


Contents

Disclaimer 1

About Hex One Protocol 2

Executive Summary 3

Methodology 4

Severity Classification 5

Quality Assurance 6

Access Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Code Maturity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Architectural Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Stateful Fuzzing 18

Findings Summary 21

[C-01] - Users can claim their airdrop allocation multiple times . . . . . . . . . . . . 24

[C-02] - HexOneStaking.sol contract can be permanently bricked when there is

no amount staked . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

[H-01] - Lack of TWAP reactivity allows users to borrowmore HEX1 than intended 28

[M-01] - setBaseData()methodmay allow Owner to take malicious action . . . . 31

[M-02] -Missingstateupdates in the_updatePoolHistory()method lead tostak-

ing reward accounting issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

[M-03] - Inaccurate airdrop calculation results in excessive HEXIT distribution . 34

[M-04] -Returnexpression fromgetCurrentAirdropDay()methodreturningun-

expected value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

[M-05] - Overriding of stakeIds can lead to debt erasure . . . . . . . . . . . . . . . . 37

[M-06] - setHexOneBootstrap()methodmay allowOwner to takemalicious action 39

[M-07] - setHexOneVault()methodmay allow Owner to take malicious action . . 40

[L-01] - Lack of total weight amount check can cause unexpected behavior . . . 41

[L-02] - teamWallet is the recipient of a significant portion of the HEXIT supply . 42

[L-03] - Lack of minimum deposit() amount requirement leads to inaccurate

accounting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

[L-04] - Lack of minimum stake() amount requirement leads to inaccurate ac-

counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

[L-05] - Thegrowthofbalanceswithin the HexOneStaking.sol contract doesnot
consistently align with proportional increases in share allocation . . . . . . 52

[L-06] - Price feedmay be subject to manipulation on deployment . . . . . . . . . . 56

[L-07] - Arbitrary from() being used in Bootstrap deposit()method . . . . . . . . 57

[I-01] - Typo in startAidrop() function name . . . . . . . . . . . . . . . . . . . . . . . . . 58

[I-02] - Several integer ranges do not have proper gas-wise considerations . . . 59

[I-03] - Inefficiencies in storage usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

[I-04] - Incorrect TWAP stale time code documentation . . . . . . . . . . . . . . . . . 61

[I-05] - Consider replacing ERC20 libraries with the Solady implementation . . . 62

[I-06] - Do-while cycle more gas efficient than conventional for loop . . . . . . . . 63

[I-07] - Split revert statements in HexOnePriceFeed.sol . . . . . . . . . . . . . . . . . . 64

[I-08] - Multiple unnecessary storage readings . . . . . . . . . . . . . . . . . . . . . . . 65

[I-09] - Unnecessary contains() check on AddressSet . . . . . . . . . . . . . . . . . . . 66

[I-10] - Missing zero address checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

[I-11] - Basis point standard not being respected . . . . . . . . . . . . . . . . . . . . . . . 68

[I-12] - No specific events being emitted in HexOneStaking.sol . . . . . . . . . . . . . 69

[I-13] - Incorrect sacrifice incentives code documentation . . . . . . . . . . . . . . . . 70



[I-14] - Misleading internal method name in _getHexPrice() . . . . . . . . . . . . . . . 71



Disclaimer

ASecurity Review can never verify the complete absence of vulnerabilities. This is a time,

resource and expertise bound effortwherewe try to find asmany vulnerabilities as pos-

sible. We can not guarantee 100% security after the review or even if the reviewwill find

any problems with your smart contracts.

1



About Hex One Protocol

HEX1 is a 100% collateralized stablecoin backed by T-SHARES. To obtain HEX1, depositors
must create anescrowed HEX stake in theprotocol, so that they canborrow HEX1 in a 1:1 ra-
tio against its dollar value. While said HEX is escrowed in the protocol T-SHARES are being
accrued as per standard HEX mechanisms. If the HEX collateral value in dollar increases,

users are then able to mint more HEX1 according to the difference in underlying value

with the last instance a user borrowed HEX1.

2



Executive Summary

Coverage reviewed Hex One Protocol smart contracts over the course of a 5 week en-

gagement with three engineers. The review was conducted from 29-01-2024 to 06-03-

2024.

People Involved

Name Role Contact

José Garção Lead Security Researcher garcao.random@gmail.com

nexusflip Security Researcher 0xnexusflip@gmail.com

0xBeirao Security Researcher beirao.dev@icloud.com

Application Summary

Name Hex One Protocol

Repository https://github.com/HexOneProtocol/hex1-contracts

Language Solidity

Platform Pulsechain

Code Versioning Control

• Review commit hash - 6e6bb33.

• Fix review commit hash - 50c32bc.

Scope

The following smart contracts were within review scope:

• src/HexitToken.sol

• src/HexOneBootstrap.sol

• src/HexOnePriceFeed.sol

• src/HexOneStaking.sol

• src/HexOneToken.sol

• src/HexOneVault.sol

• src/libraries/UniswapV2Library.sol

• src/libraries/UniswapV2OracleLibrary.sol

3

https://github.com/HexOneProtocol/hex1-contracts
https://github.com/HexOneProtocol/hex1-contracts/tree/6e6bb33608be40c0a5f54d670647deeae32338b6
https://github.com/HexOneProtocol/hex1-contracts/tree/50c32bc317cd11d13215120a93d8a0f01f87f8fb


Methodology

Ourmethodology is divided into five different phases, each designed to improve the se-

curity and reliability of the contracts in scope. By following this structured approach, we

aim to enhance the overall robustness of the codebase.

Context & Cleanup

During this phase, our primary focuswas comprehending the intricacies of the codebase

and eliminatingmost known anti-patterns. We started by analysing the storage layout of

the contracts using sol2uml and producing detailed user flows and diagrams in order to

enhanceour understandingof the codebase. Oncewehada comprehensiveunderstand-

ing, we performed an initial cleanup targeting areas such as commented code, unused

imports, event emission, division before multiplication and unchecked returns, among

others. We also ran multiple static analysis tools, such as Slither and Slitherin to ensure

that the foundation of the code was free from unnecessary clutter. As a final step we

shifted our attention to gas optimizations, where we tried to make the overall codebase

more cost-efficient at the deployment and runtime levels.

Stateful Fuzzing

In this phase, our first task was to conduct an assessment of the codebase to identify

and establish invariants within the protocol. Once we had a clear understanding of the

fundamental properties of theprotocol, weproceeded to implement themusingEchidna.

Once the implementation of invariants was completed we executed an extensive series

of fuzz runs to ensure that a wide range of inputs and scenarios were tested.

Manual Review

With the insights gained from previous phases, we delved deeper into the codebase to

identify potential edge cases, design flaws and attack vectors that may not be easily de-

tected by automated testing techniques. Additionally, we reviewed the overall business

logic of the protocol, ensuring consistency with the protocol’s specifications and verify-

ing that said logic aligns with the intended behavior outlined in the documentation.

Quality Assurance

During this phase, we outlined possible improvements to the architecture of the proto-

col to enhance systemmonitoring, security and overall design. We also documented the

capabilities of privileged actors within the protocol. Furthermore, we classified the ma-

turity of the codebase across different categories.

Fix Review

This phase involved reviewing the client fixes and ensuring their correctness. This pro-

cess included analyzing the code changes, testing the fixes in an isolated setting and as-

sessing their impact on the overall functionality and security of the protocol.

4

https://github.com/naddison36/sol2uml
https://github.com/coveragelabs/2024-01-hex1/tree/hex1-review/diagrams
https://github.com/crytic/slither
https://github.com/pessimistic-io/slitherin
https://github.com/crytic/echidna
https://github.com/coveragelabs/2024-01-hex1/tree/hex1-review/test/echidna


Severity Classification

Likelihood / Impact HIGH MEDIUM LOW

HIGH CRITICAL HIGH MEDIUM

MEDIUM HIGH MEDIUM LOW

LOW MEDIUM LOW LOW

Impact

• High - Leads to a loss of a significant portion (>10%) of assets in the protocol, or

significant harm to a majority of users.

• Medium - Global losses (<10%) or losses to only a subset of users.

• Low - Minor loss of assets in the protocol or harms a small subset of users.

Likelihood

• High -Almost certain tohappen, easy toperform, ornoteasybuthighly incentivized.

• Medium - Only conditionally possible or incentivized, but still relatively likely.

• Low - Requires a highly complex setup, or has little to no incentive in accomplishing

the attack.

Action Required for severity levels

• Critical - Must fix as soon as possible.

• High - Must fix.

• Medium - Should fix.

• Low - Could fix.

5



Quality Assurance

Access Control

The protocol employs a simple access control mechanism with only one privileged role:

the owner. The owner has the permissions to:

• Set the allowed stake tokens to receive staking rewards, via the setSacrificeTo-
kens()method.

• Set the timestamp for the beginning of the sacrifice phase by calling the setSacri-
ficeStart()method.

• Process the sacrificeonce the 30-day sacrificeperiodhas elapsed, utilizing the pro-
cessSacrifice()method.

• Start the airdrop once the 7-day sacrifice claim period has elapsed, by calling the

startAirdrop()method.

The owner also has permissions to call certain setter functions that introduced the risk

of hotswapping contract implementations, but said issues were mitigated (see findings

M-01, M-06 and M-07).

6

https://github.com/HexOneProtocol/hex1-contracts/blob/6e6bb33608be40c0a5f54d670647deeae32338b6/src/HexOneBootstrap.sol#L148-L165
https://github.com/HexOneProtocol/hex1-contracts/blob/6e6bb33608be40c0a5f54d670647deeae32338b6/src/HexOneBootstrap.sol#L148-L165
https://github.com/HexOneProtocol/hex1-contracts/blob/6e6bb33608be40c0a5f54d670647deeae32338b6/src/HexOneBootstrap.sol#L167-L174
https://github.com/HexOneProtocol/hex1-contracts/blob/6e6bb33608be40c0a5f54d670647deeae32338b6/src/HexOneBootstrap.sol#L167-L174
https://github.com/HexOneProtocol/hex1-contracts/blob/6e6bb33608be40c0a5f54d670647deeae32338b6/src/HexOneBootstrap.sol#L248-L311
https://github.com/HexOneProtocol/hex1-contracts/blob/6e6bb33608be40c0a5f54d670647deeae32338b6/src/HexOneBootstrap.sol#L248-L311
https://github.com/HexOneProtocol/hex1-contracts/blob/6e6bb33608be40c0a5f54d670647deeae32338b6/src/HexOneBootstrap.sol#L357-L396


CodeMaturity

Code Maturity Evaluation Guidelines

Category Description

Access Control The use of robust access controls to handle

identification and authorization, as well as ensuring

safe interactions with the system.

Arithmetic The proper use of mathematical operations, including

addition, subtraction, multiplication, and division, as well

as semantics.

Centralization The presence of a decentralized governance structure

for mitigating insider threats andmanaging risks posed

by contract upgrades.

Code Stability The extent to which the code was altered during the

audit and the frequency of changes made over time.

Upgradability The presence of parametrizations of the system that

allowmodifications after deployment, ensuring

adaptability to future needs.

Front-Running The system’s resistance to front-running attacks, where

transactions are manipulated to exploit market

conditions.

Monitoring The presence of events that are emitted whenever

there are operations that change the state of the

system.

Specification The presence of comprehensive and readable codebase

documentation outlining the purpose, functionality, and

design choices of the system.

Testing and Verification The presence of robust testing procedures, including

unit tests, integration tests, and formal verification

methods, ensuring the reliability and correctness of the

system.

7



Code Maturity Evaluation Results

Category Description

Access Controls Satisfactory. All conditional access control

functionalities are properly implemented, ensuring

secure interactions with the system.

Arithmetic Moderate. There are several findings that stem from

rounding issues, which could be avoided by introducing

minimum deposit amount thresholds and refining

mathematical operations.

Centralization Moderate. Certain setter functions introduce the risk of

hotswapping contract implementations, which may

affect the permissionless nature of the protocol.

Code Stability Moderate. Some bugs stemming frommathematical

outputs hindered testing and thus had to bemodified.

Upgradability Moderate. There is the possibility of changing the

implementation of certain contracts, although these

have to be fully compatible on an Interface level.

Front-Running Moderate. There is a possibility that an attacker can

front-run the oracle deployment to briefly manipulate

the initial price.

Monitoring Moderate. Althoughmost contracts in scope have

comprehensive event emission, the HexOneStaking.sol
contract lacked context-specific events.

Specification Weak. The current documentation is outdated in

comparison to the actual implementation of the

contracts.

Testing and Verification Weak. There was a significant lack of testing coverage

on the codebase (NOTE: The client provided an updated

testing suite with full test coverage shortly after the

review started).

8



Architectural Review

Improvements can bemade to HEXIT supply monitoring

The totalHexitMinted public variable within the HexOneBootstrap.sol contract is sup-

posed to store the total amount of HEXITminted in this given contract, but does not sep-

arate mint amounts by sacrifice, airdrop, staking contract mint and teamwallet mint.

This makes it difficult to do accounting and/or external composition, as we have noticed

when applying invariant testing principles on top of said variable to assess that themint-

ing percentages for both the staking contract and the teamwallet were being abided by

at all times.

/// @dev total amount of HEXIT tokens minted during the bootstrap.
uint256 public totalHexitMinted;

We recommend separating the HEXIT mint amount logging into hexitMintedSacrifice,
hexitMintedAirdropUsers, hexitMintedAirdropStaking and hexitMintedAirdropTeamWal-
let to have an external logging solution that favours external composability.

9

https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33608be40c0a5f54d670647deeae32338b6/src/HexOneBootstrap.sol#L82-L83


Consider changing circular dependencies to a hierarchical model

The following snippet of the HexOneBootstrap.sol contract is an example of a circular de-

pendency in the scope. We believe upgrading this model to a hierarchical model is more

fitting of good Solidity practices. This same issue can be observed in the HexOneBoot-
strap.sol, HexOneStaking.sol, HexOneVault.sol, HexitToken.solandHexOneToken.solcon-
tracts.

/// @dev set the address of other protocol contracts.
/// @notice can only be called by the owner.
function setBaseData(address _hexOnePriceFeed, address _hexOneStaking,

address _hexOneVault) external onlyOwner {↪→

if (_hexOnePriceFeed == address(0)) revert
InvalidAddress(_hexOnePriceFeed);↪→

if (_hexOneStaking == address(0)) revert InvalidAddress(_hexOneStaking);
if (_hexOneVault == address(0)) revert InvalidAddress(_hexOneVault);

hexOnePriceFeed = _hexOnePriceFeed;
hexOneStaking = _hexOneStaking;
hexOneVault = _hexOneVault;

}

We recommendchanging the abovementioned contracts so that the necessary address-

es are declared in the contract constructors, being mindful of the correct deployment

sequence to enforce the hierarchical contract dependencies.

