can run 
on AIX beginning with Version 5.2. The API for Solaris threaded applications for 
332 Developing and Porting C and C++ Applications on AIX



AIX 5L Version 5.2 is designed to be compatible with Solaris Version 8 of the 
thread library.

The Solaris user thread library does not alter the Pthread library, so compatibility 
with POSIX and X/Open standards for Pthreads are maintained on AIX. The 
Solaris user threads support is implemented on top of the Pthreads; therefore, 
existing POSIX thread applications will not be affected by the Solaris user thread 
support.

There is, however, no binary compatibility with applications compiled under 
Solaris. All source code is required to be recompiled on AIX.

8.9.1  Application binary interface (ABI)
The design of the existing ABI of the pthread library is not altered with respect to:

� Exported function names

� Exported function signatures

� Exported data structures

� Exported data structures used in file formats

AIX LPP packaging
The filesets listed in Table 8-1 contain the AIX files needed for the user API for 
Solaris threaded applications.

Table 8-1   Filesets for Solaris user thread library

There are no user interfaces required for either the command line, SMIT, or 
Web-based System Manager. All applications need to be recompiled.

Note: Solaris user thread library function names have the prefix thr_, while 
POSIX thread library function names have the prefix pthread_.

File Fileset

/usr/ccs/lib/libthread.a bos.adt.lib

/usr/include/thread.h bos.adt.include

/usr/include/synch.h bos.adt.include
 Chapter 8. Introduction to POSIX threads 333



334 Developing and Porting C and C++ Applications on AIX



Chapter 9. Program parallelization 
using OpenMP

The latest versions of the IBM C and C++ compiler products for AIX support 
OpenMP, which parallelizes your C and C++ applications. By inserting simple 
OpenMP directives1 (start with “#pragma omp”) into your source code, your 
application can be parallelized and efficiently performs on SMP systems.

This chapter explains how to use the OpenMP support of the IBM C and C++ 
compiler products for AIX.

The OpenMP support on AIX internally uses the POSIX threads explained in 
Chapter 8, “Introduction to POSIX threads” on page 275. Although the 
application programmer are not exposed to the POSIX threads when 
programming C and C++ applications with OpenMP, several concepts in the 
POSIX threads programming model are sometimes beneficial.

For further information about the OpenMP support provided by the compiler 
products, please refer to C for AIX Compiler Reference, SC09-4960 and 
VisualAge C++ for AIX Compiler Reference, SC09-4959.

9

1  In addition to the OpenMP directives, the IBM C and C++ compiler products for AIX also have been 
supporting IBM SMP directives to parallelize your C and C++ applications. See Appendix E, 
“Supported IBM SMP directives” on page 483 for more information about the IBM SMP directives.
© Copyright IBM Corp. 2000, 2003. All rights reserved. 335



9.1  Introduction to OpenMP
OpenMP is an industry specification describing a common set of APIs for 
multi-platform SMP programming. OpenMP is a portable, scalable programming 
model designed to provide SMP programmers with a simple and flexible interface 
for developing parallel applications for platforms ranging from the desktop to the 
super computer. It is comprised of three components, as shown in Table 9-1.

Table 9-1   OpenMP components

For further information about OpenMP, please visit the following URL:

http://www.openmp.org

9.2  The OpenMP programming model
OpenMP uses the fork-join model of parallel execution. Although this fork-join 
model can be useful for solving a variety of problems, it is somewhat tailored for 
large array-based applications. OpenMP is intended to support programs that will 
execute correctly both as parallel programs (multiple threads of execution and a 
full OpenMP support library) and as sequential programs (directives will be 
ignored and a stub library will be linked).

A program written with the OpenMP C/C++ API begins execution as a single 
thread of execution called the master thread. The master thread executes in a 
serial region until the first parallel construct is executed. In the OpenMP C/C++ 
API, the parallel directive constitutes a parallel construct. When a parallel 
construct is executed, the master thread creates a team of threads, and the 
master becomes master of the team. Each thread in the team executes the 
statements in the dynamic extent of a parallel region, except for the work-sharing 
constructs. Work-sharing constructs must be executed by all threads in the team 
in the same order, and the statements within the associated structured block are 
executed by one or more of the threads.

Components Relevant section(s)

Compiler directives From 9.3, “Classification of OpenMP directives” on 
page 337 to 9.9, “Data-sharing attribute clauses” on 
page 355

Run-time library 
functions

Section 9.10, “Run-time library functions” on page 363

Environment variables Section 9.11, “Environment variables” on page 373
336 Developing and Porting C and C++ Applications on AIX

http://www.openmp.org


9.3  Classification of OpenMP directives
The IBM C and C++ compiler products for AIX support OpenMP pragma 
directives that exploit shared memory parallelism.2 Directives are based on the 
#pragma directive defined in the C and C++ standards. Compilers that support 
the OpenMP C and C++ API will include a command line option that activates 
and allows interpretation of all OpenMP compiler directives.

We categorized OpenMP pragmas into the four categories shown in Table 9-2.

Table 9-2   OpenMP directive categories

9.3.1  The OpenMP directive format
The syntax of an OpenMP directive is specified as follows:

#pragma omp directive-name [clause[ [,] clause]...] new-line

2  VisualAge C++ for AIX supports OpenMP since Version 6, while C for AIX has been supporting it 
since Version 5.

Category Brief explanation and related sections

Parallel constructs These pragmas enable the programmer to define the parallel 
regions in which work is done by threads in parallel. Most of the 
OpenMP directives either statically or dynamically bind to an 
enclosing parallel region. See Section 9.4, “Parallel region 
construct” on page 338 for more information.

Work-sharing 
constructs

This category of pragmas enables the programmer to define 
how work will be distributed across the threads in a parallel 
region. See Section 9.5, “Work-sharing constructs” on 
page 340 for more information.

Synchronization 
constructs

This category enables the programmer to control 
synchronization among threads. See Section 9.7, 
“Synchronization constructs” on page 348 for more information.

Data sharing 
attributes

This category of pragmas enables the programmer to define the 
private/shared context of data within a parallel region. See 
Section 9.9, “Data-sharing attribute clauses” on page 355 for 
more information.

Note: Throughout this chapter, the term construct refers to the pragma line 
and the following single code block. If a pragma line does not have any 
following code blocks, then we use the term directive.
 Chapter 9. Program parallelization using OpenMP 337



Each directive starts with “#pragma omp”, to reduce the potential for conflict with 
other (non-OpenMP or vendor extensions to OpenMP) pragma directives with 
the same names. The remainder of the directive follows the conventions of the C 
and C++ standards for compiler directives. In particular, white space can be used 
before and after the #, and sometimes white space must be used to separate the 
words in a directive. Preprocessing tokens following the #pragma omp are 
subject to macro replacement.

Directives are case-sensitive. The order in which clauses appear in directives is 
not significant. Clauses on directives may be repeated as needed, subject to the 
restrictions listed in the description of each clause. If a variable-list appears in a 
clause, it must specify only variables. Only one directive-name can be specified 
per directive.

For example, the following directive is not allowed:

/* ERROR - multiple directive names not allowed */
#pragma omp parallel barrier

An OpenMP directive applies to at most one succeeding statement, which must 
be a structured block. For those directives, which allow a structured block 
following the directive name, are termed Constructs. Throughout this chapter, the 
term Construct is used as appropriate.

9.4  Parallel region construct
The following directive defines a parallel region, which is a region of the program 
that is to be executed by multiple threads in parallel. This is the fundamental 
construct that starts parallel execution:

#pragma omp parallel [clause[ [, ]clause] ...] new-line
 structured-block

The clause is one of the following:

� if(scalar-expression)
� private(variable-list)
� firstprivate(variable-list)
� default(shared | none)
� shared(variable-list)
� copyin(variable-list)
� reduction(operator: variable-list)
� num_threads(integer-expression)

For a detailed description of the clauses, see 9.9, “Data-sharing attribute 
clauses” on page 355.
338 Developing and Porting C and C++ Applications on AIX



When a thread encounters a parallel construct, a team of threads is created if 
one of the following cases is true: 

� No if clause is present.

� The if expression evaluates to a nonzero value.

This thread becomes the master thread of the team, with a thread number of 0, 
and all threads in the team, including the master thread, execute the region in 
parallel. If the value of the if expression is zero, the region is serialized.

The number of threads in a parallel region is determined by the following factors, 
in order of precedence: 

1. Use of the omp_set_num_threads() library function.3

2. Setting of the OMP_NUM_THREADS environment variable.4

3. Implementation default.5

The sample code in Example 9-1 illustrates the parallel region execution. In this 
program, every thread executes and prints the “Hello World.” enclosed in the 
parallel region.

Example 9-1   omp_parallel.c

#include <stdio.h>

int main(int argc, char *argv[])
{

printf("Before forking a parallel region.\n");

/* Fork a team of threads giving them their own copies of variables. */
#pragma omp parallel
{

printf("Hello World.\n");
} /* All threads join master thread and terminate. */

printf("Exiting the program... Bye.\n");
}

To compile this code, run:

$ cc_r -qsmp=omp omp_parallel.c

3  See 9.10.1, “Execution environment functions” on page 364.
4  See 9.11.2, “OMP_NUM_THREADS” on page 374.
5  On AIX, it is equivalent to the number of equipped processors.
 Chapter 9. Program parallelization using OpenMP 339



Before running this program, set the environment variable 
OMP_NUM_THREADS in order to set the number of threads that you want to 
execute in parallel. For example,

$ export OMP_NUM_THREADS=3 a.out

The output of the program is as follows:

Before forking a parallel region
Hello World.
Hello World.
Hello World.
Exiting the program... Bye.

As instructed by the environment variable, the program forked three threads and 
executed the parallel region construct.

9.5  Work-sharing constructs
A work-sharing construct distributes the execution of the associated statement 
among the members of the team that encounter it. The work-sharing directives 
do not launch new threads, and there is no implied barrier on entry to a 
work-sharing construct.

OpenMP defines the three work-sharing constructs, for, sections, and single, 
explained in the following sections:

� Section 9.5.1, “for construct” on page 341

� Section 9.5.2, “sections construct” on page 344

� Section 9.5.3, “single construct” on page 345

A work-sharing construct must be enclosed dynamically within a parallel region 
in order for the directive to execute in parallel. They must be executed by all 
members of a team or none at all. Successive work-sharing constructs must be 
executed in the same order by all members of a team.

Note: 

� Use cc_r when compiling C programs with OpenMP directives. Use xlC_r 
when compiling C++ programs with OpenMP directives.

� The -qsmp=omp compiler option should be specified when compiling C 
and C++ programs with OpenMP directives. If not specified, a stub library 
(/usr/lib/libxlomp_ser.a), which does not create any threads, will be in-lined 
instead of the actual OpenMP library (/usr/lib/libxlsmp.a).
340 Developing and Porting C and C++ Applications on AIX



9.5.1  for construct
The for directive specifies that the iterations of the loop immediately following it 
must be executed in parallel by the team. This assumes a parallel region has 
already been initiated; otherwise, it executes in serial on a single processor. 

The syntax for the for construct is as follows:

#pragma omp for [clause[[,] clause] ... ] new-line
for-loop

The clause is one of the following:

� private(variable-list)
� firstprivate(variable-list)
� lastprivate(variable-list)
� reduction(operator: variable-list)
� ordered
� schedule(kind[, chunk_size])
� nowait

Let us discuss a few of the clauses in brief. For a detailed description of the other 
clauses, see 9.9, “Data-sharing attribute clauses” on page 355.

The ordered clause must be present when ordered directives bind to for 
construct.

The schedule clause describes how iterations of the loop are divided among the 
threads in the team. The schedule kind may be one of the following:

static Loop iterations are divided into pieces of chunk_size and then 
statically assigned to threads. If chunk is not specified, the 
iterations are evenly (if possible) divided contiguously among the 
threads. 

dynamic Loop iterations are divided into pieces of size chunk_size and 
dynamically scheduled among the threads; when a thread 
finishes one chunk, it is dynamically assigned another. The 
default chunk_size is 1. 

guided The chunk_size is exponentially reduced with each dispatched 
piece of the iteration space. The chunk_size specifies the 
minimum number of iterations to dispatch each time. The default 
chunk_size is 1. 

runtime The scheduling decision is deferred until run time by the 
environment variable OMP_SCHEDULE. It is not allowed to 
specify a chunk_size for this clause.
 Chapter 9. Program parallelization using OpenMP 341



If the nowait clause is specified, then threads do not synchronize at the end of 
the parallel loop. Threads proceed directly to the next statements after the loop.

The restrictions to the for directive are as follows:

� The for loop must be a structured block, and, in addition, its execution must 
not be terminated by a break statement. 

� The values of the loop control expressions of the for loop associated with a for 
directive must be the same for all the threads in the team. 

� The for loop iteration variable must have a signed integer type.

� Only a single schedule clause can appear on a for directive.

� Only a single ordered clause can appear on a for directive.

� Only a single nowait clause can appear on a for directive.

� The value of the chunk_size expression must be the same for all threads in 
the team.

The for directive requires that the for loop must have canonical form. In the 
OpenMP specifications, the canonical form allows the number of loop iterations 
to be computed on entry to the loop. For example, the following code fragment:

#pragma omp for reduction(+:overallsum)
for (n = 0; n != ARRSIZE; n++) {

overallsum += array[n];
}

would yield the following error when it is compiled:

" 1506-818 (S) Controlling expression of the for loop is not in the canonical 
form."

because the loop test expression n != ARRSIZE, should be replaced by 
n < ARRSIZE.

The example program shown in Example 9-2 on page 343 illustrates the use of 
the for directive. In this example, the arrays a, b, and total are shared by all 
threads. The variable i is private to each thread and each thread has its own copy 
of it. The iterations of the for is distributed dynamically in chunk_size pieces. The 
nowait clause ensures that threads will not synchronize upon completing their 
individual pieces of work.
342 Developing and Porting C and C++ Applications on AIX



Example 9-2   omp_ws_for.c

#include <stdio.h>
#define CHUNKSIZE 5
#define N     10

int main(int argc, char *argv[])
{

int i, chunk_size;
float a[N], b[N], total[N];

/* Some initializations. */
for (i = 0; i < N; i++)

a[i] = b[i] = i * 1.0;
chunk_size = CHUNKSIZE;

#pragma omp parallel shared(a,b,total,chunk_size) private(i)
{

#pragma omp for schedule(dynamic,chunk_size) nowait
for (i=0; i < N; i++)

total[i] = a[i] + b[i];
}  /* end of pragma omp parallel for. */
for (i = 0; i < N; i++)

printf(“The total value is = %f\n”, total[i]);
}

When executed, the program prints the output shown in Example 9-3.

Example 9-3   Output fromomp_ws_for.c

The total value is = 0.000000
The total value is = 2.000000
The total value is = 4.000000
The total value is = 6.000000
The total value is = 8.000000
The total value is = 10.000000
The total value is = 12.000000
The total value is = 14.000000
The total value is = 16.000000
The total value is = 18.000000
 Chapter 9. Program parallelization using OpenMP 343



9.5.2  sections construct
The sections directive identifies a non-iterative work-sharing construct that 
specifies a set of constructs that are to be divided among threads in a team. 
Each section is executed once by a thread in the team. The syntax of the 
sections directive is as follows:

#pragma omp sections [clause[[,] clause] ...] new-line
{

[#pragma omp section new-line]
structured-block

[#pragma omp section new-line
structured-block ]

...
}

The clause is one of the following:

� private(variable-list)
� firstprivate(variable-list)
� lastprivate(variable-list)
� reduction(operator: variable-list)
� nowait

Each section is preceded by a section directive, although the section directive is 
optional for the first section. The section directives must appear within the lexical 
extent of the sections directive. There is an implicit barrier at the end of a 
sections construct, unless a nowait is specified.

Restrictions to the sections directive are as follows: 

� A section directive must not appear outside the lexical extent of the sections 
directive. 

� Only a single nowait clause can appear on a sections directive.

The example shown in Example 9-4 on page 345 illustrates the use of the 
sections directive. The program is a slight modification of Example 9-2 on 
page 343, which illustrated the use of the for directive. The first N/2 iterations of 
the for loop will be distributed to the first thread, and the rest will be distributed to 
the second thread. When each thread finishes its block of iterations, it proceeds 
with whatever code comes next (nowait).
344 Developing and Porting C and C++ Applications on AIX



Example 9-4   omp_ws_section.c

#include <stdlib.h>
#define N     10

int main(int argc, char *argv[])
{

int i;
float a[N], b[N], total[N];

/* Some initializations. */
for (i = 0; i < N; i++)

a[i] = b[i] = i * 1.0;

#pragma omp parallel shared(a,b,total) private(i)
{

#pragma omp sections nowait
{

#pragma omp section
for (i = 0; i < N / 2; i++)

total[i] = a[i] + b[i];
#pragma omp section
for (i = N / 2; i < N; i++)

total[i] = a[i] + b[i];
} /* end of pragma omp sections nowait. */

} /* end of pragma omp parallel shared. */
for (i = 0; i < N; i++)

printf("The total value is = %f\n", total[i]);
}

When executed, the program prints the same output shown in Example 9-3 on 
page 343.

9.5.3  single construct
The single directive identifies a construct that specifies that the associated 
structured block is executed by only one thread in the team (not necessarily the 
master thread). This may be useful when dealing with sections of code that are 
not thread safe (such as I/O). The syntax of the single directive is as follows:

#pragma omp single [clause[[,] clause] ...] new-line
structured-block

The clause is one of the following:

� private(variable-list)
� firstprivate(variable-list)
� copyprivate(variable-list)
 Chapter 9. Program parallelization using OpenMP 345



� nowait

Restrictions to the single directive are as follows:

� Only a single nowait clause can appear on a single directive.

� The copyprivate clause must not be used with the nowait clause.

� single constructs cannot be nested within sections construct.

The following example program illustrates the use of a single construct:

/* File : omp_ws_single.c */
#include <stdio.h>
int main(int argc, char *argv[])
{

printf("Before forking a parallel region.\n");

/* Fork a team of threads giving them their own copies of variables. */
#pragma omp parallel 
{

/* The printf() line is executed only once by any of the thread. */
#pragma omp single
printf("Before printing Hello World...\n");

/* The printf() line is executed by all the thread. */
printf("Hello World.\n");

/* The printf() line is executed only once by any of the thread. */
#pragma omp single
printf("Done.. Leaving.\n");

}
}

If executed, the program prints the following output:

Before forking a parallel region.
Before printing Hello World...
Hello World.
Done.. Leaving.
Hello World.
Hello World.

In the above output, the statements in the single construct were executed only 
once by one of the threads from the team.
346 Developing and Porting C and C++ Applications on AIX



9.6  Combined parallel work-sharing constructs
Combined parallel work-sharing constructs are shortcuts for specifying a parallel 
region that contains only one work-sharing construct. The semantics of these 
directives are identical to that of explicitly specifying a parallel directive followed 
by a single work-sharing construct.

The following sections describe the combined parallel work-sharing constructs:

� Section 9.6.1, “parallel for construct” on page 347

� Section 9.6.2, “parallel sections construct” on page 348

9.6.1  parallel for construct
The parallel for directive is a shortcut for a parallel region that contains only a 
single for directive. The syntax of the parallel for directive is as follows:

#pragma omp parallel for [clause[[,] clause] ...] new-line
for-loop

This directive allows all the clauses of the parallel directive and the for directive, 
except the nowait clause, with identical meanings and restrictions. The 
semantics are identical to explicitly specifying a parallel directive immediately 
followed by a for directive.

The following example illustrates the use of the parallel for construct. Iterations of 
the for loop will be distributed in equal sized blocks to each thread in the team 
(schedule static):

/* File : omp_parallel_for.c */
#include <stdlib.h>
#define N       10
#define CHUNKSIZE   5

int main(int argc, char *argv[])
{

int i, chunk_size;
float a[N], b[N], total[N];

/* Some initializations. */
for (i = 0; i < N; i++)

a[i] = b[i] = i * 1.0;
chunk_size = CHUNKSIZE;

#pragma omp parallel for \
shared(a,b,total,chunk_size) private(i) \
schedule(static,chunk_size)

for (i = 0; i < N; i++)
 Chapter 9. Program parallelization using OpenMP 347



total[i] = a[i] + b[i];

for (i = 0; i < N; i++)
printf("Total value is = %f\n", total[i]);

}

When executed, the program prints the same output shown in Example 9-3 on 
page 343.

9.6.2  parallel sections construct
The parallel sections directive provides a shortcut form for specifying a parallel 
region containing only a single sections directive. The semantics are identical to 
explicitly specifying a parallel directive immediately followed by a sections 
directive. The syntax of the parallel sections directive is as follows:

#pragma omp parallel sections [clause[[,] clause] ...] new-line
{

[#pragma omp section new-line]
structured-block

[#pragma omp section new-line
structured-block ]

...
}

The clause can be one of the clauses accepted by the parallel and sections 
directives, except the nowait clause.

9.7  Synchronization constructs
Synchronization refers to the time order in which threads access shared or global 
variables. Because several parallel threads may need to access or update the 
same shared variable at about the same time, explicit control of synchronization 
is often required. A program with faulty synchronization may compile and run 
without incident, but will produce incorrect results. 

OpenMP provides a variety of synchronization constructs, explained in the 
following sections, that control how the execution of each thread proceeds 
relative to other team threads:

� Section 9.7.1, “master construct” on page 349

� Section 9.7.2, “critical construct” on page 349

� Section 9.7.3, “barrier directive” on page 350

� Section 9.7.4, “atomic construct” on page 352
348 Developing and Porting C and C++ Applications on AIX



� Section 9.7.5, “flush directive” on page 352

� Section 9.7.6, “ordered construct” on page 353

9.7.1  master construct
The master directive identifies a construct that specifies a structured block that is 
executed by the master thread of the team. The syntax of the master directive is 
as follows:

#pragma omp master new-line
structured-block

Other threads in the team do not execute the associated structured block. There 
is no implied barrier either on entry to or exit from the master construct.

It is not allowed to branch into or out of master block.

9.7.2  critical construct
The critical directive identifies a construct that restricts execution of the 
associated structured block to a single thread at a time. The syntax of the critical 
directive is as follows:

#pragma omp critical [(name)] new-line
structured-block

An optional name may be used to identify the critical region. In the following 
sample code, all threads in the team will attempt to execute in parallel; however, 
because of the critical construct surrounding the increment of x, only one thread 
will be able to read/increment/write x at any time:

#include <stdlib.h>
int main(int argc, char *argv[])
{

int x = 0;
#pragma omp parallel shared(x)
{

/* access allowed for one thread only at a time. */
#pragma omp critical
x = x + 1;

} /* end of pragma omp parallel shared. */
}

A small example program omp_reduction2.c, illustrating the use of the critical 
directive, is shown in 9.9.6, “reduction clause” on page 358.
 Chapter 9. Program parallelization using OpenMP 349



9.7.3  barrier directive
The barrier directive synchronizes all the threads in a team. When executed, 
each thread in the team waits until all of the others have reached this point (see 
Figure 9-1). In this figure, the thread 2 has not been reached at the barrier 
statement; therefore, the other threads cannot proceed their execution flow.

Figure 9-1   Concept of barrier

The syntax of the barrier directive is as follows:

#pragma omp barrier new-line

After all threads in the team have executed the barrier, each thread in the team 
begins executing the statements after the barrier directive in parallel.

In the following program, though the printf() statement is inside the parallel 
construct, the value of x is printed only once after all the threads have finished 
incrementing the variable. It is because the inclusion of the barrier directive has 
made it possible:

/* File : omp_barrier.c */
#include <stdlib.h>

int main(int argc, char *argv[])
{

int x = 0;
#pragma omp parallel shared(x)

Thread 0 Thread 1 Thread 2 Thread 3

Barrier

Time
350 Developing and Porting C and C++ Applications on AIX



{
#pragma omp critical
x = x + 1;
/*
* The following block will be executed after all the threads finish
* their work.
*/
#pragma omp barrier
{

#pragma omp single
printf("The value of x is : %d\n", x);

} /* end of pragma omp barrier */
} /* end of pragma omp parallel shared. */

}

The output is printed as:

The value of x is : 3

If we remove the barrier construct from the code, we might not have achieved the 
expected results. The output would have been any of the following lines:

The value of x is : 1
The value of x is : 2
The value of x is : 3

depending upon the thread that gets a chance to execute the single block.

Note: Because the barrier directive does not have a C language statement as 
part of its syntax, there are some restrictions on its placement within a 
program. The example below illustrates these restrictions:

/*
* ERROR - The barrier directive cannot be the immediate substatement of
* an if statement.
*/
if (x != 0)

#pragma omp barrier
 your_statement_line;

...

/* OK - The barrier directive is enclosed in a compound statement. */
if (x != 0) {

#pragma omp barrier
your_statement_line;

}
...
 Chapter 9. Program parallelization using OpenMP 351



9.7.4  atomic construct
The atomic directive ensures that a specific memory location is updated 
atomically, rather than exposing it to the possibility of multiple, simultaneous 
writing threads.

The syntax of the atomic directive is as follows:

#pragma omp atomic new-line
expression-stmt

The expression statement must have one of the following forms:

� x binop= expr
� x++
� ++x
� x--
� --x

Where:

� x is an lvalue expression with scalar type.

� expr is an expression with scalar type, and it does not reference the object 
designated by x.

� binop is not an overloaded operator and is one of +, *, -, /, &, ^, |, <<, or >>.

Only the load and store of the object designated by x are atomic; the evaluation 
of expr is not atomic. To avoid race conditions, all updates of the location in 
parallel should be protected with the atomic directive, except those that are 
known to be free of race conditions.

9.7.5  flush directive
The flush directive identifies a synchronization point at which the implementation 
must provide a consistent view of memory. Thread-visible variables are written 
back to memory at this point. The syntax of the flush directive is as follows:

#pragma omp flush [(variable-list)] new-line

The optional variable list contains a list of named variables that will be flushed in 
order to avoid flushing all variables. For pointers in the list, note that the pointer 
itself is flushed, not the object it references to.
352 Developing and Porting C and C++ Applications on AIX



Note that because the flush directive does not have a C language statement as 
part of its syntax, there are some restrictions on its placement within a program. 
The example below illustrates these restrictions:

/*
* ERROR - The flush directive cannot be the immediate substatement of
* an if statement.
*/
if (x != 0)

#pragma omp flush (x)
 your_statement_line;

...
/* OK - The flush directive is enclosed in a compound statement. */
if (x != 0) {

#pragma omp flush (x)
your_statement_line;

}
...

A variable specified in a flush directive must not have a reference type provided 
by the C++ language. The flush directive only provides consistency between the 
executing thread and global memory. To achieve a globally consistent view 
across all threads, each thread must execute a flush operation. 

9.7.6  ordered construct
The ordered directive specifies that iterations of the enclosed loop will be 
executed in the same order as if they were executed on a serial processor. The 
syntax of the ordered directive is as follows:

#pragma omp ordered new-line
structured-block

An ordered directive can only appear in the dynamic extent of the for or parallel 
for directive. Only one thread is allowed in an ordered section at any time. It is 
illegal to branch into or out of an ordered block. A loop which contains an ordered 
directive must be a loop with an ordered clause. The following code fragment 
illustrates the use of the ordered directive:

#pragma omp for ordered
for (i = 0; i <n; i++) {

...
if (i <= 10) {
...
#pragma omp ordered
{ ... }
}
...
if (i > 10) {
 Chapter 9. Program parallelization using OpenMP 353



...
#pragma omp ordered
{ ... }

}
...

}

9.8  Data environment: The threadprivate directive
The threadprivate directive is provided to make file-scope, namespace-scope, or 
static block-scope variables local to a thread. The syntax of the threadprivate 
directive is as follows:

#pragma omp threadprivate(variable-list) new-line

Each copy of a threadprivate variable is initialized once, at an unspecified point in 
the program prior to the first reference to that copy, and in the usual manner (that 
is, as the master copy would be initialized in a serial execution of the program).

As with any private variable, a thread must not reference another thread's copy of 
a threadprivate object. During serial regions and master regions of the program, 
references will be to the master thread's copy of the object.

After the first parallel region executes, the data in the threadprivate objects is 
guaranteed to persist only if the dynamic threads mechanism has been disabled 
and if the number of threads remains unchanged for all parallel regions.

The following code sample illustrates the use of the threadprivate variable:

/* File: omp_th_private.c */

#include <stdlib.h>
int a, b;
#pragma omp threadprivate(a)

int main(int argc, char *argv[])
{

/* First parallel region. */
#pragma omp parallel private(b)
a = b = 5;

/* Second parallel region. */
#pragma omp parallel
{

printf("The value of a is %d\n", a);
printf("The value of b is %d\n", b);

}

354 Developing and Porting C and C++ Applications on AIX



}

When executed, the program prints the following output:

The value of a is 5
The value of b is 0
The value of a is 5
The value of b is 0
The value of a is 5
The value of b is 0

threadprivate variables differ from private variables because they are able to 
persist between different parallel sections of a code. That is the reason, in the 
above output, the value of a is 5 and the value of b is zero or undefined.

9.9  Data-sharing attribute clauses
Several directives accept clauses that allow a user to control the sharing 
attributes of variables for the duration of the region. Sharing attribute clauses 
applies only to variables in the lexical extent of the directive on which the clause 
appears. Not all of the following clauses are allowed on all directives. The list of 
clauses that are valid on a particular directive are described with the directive.

The following sections describe the data-sharing attribute clauses:

� Section 9.9.1, “private clause” on page 355

� Section 9.9.2, “firstprivate clause” on page 356

� Section 9.9.3, “lastprivate clause” on page 357

� Section 9.9.4, “shared clause” on page 357

� Section 9.9.5, “default clause” on page 358

� Section 9.9.6, “reduction clause” on page 358

� Section 9.9.7, “copyin clause” on page 362

� Section 9.9.8, “copyprivate clause” on page 363

9.9.1  private clause
The private clause declares the variables in variable-list to be private to each 
thread in a team. The syntax of the private clause is as follows:

private(variable-list)
 Chapter 9. Program parallelization using OpenMP 355



The behavior of a variable specified in a private clause is as follows: 

A new object with automatic storage duration is allocated for the construct. The 
size and alignment of the new object are determined by the type of the variable. 
This allocation occurs once for each thread in the team, and a default constructor 
is invoked for a class object (if any) if necessary; otherwise, the initial value is 
indeterminate. The original object referenced by the variable has an 
indeterminate value upon entry to the construct, must not be modified within the 
dynamic extent of the construct, and has an indeterminate value upon exit from 
the construct.

The restrictions to the private clause are as follows:

� A variable with a class type that is specified in a private clause must have an 
accessible, unambiguous default constructor.

� A variable specified in a private clause must not have a const-qualified type 
unless it has a class type with a mutable member.

� A variable specified in a private clause must not have an incomplete type or a 
reference type.

� Variables that appear in the reduction clause (explained in 9.9.6, “reduction 
clause” on page 358) of a parallel directive cannot be specified in a private 
clause on a work-sharing directive that binds to the parallel construct.

9.9.2  firstprivate clause
The firstprivate clause provides a superset of the functionality provided by the 
private clause. The syntax of the firstprivate clause is as follows:

firstprivate(variable-list)

The firstprivate clause combines the behavior of the private clause with 
automatic initialization of the variables in its list. The initialization or construction 
happens as if it were done once per thread, prior to the thread’s execution of the 
construct. For a firstprivate clause on a parallel construct, the initial value of the 
new private object is the value of the original object that exists immediately prior 
to the parallel construct for the thread that encounters it. For a firstprivate clause 
on a work-sharing construct, the initial value of the new private object for each 
thread that executes the work-sharing construct is the value of the original object 
that exists prior to the point in time that the same thread encounters the 
work-sharing construct. In addition, for C++ objects, the new private object for 
each thread is copy constructed from the original object.
356 Developing and Porting C and C++ Applications on AIX



The restrictions to the firstprivate clause are as follows: 

� A variable specified in a firstprivate clause must not have an incomplete type 
or a reference type. 

� A variable with a class type that is specified as firstprivate must have an 
accessible, unambiguous copy constructor. 

� Variables that are private within a parallel region or that appear in the 
reduction clause of a parallel directive cannot be specified in a firstprivate 
clause on a work-sharing directive that binds to the parallel construct.

9.9.3  lastprivate clause
The lasprivate clause combines the behavior of the private clause with a copy 
from the last loop iteration or section to the original variable object. The syntax of 
the lastprivate clause is as follows:

lastprivate(variable-list)

The value copied back into the original variable object is obtained from the last 
(sequentially) iteration or section of the enclosing construct. 

For example, the team member which executes the final iteration for a for section, 
or the team member which does the last section of a sections context performs 
the copy with its own values.

The restrictions to the lastprivate clause are as follows: 

� All restrictions for private apply.

� A variable with a class type that is specified as lastprivate must have an 
accessible, unambiguous copy assignment operator.

� Variables that are private within a parallel region or that appear in the 
reduction clause of a parallel directive cannot be specified in a lastprivate 
clause on a work-sharing directive that binds to the parallel construct.

9.9.4  shared clause
This clause shares variables that appear in the variable-list among all the threads 
in a team. All threads within a team access the same storage area for shared 
variables. The syntax of the shared clause is as follows:

shared(variable-list)

It is the programmer's responsibility to ensure that multiple threads properly 
access shared variables (such as via critical sections). 
 Chapter 9. Program parallelization using OpenMP 357



9.9.5  default clause
The default clause allows the user to affect the data-sharing attributes of 
variables. The syntax of the default clause is as follows:

default(shared | none)

Specifying default(shared) is equivalent to explicitly listing each currently visible 
variable in a shared clause, unless it is threadprivate or const-qualified. In the 
absence of an explicit default clause, the default behavior is the same as if 
default(shared) were specified.

Specifying default(none) requires that at least one of the following must be true 
for every reference to a variable in the lexical extent of the parallel construct: 

� The variable is explicitly listed in a data-sharing attribute clause of a construct 
that contains the reference.

� The variable is declared within the parallel construct.

� The variable is threadprivate.

� The variable has a const-qualified type.

Only a single default clause may be specified on a parallel directive.

9.9.6  reduction clause
This clause performs a reduction on the scalar variables that appear in 
variable-list, with the operator op. The syntax of the reduction clause is as 
follows:

reduction(op:variable-list)

A reduction is typically specified for a statement with one of the following forms:

� x binop= expr
� x = x op expr
� x = expr op x (except for subtraction)
� x++
� ++x
� x--
� --x

Where:

� x is one of the reduction variables specified in the list.

� expr is an expression with scalar type, and it does not reference the object 
designated by x.

� binop is not an overloaded operator and is one of +, *, -, &, ^, or |.
358 Developing and Porting C and C++ Applications on AIX



� op is not an overloaded operator, but one of +, *, -, &, ^, |, &&, or ||.

The term reduction refers to repeated updating of a variable via +, -, *, or a binary 
logical operator, with some other value. As will be apparent in the following, these 
binary operators must be commutative; division is not permitted as a reduction 
operator.

A reduction variable is a hybrid shared/private variable. It is initialized prior to the 
parallel construct, such as a shared or global variable. Within the parallel 
construct, it behaves as a private variable. But at the conclusion of the parallel 
construct, the threads' private values are amalgamated per the designated 
binary operation into the original shared variable.

Let us take the following example (Example 9-5). In this program, we are printing 
Hello inside the nested for loop of a parallel for construct. We are also printing the 
number of times the word Hello is printed. Let us look at the output of the 
program.

Example 9-5   omp_reduction1.c

#include <stdio.h>

int main(int argc, char *argv[])
{

int i = 0, j = 0;
int result = 0;

#pragma omp parallel for private(i)
for (i = 0; i < 3; i++) {

for (j = i + 1; j < 4; j++) {
printf("Hello.\n");
result = result + 1;

}
}

printf("Number of times printed Hello = %d\n", result);
}

When executed, the program prints the following output:

Hello.
Hello.
Hello.
Hello.
Hello.
Hello.
Number of times printed Hello = 2
 Chapter 9. Program parallelization using OpenMP 359



Alhough the word Hello is printed six times, the result variable is counted only 
twice when it should have been six. Clearly, a synchronization problem exists in 
the reading and writing of result. This problem can be resolved in three ways.

First, as we discussed earlier, the critical directive can be used to avoid the race 
condition to update the result variable, as shown in Example 9-6.

