
Modern C
for Absolute
Beginners

A Friendly Introduction to the
C Programming Language
—
Slobodan Dmitrović

Modern C for Absolute
Beginners

A Friendly Introduction to the
C Programming Language

Slobodan Dmitrović

Modern C for Absolute Beginners: A Friendly Introduction to the C Programming
Language

ISBN-13 (pbk): 978-1-4842-6642-7 ISBN-13 (electronic): 978-1-4842-6643-4
https://doi.org/10.1007/978-1-4842-6643-4

Copyright © 2021 by Slobodan Dmitrović

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image by Kyler Nixon on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.
springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science
+ Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484266427. For more
detailed information, please visit http://www.apress.com/source- code.

Printed on acid-free paper

Slobodan Dmitrović
Belgrade, Serbia

https://doi.org/10.1007/978-1-4842-6643-4

For Sanja and Katarina

v

Part I: The C Programming Language �� 1

Chapter 1: Introduction��� 3

1.1 What Is C? ... 3

1.2 What Is C Used For? .. 3

1.3 C Compilers ... 4

1.3.1 Installing Compilers .. 4

1.4 C Standards... 7

Chapter 2: Our First Program ��� 9

2.1 Function main() ... 9

2.2 Comments ... 11

2.3 Hello World .. 12

Chapter 3: Types and Declarations ��� 15

3.1 Declarations .. 15

3.2 Introduction ... 15

3.3 Character Type .. 16

3.4 Integer Type... 20

3.5 Floating-Point Types .. 25

3.5.1 float .. 26

3.5.2 double ... 27

3.5.3 long double ... 28

Table of Contents

About the Author ���xv

About the Technical Reviewer ���xvii

Acknowledgments ��xix

vi

Chapter 4: Exercises ��� 31

4.1 Hello World with Comments ... 31

4.1.1 Declaration ... 32

4.1.2 Definition .. 32

4.1.3 Outputting Values ... 32

Chapter 5: Operators �� 35

5.1 Introduction ... 35

5.2 Arithmetic Operators ... 35

5.3 Assignment Operator .. 36

5.4 Compound Assignment Operators... 38

5.5 Relational Operators ... 38

5.6 Equality Operators ... 39

5.7 Logical Operators .. 40

5.8 Increment and Decrement Operators .. 41

5.9 Operator Precedence .. 43

Chapter 6: Expressions ��� 45

6.1 Initialization ... 45

6.2 Type Conversion .. 46

Chapter 7: Statements �� 49

7.1 Introduction ... 49

7.2 Selection Statements .. 51

7.2.1 if ... 51

7.2.2 if-else ... 54

7.2.3 switch ... 57

7.3 Iteration Statements ... 61

7.3.1 while ... 61

7.3.2 do-while ... 62

7.3.3 for ... 63

Table of ConTenTs

vii

Chapter 8: Exercises ��� 67

8.1 Arithmetic Operations ... 67

8.2 Integral Division ... 67

8.3 Floating-Point Division and Casting .. 68

8.4 Equality Operator .. 68

8.5 Relational and Logical Operators .. 69

8.6 The switch Statement ... 70

8.7 Iteration Statements ... 71

Chapter 9: Arrays �� 73

9.1 Declaration .. 73

9.2 Subscript Operator .. 74

9.3 Array Initialization ... 76

9.4 Character Arrays ... 78

9.5 Multidimensional Arrays ... 79

9.6 Array Size and Count ... 80

Chapter 10: Pointers ��� 83

10.1 Introduction ... 83

10.2 Declaration and Initialization .. 83

10.3 Pointers and Arrays ... 86

10.4 Pointer Arithmetics ... 89

10.5 Void Pointers ... 91

10.6 Pointer to Character Arrays ... 93

10.7 Arrays of Pointers .. 94

Chapter 11: Command-Line Arguments�� 97

Chapter 12: Exercises ��� 99

12.1 Character Array ... 99

12.2 Array Elements .. 99

12.3 Pointer to an Existing Object ... 100

Table of ConTenTs

viii

12.4 Pointers and Arrays ... 101

12.5 Pointer to a Character Array .. 101

12.6 Pointer Arithmetics ... 102

12.7 Array of Pointers ... 102

Chapter 13: Functions �� 105

13.1 Introduction ... 105