10

https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33608be40c0a5f54d670647deeae32338b6/src/HexOneBootstrap.sol#L136-L146
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33608be40c0a5f54d670647deeae32338b6/src/HexOneBootstrap.sol#L136-L146
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33608be40c0a5f54d670647deeae32338b6/src/HexOneBootstrap.sol#L136-L146
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33608be40c0a5f54d670647deeae32338b6/src/HexOneStaking.sol#L90-L98
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33608be40c0a5f54d670647deeae32338b6/src/HexOneVault.sol#L83-L95
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33608be40c0a5f54d670647deeae32338b6/src/HexitToken.sol#L25-L31
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33608be40c0a5f54d670647deeae32338b6/src/HexOneToken.sol#L25-L31


Consider a staking implementation with linear reward accrual in a future iteration of

the protocol

The followingmethodof the HexOneStaking.sol contract is usedby the HexOneBootstrap-
.sol contract to feed rewards to the former whenever there is a deposit in the HexOne-
Vault.solor theairdrop resulting fromthe sacrifices starts. Said rewards are available to

claim daily depending on the different tokens the user has staked (using different per-

centual weights for the reward output of the users’ stake), up to a maximum daily cap

of 1% of the current reward pool both for HEX fees resulting from Vault deposits or the

additional HEXIT supply that is minted whenever the airdrop starts.

function purchase(address _poolToken, uint256 _amount) external {
require(_amount != 0, "Invalid purchase amount");
require(

(_poolToken == hexToken && msg.sender == hexOneVault)
|| (_poolToken == hexitToken && msg.sender == hexOneBootstrap),

"Invalid sender for the specified pool token"
);

// if the pool staking day is not sync with the contract staking day
// there might be gaps in pool history, so we need to updated it
Pool storage pool = pools[_poolToken];
if (pool.currentStakingDay < getCurrentStakingDay()) {

_updatePoolHistory(_poolToken);
}

// increment the total assets deposited in the pool
pool.totalAssets += _amount;

// transfer tokens from the msg.sender to this contract
IERC20(_poolToken).safeTransferFrom(msg.sender, address(this),_amount);

}

11

https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33608be40c0a5f54d670647deeae32338b6/src/HexOneStaking.sol#L128-L153


Although we understand the reasoning behind the architectural design decision to dis-

tribute 1% of the pooled assets per day to users, being that the HEXITmint post airdrop

can have a long enough distribution schedule, gradually inducing HEXIT scarcity the lon-
ger the rewards are distributed and guaranteeing HEX rewardswould be available for dis-
tribution at each given day, we believe that this distribution system could be linear, thus

distributing the full amount of HEX fees accrued from the Vault to users and setting a

linear distribution and mint rate for HEXIT staking rewards, effectively replacing a sin-

gle HEXIT pre-mint after the airdrop which forces dilution of the total token supply with

minted linear emissions on demand, proportional to themintmultiplier set by theOwner

of the Staking contract.

Current iterative logic on calculating rewards:

while (lastClaimedDay < getCurrentStakingDay()) {
// calculate HEX rewards for that day
PoolHistory storage hexHistory = poolHistory[lastClaimedDay][hexToken];
emit StakeShares("HEX history total shares", hexHistortotalShares);
uint256 hexSharesRatio = stakeInfo.hexSharesAmount * FIXED_POINT

hexHistory.totalShares;↪→

hexRewards += (hexHistory.amountToDistribute * hexSharesRatio)
FIXED_POINT;↪→

// calculate HEXIT rewards
PoolHistory storage hexitHistory =

poolHistory[lastClaimedDay][hexitToken];↪→

uint256 hexitSharesRatio = stakeInfo.hexitSharesAmount FIXED_POINT /
hexitHistory.totalShares;↪→

hexitRewards += (hexitHistory.amountToDistribute hexitSharesRatio) /
FIXED_POINT;↪→

lastClaimedDay++;
}

Current iterative logic on updating pools:

while (currentStakingDay < getCurrentStakingDay()) {
// get the pool rewards for each day since it was last updated
PoolHistory storage history = poolHistory[currentStakingDay][_poolToken];

// store the total shares emitted by the pool at a specific day
history.totalShares = pool.totalShares;

// calculate the amount of pool token to distribute for a specifistaking
day↪→

uint256 availableAssets = pool.totalAssets - pool.distributedAssets;
uint256 amountToDistribute = (availableAssets * pool.distributionRate) /

FIXED_POINT;↪→

history.amountToDistribute = amountToDistribute;

// increment the distributedAssets by the pool
pool.distributedAssets += amountToDistribute;

// increment the staking day in which the pool rewards were last updated
currentStakingDay++;

}

12

https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33608be40c0a5f54d670647deeae32338b6/src/HexOneStaking.sol#L347-L359
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33608be40c0a5f54d670647deeae32338b6/src/HexOneStaking.sol#L316-L335


This change would prevent excessive assymetry in staking output yields which can lead

to unpredictability in the percentage of user staking retention over time, potentially re-

ducing the amount of HEX1/DAI LP token (being that the liquidity depth of the LP grants

stability to thepeg) that is staked in theprotocol over time,while still granting full control

of the distribution of HEXIT supply over time and maintaining the staking token weight

mechanism.

Adding to that, using a linear mechanism would not need extensive historical storing of

daily rewards each user has not claimed in storage, being that it would only be needed

to store which tokens the user has staked and their respective amounts without having

to iteratively access storage for each day proportionally to the amount of days the user

has not claimed rewards for, as well as the last timestamp each user claimed rewards,

mitigating potential Denial-of-Service issues that the current model may pose on the

long run from eventually having to iteratively store a considerable enough amount of

data in storage pertaining daily rewards for a user that has not claimed for a very long

period of time as well as respective pool data updates.

• NOTE: We have calculated the amount of poolHistory entries that would need to

be updated (in the case of said entries not being updated for a very long period of

time) to cause a Denial-of-Service issue given the case described above and the

results would be negligible on a reasonable decades-long timescale. Nonetheless,

this proposed implementation would mitigate any potential issues to the point it is

impossible for it to happen in a much greater timescale.

• NOTE:Weareaware thiswould requireacomplete reworkof thestakingmechanism

so this suggestion should only be considered for future iterations of the protocol.

We recommend changing the reward distribution calculations so that all of the pool re-

wards can be distributed to users linearly and the HEXIT distribution rate uses an emis-

sions basedmodel. To achieve that, it would be necessary to:

• Remove the 1% hardcap on rewards to distribute from pools.

• Remove the _updatePoolHistory() method and update depending external meth-

ods accordingly.

• Add a setTokenDistributionRate()method that would allow the Owner to change

the rate of distribution expressed in rewardRate per second for any staking reward
tokens.

• RemovetheHEXITpremintonairdropstart in favourofamint()call inside theclaim()
method that mints the amounts to distribute for a given user after calculating the

HEXIT said user has not claimed yet through the _calculateRewards()method, thus

following an emissions-basedmodel for HEXIT distribution.

• Simplify the Pool and StakeInfo structs so that any variables pertaining previous

logic would be removed in favour of logging last claimed timestamps, amounts of

each staked token of each user, total shares and total amounts claimed of each re-

ward token. Remove the PoolHistory struct.

• Change the _calculateRewards() method so that it would return the result to the

followingformula: rewards = stakedAmount * rewardRate * elapsedTime * token-
Weight, in which elapsedTime = block.timestamp - lastUserClaimedTimestamp.

13



HEX1/DAI LP peg stability can be ensured by tuning sacrifice processing ratios and in-
creasing incentivization for LP stakers

The processSacrifice()methodwithin the HexOneBootstrap.sol contract swaps 12.5%of

the current sacrificed HEX to DAI and deposits another 12.5% of HEX in the protocol’s Vault
to mint HEX1, in order to deposit both assets in the HEX1/DAI PulseX LP in the same ratio.

function processSacrifice(uint256 _amountOutMinDai) external onlyOwner {
if (block.timestamp < sacrificeEnd) revert

SacrificeHasNotEndedYet(block.timestamp);↪→

if (sacrificeProcessed) revert SacrificeAlreadyProcessed();

// set the sacrifice processed flag to true since the sacrifice was
already processed↪→

sacrificeProcessed = true;

// update the sacrifice claim period end timestamp
sacrificeClaimPeriodEnd = block.timestamp + SACRIFICE_CLAIM_DURATION;

// compute the HEX to swap, corresponding to 12.5% of the total HEX
sacrificed↪→

uint256 hexToSwap = (totalHexAmount * LIQUIDITY_SWAP_RATE) / FIXED_POINT;

// update the total amount of HEX in the contract by reducing it
hexToSwap * 2↪→

// because 12.5% is used to being swapped to DAI and the other 12.5% are
used to mint HEX1↪→

// that being said 25% of the inital HEX sacrificed should be decremented
here!↪→

totalHexAmount -= hexToSwap * 2;

// swap 12.5% of inital HEX to DAI from ETH
address[] memory path = new address[](2);
path[0] = hexToken;
path[1] = daiToken;

IERC20(hexToken).approve(pulseXRouter, hexToSwap);

uint256[] memory amountOut =
IPulseXRouter(pulseXRouter).swapExactTokensForTokens(↪→

hexToSwap, _amountOutMinDai, path, address(this), block.timestamp
);

// enable hex one vault to start working because sacrifice has been
processed.↪→

IHexOneVault(hexOneVault).setSacrificeStatus();

// create a new deposit for `MAX_DURATION` in the vault with 12.5% of the
total minted HEX↪→

IERC20(hexToken).approve(hexOneVault, hexToSwap);
(uint256 hexOneMinted,) = IHexOneVault(hexOneVault).deposit(hexToSwap,

5555);↪→

// check if there's an already created HEX1/DAI pair
address hexOneDaiPair =

IPulseXFactory(pulseXFactory).getPair(hexOneToken, daiToken);↪→

if (hexOneDaiPair == address(0)) {

14

https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33608be40c0a5f54d670647deeae32338b6/src/HexOneBootstrap.sol#L248-L311


hexOneDaiPair = IPulseXFactory(pulseXFactory).createPair(hexOneToken,
daiToken);↪→

}

// approve router for both amounts
IERC20(hexOneToken).approve(pulseXRouter, hexOneMinted);
IERC20(daiToken).approve(pulseXRouter, amountOut[1]);

// use the newly minted HEX1 + DAI from ETH and create an LP with 1:1
ratio↪→

(uint256 amountHexOneSent, uint256 amountDaiSent, uint256 liquidity) =
IPulseXRouter(pulseXRouter).addLiquidity(↪→

hexOneToken,
daiToken,
hexOneMinted,
amountOut[1],
hexOneMinted,
amountOut[1],
address(this),
block.timestamp

);

emit SacrificeProcessed(hexOneDaiPair, amountHexOneSent, amountDaiSent,
liquidity);↪→

}

The stake()method within the HexOneStaking.sol contract allows users to stake tokens
and get HEX and HEXIT rewards which come from distributing 1% of then respective re-

ward token pools daily, depending on the token weights of the ERC20 tokens they are

staking. Both represent solutions the protocol has implemented to secure the HEX1/DAI
pair liquidity depth in order to try and mitigate potential depegs that happen from the

ratio of assets in the stable pair being skewed.

function stake(address _stakeToken, uint256 _amount) external nonReentrant
onlyWhenStakingEnabled {↪→

require(stakeTokens.contains(_stakeToken), "Token not allowed");
require(_amount > 0, "Invalid staking amount");

// accrue rewards and update history for both the HEX and HEXIT pools
_accrueRewards(msg.sender, _stakeToken);

// transfers amount of stake token from the sender to this contract.
uint256 stakeAmount = _transferToken(_stakeToken, msg.sender,

address(this), _amount);↪→

// update the total amount staked
totalStakedAmount[_stakeToken] += stakeAmount;

// calculate the amount of HEX and HEXIT pool shares to give to the user
uint256 shares = _calculateShares(_stakeToken, stakeAmount);
require(shares != 0, "Invalid shares amount");

// update the number of total shares in the HEX and HEXIT pools
pools[hexToken].totalShares += shares;
pools[hexitToken].totalShares += shares;

15

https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33608be40c0a5f54d670647deeae32338b6/src/HexOneStaking.sol#L155-L192


// update the staking information of the user for a specific stake token
uint256 currentStakingDay = getCurrentStakingDay();
StakeInfo storage stakeInfo = stakingInfos[msg.sender][_stakeToken];
stakeInfo.stakedAmount += stakeAmount;
if (stakeInfo.initStakeDay == 0) {

stakeInfo.initStakeDay = currentStakingDay;
}
if (stakeInfo.lastClaimedDay == 0) {

stakeInfo.lastClaimedDay = currentStakingDay;
}
stakeInfo.lastDepositedDay = currentStakingDay;
stakeInfo.hexSharesAmount += shares;
stakeInfo.hexitSharesAmount += shares;

}

As described in finding H-01, there is a possibility of users being able to mint more HEX1
than expected and selling it against the HEX1/DAI PulseX LP that supports the peg, which

poses a threat to the protocol’s peg stability. Assessing some architectural implications

related to this security finding, we can consider that having a frequently updatedmedian

of different quotes frommultiple sources of truth helps mitigating the issue, but at the

same time achieving a consistent dollar cost basis for HEX1 borrowing without a robust

liquidations, LTV and interest rates mechanism is difficult, especially after a significant

depeg that stems from a deviation in the ratio of HEX1 to DAI in the PulseX LP pair.

Given that the HEX1/DAI pair is the benchmark for the expected dollar valuation of HEX1,
and although the intention of the protocol is to enable users to have the option of using

the underlying value of their HEX in external markets while accruing yield from T-Shares

and be able to increase their loan output if there is favourable HEX price movement, or

having the option to buy a long-term discounted bond on HEX if the HEX1 peg breaks by

accumulating HEX1 in a risk-based approach, the peg repeatedly breaking for extensive

periods of time might represent an issue for external composability by other DeFi end-

points, so there is a necessity of ensuring the HEX1/DAI peg is maintained by enforcing

more aggressive LP deposit ratioswhenever a sacrifice is processed or evenmore distri-

bution of HEX and HEXIT incentives for users that stake the LP token.

We recommend ensuring more aggressive LP conversion ratios on processSacrifice()
(more tokens get deposited on the LP) and/or increase token weight and resulting HEXIT
and HEX yields for HEX1/DAI LP token stakes.

16



No token pre-mint might affect max supply beyond expected

In a scenario where the deposit()method of the HexOneVault.sol contract is called, un-
expected behaviour might happen during its internal transfer call.

In the following snippet of the HexitToken.sol contract, there is the possibility to mint

tokens without a set threshold or maximum supply. This can lead to an unexpected di-

lution of the token supply as there might be unintended side effects from external calls

leading into the mint() call.

/// @dev mint HEXIT tokens to a specified account.
/// @notice only bootstrap can call this function.
/// @param _recipient address of the receiver.
/// @param _amount amount of HEX1 being minted.
function mint(address _recipient, uint256 _amount) external

onlyHexOneBootstrap {↪→

_mint(_recipient, _amount);
}

Consider changing the tokendistributionmechanism so that themaximumsupply is pre-

minted before any usage, and then change the external mint() calls to transfer() calls
from the supplying contracts which hold the intended portions of token to supply. Alter-

natively, if there is an intention to have an infinite HEXIT supply, we recommend that all

mathematical calculations resulting from the protocols’ intended architecture that lead

to a mint() call are thoroughly checked to avoid unintended dilution.