Example 9-6   omp_reduction2.c

#include <stdlib.h>

int main(int argc, char *argv[])
{

int i = 0, j = 0;
int result = 0;

#pragma omp parallel for private(i)
for (i = 0;i < 3; i++) {

for (j = i+1; j <4; j++) {
printf("Hello.\n");
#pragma omp critical /* To avoid race condition. */
result = result + 1;

}
}
printf("Number of times printed Hello = %d\n", result);

}

When executed, the program prints the following output:

Hello.
Hello.
Hello.
Hello.
Hello.
Hello.
Number of times printed Hello = 6

Second is the use of the reduction clause. It supersedes the use of 
synchronization constructs in these situations. It not only prevents the race 
condition but also reduces the time of execution as it happens while using 
synchronization constructs. In Example 9-6, we may treat result as a reduction 
variable by modifying the parallel construct, as shown in Example 9-7 on 
page 361.
360 Developing and Porting C and C++ Applications on AIX



Example 9-7   omp_reduction3.c

#include <stdio.h>

int main(int argc, char *argv[])
{

int i = 0, j = 0;
int result = 0;

/* reduction clause is used here for result. */
#pragma omp parallel for private(i) reduction(+:result)
for (i = 0; i < 3; i++) {

for (j = i + 1 ; j < 4; j++) {
printf("Hello.\n");
result = result + 1;

}
}
printf("Number of times printed Hello = %d\n",result);

}

When executed, the program prints the following output:

Hello.
Hello.
Hello.
Hello.
Hello.
Hello.
Number of times printed Hello = 6

For the third method of solving this problem using run-time library functions, see 
9.10.2, “Lock functions” on page 368.

The restrictions to the reduction clause are as follows:

� The type of the variables in the reduction clause must be valid for the 
reduction operator, except that pointer types and reference types are never 
permitted.

� A variable that is specified in the reduction clause must not be const-qualified.

� Variables that are private within a parallel region or that appear in the 
reduction clause of a parallel directive cannot be specified in a reduction 
clause on a work-sharing directive that binds to the parallel construct, as 
shown in the following example.

#pragma omp parallel private(y)
{

/* ERROR - private variable y cannot be specified in a reduction clause. */
#pragma omp for reduction(+: y)

}

 Chapter 9. Program parallelization using OpenMP 361



/* ERROR -
* variable x cannot be specified in both a shared and a reduction clause.
*/
#pragma omp parallel for shared(x) reduction(+: x)

9.9.7  copyin clause
The copyin clause provides a mechanism to assign the same value to 
threadprivate variables for each thread in the team executing the parallel region. 
For each variable specified in a copyin clause, the value of the variable in the 
master thread of the team is copied, as if by assignment, to the threadprivate 
copies at the beginning of the parallel region. The syntax of the copyin clause is 
as follows:

copyin(variable-list)

The following code sample illustrates this:

/* File : omp_copyin.c */
#include <include.h>
int a, b;
#pragma omp threadprivate(a)

int main(int argc, char *argv[])
{

/* First parallel region. */
a = 10; /* a is initialized before the parallel region. */
/*
* copies the value of ‘a’ by assignment, if copyin is not used, ‘a’ is
* visible only to the master thread.
*/
#pragma omp parallel private(b) copyin(a)
b = 8;
/* Second parallel region. */
#pragma omp parallel
{

printf("The value of a is %d\n", a);
printf("The value of b is %d\n", b);

}
}

When executed, the program prints the following output:

The value of a is 10
The value of b is 0
The value of a is 10
The value of b is 0
The value of a is 10
The value of b is 0
362 Developing and Porting C and C++ Applications on AIX



The value of a is 10
The value of b is 0

The restrictions to the copyin clause are as follows:

� A variable that is specified in the copyin clause must have an accessible, 
unambiguous copy assignment operator (for C++).

� A variable that is specified in the copyin clause must be a threadprivate 
variable.

9.9.8  copyprivate clause
The copyprivate clause provides a mechanism to use a private variable to 
broadcast a value from one member of a team to the other members. It is an 
alternative to using a shared variable for the value when providing such a shared 
variable would be difficult (for example, in a recursion requiring a different 
variable at each level). The copyprivate clause can only appear on the single 
directive. The syntax of the copyprivate clause is as follows:

copyprivate(variable-list)

Restrictions to the copyprivate clause are as follows:

� A variable that is specified in the copyprivate clause must not appear in a 
private or firstprivate clause for the same single directive.

� If a single directive with a copyprivate clause is executed in the dynamic 
extent of a parallel region, all variables specified in the copyprivate clause 
must be private in the enclosing context.

� A variable that is specified in the copyprivate clause must have an accessible 
unambiguous copy assignment operator (for C++).

9.10  Run-time library functions
In addition to the directives described in previous sections, OpenMP provides a 
set of run-time library functions. It includes run-time execution functions and lock 
functions. The run-time functions allow an application to specify the mode in 
which to run. An application developer may wish to maximize throughput 
performance of the system, rather than time to completion. In such cases, the 
developer may tell the system to dynamically set the number of processes used 
to execute parallel regions. This can have a dramatic effect on the throughput 
performance of a system with only a minimal impact on the time to completion for 
a program.
 Chapter 9. Program parallelization using OpenMP 363



The run-time functions also allow a developer to specify when to enable nested 
parallelism. Enabling nested parallelism allows the system to act accordingly 
when it encounters nested parallel constructs. On the other hand, by disabling 
nested parallelism, a developer can write a parallel library that will perform in an 
easily predictable fashion, whether executed dynamically from within or outside a 
parallel region.

For further information about these library functions, please refer to the “Parallel 
Processing Support” section of the VisualAge C++ for AIX Compiler Reference, 
SC09-4959.

9.10.1  Execution environment functions
In this section, let us look at the following important OpenMP run-time functions 
supported on AIX. The functions described in this section affect and monitor 
threads, processors, and the parallel environment:

� omp_set_num_threads

� omp_get_num_threads

� omp_get_max_threads

� omp_get_thread_num

� omp_get_num_procs

� omp_set_dynamic

� omp_get_dynamic

� omp_in_parallel

� omp_set_nested

� omp_get_nested

An example program using these functions is provided in 9.10.3, “Example 
usage of run-time library functions” on page 370.

omp_set_num_threads
The omp_set_num_threads() function sets the default number of threads to use 
for subsequent parallel regions that do not specify a num_threads clause. The 
syntax is as follows:

void omp_set_num_threads(int num_threads);
364 Developing and Porting C and C++ Applications on AIX



The dynamic threads mechanism modifies the effect of this routine. 

� Enabled: Specifies the maximum number of threads that can be used for any 
parallel region. 

� Disabled: Specifies exact number of threads to use until next call to this 
routine.

This routine can only be called from the serial portions of the code. This call has 
precedence over the OMP_NUM_THREADS environment variable (see 9.11, 
“Environment variables” on page 373).

omp_get_num_threads
The omp_get_num_threads() function returns the number of threads currently in 
the team executing the parallel region from which it is called. The syntax is as 
follows:

int omp_get_num_threads(void);

The num_threads clause, the omp_set_num_threads() function, and the 
OMP_NUM_THREADS environment variable control the number of threads in a 
team. If the number of threads has not been explicitly set by the user, the default 
value is chosen. In AIX, it is the number of equipped processors on the system. 
This function binds to the closest enclosing parallel directive. If called from a 
serial portion of a program, or from a nested parallel region that is serialized, this 
function returns 1.

omp_get_max_threads
It returns the maximum value that can be returned by calls to the 
omp_get_num_threads() function. The syntax is as follows:

int omp_get_max_threads(void);

This function returns the maximum value, whether executing from a serial region 
or from a parallel region. If a program uses omp_set_num_threads to change the 
number of threads, subsequent calls to omp_get_max_threads() will return the 
new value.

When the omp_set_dynamic() routine is set to TRUE, we can use 
omp_get_max_threads() to allocate data structures that are maximally sized for 
each thread.
 Chapter 9. Program parallelization using OpenMP 365



omp_get_thread_num
The omp_get_thread_num() function returns the thread number, within its team, 
of the thread executing the function. The thread number lies between 0 and 
omp_get_num_threads() – 1, inclusive. The master thread of the team is thread 
0. The syntax is as follows:

int omp_get_thread_num(void);

This function binds to the closest enclosing parallel directive. The function 
returns zero when called from a serial region or from within a nested parallel 
region that is serialized. 

omp_get_num_procs
The omp_get_num_procs() function returns the number of processors that are 
available to the program at the time the function is called. The syntax is as 
follows:

int omp_get_num_procs(void);

omp_set_dynamic
The omp_set_dynamic() function enables or disables dynamic adjustment of the 
number of threads available for execution of parallel regions. The syntax is as 
follows:

void omp_set_dynamic(int dynamic_threads);

To obtain the best use of system resources, certain run-time environments 
automatically adjust the number of threads that are used for executing sub- 
sequent parallel regions. This adjustment is enabled only if the value of the scalar 
logical expression to omp_set_dynamic is set to TRUE. If the value of the scalar 
logical expression is set as FALSE, dynamic adjustment is disabled.

When dynamic adjustment is enabled, the number of threads specified by the 
user becomes the maximum thread count. The number of threads remains fixed 
throughout each parallel region and is reported by omp_get_num_threads(). A 
call to omp_set_dynamic() has precedence over the OMP_DYNAMIC 
environment variable.

The default for dynamic thread adjustment is implementation dependent. In AIX, 
by default, dynamic adjustment is enabled. A user code that depends on a 
specific number of threads for correct execution should explicitly disable dynamic 
threads. Implementations are not required to provide the ability to dynamically 
adjust the number of threads, but they are required to provide the interface in 
order to support portability across platforms.
366 Developing and Porting C and C++ Applications on AIX



omp_get_dynamic
The omp_get_dynamic() function returns a nonzero value if dynamic adjustment 
of threads is enabled, and returns 0 otherwise. The syntax is as follows:

int omp_get_dynamic(void);

This function returns 1 if dynamic thread adjustment is enabled; otherwise, it 
returns 0. The function always returns 0 if dynamic adjustment of the number of 
threads is not implemented. 

omp_in_parallel
The omp_in_parallel() function returns a nonzero value if it is called within the 
dynamic extent of a parallel region executing in parallel; otherwise, it returns 0. 
The syntax is as follows:

int omp_in_parallel(void);

The omp_in_parallel() function determines whether a region is executing in 
parallel. A parallel region that is serialized is not considered to be a region 
executing in parallel.

omp_set_nested
The omp_set_nested() function enables or disables nested parallelism. The 
syntax is as follows:

void omp_set_nested(int nested);

If the value of the scalar logical expression is FALSE, nested parallelism is 
disabled, and nested parallel regions are serialized and executed by the current 
thread. This is the default.

omp_get_nested
The omp_get_nested() function returns a nonzero value if nested parallelism is 
enabled and 0 if it is disabled. The syntax is as follows:

int omp_get_nested(void);

If an implementation does not implement nested parallelism, this function always 
returns 0.

Note: In the current implementation, nested parallel regions are always 
serialized. As a result, omp_set_nested() does not have any effect, and 
omp_get_nested() always returns 0 on AIX.
 Chapter 9. Program parallelization using OpenMP 367



9.10.2  Lock functions
The functions described in this section manipulate locks used for 
synchronization. For the following functions, the lock variable must have type 
omp_lock_t. This variable must only be accessed through these functions. All 
lock functions require an argument that has a pointer to omp_lock_t type.

� omp_init_lock

� omp_destroy_lock

� omp_set_lock

� omp_unset_lock

� omp_test_lock

For the following functions, the lock variable must have type omp_nest_lock_t. 
This variable must only be accessed through these functions. All nestable lock 
functions require an argument that has a pointer to omp_nest_lock_t type.

� omp_init_nest_lock

� omp_destroy_nest_lock

� omp_set_nest_lock

� omp_unset_nest_lock

� omp_test_nest_lock

An example program using these functions is provided in 9.10.3, “Example 
usage of run-time library functions” on page 370.

omp_init_lock and omp_init_nest_lock
These functions provide the only means of initializing a lock. Each function 
initializes the lock associated with the parameter lock for use in subsequent calls. 
The syntax is as follows:

void omp_init_lock(omp_lock_t *lock);
void omp_init_nest_lock(omp_nest_lock_t *lock);

The initial state is unlocked (that is, no thread owns the lock). For a nestable lock, 
the initial nesting count is zero. It is noncompliant to call either of these routines 
with a lock variable that has already been initialized.

omp_destroy_lock and omp_destroy_nest_lock
These functions ensure that the pointed to lock variable lock is uninitialized. The 
syntax is as follows:

void omp_destroy_lock(omp_lock_t *lock);
void omp_destroy_nest_lock(omp_nest_lock_t *lock);
368 Developing and Porting C and C++ Applications on AIX



It is noncompliant to call either of these routines with a lock variable that is 
uninitialized or unlocked.

omp_set_lock and omp_set_nest_lock
Each of these functions blocks the thread executing the function until the 
specified lock is available and then sets the lock. A simple lock is available if it is 
unlocked. A nestable lock is available if it is unlocked or if it is already owned by 
the thread executing the function. The syntax is as follows:

void omp_set_lock(omp_lock_t *lock);
void omp_set_nest_lock(omp_nest_lock_t *lock);

For a simple lock, the argument to the omp_set_lock() function must point to an 
initialized lock variable. Ownership of the lock is granted to the thread executing 
the function. For a nestable lock, the argument to the omp_set_nest_lock() 
function must point to an initialized lock variable. The nesting count is 
incremented, and the thread is granted, or retains, ownership of the lock.

omp_unset_lock and omp_unset_nest_lock
These functions provide the means of releasing ownership of a lock. The syntax 
is as follows:

void omp_unset_lock(omp_lock_t *lock);
void omp_unset_nest_lock(omp_nest_lock_t *lock);

The argument to each of these functions must point to an initialized lock variable 
owned by the thread executing the function. The behavior is undefined if the 
thread does not own that lock.

For a simple lock, the omp_unset_lock() function releases the thread executing 
the function from ownership of the lock. For a nestable lock, the 
omp_unset_nest_lock() function decrements the nesting count, and releases the 
thread executing the function from ownership of the lock if the resulting count is 
zero.

omp_test_lock and omp_test_nest_lock
These functions attempt to set a lock but do not block execution of the thread. 
The syntax is as follows: 

int omp_test_lock(omp_lock_t *lock);
int omp_test_nest_lock(omp_nest_lock_t *lock);

The argument must point to an initialized lock variable. These functions attempt 
to set a lock in the same manner as omp_set_lock() and omp_set_nest_lock(), 
except that they do not block execution of the thread.
 Chapter 9. Program parallelization using OpenMP 369



For a simple lock, the omp_test_lock() function returns a nonzero value if the lock 
is successfully set; otherwise, it returns zero. For a nestable lock, the 
omp_test_nest_lock() function returns the new nesting count if the lock is 
successfully set; otherwise, it returns zero.

9.10.3  Example usage of run-time library functions
This section provides two example source codes in order to demonstrate the 
usage of run-time library functions.

Usage of run-time execution functions
The sample code shown in Example 9-8 illustrates the basic use of various 
run-time routines that we have discussed so far. It displays the values returned 
by the various run-time routines both in the serial and parallel region. For 
simplicity, the single directive is used to just print the values returned by one 
instance of a executing thread.

Example 9-8   omp_runtime.c

#include <stdio.h>
#include <omp.h>

int main(int argc, char *argv[])
{

printf("Before forking a parallel region.\n");
printf("---------------------------------\n");
printf("omp_get_num_threads returns     %d\n", omp_get_num_threads());
printf("omp_get_max_threads return  %d\n", omp_get_max_threads());
printf("omp_get_thread_num returns  %d\n", omp_get_thread_num());
printf("omp_get_num_procs returns   %d\n", omp_get_num_procs());
printf("omp_get_dynamic returns     %d\n", omp_get_dynamic());
printf("omp_in_parallel returns     %d\n", omp_in_parallel());
printf("omp_get_nested returns      %d\n", omp_get_nested());
printf("\nAfter forking a parallel region.\n");
printf("---------------------------------\n");

omp_set_num_threads(6);/* set the number of threads at run time to 10. */
/* does not have any effect, just to illustrate that here. */
omp_set_nested(1);

#pragma omp parallel
{

#pragma omp single /* to print the values once. */

Note: Before calling any OpenMP run-time library functions, the omp.h header 
file must be included in the source code.
370 Developing and Porting C and C++ Applications on AIX



{
printf("omp_get_num_threads returns     %d\n"

, omp_get_num_threads());
printf("omp_get_max_threads return  %d\n", omp_get_max_threads());
printf("omp_get_thread_num returns  %d\n", omp_get_thread_num());
printf("omp_get_num_procs returns   %d\n", omp_get_num_procs());
printf("omp_get_dynamic returns     %d\n", omp_get_dynamic());
printf("omp_in_parallel returns     %d\n", omp_in_parallel());
printf("omp_get_nested returns      %d\n", omp_get_nested());

}
} /* All threads join master thread and terminate. */

}

When executed, the program prints the following output:

Before forking a parallel region.
---------------------------------
omp_get_num_threads returns     1
omp_get_max_threads return      3
omp_get_thread_num returns      0
omp_get_num_procs returns       3
omp_get_dynamic returns         1
omp_in_parallel returns         0
omp_get_nested returns          0

After forking a parallel region.
---------------------------------
omp_get_num_threads returns     6
omp_get_max_threads return      6
omp_get_thread_num returns      4
omp_get_num_procs returns       3
omp_get_dynamic returns         1
omp_in_parallel returns         1
omp_get_nested returns          0

Usage of lock functions
The race condition problem that we discussed in 9.9.6, “reduction clause” on 
page 358 can also be solved by using the lock functions discussed so far. In the 
modified version of the program shown in Example 9-9 on page 372, we lock and 
unlock the inner for loop section using the omp_set_lock() and omp_unset_lock() 
functions respectively. This prevents the simultaneous entry of threads into the 
for block; therefore, the variable result is incremented properly.
 Chapter 9. Program parallelization using OpenMP 371



Example 9-9   omp_lock.c

#include <stdio.h>
#include <omp.h>

int main(int argc, char *argv[])
{

int i = 0, j = 0;
int result = 0;
omp_lock_t lock; /* lock variable to be initialized. */

omp_init_lock(&lock); /* Initializes the lock before using it. */

#pragma omp parallel for private(i)
for (i = 0; i < 3; i++) {

omp_set_lock(&lock); /* sets the lock here. */
for (j = i + 1; j < 4; j++) {

/*
* already locked, therefore it doesn't block the execution of the
* thread.
*/
if (!omp_test_lock(&lock)) {

printf("Hello.\n");
result = result + 1;

}
}
omp_unset_lock(&lock); /* releases the lock. */

}
printf("Number of times printed Hello = %d\n", result);
omp_destroy_lock(&lock); /*Finally, destroys the lock */

}

When executed, the program prints the following output:

Hello.
Hello.
Hello.
Hello.
Hello.
Hello.
Number of times printed Hello = 6

This is the same output produced by Example 9-7 on page 361.
372 Developing and Porting C and C++ Applications on AIX



9.11  Environment variables
This section explains the OpenMP C and C++ API environment variables that 
control the execution of parallel code. The names of environment variables must 
be uppercase. The values assigned to them are case insensitive and may have 
leading and trailing white space. Modifications to the values after the program 
has started are ignored. The environment variables are as follows:

OMP_SCHEDULE Sets the run-time schedule type and chunk size.

OMP_NUM_THREADS Sets the number of threads to use during execution.

OMP_DYNAMIC Enables or disables dynamic adjustment of the 
number of threads.

OMP_NESTED Enables or disables nested parallelism.

For further information about these environment variables, please refer to the 
“Parallel Processing Support” section in the VisualAge C++ for AIX Compiler 
Reference, SC09-4959.

9.11.1  OMP_SCHEDULE
OMP_SCHEDULE applies only to for and parallel for directives that have the 
schedule type run time. The schedule type and chunk size for all such loops can 
be set at run time by setting this environment variable to any of the recognized 
schedule types and to an optional chunk_size.

For for and parallel for directives that have a schedule type other than run time, 
OMP_SCHEDULE is ignored. The default value for this environment variable is 
implementation-defined. If the optional chunk_size is set, the value must be 
positive. If chunk_size is not set, a value of 1 is assumed, except in the case of a 
static schedule. For a static schedule, the default chunk size is set to the loop 
iteration space divided by the number of threads applied to the loop.

The syntax of OMP_SCHEDULE is:

OMP_SCHEDULE=algorithm

where algorithm is one of the following:

� dynamic[,N]
� guided[,N]
� runtime
� static[,N]

If specified, the value of N must be an integer value of 1 or greater.
 Chapter 9. Program parallelization using OpenMP 373



9.11.2  OMP_NUM_THREADS
The OMP_NUM_THREADS environment variable sets the default number of 
threads to use during execution, unless that number is explicitly changed by 
calling the omp_set_num_threads library routine or by an explicit num_threads 
clause on a parallel directive.

Its effect depends upon whether dynamic adjustment of the number of threads is 
enabled. If no value is specified for the OMP_NUM_THREADS environment 
variable, or if the value specified is not a positive integer, or if the value is greater 
than the maximum number of threads the system can support, the number of 
threads to use is implementation-defined. On AIX, it depends on the number of 
available processors.

The syntax of OMP_NUM_THREADS is:

OMP_NUM_THREADS=N

where N is the number of parallel threads requested, which must be a positive 
integer. The number can be overridden during program execution by calling the 
omp_set_num_threads() run-time library function.

9.11.3  OMP_DYNAMIC
The OMP_DYNAMIC environment variable enables or disables dynamic 
adjustment of the number of threads available for execution of parallel regions. 
The setting of this environment variable can be overridden by calling the 
omp_set_dynamic() run-time library function.

The syntax of OMP_DYNAMIC is:

OMP_DYNAMIC=[TRUE | FALSE]

If set to TRUE, the number of threads that are used for executing parallel regions 
may be adjusted by the run-time environment to best utilize system resources. If 
set to FALSE, dynamic adjustment is disabled. The default condition is 
implementation-defined.

9.11.4  OMP_NESTED
The OMP_NESTED environment variable enables or disables nested 
parallelism. The setting of this environment variable can be overridden by calling 
the omp_set_nested() run-time library function.

The syntax of OMP_NESTED is:

OMP_NESTED=[TRUE | FALSE]
374 Developing and Porting C and C++ Applications on AIX



If set to TRUE, nested parallelism is enabled; if it is set to FALSE, nested 
parallelism is disabled. The default value is FALSE.
 Chapter 9. Program parallelization using OpenMP 375



376 Developing and Porting C and C++ Applications on AIX



Chapter 10. Dealing with C++ templates

This chapter explains how to deal with C++ templates on AIX for C++ application 
programmers by providing the following sections:

� Section 10.1, “What is a template” on page 378

� Section 10.2, “AIX template implementations” on page 378

� Section 10.3, “Simple code layout method” on page 381

� Section 10.4, “Template instantiation file method” on page 383

� Section 10.5, “Template registry: The preferred method” on page 387

Also, the ISO Standard C++ Library, including the Standard Template Library, is 
explained in the following section:

� Section 10.6, “Standard C++ Library and STL” on page 388

10
© Copyright IBM Corp. 2000, 2003. All rights reserved. 377



10.1  What is a template
A template defines a family of related classes or functions, where the parameters 
in the declaration describe how they are specialized. Templates are generic 
entities that can be instantiated to create specific user-defined types. The 
compiler generates new classes or functions when you supply arguments for the 
parameters. The class or function definition generated from a template with a set 
of template parameters is called a specialization.

Templates are an area of the C++ language that provide a great deal of flexibility 
for developers. The ISO C++ standard defines the language facilities and 
features for templates. Unfortunately, the standard does not specify how a 
compiler should implement templates. This means that there are sometimes 
significant differences between the methods used to implement templates in 
compiler products from different vendors.

Developers porting C++ code that uses templates to the AIX platform sometimes 
have problems with the implementation model. The main problems experienced 
are:

� Long compile and link times

� Linker warnings of duplicate symbols

� Increase in code and executable size

Up until VisualAge C++ for AIX Version 6.0, all of the above problems are 
generally caused by inefficient use of the compiler implementation of templates. 
The Version 6 compiler provides new options that handle templates more 
efficiently. The number of problems experienced will depend on the platform the 
code is being ported from and the template implementation method used on that 
platform. Sometimes, the problems can be fixed on AIX by simply adding a few 
compiler options. In other instances, the code layout needs to be changed in 
order to utilize the most efficient implementation method on AIX. In most of these 
rare cases, the code changes are backwards compatible with the original 
platform the code is being ported from. This is very important for developers who 
maintain a single source tree that must compile correctly on multiple platforms.

10.2  AIX template implementations
The template mechanism provides a way of defining general container types, 
such as list, vector, and stack, where the specific type of the elements is left as a 
parameter. Two types of templates can be defined:

Class templates Specify how individual classes can be constructed.
Function templates Specify how individual functions can be constructed.
378 Developing and Porting C and C++ Applications on AIX



Regardless of the type of template being used, the code is essentially split into 
three parts:

Template declaration This is the part of the source code that declares the 
template class or function. It does not necessarily 
contain the definition of the class or function, although 
it may optionally do so. For example, a template 
declaration may describe a Stack template class, as 
shown in Example 10-1.

Template definition This portion of code is the definition of the template 
function itself or the template class member functions. 
For example, using the Stack class template, this 
portion of code would define the member functions 
used to manipulate the stack, as shown in 
Example 10-2 on page 380.

Template instance The template instance code is generated by the 
compiler for each instance of the template. For 
example, this would be the code to handle a specific 
instance of the stack template class, such as a stack of 
integer values.

The difference between the components is that the template declaration must be 
visible in every compilation unit that uses the template. The template definition 
and code for each instance of the template need only be visible once in each 
group of compilation units that are linked together to make a single executable.

Example 10-1   Stack template declaration

template <class T> class stack
{
private:

T* v;
T* p;
int sz;

public:
stack(int);
~stack();
void push(T);
T pop();

};
 Chapter 10. Dealing with C++ templates 379



Example 10-2   Stack template member function definition

template <class T> stack<T>::stack(int s)
{

v = p = new T[sz=s];
}

template <class T> stack<T>::~stack()
{

delete [] v;
}

template <class T> void stack<T>::push(T a)
{

*p++ = a;
}

template <class T> T stack<T>::pop()
{

T ret = *p;
p--;
return ret;

}

10.2.1  Generated function bodies
When you use class templates and function templates in your program, the 
compiler automatically generates function bodies for all template functions that 
are instantiated. The compiler follows four basic rules to determine when to 
generate template functions. The compiler applies the rules in the following 
order:

1. If a template declares a function to have internal linkage, the function must be 
defined within the same compilation unit. The compiler generates the function 
with internal linkage, and it is not shared with other compilation units. This is 
the case if the template class has in-line member functions.

2. If a template function is referenced in a compilation unit, but it is not declared 
to have internal linkage, the compiler looks for a definition of the function in 
the same compilation unit. If a definition is found, the function is instantiated. 
If the -qtemplateregistry option is in effect, and the function is already 
instantiated in another compilation unit, the function is not instantiated in this 
compilation unit.

3. If the -qtempinc option is in effect, the compiler creates a template 
instantiation file when the template function is declared but not defined. The 
template function is instantiated when the template instantiation file compiles.
380 Developing and Porting C and C++ Applications on AIX



4. If none of the preceding rules applies, the compiler does not generate the 
definition of the template function. It must be instantiated in another 
compilation unit.

10.3  Simple code layout method
The simplest method of using template code is to include both the declaration 
and definition of the template in every compilation unit that uses instances of the 
template. From a code layout point of view, this is very easy, since the template 
declaration and definition can be kept in a single header file. Using the stack 
example, the code in Example 10-1 on page 379 and Example 10-2 on page 380 
would be combined into a single header file, for example, stack.h, which is then 
included by every compilation unit that wishes to use the template. Alternatively, 
the header file for a template declaration can include the source file that contains 
the template definition. Using the stack template example, the header file, 
stack.h, would #include the source file, stack.C.

There are a number of disadvantages to using this method. Some of them can be 
overcome; others can not.

10.3.1  Disadvantages of the simple method
The first disadvantage is that using the header files can become complicated, 
particularly when other header files need to declare an instance of the template. 
In order to do this, they must #include the stack.h file, which potentially leads to 
multiple #include’s of the file, resulting in multiple definitions of the member 
functions. This problem can be fixed with the addition of preprocessor macros in 
the header file to protect against multiple #include operations. For example:

#if !defined(stack_h)
#define stack_h
....
....declaration and definition of stack template
....
#endif

Using the macros shown above, the contents of the header file will only appear 
once in the compilation unit, regardless of the number of times the file is 
included. This resolves the problems of multiple definitions within a compilation 
unit.
 Chapter 10. Dealing with C++ templates 381



Template code bloat
The second disadvantage is that the code for each template instance will 
potentially appear multiple times in the final executable, resulting in the problems 
of large executable size and multiple symbol definition warnings from the linker.

As an example, consider an executable made up of two compilation units, main.C 
and functions.C. If both compilation units include the stack.h header file, and 
declare variables of the type stack<int>, then after the first stage of compilation, 
both object files, main.o and functions.o, will contain the code for the member 
functions of the stack<int> class. When the system linker parses the object files 
to create the final executable, it cannot remove the duplicate symbols since, by 
default, each compilation unit is treated as an atomic object by the linker. This 
results in duplicate symbol linker warnings and a final executable that contains 
redundant code.

The size of the final executable can be reduced by using the compiler option, 
-qfuncsect, when compiling all of the source code modules. This option causes 
the compiler to slightly change the format of the output object files. Instead of 
creating an object file, which contains a single code section (CSECT) and must 
be treated by the system linker as an atomic unit, the compiler creates an object 
file where each function is contained in its own CSECT. This means that the 
object files created are slightly larger than their default counterparts since they 
contain extra format information in addition to the executable code. This option 
does not remove the linker warnings, since at link time, there are still multiple 
symbol definitions. The benefit of this option is that the linker can discard 
multiple, identical function definitions by discarding the redundant CSECTs, 
resulting in a smaller final executable. When the -qfuncsect option is not used, 
the compiler cannot discard the redundant function definitions if there are other 
symbols in the same CSECT that are required in the final executable.

Refer to 6.1.9, “Virtual functions” on page 226 for information on another 
potential cause of C++ code bloat.

Template compile time
The use of the -qfuncsect option reduces the code size of the final executable. It 
does not resolve the other disadvantage of using this method, that is, longer than 
required compile times. The reason for this is that each compilation unit contains 
the member functions for the templates that it instantiates. Using an extreme 
example with the stack class, consider the situation where an application is built 
from 50 source files, and each source file instantiates a stack<int> template. This 
means the member functions for the class are generated and compiled 50 times, 
yet the result of 49 of those compiles are discarded by the linker since they are 
not needed. In the example used here, the code for the stack class is trivial, so in 
absolute terms, the time saved would be minimal. In real life situations, where the 
382 Developing and Porting C and C++ Applications on AIX



template code is complex, the time savings that can be made when compiling a 
large application are considerable.

Because of the fact that not all of the disadvantages of the simple template 
method can be overcome, it is only recommended for use when experimenting 
with templates. An alternative method can be used, which solves all of the 
problems of the simple method and scales very well for large applications.

10.4  Template instantiation file method
The template instantiation file method on AIX basically means letting the 
compiler decide which template code to instantiate as a final step in the compile 
and link process. This solves the long compile time disadvantage of the simple 
template code layout method because the compiler need only compile each 
template instance once.

This method requires that the declaration and definition of the template are kept 
in separate files. This is because only the template declaration must be included 
in every compilation unit that uses the template. If the definition of the template 
were also in the header file, it would also be included in the source file, and thus 
compiled, resulting in a situation similar to that in the simple method.

This template model can also benefit from the use of the -qfuncsect compiler 
option, since it means the linker can discard code sections that are not 
referenced in the final executable.

The template declaration should be left in the header file, as in the simple 
template method. The definition of the template member functions needs to be in 
a file with the same basename as the header file but with a .c (lower case C) file 
name extension.

Using the stack template example introduced earlier, the template declaration 
shown in Example 10-1 on page 379 would be in the stack.h file, while the 

Note: By default, the file containing the template definition code must have the 
same name as the template declaration header file, but with a file name 
extension of .c (lowercase c), even though this extension normally indicates a 
C language source file. It must also exist in the same directory as the template 
declaration header file. If the template definition file is not in the same 
directory, has a different basename, or has a different file name extension 
(such as .C, .cxx, or .cpp, which are normally used for C++ source files), then 
the compiler will not detect the presence of the template code to be used with 
the template declaration header file.
 Chapter 10. Dealing with C++ templates 383



template definition code shown in Example 10-2 on page 380 would be in the 
stack.c file in the same directory. If the template definition code file was named 
stack.cxx or stack_code.c, then the compiler will not associate the file with the 
template declaration in the stack.h header file.

The name of the template definition file can be changed, if desired, using the 
implementation pragma directive as follows:

#pragma implementation(string-literal)

where string-literal is the path name for the template definition file enclosed 
in double quotes. For example, if the stack template definition code were to be 
stored in the stack_code.cxx file, then the stack.h header file would have the 
following directive:

#pragma implementation(“stack_code.cxx”)

Once the structure of the source code has been altered to conform to the 
required layout, the templates can be used with this method.

10.4.1  The -qtempinc option
The -qtempinc option is used when compiling source code that instantiates 
templates. When no directory is specified with the option, the compiler will create 
a directory called tempinc in the current directory. For example:

$ xlC main.C -qtempinc

The user may optionally specify the name of a directory to use for storing the 
information on the templates to be generated. This allows the same tempinc 
directory to be used when creating an executable that consists of object files that 
are compiled in different directories. For example:

$ xlC -c file1.C file2.C -qtempinc=../app1/templates
$ cd ../app1
$ xlC -o app1 main.C ../src/file1.o ../src/file2.o -qtempinc=./templates

The tempinc directory is used to store information about the templates that are 
required to be generated. When invoked with the -qtempinc option, the compiler 
collects information about template instantiations and stores the information in 
the tempinc directory. As the last step of the compilation before linking, the 
compiler generates the code for the required template instantiations. It then 
compiles the code and includes it with the other object files and libraries that are 
passed to the linker to create the final executable.

If the compiler detects a code layout structure that enables the tempinc method 
to be used, it will automatically enable the -qtempinc option, even if it was not 
specified on the command line. This causes the template instantiation 
384 Developing and Porting C and C++ Applications on AIX



information to be stored in the tempinc directory. If you want to specify a different 
directory, you should explicitly use the -qtempinc=dir_name option on the 
command line. If you want to prevent the compiler from automatically generating 
the template information, which may be the case when creating a shared object, 
then use the -qnotempinc option. See 11.2, “Shared objects with templates” on 
page 402 for more information on the use of the -qnotempinc option when 
creating shared objects.

One important point to note about the -qtempinc option is that you should use the 
same value when compiling all compilation units that will be linked together. In 
other words, do not compile half of the application with -qtempinc, and the other 
half with -qtempinc=dir_name. Only one tempinc directory can be specified on 
the final C++ command line that is used to link the application, which means that 
half of the template instance information will be missing. If more than one 
tempinc option is specified on the command line, the last one encountered will 
prevail.

10.4.2  Contents of the tempinc directory
The compiler generates a file in the tempinc directory for each template header 
file that has templates instantiated. The file has the same name as the header 
file, but with a .C (uppercase C) file name extension. The compiler generates the 
file when it detects the first instantiation of a template that is declared in the 
header file with the same name. Information on the subsequent instances of the 
template is added to the file.

As the final step of the compilation before linking, the compiler compiles all of the 
files in the tempinc directory and passes the object files to the linker along with 
the user specified files.

The contents of a template information file are shown in Example 10-3.

Example 10-3   A sample template information file1

1: /*0965095125*/#include "/redbooks/examples/C++/stack.h"
2: /*0000000000*/#include "/redbooks/examples/C++/stack_code.cxx"
3: template stack<int>::stack(int);
4: template stack<int>::~stack();
5: template void stack<int>::push(int);
6: template int stack<int>::pop();

The code on line 1 includes the header file that declares the template. The 
comment at the start of the line is a time stamp and is used by the compiler to 

1  The line number at the beginning of each line is added intentionally for explanation. These numbers 
and the colon characters “:” are not part of the file.
 Chapter 10. Dealing with C++ templates 385



determine if the header file has changed, which would require the template 
instance information file to be recompiled.