13.2 Function Declaration ... 107

13.3 Function Definition .. 109

13.4 Parameters and Arguments .. 111

13.4.1 Passing Arguments ... 114

13.5 Return Statement .. 116

Chapter 14: Exercises ��� 119

14.1 A Simple Function ... 119

14.2 Function Declaration and Definition .. 119

14.3 Passing Arguments by Value ... 120

14.4 Passing Arguments by Pointer/Address .. 121

14.5 Function – Multiple Parameters .. 121

Chapter 15: Structures ��� 123

15.1 Introduction ... 123

15.2 Initialization ... 126

15.3 Member Access Operator .. 128

15.4 Copying Structures.. 130

15.5 Pointers to Structures ... 131

15.6 Self-Referencing Structures ... 133

15.7 Structures as Function Arguments.. 134

Chapter 16: Unions ��� 139

Chapter 17: Conditional Expression �� 141

Chapter 18: Typedef �� 143

Table of ConTenTs

ix

Chapter 19: Const Qualifier ��� 147

Chapter 20: Enumerations �� 153

Chapter 21: Function Pointers �� 157

Chapter 22: Exercises ��� 161

22.1 Structure Definition ... 161

22.2 Structure Typedef Alias ... 162

22.3 Structure Initialization ... 163

22.4 Pointers to Structures ... 164

22.5 Unions ... 165

22.6 Const Variables and Pointers .. 165

22.7 Constant Function Parameters .. 166

22.8 Enums ... 167

22.9 Pointers to Functions .. 168

Chapter 23: Preprocessor ��� 171

23.1 #include .. 171

23.2 #define .. 173

23.3 #undef ... 175

23.4 Conditional Compilation .. 176

23.4.1 #if ... 177

23.4.2 #ifdef .. 178

23.4.3 #ifndef .. 180

23.5 Built-in Macros ... 181

23.6 Function-Like Macros ... 182

Chapter 24: Exercises ��� 185

24.1 Define and Undefine a Macro .. 185

24.2 Conditional Compilation .. 186

24.3 Built-in Macros ... 186

24.4 Function Macros ... 187

Table of ConTenTs

x

Chapter 25: Dynamic Memory Allocation ��� 189

25.1 malloc ... 190

25.2 calloc... 198

25.3 realloc ... 200

Chapter 26: Storage and Scope �� 203

26.1 Scope .. 203

26.1.1 Local Scope .. 203

26.1.2 Global Scope ... 204

26.2 Storage .. 206

26.2.1 Automatic Storage Duration ... 206

26.2.2 Static Storage Duration .. 207

26.2.3 Allocated Storage Duration ... 208

Chapter 27: Exercises ��� 211

27.1 Dynamic Memory Allocation ... 211

27.2 Dynamic Memory Allocation: Arrays ... 212

27.3 Dynamic Memory Resizing ... 213

27.4 Automatic and Allocated Storage .. 214

Chapter 28: Standard Input and Output �� 215

28.1 Standard Input .. 215

28.1.1 scanf ... 215

28.1.2 sscanf ... 217

28.1.3 fgets ... 218

28.2 Standard Output .. 220

28.2.1 printf ... 220

28.2.2 puts... 222

28.2.3 fputs ... 222

28.2.4 putchar ... 223

Table of ConTenTs

xi

Chapter 29: File Input and Output ��� 225

29.1 File Input ... 225

29.2 File Output ... 227

Chapter 30: Exercises ��� 229

30.1 Standard Input .. 229

30.2 Standard Output .. 230

Chapter 31: Header and Source Files ��� 233

Part II: The C Standard Library �� 237

Chapter 32: Introduction to C Standard Library ��� 239

32.1 String Manipulation ... 240

32.1.1 strlen .. 241

32.1.2 strcmp .. 242

32.1.3 strcat .. 243

32.1.4 strcpy .. 243

32.1.5 strstr ... 244

32.2 Memory Manipulation Functions... 245

32.2.1 memset .. 246

32.2.2 memcpy .. 247

32.2.3 memcmp .. 249

32.2.4 memchr .. 251

32.3 Mathematical Functions.. 251

32.3.1 abs .. 252

32.3.2 fabs ... 252

32.3.3 pow ... 253

32.3.4 round .. 253

32.3.5 sqrt ... 255

32.4 String Conversion Functions ... 255

32.4.1 strtol ... 255

32.4.2 snprintf ... 257

Table of ConTenTs

xii

Part III: Modern C Standards ��� 259

Chapter 33: Introduction to C11 Standard �� 261

33.1 _Static_assert ... 261

33.2 The _Noreturn Function Specifier ... 262