17

https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33608be40c0a5f54d670647deeae32338b6/src/HexitToken.sol#L33-L39


Stateful Fuzzing

HexOneStaking.sol

Property Runs Status

Daily distributed HEXIT rewards must be equal to 1% ~102MM

Daily distributed HEX rewards must be equal to 1% ~10MM

HEX pool shares to give are always proportional to the

increase in balance of a stake token based on the weight
~10MM

HEXIT pool shares to give are always proportional to the

increase in balance of a stake token based on the weight
~10MM

Users cannot unstake more than what they staked

(excluding rewards)
~600MM

HEXIT unstake amount is always greater or equal than the

stake amount
~600MM

Sum of all users shares must be equal to pool.totalShares ~600MM

Users can only unstake 2 days after they’ve staked ~600MM

The total rewards to be distributed to Alice with N deposits

of X total value should be the same for Bob with pN

deposits of X same total value

~10MM

18

https://github.com/coveragelabs/2024-01-hex1/blob/hex1-review/test/echidna/HexOneProperties.sol#L455-L468
https://github.com/coveragelabs/2024-01-hex1/blob/hex1-review/test/echidna/HexOneProperties.sol#L472-L485
https://github.com/coveragelabs/2024-01-hex1/blob/hex1-review/test/echidna/HexOneProperties.sol#L489-L520
https://github.com/coveragelabs/2024-01-hex1/blob/hex1-review/test/echidna/HexOneProperties.sol#L489-L520
https://github.com/coveragelabs/2024-01-hex1/blob/hex1-review/test/echidna/HexOneProperties.sol#L524-L555
https://github.com/coveragelabs/2024-01-hex1/blob/hex1-review/test/echidna/HexOneProperties.sol#L524-L555
https://github.com/coveragelabs/2024-01-hex1/blob/hex1-review/test/echidna/HexOneProperties.sol#L559-L581
https://github.com/coveragelabs/2024-01-hex1/blob/hex1-review/test/echidna/HexOneProperties.sol#L559-L581
https://github.com/coveragelabs/2024-01-hex1/blob/hex1-review/test/echidna/HexOneProperties.sol#L585-L608
https://github.com/coveragelabs/2024-01-hex1/blob/hex1-review/test/echidna/HexOneProperties.sol#L585-L608
https://github.com/coveragelabs/2024-01-hex1/blob/hex1-review/test/echidna/HexOneProperties.sol#L612-L638
https://github.com/coveragelabs/2024-01-hex1/blob/hex1-review/test/echidna/HexOneProperties.sol#L642-L670
https://github.com/coveragelabs/2024-01-hex1/blob/hex1-review/test/echidna/HexOneProperties.sol#L674-L770
https://github.com/coveragelabs/2024-01-hex1/blob/hex1-review/test/echidna/HexOneProperties.sol#L674-L770
https://github.com/coveragelabs/2024-01-hex1/blob/hex1-review/test/echidna/HexOneProperties.sol#L674-L770


HexOneVault.sol

Property Runs Status

HEX1 minted must always be equal to the sum of all users

UserInfo.totalBorrowed ~1MM

Alice must only be able to mint more HEX1 with the same

HEX collateral if the HEX price increases
~10MM

Must never be able to mint more HEX1with the same

collateral if the HEX price decreases ~600MM

The amount to withdraw after maturity must always be

greater or equal than the HEX collateral deposited
~600MM

Amount and duration on deposit must always be

corresponding to the amount minus fee and

corresponding set lock on the contract storage

~600MM

The fee taken from user deposits must always be equal to

5%
~600MM

Deposit can not be claimed if maturity has not passed ~600MM

If hexOneBorrowed > 0 the amount borrowedmust always

be burned to claim back HEX
~600MM

The sum of all DepositInfo.amount HEX deposited by the

user across all its deposits must always be equal to

UserInfo.totalAmount
~600MM

The sum of all DepositInfo.borrowed HEX1 borrowed by
the user across all its deposits must always be equal to

UserInfo.totalBorrowed
~600MM

19

https://github.com/coveragelabs/2024-01-hex1/blob/778611ff44b9cedb9a21cde0105c7f269a186307/test/echidna/HexOneProperties.sol#L928-L945
https://github.com/coveragelabs/2024-01-hex1/blob/778611ff44b9cedb9a21cde0105c7f269a186307/test/echidna/HexOneProperties.sol#L928-L945
https://github.com/coveragelabs/2024-01-hex1/blob/778611ff44b9cedb9a21cde0105c7f269a186307/test/echidna/HexOneProperties.sol#L833-L867
https://github.com/coveragelabs/2024-01-hex1/blob/778611ff44b9cedb9a21cde0105c7f269a186307/test/echidna/HexOneProperties.sol#L833-L867
https://github.com/coveragelabs/2024-01-hex1/blob/778611ff44b9cedb9a21cde0105c7f269a186307/test/echidna/HexOneProperties.sol#L869-L890
https://github.com/coveragelabs/2024-01-hex1/blob/778611ff44b9cedb9a21cde0105c7f269a186307/test/echidna/HexOneProperties.sol#L869-L890
https://github.com/coveragelabs/2024-01-hex1/blob/778611ff44b9cedb9a21cde0105c7f269a186307/test/echidna/HexOneProperties.sol#L812-L831
https://github.com/coveragelabs/2024-01-hex1/blob/778611ff44b9cedb9a21cde0105c7f269a186307/test/echidna/HexOneProperties.sol#L812-L831
https://github.com/coveragelabs/2024-01-hex1/blob/778611ff44b9cedb9a21cde0105c7f269a186307/test/echidna/HexOneProperties.sol#L785-L810
https://github.com/coveragelabs/2024-01-hex1/blob/778611ff44b9cedb9a21cde0105c7f269a186307/test/echidna/HexOneProperties.sol#L785-L810
https://github.com/coveragelabs/2024-01-hex1/blob/778611ff44b9cedb9a21cde0105c7f269a186307/test/echidna/HexOneProperties.sol#L785-L810
https://github.com/coveragelabs/2024-01-hex1/blob/778611ff44b9cedb9a21cde0105c7f269a186307/test/echidna/HexOneProperties.sol#L785-L810
https://github.com/coveragelabs/2024-01-hex1/blob/778611ff44b9cedb9a21cde0105c7f269a186307/test/echidna/HexOneProperties.sol#L785-L810
https://github.com/coveragelabs/2024-01-hex1/blob/778611ff44b9cedb9a21cde0105c7f269a186307/test/echidna/HexOneProperties.sol#L774-L783
https://github.com/coveragelabs/2024-01-hex1/blob/778611ff44b9cedb9a21cde0105c7f269a186307/test/echidna/HexOneProperties.sol#L812-L831
https://github.com/coveragelabs/2024-01-hex1/blob/778611ff44b9cedb9a21cde0105c7f269a186307/test/echidna/HexOneProperties.sol#L812-L831
https://github.com/coveragelabs/2024-01-hex1/blob/778611ff44b9cedb9a21cde0105c7f269a186307/test/echidna/HexOneProperties.sol#L892-L908
https://github.com/coveragelabs/2024-01-hex1/blob/778611ff44b9cedb9a21cde0105c7f269a186307/test/echidna/HexOneProperties.sol#L892-L908
https://github.com/coveragelabs/2024-01-hex1/blob/778611ff44b9cedb9a21cde0105c7f269a186307/test/echidna/HexOneProperties.sol#L892-L908
https://github.com/coveragelabs/2024-01-hex1/blob/778611ff44b9cedb9a21cde0105c7f269a186307/test/echidna/HexOneProperties.sol#L910-L926
https://github.com/coveragelabs/2024-01-hex1/blob/778611ff44b9cedb9a21cde0105c7f269a186307/test/echidna/HexOneProperties.sol#L910-L926
https://github.com/coveragelabs/2024-01-hex1/blob/778611ff44b9cedb9a21cde0105c7f269a186307/test/echidna/HexOneProperties.sol#L910-L926


HexOneBootstrap.sol

Property Runs Status

If two users sacrificed the same amount of the same

sacrifice token on different days, the one who sacrificed

first should always receive more HEXIT

~600MM

If two users are entitled to the same amount of airdrop

(HEX staked in USD + sacrificed USD), the one who claimed

first should always receive more HEXIT (different days)

~600MM

If two users are entitled to the same amount of airdrop

(HEX staked in USD + sacrificed USD), they should always

receive the same amount of HEXIT if they claimed the

airdrop on the same day

~600MM

The startAirdrop functionmust always mint 33% on top of

the total HEXIT minted during the sacrifice phase to the

HexOneStaking.sol contract

~10MM

The startAirdrop function must always mint 50% on top

of the total HEXIT minted during the sacrifice phase to the

teamwallet

~10MM

The amount of UserInfo.hexitShares a user has must

always be equal to the amount of HEXIT minted when the

user claim its sacrifice rewards via claimSacrifice
function

~600MM

20

https://github.com/coveragelabs/2024-01-hex1/blob/778611ff44b9cedb9a21cde0105c7f269a186307/test/echidna/HexOneProperties.sol#L963-L1018
https://github.com/coveragelabs/2024-01-hex1/blob/778611ff44b9cedb9a21cde0105c7f269a186307/test/echidna/HexOneProperties.sol#L963-L1018
https://github.com/coveragelabs/2024-01-hex1/blob/778611ff44b9cedb9a21cde0105c7f269a186307/test/echidna/HexOneProperties.sol#L963-L1018
https://github.com/coveragelabs/2024-01-hex1/blob/778611ff44b9cedb9a21cde0105c7f269a186307/test/echidna/HexOneProperties.sol#L1020-L1076
https://github.com/coveragelabs/2024-01-hex1/blob/778611ff44b9cedb9a21cde0105c7f269a186307/test/echidna/HexOneProperties.sol#L1020-L1076
https://github.com/coveragelabs/2024-01-hex1/blob/778611ff44b9cedb9a21cde0105c7f269a186307/test/echidna/HexOneProperties.sol#L1020-L1076
https://github.com/coveragelabs/2024-01-hex1/blob/778611ff44b9cedb9a21cde0105c7f269a186307/test/echidna/HexOneProperties.sol#L1078-L1132
https://github.com/coveragelabs/2024-01-hex1/blob/778611ff44b9cedb9a21cde0105c7f269a186307/test/echidna/HexOneProperties.sol#L1078-L1132
https://github.com/coveragelabs/2024-01-hex1/blob/778611ff44b9cedb9a21cde0105c7f269a186307/test/echidna/HexOneProperties.sol#L1078-L1132
https://github.com/coveragelabs/2024-01-hex1/blob/778611ff44b9cedb9a21cde0105c7f269a186307/test/echidna/HexOneProperties.sol#L1078-L1132
https://github.com/coveragelabs/2024-01-hex1/blob/778611ff44b9cedb9a21cde0105c7f269a186307/test/echidna/HexOneProperties.sol#L1134-L1150
https://github.com/coveragelabs/2024-01-hex1/blob/778611ff44b9cedb9a21cde0105c7f269a186307/test/echidna/HexOneProperties.sol#L1134-L1150
https://github.com/coveragelabs/2024-01-hex1/blob/778611ff44b9cedb9a21cde0105c7f269a186307/test/echidna/HexOneProperties.sol#L1134-L1150
https://github.com/coveragelabs/2024-01-hex1/blob/778611ff44b9cedb9a21cde0105c7f269a186307/test/echidna/HexOneProperties.sol#L1134-L1150
https://github.com/coveragelabs/2024-01-hex1/blob/778611ff44b9cedb9a21cde0105c7f269a186307/test/echidna/HexOneProperties.sol#L1134-L1150
https://github.com/coveragelabs/2024-01-hex1/blob/778611ff44b9cedb9a21cde0105c7f269a186307/test/echidna/HexOneProperties.sol#L1134-L1150
https://github.com/coveragelabs/2024-01-hex1/blob/778611ff44b9cedb9a21cde0105c7f269a186307/test/echidna/HexOneProperties.sol#L963-L1018
https://github.com/coveragelabs/2024-01-hex1/blob/778611ff44b9cedb9a21cde0105c7f269a186307/test/echidna/HexOneProperties.sol#L963-L1018
https://github.com/coveragelabs/2024-01-hex1/blob/778611ff44b9cedb9a21cde0105c7f269a186307/test/echidna/HexOneProperties.sol#L963-L1018
https://github.com/coveragelabs/2024-01-hex1/blob/778611ff44b9cedb9a21cde0105c7f269a186307/test/echidna/HexOneProperties.sol#L963-L1018


Findings Summary

ID Title Severity Status

C-01
Users can claim their airdrop allocation multiple

times
CRITICAL Fixed

C-02
HexOneStaking.sol contract can be permanently

bricked when there is no amount staked
CRITICAL Fixed

H-01
Lack of TWAP reactivity allows users to borrow

more HEX1 than intended HIGH Ack

M-01
setBaseData()methodmay allow owner to take

malicious action
MEDIUM Fixed

M-02

Missing state updates in the

_updatePoolHistory()method lead to staking

reward accounting issues

MEDIUM Fixed

M-03
Inaccurate airdrop calculation results in excessive

HEXIT distribution MEDIUM Fixed

M-04
Return expression from getCurrentAirdropDay()

method returning unexpected value
MEDIUM Fixed

M-05 Overriding of stakeIds can lead to debt erasure MEDIUM Fixed

M-06
setHexOneBootstrap()methodmay allow Owner

to take malicious action
MEDIUM Fixed

M-07
setHexOneVault()methodmay allow Owner to

take malicious action
MEDIUM Fixed

L-01
Lack of total weight amount check can cause

unexpected behavior
LOW Fixed

L-02
teamWallet is the recipient of a significant portion

of the HEXIT supply LOW Ack

L-03
Lack of minimum deposit() amount requirement

leads to inaccurate accounting
LOW Fixed

L-04
Lack of minimum stake() amount requirement

leads to inaccurate accounting
LOW Fixed

L-05

The growth of balances within the

HexOneStaking.sol contract does not consistently
align with proportional increases in share

allocation

LOW Fixed

21



ID Title Severity Status

L-06
Price feedmay be subject to manipulation on

deployment
LOW Ack

L-07
Arbitrary from() being used in Bootstrap

deposit()method
LOW Fixed

I-01 Typo in startAidrop() function name INFO Fixed

I-02
Several integer ranges do not have proper

gas-wise considerations
INFO Ack

I-03 Inefficiencies in storage usage INFO Fixed

I-04 Incorrect TWAP stale time code documentation INFO Fixed

I-05
Consider replacing ERC20 libraries with the

Solady implementation
INFO Ack

I-06
Do-while cycle more gas efficient than

conventional for loop INFO
Will not

fix

I-07 Split revert statements in HexOnePriceFeed.sol INFO Ack

I-08 Multiple unnecessary storage readings INFO Fixed

I-09 Unnecessary contains() check on AddressSet INFO Fixed

I-10 Missing zero address checks INFO Fixed

I-11 Basis points standard is not being respected INFO Fixed

I-12
No specific events being emitted in

HexOneStaking.sol INFO Fixed

I-13
Incorrect sacrifice incentives code

documentation
INFO Fixed

I-14
Misleading internal method name in

_getHexPrice() INFO Fixed

22



Severity Count Fixed Acknowledged Will not fix

CRITICAL 2 2 0 0

HIGH 1 0 1 0

MEDIUM 7 7 0 0

LOW 7 5 2 0

INFO 14 10 3 1

TOTAL 31 24 6 1

23



[C-01] - Users can claim their airdrop allocationmultiple times

ID Classification Category Status

C-01 CRITICAL Manual Review Fixed in 46b8401

Impact

The claimAirdrop() function in the HexOneBootstrap.sol contract serves the purpose of
allowingusers towithdrawtheir respectiveairdropsonce. However, to safeguardagainst

multiple withdrawals, it checks the claimedAirdrop()flag to ensure it’s not already set to
true. Since the flag is never updated, this issue can lead to unintended outcomes such as

allowing users to claim the airdrop allocation multiple times.