The code on line 2 includes the template implementation file that corresponds to 
the header file in line 1. A time stamp consisting of all zeros indicates that the 
compiler should ignore the time stamp. The file may include other header files 
that define the classes that are used in template instantiations. For example, if 
there was a user defined class Box, and the compiler detected an instantiation of 
stack<Box>, then the header file that defines the class Box would be included in 
the instance information file.

The subsequent lines in the example shown above cause the individual member 
functions to be instantiated.

10.4.3  Forcing template instantiation
You can, if you wish, structure your program so that it does not use automatic 
template instantiation. In order to do this, you must know which template classes 
and functions need to be instantiated.

The #pragma define directive is used to force the instantiation of a template, even 
if no reference is made to an instance of the generated template. For example:

#pragma define(stack<double>);

This, however, means that the template implementation file needs to be included 
in the compilation units that have the #pragma define directives, which results in 
the same disadvantages of the simple template method described in 10.3, 
“Simple code layout method” on page 381. 

An alternative to this is to manually emulate the process used by the compiler to 
automatically create the appropriate template instances. Using the stack class as 
an example, the following compilation unit shown in Example 10-4 could be used 
to force the creation of the desired stack template classes, even though no 
objects of those types are referenced in the source code.

Example 10-4   A sample usage of #pragma define2

1: #include "/redbooks/examples/C++/stack.h"
2: #include "/redbooks/examples/C++/stack_code.cxx"
3: #include “/redbooks/examples/C++/Box.h” // definition of class Box
4: #pragma define(stack<int>);
5: #pragma define(stack<Box>);
6: #pragma define(stack<char>);

2  The line number at the beginning of each line is added intentionally for explanation. These numbers 
and the colon characters “:” are not part of the file.
386 Developing and Porting C and C++ Applications on AIX



7: #pragma define(stack<short>);

This type of method will be useful when creating shared objects with the 
makeC++SharedLib command. Users of the VisualAge C++ for AIX product should 
use the -qmkshrobj option instead. See 11.2, “Shared objects with templates” on 
page 402 for more information.

10.5  Template registry: The preferred method
New in VisualAge C++ for AIX Version 6.0 compiler is the template registry 
method of template handling. The compiler decides which template code to 
instantiate by referring to and updating a template registry file as compilation 
occurs. This method is fast, efficient, and best of all, does not require 
reorganization of your template code. 

10.5.1  The -qtemplateregistry option
The -qtemplateregistry option maintains, in a registry file, records of all template 
instantiations as they are encountered in the compilation unit, and ensures that 
only one instantiation of each template is generated. By default, the compiler 
writes to a file named templateregistry in the current directory. You may optionally 
specify a different registry file name with the option. However, you must use the 
same registry file for the entire program.

Unlike the template instantiation file method of template handling supported with 
the -qtempinc option, the -qtemplateregistry option does not require the template 
code to be structured in a certain way. The option is mutually exclusive with the 
-qtempinc option, and you must not use both options at the same time. Before 
using the -qtemplateregistry option, remove all instantiation files in the tempinc 
directory. Also, any existing program that compiles successfully with 
-qnotempinc, that is, when every reference is instantiated in every compilation 
unit, will compile successfully with -qtemplateregistry. In other words, there is no 
migration impact should you want to take advantage of this improved template 
handling method.

The -qtemplateregistry option works by storing template instantiation information 
in a registry as compilation occurs. The registry is read for each compilation, and 
a check is done when an instantiation is required. If the instantiation has already 
been seen, nothing will happen; otherwise the template will be instantiated in the 
object file. In either case, a record is added for each template reference to the 
registry to keep track of the information about use and instantiation for all 
compilation units.
 Chapter 10. Dealing with C++ templates 387



10.5.2  The -qtemplaterecompile option
If a change to a compilation unit removes a template instantiation, recompiling 
only the changed source file will result in undefined symbols at link time, since 
other compilation units may still require the template instantiation that is now 
missing. This dependency information is maintained in the template registry file 
in the -qtemplateregistry compiles. In this case, the -qtemplaterecompile option 
will cause a recompilation of all source files that rely on the template.

The -qtemplaterecompile option is, by default, turned on with the 
-qtemplateregistry option. It manages dependencies among compilation units, 
and ensures that affected source files are recompiled automatically by consulting 
the template registry file. It requires that object files originally generated with the 
-qtemplateregistry option remain in the same directory. Should you need to 
disable automatic recompilation for any reason, specify the 
-qnotemplaterecompile option. This may be the case, for example, if your build 
process moves the generated object files to a different directory.

10.6  Standard C++ Library and STL
With the removal of the IBM Open Class (IOC) Library in Version 6, the 
VisualAge C++ for AIX compiler has standardized on the use of the Standard 
C++ Library, including the Standard Template Library (STL).

When migrating from a previous version of the VisualAge C++ for AIX compiler, 
refer to the IBM Open Class Library Transition Guide, SC09-4948 to determine 
whether your application uses IOC, what version of IOC it is using, and the 
general migration suggestions for application owners whose applications use the 
IOC. It also contains migration suggestions for most classes included in the IBM 
Open Class Library.

In general, where an overlap in functions exists between the IBM Open Class 
Library and the Standard C++ Library, including the Standard Template Library, 
the following is recommended:

� Use the Standard Template Library (STL) containers, iterators, and algorithms 
instead of the IOC collection classes.

� Use the Standard C++ exception classes instead of the IOC exception 
classes.

� Use the Standard C++ string template classes instead of the IOC string 
classes.

However, there are many classes in the IBM Open Class Library for which there 
is no equivalent in the Standard C++ Library. The IBM Open Class Library 
388 Developing and Porting C and C++ Applications on AIX



Transition Guide, SC09-4948 identifies some of the options available to 
application owners to deal with this situation. The decision as to which option is 
best depends on the version of the IBM Open Class Library you use and the 
extent to which you use classes without an equivalent replacement in the 
Standard C++ Library.

10.6.1  Standard Template Library
The motivation behind the design of the Standard Template Library, or STL, is to 
support object-oriented programming with type generality. Implemented using 
templates, STL provides a set of commonly used abstract data types, access 
methods, and operation methods, allowing components to be easily created, and 
operations performed with minimal lines of code.

STL is composed of three major components: containers, iterators, and 
algorithms. The following sections explore each component in more detail.

Containers
A container is an abstract object data type. It is a template class that manages a 
sequence or set of elements. Conceptually, it is an object containing other 
objects, much like an ordinary array. The elements of a container can be of any 
object type, and the allocation and deallocation of the elements are controlled by 
the container methods. You can also perform operations such as insert, remove, 
copy, or compare elements with operators provided by the container.

STL containers come in two different varieties: sequence containers and 
associative containers. A sequence container is a linear block of objects, where 
elements are referred to by their position in the container. STL provides the 
following sequence containers:

Vector A contiguous block of objects that allows random access 
and fast insertions at the end.

List Supports only sequential access, but has equally fast 
insertions and deletions from anywhere within the list.

Deque Allows random access and fast insertions and deletions 
from either end of the queue.

Stack Specialized container that supports stack operations only 
(LIFO).

Queue Specialized container that supports queue operations 
only (FIFO).

Associative containers, on the other hand, do not store elements in any order, 
and retrieval of elements are fast by using keys. Associative container template 
 Chapter 10. Dealing with C++ templates 389



classes are parameterized either on a key, or a key and a type. They can be 
based on unique keys, where there is at most one element in the container for 
each key. Alternatively, they can be based on equivalent keys, where there is 
possibly multiple copies of the same key in the container. STL provides the 
following associative containers:

Set Supports unique keys and fast retrieval of keys 
themselves.

Map Supports unique keys and fast retrieval of values (of the 
parameterized type) based on the keys.

Multiset Supports equivalent keys and fast retrieval of keys 
themselves.

Multimap Supports equivalent keys and fast retrieval of values (of 
the parameterized type) based on the keys.

To use a container, simply declare a variable with the desired container class. For 
example, to create an empty vector of integers:

vector<int> v;

To add an integer n to the vector:

v.push_back(n);

To get the size of the vector:

int size = v.size();

See the VisualAge C++ Standard C++ Library Reference, SC09-4949 for more 
information on the methods provided by the various container classes.

Iterators
Iterators are abstract pointers to containers, that allow you to work with the 
various containers in much the same way as you would with normal C++ 
pointers. You can refer to a location in a container using an iterator, increment it 
to get to the next position, dereference it to get the value of the element, and so 
on. Two iterators can be compared to find the relative locations with respect to 
each other, or subtracted to find the distance between the two locations. For 
example:

vector<int>::iterator start = v.begin();
vector<int>::iterator end = v.end();
int size = end - start;

the above lines of code are equivalent to:

int size = v.size();
390 Developing and Porting C and C++ Applications on AIX



And to print the value of the first element of the vector:

cout << *start << endl;

The standard defines five categories of iterators, according to the type of 
operations they perform:

Input Provides data read access to a container in a sequential 
manner.

Output Provides data write access to a container in a sequential 
manner.

Forward Allows forward traversal (that is, increment only) of the 
container in a sequential manner. This can replace an 
input or output iterator.

Bidirectional Allows traversal of the container in both directions (that is, 
increment and decrement) in a sequential manner. This 
can replace a forward iterator.

Random access Allows random access of a container. This can replace a 
bidirectional iterator.

Refer to the VisualAge C++ Standard C++ Library Reference, SC09-4949 for 
more details.

Algorithms
Algorithms are template functions that are specialized to perform operations on 
containers. They are parameterized by iterators instead of containers, in order to 
support other user-defined types.

There are three main types of algorithmic operations. Non-modifying sequence 
operations, as the name suggests, do not alter the sequence of the container in 
any manner. It includes template functions such as find, count, equal, mismatch, 
and search.

Mutating sequence operations, including functions such as copy, swap, 
transform, replace, fill, generate, remove, unique, reverse, rotate, 
random_shuffle, and partition, change the sequence of the container while the 
operation is carried out.

Sorting and related operations may or may not change the sequence, and 
include such functions as sort, nth_element, lower_bound, upper_bound, 
equal_range, binary_search, merge, and so on. There are also set operations 
functions like set_union, set_intersection, and set_difference that operate on 
sorted containers.
 Chapter 10. Dealing with C++ templates 391



For more information on all available algorithmic functions, refer to the VisualAge 
C++ Standard C++ Library Reference, SC09-4949 for details.

10.6.2  A STL example
Putting it all together, the following is a simple example that takes an integer 
number as input, and randomly generates 10 numbers between 0 to 100, using 
the input as the seed value for the random generator function. The numbers are 
stored in a vector container. They are then sorted and output to the terminal:

#include <algorithm>
#include <vector>
#include <iostream>
#include <stdlib.h>

using namespace std;

int main(int argc, char *argv[])
{

unsigned int seed;
if (argc >= 2 && (seed = atoi(argv[1])))

srand(seed);

vector<int> v;
for (int i = 0; i < 10; i++)

v.push_back(1+(int)(100.0*rand()/(RAND_MAX+1.0)));

sort(v.begin(), v.end());
for (int i = 0; i < v.size(); i++)

cout << v[i] << endl;
}

392 Developing and Porting C and C++ Applications on AIX



Chapter 11. Creating shared objects 
from C++ source codes

Creating shared objects from C++ source codes on AIX require some additional 
knowledge in addition to the tasks required for creating shared objects from C 
source codes.

This chapter explains how to create and manage shared objects from C++ 
source codes for C++ application programmers by providing the following 
sections:

� Section 11.1, “Creating shared objects from C++ source codes” on page 394

� Section 11.2, “Shared objects with templates” on page 402

11
© Copyright IBM Corp. 2000, 2003. All rights reserved. 393



11.1  Creating shared objects from C++ source codes
The C++ language, although similar in some respects to the C language, offers 
many additional facilities. One of these is known as function overloading, which 
makes it possible to have multiple functions with the same name but different 
parameter lists. This feature means it is not possible to use the function name 
alone as a unique identifier in the symbol table of an object file. For this reason, 
function names in C++ are mangled to produce the symbol name. The mangling 
uses a code to indicate the number, type, and ordering of parameters to the 
function.

The term mangle has a specific meaning in compiler products, especially in the 
C++ compilers, because the language standard allows you to have multiple 
instances of the same name function, but each function will be used with 
specified parameter variable types. For example, the following two function 
definitions can be mangled (this is a pseudo-mangling example):

int add(int, int)
double add(double, double)

to the following function names during the compilation process:

add_Fii(int, int)
add_Fdd(double, double)

Please note that the mangled names are referred to as symbols only after the 
compilation; therefore, you do not have to understand what mangled names will 
be produced after the compilation process (see 6.3.4, “The c++filt utility” on 
page 243 for further information about the mangling process).

It is the name mangling feature of C++ that means the process of creating a 
shared object, which includes object code created by the C++ compiler, is slightly 
more complicated than when using code produced by the C compiler.

Although it would be possible to create import and export files manually, the 
process is time consuming, since a unique symbol name is required for each 
instance of an overloaded function.
394 Developing and Porting C and C++ Applications on AIX



11.1.1  Creating a C++ shared object
VisualAge C++ for AIX provides the makeC++SharedLib command, which 
performs most of the dirty work behind the scenes. It is included in the 
vacpp.cmd.tools fileset and installed automatically when the product is installed, 
as shown in the following example:

# lslpp -w /usr/vacpp/bin/makeC++SharedLib
  File                                        Fileset               Type
  ----------------------------------------------------------------------------
  /usr/vacpp/bin/makeC++SharedLib             vacpp.cmp.tools       File

The process of creating a shared object from C++ source codes is very similar to 
the process of creating a shared object from C source codes. See 2.8, “Creating 
shared objects” on page 92 how to create shared objects from C program source 
codes.

To create a shared object from C++ source codes, do the following:

1. Compile the C++ source code from which you wish to create to a shared 
object. For example, the following example will produce two object modules, 
cppsrc1.o and cppsrc2.o, in the current directory:

$ xlC -c cppsrc1.C cppsrc2.C

2. Run the makeC++SharedLib command1 to create the shared object with the 
object file names. The following example shows how to create a shared 
object, shr_cpp_12.o, from the object modules created in the previous step:

$ /usr/vacpp/bin/makeC++SharedLib -o shr_cpp_12.o cppsrc1.o cppsrc2.o

Use the -G option when you want to create a shared object enabled for use with 
run-time linking, or one that uses the libname.so format. For example:

$ /usr/vac/bin/makeC++SharedLib -G -o shr_cpp_12.so cppsrc1.o cppsrc2.o

If the makeC++SharedLib command is used to build the C++ shared libraries and 
export symbols, make sure that any system libraries required by the shared 
object are always specified with the -l option (for example, -lX11) and not by 
name (for example, /usr/lib/libX11.a) on the command line. This allows the 
system libraries to be simply referenced by the shared object being created and 
not go through the special C++ related processing.

11.1.2  Generating an export file
Another very useful option of the makeC++SharedLib command is the ability to 
save the export file that is generated behind the scenes and normally discarded 

1  If you add the directory path, /usr/vacpp/bin, into the PATH environment value, you do not have to 
invoke the makeC++SharedLib command with the full pathname.
 Chapter 11. Creating shared objects from C++ source codes 395



after use. If saved, this export file can then be used as an import file when 
creating another shared object. The -e expfile option is used to save the export 
file. Note that the export file produced does not have an object file name field (#!) 
on the first line, so one will have to be manually added, if required.

11.1.3  The -qmkshrobj option
Starting from Version 5, VisualAge C++ for AIX provides a useful compiler option, 
-qmkshrobj, which is used to instruct the compiler to create a shared object from 
previously created object files and archive libraries. It provides similar 
functionality to the makeC++SharedLib command and, in addition, makes it much 
easier to create shared objects that use template functions. See 11.2, “Shared 
objects with templates” on page 402 for more detailed information.

For example, to create a shared object shr1.o from the source1.o and source2.o 
files, use the following command:

$ xlC -qmkshrobj -o shr1.o source1.o source2.o

The -G option can be also used in conjunction with the -qmkshrobj option to 
create an object that uses the run-time linking shared object, as shown in the 
following example:

$ xlC -G -qmkshrobj -o libshr1.so source1.o source2.o

To specify the priority of the shared object, which determines the initialization 
order of the shared objects used in an application, append the priority number to 
the -qmkshrobj option. For example, to create the shared object shr1.o, which 
has an initialization priority of -100, use the following command:

xlC -qmkshrobj=-100 -o shr1.o source1.o source2.o

If none of the -bexpall, -bE:, -bexport:, or -bnoexpall options are specified, then 
using the -qmkshrobj option will force the compiler to generate an exports file that 
exports all symbols. This file can be saved for use as an import file when creating 
other shared objects, if desired. This is done using the -qexpfile=filename option. 
For example:

xlC -qmkshrobj -qexpfile=shr1.exp -o shr1.o source1.o source2.o

11.1.4  Mixing C and C++ object files
In addition to the mangling of symbol names, the C++ language differs from the C 
language in the way function arguments are passed on the calling stack. The C 
language pushes arguments onto the stack right to left, which means the 
left-most argument is top-most on the stack. For various reasons, the C++ 
language uses right to left instead. This is termed linkage, and a complication 
unit can have both the C and C++ linkages.
396 Developing and Porting C and C++ Applications on AIX



When mixing C and C++ code together, it is necessary to use a linkage block to 
call a C routine from a C++ routine. This is to prevent the compiler from mangling 
the name of the C routine, which would result in a symbol name that could not be 
resolved. For example, to call the C function, foo(), from C++ code, the 
declaration of foo must be in an external linkage block, as shown in the following 
code fragment:

extern “C” {
void foo(void);

}
class1::class1(int a)
{

foo();
}

If the declaration of foo() was not contained in the extern “C” block, the C++ 
compiler would mangle the symbol name to foo__Fv.

When mixing C and C++ objects within a single shared object, either the 
makeC++SharedLib command (which uses the C++ compiler) or the -qmkshrobj 
option of the C++ compiler should be used to create the shared object. Do not 
use the C compiler or the linker, since they may not produce the correct result, as 
they are not aware of C++ constructors, destructors, templates, and other C++ 
language features.

11.1.5  Order of initialization
There are situations where the order of initialization of data objects within a 
program is important to the correct operation of the application. A priority can be 
assigned to an individual object file when it is compiled. This is done using the 
-qpriority option. For example:

$ xlC -c zoo.C -qpriority=-50

The C++ compiler and the makeC++SharedLib command also support options that 
can be used to indicate the relative order of initialization of shared objects. There 
is a slight difference in the way the priority is specified when using each 
command. When using the C++ compiler, the priority is specified as an additional 
value with the -qmkshrobj option. For example:

$ xlC -qmkshrobj=-100 -o shr1.o source1.o

When using the makeC++SharedLib command, the priority is specified with the -p 
option. For example:

$ makeC++SharedLib -p -100 -o shr1.o source1.o
 Chapter 11. Creating shared objects from C++ source codes 397



Priority values can also be indicated within C++ code by inserting the priority 
compiler directive as follows:

#pragma priority(value)

These values alter the order of initialization of data objects within the object 
module.

Priority values
Priority values may be any number from -214782623 to 214783647. A priority 
value of -214782623 is the highest priority. Data objects with this priority are 
initialized first. A priority value of 214783647 is the lowest priority. Data objects 
with this priority are initialized last. Priority values from -214783648 to 
-214782624 are reserved for system use. If no priority is specified, the default 
priority of 0 is used.

The explanation of priority values uses the example data objects and files shown 
in Figure 11-1 on page 399.
398 Developing and Porting C and C++ Applications on AIX



Figure 11-1   Illustration of objects in fish.o and animals.o

myprogram.C fish.o
fresh.C salt.C

house.C farm.C zoo.C

animals.o

....................

main () {

.............

class Cage CAGE

..............

#pragma priority(-80)
........

class trout A
.......

#pragma priority(500)

........

class bass B

..........

#pragma priority(-200)
..........

class shark S
..........

#pragma priority(10)
..........

class tuna T

...........

#pragma priority(20)

class dog D

#pragma priority(100)

class cat C

...........

...........

...........

class horse H

...........

#pragma priority(500)

...........

class cow W

............

class lion L
............

#pragma priority(50)

............

class zebra Z
............
 Chapter 11. Creating shared objects from C++ source codes 399



This example shows how to specify priorities when creating shared objects to 
guarantee the order of initialization. The user should first of all determine the 
order in which they want the objects to be initialized, both within each file and 
between shared objects:

1. Develop an initialization order for the objects in house.C, farm.C, and zoo.C:

a. To ensure that the object lion L in zoo.C is initialized before any other 
objects in either of the other two files in the shared object animals.o, 
compile zoo.C using a -qpriority=nn option with nn less than zero so that 
data objects have a priority number less than any other objects in farm.C 
and house.C:

$ xlC -c -qpriority=-50 zoo.C

b. Compile the house.C and farm.C files without specifying the -qpriority=nn 
option. This means the priority will default to zero. This means data objects 
within the files retain the priority numbers specified by their #pragma 
priority(nn) directives:

$ xlC -c house.C farm.C

c. Combine these three files into a shared library. Use the makeC++SharedLib 
command to construct the shared object animals.o with a priority of 40:

$ makeC++SharedLib -o animals.o -p 40 house.o farm.o zoo.o

2. Develop an initialization order for the objects in fresh.C and salt.C, and use 
the #pragma priority(value) directive to implement it:

a. Compile the fresh.C and salt.C files:

$ xlC -c fresh.C salt.C

b. To assure that all the objects in fresh.C and salt.C are initialized before any 
other objects, including those in other shared objects and the main 
application, use makeC++SharedLib to construct a shared object fish.o with 
a priority of -100:

$ makeC++SharedLib -o fish.o -p -100 fresh.o salt.o

Because the shared object fish.o has a lower priority number (-100) than 
animals.o (40), when the files are placed in an archive file with the ar 
command, the objects are initialized first.

3. To create a library that contains the two shared objects, so that the objects 
are initialized in the order you have specified, use the ar command. To 
produce an archive file, libprio.a, enter the command:

$ ar rv libprio.a animals.o fish.o

Where libprio.a is the name of the archive file that will contain the shared 
library files, and animals.o and fish.o are the two shared files created with 
makeC++SharedLib.
400 Developing and Porting C and C++ Applications on AIX



4. Compile the main program, myprogram.C, that contains the function main to 
produce an object file, myprogram.o. By not specifying a priority, this file is 
compiled with a default priority of zero, and the objects in main have a priority 
of zero:

$ xlC -c myprogram.C

5. Produce an executable file, animal_time, so that the objects are initialized in 
the required order, and enter:

$ xlC -o animal_time main.o -lprio -L.

When the animal_time executable is run, the order of initialization of objects is 
as shown in Table 11-1.

Table 11-1   Order of initialization of objects in prriolib.a

Object Priority 
value

Comment

fish.o -100 All objects in fish.o are initialized first because they are in a 
library prepared with makeC++SharedLib -p -100 (lowest 
priority number; -p -100 specified for any files in this 
compilation).

shark S -100(-200) Initialized first in fish.o because within file #pragma 
priority(-200).

trout A -100(-80) #pragma priority(-80).

tuna T -100(10) #pragma priority(10).

bass B -100(500) #pragma priority(500).

myprog.o 0 File generated with no priority specifications; default is 0.

CAGE 0(0) Object generated in main with no priority specifications; 
default is 0.

animals.o 40 File generated with makeC++SharedLib with -p 40.

lion L 40(-50) Initialized first in file animals.o compiled with -qpriority=-50.

horse H 40(0) Follows with priority of 0 (since -qpriority=nn not specified at 
compilation and no #pragma priority(nn) directive).

dog D 40(20) Next priority number (specified by #pragma priority(20)).

zebra N 40(50) Next priority number from #pragma priority(50).

cat C 40(100) Next priority number from #pragma priority(100).

cow W 40(500) Next priority number from #pragma priority(500).
 Chapter 11. Creating shared objects from C++ source codes 401



11.2  Shared objects with templates
Templates are usually declared in a header file. Each time a template is used, 
code is generated to instantiate the template with the desired parameters. Most 
C++ compilers work with a template repository. No template code is generated at 
compile time; the compiler just remembers where the template code came from. 
Then, at link time, as the compiler/linker puts all parts together, it notices which 
templates actually need to be generated. The code is then produced, compiled, 
and linked into the application.

This becomes a problem when using templates with shared libraries, where no 
actual linking takes place. Therefore, you must make sure that the template code 
is generated when producing the shared library.

Therefore, one should keep track of compilation and inclusion of template 
instantiations. This would mean that one has to manually keep track of all the 
template instantiation and address them during the linking phase.

Starting from Version 5, the VisualAge C++ for AIX product supports a compiler 
option, -qmkshrobj, to create a shared objects. This option, together with the 
-qtempinc option, should be used in preference to the makeC++SharedLib 
command when creating a shared object that uses templates. The advantage of 
using these options instead of makeC++SharedLib is that the compiler will 
automatically include and compile the template instantiations in the tempinc 
directory.

11.2.1  Templates and makeC++SharedLib
The makeC++SharedLib command is supplied with all IBM C++ command line 
compiler drivers for the AIX platform.2 The command is implemented as a shell 
script that gathers the supplied input and then calls the linker to create the 
shared object.

When creating a shared object that uses templates, the makeC++SharedLib 
command needs to somehow find information on the templates that are to be 
instantiated. Because the script calls the linker, and not the compiler, it does not 
look at the contents of the tempinc directory. This means the method of creating 
a shared object that uses templates relies on either using the simple template 
method code layout, as described in 10.3, “Simple code layout method” on 
page 381, or forcing templates to be instantiated, as described in 10.4.3, 
“Forcing template instantiation” on page 386.

The best method to use will depend on the circumstances. Using the simple code 
layout method means that all the required templates are generated automatically. 

2  Type ls -l /usr/vacpp/bin/makeC++SharedLib* on the command line.
402 Developing and Porting C and C++ Applications on AIX



However, it also comes with the disadvantages of slower compile times and 
larger code size. Forcing the templates to be instantiated is better from both the 
code size and compile time aspect, but it does mean that the user needs to 
maintain files that instantiate the required templates.

Suppose you want to create a shared object from the following two source files, 
which use the preferred code layout method.

File source1.C contains the following code:

#include “stack.h”
stack<int> counter1;

void function1(int a)
{

counter1.push(a);
}

The file source2.C contains the following code:

include “stack.h”
stack<int> counter2;

void function2(int a)
{

counter2.push(a);
}

Using the makeC++SharedLib command, an attempt is made to create a shared 
object as follows:

$ xlC -c source1.C source2.C
$ /usr/vacpp/bin/makeC++SharedLib -o shr1.o -p0 source1.o source2.o
ld: 0711-317 ERROR: Undefined symbol: .stack<int>::stack(int)
ld: 0711-317 ERROR: Undefined symbol: .stack<int>::~stack()
ld: 0711-317 ERROR: Undefined symbol: .stack<int>::push(int)
ld: 0711-345 Use the -bloadmap or -bnoquiet option to obtain more information.

The command failed, and based on the output, it is easy to see that the required 
template functions have not been instantiated. At this point, note that because 
the code uses the preferred code layout method, the compiler has, in fact, 
automatically created the file tempinc/stack.C, which, if compiled, would supply 
the required template definitions. You can, if you wish, copy this file and make it 
an explicit compilation unit as part of your source code. In this case, that would 
mean adding the following command to the sequence:

$ xlC -c tempinc/stack.C -o stack.o

The object, file stack.o, would then be passed to the makeC++SharedLib command 
along with source1.o and source2.o.
 Chapter 11. Creating shared objects from C++ source codes 403



11.2.2  Templates and -qmkshrobj
You should use the -qmkshrobj option instead of the makeC++SharedLib 
command when creating a shared object. Because the option is a compiler 
option, the compiler will automatically look in the tempinc directory (or the 
directory specified with the -qtempinc=dirname option) for the automatically 
generated template instance information. Using the same source files as 
described in the previous section, the following commands can be used to create 
the shared object:

$ xlC -c source1.C source2.C
$ xlC -qmkshrobj -o shr1.o source1.o source2.o

This time, the command works correctly, since the compiler looks in the tempinc 
directory. Remember to use the same -qtempinc option (if any) that was used 
when compiling the modules being used to create the shared object.

This option solves the problems associated with creating shared objects that use 
template classes and functions. If you want to create a shared object that 
contains pre-instantiated template classes and functions for use by other 
developers, then you can create an additional compilation unit that explicitly 
defines the required templates using the #pragma define directive.
404 Developing and Porting C and C++ Applications on AIX



Chapter 12. Packaging your applications

If your applications are only executed on the systems where you are developing 
and debugging, no software installation is required. However, applications are 
most likely developed on development and test systems, then installed on 
production systems.

The software installation tasks are commonly performed by customers or other 
people who might not have enough knowledge about your applications. Even if 
you have prepared the detailed software installation instruction for your 
applications, there is no guarantee that those people follow your instruction; you 
have no control where they try to install your applications.

By creating your application packages, the required conditions, such as 
supported operating system software levels and adequate physical memory size 
for your applications, will be enforced.

This chapter provides the following sections to explain how to package your 
applications for AIX:

� Section 12.1, “Understanding the AIX standard packaging” on page 406

� Section 12.2, “Packaging applications using mkinstallp” on page 418

12
© Copyright IBM Corp. 2000, 2003. All rights reserved. 405



12.1  Understanding the AIX standard packaging
This section provides you with a basic understanding of the AIX standard 
packaging. For further information about AIX standard packaging, please refer to 
the AIX 5L Version 5.2 Installation Guide and Reference.

12.1.1  Filesets and package files
In AIX, the smallest installable unit is a fileset. A fileset logically groups files and 
directories to be installed. A fileset also includes required control files and 
optional installation customization files.

Several filesets can be packaged in a package file. A package file is an AIX 
backup-format file; therefore, it is sometimes referred to as a bff-file.

Figure 12-1 illustrates the relationship among filesets, packages, and bundles.

Figure 12-1   Relationship among filesets, packages, and bundles

12.1.2  Bundles
In AIX, you have hundreds of filesets in the base operating system (BOS). 
Therefore, to easily select many filesets, AIX offers simple facilities, called 
bundles. In Figure 12-1, if you select bundle 1, then you specify installing the 
filesets A1, B1, and C1. Please note that multiple bundles can include the same 
filesets. For example, in Figure 12-1, both bundle 1 and 2 include the fileset B1.

A bundle is defined by a file installed in either the /usr/sys/inst.data/sys_bundles 
or /usr/sys/inst.data/user_bundles directories. In the 
/usr/sys/inst.data/sys_bundles directory, you can see the system defined1 
bundles are already installed by default (see Example 12-1 on page 407).

Package A Package B Package C

Fileset A1

Fileset A2

Fileset A3

Fileset B1

Fileset C1

Fileset C2

Bundle 1

Bundle 2
406 Developing and Porting C and C++ Applications on AIX



Example 12-1   System defined bundles on AIX 5L Version 5.2

# cd /usr/sys/inst.data/sys_bundles; ls -l *.bnd
-rw-r--r--   1 bin      bin             896 Sep 13 09:53 AllDevicesKernels.bnd
-rw-r--r--   1 bin      bin             879 Sep 13 09:53 Alt_Disk_Install.bnd
-rw-r--r--   1 bin      bin            1391 Sep 13 09:53 App-Dev.bnd
-rw-r--r--   1 bin      bin            1051 Sep 13 09:53 
CC_EVAL.DocServices.bnd
-rw-r--r--   1 bin      bin            1155 Sep 13 09:53 CC_EVAL.Graphics.bnd
-rw-r--r--   1 bin      bin            1176 Sep 13 11:03 CDE.bnd
-rw-r--r--   1 bin      bin            1026 Sep 13 09:53 DocServices.bnd
-rw-r--r--   1 bin      bin            1292 Sep 13 09:53 GNOME.bnd
-rw-r--r--   1 bin      bin            1517 Sep 13 09:53 Graphics.bnd
-rw-r--r--   1 bin      bin             879 Sep 13 09:53 HTTP_Server.bnd
-rw-r--r--   1 bin      bin             972 Sep 13 09:53 KDE.bnd
-rw-r--r--   1 bin      bin             829 Sep 13 09:53 Kerberos_5.bnd
-rw-r--r--   1 bin      bin            1201 Sep 13 09:53 Media-Defined.bnd
-rw-r--r--   1 bin      bin            1363 Sep 13 09:53 Netscape.bnd
-rw-r--r--   1 bin      bin            1214 Sep 13 11:03 Server.bnd
-rw-rw-r--   1 root     system          409 Jun 06 2002  devices.bnd
-rw-r--r--   1 bin      bin            2030 Sep 13 09:53 openssh_client.bnd
-rw-r--r--   1 bin      bin            2030 Sep 13 09:53 openssh_server.bnd
-rw-r--r--   1 bin      bin            1373 Sep 13 11:03 wsm_remote.bnd

In order to install filesets using a bundle, do the following:

1. Select the following SMIT menus (you can access it using the SMIT fast path 
smit easy_install):

# smit
Software Installation and Maintenance

Install and Update Software
Install Software Bundle

2. Specify the installation device (typically /dev/cd0):

INPUT device / directory for software [ ]

3. Select a bundle name on the panel, then press the Enter key; all the filesets 
defined in the selected bundle file, shown in Example 12-1, will be installed.

Please note that you can only use bundles for installation purposes. AIX does not 
offer simple methods to uninstall bundles or to confirm whether bundles are 
correctly installed.

1  You can also create user defined bundles under the /usr/sys/inst.data/user_bundles directory.
 Chapter 12. Packaging your applications 407



12.1.3  Managing filesets
The installed filesets can be classified under several states, as shown in 
Table 12-1. The successfully installed filesets should be in either an applied or 
committed state.

Table 12-1   Fileset state2

In order to confirm the fileset status, you can use the lslpp -L command, as 
shown in Example 12-2 on page 409. In this case, the fileset bos.rte.install is in 
committed status (C).

Status Description

APPLIED The specified fileset update is installed on the system. The 
APPLIED state means that the fileset update can be rejected with 
the installp command and the previous level of the fileset restored. 
This state is only valid for fileset updates.

APPLYING* An attempt was made to apply the specified fileset, but it did not 
complete successfully, and cleanup was not performed.

BROKEN The specified fileset or fileset update is broken and should be 
reinstalled before being used.

COMMITTED The specified fileset is installed on the system. The COMMITTED 
state means that a commitment has been made to this level of the 
software. A committed fileset update cannot be rejected, but a 
committed fileset base level and its updates (regardless of state) 
can be removed or deinstalled by the installp command.

OBSOLETE The specified fileset was installed with an earlier version of the 
operating system but has been replaced by a repackaged 
(renamed) newer version. Some of the files that belonged to this 
fileset have been replaced by versions from the repackaged fileset.

COMMITTING* An attempt was made to commit the specified fileset, but it did not 
complete successfully, and cleanup was not performed.

REJECTING* An attempt was made to reject the specified fileset, but it did not 
complete successfully, and cleanup was not performed.

2  Filesets with the state specified with an asterisk (*) are not shown on the lslpp -L command 
output, since they are considered to be in a transient state.
408 Developing and Porting C and C++ Applications on AIX



Example 12-2   Listing a fileset status

# lslpp -L bos.rte.install
  Fileset                      Level  State  Type  Description (Uninstaller)
  ----------------------------------------------------------------------------
  bos.rte.install            5.2.0.0    C     F    LPP Install Commands

State codes:
 A -- Applied.
 B -- Broken.
 C -- Committed.
 O -- Obsolete.  (partially migrated to newer version)
 ? -- Inconsistent State...Run lppchk -v.

If a fileset status is broken, then you should deinstall and reinstall the fileset.3 If a 
fileset status is obsolete, then the fileset may or may not be supported on your 
system. If a fileset status is inconsistent, you should check it using the lppchk -v 
command.

Figure 12-2 on page 410 illustrates the state diagram of the applied and 
committed states. Once a base level fileset (fileset level 1.0.0.0) is installed, it is 
always in the committed status. If you apply an update fileset (fileset level 
1.0.1.0),4 the status is changed to the applied status.

If you commit the applied update fileset, then the updated fileset level is 
persistent. In order to revert to the previous fileset level, you have to uninstall the 
fileset and reinstall it. If you reject the applied update fileset, then the fileset level 
is reverted to the last committed level.