33.3 Type Generic Macros Using _Generic .. 263

33.4 The _Alignof Operator ... 266

33.5 The _Alignas Specifier .. 267

33.6 Anonymous Structures and Unions ... 268

33.7 Aligned Memory Allocation: aligned_alloc .. 269

33.8 Unicode Support for UTF-16 and UTF-32 .. 270

33.9 Bounds Checking and Threads Overview .. 270

33.9.1 Bounds-Checking Functions ... 270

33.9.2 Threads Support ... 271

Chapter 34: The C17 Standard �� 273

Chapter 35: The Upcoming C2X Standard ��� 275

35.1 _Static_assert Without a Message ... 275

35.2 Attributes... 276

35.3 No Parameters Function Declaration .. 277

35.4 The strdup Function .. 277

35.5 The memccpy Function ... 279

Part IV: Dos and Don’ts �� 281

Chapter 36: Do Not Use the gets Function �� 283

Chapter 37: Initialize Variables Before Using Them ��� 285

Chapter 38: Do Not Read Out of Bounds ��� 287

Chapter 39: Do Not Free the Allocated Memory Twice ��� 289

Chapter 40: Do Not Cast the Result of malloc ��� 291

Chapter 41: Do Not Overflow a Signed Integer ��� 293

Table of ConTenTs

xiii

Chapter 42: Cast a Pointer to void* When Printing Through printf ����������������������� 295

Chapter 43: Do Not Divide by Zero �� 297

Chapter 44: Where to Use Pointers? ��� 299

44.1 Pointers to Existing Objects .. 299

44.2 Pointers to Arrays .. 300

44.3 Pointers to String Constants ... 302

44.4 Pointers to Dynamically Allocated Memory... 303

44.5 Pointers as Function Arguments ... 304

Chapter 45: Prefer Functions to Function-Like Macros �� 307

Chapter 46: static Global Names �� 309

Chapter 47: What to Put in Header Files? ��� 311

47.1 Shared Macros .. 311

47.2 Function Declarations ... 313

47.3 Shared extern Variables and Constants .. 314

47.4 Other Header Files .. 316

Part V: Appendices �� 317

 Appendix A: Linkage ��� 319

 Appendix B: Time and Date ��� 321

 Appendix C: Bitwise Operators ��� 325

 C.1 The Bitwise NOT Operator ~ ... 325

 C.2 Bitwise Shift Operators << and >> .. 327

 C.3 The Bitwise AND Operator & ... 330

 Appendix D: Numeric Limits ��� 333

 D.1 Integer Types Limits .. 333

 D.2 Floating-Point Types Limits ... 335

Table of ConTenTs

xiv

 Appendix E: Summary and Advice �� 337

 E.1 What to Learn Next? .. 337

 E.2 Online References ... 338

 E.3 Other C Books ... 338

 E.4 Advice ... 338

Index ��� 341

Table of ConTenTs

xv

About the Author

Slobodan Dmitrović is a software consultant, trainer,

and entrepreneur. He is the founder and CEO of “Clear

Programming Paradigm,” an LLC that provides outsourcing

and training services. Slobodan’s ability to summarize

complex topics and provide insightful training made him a

sought-after consultant for automotive, fintech, and other

industries. He has a strong interest in C, C++, software

architecture, training, and R&D. Slobodan can be reached at

www.cppandfriends.com.

http://www.cppandfriends.com

xvii

About the Technical Reviewer

German Gonzalez-Morris is a software architect/engineer working with C/C++,

Java, and different application containers, in particular, with WebLogic Server. He has

developed different applications including JEE/Spring/Python. His areas also include

OOP, Java/JEE, Python, design patterns, algorithms, Spring Core/MVC/Security,

and microservices. German has worked in performance messaging, Restful API, and

transactional systems. For more, see www.linkedin.com/in/german- gonzalez- morris.

http://www.linkedin.com/in/german-gonzalez-morris

xix

Acknowledgments

I would like to thank my friends and fellow peers who have supported me in writing my

second book.