Proof of Concept

1. Alice is eligible to claim the airdrop, and proceeds calls the claimAirdrop() function.

2. Alice mints her HEXIT airdrop allocation.

3. Alice notices that the claimedAirdrop flag for her userInfo is set to false and thus

calls the claimAirdrop() method once more, being able to claim the same airdrop

amount.

4. Alice repeats the process until the total amount to be airdropped to all users is

drained from the HexOneBootstrap.sol contract, siphoning other users’ airdrops.

The following snippet shows an example proof of concept where a user can claim its air-

drop allocation more than once.

function testAirdropNoStateUpdate() public {
...
// users claims airdrop
vm.prank(user);
bootstrap.claimAirdrop();

// get claimedAirdrop bool
(,,, bool claimedAirdrop) = bootstrap.userInfos(user);

// assert that although the user claimed the airdrop flag is still
// set to false
assertEq(claimedAirdrop, false);

// assert user HEXIT balance
uint256 hexitBalanceAfter = IERC20(hexit).balanceOf(user);
assertGt(hexitBalanceAfter, userHexitBalanceBefore);

// test that the user can claim it's airdrop more than once
vm.prank(user);
bootstrap.claimAirdrop();

// assert user HEXIT balance exploit
uint256 hexitBalanceExploit = IERC20(hexit).balanceOf(user);
assertGt(hexitBalanceExploit, hexitBalanceAfter);

}

24

https://github.com/HexOneProtocol/hex1-contracts/commit/46b8401d66a42d2274dbb3e70fdfe00b7ee22138
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33/src/HexOneBootstrap.sol#L398-L420
https://github.com/coveragelabs/2024-01-hex1/blob/hex1-review/test/poc/AirdropNoStateUpdateTest.t.sol#L9-L74


RecommendedMitigation Steps

Consider adding the following check to the claimAirdrop() function.

function claimAirdrop() external {
if (airdropStart == 0) revert AirdropHasNotStartedYet(block.timestamp);
if (block.timestamp >= airdropEnd)

revert AirdropAlreadyEnded(block.timestamp);

// check if the sender already claimed the airdrop
UserInfo storage userInfo = userInfos[msg.sender];
if (userInfo.claimedAirdrop) revert AirdropAlreadyClaimed(msg.sender);

// calculate the amount to airdrop based on the amount
// that the msg.sender has of staked HEX and sacrificed USD
uint256 hexitShares = _calculateHexitAirdropShares();
if (hexitShares == 0) revert IneligibleForAirdrop(msg.sender);

// increment the total amount of hexit minted by the contract
totalHexitMinted += hexitShares;

+ // set the claimed airdrop flag to true because airdrop was claimed
+ userInfo.claimedAirdrop = true;

// mint HEXIT to the sender
IHexitToken(hexitToken).mint(msg.sender, hexitShares);

emit AirdropClaimed(msg.sender, hexitShares);
}

25



[C-02] - HexOneStaking.sol contract can be permanently bricked when
there is no amount staked

ID Classification Category Status

C-02 CRITICAL Manual Review Fixed in 481c50d

Impact

In a scenario where the pool current staking day pool.currentStakingDay is less than

the current staking day output in currentStakingDay() and the staking pool contains no
staked amount, any attempt to execute the stake() function will consistently revert due
to a division by zero error, effectively causing aDenial-of-Service that permanently dis-

ables users from interacting with the contract.

Proof of Concept

If the HexOneStaking.sol contract remains uncalled for a period exceeding one day, any

subsequent calls to the stake() function will trigger an update to both the HEX and HEXIT
poolHistory entries. This update is necessary because the poolHistory entries become

out-of-sync with the currentStakingDay. When a user increases its’ stake rewards, said

rewards are accrued to ensure that the new amount of shares does compromise the cal-

culation of rewards earned from previous days. This accrual is crucial for maintaining

consistency in reward distribution. However, it’s important to note that rewards should

not be calculated when the user is staking for the first time. In a scenario where both

the HEX and HEXIT pools have no corresponding staked amount to distribute rewards to-

wards, the stake() function will consistently revert due to a division by zero error when

computing the rewards to distribute, effectively causing a Denial-of-Service.

The followingsnippet showsanexampleproofofconceptwherenousers interactedwith

the staking contract for 2 days since itwas enabled, which ultimately lead to a permanent

denial of service of the stake() function due to a division by zero error.

function test_stake_denialOfService_afterInactivityDays() public {
// bound the amount of HEX1/DAI to stake
uint256 amount = 500 * 1e18;

// deal HEX1/DAI LP to the user
deal(hexOneDaiPair, user, amount);

// skip the number of inactivity days after staking is enabled
skip(2 days);

// staking contract is bricked because of a division by zero error
vm.startPrank(user);
IERC20(hexOneDaiPair).approve(address(staking), amount);
vm.expectRevert(stdError.divisionError);
staking.stake(hexOneDaiPair, amount);
vm.stopPrank();

}

26

https://github.com/HexOneProtocol/hex1-contracts/commit/481c50d64069c9ee99c46780467f2aa3c0a60623
https://github.com/coveragelabs/2024-01-hex1/blob/hex1-review/test/poc/StakingDenialOfService.t.sol#L22-L40


RecommendedMitigation Steps

Consider adding a check that ensures rewards are not calculatedwhen the user does not

have pool shares (shares are only granted to a user if they have an amount staked).

function _accrueRewards(address _user, address _stakeToken) internal {
...
StakeInfo storage stakeInfo = stakingInfos[_user][_stakeToken];

+ if (stakeInfo.hexSharesAmount > 0 && stakeInfo.hexitSharesAmount > 0) {
// calculate the amount of HEX and HEXIT rewards since the last
// day claimed
(

uint256 hexRewards,
uint256 hexitRewards

) = _calculateRewards(_user, _stakeToken);

// increment the rewards accrued as unclaimed rewards
stakeInfo.unclaimedHex += hexRewards;
stakeInfo.unclaimedHexit += hexitRewards;

}
}

27



[H-01] - Lack of TWAP reactivity allows users to borrowmore HEX1 than
intended

ID Classification Category Status

H-01 HIGH Manual Review Acknowledged

Impact

In a scenario where there is a significant price decrease of HEX per DAI, users are able to
mint more HEX1 than expected. This is due to a delay in the price update process, which

stems from the low reactivity of the TWAP. Given the current shallow liquidity of the

HEX/DAI pool on PulseX, with a TVL of ~227k USD at the time of writing, the amount of

HEX needed to cause a considerable price drop to capitalize on this issue is rather low.

Proof of Concept

If the HEX price drops in comparison to DAI, either due to external market conditions or

intentional pricemanipulation, usersmay be able to borrow HEX1 before this price drop is
reflected in the HexOnePriceFeed.sol quote. Due to slow reactivity and lack of accuracy

in the price feed, the user may be able to take on an undercollateralized HEX1 loan. This
loan can then be swapped to DAI on the HEX1/DAI pool in the PulseX DEX, inadvertently

creating an arbitrage opportunity that can severely damage the stablecoin’s peg.

Reactivity, set at one hour in this case, determines how frequently the TWAP is updated.

When the oracle’s reactivity is excessively slow, as it is here, the price adjustment to the

current spot price may be delayed, potentially resulting in price divergences and arbi-

trage opportunities that may harm the HEX1 peg and compromise the TWAP’s price ac-

curacy. However, if reactivity is excessively high, while the TWAP’s price accuracy may

increase, it can potentially make prices more susceptible to manipulation. Therefore,

finding a balance between reactivity and accuracy is crucial. We believe that the current

scope does not benefit from a TWAP implementation, given that the delay in sync with

the current spot price is inconvenient.

The following snippet shows an example proof of concept where 2 million HEX are ex-

changed for DAI, followed by a deposit of 2 million HEX into the HexOneVault.sol. This
deposit unexpectedlymints over 50%more HEX1 than initially expected. At the time of

writing, 2 million HEX are worth approximately ~35k DAI, which is a rather small liquidity

amount for DeFi standards.

28

https://github.com/coveragelabs/2024-01-hex1/blob/fcb392cb64f5eb03d37826f116c9f728aedaf99e/test/poc/TwapDelay.t.sol#L13-L71


function testTwapDelay() public {
// give HEX to the sender for both the swap and the deposit
uint256 amount = 2000000e8;
deal(hexToken, user, amount * 2);

// user sells 2 million HEX to DAI
vm.startPrank(user);
IERC20(hexToken).approve(pulseXRouter, amount);
address[] memory path = new address[](2);
path[0] = hexToken;
path[1] = daiToken;
IPulseXRouter02(pulseXRouter).swapExactTokensForTokens(amount, 1, path,

user, block.timestamp);↪→

vm.stopPrank();

// check if the HEX to DAI TWAP quote is considerably higher than the
spot price↪→

IPulseXPair pulseXPair = IPulseXPair(hexDaiPair);
assertEq(hexToken, pulseXPair.token0());

(uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast) =
pulseXPair.getReserves();↪→

uint256 spotQuote = IPulseXRouter02(pulseXRouter).quote(amount, reserve0,
reserve1);↪→

emit log_named_uint("spotQuote", spotQuote);

uint256 twapQuote = IHexOnePriceFeed(feed).consult(hexToken, amount,
daiToken);↪→

emit log_named_uint("twapQuote", twapQuote);

assertLt(spotQuote, twapQuote);

// enable vault usage
vm.startPrank(address(bootstrap));
IHexOneVault(vault).setSacrificeStatus();
vm.stopPrank();

// user deposits 2 million HEX in the vault receiving ~50% more HEX1 than
expected↪→

vm.startPrank(user);
IERC20(hexToken).approve(address(vault), hexBalance);
(uint256 hex1Balance, ) = IHexOneVault(vault).deposit(hexBalance, 3800);

// compare expected spot quote vs borrowed HEX1
assertGt(hex1Balance, spotQuote);
emit log_named_uint("hex1Balance", hex1Balance);

}

spotQuote: 20467262326253594781562
twapQuote: 34972723180079698511440
hex1Balance: 33224087021075713585868

29



RecommendedMitigation Steps

Consider replacing the TWAP price feed system with a high-frequency automated price

feed that considers themedian of all relevant LPs within Pulsechain for the HEX/DAI pair,
instead of using a single source of truth from PulseX.

30



[M-01] setBaseData()methodmay allowOwner to takemalicious action

ID Classification Category Status

M-01 MEDIUM Access Control
Fixed in fae2456,

a884f78

Impact

In a scenariowhere anactor hasownerpermissions in the HexOneBootstrap.sol, HexOneS-
taking.sol and HexOneVault.sol contracts, said actor can replace thedelegated baseData
addresses to contracts that are cross-compatible on an interface level butmay havema-

licious code inserted into its methods.

Proof of Concept

The following snippet of the HexOneBootstrap.sol contract is an occurrence where the

ownermay re-route any of the following input addresses to any contract that has a com-

patible interface, enabling the possibility of said addresses routing to contractswithma-

licious code. Webelieve this adds a centralization risk that counters the intendedpermis-

sionless nature of the protocol. Consider the following scenario:

1. Alice has owner permissions for the HexOneBootstrap.sol contract

2. Alice deploys a HexOneStaking.sol contract that has an identical interface, butmod-

ifies the transfer() call in either the deposit() or withdraw() functions so that any
resulting transfer from execution is routed to an EOA controlled by her instead.

3. Alice calls the setBaseData() function in the HexOneBootstrap.sol contract, chang-
ing the address route to her newly deployed contract, thus siphoning funds from

the protocol.

/// @dev set the address of other protocol contracts.
/// @notice can only be called by the owner.
function setBaseData(

address _hexOnePriceFeed,
address _hexOneStaking,
address _hexOneVault

) external onlyOwner {
if (_hexOnePriceFeed == address(0))

revert InvalidAddress(_hexOnePriceFeed);
if (_hexOneStaking == address(0)) revert InvalidAddress(_hexOneStaking);
if (_hexOneVault == address(0)) revert InvalidAddress(_hexOneVault);

hexOnePriceFeed = _hexOnePriceFeed;
hexOneStaking = _hexOneStaking;
hexOneVault = _hexOneVault;

}

RecommendedMitigation Steps

Change the deployment architecture so that any external addresses are defined on the

contract’s constructor (avoiding the need for circular contract dependencies but rather

a hierarchical model dependant on a sequential deployment order) and remove the set-
BaseData()method.

31

https://github.com/HexOneProtocol/hex1-contracts/commit/fae24565f31270072379e263b665a7e955e00b63
https://github.com/HexOneProtocol/hex1-contracts/commit/a884f78271e39bc6e8631128c19c6fc744c3acb1
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33/src/HexOneBootstrap.sol#L136-L146
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33/src/HexOneStaking.sol#L90-L98
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33/src/HexOneStaking.sol#L90-L98
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33/src/HexOneVault.sol#L83-L95
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33/src/HexOneBootstrap.sol#L138-L146


[M-02] - Missing state updates in the _updatePoolHistory()method lead
to staking reward accounting issues

ID Classification Category Status

M-02 MEDIUM Stateful Fuzzing Fixed in 0d692e6

Impact

In a scenario where the total user shares equal 0 for a given stakingDay, rewards might

be distributed although no one is able to receive them. That happens because there is

no check to ensure that there are shares in the pool, so if there are no shares in the pool

(meaning that no one has deposited yet), the pool will still distribute rewards for that

stakingDay that will ultimately be lost since no one will be able to claim them.

Proof of Concept

The _updatePoolHistory() internal method within the HexOneStaking.sol contract is not
syncing the poolHistory.amountToDistribute whenever pool.totalShares is equal to 0.

This implies that if no users interactwith any user-sidedmethods for thewhole duration

of a stakingDay the rewards for that given stakingDay are distributed by the pool but are
no longer receivable by any users. Given that the protocol distributes 1% of the available

pool shares daily, this issue might create a significant inconsistency in reward distribu-

tion efficiency.

function _updatePoolHistory(address _poolToken) internal {
Pool storage pool = pools[_poolToken];

uint256 currentStakingDay = pool.currentStakingDay;
while (currentStakingDay < getCurrentStakingDay()) {

// get the pool rewards for each day since it was last updated
PoolHistory storage history =

poolHistory[currentStakingDay][_poolToken];↪→

// store the total shares emitted by the pool at a specific day
history.totalShares = pool.totalShares;

// calculate the amount of pool token to distribute for a specific
staking day↪→

uint256 availableAssets = pool.totalAssets - pool.distributedAssets;
uint256 amountToDistribute = (availableAssets *

pool.distributionRate) / FIXED_POINT;↪→

history.amountToDistribute = amountToDistribute;

// increment the distributedAssets by the pool
pool.distributedAssets += amountToDistribute;

// increment the staking day in which the pool rewards were last
updated↪→

currentStakingDay++;
}
pool.currentStakingDay = currentStakingDay;

}

32

https://github.com/HexOneProtocol/hex1-contracts/commit/0d692e6bbf5ba51146ec14da9193b8ae38bfdc27
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33/src/HexOneStaking.sol#L312-L335


If Alice deposits on day 1 and on day 2 she withdraws and there are no new user deposits

in the HexOneStaking.sol contract, no users will be able to capitalize on day 2 rewards,

rendering said rewards as permanently lost.