3  If you install filesets over the network, you should verify the size and the checksum of the installing 
package file on the target system.
4  An update fileset is sometimes referred to as a PTF (Program Temporary Fix).
 Chapter 12. Packaging your applications 409



Figure 12-2   State diagram between applied and committed state

This mechanism is used to precisely control the software levels on the running 
system. When you encounter a software problem, you should investigate to solve 
the problem. If the problem is caused by some defects, software vendors 
supporting the software products might provide some software fixes.

APARs and fileset updates
In the IBM terminology, a software defect is uniquely identified by an identifier 
called an APAR (authorized program analysis reports). An APAR can be, but 
does not have to be, addressed by more than one fileset updates. If an APAR is 
addressed by multiple fileset updates, then the software defect affects many files 
included in multiple filesets. In Figure 12-3 on page 411,5 the APAR IZ98765 
includes the fileset update of foo.rte with an update level 1.0.1.0. Therefore, in 
order to fix the software defect identified by the APAR IZ98765, you have to apply 
this single fileset update only. In order to fix the software defect identified by the 
APAR IZ56789, you have to apply both fileset updates, for foo.rte and gnat.rte, as 
shown in Figure 12-3 on page 411.

5  We use these two identifies, IZ98765 and IZ56789, for illustrative purposes only. They do not exist.

Fileset : foo.rte
Level : 1.0.0.0
Status : Committed
(Base level fileset)

Fileset : foo.rte
Level : 1.0.1.0
Status : Applied
(Update level fileset)

Fileset : foo.rte
Level : 1.0.1.0
Status : Committed
(Update level fileset)

Apply

Reject

Commit

Uninstall and Reinstall
410 Developing and Porting C and C++ Applications on AIX



Figure 12-3   Relationship between APARs and update fileset

You can confirm whether the specific APARs are applied or not using the instfix 
command. In the following example, the APAR IY35444 is applied on the system:

# instfix -ivk IY35444
IY35444 Abstract: Add snapshot backup support to JFS2

    Fileset bos.mp:5.2.0.1 is applied on the system.
    Fileset bos.mp64:5.2.0.1 is applied on the system.
    Fileset bos.up:5.2.0.1 is applied on the system.
    All filesets for IY35444 were found.

If an APAR is not applied6 on the system, the instfix -ik APAR_ID command 
shows the error message similar to either of the following examples:

All filesets for IZ98765 were not found.

or

There was no data for IZ56789 in the fix database.

Therefore, you do not have to remember which fileset update would fix the 
specific software defect, as long as you know the corresponding APAR.

To find APARs for AIX, visit the following URL:

http://techsupport.services.ibm.com/server/support?view=pSeries

6  An APAR classified as a packaging APAR also shows this message. A packaging APAR is provided 
to specify multiple APARs using one identifier, mainly for ordering and distribution purposes.

Fileset : foo.rte
Level : 1.0.1.0

(Update level fileset)

APAR: IZ56789
Fileset : gnat.rte
Level : 2.0.3.0

(Update level fileset)

APAR: IZ98765
 Chapter 12. Packaging your applications 411

http://techsupport.services.ibm.com/server/support?view=pSeries


Recommended maintenance level
Sometimes IBM ships a recommended maintenance level (also referred to as 
RML), which includes a series of fileset updates. By using recommended 
maintenance levels, you can easily track the latest level of all the filesets included 
in AIX. The latest AIX installation media set usually includes the latest 
recommended maintenance level in the Update CD.

To simply determine the latest recommended maintenance level applied on the 
system, you can use the oslevel -r command as follows:

# oslevel -r
5200-01

The command output 5200-01 shows that RML 5200-01 is applied on that 
system.

In order to determine what recommended maintenance levels are applied, you 
can use the instfix command as follows:

# instfix -i | grep ML
    All filesets for 5.0.0.0_AIX_ML were found.

All filesets for 5200-01_AIX_ML were found.

If some lines show the message All filesets for XXXX-YY_AIX_ML were not 
found, then you can confirm which of the fileset updates included in the 
recommended maintenance level are not applied on the system by running the 
following command:

# instfix -ivk XXXX-YY_AIX_ML | grep not | grep :

To download the recommended maintenance level, visit the following URL:

http://techsupport.services.ibm.com/server/support?view=pSeries

12.1.4  Viewing the TOC file (.toc)
Each AIX standard package file contains a table of contents (TOC). Before 
installation, this information has to be retrieved from package files and placed in 
the directory as a TOC file named .toc.

Note: We strongly recommend that you purchase a software program support 
contract for each AIX system, even if you understand the AIX software 
packaging mechanism and can easily download the required fileset updates. 
To purchase software program support, please contact your IBM sales 
representative or the IBM Business Partner from which you purchased your 
systems.
412 Developing and Porting C and C++ Applications on AIX

http://techsupport.services.ibm.com/server/support?view=pSeries


If you download some APARs or copy some packages from the install media to a 
file system, you have to issue the inutoc command to create the .toc file. If you 
copy additional packages into the /usr/sys/inst.images directory, you have to 
manually rebuild the .toc file using the inutoc command. The following example 
shows you how to create or update the .toc file in the /usr/sys/inst.images 
directory:

# inutoc /usr/sys/inst.images
# cd /usr/sys/inst.images; ls -l
total 800
-rw-r--r--   1 root     system          552 Apr 10 15:55 .toc
-rw-r--r--   1 root     system       403456 Apr 10 15:55 U476599.bff

The created .toc file is a text file, so you can view the contents using a viewer 
command, such as pg or more. Figure 12-4 shows an example entry of the .toc 
file. A package has a block shown as A in Figure 12-4. A fileset has a block 
shown as B in Figure 12-4. If a package contains multiple filesets, then you will 
see multiple blocks of B in the package block.

Figure 12-4   Sample .toc file

Table 12-2 on page 414 explains entries shown in Figure 12-4.

U476599.bff 4 R S bos {
bos.rte.shell 05.01.0000.0010 1 b U en_US Shells (bsh, ksh, csh)
[
%
/usr/bin 1176
/usr/lpp/SAVESPACE 1176
/usr/lib/objrepos 8
/etc/security 8
INSTWORK 56 24
%
%
%
IY20636  1  csh coredump with malloc debug
IY20822  1 Process synchronisation problem while using pipes in csh
IY20823  1 POSIX/SUS Standards:  ksh vi-mode R command
IY21276  1 Partial display of functions by typeset -f
IY21277  1 awk -F setting is ignored by getline
IY21779  1 nohup fails with bad file descriptor error with pipeline cmds.
]
}

Package file name

Required disk space

Fileset name

Fileset level Bosboot flag Fileset description

B A

Package type Content

APAR description
 Chapter 12. Packaging your applications 413



Table 12-2   Fields description of the .toc file

For further information about the format of the .toc file, please refer to AIX 5L 
Version 5.2 General Programming Concepts: Writing and Debugging Programs.

Once a .toc file is created, you can list the table of contents using the installp 
command, as shown in Example 12-3 on page 415.

Field name Description

Package file name The file name of the package.

Package type Indicates package type:

� I (Installation): All the filesets contained in this package are 
base filesets.

� S (Single update): All the filesets contained in this package 
are fileset updates.

Fileset name The name of the fileset.

Fileset level The fileset level represented by (V.R.M.F):

� V: Version.

� R: Release.

� M: Maintenance level.

� F: Fix level.

Bosboot flag Indicates whether a bosboot is needed after installation:

� N: Do not invoke bosboot.

� b: Invoke bosboot.

Content Indicates the parts included in the fileset or the fileset update:

� B: usr and root part.

� H: share part.

� U: usr part only.

Fileset description The description of the fileset.

Required disk space Size required for each install target directory.

APAR descriptions Information regarding the APARs contained in the fileset 
update.
414 Developing and Porting C and C++ Applications on AIX



Example 12-3   Listing the table of contents

# installp -ld /usr/sys/inst.images
Fileset Name                Level                     I/U Q Content
  ====================================================================
  bos.mp64                    5.2.0.1                    S  b usr
#   Base Operating System 64-bit Multiprocessor Runtime

  bos.mp64                    5.2.0.2                    S  b usr
#   Base Operating System 64-bit Multiprocessor Runtime

12.1.5  Viewing package files
The AIX standard packaging uses the backup command to archive package files. 
Therefore, you can un-archive it using the restore command. Example 12-4 
shows how to view the contents of a package file.

Example 12-4   Viewing the contents of a package file

# restore -qTf bos.mp64.5.2.0.2.U
New volume on bos.mp64.5.2.0.2.U:
Cluster size is 51200 bytes (100 blocks).
The volume number is 1.
The backup date is: Mon Nov 18 11:24:17 CST 2002
Files are backed up by name.
The user is BUILD.
./
./lpp_name
./usr
./usr/lpp
./usr/lpp/bos.mp64/bos.mp64/5.2.0.2
./usr/lpp/bos.mp64/bos.mp64/5.2.0.2/liblpp.a
./usr/lib/boot/unix_64
The number of archived files is 7.

TOC information file (lpp_name)
A package always contains a file, named lpp_name, as its first archived file. This 
file is the table of contents of this package file, as shown in Example 12-5 on 
page 416.
 Chapter 12. Packaging your applications 415



Example 12-5   Extracting the lpp_name file

# mp64.5.2.0.2.U ./lpp_name
x ./lpp_name
# ls -ld ./lpp_name
-r-xr-xr-x   1 root     system         1823 Nov 18 11:24 ./lpp_name
# cat ./lpp_name
4 R S bos.mp64 {
bos.mp64 5.2.0.2 01 b U en_US Base Operating System 64-bit Multiprocessor 
Runtime
[
%
/usr/lib/boot 19776
/usr/lpp/SAVESPACE 19776
/usr/lib/objrepos 8
/tmp 0 14656
INSTWORK 64 32
%
%
%
IY35438  3 dio read to an unpinned page
IY35432  3 Fixes for JFS2 on filesystems larger than 2TB
... many lines are skipped ...
]
}

Upon invoking the inutoc command, it parses the specified directory and 
extracts the lpp_name file from each package file, then concatenates the 
extracted information to the .toc file.

Installation control library file (liblpp.a)
A package also has to contain an installation control library file, named liblpp.a, 
under the appropriate sub-directory. This file is an ar format archive file, which 
contains the files, as shown in Example 12-6.

Example 12-6   Extracting the liblpp.a file

# restore -qxf bos.mp64.5.2.0.2.U ./usr/lpp/bos.mp64/bos.mp64/5.2.0.2/liblpp.a
x ./usr/lpp/bos.mp64/bos.mp64/5.2.0.2/liblpp.a
# cd ./usr/lpp/bos.mp64/bos.mp64/5.2.0.2
# ls -l liblpp.a
-r-xr-xr-x   1 root     system        11382 Nov 18 11:24 liblpp.a
# file liblpp.a
liblpp.a:       archive
# ar -t liblpp.a
productid
bos.mp64.copyright
bos.mp64.inventory
bos.mp64.size
416 Developing and Porting C and C++ Applications on AIX



bos.mp64.al
bos.mp64.fixdata

The <fileset_name>.al file contains the list of files in the fileset. Example 12-7 
shows you the contents of the bos.mp64.al file, which contains one file that is 
specified using the relative path name starting from the root directory.

Example 12-7   Contents of the bos.mp64.al file

./usr/lib/boot/unix_64

The <fileset_name>.inventory file contains the required information about files 
within the fileset (see Example 12-8). Each file has entries explained in 
Table 12-3.

Table 12-3   Definition of entries in <fileset_name>.inventory

These values are used to verify the contents of restored files from the package 
file if those files are restored correctly.

Example 12-8   Contents of the bos.mp64.inventory file

/usr/lib/boot/unix_64:
          owner = root
          group = system
          mode = 555
          type = FILE
          class = apply,inventory,bos.mp64
          size = 10122374
          checksum = "07429  9886 "

Entry name Description

owner Specifies the file owner.

group Specifies the file group.

mode Specifies the permission bit of the file.

type Specifies the file type.

links Specifies a hard-link of the file (if available).

class The logical group of the file.

size Specifies the size of the file.

checksum Specifies the result of the cksum command to the file.
 Chapter 12. Packaging your applications 417



For further information about the format of these files contained in the liblpp.a file, 
please refer to AIX 5L Version 5.2 General Programming Concepts: Writing and 
Debugging Programs.

12.2  Packaging applications using mkinstallp
Beginning with AIX 5L Version 5.2 plus 5200-01 Recommended Maintenance 
Level, AIX provides a command, /usr/sbin/mkinstallp, to allow users to create 
their own software packages for AIX. Packages created with mkinstallp are in 
the AIX standard packaging format and can be installed or removed with SMIT or 
the installp command.

12.2.1  mkinstallp
A new fileset, bos.adt.insttools, includes the following files:

/usr/sbin/mkinstallp Front-end command
/usr/sbin/makebff.pl Back-end command
/usr/lpp/bos/README.MKINSTALLP Documentation

Files to be packaged by mkinstallp must be in a directory structure so that the 
location of the file relative to the root build directory is the same as the 
destination of the file after installation.

For example, if /usr/your_app/bin/command1 is to be installed from a package, 
command1 must be in the <build_root>/usr/your_app/bin directory when 
mkinstallp is invoked as shown in Figure 12-5 on page 419.

Note: The makebff.pl Perl script was originally written in the development 
phase of the IBM Redbook Managing AIX Server Farms, SG24-6606. 
Therefore, it is possible to package your applications on previous versions of 
AIX; however, the script provided in the redbook, which is downloadable, might 
be obsolete and is not supported by IBM.
418 Developing and Porting C and C++ Applications on AIX



Figure 12-5   Directory structure for packaging

Once the contents of a package are in the correct directory structure, mkinstallp 
prompts for basic package data from the command line interface. This data 
includes the package name, requisites, descriptions of files to be packaged, and 
so on. The mkinstallp command will then generate a template file based on 
responses given by the user. Template files can be created or edited directly by 
the user and passed to the mkinstallp command with the -T flag to prevent 
command line prompting.

The mkinstallp command has the following command syntax:

mkinstallp [ -d build_root_dir ] [ -T template_file ]

Where:

-d build_root_dir Specifies the build root directory containing the files to be 
packaged. If omitted, the current working directory is 
used.

-T template_file Specifies the full path name of the template file to be 
passed to mkinstallp. If omitted, mkinstallp will prompt 
for package information and create a new template file 
based on user responses.

12.2.2  Packaging examples
We demonstrate how to use the mkinstallp command in order to package a 
sample program whose path name is /usr/redbooks/bin/vmgetinfo in this section. 
Our vmgetinfo command is an executable file compiled from the C source file 
shown in Example 3-17 on page 149.

<build_root> .info/

tmp/

usr/your_app/ bin/

lib/

etc/

command1

command2
 Chapter 12. Packaging your applications 419



The sample application, vmgetinfo, would fail with errno 109 (ENOSYS), as 
shown in the following example, if it is executed on AIX 5L Version 5.1, because it 
calls the vmgetinfo() system call, which is supported from Version 5.2:

$ oslevel -r
5100-03
$ vmgetinfo
vmgetinfo() at 16 in my_application.c failed with errno = 109: Function not 
implemented

Assuming that the build root directory is /tmp/packages, we have prepared the 
install target files (the command itself and its source file), as shown in the 
following directory structure:

# pwd
/tmp/packages
# ls -lFR .
total 8
drwxr-xr-x   3 root     system          512 Feb 24 14:37 usr/
./usr:
total 8
drwxr-xr-x   4 root     system          512 Feb 24 14:37 redbooks/

./usr/redbooks:
total 16
drwxr-xr-x   2 root     system          512 Feb 24 14:39 bin/
drwxr-xr-x   2 root     system          512 Feb 24 14:39 src/

./usr/redbooks/bin:
total 16
-r-xr-xr-x   1 root     system         5898 Feb 24 14:39 vmgetinfo*

./usr/redbooks/src:
total 8
-rw-r--r--   1 root     system          922 Feb 24 14:39 vmgetinfo.c

Preparing a template file
We have prepared the template file shown in Example 12-9 on page 421 in order 
to create a package, called vmgetinfo. In this example, the vmgetinfo package 
consists of two filesets: vmgetinfo.rte and vmgetinfo.src.

As shown in the high-lighted lines in Example 12-9 on page 421, vmgetinfo.rte 
requires the bos.rte.libc fileset to be installed with level 5.2.0.0 or higher. This 
requisite condition would prevent users from installing this fileset on AIX 5L 
Version 5.1 and earlier. Also, vmgetinfo.src requires that vmgetinfo.rte be 

Note: The owner, group, and permission modes must be carefully verified 
before actually creating your packages.
420 Developing and Porting C and C++ Applications on AIX



installed. Therefore, even if a user selects vmgetinfo.src only, vmgetinfo.rte will 
be installed automatically.

For the complete definition of requisite condition keywords, refer to the 
“Packaging Software for Installation” section in AIX 5L Version 5.2 General 
Programming Concepts: Writing and Debugging Programs.

Example 12-9   A template file (redbook.tmplt)

Package Name: vmgetinfo
Package VRMF: 1.0.0.1
Update: N
Fileset
  Fileset Name: vmgetinfo.rte
  Fileset VRMF: 1.0.0.1
  Fileset Description: vmgetinfo runtime
  Bosboot required: N
  License agreement acceptance required: N
  Name of license agreement:
  Include license files in this package: N
  License file path:
  Requisites: *prereq bos.rte.libc 5.2.0.0
  Files
    /usr/redbooks
    /usr/redbooks/bin
    /usr/redbooks/bin/vmgetinfo
  EOFiles
EOFileset
Fileset
  Fileset Name: vmgetinfo.src
  Fileset VRMF: 1.0.0.0
  Fileset Description: vmgetinfo source
  Bosboot required: N
  License agreement acceptance required: N
  Name of license agreement:
  Include license files in this package: N
  License file path:
  Requisites: *coreq vmgetinfo.rte 1.0.0.1
  Files
    /usr/redbooks/src
    /usr/redbooks/src/vmgetinfo.c
  EOFiles
EOFileset

The supported keywords in template files are shown in Table 12-4 on page 422.
 Chapter 12. Packaging your applications 421



Table 12-4   Template file keywords

Keyword Description

Package Name* Name of the package.

Package VRMF* Version, Release, Modification, and Fix 
level of the package.

Update* Is this an update package?

Fileset* Start of a new fileset.

Fileset Name* Name of the fileset.

Fileset VRMF* VRMF of the fileset.

Fileset Description Description of the fileset.

Bosboot required* Is a bosboot required when installing this 
fileset?

License agreement acceptance required Is license agreement acceptance required 
for this fileset?

Name of license agreement Name of the license agreement.a

a. The Name of the license agreement is defined as LAR/path/to/license/agreement. The 
%L tag can be used in place of a hardcoded path to represent the locale of the 
machine that the package will be installed on. For example, if a package is installed in 
the en_US locale, %L will be converted to en_US.

Include license files in this package Are the license files included in this 
package?

License file path Path of the license file(s).b

b. The License file path is defined as LAF/path/to/license/file. Multiple license files are 
separated by semicolons.

Requisites Requisite conditions (coreq, ifreq, instreq, 
or prereq) for the fileset.c

c. Requisites are defined as *Type_keyword Name VRMF; Type_keyword is either coreq, 
ifreq, instreq, or prereq. Multiple requisites are separated by semicolons.

Files* Start of the files section.

/path/to/file File path.d

EOFiles* End of the files section.

EOFileset* End of the fileset.
422 Developing and Porting C and C++ Applications on AIX



Creating a package file
Once the template file is prepared, run the mkinstallp command to create a 
package file. In the following example, the template file is redbook.tmplt and we 
invoked the command in the build root directory, /tmp/packages:

# pwd
/tmp/packages
# ls -l
total 16
-rw-r--r--   1 root     system          837 Feb 24 15:01 redbook.tmplt
drwxr-xr-x   4 root     system          512 Feb 24 15:00 usr/
# mkinstallp -T redbook.tmplt
Using '/tmp/packages' as the base package directory.
Cannot find '/tmp/packages/.info'. Attempting to create.
Using '/tmp/packages/.info' to store package control files.
Cleaning intermediate files from '/tmp/packages/.info'.

Using 'redbook.tmplt' as the template file.
vmgetinfo 1.0.0.1 I
processing vmgetinfo.rte
processing vmgetinfo.src
creating ./.info/liblpp.a
ar: Creating an archive file ./.info/liblpp.a.
creating ./tmp/vmgetinfo.1.0.0.1.bff

The command will generate the package file in the ./tmp directory underneath 
the build root directory as shown in the following example:

# ls ./tmp
vmgetinfo.1.0.0.1.bff
# inutoc ./tmp
# ls ./tmp
.toc                    vmgetinfo.1.0.0.1.bff
# installp -ld ./tmp
  Fileset Name                Level                     I/U Q Content
  ====================================================================
  vmgetinfo.rte               1.0.0.1                    I  N usr
#   vmgetinfo runtime

d. The full path name for each file in the fileset must be listed in the Files section. Any 
custom directories should also be listed in this section. For example, to package the 
/usr/xyz/foo file, list both the /usr/xyz directory and the /usr/xyz/foo file in the Files 
section. Each entity in the final package will have the same attributes 
(owner/group/permissions) that it had at build time. The user must ensure that file 
attributes in the build root directory are correct prior to running mkinstallp.

Note: Keywords with a * are required, and will cause mkinstallp to fail if left 
blank or omitted in the template file.
 Chapter 12. Packaging your applications 423



  vmgetinfo.src               1.0.0.0                    I  N usr
#   vmgetinfo source

12.2.3  Verification of packages
Once the package is created, it must be verified before the actual software 
deployment phase on production systems.

Installation verification
The created package must be smoothly installed on the target system if it 
satisfies the install requisite conditions. If the target system does not satisfy the 
conditions, the package must be prevented from being installed.

In this example, the following tests must be done:

� Installing only the vmgetinfo.rte fileset on AIX 5L Version 5.2 and later.

The vmgetinfo.src fileset should not be installed automatically.

� Installing only the vmgetinfo.src fileset on AIX 5L Version 5.2 and later.

The vmgetinfo.src fileset should not be installed automatically, unless the 
following conditions are met:

– The -g flag of installp, which instructs the installp command to 
automatically install prerequisite filesets, is specified.

– The vmgetinfo.rte fileset has been already installed.

� Installing the filesets on AIX 5L Version 5.1 and earlier.

The filesets must not be installed.

Verification of the installed files
Check if the installed files are placed, according to the fileset inventory 
information, with the lppchk command. There are four flags of the lppchk 
command for verifying the files:

-f Fast check (file existence, file length)

-c Checksum verification

-v Fileset version consistency check

-l File link verification
424 Developing and Porting C and C++ Applications on AIX



All four calls of lppchk with the different flags has to return with a zero exit code; 
if not, there are some inconsistent files, as shown in the following example:

$ lppchk -f -m 3 vmgetinfo.rte; echo $?
lppchk: 0504-230  3 files have been checked.
0
$ lppchk -c -m 3 vmgetinfo.rte; echo $?
lppchk: 0504-230  3 files have been checked.
0
$ lppchk -l -m 3 vmgetinfo.rte; echo $?
0
$ lppchk -v -m 3 vmgetinfo.rte; echo $?
0

Verification of correct functionality
Use the lslpp command to show all installed files:

# lslpp -L vmgetinfo.rte
  Fileset                      Level  State  Type  Description (Uninstaller)
  ----------------------------------------------------------------------------
  vmgetinfo.rte              1.0.0.1    C     F    vmgetinfo runtime

# lslpp -f vmgetinfo.rte
  Fileset               File
  ----------------------------------------------------------------------------
Path: /usr/lib/objrepos
  vmgetinfo.rte 1.0.0.1
                        /usr/redbooks/bin/vmgetinfo
                        /usr/redbooks
                        /usr/redbooks/bin

After installing and validating of the installed package, test your installed 
application to see if it works as designed. In this example, we have confirmed 
that the command returned the same output shown in Example 3-16 on 
page 148.

Uninstallation verification
As the last step of the verification process, check if the package can be 
un-installed correctly by using the installp -u command, as shown in the 
following example:

# installp -u vmgetinfo.rte
+-----------------------------------------------------------------------------+
                    Pre-deinstall Verification...
+-----------------------------------------------------------------------------+
Verifying selections...done
Verifying requisites...done
Results...
 Chapter 12. Packaging your applications 425



SUCCESSES
---------
  Filesets listed in this section passed pre-deinstall verification
  and will be removed.

  Selected Filesets
  -----------------
  vmgetinfo.rte 1.0.0.1                       # vmgetinfo runtime

  << End of Success Section >>

FILESET STATISTICS
------------------
    1  Selected to be deinstalled, of which:
        1  Passed pre-deinstall verification
  ----
    1  Total to be deinstalled

+-----------------------------------------------------------------------------+
                           Deinstalling Software...
+-----------------------------------------------------------------------------+

installp:  DEINSTALLING software for:
        vmgetinfo.rte 1.0.0.1

Finished processing all filesets.  (Total time:  0 secs).

+-----------------------------------------------------------------------------+
                                Summaries:
+-----------------------------------------------------------------------------+

Installation Summary
--------------------
Name                        Level           Part        Event       Result
-------------------------------------------------------------------------------
vmgetinfo.rte               1.0.0.1         USR         DEINSTALL   SUCCESS

After removing the fileset, the installation target directory (if it is unique to the 
fileset) should be removed also. In this example, all files and sub-directories 
under /usr/redbooks are removed.

Now this package is ready to be deployed on production systems.

12.2.4  Optional installation control executable files
The AIX standard packaging format allows you not only to package your 
applications, but also to add optional files in order to control the installation 
426 Developing and Porting C and C++ Applications on AIX



process. For example, if your application requires a configuration file that 
depends on the host name where the application is installed, an optional 
executable file, fileset.config, can be used to automatically create the 
configuration file upon the fileset installation.

The optional installation control executable files shown in Table 12-5 are called 
during the installation process. Unless otherwise noted, file names that end in _i 
are used during installation processing only, and file names that end in _u are 
used in file set update processing only. All files in Table 12-5 are optional and can 
be either shell scripts or executable object modules. Each program should have a 
return value of 0 (zero), unless the program is intended to cause the installation 
or update to fail.

In order to include these optional installation control executable files, create the 
files in the .info sub-directory underneath the build root directory before creating 
the package.

Table 12-5   Optional installation control executable files

File name Description

fileset.config
fileset.config_u

Modifies configuration near the end of the default installation or 
update process. Fileset.config is used during installation 
processing only.

fileset.odmdel
fileset.*.odmdel

Updates ODM database information for the file set prior to adding 
new ODM entries for the file set. The odmdel file naming 
conventions enables a file set to have multiple odmdel files.

fileset.pre_d Indicates whether a file set may be removed. The program must 
return a value of 0 (zero) if the file set may be removed. File sets 
are removable by default. The program should generate error 
messages indicating why the file set is not removable.

fileset.pre_i
fileset.pre_u

Runs prior to restoring or saving the files from the apply list in the 
package, but after removing the files from a previously installed 
version of the file set.

fileset.pre_rm Runs during a file set installation prior to removing the files from a 
previously installed version of the file set.

fileset.post_i
fileset.post_u

Runs after restoring the files from the apply list of the file set 
installation or update.

fileset.unconfig
fileset.unconfig_u

Undoes configuration processing performed in the installation or 
update. Fileset.unconfig is used during installation processing 
only.

fileset.unodmadd Deletes entries that were added to ODM databases during the 
installation or update.
 Chapter 12. Packaging your applications 427



For more information, please refer to the “Packaging Software for Installation” 
section in the AIX 5L Version 5.2 General Programming Concepts: Writing and 
Debugging Programs.

fileset.unpost_i_0
fileset.unpost_u

Undoes processing that is performed following the restoration of 
the files from the apply list in the installation or update.

fileset.unpre_i
fileset.unpre_u

Undoes processing performed prior to restoring the files from the 
apply list in the installation or update.

File name Description
428 Developing and Porting C and C++ Applications on AIX



Appendix A. Previous versions of C and 
C++ compiler products

Over the years, IBM has offered a variety of compiler products to perform the 
compilation of C and C++ programs on AIX. These C and C++ compilers have 
evolved over time and can be tracked by their different version numbers. The C 
and C++ compilers introduced new compiler features to take advantage of the 
functionality included in new releases of the AIX operating system.

This appendix gives you background information on versions of C and C++ 
compilers prior to C for AIX Version 6.0 and VisualAge C++ for AIX Version 6.0, 
by providing the following sections.

� “Compiler product similarities” on page 430

� “IBM C compilers” on page 431

� “IBM C++ compilers” on page 435

A

© Copyright IBM Corp. 2000, 2003. All rights reserved. 429



Compiler product similarities
All of the IBM C and C++ compiler products for AIX Version 4 share some similar 
characteristics, in particular, the way the products are installed on the system 
and the configuration options available when using the products.

Multiple command line drivers
Each compiler product, with the exception of VisualAge C++ Professional for AIX 
Version 4.0, has multiple command line driver interfaces available, each causing 
a different set of default arguments to be used. For example, the C compiler 
products provide commands, such as cc, xlc, c89, cc_r, and so on. These 
commands are all links to a single compiler core, which uses a specific set of 
options, depending on the name of the command used to invoke it.

In addition to the default invocation commands provided when the compiler is 
installed, the system administrator can create new commands, which result in the 
compiler being invoked with a customized set of default options. This feature is 
controlled by the compiler configuration file, which lists the options to be used for 
each invocation command. The exact name of the configuration file differs 
between the compiler products, but generally has a name of the form 
/etc/comp.cfg, where comp indicates the compiler product that uses the 
configuration file.

Finding the compiler drivers
The earlier versions of the compiler products automatically created symbolic 
links in /usr/bin for each invocation command supplied by the compiler. For 
example, this means that if a user has the directory /usr/bin as part of their PATH 
environment variable (which it is, by default), they need only type cc on the 
command line to invoke the /usr/bin/cc command.

The later versions of the compiler products are designed to co-exist with earlier 
versions, and, as a consequence, they do not automatically create the symbolic 
links in /usr/bin when they are installed. This means that a user may have trouble 
invoking the compiler on a system that only has a new version compiler product 
installed. There are two solutions available in this instance:

� When logged in as the root user, invoke the replaceCSET command supplied 
with the compiler. This will create appropriate symbolic links in /usr/bin to the 
compiler driver programs.

� Alter the PATH environment variable to add the directory that contains the 
compiler driver programs. For example:

PATH=/usr/vac/bin:$PATH; export PATH
430 Developing and Porting C and C++ Applications on AIX



The second solution should be used if two compilers are installed on a system, 
since it allows each user to choose which version of the compiler they wish to 
use. If the system only has one compiler installed, it makes sense to use the first 
solution. If required, the root user can reverse the action of the replaceCSET 
command by using the restoreCSET command, which is also supplied with the 
compiler. The exact location of the replaceCSET and restoreCSET commands will 
depend on the version of the compiler you are using. Note that the replaceCSET 
and restoreCSET tools are removed in Version 6.0 of the C and C++ compiler 
products.

Installation directory
The main components of the compiler product are installed on the system in the 
/usr file system. The exact directory used depends on the compiler product. 
Table A-1 on page 435 shows the location of this directory for C compiler 
products. Table A-2 on page 439 shows the location of this directory for C++ 
compiler products.

IBM C compilers
This section describes the various IBM C compilers for AIX. The details provided 
are limited to compatibility issues of the various compilers with the different 
versions of the AIX operating system. This information can help in deciding which 
version of a compiler product should be used in a given situation, based on the 
version of AIX that will be used. The information can also help avoid problems 
when upgrading a compiler product to a newer version.

AIX Version 3.2 included a bundled C compiler as part of the operating system. 
This compiler was known as XL C Version 1.3. When AIX Version 4.1 was 
introduced, the compiler product was unbundled from the operating system and 
offered for sale as a separately orderable product. This appendix covers the C 
and C++ compiler products prior to C for AIX Version 6.0.

IBM XL C Version 3
The IBM XL C Version 3 product was the first C compiler product from IBM for 
AIX Version 4.1. The Version 3 in the name of the product specifies the version 
number of the compiler product rather than the version of the AIX operating 
system the compiler is compatible with.

Initially released as Version 3.1.0, this compiler evolved over time with the 
addition of Program Temporary Fixes (PTFs) to become XL C Version 3.1.4, 
 Appendix A. Previous versions of C and C++ compiler products 431



which was supported on AIX Version 4.1 and AIX Version 4.2. This compiler was 
not supported on AIX Version 3.2 and is not supported on AIX Version 4.3.

C programs written using C Set ++ Version 2 and XL C Version 1.3 on AIX 
Version 3.2 are source compatible with XL C Version 3, with some exceptions in 
detecting invalid programs or areas where results are undefined. These 
exceptions are documented in the product README file.

The compiler product itself is installed in /usr/lpp/xlC, and symbolic links are 
created in /usr/bin for the command line driver programs, for example, /usr/bin/cc 
and /usr/bin/c89. The default PATH environment variable means that most users 
need only type cc on the command line to invoke the /usr/bin/cc driver program, 
which, in turn, is a symbolic link to the driver /usr/lpp/xlC/bin/xlC. The compiler 
configuration file is /etc/xlC.cfg.

The XL C Version 3 compiler product uses the Net/LS licensing system to control 
usage of the product.

This product has been withdrawn from marketing and is no longer available for 
purchase. Support for this product has also been discontinued. Current users of 
this product are encouraged to upgrade to the IBM C for AIX Version 6.0 compiler 
product.

IBM C for AIX Version 4.1
A new version of the C compiler product was introduced with AIX Version 4.3.0. 
The compiler product, IBM C for AIX Version 4.1, had a number of new features, 
including new optimization routines for improved execution performance, new 
inter-procedural analysis tools, precompiled headers for improved compiler 
performance, improved memory management, and improved prototyping of 
programs. This version of the compiler was supported on AIX Version 4.1.4, AIX 
Version 4.2, and AIX Version 4.3.

C programs written using either Version 2 or 3 of IBM C Set ++ for AIX Version 3 
of IBM XL C, or the XL C compiler component of AIX Version 3.2 are source 
compatible with C for AIX Version 4.1, with some exceptions to detect invalid 
programs or areas where results are undefined.

Two important configuration differences introduced with this version of the 
compiler are:

1. The compiler product is now installed under /usr/vac rather than /usr/lpp/xlC.

2. The installation process does not create symbolic links to the driver programs 
from the /usr/bin directory. This is because the C compiler has been designed 
to co-exist on a system that already has the previous version of the C 
compiler or a version of the C Set ++ compiler installed.
432 Developing and Porting C and C++ Applications on AIX



If the system does not have another version of the compiler installed, the 
symbolic links in the /usr/bin directory can be created by invoking the 
/usr/vac/bin/replaceCSET command, which, as the name implies, replaces the 
symbolic links to the C Set driver programs.

The compiler product also includes the /usr/vac/bin/restoreCSET command, 
which can be used to reverse the actions of the replaceCSET command.

Alternatively, if multiple versions of the compiler exist, or if the user does not want 
to create symbolic links in /usr/bin, the setting of the PATH environment variable 
can be used to determine which compiler product is used.

For example, setting the PATH environment variable as follows:

PATH=/usr/vac/bin:$PATH; export PATH

will result in the C for AIX Version 4.1 compiler being used when the cc command 
is invoked.

The compiler configuration file is /etc/vac.cfg.

The C for AIX Version 4.1 compiler uses the License Use Management (LUM) 
licensing system to control usage of the product. Refer to 1.4, “Activating the 
compilers” on page 23 for information on configuring the licence system.

This product has been withdrawn from marketing and is no longer available for 
purchase. Support for this product has also been discontinued. Current users of 
this product are encouraged to upgrade to the IBM C for AIX Version 6.0 compiler 
product.

IBM C for AIX Version 4.3
The IBM C for AIX Version 4.3 compiler product was introduced shortly after the 
release of AIX Version 4.3.0 and the 64-bit hardware models of the RS/6000 
family. This version of the compiler was similar to the IBM C for AIX Version 4.1 
compiler, except that it added support for creating and debugging 64-bit 
application binaries for use on the 64-bit hardware. This version of the compiler is 
installed under /usr/vac, and uses the /etc/vac.cfg configuration file. If C for AIX 
Version 4.1 is already installed, installing C for AIX Version 4.3 will overwrite and 
upgrade the previous version.

The C for AIX Version 4.3 compiler uses the LUM licensing system to control 
usage of the product. Refer to 1.4, “Activating the compilers” on page 23 for 
information on configuring the licence system.