I am forever indebted to Peter Dunne, Glenn Dufke, Bruce McGee, Tim Crouse, Jens

Fudge, Rainer Grimm, and Rob Machin for all their work, help, and support.

I am grateful to the outstanding professionals at Apress who have supported me

during the entire writing process.

I am thankful to all of the amazing software developers, architects, and

entrepreneurs I met and collaborated with throughout the years.

PART I

The C Programming
Language

3
© Slobodan Dmitrović 2021
S. Dmitrović, Modern C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6643-4_1

CHAPTER 1

Introduction
Dear reader, congratulations on choosing to learn the C programming language, and

thank you for picking up this book. My name is Slobodan Dmitrović, and I will try to

introduce you to a wonderful world of C programming to the best of my abilities. This

book is divided into four parts. In Part 1, we cover the C language basics. Part 2 explains

the C standard library, and Part 3 introduces us to modern C standards. The final part

explains the dos and don’ts in modern C. Let us get started!

1.1 What Is C?
C is a programming language, a general-purpose, procedural, compiled programming

language. C language was created by Dennis Ritchie in the late 1960s and early 1970s.

The C program is a collection of C source code spread across one or more source and

header files. Source files by convention have the .c extension, and header files have the .h

extension. Source and header files are plain text files that contain some C code.

1.2 What Is C Used For?
C is often used for so-called systems programming, which is operating systems

programming, application programming, and embedded systems programming, to

name a few. A large portion of Linux and Windows operating systems was programmed

using C. C is often used as a replacement for an assembly language. C language

constructs efficiently translate to the hardware itself. Whenever we want to get down to

the metal, we can opt for C.

https://doi.org/10.1007/978-1-4842-6643-4_1#DOI

4

1.3 C Compilers
To compile and run a C program, we need a C compiler. A compiler compiles a C

program and turns the source code into an object file. The linker then links the object

files together and produces an executable file or a library, depending on our intention.

For the most part, we say we compile the program and assume the compilation process

results in an executable file that we can run. At the time of writing, some of the more

popular C compilers are:

• gcc – as part of the GCC toolchain

• Clang – as part of the LLVM toolchain

• Visual C/C++ compiler – as part of the Visual Studio IDE

• MinGW – a Windows port of the GCC

1.3.1 Installing Compilers
Here we describe how to install C compilers on Linux and Windows and how to compile

and run our programs.

1.3.1.1 On Linux

To install a GCC compiler on Linux, open a terminal window and type:

sudo apt install build-essential

This command installs a GCC toolchain, which we can use to compile, debug,

and run our C programs. Using a text editor of our choice, let us create a file with the

following code:

#include <stdio.h>

int main(void)

{

 printf("Hello World!\n");

}

Chapter 1 IntroduCtIon

5

Let us save the file as a source.c. To compile this program using GCC, we type:

gcc source.c

This will produce an executable file with a default name of a.out. To run this file, type

the following in a console window:

./a.out

Running this program should output the Hello World! string in our console

window.

Note For now, let us take the source code inside the source.c file for granted.
the example is for demonstration purposes. We will get into detailed code
explanation and analysis in later chapters.

To install a clang compiler on our Linux system, type:

sudo apt install clang

This command installs another compiler called Clang, which we can also use to

compile our programs. To compile our previous program using a clang compiler, we

type:

clang source.c

Same as before, the compiler compiles the source file and produces an executable

file with the default name of a.out. To run this file, we type:

./a.out

The compiler choice is a matter of preference. Just substitute gcc with clang and vice

versa. To compile with warnings enabled, type:

gcc -Wall source.c

Warnings are not errors. They are messages indicating that something in our

program might lead to errors. We want to eliminate or minimize the warnings as well.