The following invariant test in the HexOneProperties.sol contract had a failed asser-

tion detected during Echidna stateful fuzz runs, indicating that the conditionmentioned

above was broken.

/// @custom:invariant - staking history.amountToDistribute for a given day
must always be == 0 whenever pool.totalShares is also == 0↪→

function poolAmountStateIntegrity() public {
for (uint256 i = 0; i < stakeTokens.length; i++) {

(,,, uint256 currentStakingDay,) =
hexOneStakingWrap.pools(address(stakeTokens[i]));↪→

(,, uint256 totalShares,,) =
hexOneStakingWrap.pools(address(stakeTokens[i]));↪→

(, uint256 amountToDistribute) =
hexOneStakingWrap.poolHistory(currentStakingDay,
address(stakeTokens[i]));

↪→

↪→

if (totalShares == 0) {
assert(totalShares == amountToDistribute);

}
}

}

RecommendedMitigation Steps

Add the following snippet to the _updatePoolHistory() internal method after accessing

the Pool struct in storage:

+ if (pool.totalShares == 0) {
poolHistory.amountToDistribute = 0

}
else {

(...rest of code...)
}

33

https://github.com/coveragelabs/2024-01-hex1/blob/hex1-review/test/echidna/HexOneProperties.sol#L949-L959


[M-03] - Inaccurate airdrop calculation results in excessive HEXIT distri-
bution

ID Classification Category Status

M-03 MEDIUM Manual Review Fixed in c33cbdc

Impact

The inaccurate airdrop calculation mechanism has a significant impact on the HEXIT to-
ken supply, resulting in unintended dilution and excessive distribution.

Proof of Concept

In the following snippet, instead of the AIRDROP_DECREASE_FACTOR constant, the SACRI-
FICE_DECREASE_FACTOR constant is used to calculate the amount of HEXIT per dollar. This
leads toa smaller decrease factor andconsequently toadistributionofmore tokens than

expected.

/// @dev the sacrifice base hexit amount per dollar decreases 4.76% daily.
uint16 public constant SACRIFICE_DECREASE_FACTOR = 9524;
/// @dev the airdrop base hexit amount per dollar decreases 50% daily.
uint16 public constant AIRDROP_DECREASE_FACTOR = 5000;

/// @dev computes the amount of HEXIT per dollar to distribute based on the
/// current airdrop day.
function _airdropBaseHexitPerDollar() internal view returns (uint256

baseHexit) {↪→

uint256 currentAirdropDay = getCurrentAirdropDay();
if (currentAirdropDay == 1) {

return AIRDROP_HEXIT_INIT_AMOUNT;
}

baseHexit = AIRDROP_HEXIT_INIT_AMOUNT;
for (uint256 i = 2; i <= currentAirdropDay; ++i) {

baseHexit = (baseHexit * SACRIFICE_DECREASE_FACTOR) / FIXED_POINT;
}

}

34

https://github.com/HexOneProtocol/hex1-contracts/commit/c33cbdca20af9dfe43c0d93dd62e838f61f2ee2f
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33608be40c0a5f54d670647deeae32338b6/src/HexOneBootstrap.sol#L495-L507


RecommendedMitigation Steps

Change the SACRIFICE_DECREASE_FACTOR constant for the AIRDROP_DECREASE_FACTOR con-
stant in the _airdropBaseHexitPerDollar()method as follows:

function _airdropBaseHexitPerDollar() internal view returns (uint256
baseHexit) {↪→

uint256 currentAirdropDay = getCurrentAirdropDay();
if (currentAirdropDay == 1) {

return AIRDROP_HEXIT_INIT_AMOUNT;
}

baseHexit = AIRDROP_HEXIT_INIT_AMOUNT;
for (uint256 i = 2; i <= currentAirdropDay; ++i) {

- baseHexit = (baseHexit * SACRIFICE_DECREASE_FACTOR) / FIXED_POINT;
+ baseHexit = (baseHexit * AIRDROP_DECREASE_FACTOR) / FIXED_POINT;

}
}

35



[M-04] -ReturnexpressionfromgetCurrentAirdropDay()methodreturn-
ing unexpected value

ID Classification Category Status

M-04 MEDIUM Manual Review Fixed in c33cbdc

Impact

In a scenario where the getCurrentAirdropDay() method is called internally in the pro-

tocol, unexpected accounting might occur, leading to incorrect airdrop distribution for

users.

Proof of Concept

In thesnippetbelow, thegetCurrentAirdropDay()methodreturns0. This isdue to theway

the parenthesis priority in the mathematical formula that defines the method output is

set.

/// @dev returns the current day of the airdrop.
/// @notice if the airdrop had just started this func would return day 1.
function getCurrentAirdropDay() public view returns (uint256) {

if (block.timestamp < airdropStart) revert
AirdropHasNotStartedYet(block.timestamp);↪→

if (block.timestamp >= airdropEnd) revert
AirdropAlreadyEnded(block.timestamp);↪→

return ((block.timestamp) - airdropStart / 1 days) + 1;
}

RecommendedMitigation Steps

Consider changing the return formula to the following:

- return ((block.timestamp) - airdropStart / 1 days) + 1;
+ return ((block.timestamp - airdropStart) / 1 days) + 1;

36

https://github.com/HexOneProtocol/hex1-contracts/commit/c33cbdca20af9dfe43c0d93dd62e838f61f2ee2f
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33608be40c0a5f54d670647deeae32338b6/src/HexOneBootstrap.sol#L185-L192


[M-05] - Overriding of stakeIds can lead to debt erasure

ID Classification Category Status

M-05 MEDIUM Manual Review Fixed in 41aef76

Impact

In a scenariowhere the stakeIds overlap, an attacker can exploit said scenario to circum-

vent repaying his HEX1 debt.

Proof of Concept

Each timeauser uses the deposit()method in the HexOneVault contract, a corresponding
stakeId is associated with the deposit:

stakeId = IHexToken(hexToken).stakeCount(address(this)) - 1;

However, this snippet of codewas addedwith the assumption that the stake count in HEX
contract continuously increments, when in fact it represents the total number of active

HEX stakes associated to a specific address. Consider the following scenario:

• Alice initiates a HEX deposit for a period of 5555 days in the vault, minting HEX with
a corresponding stakeId = 0 by calling the deposit() function.

• Bob also initiates a HEX deposit for a period of 5555 days in the vault, minting HEX1
with a corresponding stakeId = 1 by calling the deposit() function.

• Alice claims her HEX and yield by repaying her HEX1 debt whenever the 5555 days

period has passed by calling the claim() function.

• Bob proceeds to call the deposit() function with an amount of 1 HEX, thus creating
a new deposit with stakeId = 1 and effectively circumventing the payment of his

debt to the protocol by overriding the data from his initial deposit.

37

https://github.com/HexOneProtocol/hex1-contracts/commit/41aef761e1d49b0e0a119095027e9c34f123b1cb


function test_vault_overlappingStakeIds() public {
// alice deposits in the vault, stakeId = 0 (stakeCount == 1)
vm.prank(alice);
(uint256 aliceHex1Borrowed, uint256 aliceStakeId) =

vault.deposit(ALICE_HEX_AMOUNT, MIN_DURATION_DAYS);↪→

assertEq(aliceStakeId, 0);
assertEq(hexToken.stakeCount(address(vault)), 1);

// bob deposits in the vault, stakeId = 1 (stakeCount == 2)
vm.prank(bob);
(uint256 bobHex1BorrowedBefore, uint256 bobStakeIdBefore) =

vault.deposit(BOB_HEX_AMOUNT - 1e8, MIN_DURATION_DAYS);

assertEq(bobStakeIdBefore, 1);
assertEq(hexToken.stakeCount(address(vault)), 2);

// advance block.timestamp so that the HEX stakes are mature
skip(MIN_DURATION_SECONDS);

// alice claims its stake and reedems it's HEX + yield by repaying the
borrowed HEX1 (stakeCount == 1)↪→

vm.startPrank(alice);
hex1.approve(address(vault), aliceHex1Borrowed);
vault.claim(aliceStakeId);
vm.stopPrank();

assertEq(hexToken.stakeCount(address(vault)), 1);

// bob deposits 1 HEX in the vault so his new stake overlaps the old one,
stakeId = 1 (stakeCount == 2)↪→

vm.prank(bob);
(uint256 bobHex1BorrowedAfter, uint256 bobStakeIdAfter) =

vault.deposit(1e8, MIN_DURATION_DAYS);↪→

assertEq(bobStakeIdBefore, 1);
assertEq(bobStakeIdAfter, bobStakeIdBefore); // stake id overlapped
assertEq(hexToken.stakeCount(address(vault)), 2);

// bob is able replace the information of is first deposit with the
information of the second one↪→

// since they have the same stake id, allowing him to avoid paying back
the HEX1 borrowed.↪→

assertGt(bobHex1BorrowedBefore, bobHex1BorrowedAfter);
}

RecommendedMitigation Steps

Consider introducing a state variable representing the currentStakeId and increment it

every time a deposit occurs.

38



[M-06] - setHexOneBootstrap() method may allow Owner to take mali-
cious action

ID Classification Category Status

M-06 MEDIUM Access Control Fixed in 50c32bc

Impact

In a scenario where an actor is the Owner of the HexitToken contract, said actor can re-

place the delegated hexOneBootstrap address to a contract that is cross-compatible on

an Interface level but may have malicious code inserted into its methods.

Proof of Concept

The following snippet of theHexitToken.sol contract is an occurrence where theOwner

may re-route the HexOneBootstrap contract input address to any contract that has a

compatible interface, enabling the possibility of said address routing to a contract with

malicious code.

/// @dev set the address of the bootstrap.
/// @param _hexOneBootstrap address of the bootstrap.
function setHexOneBootstrap(address _hexOneBootstrap) external onlyOwner {

if (_hexOneBootstrap == address(0)) revert InvalidAddress();
hexOneBootstrap = _hexOneBootstrap;
emit BootstrapInitialized(_hexOneBootstrap);

}

We believe this adds a centralization risk that counters the intended permissionless na-

ture of the protocol.

Consider the following scenario:

• Alice hasOwner permissions for the HexitToken contract.

• Alice deploys a HexOneBootstrap contract that has an identical interface, but mod-

ifies the sacrifice() method so that any sacrifice deposits are routed to an EOA

controlled by her instead.

• Alice calls the setHexOneBootstrap() function in the HexitToken contract, changing
the address route to her newly deployed contract, thus being able to siphon funds

from the protocol.

RecommendedMitigation Steps

Change the deployment architecture so that any external addresses are defined on the

contract’s constructor (avoiding theneed for circular contract dependencies but rather a

hierarchicalmodeldependantonasequential deploymentorder) and remove thesetHex-
OneBootstrap()method.

39

https://github.com/HexOneProtocol/hex1-contracts/commit/50c32bc317cd11d13215120a93d8a0f01f87f8fb
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33608be40c0a5f54d670647deeae32338b6/src/HexitToken.sol#L25-L31


[M-07] - setHexOneVault() method may allow Owner to take malicious
action

ID Classification Category Status

M-07 MEDIUM Access Control Fixed in 50c32bc

Impact

In a scenario where an actor is the Owner of the HexOneToken contract, said actor can

replace the delegated hexOneVault address to a contract that is cross-compatible on an

Interface level but may have malicious code inserted into its methods.

Proof of Concept

The following snippetof the HexOneToken.sol contract is anoccurrencewhere theOwner
may re-route the HexOneVault contract input address to any contract that has a compati-

ble interface, enabling the possibility of said address routing to a contractwithmalicious

code.

/// @dev set the address of the vault.
/// @param _hexOneVault address of the vault.
function setHexOneVault(address _hexOneVault) external onlyOwner {

if (_hexOneVault == address(0)) revert InvalidAddress();
hexOneVault = _hexOneVault;
emit VaultInitialized(_hexOneVault);

}

We believe this adds a centralization risk that counters the intended permissionless na-

ture of the protocol.

Consider the following scenario:

• Alice hasOwner permissions for the HexOneToken contract.

• Alice deploys a HexOneVault contract that has an identical interface, but modifies

the deposit()method so that any vault deposits are routed to an EOA controlled by

her instead.

• Alice calls the setHexOneVault() function in the HexOneToken contract, changing the
address route to her newly deployed contract, thus being able to siphon funds from

the protocol.

RecommendedMitigation Steps

Change the deployment architecture so that any external addresses are defined on the

contract’s constructor (avoiding theneed for circular contract dependencies but rather a

hierarchicalmodeldependantonasequential deploymentorder) and remove thesetHex-
OneVault()method.

40

https://github.com/HexOneProtocol/hex1-contracts/commit/50c32bc317cd11d13215120a93d8a0f01f87f8fb
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33608be40c0a5f54d670647deeae32338b6/src/HexOneToken.sol#L25-L31


[L-01] Lack of total weight amount check can cause unexpected behav-
ior

ID Classification Category Status

L-01 LOW Quality Assurance Fixed in f6f4f6f

Impact

In the following snippet, there are no checks to verify that the total weight value does

not exceed 100%. The absence of this check could cause accounting issues.

function setStakeTokens(
address[] calldata _tokens,
uint16[] calldata _weights

) external onlyOwner {
uint256 length = _tokens.length;
require(length > 0, "Zero length array");
require(length == _weights.length, "Mismatched array");

for (uint256 i; i < length; ++i) {
address token = _tokens[i];
uint16 rate = _weights[i];

require(!stakeTokens.contains(token), "Token already added");
require(

rate != 0 && rate <= FIXED_POINT,
"Invalid distribution rate"

);

stakeTokens.add(token);
stakeTokenWeights[token] = rate;

}
}

RecommendedMitigation Steps

Add a check to verify that the total weight amount does not exceed 100%.

41

https://github.com/HexOneProtocol/hex1-contracts/commit/f6f4f6f1e819a360eb96095ed252af00d43025c7
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33/src/HexOneStaking.sol#L112-L126


[L-02] teamWallet is the recipient of a significant portion of the HEXIT
supply

ID Classification Category Status

L-02 LOW Access Control Acknowledged

Impact

In a scenario where the teamWallet address defined on the HexOneBootstrap.sol con-

structor on initialization is not a multisig there might be centralization issues since this

wallet is the recipient of a considerable amount of the supply..

Proof of Concept

In the HexOneBootstrap.sol contract constructor, the teamWallet address might not be a

multisig. This might influence external trust in the protocol as significant percentage of

the HEXIT supply is owned by the team.

constructor(
address _pulseXRouter,
address _pulseXFactory,
address _hexToken,
address _hexitToken,
address _daiToken,
address _hexOneToken,
address _teamWallet

) Ownable(msg.sender) {
if (_pulseXRouter == address(0)) revert InvalidAddress(_pulseXRouter);
if (_pulseXFactory == address(0)) revert InvalidAddress(_pulseXFactory);
if (_hexToken == address(0)) revert InvalidAddress(_hexToken);
if (_hexitToken == address(0)) revert InvalidAddress(_hexitToken);
if (_daiToken == address(0)) revert InvalidAddress(_daiToken);
if (_teamWallet == address(0)) revert InvalidAddress(_teamWallet);

pulseXRouter = _pulseXRouter;
pulseXFactory = _pulseXFactory;
hexToken = _hexToken;
hexitToken = _hexitToken;
daiToken = _daiToken;
hexOneToken = _hexOneToken;
teamWallet = _teamWallet;

}

Consider the following scenario:

1. Alice has sole custody of the teamWallet EOA.

2. Alice gets the 50% of the current HEXIT supply that is minted on top of the total

HEXIT minted through the sacrifice phase when the startAirdrop() method gets

called.