This product has been withdrawn from marketing and is no longer available for 
purchase. Support for this product has also been discontinued. Current users of 
 Appendix A. Previous versions of C and C++ compiler products 433



this product are encouraged to upgrade to the IBM C for AIX Version 6 compiler 
product.

IBM C for AIX Version 4.4
The IBM C for AIX Version 4.4 compiler product was an improved version of the 
previously released C for AIX Version 4.3. The main enhancement was that this 
compiler was designed to exploit the RS/6000 Symmetric Multi-Processing 
(SMP) architecture. It supported automatic parallellization of a C program as well 
as explicit parallellization through a set of directives that enabled the user to 
parallelize selected sections of the application program. This version of the C 
compiler was supported only by AIX Version 4.2 and 4.3.

C programs written using either Version 2 or Version 3 of IBM C Set ++ for AIX, 
the XL C compiler component of AIX Version 3.2, or previous versions of the C 
for AIX Version 4.x compilers, are source compatible with C for AIX Version 4.4, 
with some exceptions to detect invalid programs or areas where results are 
undefined.

The compiler is installed under /usr/vac, and uses the /etc/vac.cfg configuration 
file. If a previous version of C for AIX 4.x is installed, installing C for AIX Version 
4.4 will overwrite and upgrade the previous version.

The C for AIX Version 4.4 compiler uses the LUM licensing system to control 
usage of the product. Refer to 1.4, “Activating the compilers” on page 23 for 
information on configuring the licence system.

This product has been withdrawn from marketing and is no longer available for 
purchase. Support for this product has also been discontinued. Current users of 
this product are encouraged to upgrade to the IBM C for AIX Version 6.0 compiler 
product.

IBM C for AIX Version 5.0
The C for AIX Version 5.0 compiler extends the existing symmetric 
multi-processing (SMP) support available with C for AIX Version 4.4 by 
supporting the OpenMP industry specification. OpenMP provides a model for 
parallel programming that allows a program to be portable across shared 
memory architectures from different vendors by using a common set of 
application program interfaces. The compiler generates highly-optimized code for 
all RS/6000 processors and can provide run-time address checking to detect 
memory errors.

This compiler is supported only by IBM AIX Version 4.2.1 or later. Also, note that 
64-bit applications will run only on AIX Version 4.3 and later when running on 
434 Developing and Porting C and C++ Applications on AIX



64-bit hardware. C for AIX Version 5.0.2 adds support for AIX Version 5.1 and 
Version 5.2.

C programs written using Version 3 of XL C or Version 4 of IBM C for AIX are 
source compatible with IBM C for AIX Version 5.0. C programs written using 
either Version 2 or 3 of IBM Set ++ for AIX or the XL C compiler component of 
AIX Version 3.2 are source compatible with IBM C for AIX Version 5.0 with 
exceptions to detect invalid programs or areas where results are undefined.

This version of the compiler is installed under /usr/vac and uses the /etc/vac.cfg 
configuration file. If C for AIX Version 4.x is installed on a system, installing C for 
AIX Version 5.0 will overwrite and upgrade the previous version.

The C for AIX Version 5.0 compiler uses the LUM licensing system to control 
usage of the product. Refer to 1.4, “Activating the compilers” on page 23 for 
information on configuring the licence system.

C compiler summary
Table A-1 summarizes the various versions of IBM C compiler products for AIX.

Table A-1   IBM C compilers for AIX

IBM C++ compilers
This section describes the various IBM C++ Compilers for AIX. The details 
provided here are, again, limited to compatibility issues of the various compilers 
with the different versions of the AIX operating system. This information can help 
decide which C++ Compiler product to use for a particular project, based on the 
target version of AIX, and the nature of the C++ source code being compiled. 

Compiler Installation 
directory

Configuration 
file

Supported 
AIX levels

Licensing 
method

Drivers in 
/usr/bin

XL C Version 3 /usr/lpp/xlC /etc/xlC.cfg 4.1 and 4.2 Net/LS Yes

C for AIX Version 
4.1

/usr/vac /etc/vac.cfg 4.1.4, 4.2, and 
4.3

iFOR/LS No

C for AIX Version 
4.3

/usr/vac /etc/vac.cfg 4.1.5, 4.2, and 
4.3

LUM No

C for AIX Version 
4.4

/usr/vac /etc/vac.cfg 4.2 and 4.3 LUM No

C for AIX Version 
5.0

/usr/vac /etc/vac.cfg 4.2 and 4.3 LUM No
 Appendix A. Previous versions of C and C++ compiler products 435



IBM C Set ++ for AIX Version 3
The IBM C Set ++ for AIX Version 3 product was the first C++ compiler product 
from IBM for AIX Version 4.1. The Version 3 in the name of the product specifies 
the version of the compiler product rather than the version of the AIX operating 
system the compiler is compatible with. The C Set ++ for AIX Version 3 product 
is, in effect, an extension of the C for AIX Version 3 compiler. An alternative view 
is that the C for AIX Version 3 compiler is a subset of the C Set ++ for AIX 
compiler.

This compiler was initially released as Version 3.1.0, and evolved over time with 
the addition of Program Temporary Fixes (PTFs) to become C Set ++ for AIX 
Version 3.1.4, which was supported on AIX Version 4.1 and AIX Version 4.2. It 
was not supported on AIX Version 3.2 and is not supported on AIX Version 4.3.

C++ programs written using C Set ++ Version 2 on AIX Version 3.2 are source 
compatible with C Set ++ for AIX Version 3, with some exceptions to detect 
invalid programs or areas where results are undefined. These exceptions are 
documented in the product README file.

The compiler product itself is installed in /usr/lpp/xlC, and symbolic links are 
created in /usr/bin for the command line driver programs, for example, 
/usr/bin/xlC. The default PATH environment variable means that most users need 
only type xlC on the command line to invoke the /usr/bin/xlC driver program, 
which, in turn, is a symbolic link to the driver /usr/lpp/xlC/bin/xlC. The compiler 
configuration file is /etc/xlC.cfg.

The C Set ++ for AIX Version 3 compiler product uses the Net/LS licensing 
system to control usage of the product.

This product has been withdrawn from marketing and is no longer available for 
purchase. Support for this product has also been discontinued. Current users of 
this product are encouraged to upgrade to IBM VisualAge C++ for AIX Version 
6.0.

IBM C and C++ compilers Version 3.6
The official name of this product is IBM C and C++ compilers for AIX, OS/2®, and 
Windows NT. The product is part of a family of related compilers, with versions 
available for each of the mentioned platforms. The product is sometimes referred 
to as C Set ++ Version 3.6. The AIX Version of the product is the follow on to C 
Set ++ Version 3 for AIX. 

The product offered a number of facilities to assist in the development of 
cross-platform applications, where the same source code is used on multiple 
platforms. The product includes a rich set of IBM class libraries, memory 
436 Developing and Porting C and C++ Applications on AIX



management routines, graphical debuggers, and resource tools for creating and 
compiling resources and converting between platform formats. The C compiler 
component of the product can produce either 32-bit or 64-bit executable files 
when used on AIX Version 4.3.

The product is supported on AIX Version 4.1.4, Version 4.2, and Version 4.3.

C++ programs written using Version 3 of C Set ++ for AIX and earlier are source 
compatible with the C++ compiler of C Set ++ for AIX Version 3.6.

As with the other post Version 3.1 compiler products, the compiler command 
drivers are not created in /usr/bin when the product is installed.

The installation directory is /usr/ibmcxx, and the configuration file is 
/etc/ibmcxx.cfg.

The product uses the LUM license management system to control usage of the 
product. Refer to 1.4, “Activating the compilers” on page 23 for information on 
configuring the licence system.

This product has been withdrawn from marketing and is no longer available for 
purchase. Support for this product has also been discontinued. Current users of 
this product are encouraged to upgrade to IBM VisualAge C++ for AIX Version 
6.0.

IBM VisualAge C++ Professional for AIX Version 4
VisualAge C++ Professional for AIX Version 4 is a powerful rapid application 
development (RAD) tool for building C and C++ applications. This heterogeneous 
RAD environment provides:

� Tools, including a graphical debugger

� Visual Builder and Data Access Builder

� Incremental compiler and linker

� A rich set of class libraries

� Online help and a powerful full-text search engine

VisualAge C++ Professional for AIX provides a standards-compliant C++ 
compiler. Its incremental development environment and visual programming 
tools improve programmer productivity.

This product features an incremental compiler and linker and, as such, is not 
ideally suited for use when working with existing application code that uses 
Makefiles or for a development environment that maintains a single source tree 
for multiple platforms and uses Makefiles. For this reason, the product includes a 
 Appendix A. Previous versions of C and C++ compiler products 437



copy of the IBM C Set ++ Version 3.6 compiler for use in a batch compile 
environment.

This compiler product runs on IBM AIX Version 4.1.5, Version 4.2, and Version 
4.3 for RS/6000.

C++ programs written using Version 3.6 of IBM C and C++ compilers and earlier 
are source compatible with the C++ compiler component of VisualAge C++ 
Professional for AIX Version 4.

This product has been withdrawn from marketing and is no longer available for 
purchase. Support for this product has also been discontinued. Current users of 
this product are encouraged to upgrade to IBM VisualAge C++ for AIX Version 
6.0.

IBM VisualAge C++ Professional for AIX Version 5
VisualAge C++ Professional for AIX Version 5.0 features a fully incremental 
compiler and a batch compiler. The Integrated Development Environment (IDE) 
operates with the incremental compiler when used in the AIX Common Desktop 
Environment (CDE). The batch compiler is run from the command line and is 
suitable for use in a development environment that uses Makefiles. Both 
compilers support the latest ANSI/ISO C++ language standard and the latest 
version (Version 5) of the IBM Open Class library.

The main differences between Version 4 and Version 5 of this product are:

� Version 5 supports multiple codestores in a single project.

� Version 5 is a single product featuring both batch and incremental compilers.

The graphical interface of Version 5 has been redesigned with a host of helpful 
features. Version 5 has improved optimization techniques and provides the 
programmer with effective and efficient ways handling of C++ object code. Also, 

Note: As described above, this version of VisualAge features an incremental 
compiler. The implications of this for productivity and the code are impressive, 
but if the application is moving from a batch environment, do spend time with 
the application to adapt to the VisualAge products. For example, makefiles 
cannot be processed directly by the incremental compiler.

But, once the migration is done, then the advantages of VisualAge products 
are very impressive. This then would reduce the amount of time and memory 
required to do each build as well as the time spent on rebuilding when some 
changes are made to the source files.
438 Developing and Porting C and C++ Applications on AIX



this product allows the developer to carry out performance analysis to determine 
the applications usage of system resources.

This product is supported on IBM AIX Version 4.2.1 and later versions for 
RS/6000 hardware.

C++ programs written using Version 4 of IBM VisualAge C++ Professional for AIX 
are source compatible with the VisualAge C++ Professional for AIX Version 5. 
However, programs written using IBM C and C++ Compilers for AIX Version 3.6, 
and earlier are not source compatible because the former compilers were based 
on the ISO C++ Draft.

The C compiler component of VisualAge C++ Professional for AIX Version 5 is 
provided by the IBM C for AIX Version 5 compiler.

C++ compiler summary
Table A-2 summarizes the various IBM C++ compiler products for AIX.

Table A-2   C++ compiler products

Compiler Installation 
directory

Configuration 
file

Supported 
AIX levels

Licensing 
method

Drivers in 
/usr/bin

C Set ++ for AIX 
Version 3

/usr/lpp/xlC /etc/xlC.cfg 4.1, 4.2 Net/LS Yes

IBM C and C ++ 
compilers 
Version 3.6

/usr/ibmcxx /etc/ibmcxx.cfg 4.1.4, 4.2, 4.3 LUM No

VisualAge C++ 
Professional for 
AIX Version 4

/usr/vacpp /etc/vacpp.cfg 4.1.5, 4.2, 4.3 LUM No

VisualAge C++ 
Professional for 
AIX Version 5

/usr/vacpp /etc/vacpp.cfg
/etc/vac.cfg

4.2.1, 4.3 LUM No
 Appendix A. Previous versions of C and C++ compiler products 439



440 Developing and Porting C and C++ Applications on AIX



Appendix B. Useful information for 
linking and loading on AIX

This appendix gives you the back ground information about the linking and 
loading processes on AIX by providing the following sections:

� “A brief history of UNIX programming development” on page 442

� “Historical view of linking and loading in AIX” on page 443

� “Definitions” on page 443

B

© Copyright IBM Corp. 2000, 2003. All rights reserved. 441



A brief history of UNIX programming development
The traditional UNIX compilation technique historically involved static linking. 
With this technique, multiple object files defining global symbols and containing 
code and data were combined and written to an executable file with all the 
references resolved. The executable was a single self contained file, and often 
became quite large. However, since the name and location of all symbols were 
resolved at link-time, a program could be executed by simply reading it into 
memory and transferring control to its entry point. Static linking, which is still 
used in certain circumstances, has the following drawbacks:

� If any of the libraries used by the program are updated, the program needs to 
be re-linked to take advantage of the updated libraries.

� Disk space is wasted because every program on the system contains private 
copies of every library functions that it needs.

� System memory is wasted because every running process loads into memory 
its own private copy of the same library functions.

To allow the libraries to be shared among different programs, the concept of 
shared libraries evolved. When a program is linked with a shared library, the 
shared library code is not included in the generated program executable file. 
Instead, information is saved in the program that allows the library to be found 
and loaded when the program is executed. Shared library code is loaded into 
global system memory by the first program that needs it and is shared by all 
programs that use it.

The advantages of shared libraries are:

� Less disk space is used because the shared library code is not included in the 
executable programs.

� Less memory is used because the shared library code is only loaded once.

� The time taken to start an application may be reduced because the shared 
library code may already be in memory.

� Performance may be improved because fewer page faults will be generated 
when the shared library code is already in memory.

When a program is linked with shared libraries, the resulting executable contains 
a list of symbols imported by it. The actual code is not included. Therefore, if one 
of the shared libraries is updated, programs using that library do not need to be 
re-linked, automatically picking up the current version of the library on its next 
execution. This makes application service and support easier since new versions 
of individual libraries containing patches and fixes can be shipped to customers 
without having to rebuild and ship a whole new version of the application.
442 Developing and Porting C and C++ Applications on AIX



When a program uses imported symbols, each of those symbols is associated 
with a specific shared library needed by the program. During program execution, 
the symbols do not have to be searched, but can be found by simply looking up 
their addresses in the specified shared library.

Historical view of linking and loading in AIX
The linker and system loader on AIX are designed so that modules are self 
contained entities with well defined sets of imported and exported symbols. 
Symbol resolution is performed at link-time, simplifying the work of the system 
loader when a module is loaded. The system loader looks up symbols to relocate 
references, but does not perform symbol resolution. As a result, a shared module 
and its dependents can be pre-relocated in global memory. Once a set of 
modules has been pre-relocated, a program using the modules can be loaded 
more effectively since symbol lookup and relocation in the pre-relocated modules 
does not have to be performed.

However, there has been several circumstances where the traditional AIX linking 
mechanism did not satisfy the application programmers’ requirements. For 
example, in many new applications, the location of some symbol definitions may 
not be known at link-time.

To address this requirement, AIX has been supporting the run-time linking 
method, which provide more flexibility in how and when symbol resolution takes 
place (see 2.5, “Run-time linking” on page 68).

Definitions
The definitions shown in Table B-1 are very useful in understanding the technical 
details of the linking and loading process on AIX.

Table B-1   Definitions of terms regarding linking and loading process on AIX

Term Description

Object file A generic term for a file containing executable code, data, relocation information, a symbol 
table, and other information. Object files on AIX for POWER processor architecture are 
defined by XCOFF (eXtended Common Object File Format). Please refer to the AIX 5L 
Version 5.2 Files Reference for further information about the XCOFF format.

CSECT The atomic unit of relocation as far as link-editing is concerned. A CSECT can contain code 
or data. One CSECT can contain references to other CSECTs. These references are 
described by relocation entries (RLDs) contained in a section of an object file.
 Appendix B. Useful information for linking and loading on AIX 443



Module The smallest, separately loadable and relocatable unit. A module is an object file containing 
a loader section. Modules are loaded implicitly when they are dependents of another 
loaded module. A module may have an entry point and may export a set of symbols.

Dependent 
module

A module loaded automatically as part of the process of loading another module. A module 
is loaded automatically if it is listed in the loader section of another module being loaded.

Executable A module with an entry point. An executable may have exported symbols.

Linker The application program that combines multiple object modules into an executable 
program. On AIX, the ld command is the system linker. The ld command processes 
command line arguments and generates a list of commands, which are piped to another 
program called the binder (/usr/ccs/bin/bind). For the purpose of this document, the 
terms linker and binder are used interchangeably.

System 
loader

A kernel subsystem that creates a process image from an executable file. The loader loads 
the executable file into memory, loads (or finds) the program's dependent modules, looks 
up imported symbols, and relocates references.

Load-time The time period during which the system loads a module and its dependents. This includes 
the processing required to resolve symbols and relocate the modules. A module can be 
loaded with the exec(), dlopen(), or load() system calls. The dlopen() and loadAndInit() 
functions are higher level calls that ultimately call load().

Exec-time Exec-time is load-time for the main program. A new program is loaded when the exec() 
function is called.

Run time Run time starts when the control enters main() and ends when the program exits.

Resolution The act of associating a reference to a symbol, with the definition of that symbol. Symbol 
resolution is performed by the linker at link-time and by the system loader at load-time. 
Some special kinds of symbol resolution can occur during run time.

Archives Archive files are composite objects that usually contain object files. On AIX, archives can 
contain shared objects, import files, or other kinds of members. By convention, the name 
of an archive usually ends with .a, but the magic number of a file (that is, the first few bytes 
of the file) is used to determine whether a file is an archive or not.

Library A library is a file that contain the definitions of multiple symbols.

Export and 
Import lists

Import files are ASCII files that list symbols to be resolved at load-time, and often times, 
their defining modules. This information is saved in the loader section of the generated 
module, and is used by the system loader when the module is loaded. The import file can 
be used in place of a corresponding shared object as an input file to the ld command. 
Export files are ASCII files that list global symbols to be made available for another module 
to import. The file formats of the import and export file are the same.

Term Description
444 Developing and Porting C and C++ Applications on AIX



Strip A system command that reduces the size of an XCOFF module by removing the linking and 
debugging information. Object files that have been stripped cannot be used as input to the 
linker. A module that has been stripped can still be loaded, since the module's loader 
section contains the information needed to load the module.

Static 
linking

Executing the ld command so that shared objects are treated as ordinary (non shared) 
object files. A shared object that has been stripped cannot be linked statically.

load() call The load() system call can be used to add a module into a running process, allowing a 
program to expand its own capabilities. The unload() system call can be used to remove 
object modules from an executing program, which were loaded with the load() routine.

loadbind() 
call

A system call that allows deferred references to be resolved after a module has been 
loaded.

Dynamic 
binding

The technique where imported symbols are looked up or resolved at load-time or run time.

Run-time 
linking

The technique where imported symbols are resolved at load-time. When run-time linking is 
used, symbols may resolve to alternate definitions that were not available at link-time.

Dynamic 
loading

The addition of modules to a running (executing) process. Modules can be loaded with the 
load(), dlopen(), or loadAndInit() functions.

Lazy 
loading

The ability to defer loading of a dependent module until a function in the dependent module 
is first called by the process.

Rebinding Associating an alternate definition with an imported symbol at run time. By default, the 
linker identifies a specific dependent module with each imported symbol. When the 
run-time linker is used, the imported symbol can be associated with a symbol in a different 
module.

Term Description
 Appendix B. Useful information for linking and loading on AIX 445



446 Developing and Porting C and C++ Applications on AIX



Appendix C. Subroutine references for 
shmat and mmap services

This appendix contains the following subroutine references:

� “References for shmat services” on page 448

� “References for mmap services” on page 461

For detailed information about these routines, please refer to the AIX 5L Version 
5.2 Technical Reference: Base Operating System and Extensions.

C

© Copyright IBM Corp. 2000, 2003. All rights reserved. 447



References for shmat services
This section includes the following subroutine references:

� “The ftok() subroutine” on page 448
� “The shmat() routine” on page 449
� “The shmctl() subroutine” on page 454
� “The shmget() routine” on page 457
� “The shmdt() subroutine” on page 460

The ftok() subroutine
Generates a standard interprocess communication key.

Library
Standard C library (libc.a)

Syntax
#include <sys/types.h>
#include <sys/ipc.h>

key_t ftok(Path, ID)
char *Path;
int ID;

Description
The ftok() subroutine returns a key, based on the Path and ID parameters, to be 
used to obtain interprocess communication identifiers. The ftok() subroutine 
returns the same key for linked files if called with the same ID parameter. 
Different keys are returned for the same file if different ID parameters are used.

All interprocess communication facilities require you to supply a key to the 
msgget(), semget(), and shmget() subroutines in order to obtain interprocess 
communication identifiers. The ftok() subroutine provides one method for 
creating keys, but other methods are possible. For example, you can use the 
project ID as the most significant byte of the key, and use the remaining portion 
as a sequence number.
448 Developing and Porting C and C++ Applications on AIX



Parameters
Path Specifies the path name of an existing file that is 

accessible to the process. 

ID Specifies a character that uniquely identifies a project.

Return values
When successful, the ftok() subroutine returns a key that can be passed to the 
msgget(), semget(), or shmget() subroutines.

Error codes
The ftok() subroutine returns the value (key_t)-1 if one or more of the following 
are true:

� The file named by the Path parameter does not exist.
� The file named by the Path parameter is not accessible to the process.
� The ID parameter has a value of 0.

The shmat() routine
The shmat() subroutine attaches a shared memory segment or a mapped file to 
the current process’s address space.

Library
Standard C library (libc.a)

Syntax
#include <sys/shm.h>
void *shmat(shm_mem_id, shm_mem_addr, shm_mem_flag)

Attention: 

� If the Path parameter of the ftok() subroutine names a file that has been 
removed while keys still refer to it, the ftok() subroutine returns an error. If 
that file is then re-created, the ftok() subroutine will probably return a key 
different from the original one.

� Each installation should define standards for forming keys. If standards are 
not adhered to, unrelated processes may interfere with each other's 
operation.

� The ftok() subroutine does not guarantee unique key generation. However, 
the occurrence of key duplication is very rare and mostly for across file 
systems.
 Appendix C. Subroutine references for shmat and mmap services 449



int shm_mem_id, shm_mem_flag;
const void *shared_mem_addr;

Description
The shmat() subroutine attaches the shared memory segment or mapped file 
specified by the SharedMemoryID parameter (returned by the shmget() 
subroutine), or file descriptor specified by the SharedMemoryID parameter 
(returned by the openx() subroutine) to the address space of the calling process.

The following limits apply to shared memory:

� The maximum shared-memory segment size is: 

– 256 MB before AIX Version 4.3.1 

– 2 GB for AIX Version 4.3.1 through AIX 5L Version 5.1 

– 64 GB for 64-bit applications for AIX 5L Version 5.1 and later

� The minimum shared-memory segment size is 1 byte. 

� The maximum number of shared memory IDs is 4096 for operating system 
releases before AIX Version 4.3.2 and 131072 for AIX Version 4.3.2 and 
following.

An extended shmat capability is available. If an environment variable 
EXTSHM=ON is defined, then processes executing in that environment will be 
able to create and attach more than eleven shared memory segments.

The segments can be of size, from 1 byte to 2 GB, although for segments larger 
than 256 MB in size the environment variable EXTSHM=ON is ignored. The 
process can attach these segments into the address space for the size of the 
segment. Another segment could be attached at the end of the first one in the 
same 256 MB segment region. The address at which a process can attach is at 
page boundaries (a multiple of SHMLBA_EXTSHM bytes). For segments larger 
than 256 MB in size, the address at which a process can attach is at 256 MB 
boundaries, which is a multiple of SHMLBA bytes.

The segments can be of size from 1 byte to 256 MB. The process can attach 
these segments into the address space for the size of the segment. Another 
segment could be attached at the end of the first one in the same 256 MB 
segment region. The address at which a process can attach will be at page 
boundaries (a multiple of SHMLBA_EXTSHM bytes).

Note: The following applies to AIX Version 4.2.1 and later releases for 32-bit 
processes only.
450 Developing and Porting C and C++ Applications on AIX



The maximum address space available for shared memory with or without the 
environment variable and for memory mapping is 2.75 GB. An additional 
segment register "0xE" is available so that the address space is from 
0x30000000 to 0xE0000000. However, a 256 MB region starting from 
0xD0000000 will be used by the shared libraries and is therefore unavailable for 
shared memory regions or mmapped regions.

There are some restrictions on the use of the extended shmat feature. These 
shared memory regions cannot be used as I/O buffers where the unpinning of the 
buffer occurs in an interrupt handler. The restrictions on the use are the same as 
that of mmap buffers.

The smaller region sizes are not supported for mapping files. Regardless of 
whether EXTSHM=ON or not, mapping a file will consume at least 256 MB of 
address space.

SHM_SIZE shmctl() is not supported for segments created with EXTSHM=ON.

A segment created with EXTSHM=ON can be attached by a process without 
EXTSHM=ON. This will consume a 256 MB area of the address space 
irrespective of the size of the shared memory region.

A segment created without EXTSHM=ON can be attached by a process with 
EXTSHM=ON. This will consume a 256 MB area of the address space 
irrespective of the size of the shared memory region.

The environment variable provides the option of executing an application either 
with the additional functionality of attaching more than 11 segments when 
EXTSHM=ON, or the higher-performance access to 11 or fewer segments when 
the environment variable is not set.

Parameter
shm_mem_id Specifies an identifier for the shared memory segment.

shm_mem_addr Identifies the segment or file attached at the address 
specified by the shm_mem_addr parameter, as follows:

If the shm_mem_addr parameter is not equal to 0, and 
the SHM_RND flag is set in the shm_mem_flag 
parameter, the segment or file is attached at the next 
lower segment boundary. This address is given by 
(shm_mem_addr - (shm_mem_addr modulo 
SHMLBA_EXTSHM, if environment variable 
EXTSHM=ON or SHMLBA if not). SHMLBA specifies the 
low boundary address multiple of a segment.
 Appendix C. Subroutine references for shmat and mmap services 451



If the shm_mem_addr parameter is not equal to 0 and the 
SHM_RND flag is not set in the shm_mem_flag 
parameter, the segment or file is attached at the address 
given by the shm_mem_addr parameter. If this address 
does not point to a SHMLBA_EXTSHM boundary if the 
environment variable EXTSHM=ON or SHMLBA 
boundary if not, the shmat() subroutine returns the value 
-1 and sets the errno global variable to the EINVAL error 
code. SHMLBA specifies the low boundary address 
multiple of a segment.

shm_mem_flag Specify several options. Its value is either 0 or is 
constructed by logically ORing one or more of the values 
in Table C-1.

Table C-1   Values for the third parameter of shmat()

The shmat() subroutine makes a shared memory segment addressable by the 
current process. The segment is attached for reading if the SHM_RDONLY flag is 
set and the current process has read permission. If the SHM_RDONLY flag is not 
set and the current process has both read and write permission, it is attached for 
reading and writing.

If the SHM_MAP flag is set, file mapping takes place. In this case, the shmat 
subroutine maps the file open on the file descriptor specified by the 
SharedMemoryID onto a segment. The file must be a regular file. The segment is 
then mapped into the address space of the process. A file of any size can be 
mapped if there is enough space in the user address space.

When file mapping is requested, the SharedMemoryFlag parameter specifies 
how the file should be mapped. If the SHM_RDONLY flag is set, the file is 
mapped read-only. To map read-write, the file must have been opened for writing.

All processes that map the same file read-only or read-write map to the same 
segment. This segment remains mapped until the last process mapping the file 
closes it.

Value Description

SHM_MAP Maps a file onto the address space instead of a shared memory 
segment. The shm_mem_id parameter must specify an open file 
descriptor in this case.

SHM_RDONLY Specifies read-only mode instead of the default read-write mode.

SHM_RND Rounds the address given by the shm_mem_addr parameter to the 
next lower segment boundary, if necessary.
452 Developing and Porting C and C++ Applications on AIX



A mapped file opened with the O_DEFER update has a deferred update. That is, 
changes to the shared segment do not affect the contents of the file resident in 
the file system until an fsync subroutine is issued to the file descriptor for which 
the mapping was requested. Setting the SHM_COPY flag changes the file to the 
deferred state. The file remains in this state until all processes close it. The 
SHM_COPY flag is provided only for compatibility with Version 2 of the operating 
system. New programs should use the O_DEFER open flag.

A file descriptor can be used to map the corresponding file only once. To map a 
file several times requires multiple file descriptors.

When a file is mapped onto a segment, the file is referenced by accessing the 
segment. The memory paging system automatically takes care of the physical 
I/O. References beyond the end of the file cause the file to be extended in 
page-sized increments. The file cannot be extended beyond the next segment 
boundary.

Return values
When successful, the segment start address of the attached shared memory 
segment or mapped file is returned. Otherwise, the shared memory segment is 
not attached, the errno global variable is set to indicate the error, and a value of 
-1 is returned.

Error codes
The shmat() subroutine is unsuccessful and the shared memory segment or 
mapped file is not attached if one or more of the following are true:

EACCES The calling process is denied permission for the specified 
operation. 

EAGAIN The file to be mapped has enforced locking enabled, and 
the file is currently locked. 

EBADF A file descriptor to map does not refer to an open regular 
file. 

EEXIST The file to be mapped has already been mapped. 

EINVAL The SHM_RDONLY and SHM_COPY flags are both set. 

EINVAL The shm_mem_id parameter is not a valid shared 
memory identifier. 

EINVAL The shm_mem_addr parameter is not equal to 0, and the 
value of (shm_mem_addr - (shm_mem_addr modulo 
SHMLBA_EXTSHM if the environment variable 
EXTSHM=ON or SHMLBA if not) points outside the 
address space of the process. 
 Appendix C. Subroutine references for shmat and mmap services 453



EINVAL The shm_mem_addr parameter is not equal to 0, the 
SHM_RND flag is not set in the SharedMemoryFlag 
parameter, and the shm_mem_addr parameter points to a 
location outside of the address space of the process. 

EMFILE The number of shared memory segments attached to the 
calling process exceeds the system-imposed limit. 

ENOMEM The available data space in memory is not large enough 
to hold the shared memory segment. ENOMEM is always 
returned if a 32-bit process tries to attach a shared 
memory segment larger than 2 GB. 

ENOMEM The available data space in memory is not large enough 
to hold the mapped file data structure. 

ENOMEM The requested address and length crosses a segment 
boundary. This is not supported when the environment 
variable EXTSHM=ON. 

The shmctl() subroutine
Controls shared memory operations.

Library
Standard C library (libc.a)

Syntax
#include <sys/shm.h>
int shmctl (SharedMemoryID, Command, Buffer)
int SharedMemoryID, Command;
struct shmid_ds * Buffer;

Description
The shmctl() subroutine performs a variety of shared-memory control operations 
as specified by the Command parameter.

The following limits apply to shared memory:

� The maximum shared-memory segment size is: 

– 256 MB before AIX Version 4.3.1 

– 2 GB for AIX Version 4.3.1 through AIX 5L Version 5.1 

– 64 GB for 64-bit applications for AIX 5L Version 5.1 and later

� The minimum shared-memory segment size is 1 byte. 
454 Developing and Porting C and C++ Applications on AIX



� The maximum number of shared memory IDs is 4096 for operating system 
releases before AIX Version 4.3.2 and 131072 for AIX Version 4.3.2 and 
following.

Parameters
SharedMemoryID Specifies an identifier returned by the shmget subroutine.

Buffer Indicates a pointer to the shmid_ds structure. The 
shmid_ds structure is defined in the sys/shm.h file. 

Command The commands listed in Table C-2 are available.

Table C-2   Values for the third parameter of shmctl()

Value Description

IPC_STAT Obtains status information about the shared memory segment 
identified by the SharedMemoryID parameter. This information is 
stored in the area pointed to by the Buffer parameter. The calling 
process must have read permission to run this command.

IPC_ SET Sets the user and group IDs of the owner as well as the access 
permissions for the shared memory segment identified by the 
SharedMemoryID parameter. This command sets the following fields:

shm_perm.uid  /* owning user ID       */
shm_perm.gid  /* owning group ID      */
shm_perm.mode /* permission bits only */

You must have an effective user ID equal to root or to the value of the 
shm_perm.cuid or shm_perm.uid field in the shmid_ds data structure 
identified by the SharedMemoryID parameter.

IPC_RMID Removes the shared memory identifier specified by the 
SharedMemoryID parameter from the system and erases the shared 
memory segment and data structure associated with it. This command 
is only executed by a process that has an effective user ID equal either 
to that of superuser or to the value of the shm_perm.uid or 
shm_perm.cuid field in the data structure identified by the 
SharedMemoryID parameter.
 Appendix C. Subroutine references for shmat and mmap services 455



Return values
When completed successfully, the shmctl() subroutine returns a value of 0. 
Otherwise, it returns a value of -1 and the errno global variable is set to indicate 
the error.

Error codes
The shmctl() subroutine is unsuccessful if one or more of the following are true:

EACCES The Command parameter is equal to the IPC_STAT value 
and read permission is denied to the calling process.

EFAULT The Buffer parameter points to a location outside the 
allocated address space of the process.

EINVAL The SharedMemoryID parameter is not a valid shared 
memory identifier.

EINVAL The Command parameter is not a valid command.

EINVAL The Command parameter is equal to the SHM_SIZE 
value and the value of the shm_segsz field of the 
structure specified by the Buffer parameter is not valid.

EINVAL The Command parameter is equal to the SHM_SIZE 
value and the shared memory region was created with the 
environment variable EXTSHM=ON.

ENOMEM The Command parameter is equal to the SHM_SIZE 
value, and the attempt to change the segment size is 
unsuccessful because the system does not have enough 
memory.

SHM_SIZE Sets the size of the shared memory segment to the value specified by 
the shm_segsz field of the structure specified by the Buffer parameter. 
This value can be larger or smaller than the current size. The limit is the 
maximum shared-memory segment size. This command is only 
executed by a process that has an effective user ID equal either to that 
of a process with the appropriate privileges or to the value of the 
shm_perm.uid or shm_perm.cuid field in the data structure identified by 
the SharedMemoryID parameter. This command is not supported for 
regions created with the environment variable EXTSHM=ON. This 
results in a return value of -1 with errno set to EINVAL. Attempting to 
use the SHM_SIZE on a shared memory region larger than 256 MB or 
attempting to increase the size of a shared memory region larger than 
256 MB results in a return value of -1 with errno set to EINVAL.

Value Description
456 Developing and Porting C and C++ Applications on AIX



EOVERFLOW The Command parameter is IPC_STAT and the size of the 
shared memory region is greater than or equal to 4 GB. 
This only happens with 32-bit programs.

EPERM The Command parameter is equal to the IPC_RMID or 
SHM_SIZE value, and the effective user ID of the calling 
process is not equal to the value of the shm_perm.uid or 
shm_perm.cuid field in the data structure identified by the 
SharedMemoryID parameter. The effective user ID of the 
calling process is not the root user ID.

The shmget() routine
The shmget() subroutine returns the shared memory identifier associated with 
the specified key parameter.

Library
Standard C library (libc.a)

Syntax
#include <sys/shm.h>
int shmget(Key, Size, Shm_mem_flag)
key_t Key;
size_t Size;
int Shm_mem_flag;

Description
The shmget() subroutine returns the shared memory identifier associated with 
the specified Key parameter.

The following limits apply to shared memory:

� The maximum shared-memory segment size is: 

– 256 MB before AIX Version 4.3.1 

– 2 GB for AIX Version 4.3.1 through AIX 5L Version 5.1 

– 64 GB for 64-bit applications for AIX 5L Version 5.1 and later

� The minimum shared-memory segment size is 1 byte. 

� The maximum number of shared memory IDs is 4096 for operating system 
releases before AIX Version 4.3.2 and 131072 for AIX Version 4.3.2 and 
following.
 Appendix C. Subroutine references for shmat and mmap services 457



Parameters
Key Specify either the IPC_PRIVATE value or an IPC key 

constructed by ftok() routine.

Size Specify the number of bytes of shared memory required.

Shm_mem_flag Constructed by logically ORing one or more of the values 
in Table C-3.