Chapter 1 IntroduCtIon

6

To produce a custom executable name, add the -o flag, followed by the custom

executable name, so that our compilation string now looks like:

gcc -Wall source.c -o myexe

To run the executable file, we now type:

./myexe

The ISO C standard governs the C programming language. There are different

versions of the C standard. We can target a specific C standard by adding the -std= flag,

followed by a standard name such as c99, c11, or c17. To compile for a c99 standard, for

example, we would write:

gcc -std=c99 -Wall source.c

To compile for a C11 standard, we use:

gcc -std=c11 -Wall source.c

If we want to adhere to strict C standard rules, we add the -pedantic compilation

flag. This flag issues warnings if our code does not comply with the strict C standard

rules. Some of the use cases are:

gcc -std=c99 -Wall -pedantic source.c

gcc -std=c11 -Wall -pedantic source.c

gcc -std=c17 -Wall -pedantic source.c

gcc -std=c2x -Wall -pedantic source.c

To compile and run the program using a single statement, we type:

gcc source.c && ./a.out

This statement compiles the program and, if the compilation succeeds, executes the

a.out file.

Let us put it now all together and use the following compilation strings in our future

projects. If using gcc:

gcc -Wall -std=c11 -pedantic source.c && ./a.out

If using Clang:

clang -Wall -std=c11 -pedantic source.c && ./a.out

Chapter 1 IntroduCtIon

7

1.3.1.2 On Windows

On Windows, we can install Visual Studio. Choose the Create a new project option, make

sure the C++ option is selected, choose Empty Project, and click Next. Modify the project

and solution names or leave the default values, and click Create. We have now created

an empty Visual Studio project. In the Solution Explorer window, right-click on a project

name and choose Add – New Item…. Ensure the Visual C++ tab is selected, click on

the C++ File (.cpp) option, modify the file name to source.c, and click Add. We can use

a different file name, but the extension should be .c. Double-click on the source.c file,

and paste our previous Hello World source code into it. Press F5 to run the program. To

compile for the C11 standard, use the /std:c11 compiler switch. To compile for the C17

standard, use the /std:c17 compiler switch.

Alternatively, install the MinGW (Minimalist GNU for Windows) and use the

compiler in a console window, the same way we would on Linux.

So far, we have learned how to set up the programming environments on Linux and

Windows and compile and run our C programs. We are now ready to start with the C

theory and examples.

1.4 C Standards
The C programming language is a standardized language. There were different C standards

throughout history. The first notable standard was the ANSI C, and now it is the ISO standard

known as the ISO/IEC:9989 standard. Some of the C standards throughout the years:

• ANSI C Standard (referred to as ANSI C and C89)

• C90 (official name: ISO/IEC 9899:1990; it is the ANSI C Standard

adopted by ISO; the C89 and C90 are the same things)

• C99 (ISO/IEC 9899:1999)

• C11 (ISO/IEC 9899:2011)

• C17 (ISO/IEC 9899:2018)

• The upcoming standard informally named C2x

Each of the standards introduces new features and changes to the language and the

standard library. Everything starting with C11 is often referred to as the modern C. And

modern C is what we will be teaching in this book. Let us get started!

Chapter 1 IntroduCtIon

9
© Slobodan Dmitrović 2021
S. Dmitrović, Modern C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6643-4_2

CHAPTER 2

Our First Program
This section describes the main program entry point, how to work with comments, and

how to write a simple “Hello World” program.

2.1 Function main()
Every C program that produces an executable file must have a starting point. This

starting point is the function main. The function main is the function that gets called

when we start our executable file. It is the program’s main entry point. The signature of

the function main is:

int main(void) {}

The function main is of type int, which stands for integer, followed by the reserved

name main, followed by an empty list of parameters inside the parentheses (void). The

name void inside the parentheses means the function accepts no parameters. Following

is the function body marked with braces {}. The opening brace { marks the beginning

of a code block, and the closing brace } marks the end of the code block. We write our

C code inside the code block marked by these braces. The code we write there executes

when we start our executable file.

For readability reasons, we can put braces on new lines:

int main(void)

{

}

https://doi.org/10.1007/978-1-4842-6643-4_2#DOI

10

We can keep the opening brace on the same line with the main function definition

and have the ending brace on a new line:

int main(void) {

}

Note Braces placement position is a matter of conventions, preferences, and
coding styles.

In early C standards, the function main was required to have a return 0; statement.

This statement ends the program and returns control to the operating system. The return

value of 0 means the program finished the execution as expected. It ended normally.