3. Alice is now in custody of a significant HEXIT amount and proceeds to sell it against

a HEXIT LP pair, draining the value of the token.

42

https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33/src/HexOneBootstrap.sol#L111-L134


RecommendedMitigation Steps

Ensure the teamWallet address is a multisig EOA.

43



[L-03] - Lack of minimum deposit() amount requirement leads to inac-
curate accounting

ID Classification Category Status

L-03 LOW Stateful Fuzzing Fixed in af718e2

Impact

In a scenario where a very small amount of HEX is deposited into the HexOneVault.sol
contract there might be accounting issues due to a rounding error.

Proof of Concept

The deposit() method within the HexOneVault.sol contract allows the user to deposit

HEX, consults the current HEX price in dollar and determines how much HEX1 the user is

allowed to borrow/mint given that quote.

/// @dev allows bootstrap to make deposit in name of`_depositor` and mint
HEX1.↪→

/// @param _depositor address of the user depositing.
/// @param _amount amount of HEX being deposited.
/// @param _duration of the HEX stake.
function deposit(address _depositor, uint256 _amount, uint16 _duration)

external
onlyAfterSacrifice
onlyHexOneBootstrap
returns (uint256 hexOneMinted, uint256 stakeId)

{
if (_duration < MIN_DURATION || _duration > MAX_DURATION) revert

InvalidDepositDuration(_duration);↪→

if (_amount == 0) revert InvalidDepositAmount(_amount);
if (_depositor == address(0)) revert InvalidDepositor(_depositor);

IERC20(hexToken).safeTransferFrom(hexOneBootstrap, address(this),
_amount);↪→

return _deposit(_depositor, _amount, _duration);
}

DuringourEchidna fuzz runswefoundseveral caseswhere the total accountingbetween

the total borrowed amount by users and the possible user ERC20 balances had a very

slight discrepancy due to a rounding error in the calculation of the final amount to de-

posit after taking the 5% fee on deposits imposed by the protocol. We then used trial and

error to conclude what would be the minimum amount of outputted HEX1 to avoid this

issue. We concluded that the minimum amount of HEX1minted from a user would need

to be greater than 1e14, or 0.0001.

44

https://github.com/HexOneProtocol/hex1-contracts/commit/af718e22a118da56a13195aac4d35de4c1a6fa15
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33/src/HexOneVault.sol#L100-L111


/// @notice takes a 5% fee to be distributed as a staking reward.
/// @param _depositor address of the user depositing.
/// @param _amount amount of HEX being deposited.
/// @param _duration of the HEX stake.
function _deposit(address _depositor, uint256 _amount, uint16 _duration)

internal
returns (uint256 hexOneMinted, uint256 stakeId)

{
// calculate the fee and the real amount being deposited
uint256 feeAmount = (_amount * DEPOSIT_FEE) / FIXED_POINT;
uint256 realAmount = _amount - feeAmount;
(...)

}

• Fee calculation snippet in the _deposit() internal method

This issue could eventually lead to bricked user positions if the amount of HEX they de-
posited to the Vault would be considerably small. Nonetheless, given the nature of the

protocol, such amountswould represent very specific and unlikely edge cases, hence the

Low severity classification.

function hexOneLiquidationsIntegrity() public {
uint256 totalHexoneUsersAmount;
uint256 totalHexoneProtocolAmount;

for (uint256 i = 0; i < totalNbUsers; i++) {
(,, uint256 totalBorrowed) =

hexOneVault.userInfos(address(users[i]));↪→

totalHexoneProtocolAmount += totalBorrowed;
totalHexoneUsersAmount += hex1.balanceOf(address(users[i]));

}

require(totalHexoneUsersAmount != 0 && totalHexoneProtocolAmount != 0);

emit LogUint(totalHexoneUsersAmount);
emit LogUint(totalHexoneProtocolAmount);
assert(totalHexoneUsersAmount >= totalHexoneProtocolAmount);

}

• This testwould fail the Echidna assertions by a varying threshold of 5 to 10 between

either the users and the protocol.

45

https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33/src/HexOneVault.sol#L252-L296
https://github.com/coveragelabs/2024-01-hex1/blob/hex1-review/test/echidna/HexOneProperties.sol#L930-L945


require(totalHexoneUsersAmount > 1e14);

• After the trial and error process through Echidna fuzz runs and testing different

precisions for the calculation of the amount to deposit after the 5% fee imposed

by the protocol, all solutions for that given accounting formula led to this minimum

HEX1 output value to remediate the precision issue.

• We then calculated an estimate ofminimum required HEX for a deposit, beingmind-

ful that HEX is a tokenwith 8 decimals, unlike the 18 decimal standard ERC20 usually

employs.

• Being mindful of the current HEX price and the considerations made above, we cal-

culated that theminimum deposit amount should be between 0.1 and 1 HEX to avoid
the issue. The final consideration should be up to the client to decide according

to what would be more suitable for the context of the protocol. It is worth not-

ing that greaterminimum HEXdeposit amounts than theones previouslymentioned

would reduce potential issues stemming from this root cause should the HEX price
decrease significantly.

NOTE: During a sacrifice, the minimum sacrifice amount should be bigger than the HEX

amount equivalent to 1 DAI to avoid the issue. If the output sacrifice amount is less than

2e16 ( 0.02 DAI) there is aDenial-of-Service issue due to the resulting HEX Vault delegate
deposit amount being less than 1e7, so adding the following initial check to the sacri-
fice()methodmitigates this child issue:

// calculate the hexit shares of the token being sacrificed
+ (uint256 hexitShares, uint256 amountSacrificedUSD) =

_calculateHexitSacrificeShares(_token, _amountIn);↪→

+ if (amountSacrificedUSD < 1e18) revert
InvalidSacrificeAmount(amountSacrificedUSD);↪→

NOTE: We have deduced that this scenario also applies to the daily distribution rate e-

qualling 1%, as per the following snippet.

RecommendedMitigation Steps

Add the following snippet to the _deposit() internal method at the top:

+ require(_amount > 1e7, "Deposit less than minimum amount");

Alternatively, define a custom error and add it at the top level of the contract:

+ error DepositLessThanMinimumAmount(uint256 _amount);
...
+ if (_amount <= 1e7) revert DepositLessThanMinimumAmount(_amount);

46

https://github.com/coveragelabs/2024-01-hex1/blob/hex1-review/test/echidna/HexOneProperties.sol#L472-L485


[L-04] - Lack of minimum stake() amount requirement leads to inaccu-
rate accounting

ID Classification Category Status

L-04 LOW Stateful Fuzzing Fixed in af718e2

Impact

In a scenario where a very small amount of eligible ERC20 token is staked into the Hex-
OneStaking.sol contract there might be accounting issues due to a rounding error.

Proof of Concept

The stake() function within the HexOneStaking.sol contract facilitates users in staking

HEXIT, HEX1, and/or HEX1/DAI LP tokens to acquire shares, thereby enabling them to re-

ceive daily rewards in both HEXIT and HEX tokens.

function stake(address _stakeToken, uint256 _amount) external nonReentrant
onlyWhenStakingEnabled {↪→

require(stakeTokens.contains(_stakeToken), "Token not allowed");
require(_amount > 0, "Invalid staking amount");

// accrue rewards and update history for both the HEX and HEXIT pools
_accrueRewards(msg.sender, _stakeToken);

// transfers amount of stake token from the sender to this contract.
uint256 stakeAmount = _transferToken(_stakeToken, msg.sender,

address(this), _amount);↪→

// update the total amount staked
totalStakedAmount[_stakeToken] += stakeAmount;

// calculate the amount of HEX and HEXIT pool shares to give to the user
uint256 shares = _calculateShares(_stakeToken, stakeAmount);
require(shares != 0, "Invalid shares amount");

// update the number of total shares in the HEX and HEXIT pools
pools[hexToken].totalShares += shares;
pools[hexitToken].totalShares += shares;

// update the staking information of the user for a specific stake token
uint256 currentStakingDay = getCurrentStakingDay();
StakeInfo storage stakeInfo = stakingInfos[msg.sender][_stakeToken];
stakeInfo.stakedAmount += stakeAmount;
if (stakeInfo.initStakeDay == 0) {

stakeInfo.initStakeDay = currentStakingDay;
}
if (stakeInfo.lastClaimedDay == 0) {

stakeInfo.lastClaimedDay = currentStakingDay;
}
stakeInfo.lastDepositedDay = currentStakingDay;
stakeInfo.hexSharesAmount += shares;

47

https://github.com/HexOneProtocol/hex1-contracts/commit/af718e22a118da56a13195aac4d35de4c1a6fa15
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33/src/HexOneStaking.sol#L381-L384


stakeInfo.hexitSharesAmount += shares;
}

Consider a scenario where Alice initiatesN deposits of X amount, while on the same day,

Bobmakes pN deposits totaling the same amount, X, maintaining an equivalent stake. In

such a scenario, both Alice and Bob should possess identical shares and consequently

receive equal rewards.

During our Echidna fuzz runs, we identified several instances where this fundamental

principle is compromised, leading to an inconsistency in the allocation of shares to users

and subsequently affecting their reward amounts. This inconsistency arises due to a

rounding error within the _calculateShares() function, which determines the distribu-

tion of shares to users based on their staked amounts.

/// @dev calculates the shares to be given to the user depending on the token
staked↪→

/// @notice shares are always 18 decimals, so depending on the token it might
need to be scaled up or down.↪→

/// @param _stakeToken address of the stake token.
/// @param _amount amount of stake token.
function _calculateShares(address _stakeToken, uint256 _amount) internal view

returns (uint256) {↪→

uint256 shares = (_amount * stakeTokenWeights[_stakeToken]) /
FIXED_POINT;↪→

return _convertToShares(_stakeToken, shares);
}

The provided snippet illustrates the scenario previously described, wherein both Alice

and Bob stake an amount X of tokens on the same day. However, while Alice makes N

stakes, Bob makes pN stakes. The failure of this test highlights an inconsistency in the

distribution of shares to Alice and Bob. Despite the expectation of identical rewards for

both parties, this consistency does not manifest due to precision loss in the calculation

of shares.

48

https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33/src/HexOneStaking.sol#L381-L384
https://github.com/coveragelabs/2024-01-hex1/blob/hex1-review/test/echidna/HexOneProperties.sol#L472-L485


function totalRewardsToDistToAliceWithNDepositsOfXValueMustEqForBobWithPNDe-
positsOfXValue(↪→

uint256 randUser,
uint256 randToken,
uint256 randAmount,
uint256 randNDeposits,
uint256 randP,
uint256 randWarp

) public {
// preconditions
require(hexOneStakingWrap.stakingEnabled());

// setup
bool success;
uint256 nDeposits = clampBetween(randNDeposits, 1, 4);
uint256 p = clampBetween(randP, 1, 2);
address token = stakeTokens[randToken % stakeTokens.length];
User alice = users[randUser % users.length];
User bob = users[(randUser + 1) % users.length];

// cleanup
logState(abi.encode("BEFORE CLEANUP"), alice, bob, token);
(uint256 aliceAlreadyClaimedRewards, uint256 bobAlreadyClaimedRewards) =

setupCleanup(alice, bob, token);↪→

logState(abi.encode("AFTER CLEANUP"), alice, bob, token);

// setup amounts
uint256 maxTokenBalance = ERC20Mock(token).balanceOf(address(alice)) <=

ERC20Mock(token).balanceOf(address(bob))↪→

? ERC20Mock(token).balanceOf(address(alice))
: ERC20Mock(token).balanceOf(address(bob));

require(maxTokenBalance >= 100);
uint256 bobAmount = clampBetween(randAmount, 1, maxTokenBalance / 100);
require(bobAmount != 0);
require(ERC20Mock(token).balanceOf(address(alice)) >= bobAmount * p);
require(ERC20Mock(token).balanceOf(address(bob)) >= bobAmount);

// log setup
emit LogAddress("HEXIT (10%)", address(hexit));
emit LogAddress("HEX1 (20%)", address(hex1));
emit LogAddress("HEX1/DAI (70%)", address(hex1dai));
emit LogAddress("Stake token", token);
emit LogAddress("Alice", address(alice));
emit LogAddress("Bob", address(bob));
emit LogUint256("N", nDeposits);
emit LogUint256("p", p);
emit LogUint256("Alice Amount", bobAmount * p);
emit LogUint256("Bob amount", bobAmount);

// stake
// Alice N deposits
for (uint8 i; i < nDeposits; ++i) {

(success,) = alice.proxy(
address(hexOneStakingWrap),

49



abi.encodeWithSelector(hexOneStakingWrap.stake.selector, token, p
* bobAmount)↪→

);
require(success);

}

// Bob pN deposits
for (uint8 j; j < p * nDeposits; ++j) {

(success,) = bob.proxy(
address(hexOneStakingWrap),

abi.encodeWithSelector(hexOneStakingWrap.stake.selector,
token, bobAmount)

↪→

↪→

);
require(success);

}

logState(abi.encode("AFTER DEPOSITS"), alice, bob, token);

// claim
uint256 warpValue = clampBetween(randWarp, 2 days, 90 days);
hevm.warp(block.timestamp + warpValue);

emit LogUint256("After X days", warpValue / 1 days);

(success,) =
alice.proxy(address(hexOneStakingWrap),

abi.encodeWithSelector(hexOneStakingWrap.claim.selector, token));↪→

require(success);

(success,) =
bob.proxy(address(hexOneStakingWrap),

abi.encodeWithSelector(hexOneStakingWrap.claim.selector, token));↪→

require(success);

logState(abi.encode("AFTER CLAIM"), alice, bob, token);

// assert
(,,,,,,,, uint256 aliceTotalHexClaimed, uint256 aliceTotalHexitClaimed) =

hexOneStakingWrap.stakingInfos(address(alice), token);
(,,,,,,,, uint256 bobTotalHexClaimed, uint256 bobTotalHexitClaimed) =

hexOneStakingWrap.stakingInfos(address(bob), token);

assertEq(
aliceTotalHexClaimed + aliceTotalHexitClaimed -

aliceAlreadyClaimedRewards,↪→

bobTotalHexClaimed + bobTotalHexitClaimed - bobAlreadyClaimedRewards,
"Rewards mismatch"

);

// cleanup state for the following invariants
setupCleanup(alice, bob, token);

}

50



RecommendedMitigation Steps

Implement a require statement enforcing a minimum stake amount of at least 1e14 to-

kens:

+ require(_amount > 1e14, "Stake less than minimum amount");

Alternatively, define a custom error and add it at the top:

+ error StakeLessThanMinimumAmount(uint256 _amount);
...
+ if (_amount <= 1e14) revert StakeLessThanMinimumAmount(_amount);

51



[L-05] - The growth of balances within the HexOneStaking.sol contract
does not consistently alignwith proportional increases in share alloca-
tion

ID Classification Category Status

L-05 LOW Stateful Fuzzing Fixed in af718e2

Impact

The stake() function within the HexOneStaking.sol contract facilitates users in staking

HEXIT, HEX1, and/or HEX1/DAI LP tokens to acquire shares, thereby enabling them to re-

ceive daily rewards in both HEXIT and HEX tokens.