Table C-3   Values for the third parameter of shmget()

Value Description

IPC_CREATE Creates the data structure if it does not already exist.

IPC_EXCL Cause the shmget() subroutine to be unsuccessful if the 
IPC_CREATE flag is also set, and the data structure already exists.

SHM_LGPAGE Attempts to create the region so it can be mapped through 
hardware-supported, large-page mechanisms, if enabled. This is 
purely advisory. For the system to consider this flag, it must be used 
in conjunction with the SHM_PIN flag and enabled with the vmtune 
command (-L to reserve memory for the region (which requires a 
reboot) and -S to enable SHM_PIN). To successfully get 
large-pages, the user requesting large-page shared memory must 
have CAP_BYPASS_RAC_VMM capability. This has no effect on 
shared memory regions created with the EXTSHM=ON environment 
variable.

SHM_PIN Attempts to pin the shared memory region if enabled. This is purely 
advisory. For the system to consider this flag, the system must be 
enabled with the vmtune command. This has no effect on shared 
memory regions created with the EXTSHM=ON environment 
variable.

S_IRUSR Permits the process that owns the data structure to read it.

S_IWUSR Permits the process that owns the data structure to modify it.

S_IRGRP Permits the group associated with the data structure to read it.

S_IWGRP Permits the group associated with the data structure to modify it.

S_IROTH Permits others to read the data structure.

S_IWOTH Permits others to modify the data structure.

Values that begin with S_I prefix are defined in the /usr/include/sys/mode.h file and are 
a subset of the access permissions that apply to files.
458 Developing and Porting C and C++ Applications on AIX



A shared memory identifier, its associated data structure, and a shared memory 
segment equal in number of bytes to the value of the Size parameter are created 
for the Key parameter if one of the following is true:

� The Key parameter is equal to the IPC_PRIVATE value.

� The Key parameter does not already have a shared memory identifier 
associated with it, and the IPC_CREAT flag is set in the SharedMemoryFlag 
parameter.

Upon creation, the data structure associated with the new shared memory 
identifier is initialized as follows:

� The shm_perm.cuid and shm_perm.uid fields are set to the effective user ID 
of the calling process.

� The shm_perm.cgid and shm_perm.gid fields are set to the effective group ID 
of the calling process.

� The low-order 9 bits of the shm_perm.mode field are set to the low-order 9 
bits of the SharedMemoryFlag parameter.

� The shm_segsz field is set to the value of the Size parameter.

� The shm_lpid, shm_nattch, shm_atime, and shm_dtime fields are set to 0.

� The shm_ctime field is set to the current time.

Once created, a shared memory segment is deleted only when the system 
reboots, by issuing the ipcrm command, or by using the following shmctl 
subroutine: 

if (shmctl(id, IPC_RMID, 0) == -1)
perror("error in closing segment"), exit (1);

Return values
Upon successful completion, a shared memory identifier is returned. Otherwise, 
the shmget() subroutine returns a value of -1 and sets the errno global variable to 
indicate the error.

Error codes
The shmget() subroutine is unsuccessful if one or more of the following are true:

EACCES A shared memory identifier exists for the Key parameter, 
but operation permission, as specified by the low-order 9 
bits of the SharedMemoryFlag parameter, is not granted. 

EEXIST A shared memory identifier exists for the Key parameter, 
and both the IPC_CREAT and IPC_EXCL flags are set in 
the SharedMemoryFlag parameter. 
 Appendix C. Subroutine references for shmat and mmap services 459



EINVAL A shared memory identifier does not exist and the Size 
parameter is less than the system-imposed minimum or 
greater than the system-imposed maximum. 

EINVAL A shared memory identifier exists for the Key parameter, 
but the size of the segment associated with it is less than 
the Size parameter, and the Size parameter is not equal 
to 0. 

ENOENT A shared memory identifier does not exist for the Key 
parameter, and the IPC_CREAT flag is not set in the 
SharedMemoryFlag parameter. 

ENOMEM A shared memory identifier and associated shared 
memory segment are to be created, but the amount of 
available physical memory is not sufficient to meet the 
request. 

ENOSPC A shared memory identifier will be created, but the 
system-imposed maximum of shared memory identifiers 
allowed will be exceeded. 

The shmdt() subroutine
Detaches a shared memory segment.

Library
Standard C library (libc.a)

Syntax
#include <sys/shm.h>
int shmdt (SharedMemoryAddress)
const void * SharedMemoryAddress;

Description
The shmdt() subroutine detaches, from the data segment of the calling process, 
the shared memory segment located at the address specified by the 
SharedMemoryAddress parameter.

Mapped file segments are automatically detached when the mapped file is 
closed. However, you can use the shmdt() subroutine to explicitly release the 
segment register used to map a file. Shared memory segments must be explicitly 
detached with the shmdt() subroutine.

If the file was mapped for writing, the shmdt() subroutine updates the mtime and 
ctime time stamps.
460 Developing and Porting C and C++ Applications on AIX



The following limits apply to shared memory:

� The maximum shared-memory segment size is: 

– 256 MB before AIX Version 4.3.1 

– 2 GB for AIX Version 4.3.1 through AIX 5L Version 5.1 

– 64 GB for 64-bit applications for AIX 5L Version 5.1 and later

� The minimum shared-memory segment size is 1 byte. 

� The maximum number of shared memory IDs is 4096 for operating system 
releases before AIX Version 4.3.2 and 131072 for AIX Version 4.3.2 and 
following.

Parameters
SharedMemoryAddress Specifies the data segment start address of a 

shared memory segment.

Return values
When successful, the shmdt subroutine returns a value of 0. Otherwise, the 
shared memory segment at the address specified by the SharedMemoryAddress 
parameter is not detached, a value of 1 is returned, and the errno global variable 
is set to indicate the error.

Error codes
The shmdt() subroutine is unsuccessful if the following condition is true:

EINVAL The value of the SharedMemoryAddress parameter is not the 
data-segment start address of a shared memory segment.

References for mmap services
This section includes the following subroutine references:

� “The mmap() subroutine” on page 461
� “The mprotect() subroutine” on page 467
� “The msync() subroutine” on page 469
� “The munmap() subroutine” on page 471

The mmap() subroutine
Maps a file-system object into virtual memory.
 Appendix C. Subroutine references for shmat and mmap services 461



Library
Standard C library (libc.a)

Syntax
#include <sys/types.h>
#include <sys/mman.h>
void *mmap(addr, len, prot, flags, filedes, offset)
void * addr;
size_t len;
int prot, flags, filedes;
off_t offset;

Description
The mmap() subroutine creates a new mapped file or anonymous memory 
region by establishing a mapping between a process-address space and a 
file-system object. Care needs to be taken when using the mmap() subroutine if 
the program attempts to map itself. If the page containing executing instructions 
is currently referenced as data through an mmap mapping, the program will 
hang. Use the -H4096 binder option, and that will put the executable text on page 
boundaries. Then reset the file that contains the executable material, and view 
via an mmap mapping.

A region created by the mmap() subroutine cannot be used as the buffer for read 
or write operations that involve a device. Similarly, an mmap region cannot be 
used as the buffer for operations that require either a pin or xmattach operation 
on the buffer.

Modifications to a file-system object are seen consistently, whether accessed 
from a mapped file region or from the read or write subroutine.

Child processes inherit all mapped regions from the parent process when the 
fork subroutine is called. The child process also inherits the same sharing and 
protection attributes for these mapped regions. A successful call to any exec 
subroutine will unmap all mapped regions created with the mmap() subroutine.

The mmap64() subroutine is identical to the mmap subroutine() except that the 
starting offset for the file mapping is specified as a 64-bit value. This permits file 
mappings which start beyond OFF_MAX.

In the large file enabled programming environment, mmap() is redefined to be 
mmap64().

If the application has requested SPEC1170 compliant behavior, then the 
st_atime field of the mapped file is marked for update upon successful 
completion of the mmap() call.
462 Developing and Porting C and C++ Applications on AIX



If the application has requested SPEC1170 compliant behavior, then the 
st_ctime and st_mtime fields of a file that is mapped with MAP_SHARED and 
PROT_WRITE are marked for update at the next call to msync() subroutine or 
munmap() subroutine if the file has been modified.

Parameters
addr Specifies the starting address of the memory region to be 

mapped. When the MAP_FIXED flag is specified, this 
address must be a multiple of the page size returned by 
the sysconf() subroutine using the _SC_PAGE_SIZE 
value. A region is never placed at address zero, or at an 
address where it would overlap an existing region.

len Specifies the length, in bytes, of the memory region to be 
mapped. The system performs mapping operations over 
whole page only. If the len parameter is not a multiple of 
the page size, the system will include, in any mapping 
operation, the address range between the end of the 
region and the end of the page containing the end of the 
region.

prot Specifies the access permission for the mapped region. 
The /usr/include/sys/mman.h file defines the following 
access options:

PROT_READ Region can be read.

PROT_WRITE Region can be written.

PROT_EXEC Region can be executed.

PROT_NONE Region cannot be accessed.

The prot parameter can be the PROT_NONE flag, or any 
combination of the other values logically ORed together. If 
the PROT_NONE flag is not specified, access 
permissions may be granted to the region in addition to 
those explicitly requested. However, write access will not 
be granted unless the PROT_WRITE flag is specified.

Note: A file-system object should not be simultaneously mapped using both 
the mmap() and shmat() subroutines. Unexpected results may occur when 
references are made beyond the end of the object.
 Appendix C. Subroutine references for shmat and mmap services 463



If the region is a mapped file that was mapped with the 
MAP_SHARED flag, the mmap() subroutine grants read 
or execute access permission only if the file descriptor 
used to map the file was opened for reading. It grants 
write access permission only if the file descriptor was 
opened for writing.

If the region is a mapped file that was mapped with the 
MAP_PRIVATE flag, the mmap() subroutine grants read, 
write, or execute access permission only if the file 
descriptor used to map the file was opened for reading. If 
the region is an anonymous memory region, the mmap 
subroutine grants all requested access permissions.

filedes Specifies the file descriptor of the file-system object to be 
mapped. If the MAP_ANONYMOUS flag is set, the filedes 
parameter must be -1. After the successful completion of 
the mmap() subroutine, the file specified by the filedes 
parameter may be closed without executing the mapped 
region or the contents of the mapped file. Each mapped 
region creates a file reference, similar to an open file 
descriptor, which prevents the file data from been 
deallocated.

offset Specifies the file byte offset at which the mapping starts. 
This offset must be a multiple of the page size returned by 
the sysconf() routine using the _SC_PAGE_SIZE value.

flags Specify attributes of the mapped region. Values for the 
flags parameter are constructed by a bitwise-inclusive 
ORing of values listed in Table C-4 on page 465, which 
lists symbolic names defined in the 
/usr/include/sys/mman.h file.

Note: The operating system generates a SIGSEGV signal if a program 
attempts an access that exceeds the access permission given to a memory 
region. For example, if the PROT_WRITE flag is not specified and a program 
attempts a write access, a SIGSEGV signal results.

Note: The mmap() subroutine supports the mapping of regular files only. An 
mmap() call that specifies a file descriptor for a special file fails, returning the 
ENODEV error. An example of a file descriptor for a special file is one that 
might be used for mapping either I/O or device memory.
464 Developing and Porting C and C++ Applications on AIX



Table C-4   Values for the sixth parameter of mmap()

Value Description

MAP_FILE Specifies the creation of a new mapped file region by mapping 
the file associated with the filedes file descriptor. The mapped 
region can extend beyond the end of the file, both at the time 
when the mmap() subroutine is called and while the mapping 
persists. This situation could occur if a file with no contents was 
created just before the call to the mmap() subroutine, or if a file 
was later truncated. However, references to whole pages 
following the end of the file result in the delivery of a SIGBUS 
signal. Only one of the MAP_FILE and MAP_ANONYMOUS 
flags must be specified with the mmap() subroutine.

MAP_ANONYMOUS Specifies the creation of a new, anonymous memory region 
that is initialized to all zeros. This memory region can be shared 
only with the descendants of the current process. When using 
this flag, the filedes parameter must be -1. Only one of the 
MAP_FILE and MAP_ANONYMOUS flags must be specified 
with the mmap() subroutine.

MAP_VARIABLE Specifies that the system select an address for the new 
memory region if the new memory region cannot be mapped at 
the address specified by the addr parameter, or if the addr 
parameter is NULL. Only one of the MAP_VARIABLE and 
MAP_FIXED flags must be specified with the mmap() 
subroutine.

MAP_FIXED Specifies that the mapped region be placed exactly at the 
address specified by the addr parameter. If the application has 
requested SPEC1170 complaint behavior and the mmap() 
request is successful, the mapping replaces any previous 
mappings for the process’s pages in the specified range. If the 
application has not requested SEPC170 compliant behavior 
and a previous mapping exists in the range, then the request 
fails. Only one of the MAP_VARIABLE and MAP_FIXED flags 
must be specified with the mmap() subroutine.
 Appendix C. Subroutine references for shmat and mmap services 465



Return values
If successful, the mmap() subroutine returns the address at which the mapping 
was placed. Otherwise, it returns -1 and sets the errno global variable to indicate 
the error.

Error codes
Under the following conditions, the mmap subroutine fails and sets the errno 
global variable to:

EACCES The file referred to by the fildes parameter is not open for 
read access, or the file is not open for write access and 
the PROT_WRITE flag was specified for a 
MAP_SHARED mapping operation, or the file to be 

MAP_SHARED When the MAP_SHARED flag is set, modifications to the 
mapped memory region will be visible to other processes that 
have mapped the same region using this flag. If the region is a 
mapped file region, modifications to the region will be written to 
the file.

You can specify only one of the MAP_SHARED or 
MAP_PRIVATE flags with the mmap() subroutine. 
MAP_PRIVATE is the default setting when neither flag is 
specified unless you request SPEC1170compliant behavior. In 
this case, you must choose either MAP_SHARED or 
MAP_PRIVATE.

MAP_PRIVATE When the MAP_PRIVATE flag is set, modifications to the 
mapped region by the calling process are not visible to other 
processes that have mapped the same region. If the region is a 
mapped file region, modifications to the region are not written 
to the file.

If this flag is specified, the initial write reference to an object 
page creates a private copy of that page and redirects the 
mapping to the copy. Until then, modifications to the page by 
processes that have mapped the same region with the 
MAP_SHARED flag are visible.

You can specify only one of the MAP_SHARED or 
MAP_PRIVATE flags with the mmap() subroutine. 
MAP_PRIVATE is the default setting when neither flag is 
specified unless you request SPEC1170compliant behavior. In 
this case, you must choose either MAP_SHARED or 
MAP_PRIVATE.

Value Description
466 Developing and Porting C and C++ Applications on AIX



mapped has enforced locking enabled and the file is 
currently locked. 

EBADF The fildes parameter is not a valid file descriptor, or the 
MAP_ANONYMOUS flag was set and the fildes 
parameter is not -1. 

EFBIG The mapping requested extends beyond the maximum file 
size associated with fildes. 

EINVAL The flags or prot parameter is invalid, or the addr 
parameter or off parameter is not a multiple of the page 
size returned by the sysconf subroutine using the 
_SC_PAGE_SIZE value for the Name parameter. 

EINVAL The application has requested SPEC1170 compliant 
behavior and the value of flags is invalid (neither 
MAP_PRIVATE nor MAP_SHARED is set). 

EMFILE The application has requested SPEC1170 compliant 
behavior and the number of mapped regions would 
exceed an implementation-dependent limit (per process 
or per system). 

ENODEV The fildes parameter refers to an object that cannot be 
mapped, such as a terminal. 

ENOMEM There is not enough address space to map len bytes or 
the application has not requested Single UNIX 
Specification Version 2 compliant behavior, and the 
MAP_FIXED flag was set and part of the address-space 
range (addr, addr+len) is already allocated.

ENXIO The addresses specified by the range (off, off+len) are 
invalid for the fildes parameter.

EOVERFLOW The mapping requested extends beyond the offset 
maximum for the file description associated with fildes.

The mprotect() subroutine
Modifies access protections for memory mapping.

Library
Standard C library (libc.a)
 Appendix C. Subroutine references for shmat and mmap services 467



Syntax
#include <sys/types.h>
#include <sys/mman.h>

int mprotect ( addr,  len,  prot)
void *addr;
size_t len;
int prot;

Description
The mprotect() subroutine modifies the access protection of a mapped file region 
or anonymous memory region created by the mmap() subroutine. The behavior 
of this function is unspecified if the mapping was not established by a call to the 
mmap() subroutine.

Parameters
addr Specifies the address of the region to be modified. Must 

be a multiple of the page size returned by the sysconf() 
subroutine using the _SC_PAGE_SIZE value for the 
Name parameter. 

len Specifies the length, in bytes, of the region to be modified. 
If the len parameter is not a multiple of the page size 
returned by the sysconf subroutine using the 
_SC_PAGE_SIZE value for the Name parameter, the 
length of the region will be rounded off to the next multiple 
of the page size. 

prot Specifies the new access permissions for the mapped 
region. Legitimate values for the prot parameter are the 
same as those permitted for the mmap (mmap or 
mmap64()) subroutine, as follows:

PROT_READ Region can be read.

PROT_WRITE Region can be written.

PROT_EXEC Region can be executed.

PROT_NONE Region cannot be accessed.

Return values
When successful, the mprotect() subroutine returns 0. Otherwise, it returns -1 
and sets the errno global variable to indicate the error.
468 Developing and Porting C and C++ Applications on AIX



Error codes

If the mprotect() subroutine is unsuccessful, the errno global variable may be set 
to one of the following values:

EACCES The prot parameter specifies a protection that conflicts 
with the access permission set for the underlying file. 

EINVAL The prot parameter is not valid, or the addr parameter is 
not a multiple of the page size as returned by the 
sysconf() subroutine using the _SC_PAGE_SIZE value for 
the Name parameter. 

ENOMEM The application has requested Single UNIX Specification 
Version 2 compliant behavior, and addresses in the range 
are invalid for the address space of the process or specify 
one or more pages which are not mapped.

The msync() subroutine
Synchronizes a mapped file.

Library
Standard C library (libc.a).

Syntax
#include <sys/types.h>
#include <sys/mman.h>
int msync ( addr,  len,  flags)
void *addr;
size_t len;
int flags;

Note: The return value for mprotect() is 0 if it fails, because the region given 
was not created by mmap() unless XPG 1170 behavior is requested by setting 
the environment variable XPG_SUS_ENV to ON.

Attention: If the mprotect() subroutine is unsuccessful because of a condition 
other than that specified by the EINVAL error code, the access protection for 
some pages in the (addr, addr + len) range may have been changed.
 Appendix C. Subroutine references for shmat and mmap services 469



Description
The msync() subroutine controls the caching operations of a mapped file region. 
Use the msync() subroutine to transfer modified pages in the region to the 
underlying file storage device.

If the application has requested Single UNIX Specification Version 2 compliant 
behavior then the st_ctime and st_mtime fields of the mapped file are marked for 
update upon successful completion of the msync() subroutine call if the file has 
been modified.

Parameters
addr Specifies the address of the region to be synchronized. 

Must be a multiple of the page size returned by the 
sysconf() subroutine using the _SC_PAGE_SIZE value for 
the Name parameter. 

len Specifies the length, in bytes, of the region to be 
synchronized. If the len parameter is not a multiple of the 
page size returned by the sysconf() subroutine using the 
_SC_PAGE_SIZE value for the Name parameter, the 
length of the region is rounded up to the next multiple of 
the page size. 

flags Specifies one or more of the symbolic constants listed in 
Table C-5 that determine the way caching operations are 
performed.

Table C-5   The third parameter of msync()

Value Description

MS_SYNC Specifies synchronous cache flush. The msync subroutine does 
not return until the system completes all I/O operations.
This flag is invalid when the MAP_PRIVATE flag is used with the 
mmap() subroutine. MAP_PRIVATE is the default privacy setting. 
When the MS_SYNC and MAP_PRIVATE flags both are used, the 
msync() subroutine returns an errno value of EINVAL.

MS_ASYNC Specifies an asynchronous cache flush. The msync() subroutine 
returns after the system schedules all I/O operations.
This flag is invalid when the MAP_PRIVATE flag is used with the 
mmap() subroutine. MAP_PRIVATE is the default privacy setting. 
When the MS_SYNC and MAP_PRIVATE flags both are used, the 
msync() subroutine returns an errno value of EINVAL.

MS_INVALIDATE Specifies that the msync() subroutine invalidates all cached copies 
of the pages. New copies of the pages must then be obtained from 
the file system the next time they are referenced.
470 Developing and Porting C and C++ Applications on AIX



Return values
When successful, the msync() subroutine returns 0. Otherwise, it returns -1 and 
sets the errno global variable to indicate the error.

Error codes
If the msync() subroutine is unsuccessful, the errno global variable is set to one 
of the following values:

EIO An I/O error occurred while reading from or writing to the 
file system. 

ENOMEM The range specified by (addr, addr + len) is invalid for a 
process' address space, or the range specifies one or 
more unmapped pages. 

EINVAL The addr argument is not a multiple of the page size, as 
returned by the sysconf() subroutine using the 
_SC_PAGE_SIZE value for the Name parameter, or the 
flags parameter is invalid. The address of the region is 
within the process' inheritable address space. 

The munmap() subroutine
Unmaps a mapped region.

Library
Standard C library (libc.a)

Syntax
#include <sys/types.h>
#include <sys/mman.h>
int munmap ( addr,  len)
void *addr;
size_t len;

Description
The munmap() subroutine unmaps a mapped file region or anonymous memory 
region. The munmap() subroutine unmaps regions created from calls to the 
mmap() subroutine only.

If an address lies in a region that is unmapped by the munmap subroutine and 
that region is not subsequently mapped again, any reference to that address will 
result in the delivery of a SIGSEGV signal to the process.
 Appendix C. Subroutine references for shmat and mmap services 471



Parameters
addr Specifies the address of the region to be unmapped. Must 

be a multiple of the page size returned by the sysconf() 
subroutine using the _SC_PAGE_SIZE value for the 
Name parameter.

len Specifies the length, in bytes, of the region to be 
unmapped. If the len parameter is not a multiple of the 
page size returned by the sysconf() subroutine using the 
_SC_PAGE_SIZE value for the Name parameter, the 
length of the region is rounded up to the next multiple of 
the page size.

Return values
When successful, the munmap() subroutine returns 0. Otherwise, it returns -1 
and sets the errno global variable to indicate the error.

Error codes
If the munmap() subroutine is unsuccessful, the errno global variable is set to the 
following value:

EINVAL The addr parameter is not a multiple of the page size, as 
returned by the sysconf() subroutine using the 
_SC_PAGE_SIZE value for the Name parameter. 

EINVAL The application has requested Single UNIX Specification 
Version 2 compliant behavior and the len argument is 0.
472 Developing and Porting C and C++ Applications on AIX



Appendix D. Subroutine references for 
POSIX threads

This appendix provides Pthread subroutine references supported on AIX 5L 
Version 5.2 using the categories defined by the following sections:

� “Subroutines defined in the POSIX thread standard” on page 474

� “Subroutines defined in the UNIX 98 Specification” on page 479

� “Extensions to POSIX thread” on page 481

In each category, Pthread subroutines are described by routine names and short 
descriptions. For complete information about Pthread subroutines, please refer to 
AIX 5L Version 5.2 Technical Reference: Base Operating System and 
Extensions.

In addition to the Pthread subroutines (starting from pthread_), AIX provides a 
set of subroutines starting from pthdb_, which are called as Pthread debug 
library subroutines, in order to offer additional functions over the POSIX thread 
standard. For further information about the Pthread debug library, please refer to 
the “Parallel Programming“ section of AIX 5L Version 5.2 General Programming 
Concepts: Writing and Debugging Programs.

D

© Copyright IBM Corp. 2000, 2003. All rights reserved. 473



Subroutines defined in the POSIX thread standard
We have categorized the Pthread subroutines defined in the POSIX thread 
standard, which are supported on AIX, into the following:

Thread management sub-routines See Table D-1.
Execution scheduling sub-routines See Table D-2 on page 476.
Synchronization sub-routines See Table D-3 on page 477.
Thread-specific data sub-routines See Table D-4 on page 479.

Table D-1   Thread management sub-routines

Name Description

pthread_attr_init() Initializes a thread attributes object.

pthread_attr_destroy() Destroys a thread attributes object.

pthread_attr_setdetachstate() Sets the detachstate attribute of a thread attributes 
object. This attribute determines if a thread created 
with this thread attributes object is in a detached state 
or not.

pthread_attr_getdetachstate() Gets the detach state attribute from a thread attributes 
object.

pthread_attr_setstackaddr() Sets the value of the stackaddr attribute of a thread 
attributes object. This attribute specifies the stack 
address of a thread created with this attributes object.

pthread_attr_getstackaddr() Gets the stackaddr attribute from a thread attributes 
object.

pthread_attr_setstacksize() Sets the value of the stacksize attribute of a thread 
attributes object. This attribute specifies the minimum 
stack size, in bytes, of a thread created with this 
thread attributes object.

pthread_attr_getstacksize() Gets the stacksize attribute from a thread attributes 
object.

pthread_testcancel() Creates a cancellation point in the calling thread.

pthread_setcancelstate() Atomically sets the calling thread's cancelability state 
to the indicated state and returns the previous 
cancelability state at a specified location reference.

pthread_setcanceltype() Atomically sets the calling thread's cancelability type 
to the indicated type and returns the previous 
cancelability type at a specified location reference.
474 Developing and Porting C and C++ Applications on AIX



pthread_create() Creates a new thread and initializes its attributes 
using the thread attributes object specified, or 
standard values instead, if the NULL pointer is 
specified. After thread creation, a thread attributes 
object can be reused to create another thread, or 
deleted.

pthread_exit() Terminates the calling thread safely, and stores a 
termination status for any thread that may join the 
calling thread.

pthread_cancel() Requests the cancellation of the specified thread. The 
action depends on the cancelability of the target 
thread.

pthread_kill() Sends the specified signal to the specified thread. It 
acts with threads like the kill subroutine with 
single-threaded processes.

pthread_join() Blocks the calling thread until the specified thread 
terminates. If the specified thread is in a detached 
state (non-joinable), an error is returned.

pthread_detach() Used to indicate to the implementation that storage for 
the specified thread can be reclaimed when that 
thread terminates.

pthread_once() Executes the specified routine exactly once in a 
process. The first call to this subroutine by any thread 
in the process executes the given routine, without 
parameters. Any subsequent call will have no effect.

pthread_self() Returns the calling thread's ID.

pthread_equal() Compares the two specified thread IDs. Returns zero 
if and only if the IDs are equal.

pthread_atfork() Threads can fork processes. This routine registers 
fork cleanup handlers. Three handlers can be 
specified: prepare, parent, and child. The prepare 
handler is called before the processing of the fork 
subroutine commences. The parent handler is called 
after the processing of the fork subroutine completes 
in the parent process. The child handler is called after 
the processing of the fork subroutine completes in the 
child process.

Name Description
 Appendix D. Subroutine references for POSIX threads 475



Table D-2   Execution scheduling sub-routines

pthread_cleanup_push() Pushes the specified cancellation cleanup handler 
routine onto the calling thread's cancellation cleanup 
stack.

pthread_cleanup_pop() Removes the routine at the top of the calling thread's 
cancellation cleanup stack and optionally invokes it (if 
execute is non-zero).

Name Description

pthread_attr_setschedparam() Sets the value of the schedparam attribute of the 
specified thread attributes object. The given 
schedparam attribute specifies the scheduling 
parameters of a thread created with this attributes 
object.

pthread_attr_getschedparam() Gets the value of the schedparam attribute of the 
specified thread attributes object.

pthread_attr_setscope() The contention scope can only be set before thread 
creation by setting the contention-attribute of a 
thread attributes object. The pthread_attr_setscope 
subroutine sets the attribute to the specified value.

pthread_attr_getscope() Gets the contention-scope attribute of the specified 
thread attributes object.

pthread_attr_setinheritsched() Sets the inheritsched attribute of the specified thread 
attributes object to a given value.

pthread_attr_getinheritsched() Gets the inheritsched attribute of the specified 
thread attributes object.

pthread_attr_setschedpolicy() Sets the schedpolicy attribute of the specified thread 
attributes object.

pthread_attr_getschedpolicy() Gets the schedpolicy attribute of the specified thread 
attributes object.

Name Description
476 Developing and Porting C and C++ Applications on AIX



Table D-3   Synchronization sub-routines

pthread_setschedparam() Dynamically sets the schedpolicy and schedparam 
attributes of the specified thread. The given 
schedpolicy attribute specifies the scheduling policy 
of the thread. The given schedparam attribute 
specifies the scheduling parameters. The 
implementation of this subroutine is dependent on 
the priority scheduling POSIX option. The priority 
scheduling POSIX option is implemented in the 
operating system. If the target thread has system 
contention-scope, the process must have root 
authority to set the scheduling policy to either 
SCHED_FIFO or SCHED_RR.

pthread_getschedparam() Returns the current schedpolicy and schedparam 
attributes of the thread
thread. The schedpolicy attribute specifies the 
scheduling policy of a thread.

Name Description

pthread_mutexattr_init() Initializes a mutex attributes object with the default 
value for all of the attributes defined by the 
implementation.

pthread_mutexattr_destroy() Destroys a mutex attributes object; the object 
becomes, in effect, uninitialized.

pthread_mutexattr_setpshared() Sets the process-shared attribute in a given initialized 
attributes object.

pthread_mutexattr_getpshared() Obtains the value of the process-shared attribute from 
the given attributes object.

pthread_mutex_init() Initializes the given mutex with attributes specified by 
a given attributes object. If the attributes object is 
NULL, the default mutex attributes are used.

pthread_mutex_destroy() Destroys the specified mutex object; the mutex object 
becomes, in effect, uninitialized.

pthread_mutex_lock() The specified mutex object is locked by calling. If the 
mutex is already locked, the calling thread blocks until 
the mutex becomes available.

Name Description
 Appendix D. Subroutine references for POSIX threads 477



pthread_mutex_trylock() Identical to pthread_mutex_lock(), except that if the 
referenced mutex object is currently locked (by any 
thread, including the current thread), the call returns 
immediately.

pthread_mutex_unlock() Releases the referenced mutex object. The manner in 
which a mutex is released is dependent upon the 
mutex's type attribute.

pthread_condattr_init() Initializes a specified condition variable attributes 
object with the default value for all of the attributes 
defined by the implementation.

pthread_condattr_destroy() Destroys a specified condition variable attributes 
object; the object becomes, in effect, uninitialized.

pthread_condattr_setpshared() Sets the value of the pshared attribute of the specified 
condition attributes object. This attribute specifies the 
process sharing of the condition variable created with 
this attributes object.

pthread_condattr_getpshared() Returns the value of the pshared attribute of the 
specified condition attribute object. This attribute 
specifies the process sharing of the condition variable 
created with this attributes object.

pthread_cond_init() Initializes the given condition variable with attributes 
given by a condition attributes object. If that object is 
NULL, the default condition variable attributes are 
used.

pthread_cond_destroy() Destroys the given condition variable; the object 
becomes, in effect, uninitialized.

pthread_cond_wait() Blocks on a condition variable. Must be called with a 
specified mutex locked by the calling thread or 
undefined behavior will result. 

pthread_cond_timedwait() Same as pthread_cond_wait(), except that an error is 
returned if the specified absolute time passes (that is, 
system time equals or exceeds the specified absolute 
time) before the specified condition is signaled or 
broadcasted, or if the absolute time specified has 
already been passed at the time of the call.

pthread_cond_signal() Unblocks one or more threads blocked on the 
specified condition.

Name Description
478 Developing and Porting C and C++ Applications on AIX



Table D-4   Thread-specific data sub-routines

Subroutines defined in the UNIX 98 Specification
We have categorized the Pthread subroutines defined in the UNIX 98 
Specification, which are supported on AIX 5L Version 5.2, into the following:

Read-write lock sub-routines See Table D-5 on page 480.
Additional POSIX threads sub-routines See Table D-6 on page 481.

pthread_cond_broadcast() Unblocks all the blocked threads on the specified 
condition.

Name Description

pthread_key_create() Creates a thread-specific data key. The key is shared among 
all threads within the process, but each thread has specific 
data associated with the key. The thread-specific data is a 
void pointer, initially set to NULL. An optional destructor 
routine can be specified. It will be called for each thread when 
it is terminated and detached, after the call to the cleanup 
routines, if the specific value is not NULL.

pthread_key_delete() Deletes the given thread-specific data key previously created 
with the pthread_key_create() subroutine. The application 
must ensure that no thread-specific data is associated with 
the key.

pthread_setspecific() Associates a thread-specific value with a key obtained 
through a previous call to pthread_key_create(). Different 
threads may bind different values to the same key.

pthread_getspecific() Returns the value currently bound to the specified key on 
behalf of the calling thread.

Note: Currently, AIX does not support the following sub-routines. Although the 
symbols are provided in the Pthread library, but calls to these routines always 
return with ENOSYS:

� pthread_mutexattr_setprioceiling()
� pthread_mutexattr_getprioceiling()
� pthread_mutexattr_setprotocol()
� pthread_mutexattr_getprotocol()
� pthread_mutex_setprioceiling()
� pthread_mutex_getprioceiling()

Name Description
 Appendix D. Subroutine references for POSIX threads 479



Table D-5   Read-write lock sub-routines

Name Description

pthread_rwlockattr_init() Initializes the read-write specified lock with the 
attributes referenced by the given read-write lock 
attribute object. If that object is NULL, the default 
read-write lock attributes are used.

pthread_rwlockattr_destroy() Destroys the specified read-write lock attribute object 
and releases any resources used by the lock.

pthread_rwlockattr_setpshared() Sets the process-shared attribute in the given 
initialized read-write lock attributes object.

pthread_rwlockattr_getpshared() Obtains the value of the process-shared attribute 
from the given initialized read-write lock attributes 
object.

pthread_rwlock_init() Initializes the specified read-write lock with the 
attributes from a given read-write lock attributes 
object. If that object is NULL, the default read-write 
lock attributes are used.

pthread_rwlock_destroy() Destroys the specified read-write lock object and 
releases any resources used by the lock.

pthread_rwlock_rdlock() Applies a read lock to the given read-write lock. The 
calling thread acquires the read lock if a writer does 
not hold the lock and there are no writers blocked on 
the lock.

pthread_rwlock_tryrdlock() Applies a read lock as in the pthread_rwlock_rdlock() 
function with the exception that the function fails if any 
thread holds a write lock on the specified read-write 
lock or there are writers that sblocked the lock.

pthread_rwlock_wrlock() Applies a write lock to the given read-write lock. The 
calling thread acquires the write lock if no other 
thread (reader or writer) holds the read-write lock. 
Otherwise, the thread blocks (that is, does not return 
from the pthread_rwlock_wrlock() call) until it can 
acquire the lock.

pthread_rwlock_trywrlock() Applies a write lock like the pthread_rwlock_wrlock() 
function, with the exception that the function fails if 
any thread currently holds the specified read-write 
lock (for reading or writing).

pthread_rwlock_unlock() Releases a lock held on the specified read-write lock 
object.
480 Developing and Porting C and C++ Applications on AIX



Table D-6   Additional POSIX threads sub-routines defined in UNIX 98

Extensions to POSIX thread
The POSIX thread standard leaves certain aspects of implementation defined, 
unspecified, or even undefined. Therefore, most UNIX operating system vendors 
provide several extensions in order to complement those areas in the POSIX 
thread standard.

On AIX, those extension subroutines are starting from pthread_ and ending in 
_np to signify that a library routine is non-portable and should not be used in 
code that will be ported to other UNIX-based systems (see Table D-7 on 
page 482).