If the main function returns any value other than 0, it means the program ended

unexpectedly. So, in previous standards, our blank program would look like:

int main(void)

{

 return 0;

}

Statements in C end with a semicolon (;). The return 0; statement within the

main function is no longer required in modern C. We can omit that statement. When the

program execution reaches the closing brace, the effect is the same as if we explicitly

wrote the statement. In modern standards, we can simply write:

int main(void)

{

}

We often see the use of the following, also valid main signature:

int main()

{

 return 0;

}

Chapter 2 Our First prOgram

11

While this signature indicates there are no parameters, in ANSI C, it could potentially

allow us to call the function with any number of parameters. Since we want to avoid that,

we will be using the int main(void) signature, which explicitly states the function does

not accept parameters.

With that in mind, we will be using the following main skeleton to write our code

throughout the book:

int main(void)

{

}

Note there is another main signature accepting two parameters: int
main(int argc, char* argv[]). We will describe it later in the book when
we learn about arrays, pointers, and character arrays.

2.2 Comments
We can have comments in our C program. A comment is a text that is useful to us but

is ignored by the compiler. Comments are used to document the source code, serve as

notes, or comment-out the part of the source code.

A C-style comment starts with /* characters and ends with */ characters. The

comment text is placed between these characters. Example:

int main(void)

{

 /* This is a comment in C */

}

The comment can also be a multiline comment:

int main(void)

{

 /* This is a

 multi-line comment in C */

}

Chapter 2 Our First prOgram

12

Starting with C99, we can write a single-line comment that starts with a double slash

// followed by a comment text:

int main(void)

{

 // This is a comment

}

We can have multiple single-line comments on separate lines:

int main(void)

{

 // This is a comment

 // This is another comment

}

Comments starting with the double slash // are also referred to as C++ style

comments.

2.3 Hello World
Let us write a simple program that outputs a “Hello World” message in the console

window and explain what each line of code does. The full listing is:

#include <stdio.h>

int main(void)

{

 printf("Hello World!");

}

The first line #include <stdio.h> uses the #include preprocessor macro to include

the content of the <stdio.h> header file into our source.c file. The standard-library

header file name stdio.h is surrounded with matching <> parentheses. This standard-

library header is needed to use the printf() function. We call this function inside

the main function body using the following blueprint: printf("Message we want to

output");

Chapter 2 Our First prOgram

13

The printf function accepts an argument inside the parentheses (). In our case,

this argument is a string constant or a character string "Hello World!". The string text

is surrounded by double quotes (""). The entire printf("Hello World!") function call

then ends with the semicolon (;), and then we call it a statement. Statements end with a

semicolon in C. Macros such as the #include <stdio.h> do not end with a semicolon.

We can output text on multiple lines. To do that, we need to output a newline

character, which is \n. Example:

#include <stdio.h>

int main(void)

{

 printf("Hello World!\nThis is a new line!");

}

Output:

Hello World!

We can split the text into two printf function calls for readability reasons.

Remember, each time we want the text to start on a new line, we need to output the

newline character \n:

#include <stdio.h>

int main(void)

{

 printf("Hello World!\n");

 printf("This is a new line!");

}

Output:

Hello World!

This is a new line!

Chapter 2 Our First prOgram

14

This has the same effect as if we placed a newline character at the beginning of the

second printf function call:

#include <stdio.h>

int main(void)

{

 printf("Hello World!");

 printf("\nThis is a new line!");

}

Output:

Hello World!

This is a new line!

Chapter 2 Our First prOgram

15
© Slobodan Dmitrović 2021
S. Dmitrović, Modern C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6643-4_3

CHAPTER 3

Types and Declarations
In this section, we will learn about the built-in types in C and variable declarations.

3.1 Declarations
A declaration declares a (variable) name. When we declare a variable, we specify its type

and variable’s name. When we declare a variable, the compiler reserves memory for our

variable. This occupied space is called an object or data object in memory. These data

objects are accessed by names we call variables. We need to declare a variable before we

can use it. To declare a variable, we put the type_name before the variable_name and

end the entire statement with a semicolon (;). The declaration pseudo-code looks like:

type_name variable_name;

We can declare multiple variables of the same type by separating them with a

comma:

type_name variable_name1, variable_name2, variable_name3;

Variable names can contain both letters and numbers but must not start with

a number. C is a case-sensitive language, so myvar and MyVar are two different,

independent names. Variable names should not start with underscore characters as in

_myvar or __myvar.