/// @dev allow users to stake HEXIT, HEX1 or HEX1/DAI to earn HEX and HEXIT
rewards.↪→

/// @param _stakeToken address of the token being staked.
/// @param _amount of token being staked.
function stake(address _stakeToken, uint256 _amount) external nonReentrant

onlyWhenStakingEnabled {↪→

require(stakeTokens.contains(_stakeToken), "Token not allowed");
require(_amount > 0, "Invalid staking amount");

// accrue rewards and update history for both the HEX and HEXIT pools
_accrueRewards(msg.sender, _stakeToken);

// transfers amount of stake token from the sender to this contract.
uint256 stakeAmount = _transferToken(_stakeToken, msg.sender,

address(this), _amount);↪→

// update the total amount staked
totalStakedAmount[_stakeToken] += stakeAmount;

// calculate the amount of HEX and HEXIT pool shares to give to the user
uint256 shares = _calculateShares(_stakeToken, stakeAmount);
require(shares != 0, "Invalid shares amount");

// update the number of total shares in the HEX and HEXIT pools
pools[hexToken].totalShares += shares;
pools[hexitToken].totalShares += shares;

// update the staking information of the user for a specific stake token
uint256 currentStakingDay = getCurrentStakingDay();
StakeInfo storage stakeInfo = stakingInfos[msg.sender][_stakeToken];
stakeInfo.stakedAmount += stakeAmount;
if (stakeInfo.initStakeDay == 0) {

stakeInfo.initStakeDay = currentStakingDay;
}
if (stakeInfo.lastClaimedDay == 0) {

stakeInfo.lastClaimedDay = currentStakingDay;
}
stakeInfo.lastDepositedDay = currentStakingDay;
stakeInfo.hexSharesAmount += shares;
stakeInfo.hexitSharesAmount += shares;

}

52

https://github.com/HexOneProtocol/hex1-contracts/commit/af718e22a118da56a13195aac4d35de4c1a6fa15
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33/src/HexOneStaking.sol#L158-L192


In any staking scenario, the factor bywhich shares increase should always be equal to the

factor by which balances increase within the HexOneStaking.sol contract.

During our Echidna fuzz runs, we identified several instances where this fundamental

property is broken, leading to an inconsistency. This inconsistency arises due to a round-

ing error within the _calculateShares() function, which determines the distribution of

shares to users based on their staked amounts.

/// @dev calculates the shares to be given to the user depending on the token
staked↪→

/// @notice shares are always 18 decimals, so depending on the token it might
need to be scaled up or down.↪→

/// @param _stakeToken address of the stake token.
/// @param _amount amount of stake token.
function _calculateShares(address _stakeToken, uint256 _amount) internal view

returns (uint256) {↪→

uint256 shares = (_amount * stakeTokenWeights[_stakeToken]) /
FIXED_POINT;↪→

return _convertToShares(_stakeToken, shares);
}

53

https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33/src/HexOneStaking.sol#L381-L384


Proof of Concept

The following properties evaluatewhether the shares allocated in their respective pools

are consistently proportional to the increase in balance of a given stake token based on

its weight. By comparing the balance increase factor with the shares increase factor,

these functions highlight any discrepancies that might indicate a breakdown in propor-

tionality. Notably, in some cases, these tests have failed, underscoring the presence of

inconsistencies in the share allocation mechanism.

HEX pool:

function hexPoolSharesToGiveAreAlwaysProportionalToIncreaseInBalance(
uint256 randUser,
uint256 randAmount,
uint256 randStakeToken

) public {
User user = users[randUser % users.length];
address stakeToken = stakeTokens[randStakeToken % stakeTokens.length];

address xToken = stakeTokens[(randStakeToken + 1) % stakeTokens.length];
uint256 xTokenBalance = hexOneStakingWrap.totalStakedAmount(xToken);
uint256 xTokenWeight = hexOneStakingWrap.stakeTokenWeights(xToken);

address yToken = stakeTokens[(randStakeToken + 2) % stakeTokens.length];
uint256 yTokenBalance = hexOneStakingWrap.totalStakedAmount(yToken);
uint256 yTokenWeight = hexOneStakingWrap.stakeTokenWeights(yToken);

uint256 stakeAmount = clampBetween(randAmount, 1,
ERC20Mock(stakeToken).balanceOf(address(user)));↪→

uint256 shares = calculateShares(stakeToken, stakeAmount);

if (shares > 0) {
uint256 stakeTokenBalance =

hexOneStakingWrap.totalStakedAmount(stakeToken);↪→

uint256 stakeTokenBalanceIncreaseFactor = ((stakeAmount +
stakeTokenBalance) * 10_000) / stakeTokenBalance;↪→

(,, uint256 totalShares,,) = hexOneStakingWrap.pools(address(hexx));

uint256 stakeTokenTotalShares =
totalShares - ((xTokenBalance * xTokenWeight) / 1000) -

((yTokenBalance * yTokenWeight) / 1000);↪→

uint256 hexSharesIncreaseFactor = ((shares + stakeTokenTotalShares) *
10_000) / stakeTokenTotalShares;↪→

assertEq(stakeTokenBalanceIncreaseFactor, hexSharesIncreaseFactor,
"Not proportional");↪→

}
}

54



HEXIT pool:

function hexitPoolSharesToGiveAreAlwaysProportionalToIncreaseInBalance(
uint256 randUser,
uint256 randAmount,
uint256 randStakeToken

) public {
User user = users[randUser % users.length];
address stakeToken = stakeTokens[randStakeToken % stakeTokens.length];

address xToken = stakeTokens[(randStakeToken + 1) % stakeTokens.length];
uint256 xTokenBalance = hexOneStakingWrap.totalStakedAmount(xToken);
uint256 xTokenWeight = hexOneStakingWrap.stakeTokenWeights(xToken);

address yToken = stakeTokens[(randStakeToken + 2) % stakeTokens.length];
uint256 yTokenBalance = hexOneStakingWrap.totalStakedAmount(yToken);
uint256 yTokenWeight = hexOneStakingWrap.stakeTokenWeights(yToken);

uint256 stakeAmount = clampBetween(randAmount, 1,
ERC20Mock(stakeToken).balanceOf(address(user)));↪→

uint256 shares = calculateShares(stakeToken, stakeAmount);

if (shares > 0) {
uint256 stakeTokenBalance =

hexOneStakingWrap.totalStakedAmount(stakeToken);↪→

uint256 stakeTokenBalanceIncreaseFactor = ((stakeAmount +
stakeTokenBalance) * 10_000) / stakeTokenBalance;↪→

(,, uint256 totalShares,,) = hexOneStakingWrap.pools(address(hexit));

uint256 stakeTokenTotalShares =
totalShares - ((xTokenBalance * xTokenWeight) / 1000) -

((yTokenBalance * yTokenWeight) / 1000);↪→

uint256 hexitSharesIncreaseFactor = ((shares + stakeTokenTotalShares)
* 10_000) / stakeTokenTotalShares;↪→

assertEq(stakeTokenBalanceIncreaseFactor, hexitSharesIncreaseFactor,
"Not proportional");↪→

}
}

RecommendedMitigation Steps

Implement a require statement enforcing a minimum stake amount of at least 1e14 to-

kens:

require(_amount >= 1e14, "Stake less than minimum amount");

Alternatively, define a custom error and add it at the top:

+ error StakeLessThanMinimumAmount(uint256 _amount);
...
+ if (_amount < 1e14) revert StakeLessThanMinimumAmount(_amount);

55



[L-06] - Price feedmay be subject to manipulation on deployment

ID Classification Category Status

L-06 LOW Manual Review Acknowledged

Impact

In a scenario where an external actor is aware of the deployment schedule for the Hex
One Protocol, said actor can frontrun the deployment by organically manipulating the

price of HEX, thus being able tomintmore HEX1 than expected right after the deployment

is concluded.

Proof of Concept

The following snippet within the HexOnePriceFeed.sol contract shows that the first log-
ging of price after a price feed is initialized is fetched directly from the PulseX pool re-

serves for that given pair.

// get the reserves of the pair and the last time the reserves were updated
IPulseXPair pulseXPair = IPulseXPair(pair);
(uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast) =

pulseXPair.getReserves();↪→

Webelieve theremight be aminor security consideration to be had here, as an actorwith

significant HEX holdingsmight frontrun the deployment, manipulating the price right be-

fore the protocol is live to abuse the HEX1 borrowing mechanism, as the reserves output

is the actual real-time price and not a cumulative observation.

Consider the following:

• Alice is aware of the deployment schedule for the Hex One Protocol and its respec-

tive PulseX pair to get price feeds from and has significant underlying pair holdings

for thePulseXpool used for the price feed, aswell as significant HEXholdings to lock
in the protocol.

• Alice scouts the public mempool for the deployment transactions and proceeds to

frontrun said transactions by buying amajor amount of HEX against the PulseX pool
that is going be logged by the price feed before its initialization, effectively manip-

ulating the underlying value of HEX.

• Alice is then able tomintmore HEX1 than initially expectedwith her share of HEX, im-

mediately followedbya transaction that sells theamountofpurchasedHEX fromthe

pool (taking advantage of a cyclical swap), thus reducing the intrinsic value of HEX
that collateralizes the borrowing of HEX1 and forcing an undercollateralized loan.

RecommendedMitigation Steps

Consider the usage of a private mempool to execute the deployment, especially if the

launch date (as in date and hour) of the protocol will be publically known.

56

https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33608be40c0a5f54d670647deeae32338b6/src/HexOnePriceFeed.sol#L56-L58


[L-07] - Arbitrary from() being used in Bootstrap deposit() method

ID Classification Category Status

L-07 LOW Quality Assurance Fixed in d6eeaae

Impact

In a scenario where the deposit()method of the HexOneVault.sol contract is called, un-
expected behaviour might happen during its internal transfer call.

Proof of Concept

In the followingsnippetof the HexOneVault.solcontract, the deposit() functiondoesnot
respect good practices of transfer calls.

/// @dev allows bootstrap to make deposit in name of`_depositor` and mint
HEX1.↪→

/// @param _depositor address of the user depositing.
/// @param _amount amount of HEX being deposited.
/// @param _duration of the HEX stake.
function deposit(address _depositor, uint256 _amount, uint16 _duration)

external
onlyAfterSacrifice
onlyHexOneBootstrap
returns (uint256 hexOneMinted, uint256 stakeId)

{
if (_duration < MIN_DURATION || _duration > MAX_DURATION) revert

InvalidDepositDuration(_duration);↪→

if (_amount == 0) revert InvalidDepositAmount(_amount);
if (_depositor == address(0)) revert InvalidDepositor(_depositor);

IERC20(hexToken).safeTransferFrom(hexOneBootstrap, address(this),
_amount);↪→

return _deposit(_depositor, _amount, _duration);
}

RecommendedMitigation Steps

Change the function name to depositFromBootstrap(), in addition to changing the from
parameter to msg.sender.

57

https://github.com/HexOneProtocol/hex1-contracts/commit/d6eeaaef3fb21cacdfab66d4dca2275ecafd6150
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33608be40c0a5f54d670647deeae32338b6/src/HexOneVault.sol#L113-L130


[I-01] - Typo in startAidrop() function name

ID Classification Category Status

I-01 INFORMATIONAL Quality Assurance Fixed in 2b4247f

Description

There is a typo in the function name startAidrop(), specifically in the word ”Aidrop”.

/// @dev mints 33% on top of the total hexit minted during sacrifice to the
staking↪→

/// contract and an addittional
/// @notice can only be called by the owner of the contract.
function startAidrop() external onlyOwner {

...
}

Occurrences

• HexOneBootstrap.sol#L360

RecommendedMitigation Steps

Change the method name to startAirdrop().

58

https://github.com/HexOneProtocol/hex1-contracts/commit/2b4247f4f332a6414775d88ba1d3a1d88cfde0bd
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33/src/HexOneBootstrap.sol#L360
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33/src/HexOneBootstrap.sol#L360


[I-02] - Several integer ranges do not have proper gas-wise considera-
tions

ID Classification Category Status

I-02 INFORMATIONAL Quality Assurance Acknowledged

Description

Weassessed that there are several cases (such as the one below)where themaximumbit

depth for an integer is beingused throughout the scopewhennot necessary. This causes

unnecessary gas costs.

/// @dev airdrop phase inital timestamp.
uint256 public airdropStart;
/// @dev airdrop phase final timestamp.
uint256 public airdropEnd;

Occurrences

• HexOneBootstrap.sol#L25#L35

• HexOneBootstrap.sol#L78#L96

• HexOneBootstrap.sol#L78#L96

• HexOnePriceFeed.sol#L35#L36

• HexOneStaking.sol#L28#L34

• HexOneStaking.sol#L40

• HexOneVault.sol#L45#L46

• IHexOneBootstrap.sol#L5#L7

• IHexOneBootstrap.sol#L15#L17

• IHexOneStaking.sol#L7#L15

• IHexOneStaking.sol#L22#L52

• IHexOneStaking.sol#L22#L52

• IHexOneVault.sol#L5#L9

• IHexOneVault.sol#L14#L18

RecommendedMitigation Steps

Reassess all integer state variables and reduce their bit depth in a context-fitting solu-

tion.

59

https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33608be40c0a5f54d670647deeae32338b6/src/HexOneBootstrap.sol#L25-L35
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33608be40c0a5f54d670647deeae32338b6/src/HexOneBootstrap.sol#L78-L96
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33608be40c0a5f54d670647deeae32338b6/src/HexOneBootstrap.sol#L78-L96
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33608be40c0a5f54d670647deeae32338b6/src/HexOnePriceFeed.sol#L35-L36
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33608be40c0a5f54d670647deeae32338b6/src/HexOneStaking.sol#L28-L34
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33608be40c0a5f54d670647deeae32338b6/src/HexOneStaking.sol#L40
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33608be40c0a5f54d670647deeae32338b6/src/HexOneVault.sol#L45-L46
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33608be40c0a5f54d670647deeae32338b6/src/interfaces/IHexOneBootstrap.sol#L5-L7
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33608be40c0a5f54d670647deeae32338b6/src/interfaces/IHexOneBootstrap.sol#L15-L17
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33608be40c0a5f54d670647deeae32338b6/src/interfaces/IHexOneStaking.sol#L7-L15
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33608be40c0a5f54d670647deeae32338b6/src/interfaces/IHexOneStaking.sol#L22-L52
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33608be40c0a5f54d670647deeae32338b6/src/interfaces/IHexOneStaking.sol#L22-L52
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33608be40c0a5f54d670647deeae32338b6/src/interfaces/IHexOneVault.sol#L5-L9
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33608be40c0a5f54d670647deeae32338b6/src/interfaces/IHexOneVault.sol#L14-L18


[I-03] - Inefficiencies in storage usage

ID Classification Category Status

I-03 INFORMATIONAL Quality Assurance Fixed in d0ccc58

Description

The storage variables within the HexOneBootstrap.sol, HexOneStaking.sol and HexOne-
Vault.sol contracts are not optimally declared in terms of storage efficiency.

Occurrences

• HexOneBootstrap.sol#L71-L109

• HexOneStaking.sol#L23-L51

• HexOneVault.sol#L38-L51

RecommendedMitigation Steps

Modify the declaration order to arrange variables from the one occupying the least stor-

age space to the one occupying the most, or vice versa.