Name Description

pthread_setconcurrency() Allows an application to inform the threads 
implementation of its desired concurrency level. The 
actual level of concurrency provided by the 
implementation as a result of this function call is 
unspecified.

pthread_getconcurrency() Returns the value set by a previous call to the 
pthread_setconcurrency() function.

pthread_attr_setguardsize() Sets the guardsize attribute in a thread attribute 
object. The guardsize attribute controls the size of the 
guard area for the created thread's stack. The 
guardsize attribute provides protection against 
overflow of the thread’s stack pointer.

pthread_attr_getguardsize() Gets the guardsize attribute of a thread attributes 
object.

pthread_mutexattr_settype() Sets the mutex type attribute of a mutex attributes 
object to a given type.

pthread_mutexattr_gettype() Gets the type attribute of a given mutex attributes 
object.

pthread_suspend() Suspends execution of specified thread.

pthread_continue() Resumes execution of specified thread.
 Appendix D. Subroutine references for POSIX threads 481



Table D-7   Non-portable thread routines in AIX

Relevant information about these non-portable subroutines could be find in the 
following publications:

� AIX Version 4.3 Differences Guide, SG24-2014

� AIX 5L Differences Guide Version 5.2 Edition, SG24-5765

Routine Routine (continued)

pthread_atfork_unregister_np()
pthread_attr_getsuspendstate_np()
pthread_attr_setstacksize_np()
pthread_attr_setsuspendstate_np()
pthread_cleanup_information_np()
pthread_cleanup_pop_np()
pthread_cleanup_push_np()
pthread_clear_exit_np()
pthread_continue_np()
pthread_continue_others_np()
pthread_delay_np()
pthread_get_expiration_np()
pthread_getrusage_np()

pthread_getthrds_np()
pthread_getunique_np()
pthread_join_np()
pthread_lock_global_np()
pthread_mutexattr_getkind_np()
pthread_mutexattr_setkind_np()
pthread_set_mutexattr_default_np()
pthread_setcancelstate_np()
pthread_signal_to_cancel_np()
pthread_suspend_np()
pthread_suspend_others_np()
pthread_test_exit_np()
pthread_unlock_global_np()
482 Developing and Porting C and C++ Applications on AIX



Appendix E. Supported IBM SMP 
directives

This appendix explains IBM SMP directives supported by the following compiler 
products:

� C for AIX Version 6.0

� VisualAge C++ for AIX Version 6.0

When developing new applications, it is recommended that you use OpenMP 
directives explained in Chapter 8, “Introduction to POSIX threads” on page 275.

For further information about IBM directives, please refer to:

� C for AIX Compiler Reference, SC09-4960

� VisualAge C++ for AIX Compiler Reference, SC09-4959

E

© Copyright IBM Corp. 2000, 2003. All rights reserved. 483



IBM SMP directives
IBM SMP directives for parallelization are based on the possibility of parallelizing 
countable loops. A loop is considered countable when the following rules can be 
applied:

� There is no branching into or outside of the loop.

� The incremental expression (incr_expr) is not within a critical section.

Table E-1 shows the C language control flow statements and the regular 
expressions that define when they can be treated as countable loops.

Table E-1   Regular expressions for countable loops

Where:

exit_cond iv <= ub

iv < ub

iv >= ub

iv > ub

incr_expr ++iv

C control flow statement keywords Regular expression

for for ([iv]; exit_cond; incr_expr)
statement

for ([iv]; exit_cond; [expr] {
[declaration_list]
[statement_list]
incr_expr;
[statement_list]

}

while while (exit_cond) {
[declaration_list]
[statement_list]
incr_expr;
[statement_list]

}

do do {
[declaration_list]
[statement_list]
incr_expr;
[statement_list]

} while (exit_cond)
484 Developing and Porting C and C++ Applications on AIX



iv++

--iv

i--

iv += incr

iv -= incr

iv = iv + incr

iv = incr + iv

iv = iv - incr

iv Iteration variable. The iteration variable is a signed integer 
that has either automatic or register storage class, does 
not have its address taken, and is not modified anywhere 
in the loop except in incr_expr.

incr Loop invariant signed integer expression. The value of the 
expression is known at compile-time and is not 0. incr 
cannot reference extern or static variables, pointers or 
pointer expressions, function calls, or variables that have 
their address taken.

ub Loop invariant signed integer expression. ub cannot 
reference extern or static variables, pointers or pointer 
expressions, function calls, or variables that have their 
address taken.

In general, a countable loop is automatically parallelized only if all of the following 
conditions are met:

� The order in which loop iterations start or end does not affect the results of 
the program.

� The loop does not contain I/O operations.

� Floating point reductions inside the loop are not affected by round-off error, 
unless the -qnostrict option is in effect.

� The -qnostrict_induction compiler option is in effect.

� The -qsmp compiler option is in effect without its omp sub option. The 
compiler must be invoked using a thread-safe compiler mode.

The IBM SMP directives syntax
When using IBM SMP directives for explicitly defining parallel portions of code, 
use the following syntax:

#pragma ibm pragma_name_and_args
 Appendix E. Supported IBM SMP directives 485



<countable for|while|do loop>

Pragma directives must appear immediately before the section of code to which 
they apply. For most parallel processing pragma directives, this section of code 
must be a countable loop, and the compiler will report an error if one is not found.

More than one parallel processing pragma directive can be applied to a 
countable loop. For example:

#pragma ibm independent_loop
#pragma ibm independent_calls
#pragma ibm schedule(static,5)
<countable for|while|do loop>

Some pragma directives are mutually-exclusive. If mutually-exclusive pragmas 
are specified for the same loop, the last pragma specified applies to the loop. In 
the example below, the parallel_loop pragma directive is applied to the loop, and 
the sequential_loop pragma directive is ignored:

#pragma ibm sequential_loop
#pragma ibm parallel_loop

Other pragmas, if specified repeatedly for a given loop, have an additive effect. 
For example:

#pragma ibm permutation (a,b)
#pragma ibm permutation (c)

is equivalent to:

#pragma ibm permutation (a,b,c)

Table E-2 shows all IBM pragma directives supported by the latest compilers.

Table E-2   Supported IBM pragma directives

Pragma Description

#pragma ibm critical Instructs the compiler that the statement or 
statement block immediately following this 
pragma is a critical section.

#pragma ibm independent_calls Asserts that specified function calls within the 
chosen loop have no loop-carried 
dependencies.

#pragma ibm independent_loop Asserts that iterations of the chosen loop are 
independent, and that the loop can therefore 
be parallelized.

#pragma ibm iterations Specifies the approximate number of loop 
iterations for the chosen loop.
486 Developing and Porting C and C++ Applications on AIX



#pragma ibm parallel_loop Explicitly instructs the compiler to parallelize 
the chosen loop.

#pragma ibm permutation Asserts that specified arrays in the chosen 
loop contain no repeated values.

#pragma ibm schedule Specifies scheduling algorithms for parallel 
loop execution.

#pragma ibm sequential_loop Explicitly instructs the compiler to execute the 
chosen loop sequentially.

Pragma Description
 Appendix E. Supported IBM SMP directives 487



488 Developing and Porting C and C++ Applications on AIX



Appendix F. Sample compiler listing

This appendix includes a sample compiler listing, as explained in 6.2, 
“Diagnosing compile-time errors” on page 227.

F

© Copyright IBM Corp. 2000, 2003. All rights reserved. 489



Compiler listing
The following is a sample compiler listing showing the various sections described 
in “Compiler listing” on page 228.

Example: F-1   Sample compiler listing

C for AIX Compiler Version 6.0.0.2 --- hello.c 02/11/03 13:31:29 (C)

>>>>> SOURCE SECTION <<<<<

        1 | #include <stdio.h>
        2 | 
        3 | void main() {
        4 |         printf(“hello\n”);
        5 | }

>>>>> OPTIONS SECTION <<<<<

C for AIX Compiler Version 6.0.0.2 --- 
***   Command Line Invocation ***
***   Options In Effect   ***

NOA                 NOAE                NOALLOCA            NOBROWSE           
NOCOMPACT           NOCPLUSCMT          NODBCS              NODBXEXTRA         
NODIGRAPH           DOLLAR              NOEXTCHK            NOFDPR             
NOFULLPATH          NOFUNCSECT          NOG                 NOGRAPHICS         
NOHEAPDEBUG         NOIDIRFIRST         NOIGNERRNO          NOINLGLUE          
NOLARGEPAGE         NOLIBANSI           NOLINEDEBUG         LINEDIR            
LIST                LISTOPT             LONGLONG            NOMACPSTR          
NOMAKEDEP           NOMBCS              NOOFFSET            NOP                
NOPASCAL            NOPDF1              NOPDF2              NOPHSINFO          
PRINT               NOPROTO             NOREPORT            NORO               
NOROCONST           NOSMALLSTACK        SOURCE              NOSTATSYM          
STDINC              STRICT              STRICT_INDUCTION    NOSYNTAXONLY       
NOTHREADED          NOTOCMERGE          UNWIND              UPCONV             
NOWARN64            NOXCALL             NOXCOFF             NOXPH2             

OPTIMIZE=0
INLINE THRESHOLD=20
AGGRCOPY=NOOVERLAP
ALIAS=NOANSI:NOTYPEPTR:NOALLPTRS:NOADDRTAKEN
ALIGN=POWER
ATTR
BITFIELDS=UNSIGNED
CHARS=UNSIGNED
DATAIMPORTED
ENUM=INT
FLAG=I:I
490 Developing and Porting C and C++ Applications on AIX



FLOAT=NOHSFLT:NORNDSNG:NOHSSNGLE:MAF:NORSQRT:NORRM:FOLD:NOSPNANS:NOFLTINT:NOEMU
LATE
FLTTRAP=NOOV:NOUND:NOZERO:NOINV:NOINEX:NOEN:NOIMP
NOGENPROTO
HALT=S
NOHOT
INFO=NOCLS:NOCMP:NOCND:NOCNS:NOCNV:NOCPY:NODCL:NOEFF:NOENU:NOEXT:NOGEN:NOGNR:NO
GOT:NOINI:NOLAN:NOOBS:NOORD:NOPAR:NOPOR:NOPPC:NOPPT:NOPRO:NOREA:NORET:NOTRD:NOT
RU:TRX:NOUND:NOUNI:NOUSE:NOVFT:NOPRIVATE:NOREDUCTION:NOC99
LANGLVL=EXTENDED:NOUCS
LONGDOUBLE=128
NOMAXERR
MAXMEM=8192
OS=AIX
PROCUNKNOWN
SHOWINC=NOSYS:NOUSR
NOSMP

SPILL=512
TBTABLE=DEFAULT
TUNE=DEFAULT
UNROLL=AUTO
XREF
YN (ROUND NEAR)
REACHABLE=setjmp
REACHABLE=_setjmp
REACHABLE=sigsetjmp
REACHABLE=_sigsetjmp

>>>>> ATTRIBUTE AND CROSS REFERENCE SECTION <<<<<

fhandle                          struct tag
                                 4-528.8$  4-528.16{  4-530.1}  4-531.16   

fid                              struct tag
                                 4-521.8$  4-521.12{  4-524.1}  4-525.16   

fileid                           struct tag
                                 4-500.8$  4-500.15{  4-505.1}  4-535.16   

label_t                          struct tag
                                 8-48.16$  8-51.16   8-49.1{  8-67.1}  

main                             extern function returning void
                                 0-3.6Y  

printf                           extern function returning int
 Appendix F. Sample compiler listing 491



                                 1-263.17X  0-4.9Z  

unique_id                        struct tag
                                 4-545.8$  4-545.18{  4-550.1}  4-551.16   

>>>>> FILE TABLE SECTION <<<<<

                                       FILE CREATION        FROM
FILE NO   FILENAME                    DATE       TIME       FILE    LINE
     0    hello.c                     02/11/03   13:23:32
     1    /usr/include/stdio.h        09/13/02   10:34:34      0       1
     2    /usr/include/standards.h    09/13/02   10:27:52      1      43
     3    /usr/include/va_list.h      09/13/02   10:27:45      1     185
     4    /usr/include/sys/types.h    09/13/02   10:27:48      1     399
     5    /usr/include/sys/inttypes.h 09/13/02   10:27:52      4      55
     6    /usr/include/stdint.h       09/13/02   10:27:52      5      62
     7    /usr/include/standards.h    09/13/02   10:27:52      6      28
     8    /usr/include/sys/m_types.h  09/13/02   10:52:54      4     393
     9    /usr/include/sys/vm_types.h 09/13/02   10:53:54      8      40
    10    /usr/include/va_list.h      09/13/02   10:27:45      1     432
    11    /usr/include/sys/limits.h   09/13/02   10:28:31      1     466
    12    /usr/include/float.h        09/13/02   10:51:20     11     263

>>>>> COMPILATION EPILOGUE SECTION <<<<<

C for AIX Summary of Diagnosed Conditions

TOTAL   UNRECOVERABLE  SEVERE       ERROR     WARNING    INFORMATIONAL
               (U)       (S)         (E)        (W)          (I)
    0           0         0           0          0            0

Source records read.........................................    3591

1501-008  Compilation successful for file hello.c. Object file created.

>>>>> OBJECT SECTION, NO OPTIMIZATION <<<<<

 GPR’s set/used:   ss-s ssss ssss s---  ---- ---- ---- ---s
 FPR’s set/used:   ssss ssss ssss ss--  ---- ---- ---- ----
 CCR’s set/used:   ss-- -sss

     | 000000                           PDEF     main
    3|                                  PROC     
    0| 000000 mfspr    7C0802A6   1     LFLR     gr0=lr
492 Developing and Porting C and C++ Applications on AIX



    0| 000004 stw      93E1FFFC   0     ST4A     #stack(gr1,-4)=gr31
    0| 000008 stw      90010008   2     ST4A     #stack(gr1,8)=gr0
    0| 00000C stwu     9421FFC0   0     ST4U     gr1,#stack(gr1,-64)=gr1
    3| 000010 lwz      83E20004   1     L4A      gr31=.$STATIC(gr2,0)
    4| 000014 addi     387F0008   2     AI       gr3=gr31,8
    4| 000018 bl       4BFFFFE9   0     CALL     
gr3=printf,1,gr3,printf”,gr1,cr[01567]”,gr0”,gr4”-gr12”,fp0”-fp13”
    4| 00001C ori      60000000   1
    5|                              CL.1:
    5| 000020 lwz      80010048   1     L4A      gr0=#stack(gr1,72)
    5| 000024 mtspr    7C0803A6   2     LLR      lr=gr0
    5| 000028 addi     38210040   1     AI       gr1=gr1,64
    5| 00002C lwz      83E1FFFC   0     L4A      gr31=#stack(gr1,-4)
    5| 000030 bclr     4E800020   2     BA       lr
     |               Tag Table
     | 000034        00000000 00002041 80010001 00000034 00046D61 696E
     |               Instruction count           13
     |               Straight-line exec time     13
 Appendix F. Sample compiler listing 493



494 Developing and Porting C and C++ Applications on AIX



acronyms
ANSI American National Standard 
Institute

APAR Authorized Problem Analysis 
Report

API Application Programming 
Interface

ASCII American National Standard 
Code for Information 
Interchange

BOS Base Operating System

BSD Berkeley Software Distribution

BSS Block Started by Symbol

CD Compact Disk

CDE Common Desktop 
Environment

CD-ROM CD-Read Only Media

CDT Central Daylight Time

CPU Central Processing Unit

CST Central Standard Time

DCE Distributed Computer 
Environment

DLL Dynamic Link Library

DLPAR Dynamic Logical Partitioning

DSA Dynamic Segment Allocation

DVD Digital Versatile Disk

DVD-R DVD-Recordable

DVD-RAM DVD-Random Access Media

DVD-ROM DVD-Read Only Media

EB Exabyte

EXTSHM Extended Mode Shared 
Memory Segments

FC Feature Code

FIFO First-in First-out

Abbreviations and 
© Copyright IBM Corp. 2000, 2003. All rights reserved
FTSS Field Technical Support 
Specialist

GB Gigabyte

GID Group ID

GMT Greenwich Mean Time

GNU GNU is Not UNIX

GPR General Purpose Register

GUI Graphical User Interface

HMC IBM Hardware Management 
Console for pSeries

HPC High-Performance Computing

HTML Hyper-Text Markup Language

HTTP Hyper-Text Transfer Protocol

I/O Input/Output

IBM International Business 
Machines Corporation

IDE Integrated Development 
Environment

IEEE Institute of Electrical and 
Electronics Engineers

ILP32 integer/long/pointer 32-bit

IOC IBM Open Class Library

IPA Interprocedural Analysis

IPC Inter-Process Communication

ISBN International Standard Book 
Number

ISO International Organization for 
Standardization

ISV Independent Software Vendor

ITSO International Technical 
Support Organization

JFS Journaled File System

JFS2 Enhanced Journaled File 
System
.  495



K&R The C programming language 
standard defined by Brian W. 
Kernighan and Dennis M. 
Ritchie

KB Kilobyte

LIFO Last-In First-Out

LP64 Long/Pointer 64-bit

LPP License Program Product

LUM License Use Management

LWP Light-Weight Process

MB Megabyte

MP Multiprocessor

NFS Network File System

NIS Network Information Service

OS Operating System

PB Petabyte

PCI Peripheral Component 
Interconnect

PDF Portable Document Format or 
Profile-Directed Feedback

PID Process ID

POSIX Portable Operating System 
Interface

POWER Performance Optimization 
with Enhanced RISC

PPID Parent Process ID

PTF Program Temporary Fix

RAD Rapid Application 
Development

RISC Reduced Instruction Set 
Computer

RMC Resource Monitoring and 
Control

RML Recommended Maintenance 
Level

RSCT Reliable Scalable Cluster 
Technology

SMIT System Management 
Interface Tool

SMP Symmetric Multiple Processor

STL Standard Template Library

TB Terabyte

TID Thread ID

TLB Translation Look-Aside Buffer

TOC Table of Contents

TSD Thread-Specific Data

TTY Teletypewriter

UCS Universal Coded Character 
Set

UID User ID

UP Uniprocessor

URL Universal Resource Locator

VMM Virtual Memory Manager

VP Virtual Processor

WLM Work Load Manager

XCOFF eXtended Common Object 
File Format
496 Developing and Porting C and C++ Applications on AIX



Related publications

The publications listed in this section are considered particularly suitable for a 
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks” 
on page 500.

� AIX 5L Differences Guide Version 5.2 Edition, SG24-5765

� AIX 5L Porting Guide, SG24-6034

� AIX Version 4.3 Differences Guide, SG24-2014

� The Complete Partitioning Guide for IBM  ̂pSeries Servers, 
SG24-7039

� IBM  ̂pSeries 670 and pSeries 690 System Handbook, SG24-7040

� Managing AIX Server Farms, SG24-6606

� The POWER4 Processor Introduction and Tuning Guide, SG24-7041

� A Practical Guide for Resource Monitoring and Control (RMC), SG24-6615

AIX official publications
The following publications are contained in the AIX 5L for POWER V 5.2 
Documentation CD, 5765-E62, which is shipped as a part of the AIX 5L Version 
5.2 CD-ROM media set. These publications are also available on the following 
URL (click AIX 5.2 after arriving at the Web page):

http://techsupport.services.ibm.com/server/library

� AIX 5L Version 5.2 Files Reference

� AIX 5L Version 5.2 General Programming Concepts: Writing and Debugging 
Programs

� AIX 5L Version 5.2 Installation Guide and Reference

� AIX 5L Version 5.2 Installation in a Partitioned Environment

� AIX 5L Version 5.2 National Language Support Guide and Reference

� AIX 5L Version 5.2 Performance Management Guide
© Copyright IBM Corp. 2000, 2003. All rights reserved. 497

http://techsupport.services.ibm.com/server/library


� AIX 5L Version 5.2 Reference Documentation: Commands Reference

� AIX 5L Version 5.2 System Management Guide: Communications and 
Networks

� AIX 5L Version 5.2 System Management Guide: Operating System and 
Devices

� AIX 5L Version 5.2 Technical Reference: Base Operating System and 
Extensions

� AIX 5L Version 5.2 Technical Reference: Kernel and Subsystems

� AIX 5L Version 5.2 Web-based System Manager Administration Guide

� IBM Reliable Scalable Cluster Technology for AIX 5L: Administration Guide, 
SA22-7889

� IBM Reliable Scalable Cluster Technology for AIX 5L: Messages, GA22-7891

� IBM Reliable Scalable Cluster Technology for AIX 5L: Technical Reference, 
SA22-7890

pSeries hardware related publications
The following pSeries hardware related publications are available by accessing 
this URL:

http://www.ibm.com/servers/eserver/pseries/library/hardware_docs/index.html

� IBM Hardware Management Console for pSeries Installation and Operations 
Guide, SA38-0590

� PCI Adapter Placement References, SA38-0538

C for AIX official publications
The following publications are contained in the C for AIX Version 6.0 product 
CD-ROM media set as soft copy files. These publications are also available on 
the following URL (click Product documentation after arriving at the Web site):

http://www.ibm.com/software/ad/caix/support.html

� C for AIX C/C++ Language Reference, SC09-4958

� C for AIX Compiler Reference, SC09-4960

� Getting Start with C for AIX Introduction and Installation Guide, SC09-4961
498 Developing and Porting C and C++ Applications on AIX498 Developing and Porting C and C++ Applications on AIX

http://www.ibm.com/software/ad/caix/support.html
http://www.ibm.com/servers/eserver/pseries/library/hardware_docs/index.html


VisualAge C++ for AIX official publications
The following publications are contained in the VisualAge C++ for AIX Version 
6.0 product CD-ROM media set as soft copy files. These publications are also 
available on the following URL (click Library after arriving at the Web site):

http://www.ibm.com/software/ad/vacpp/

� Getting Started with VisualAge C++ for AIX Introduction, Installation, and 
Migration Guide, SC09-4962

� IBM Open Class Library Transition Guide, SC09-4948

� VisualAge C++ for AIX Compiler Reference, SC09-4959

� VisualAge C++ Professional for AIX C/C++ Language Reference, SC09-4957

� VisualAge C++ Professional for AIX Programming Tasks and Library 
Reference, SC09-4963

� VisualAge C++ Standard C++ Library Reference, SC09-4949

Other publications
The following publications are referenced during the development phase of this 
redbook:

� Butenhof, Programming with POSIX Threads, Addison-Wesley, 1997, ISBN 
0201633922

� Lewine, POSIX Programmer’s Guide: Writing Portable UNIX Programs, 
O'Reilly & Associates, 1992, ISBN 0937175730

� Stevens, Advanced Programming in the UNIX Environment, Addison-Wesley, 
1992, ISBN 0201563177

Referenced Web sites
These Web sites are also relevant as further information sources:

� AIX large page support white paper, found at:

http://www.ibm.com/servers/aix/whitepapers/large_page.html

� AIX toolkit for Linux applications

http://www.ibm.com/servers/aix/products/aixos/linux/download.html

� C for AIX

http://www.ibm.com/software/ad/caix/
 Related publications 499

http://www.ibm.com/servers/aix/whitepapers/large_page.html
http://www.ibm.com/servers/aix/products/aixos/linux/download.html
http://www.ibm.com/software/ad/caix/
http://www.ibm.com/software/ad/vacpp/
http://www.ibm.com/software/ad/vacpp/


� Fix Delivery Center for AIX Version 5

http://techsupport.services.ibm.com/server/aix.fdc

� IBM AIX Library

http://www.ibm.com/servers/aix/library

� IBM  ̂pSeries Support

http://techsupport.services.ibm.com/server/support?view=pSeries

� IBM PartnerWorld

http://www.ibm.com/partnerworld/developer

� IBM Supported Products List

http://www.ibm.com/servers/aix/products/ibmsw/list

� OpenMP API Web site

http://www.openmp.org

� Using License Use Management Runtime for AIX

ftp://ftp.software.ibm.com/software/lum/aix/doc/V4.6.0/lumusg.pdf

� VisualAge C++ for AIX

http://www.ibm.com/software/ad/vacpp/

� VisualAge C++ Support

http://www.ibm.com/software/ad/vacpp/support.html

� Writing Multithreaded Applications For Aix, Part 1: Tutorial white paper, found 
at:

http://www.ibm.com/servers/esdd/tutorials/multi_aix.html

How to get IBM Redbooks
You can order hardcopy Redbooks, as well as view, download, or search for 
Redbooks at the following Web site:

ibm.com/redbooks

You can also download additional materials (code samples or diskette/CD-ROM 
images) from that site.

IBM Redbooks collections
Redbooks are also available on CD-ROMs. Click the CD-ROMs button on the 
Redbooks Web site for information about all the CD-ROMs offered, as well as 
updates and formats. 
500 Developing and Porting C and C++ Applications on AIX500 Developing and Porting C and C++ Applications on AIX

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.ibm.com/servers/aix/library
http://www.ibm.com/software/ad/vacpp/support.html
http://www.ibm.com/software/ad/vacpp/
http://www.openssh.com
ftp://ftp.software.ibm.com/software/lum/aix/doc/V4.6.0/lumusg.pdf
http://www.ibm.com/servers/esdd/tutorials/multi_aix.html
http://www.ibm.com/servers/aix/products/ibmsw/list
http://www.ibm.com/partnerworld/developer
http://techsupport.services.ibm.com/server/aix.fdc
http://techsupport.services.ibm.com/server/support?view=pSeries


Index

Symbols
#pragma priority   398
$PWD   60
..   88
.al   417
.inventory   417
.toc   412
/etc/environment   29, 155, 177
/etc/magic   124
/etc/security/limits   126
/etc/vac.cfg   2
/etc/vacpp.cfg   16
/lib   45
/proc file system   281
/tmp   103
/usr/lib   45
/usr/lib/boot/bin   213
/usr/samples/kernel   162
/usr/sbin   213
/usr/vacpp   16
/var/ifor/nodelock   29
[noIMid]   88
_ SC_PAGESIZE   167
__64BIT__   40
__aligned__   14
__alignof__   12
__attribute__   14
__calloc__   179
__free__   179
__func__   7
__FUNCTION__   7
__GNUC__   11
__IBM_ATTRIBUTES   11
__label__   12
__mallinfo__   180
__malloc__   179
__malloc_init__   180
__malloc_once__   180
__malloc_postfork_unlock__   180
__malloc_prefork_lock__   180
__mallopt__   180
__mode__   15
__packed__   14
© Copyright IBM Corp. 2000, 2003. All rights reserved
__pure__   11
__realloc__   179
__typeof__   12
__VA_ARGS__   10
_Bool   4
_Complex   5
_data   112
_edata   112
_Imaginary   5
_LARGE_FILE   129
_LARGE_THREADS   293
_malloc_user_defined_name   181
_mheap   201
_Pragma   10
_RUNTIME_HEAP   202
_SC_AIX_HARDWARE_BITMODE   107
_SC_AIX_KERNEL_BITMODE   108
_SC_LARGE_PAGESIZE   157
_SC_THREAD_KEYS_MAX   313
_THREAD_SAFE   283
_THREAD_SAFE_ERRNO   283
_uaddmem   201
_ucalloc   199, 201
_ucreate   201–202
_udefault   202
_udestroy   201–202
_ufree   201–202
_uheapmin   199
_umalloc   199, 201–202
_ustats   202

Numerics
32-bit programming environment   38
32-bit user process model   109

default memory model   109
large memory model   109, 116
very large memory model   109, 117

5100-02 Recommended Maintenance Level   157
64-bit programming environment   38
64-bit user process model   130

memory model   131
64-bit XCOFF executable   108
.  501



A
abort   176
access permissions   101
acos   49
Adapter

10/100 4-Port Ethernet   209
address space   109

32-bit   109
64-bit   130

advantages of shared libraries   442
AIX 5L Version 5.2   ii
AIX Bonus Pack   31
AIX standard packaging   406
AIXTHREAD_COND_DEBUG   331
AIXTHREAD_GUARDPAGES   331
AIXTHREAD_MINKTHREADS   330
AIXTHREAD_MNRATIO   329
AIXTHREAD_MUTEX_DEBUG   330
AIXTHREAD_RWLOCK_DEBUG   331
AIXTHREAD_SCOPE   328
AIXTHREAD_SLPRATIO   331
AIXTHREAD_STK   332
alloca   166, 168
alternate path installation log file

vacndi.log   22
vacppndi.log   22

anonymous memory segment   146
ANSI-aliasing   247
APAR   410
API-based DLPAR event handling   217
APPLIED   408
ar   42, 47, 416

-d   47
-r   47
-t   47
-u   47
-v   46
-x   47

assert()   251
associative containers   389
atomic directive   352
Atomicity   297
attach   141
authorized program analysis reports   410
automatic parallelization   17
automatic parallellization   434
automatic storage   220, 244
automatic template instantiation   386

B
-b:maxdata   109
-b64   42
backup   415
barrier   350
batch compiler   438
-bautoexp   72
bc   113
-bdynamic   66
-bE:   396
-bE:export_file   92
Berkeley compatibility library   167
-berok   73
-bexpall   69, 72, 396
-bexpfull   94
bff-file   406
-bgcbtpass   72
-bhalt   242
bidirectional iterator   391
binary-edit   121
bindprocessor   216
-binitfini   84, 99
-blazy   67
-bloadmap   241
block started by symbol   112
blpdata   159
-bM:SRE   73, 92
-bmap   240
-bmaxdata:0xN0000000   121, 124
-bmaxdata:0xNNNNNNNNNNNNNNNN   139
-bmaxstacksize   136
-bnoautoexp   73
-bnoentry   72, 92
-bnoexpall   72, 396
-bnogc   72
-bnoipath   101
-bnolpdata   159
-bnortllib   73
-bnox   72
bootinfo   107
bos.adt.include   20
bos.perf.tune   162
bos.rte.libpthreads   278
bosboot   162
bound thread scheduling   322
break value   167
BROKEN   408
-brtl   69, 73
BSS   112
502 Developing and Porting C and C++ Applications on AIX



-bstatic   66
-bsymbolic   73
Bucket composition and sizing   173
built-in   4, 225
bundles   406

C
C for AIX   2
C Set ++   432
C++ code bloat   382
C++ export file   395
C++ symbol names   394
C++ templates   377

class templates   378
function templates   378

c++filt   243
C89   4
c89   30
C99   4, 18
calloc   166–167
CAP_BYPASS_RAC_VMM   161
CC   29
cc   30
cc_r   286
cforaixhelp   31
cgi-bin   31

caixsrch.exe   34
vacsrch.exe   33

Changing a thread stack size   295
chattr   115
check_core   254
chuser   126, 161
class template   378
clause

copyin   362
copyprivate   363
default   358
firstprivate   356
lasprivate   357
private   355
reduction   358
shared   357

code section   382
command line driver   430
COMMITTED   408
compatibility POSIX thread library   278
compiler error message   227
compiler filesets   19

compiler listing   228, 490
compiler options   378
Compiling multi-threaded programs   286
complex.h   5
compound literal   8
concurrent network   24, 27
concurrent nodelock   24, 27
condition variable   303

creating and initializing   304
destroying   307
signalling   304
using   307
waiting on   305

configuration file   430
Configuring system to use large pages   162
constant folding   223
construct   337
conversion to long   231
core file   250
Core file naming   250
CORE_NAMING   250
coredump()   251
countable loops   484
CPU Guard   216
CPU resource   208
CreateExportList   94
critical directive   349, 360
CSECT   382
ctime   319
current directory   60

D
Data Access Builder   437
data alignment   236
data flow analysis   220, 222
data resource limit   136
Database applications   216
dbx   259

$pretty=”on”   261
$pretty=”verbose”   262
breakpoints   263
Command line editor   262
gcc   264
-p flag   263

dbxinit   261
DCE   30
deadlock   302
debug malloc   164, 176
 Index 503



default executable file name (a.out)   44
default page size   109
deferred loading of modules   67
dependent module   49
designated initializer   8–9
detach   142
dev_t   39
difference between

shared object and library   49
shmat and mmap services   147

direct function calls   226
directive   337
disclaim   166, 169
DISPLAY   31
division   223
dlclose   82
dlerror   82
DLL   50
dlopen   82, 135
DLPAR   208

overview   208
requirement   210

DLPAR operation   210
DLPAR-aware   214–215
DLPAR-safe   214
DLPAR-safe and DLPAR-aware applications   214
dlsym   82
dr_reconfig   217
drmgr   213, 217
DSA   111, 117, 121
dump   42, 51, 75, 86, 96, 282

-g   52
-H   86
-Tv   87

duplicate symbols   241, 378
dynamic data structures   99
dynamic link library   50
dynamic logical partitioning   208
Dynamic Segment Allocation   111, 117

E
EAGAIN   288
EBUSY   312
EDEADLK   302
EINVAL   164, 288
Enhanced language level support   15
ENOMEM   123
ENOSYS   420

environment variables   115
envp   115
EOVERFLOW   129
EPERM   288
errno   283

multi-threaded programming   283
errno.h   283
error log entry   255
errpt   255
ETIMEDOUT   305
EXP   88
export file   92
export file in C++   395
exported symbols   61
Expression   224
eXtended Common Object File Format   46
extended compile time   382
extended library search order   81
extended mode shared memory segments   155
EXTSHM   155

F
FC

4961   209
file command   48, 108, 124
file name extension

.exp   93

.o   51

.so   51
file name naming convention

libname.a   51
libname.so   69, 82
name.o   51

fileset   20, 406
bos.chrp.base.rte   213
bos.rte.methods   213
devices.chrp.base.rte   212

Fileset state   408
fileset update   410
find   60
Fix Delivery Center   35
Fixed Size Heap   201
floating types   5
flush directive   352
fopen64   129
for directive   341
fork   159
fork-join model   336
504 Developing and Porting C and C++ Applications on AIX



forward iterator   391
free   166
free resources   209
ftok   141, 448
fullcore   253
function attributes   13

const   13
noreturn   13
pure   13

function bodies   380
function overloading   243
function scope   11
function template   378
function-like macros with variable arguments   9

G
-G   71–72

equivalent linker options   73
gcc extensions   11
gcc feature macros   11
generated function bodies   380
genkld   50, 88
get_malloc_log   196
get_malloc_log_live   197
getconf   107
getenv   115
getrlimit   127
global data   319
global firmware   209
global symbols   94
GNU C compatibility   10
GNU G++ compatibility   18
graceful exit   99
guard page   292

H
hard resource limits   126
hardware bit mode   107
HARDWARE_BITMODE   107
heap   165
heap storage fragmentation   225
Hexadecimal floating point constant   7
high performance computing   158
HKWD_LIB_MALL_COMMON   194
HKWD_LIB_MALL_INTERNAL   194
HMC   208
HPC   158
HTML   31

HTTP server   33
httpdlite   32
hybrid mode archives   43

I
I/O bound applications   40
I/O resource   209
i4blt   28
i4cfg   24, 26
i4config   25
i4gdb   27
i4glbcd   27
i4llmd   27
i4lmd   27
IBM Distributed Debugger   253
IBM Hardware Management Console for pSeries   
208
IBM License Use Management Runtime   23
IBM Open Class library   16, 388
IBM XL C   431
IBM.DRMd daemon process   212
IDE   438
idebug   19
identical function definitions   382
IEEE POSIX 1003.1c standard   278
iFOR/LS   23
ifor_ls.html.en_US.base.cli   23
ILP32   38
IMEX   88
imndomap   33
IMNSearch   19
IMP   88
IMPid   88
import file   93
imported symbols   61
Incremental compiler   437
incremental expression   484
indirect function calls   226
initial thread   282
initialization routines   99
initialized data   112
inline function   5
inline member functions   380
inline virtual functions   226
input iterator   391
Install using SMIT   21
install_lwcf_handler()   256
installing the compilers   19
 Index 505



instfix   411
int to pointer conversions   235
integer constants   235
integer suffix   235
integral promotion   246
Integrating the DLPAR operation into the application   
217
internal linkage   221, 227, 380
Interprocedural analysis   2
Inter-Process Communication   140
inutoc   413
IPA   2, 16
IPC   140
IPC facilities   140
IPC_ACCESS   142
IPC_CREAT   142
ipc_limits   149
IPC_PRIVATE   150
IPC_RMID   143
IPC_SET   144
ipcrm   150
ISO C++ Draft   16
ISO/IEC 14882

1998 C++ International Standard   16
ISO/IEC 9899

1990 International Standard   4
1999 International Standard   4

J
JFS   130, 139
JFS2   130, 139

K
kernel bit mode   107
kernel scheduler   323
kernel thread   323
KERNEL_BITMODE   107
key   141