3.2 Introduction
What is a type? A type is a range of values and allowed operations on those values. An

instance of a type is called an object or a data object. When we declare a variable, we are

creating an instance.

https://doi.org/10.1007/978-1-4842-6643-4_3#DOI

16

There are different built-in types in C. For example, one type can hold (store)

characters, another type can hold whole numbers, and some other type can be used to

store floating-point values. Some of the built-in types are:

• char – holds character values

• int – holds whole numbers

• float – holds floating-point values of single precision

• double – holds floating-point values of double precision

Our program data is stored in computer memory. Computer memory is an array of

memory cells called bits. A bit can have two states we symbolically refer to as 1 and 0. A group

of 8 bits is often called a byte. A byte of memory has its own label/number we call an address.

We can visualize a byte as a rectangular area, an occupied space in memory with its

address. This address is a number, often represented by a hexadecimal number:

0x10

Types have different sizes. Data represented by variables of different types occupy

a different amount of bytes in memory. For example, type char is one byte in size. We

say that it is one byte long and can be used to store a single character. Other types have

different sizes. For example, type int can be 4 bytes in size.

There are lower and upper limits to values each type can hold, a minimum or maxim

values a type can store.

There are special qualifiers we can apply to the above types, such as long and

unsigned. We discuss each type in more detail in the following sections.

3.3 Character Type
Type char allows us to store a single character. To declare a single variable of type char

inside the main function body, we write:

int main(void)

{

 char mychar;

}

Chapter 3 types and deClarations

17

The statement char mychar; is a variable declaration. In simple words: from now on,

there will be a char variable called mychar. We also say that mychar is of char type.

The variable declared inside the function main is also called a local variable. It is

local to the main function. Local variables are not initialized by default and contain

random values. Once declared, we can access the variable. For example, we can assign a

value to it using an assignment operator:

int main(void)

{

 char mychar;

 mychar = 'a';

}

The first line inside the main function body declares a variable, and the second

line assigns it a value of 'a'. We used a character constant 'a' to assign a value to our

variable using the = assignment operator. Character constants are enclosed in single

quotes (''). Examples of character constants are ‘a’, ‘A’, ‘z’. Some character constants must

be escaped using the backslash character \. Some of the escape-sequence characters are:

• The newline character '\n'

• A single quote character '\''

• A double quote character '\"'

• A tab character '\t'

The character type char is also an integral type. We can say it is a small integer. In

type char, every character constant is represented by a matching number inside the

encoding table. This encoding table is called a character set, and it might be ASCII or

some other table, depending on the implementation. For example, the above character

constant 'a' is represented by a number 97 in the ASCII table. So, we can assign a value

of 97 to our mychar variable, and the underlying byte value would be the same:

int main(void)

{

 char mychar;

 mychar = 97;

}

Chapter 3 types and deClarations

18

It represents the same byte value using different constants, by using either a

character constant 'a' or an integer constant 97. For the most part, we will be using

character constants to assign values to char variables.

Instead of declaring a variable and then assigning a value to it, we could initialize the

variable:

int main(void)

{

 char mychar = 97;

}

To print out the value of our variable, we will be using the printf function. To print

out a single variable value, we call the printf function using the following syntax:

printf("%format_specifier", variable_name);

If we want to print out multiple variables, we will use the multiple format specifiers/

placeholders in the double quotes, followed by a comma-separated list of variables:

printf("%format_specifier1 %format_specifier2", variable_name1,

variable_name2);

The %format_specifier1 part is a placeholder and a format specifier for the value

of variable_name1. The format specifier says how our variable should be formatted/

interpreted when we send it to the output/console window. The %format_specifier2

is a placeholder for the value of variable_name2 and so on. The format specifier is also

called a conversion specifier.

To print out the character variable as an actual character, we can use the c format

specifier:

#include <stdio.h>

int main(void)

{

 char mychar;

 mychar = 'a';

 printf("%c", mychar);

}

Chapter 3 types and deClarations

19

Output:

a

Explanation: the printf function writes data to the standard output, which is our

console window. The printf function accepts multiple arguments. The first argument

is the double-quoted text. Inside the double-quoted text, there is a placeholder for our

variable. This placeholder consists of a percentage sign % followed by the format specifier,

which in our case is c. There are different format specifiers for different types. These

determine how the value of our variable is to be presented/printed in the quoted text.