60

https://github.com/HexOneProtocol/hex1-contracts/commit/d0ccc58bc9be0f1a6d67374e801d05b500b30f18
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33/src/HexOneBootstrap.sol#L71-L109
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33/src/HexOneStaking.sol#L23-L51
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33/src/HexOneVault.sol#L38-L51
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33/src/HexOneVault.sol#L38-L51
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33/src/HexOneBootstrap.sol#L71-L109
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33/src/HexOneStaking.sol#L23-L51
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33/src/HexOneVault.sol#L38-L51


[I-04] - Incorrect TWAP stale time code documentation

ID Classification Category Status

I-04 INFORMATIONAL Quality Assurance Fixed in 03c8c21

Description

The following constantwithin the HexOnePriceFeed.sol contract indicates that the TWAP

period is of one hour.

/// @dev period in which the oracle becomes stale.
uint256 public constant PERIOD = 1 hours;

Despite this, the following comment indicates that the TWAP period is of two hours. We

reached out to the client to rule out either a code or comment inconsistency, towhichwe

concluded was the latter.

// if the pair has already been updated in the last 2 hours revert
if (timeElapsed < PERIOD) revert PeriodNotElapsed(pair);

Occurrences

• HexOnePriceFeed.sol#L101-L102

RecommendedMitigation Steps

Modify the comment to indicate that the TWAP length is of one hour.

61

https://github.com/HexOneProtocol/hex1-contracts/commit/03c8c21b7511af94294823a2053f7dac287d2f7d
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33608be40c0a5f54d670647deeae32338b6/src/HexOnePriceFeed.sol#L35-L36
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33608be40c0a5f54d670647deeae32338b6/src/HexOnePriceFeed.sol#L101-L102
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33608be40c0a5f54d670647deeae32338b6/src/HexOnePriceFeed.sol#L101-L102


[I-05] - Consider replacing ERC20 libraries with the Solady implementa-
tion

ID Classification Category Status

I-05 INFORMATIONAL Quality Assurance Acknowledged

Description

The HexitToken.sol and HexOneToken.sol contracts inherit the ERC20 standard from O-

penZeppelin’s libraries. Solady is amore gas-optimized alternative, making use of the in-

line assembler to optimize intermediate calls that accomplish the standard’s function-

ality. Consider replacing the ERC20 inheritance to reduce overall gas costs from token

transfers andminting.

Occurrences

• HexOneToken.sol#L4

• HexitToken.sol#L4

RecommendedMitigation Steps

Consider changing the ERC20 inheritance to the corresponding Solady ERC20 library.

62

https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33/src/HexOneToken.sol#L4
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33/src/HexitToken.sol#L4


[I-06] - Do-while cycle more gas efficient than conventional for loop

ID Classification Category Status

I-06 INFORMATIONAL Quality Assurance Will not fix

Description

Thefollowingsnippetwithin theHexOnePriceFeed.solcontract is anexampleofa for loop

to iterate over all the possible pairs on the contract’s initialization. Do-while loops in So-

lidity are a more gas efficient implementation, even if you add an if-condition check for

the case where the loop doesn’t execute at all. It’s worthwhile to mention the use of the

++i syntax ensures the incrementing operation is done directly on i, meaning that only

one item needs to be stored on the compiler stack.

for (uint256 i; i < _pairs.length; i++) {
// check if pair was already added
(...)
}

Occurrences

• HexOnePriceFeed.sol#L51-L76

• HexOneBootstrap.sol#L155-L164

• HexOneBootstrap.sol#L490-L492

• HexOneBootstrap.sol#L504-L506

• HexOneBootstrap.sol#L517-L520

• HexOneStaking.sol#L117-L125

RecommendedMitigation Steps

Change the cycle structure wherever possible on the scope to the following:

uint256 i;

+ do {
+ unchecked {
+ ++i;
+ }
+ } while (i < _pairs.length);

63

https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33608be40c0a5f54d670647deeae32338b6/src/HexOnePriceFeed.sol#L51-L76
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33608be40c0a5f54d670647deeae32338b6/src/HexOnePriceFeed.sol#L51-L76
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33608be40c0a5f54d670647deeae32338b6/src/HexOneBootstrap.sol#L155-L164
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33608be40c0a5f54d670647deeae32338b6/src/HexOneBootstrap.sol#L490-L492
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33608be40c0a5f54d670647deeae32338b6/src/HexOneBootstrap.sol#L504-L506
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33608be40c0a5f54d670647deeae32338b6/src/HexOneBootstrap.sol#L517-L520
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33608be40c0a5f54d670647deeae32338b6/src/HexOneStaking.sol#L117-L125


[I-07] - Split revert statements in HexOnePriceFeed.sol

ID Classification Category Status

I-07 INFORMATIONAL Quality Assurance Fixed in 03d9b43

Description

The following snippet within the HexOnePriceFeed.sol contract uses a boolean operator
to revert if there areno reservesoneither sideof thepools’pair. It ismoregas efficient to

split both conditions and display separate errors for each side of the pool. Furthermore,

splitting both revert cases enables a more granular view on the cause of the revert.

// check if pair has reserves
if (reserve0 == 0 || reserve1 == 0) revert EmptyReserves(pair);

Occurrences

• HexOnePriceFeed.sol#L60-L61

RecommendedMitigation Steps

Consider changing the if statement structure to:

- if (reserve0 == 0 || reserve1 == 0) revert EmptyReserves(pair);
+ if (reserve0 == 0) revert EmptyReservesZero(pair);
+ if (reserve1 == 0) revert EmptyReservesOne(pair);

64

https://github.com/HexOneProtocol/hex1-contracts/commit/03d9b439d8a0c3ed4f916bb3dc96609b8f432173
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33608be40c0a5f54d670647deeae32338b6/src/HexOnePriceFeed.sol#L60-L61
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33608be40c0a5f54d670647deeae32338b6/src/HexOnePriceFeed.sol#L60-L61


[I-08] Multiple unnecessary storage readings

ID Classification Category Status

I-08 INFORMATIONAL Quality Assurance
Fixed in 48d6f03,

d0ccc58, ef52f82

Description

Since Solidity does not cache storage reads, accessing a storage variable incurs a mini-

mum cost of 100 gas. Writes, on the other hand, are notably more costly. Consequently,

it’s advisable to manually cache the variable to reduce gas expenses.

Occurrences

• HexOneBootstrap.sol#L178-L183

• HexOneBootstrap.sol#L187-L192

• HexOneBootstrap.sol#L252-L311

• HexOneBootstrap.sol#L314-L355

• HexOneBootstrap.sol#L360-L396

• HexOneStaking.sol#L277-L283

RecommendedMitigation Steps

Cache storage variables whenever possible to save gas costs.

65

https://github.com/HexOneProtocol/hex1-contracts/commit/48d6f03db1c4a6dae5ced56e2341ec22bed24ffe
https://github.com/HexOneProtocol/hex1-contracts/commit/d0ccc58bc9be0f1a6d67374e801d05b500b30f18
https://github.com/HexOneProtocol/hex1-contracts/commit/ef52f827b163f24cfe845b4058fd86ccbfd65fa0
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33/src/HexOneBootstrap.sol#L178-L183
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33/src/HexOneBootstrap.sol#L187-L192
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33/src/HexOneBootstrap.sol#L252-L311
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33/src/HexOneBootstrap.sol#L314-L355
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33/src/HexOneBootstrap.sol#L360-L396
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33/src/HexOneStaking.sol#L277-L283


[I-09] Unnecessary contains() check on AddressSet

ID Classification Category Status

I-09 INFORMATIONAL Quality Assurance Fixed in 2c26710

Description

It’s not necessary to do a contains() check on AddressSet since it’s already checked by

EnumerableSet library when adding an element.

Occurrences

• HexOnePriceFeed.sol#L54

• HexOneStaking.sol#L120

• HexOneBootstrap.sol#L159

RecommendedMitigation Steps

Consider removing the contains() check, as it is redundant given that said check is al-

ready done within the add() function. Since add() returns a boolean value indicating

whether the element was added or not, a check could be placed around the add() func-
tion call instead.

66

https://github.com/HexOneProtocol/hex1-contracts/commit/2c2671082bc3d165617eeb92e898312263fcaba5
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33/src/HexOnePriceFeed.sol#L54
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33/src/HexOneStaking.sol#L120
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33/src/HexOneBootstrap.sol#L159


[I-10] - Missing zero address checks

ID Classification Category Status

I-10 INFORMATIONAL Quality Assurance Fixed in 7a35247

Description

Some occurrences within the HexOnePriceFeed.sol, HexOneStaking.sol, and HexOneBoot-
strap.sol contracts lack a zero address check. Failing to include this check may lead to

unexpected behavior.

Occurrences

• HexOnePriceFeed.sol#L51-L76

• HexOneStaking.sol#L117-L125

• HexOneBootstrap.sol#L155-L164

RecommendedMitigation Steps

Add a zero address check to the occurrences above:

+ if (address == address(0)) revert (...)

67

https://github.com/HexOneProtocol/hex1-contracts/commit/7a35247b1a31fcd95dc078c72f2d4d24c4f3e9fd
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33/src/HexOnePriceFeed.sol#L51-L76
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33/src/HexOneStaking.sol#L117-L125
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33/src/HexOneBootstrap.sol#L155-L164


[I-11] - Basis points standard not being respected

ID Classification Category Status

I-11 INFORMATIONAL Quality Assurance Fixed in 45a95f1

Description

The constant below, allegedly in basis points, does not correspond to 100%.

/// @dev fixed point in basis points
uint16 public constant FIXED_POINT = 1000;

Occurrences

• HexOneVault.sol#L27

• HexOneStaking.sol#L54

RecommendedMitigation Steps

Consider changing the FIXED_POINT constants value to 10000.

68

https://github.com/HexOneProtocol/hex1-contracts/commit/45a95f16a5d71dd0c2e883163061a5429ea2a0d8
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33/src/HexOneVault.sol#L27
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33/src/HexOneVault.sol#L27
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33/src/HexOneStaking.sol#L54


[I-12] - No specific events being emitted in HexOneStaking.sol

ID Classification Category Status

I-12 INFORMATIONAL Quality Assurance Fixed in 302664b

Description

The HexOneStaking.sol contract does not have any direct event emission after purchas-

ing, staking, unstaking or claiming rewards. A Transfer event is being emitted every time

an ERC20 is transferred, but if it is intended to index specific data from the contracts

and/or react to said events in other ends of the stack wewould recommend the addition

of events that emit specific resulting data from each of these individual methods.

Occurrences

• HexOneStaking.sol

RecommendedMitigation Steps

Consider adding context-fitting events in the HexOneStaking.sol contract for eachof the
aforementioned outcomes.

69

https://github.com/HexOneProtocol/hex1-contracts/commit/302664b2c7a3cd23389b74d26a986ee9176c047d
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33/src/HexOneStaking.sol


[I-13] - Incorrect sacrifice incentives code documentation

ID Classification Category Status

I-13 INFORMATIONAL Quality Assurance Fixed in 59fbe9f

Description

The following comment within the HexOneBootstrap.sol contract indicates that the sac-
rifice incentive tokens are HEXIT and HEXIT, when it should be HEXIT and HEX instead.

/// @dev claim HEXIT and HEXIT based on thetotal amount sacrificed.
function claimSacrifice() external returns (

uint256 stakeId,
uint256 hexOneMinted,
uint256 hexitMinted

)

Occurrences

• HexOneBootstrap.sol#L313-L314

RecommendedMitigation Steps

Change the code comment to the following:

- /// @dev claim HEXIT and HEXIT based on thetotal amount sacrificed.
+ /// @dev claim HEX and HEXIT based on the total amount sacrificed.

70

https://github.com/HexOneProtocol/hex1-contracts/commit/59fbe9fd0708c92b1ffc27b5a446ae8764eb6945
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33/src/HexOneBootstrap.sol#L313-L314
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33/src/HexOneBootstrap.sol#L313-L314


[I-14] - Misleading internal method name in _getHexPrice()

ID Classification Category Status

I-14 INFORMATIONAL Quality Assurance Fixed in 5964ad8

Description

The _getHexPrice() function within the HexOneVault.sol contract returns the quote (ex-
pected tokenOut for a given tokenIn) rather than the actual price.

/// @dev tries to consult the price of HEX in DAI (dollars).
/// @notice if consult reverts with PriceTooStale then it needs to
/// update the oracle and only then consult the price again.
function _getHexPrice(uint256 _amountIn) internal returns (uint256)

Occurrences

• HexOneVault.sol#L301-L321

RecommendedMitigation Steps

Change the function name to _getHexQuote().

71

https://github.com/HexOneProtocol/hex1-contracts/commit/5964ad8d053118af7e6a3c7283eea45afdb2970d
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33/src/HexOneVault.sol#L301-L321
https://github.com/coveragelabs/2024-01-hex1/blob/6e6bb33/src/HexOneVault.sol#L301-L321

	Disclaimer
	About Hex One Protocol
	Executive Summary
	Methodology
	Severity Classification
	Quality Assurance
	Access Control
	Code Maturity
	Architectural Review

	Stateful Fuzzing
	Findings Summary
	[C-01] - Users can claim their airdrop allocation multiple times
	[C-02] - HexOneStaking.sol contract can be permanently bricked when there is no amount staked
	[H-01] - Lack of TWAP reactivity allows users to borrow more HEX1 than intended
	[M-01] - setBaseData() method may allow Owner to take malicious action
	[M-02] - Missing state updates in the _updatePoolHistory() method lead to staking reward accounting issues
	[M-03] - Inaccurate airdrop calculation results in excessive HEXIT distribution
	[M-04] - Return expression from getCurrentAirdropDay() method returning unexpected value
	[M-05] - Overriding of stakeIds can lead to debt erasure
	[M-06] - setHexOneBootstrap() method may allow Owner to take malicious action
	[M-07] - setHexOneVault() method may allow Owner to take malicious action
	[L-01] - Lack of total weight amount check can cause unexpected behavior
	[L-02] - teamWallet is the recipient of a significant portion of the HEXIT supply
	[L-03] - Lack of minimum deposit() amount requirement leads to inaccurate accounting
	[L-04] - Lack of minimum stake() amount requirement leads to inaccurate accounting
	[L-05] - The growth of balances within the HexOneStaking.sol contract does not consistently align with proportional increases in share allocation
	[L-06] - Price feed may be subject to manipulation on deployment
	[L-07] - Arbitrary from() being used in Bootstrap deposit() method
	[I-01] - Typo in startAidrop() function name
	[I-02] - Several integer ranges do not have proper gas-wise considerations
	[I-03] - Inefficiencies in storage usage
	[I-04] - Incorrect TWAP stale time code documentation
	[I-05] - Consider replacing ERC20 libraries with the Solady implementation
	[I-06] - Do-while cycle more gas efficient than conventional for loop
	[I-07] - Split revert statements in HexOnePriceFeed.sol
	[I-08] - Multiple unnecessary storage readings
	[I-09] - Unnecessary contains() check on AddressSet
	[I-10] - Missing zero address checks
	[I-11] - Basis point standard not being respected
	[I-12] - No specific events being emitted in HexOneStaking.sol
	[I-13] - Incorrect sacrifice incentives code documentation
	[I-14] - Misleading internal method name in _getHexPrice()