L
-L   55
-l   45
language extension   15
large amounts of pinned memory   216
large code size   403
large file   129
large file support in 32-bit model   129

large file support in 64-bit model   139
Large page data/heap segments   159
large page support   109, 157

advisory mode   160
mandatory mode   160

Large page usage considerations   164
Large page usage security capability   161
large pages   157
last-in-first-out   321
lazy loading   67
ld   61, 159, 239
LD_LIBRARY_PATH   58
ldd   49, 90, 282
ldedit   121, 139, 159
LDLAZYDEBUG   68
LDR_CNTRL   109, 121, 139, 154
LDR_CNTRL=LARGE_PAGE_DATA   159
LDR_CNTRL=PREREAD_SHLIB   66
lgpg_regions   162
lgpg_size   162
libbsd.a   167
libc.a   49
libcrypt.a   49
libdl.a   84
libhu.a   199
liblpp.a   416
libm.a   45
LIBPATH   58, 101
libpthreads.a   278
libpthreads_compat.a   278
library   46
library archive file   46
library cleanup   99
library initialization   99
library thread scheduling   322
librtl.a   69
Licence Managers   216
license file

cforaix_c.lic   27
cforaix_cn.lic   27
cforaix_n.lic   27
vacpp_c.lic   27
vacpp_cn.lic   27
vacpp_n.lic   27

license servers   23
LIFO   321
lightweight core file   256
light-weight process   281, 322
LIGHTWEIGHT_CORE   257
506 Developing and Porting C and C++ Applications on AIX



link method
default   64
lazy loading   67
run-time linking   68
static   66
supported link methods   63

linkage   220
linkage block   397
linker   402
linker error   240
link-time   61
LMB   208
ln   29
load   135
loader section   61, 99
local label   11
logical memory block   208
long long   5
long to int truncation   231
LONG_MAX   5
lorder   42
LP64   38
lpp_name   415
lppchk   409, 424
lsattr   115
lscfg   157
lseek   144
lseek64   129
lslpp   213, 408
lssrc   213
LUM   23, 25–27, 433

Central Registry Subsystem   27
Global Location Broker Data Cleaner Sub-
system   27
License Sever Subsystem   27
Nodelock License Server Subsystem   27

LWP   281, 322

M
M_MXFAST   168
madvise   145
makebff.pl   418
makeC++SharedLib   397
mallinfo   166, 168
mallinfo_heap   168
malloc   166–167
malloc buckets   173
malloc debug   165, 176

malloc multiheap   181
malloc subsystem   166

allocation   166
deallocation   166
reallocation   166

malloc.h   168
malloc_err_function   191
malloc_log   196
MALLOC_LOG_STACKDEPTH   196
MALLOCBUCKETS   174

blocks_per_bucket:N   175
bucket_sizing_factor:N   174
bucket_statistics:[stdout|stderr|path_name]   
175
number_of_buckets:N   174

MALLOCDEBUG   182
align:N   183
allow_overreading   188
checkarena   192
log   196
override_signal_handling   188
postfree_checking   186
record_allocations   189
report_allocations   189
trace   193
validate_ptrs   185
verbose   191

MALLOCDISCLAIM   169
MALLOCMULTIHEAP   181

considersize   182
heaps:N   181

MALLOCTYPE   170
MALLOCTYPE=(null)   172
MALLOCTYPE=3.1   171
MALLOCTYPE=buckets   173
MALLOCTYPE=debug   177
MALLOCTYPE=user:archive_name   180
mallopt   166, 168
managed system   211
mangled   394
MAP_ANONYMOUS   146
MAP_FILE   146
MAP_PRIVATE   147
MAP_SHARED   144
mapping files into memory segments   140
Mapping files with mmap   145
Mapping files with shmat   144
Mapping memory with mmap   146
Mapping memory with shmat   142
 Index 507



Marking an executable for large page use   159
master directive   349
maxdata   118
MAXDATA=0@DSA   154
MAXDATA=0x80000000@DSA   154
Maximum number of segments per process

32-bit   148
64-bit   148

Maximum number of shared memory IDs   148
Maximum segment size

32-bit   148
64-bit   148

mem32.o   179
mem64.o   179
MEMDBG   199
memdbg   19
memdbg package   199

memdbg.adt   199
memdbg.aix50.ad   199
memdbg.msg.en_US   199

memory allocator   169
3.1   171
debug   176
default   172
malloc buckets   173
user-defined   178

Memory allocators and MALLOCTYPE   170
memory heap   165
memory resource   208
message queues   140
mincore   145
Minimum segment size   148
mixed declarations and code   10
mkinstallp   418

-d build_root_dir option   419
installation verification   424
-T template_file option   419
template file   420
uninstallation verification   425
verification of correct functionality   425
verification of the installed files   424

mmap   145
mmap services   145
module interdependencies   69
more   413
MP   108
mprotect   145, 164
msync   145
mt_trce()   257

multiple definitions   381
multiple symbol definition   382
multiplexed thread scheduling   323
multiplication   223
munmap   145
mutex   297

creating and Initializing   298
destroying   299
locking and unlocking   298

mutual exclusion lock   297

N
name mangling   243
natural boundary   236
ncargs   115
Net/LS   23, 432
Netscape browser   31
NFS consideration   102
nm   42, 49, 90
noIMid   88
Non-busy wait   297
non-constant initializer   9
nowait clause   342

O
-O   6, 247
-o   44
o_maxdata   124
O_RDWR   144
-O4   17
-O5   17
object file   45
OBJECT_MODE   40–41
OBSOLETE   408
off_t   129
off64_t   129
online documentation   31
OpenMP   17, 336, 434

run-time library functions   363
OpenMP directive format   337
OpenMP environment variables

OMP_DYNAMIC   374
OMP_NESTED   374
OMP_NUM_THREADS   374
OMP_SCHEDULE   373

OpenMP run-time functions
omp_destroy_lock   368
omp_destroy_nest_lock   368
508 Developing and Porting C and C++ Applications on AIX



omp_get_dynamic   367
omp_get_nested   367
omp_get_num_procs   366
omp_get_num_threads   365
omp_get_thread_num   366
omp_in_parallel   367
omp_init_lock   368
omp_init_nest_lock   368
omp_set_dynamic   366
omp_set_lock   369
omp_set_nest_lock   369
omp_set_nested   367
omp_set_num_threads   364
omp_test_lock   369
omp_test_nest_lock   369
omp_unset_lock   369
omp_unset_nest_lock   369

OpenMP Version 1.0 specification   17
operator overloading   243
optional installation control executable files   426
optional path component   54
order of initialization   397
ordered clause   341
ordered directive   353
orphan process   291
orthogonal extensions   15
oslevel   107, 412
Other system changes for large pages   164
output iterator   391
overloaded function   243

P
package   20
package file   406
padding   236
page   109
parallel for directive   347
parallel region   338
parallel sections   348
parallel work–sharing constructs   347
partition profile   209
partitioning partitioning-capable pSeries server   211
PartnerWorld for Developers   35
PATH   29, 430
PDF   3
Perl script

/usr/vac/bin/vacndi   22
/usr/vacpp/bin/vacppndi   22

perl.rte   22
permission mode   420
pg   413
platform-dependent commands   213
platform-independent command   213
plock   217
pointer corruption   234
pointer to int conversions   235
pointer type   130
Polling   215
porting C++ code   378
POSIX thread library   278
POSIX threads   275
POWER4   157
PowerPC architecture   2
pragma

alloca   168
define   386
disjoint   223
execution_frequency   4
implementation   384
isolated_call   13, 221
leaves   13
option_override   248
pack   4
snapshot   4

pragma omp
atomic   352
barrier   350
critical   349
flush   352
for   341
master   349
ordered   353
parallel   338
parallel for   347
parallel sections   348
sections   344
single   345
threadprivate   354

printf()-debug   258
priority values   398
private shared object   101
private variables   355
process flow of a DLPAR operation   210
process heap   112
process private segment   101, 111

process stack   112
user data   112
 Index 509



process resources   276
process scope   323
processor bindings   216
profile-directed feedback   3
programming recommendations   220
ps

-o THREAD   280
pthdb_   473
Pthread debug library   473
pthread.h   278, 285
pthread_   279
pthread_atfork   475
pthread_atfork_unregister_np   482
pthread_attr_destroy   474
pthread_attr_getdetachstate   474
pthread_attr_getguardsize   481
pthread_attr_getinheritsched   476
pthread_attr_getschedparam   476
pthread_attr_getschedpolicy   476
pthread_attr_getscope   476
pthread_attr_getstackaddr   474
pthread_attr_getstacksize   474
pthread_attr_getsuspendstate_np   482
pthread_attr_init   474
pthread_attr_setdetachstate   474
pthread_attr_setguardsize   481
pthread_attr_setinheritsched   327, 476
pthread_attr_setschedparam   476
pthread_attr_setschedpolicy   476
pthread_attr_setscope   476
pthread_attr_setstackaddr   474
pthread_attr_setstacksize   295, 474
pthread_attr_setstacksize_np   482
pthread_attr_setsuspendstate_np   482
pthread_cancel   321, 475
pthread_cleanup_information_np   482
pthread_cleanup_pop   321, 476
pthread_cleanup_pop_np   482
pthread_cleanup_push   321, 476
pthread_cleanup_push_np   482
pthread_clear_exit_np   482
pthread_cond_broadcast   304, 479
pthread_cond_destroy   307, 478
pthread_cond_init   304, 478
PTHREAD_COND_INITIALIZER   304
pthread_cond_signal   304, 478
pthread_cond_timedwait   305, 478
pthread_cond_wait   305, 478
pthread_condattr_destroy   304, 478

pthread_condattr_getpshared   478
pthread_condattr_init   478
pthread_condattr_setpshared   478
pthread_continue   481
pthread_continue_np   482
pthread_continue_others_np   482
pthread_create   284, 288, 475
PTHREAD_CREATE_DETACHED   291
PTHREAD_CREATE_JOINABLE   290–291
pthread_delay_np   482
pthread_detach   291, 475
pthread_equal   475
pthread_exit   475
pthread_exit()   286
PTHREAD_EXPLICIT_SCHED   327
pthread_get_expiration_np   482
pthread_getconcurrency   481
pthread_getrusage_np   482
pthread_getschedparam   477
pthread_getspecific   313, 315, 479
pthread_getthrds_np   482
pthread_getunique_np   482
PTHREAD_INHERIT_SCHED   327
pthread_join   289, 475
pthread_join_np   482
pthread_key_create   314, 479
pthread_key_delete   316, 479
PTHREAD_KEYS_MAX   313
pthread_kill   475
pthread_lock_global_np   482
pthread_mutex_destroy   299, 477
pthread_mutex_getprioceiling   479
pthread_mutex_init   298, 477
PTHREAD_MUTEX_INITIALIZER   298
pthread_mutex_lock   298, 477
pthread_mutex_setprioceiling   479
pthread_mutex_trylock   478
pthread_mutex_unlock   299, 478
pthread_mutexattr_destroy   298, 477
pthread_mutexattr_getkind_np   482
pthread_mutexattr_getprioceiling   479
pthread_mutexattr_getprotocol   479
pthread_mutexattr_getpshared   477
pthread_mutexattr_gettype   481
pthread_mutexattr_init   298, 477
pthread_mutexattr_setkind_np   482
pthread_mutexattr_setprioceiling   479
pthread_mutexattr_setprotocol   479
pthread_mutexattr_setpshared   477
510 Developing and Porting C and C++ Applications on AIX



pthread_mutexattr_settype   481
pthread_once   318, 475
PTHREAD_ONCE_INIT   319
PTHREAD_PROCESS_PRIVATE   311
PTHREAD_PROCESS_SHARED   311
pthread_rwlock_destroy   480
pthread_rwlock_init   480
PTHREAD_RWLOCK_INITIALIZER   312
pthread_rwlock_rdlock   312, 480
pthread_rwlock_tryrdlock   312, 480
pthread_rwlock_trywrlock   312, 480
pthread_rwlock_unlock   312, 480
pthread_rwlock_wrlock   312, 480
pthread_rwlockattr_destroy   311, 480
pthread_rwlockattr_getpshared   311, 480
pthread_rwlockattr_init   311, 480
pthread_rwlockattr_setpshared   311, 480
PTHREAD_SCOPE_PROCESS   291
pthread_self   318, 475
pthread_set_mutexattr_default_np   482
pthread_setcancelstate   321, 474
pthread_setcancelstate_np   482
pthread_setcanceltype   321, 474
pthread_setconcurrency   481
pthread_setschedparam   327, 477
pthread_setspecific   313, 315, 479
pthread_sigmask   189
pthread_signal_to_cancel_np   482
PTHREAD_STACK_MAX   295
PTHREAD_STACK_MIN   295
pthread_suspend   481
pthread_suspend_np   482
pthread_suspend_others_np   482
pthread_test_exit_np   482
pthread_testcancel   321, 474
PTHREAD_THREADS_MAX   293
pthread_unlock_global_np   482
Pthreads

cancellation   320
creating and terminating   284
data synchronization   296
detaching   291
joining   289
passing arguments   288
priority and scheduling   321
scheduling   324
scheduling limitations   328
setting scheduling policies   327

Q
-q32   41
-q64   41, 109
-qalias   248
-qalias=ansi   222
-qalign=bit_packed   17
-qarch   3
-qcache   17
-qcheck   245
-qdbxextra   259
-qflag   230
-qfullpath   259
-qfuncsect   227, 382–383
-qhalt   230
-qhaltonmsg   230
-qhot   3
-qinfo   229
-qinitauto   245
-qipa   3, 17
-qkeepinlines   17
-qlanglvl=ansiinit   17
-qlanglvl=extc89   15
-qlanglvl=extc99   15
-qlanglvl=stdc89   15
-qlanglvl=stdc99   15
-qlanglvl=ucs   6
-qlargepage   3
-qlinedebug   259
-qlonglong   5
-qmaxerr   230
-qmkshrobj   387
-qnostrict   485
-qnostrict_induction   485
-qnotempinc   385
-qoldpassbyvalue   17
-qpriority   397
-qreport   4
-qsmallstack   4
-qsmp   17, 485
-qsmp=omp   340
-qsrcmsg   228
-qsuppress   230
-qtempinc   380, 384, 402
-qtemplaterecompile   17–18, 388
-qtemplateregistry   17–18, 242, 380, 387
-qtocmerge   4
-qtune   3
-qunwind   4
-qupconv   246
 Index 511



-qwarn64   231

R
ra_attachrset   216
ra_exec   216
ra_fork   216
race condition   302
random access iterator   391
ranlib   42
raw I/O   156
read-write locks   310
realloc   166
real-time extension   278
recommended maintenance level   412
red zone   164, 292
Redbooks Web site   500

Contact us   xxi
redundant code   382
Reentrant   319
reentrant functions   319
referenced shared libraries   61
registry file   387
relative order of initialization   397
remote X11 display   31
remove stale shared memory segments   150
replaceCSET   430
requisite condition keywords   421

coreq   422
ifreq   422
instreq   422
prereq   422

reset_malloc_log   197
Resource

addition   208
movement   208
removal   208

resource limit
data   126
stack   126

resource limits   125
resource manager

IBM.DRM   212
Resource Monitoring and Controlling   212
resource type

CPU   208
I/O slot   209
memory   208

resource value

Desired   209
Required   209

resource.h   127, 138
restore   415
restoreCSET   431
restrict qualifier   6
RLIM_INFINITY   128
RLIM_INIFINITY   138
rm   91
RMC   212
RML   412
rtl_enable   91
RTLD_LAZY   83
RTLD_MEMBER   83
RTLD_NOW   83
Running multi-threaded programs   287
run-time link library   69
run-time link method   68
run-time linker   75
run-time linking   68

creating run-time linking shared objects   71
examining the executable and shared objects   
75
how to use   70
main program object   78
rebinding symbols at the program load-time   79

run-time symbols   113
argv   113
environ   113
errno   113

S
S_ macros   142
SA_FULLDUMP   253
sbrk   123, 166
schedtune   327
schedule clause   341
scheduling policy

SCHED_FIFO   326
SCHED_FIFO2   327
SCHED_FIFO3   327
SCHED_OTHER   326
SCHED_RR   326

scope   220
Script-based DLPAR event handling   217
searching objects and libraries at link-time   56
sections directive   344
secure and reliable connection channel   212
512 Developing and Porting C and C++ Applications on AIX



SEEK_END   144–145
segment   109
segment usage

kernel text and data   110
per-process shared library data   110
shared library text   110
shared memory   111
user data, heap, and stack   110
user process text   110

segment usage (64-bit)
privately loaded objects   135
shared memory   135
shared text and data   135
system reserved   136
user data   133

segmentation fault   235
Selecting required filesets   19
Selection and iteration statements   223
semaphores   140
setgid programs   58
setrlimit   127, 139
setuid programs   58
severity   228
shared library   51
shared memory   140
shared memory limits   147
shared memory segments   141
shared memory segments allocation order   149
shared object   51

how to create   92
interdependent   96
self-contained   95
using in a development environment   99

shared object data segment   101
shared object text   101
shared resources   319
sharing memory segments between processes   140
shm.h   144
SHM_LGPAGE   161
SHM_MAP   142, 144
SHM_PIN   161, 217
SHM_SIZE   156
shmat   141, 449
shmat services   141
shmctl   141, 144, 156, 454
shmdt   141
shmget   141–142, 217, 457
shmid   141
SHMLBA   147

SHROBJ   51
side effect   221
side effects   13
SIG_DFL   188
SIGIOT   188
signal handler   189
signals   140
sigprocmask   189
SIGRECONFIG   217
SIGSEGV   111, 167, 188
SIGTRAP exception   245
sigwait   189
simple code layout   381
simple nodelock   23, 27, 29
simple template method   402
single directive   345
Single UNIX Specification Version2   278
Singularity   297
size   42, 112
slibclean   91
slower compile times   403
smit   21
SMP   434
snapcore   253
soft resource limits   126
Solaris user thread library   333
source code structure   384
source compatibility   2, 16
SPINLOOPTIME   329
Standard Template Library   16, 388–389
starvation   307
static data   319
static keyword   6
static storage   221, 244
stdbool.h   4
STL   16, 388–389

algorithms   391
iterators   390

STL algorithms
mutating sequence operations   391
non-modifying sequence operations   391
sorting and related operations   391

STL containers   389
deque   389
list   389
map   390
multimap   390
multiset   390
queue   389
 Index 513



set   390
stack   389
vector   389

storage class specifiers   220
storage duration   220
strip   42
strtok   319
strtok_r   320
symbol information   87
symbol resolution at link-time   53
Synchronizing Pthreads with mutexes   297
Synchronizing Pthreads with read-write locks   310
sysconf   107–108, 157, 167, 313
system defined bundles   406
system loader   61, 67, 99, 101
system shared library segment   99
system shared object segment   101
System V malloc subroutines   168

T
table of contents   412
tar   36
tempinc   384
tempinc directory   402
template   378

code bloat   382
compile time   382

template declaration   379
template definition   379
template definition file   384
template implementation   378
template implementation file   386
template instance   379
template instantiation file   383
template instantiation information   384
template registry   387
template specialization   378
templates with shared libraries   402
termination routines   99
thr_   333
thread models   322

1:1 model   322
M:1 model   322
M:N model   323

thread priority   321
thread resources   276
thread scheduling parameters

policy   325

priority   325
scope   325

thread stacks   292
threadprivate directive   354
Thread-safe   319
thread-specific data   312

accessing   315
allocating   314
deleting   316

time stamp   386
time_t   39
TLB   158
TMPDIR   103
TOC   412
trace   267
trace events   272
trace hook IDs   194
trace hooks   267
translation look-aside buffer   158
trcrpt   268
truss   264
type-based aliasing   247

U
ulimit   125, 243

-H option   126
-S option   126

umalloc.h   199
uncompress   36
undefined symbols   61
un-initialized data   112
uniprocessor   214
unistd.h   107
Universal character name   6
Universal characters support   6
UNIX 95 specification   278
UNIX 98 specification   278
unload shared objects   91
unreferenced symbols   94
Unresolved symbols   240
unsignedness preservation   246
UP   108
upper-case characters   113
use count   99
user defined bundles   407
user process model   106
user process stack (64-bit)   136
user text (64-bit)   133
514 Developing and Porting C and C++ Applications on AIX



user-created heap   199
User-defined malloc   178
user-defined malloc replacement   178
user-defined paddings   238
Using large and very large memory model   121

V
-v   44
v_pinshm   162
vac   19
vac.C   20
vac.html.en_US   31
vac.lic   20
vac.ndi   22
vacndi   22
vacpp   20
vacpp.cmp   20
vacpp.html.en_US   31
vacpp.lic   20
vacpp.ndi   22
vacpphelp   31
vacppndi   22
valloc   166–167
value preservation   246
variable arguments (var args)   9
variable attributes   13

aligned   13
mode   13
packed   13

variable length array   7
Variables and data structures   220
vatools   20
very large memory model

heap size greater than 2.5 GB   118
heap size less than 2.5 GB   117
heap size less than 256 MB   119

virtual function table   222, 227
virtual functions   222, 226
virtual memory   243
virtual memory address   109
virtual memory manager   109
virtual processor   323
Visual Builder   437
VisualAge C++ for AIX   16
vmgetinfo   148
vminfo.h   149
VMM   109
vmo   65, 158

vmtune   65, 158, 162
volatile   221
VP   323

W
WCHAN   280
Web-based System Manager   20
well defined interface   92
whence   213
WLM   288
Workload Manager   216
Work-sharing   340
work-sharing construct   340
wsm   20

X
-X   43, 48
-X 32   49
-X 32_64   49
-X 64   49
X11.base.rte   28
XCOFF   42, 46
XCOFF format

.bss segment   112

.data segment   112

.text segment   112
XCOFF header   61
xlC   20, 30
xlc   30
xlc_r7   30
xlC128   30
xlopt   19–20
xlsmp   19–20
XPB_SUS_ENV   127

Y
YIELDLOOPTIME   329

Z
zombie process   291
 Index 515



516 Developing and Porting C and C++ Applications on AIX



(1.0” spine)
0.875”<

->
1.498”

460 <
->

 788 pages

Developing and Porting C and C+
+

 
Applications on AIX







®

SG24-5674-01 ISBN 073842935X

INTERNATIONAL 
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE 

IBM Redbooks are developed by 
the IBM International Technical 
Support Organization. Experts 
from IBM, Customers and 
Partners from around the world 
create timely technical 
information based on realistic 
scenarios. Specific 
recommendations are provided 
to help you implement IT 
solutions more effectively in 
your environment.

For more information:
ibm.com/redbooks

Developing and Porting 
C and C++ Applications 
on AIX

Detailed 
explanations about 
32- and 64-bit 
process models

Effective 
management of 
shared objects and 
libraries

Exploring parallel 
programming using 
OpenMP

This IBM Redbook will help experienced UNIX application 
developers who are new to the AIX operating system. The 
book explains the many concepts in detail, including the 
following:

� Enhancements and new features provided by the latest C 
and C++ compilers for AIX

� Compiling and linking tasks required to effectively use 
and manage shared libraries and run-time linking

� Use of process heap and shared memory in the 32- and 
64-bit user process models

� A new programming paradigm in a partitioned 
environment where resources can be dynamically 
changed

� Parallel programming using POSIX threads and OpenMP

The following chapters are also useful for system 
administrators who are responsible for the software problem 
determination and application software release level 
management on AIX systems:

Chapter 3, “Understanding user process models”
Chapter 7, “Debugging your applications”
Chapter 12, “Packaging your applications”

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Figures
	Tables
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Summary of changes
	June 2003, Second Edition
	September 2000, First Edition

	Chapter 1. C and C++ compilers
	1.1 C for AIX Version 6.0
	1.1.1 New or improved optimization features
	1.1.2 ISO C Standard conformance
	1.1.3 GNU C compatibility
	1.1.4 Enhanced language level support

	1.2 VisualAge C++ for AIX Version 6.0
	1.2.1 New or improved optimization features
	1.2.2 OpenMP support
	1.2.3 Automatic parallelization
	1.2.4 Improved template handling
	1.2.5 C99 features
	1.2.6 GNU G++ compatibility

	1.3 Installing the compilers
	1.3.1 Install compiler filesets
	1.3.2 Retaining a previous version of the compiler

	1.4 Activating the compilers
	1.4.1 What is LUM
	1.4.2 Configuring LUM

	1.5 Activating the LUM server
	1.6 Enrolling a product license
	1.6.1 Enrolling a concurrent license
	1.6.2 Enrolling a simple nodelock license

	1.7 Invoking the compilers
	1.7.1 Default compiler drivers

	1.8 Where to find help
	1.8.1 Online documentations
	1.8.2 Viewing online documentation remotely
	1.8.3 Where to find help on the Web
	1.8.4 Applying fixes and service updates


	Chapter 2. Compiling and linking
	2.1 32- and 64-bit development environments
	2.1.1 The 64-bit advantage
	2.1.2 Compiler support
	2.1.3 Utility commands support

	2.2 Compiling and linking: A quick overview
	2.2.1 Building C and C++ programs with system libraries
	2.2.2 Objects and libraries
	2.2.3 Difference between shared object and library on AIX
	2.2.4 Difference between shared and static objects on AIX

	2.3 Resolving symbols at link-time
	2.3.1 The -L linker option
	2.3.2 Searching objects and libraries at link-time
	2.3.3 LIBPATH environment variable
	2.3.4 Link-time and load-time

	2.4 Supported link methods on AIX
	2.4.1 AIX default linking
	2.4.2 Static linking
	2.4.3 Lazy loading

	2.5 Run-time linking
	2.5.1 How to use run-time linking
	2.5.2 Examining the executable and shared objects using dump
	2.5.3 Enabling the main program object as run-time linking
	2.5.4 Rebinding symbols at the program load-time
	2.5.5 Extended search order with the -brtl linker option

	2.6 Dynamic loading
	2.7 Commands when manipulating objects and libraries
	2.7.1 dump
	2.7.2 genkld
	2.7.3 ldd
	2.7.4 nm
	2.7.5 rtl_enable
	2.7.6 slibclean

	2.8 Creating shared objects
	2.8.1 Import and export files
	2.8.2 A self-contained shared object
	2.8.3 Interdependent shared objects
	2.8.4 Initialization and termination routines

	2.9 Shared libraries in a development environment
	2.9.1 Production and development environments
	2.9.2 Private shared objects
	2.9.3 NFS consideration
	2.9.4 Sufficient free disk space on the target directory and /tmp


	Chapter 3. Understanding user process models
	3.1 User process models on AIX
	3.1.1 How to determine hardware bit mode
	3.1.2 How to determine kernel bit mode
	3.1.3 How to determine user process bit mode

	3.2 The 32-bit user process model
	3.2.1 Default memory model
	3.2.2 Large memory model
	3.2.3 Very large memory model
	3.2.4 Using the large and very large memory model
	3.2.5 Checking large memory model executables
	3.2.6 Resource limits in 32-bit model
	3.2.7 Large file support in a 32-bit model

	3.3 The 64-bit user process model
	3.3.1 The first 16 segments (0 - 4 GB)
	3.3.2 Application text, data, and heap (4 GB - 448 PB)
	3.3.3 Default shared memory segments (448 - 512 PB)
	3.3.4 Privately loaded objects (512 - 576 PB)
	3.3.5 Shared text and data (576 - 640 PB)
	3.3.6 System reserved (640 - 960 PB)
	3.3.7 User process stack (960 PB - 1 EB)
	3.3.8 Resource limits in 64-bit mode
	3.3.9 Large file support in 64-bit model

	3.4 Introduction to shared memory
	3.4.1 The shmat services
	3.4.2 The mmap services
	3.4.3 Difference between shmat and mmap services
	3.4.4 Shared memory limits

	3.5 Shared memory segments allocation order
	3.5.1 Order in the 32-bit default memory model
	3.5.2 Order in the 32-bit very large memory model with DSA
	3.5.3 Extended mode shared memory segments
	3.5.4 Order in the 64-bit memory model

	3.6 Large page support
	3.6.1 Large page support overview
	3.6.2 Large page application usage
	3.6.3 Large page usage security capability
	3.6.4 Configuring system to use large pages
	3.6.5 Other system changes for large pages
	3.6.6 Large page usage considerations


	Chapter 4. Managing the memory heap
	4.1 Malloc subsystem
	4.1.1 malloc(), calloc(), valloc(), and alloca()
	4.1.2 mallopt(), mallinfo, and mallinfo_heap()
	4.1.3 disclaim()

	4.2 Memory allocators
	4.2.1 The 3.1 memory allocator
	4.2.2 The default memory allocator
	4.2.3 The default memory allocator with the malloc buckets extension
	4.2.4 The debug malloc allocator
	4.2.5 User-defined malloc replacement
	4.2.6 Malloc multiheap

	4.3 Use of MALLOCDEBUG options
	4.3.1 MALLOCDEBUG with the debug memory allocator
	4.3.2 MALLOCDEBUG with memory allocators other than debug

	4.4 Heap management using MEMDBG
	4.4.1 How to handle a user-created heap
	4.4.2 A user-defined heap allocated from shared memory segments


	Chapter 5. Creating DLPAR-aware applications
	5.1 Dynamic logical partitioning overview
	5.2 The process flow of a DLPAR operation
	5.3 DLPAR-safe and DLPAR-aware applications
	5.3.1 DLPAR-safe
	5.3.2 DLPAR-aware

	5.4 Integrating a DLPAR operation into the application

	Chapter 6. Programming hints and tips
	6.1 Programming recommendations
	6.1.1 Variables and data structures
	6.1.2 Functions
	6.1.3 Pointers
	6.1.4 Arithmetic operations
	6.1.5 Selection and iteration statements
	6.1.6 Expression
	6.1.7 Memory usage
	6.1.8 Built-in functions
	6.1.9 Virtual functions

	6.2 Diagnosing compile-time errors
	6.2.1 Anatomy of a message
	6.2.2 Useful options and compiler aids
	6.2.3 Migrating from 32-bit to 64-bit

	6.3 Diagnosing link-time errors
	6.3.1 Unresolved symbols
	6.3.2 Duplicate symbols
	6.3.3 Insufficient memory for the linker process
	6.3.4 The c++filt utility

	6.4 Diagnosing run-time errors
	6.4.1 Uninitialized variables
	6.4.2 Run-time checking
	6.4.3 Unsignedness preservation in C
	6.4.4 ANSI aliasing
	6.4.5 #pragma option_override


	Chapter 7. Debugging your applications
	7.1 Working with core files
	7.1.1 Core file naming
	7.1.2 Creating core files with assert()
	7.1.3 Creating core files with coredump()
	7.1.4 Including shared memory information in the core file
	7.1.5 Gathering core files
	7.1.6 AIX error log entry
	7.1.7 Lightweight core file support

	7.2 Using the printf()-debug method
	7.3 Preparing your application for debugging
	7.4 Using dbx
	7.4.1 Starting a dbx session
	7.4.2 Customizing a dbx session
	7.4.3 Working with breakpoints: The stop subcommand
	7.4.4 Redirection of library location in object files with the -p flag
	7.4.5 Using dbx with gcc

	7.5 Debugging with the truss command
	7.6 Using the trace facility
	7.6.1 Introduction to trace
	7.6.2 Tracing an application on the command line
	7.6.3 Tracing an application with subroutine calls


	Chapter 8. Introduction to POSIX threads
	8.1 Overview of threads
	8.1.1 Relationship between a process and a user thread

	8.2 POSIX threads (Pthreads) on AIX
	8.2.1 Advantages of using Pthreads
	8.2.2 The POSIX threads API
	8.2.3 Multi- and single-threaded processes

	8.3 Pthread management
	8.3.1 Creating and terminating Pthreads
	8.3.2 Joining Pthreads
	8.3.3 Detaching a Pthread
	8.3.4 Thread stack

	8.4 Data synchronization between Pthreads
	8.4.1 Synchronizing Pthreads with mutexes
	8.4.2 Synchronizing Pthreads with condition variables
	8.4.3 Synchronizing Pthreads with read-write locks

	8.5 Thread-specific data
	8.5.1 Allocating thread-specific data
	8.5.2 Accessing thread-specific data
	8.5.3 Deleting thread-specific data
	8.5.4 Thread-safe and reentrant functions

	8.6 Pthread cancellation
	8.7 Pthread priority and scheduling
	8.7.1 Thread models in AIX
	8.7.2 Scheduling Pthreads
	8.7.3 Scheduling limitations

	8.8 Pthread specific environment variables in AIX
	8.9 User API for Solaris threaded applications
	8.9.1 Application binary interface (ABI)


	Chapter 9. Program parallelization using OpenMP
	9.1 Introduction to OpenMP
	9.2 The OpenMP programming model
	9.3 Classification of OpenMP directives
	9.3.1 The OpenMP directive format

	9.4 Parallel region construct
	9.5 Work-sharing constructs
	9.5.1 for construct
	9.5.2 sections construct
	9.5.3 single construct

	9.6 Combined parallel work-sharing constructs
	9.6.1 parallel for construct
	9.6.2 parallel sections construct

	9.7 Synchronization constructs
	9.7.1 master construct
	9.7.2 critical construct
	9.7.3 barrier directive
	9.7.4 atomic construct
	9.7.5 flush directive
	9.7.6 ordered construct

	9.8 Data environment: The threadprivate directive
	9.9 Data-sharing attribute clauses
	9.9.1 private clause
	9.9.2 firstprivate clause
	9.9.3 lastprivate clause
	9.9.4 shared clause
	9.9.5 default clause
	9.9.6 reduction clause
	9.9.7 copyin clause
	9.9.8 copyprivate clause

	9.10 Run-time library functions
	9.10.1 Execution environment functions
	9.10.2 Lock functions
	9.10.3 Example usage of run-time library functions

	9.11 Environment variables
	9.11.1 OMP_SCHEDULE
	9.11.2 OMP_NUM_THREADS
	9.11.3 OMP_DYNAMIC
	9.11.4 OMP_NESTED


	Chapter 10. Dealing with C++ templates
	10.1 What is a template
	10.2 AIX template implementations
	10.2.1 Generated function bodies

	10.3 Simple code layout method
	10.3.1 Disadvantages of the simple method

	10.4 Template instantiation file method
	10.4.1 The -qtempinc option
	10.4.2 Contents of the tempinc directory
	10.4.3 Forcing template instantiation

	10.5 Template registry: The preferred method
	10.5.1 The -qtemplateregistry option
	10.5.2 The -qtemplaterecompile option

	10.6 Standard C++ Library and STL
	10.6.1 Standard Template Library
	10.6.2 A STL example


	Chapter 11. Creating shared objects from C++ source codes
	11.1 Creating shared objects from C++ source codes
	11.1.1 Creating a C++ shared object
	11.1.2 Generating an export file
	11.1.3 The -qmkshrobj option
	11.1.4 Mixing C and C++ object files
	11.1.5 Order of initialization

	11.2 Shared objects with templates
	11.2.1 Templates and makeC++SharedLib
	11.2.2 Templates and -qmkshrobj


	Chapter 12. Packaging your applications
	12.1 Understanding the AIX standard packaging
	12.1.1 Filesets and package files
	12.1.2 Bundles
	12.1.3 Managing filesets
	12.1.4 Viewing the TOC file (.toc)
	12.1.5 Viewing package files

	12.2 Packaging applications using mkinstallp
	12.2.1 mkinstallp
	12.2.2 Packaging examples
	12.2.3 Verification of packages
	12.2.4 Optional installation control executable files


	Appendix A. Previous versions of C and C++ compiler products
	Compiler product similarities
	Multiple command line drivers
	Installation directory

	IBM C compilers
	IBM XL C Version 3
	IBM C for AIX Version 4.1
	IBM C for AIX Version 4.3
	IBM C for AIX Version 4.4
	IBM C for AIX Version 5.0
	C compiler summary

	IBM C++ compilers
	IBM C Set ++ for AIX Version 3
	IBM C and C++ compilers Version 3.6
	IBM VisualAge C++ Professional for AIX Version 4
	IBM VisualAge C++ Professional for AIX Version 5
	C++ compiler summary


	Appendix B. Useful information for linking and loading on AIX
	A brief history of UNIX programming development
	Historical view of linking and loading in AIX
	Definitions

	Appendix C. Subroutine references for shmat and mmap services
	References for shmat services
	The ftok() subroutine
	The shmat() routine
	The shmctl() subroutine
	The shmget() routine
	The shmdt() subroutine

	References for mmap services
	The mmap() subroutine
	The mprotect() subroutine
	The msync() subroutine
	The munmap() subroutine


	Appendix D. Subroutine references for POSIX threads
	Subroutines defined in the POSIX thread standard
	Subroutines defined in the UNIX 98 Specification
	Extensions to POSIX thread

	Appendix E. Supported IBM SMP directives
	IBM SMP directives
	The IBM SMP directives syntax


	Appendix F. Sample compiler listing
	Compiler listing

	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	AIX official publications
	pSeries hardware related publications
	C for AIX official publications
	VisualAge C++ for AIX official publications
	Other publications

	Referenced Web sites
	How to get IBM Redbooks
	IBM Redbooks collections


	Index
	Back cover