To print out the character variable value as an integral number, we use the %d or the

%i format specifier:

#include <stdio.h>

int main(void)

{

 char mychar;

 mychar = 'a';

 printf("%d", mychar);

}

Output:

97

The size of type char is one byte. This means that mychar occupies exactly 1 byte of

memory storage. We can check the size of the object by using the sizeof operator. The

sizeof operator returns the object’s or type’s size in bytes:

#include <stdio.h>

int main(void)

{

 char mychar;

 mychar = 'a';

 printf("The size of a character object is %zi byte(s).", sizeof(mychar));

}

Chapter 3 types and deClarations

20

Output:

The size of a character object is 1 byte(s).

The %zi or the %zu format specifier is used for the return type of the sizeof operator.

Depending on the implementation, the char type range varies but is usually between

-128 and +127.

A special unsigned qualifier can be applied to integral types, including type char.

This qualifier means the type can now hold only positive values and a zero. The size

remains 1 byte, but now the type can hold twice as many positive values. The maximum

value of an unsigned char is usually 255. Example:

#include <stdio.h>

int main(void)

{

 unsigned char mychar = 255;

 printf("The value of mychar is: %d", mychar);

}

Output:

The value of mychar is: 255

There is a fair amount of theory surrounding even a simple thing such as the char

type, but we need not worry. Each section is accompanied by plenty of source code

examples and exercises.

3.4 Integer Type
Integer type called int is used for storing whole (integral) numbers/values and

performing certain operations on them. To declare an integer variable, we write int

variable_name; Let us write a program that declares an integer variable and assigns a

value to it:

Chapter 3 types and deClarations

21

int main(void)

{

 int x;

 x = 123;

}

There are different integer constants we can assign to int variables. They are decimal

integer constants represented by negative and positive numbers, for example, 65535,

0, 123. The second kind is the octal constant. Octal constants begin with a zero sign 0,

followed by numbers from 0 to 7. An example of an octal constant is 012, which is equal to

a decimal value of 10. The third kind is a hexadecimal constant. This constant begins with

0x or 0X, followed by hexadecimal symbols from 0 to 9 and A to F. The hexadecimal value

of 0xA represents a decimal number of 10. Let us write a program that assigns a value of 10

to three different integer variables using decimal, octal, and hexadecimal notation:

int main(void)

{

 int x;

 x = 10; // decimal constant

 int y;

 y = 012; // octal constant

 int z;

 z = 0xA; // hexadecimal constant

}

In this example, both x, y, and z have the same value of 10 (ten), represented by three

different constants. All these constants are of type int.

We can print the integer value using different format specifiers, %d for decimal, %o for

octal, and %x or %X for hexadecimal representation:

#include <stdio.h>

int main(void)

{

 int x;

 x = 10;

 printf("Decimal: %d Octal: %o Hexadecimal: %X", x, x, x);

}

Chapter 3 types and deClarations

22

Output:

Decimal: 10 Octal: 12 Hexadecimal: A

It is one value, but with three different representations.

Depending on the hardware and the implementation, the type int is usually 4 bytes

wide. It can hold values from at least −32768 to +32767, but on our computer, this range is

usually from -2147483648 to +2147483647.

Some modifiers or qualifiers can be applied to type int. They are signed, unsigned,

short, and long. Integers are signed by default, so instead of saying signed int, we

simply write int. The unsigned qualifier says the type int can only hold positive values

and a zero. The size of the type is the same. Unsigned integers can now hold twice as

many positive numbers as the regular (signed) int.

An example of unsigned int is:

#include <stdio.h>

int main(void)

{

 unsigned int x = 123456789u;

 printf("The value of an unsigned integer is: %u", x);

}

Output:

The value of an unsigned integer is: 123456789

We can rewrite the above example so that the int part is omitted:

#include <stdio.h>

int main(void)

{

 unsigned x = 123456789u;

 printf("The value of an unsigned integer is: %u", x);

}

Chapter 3 types and deClarations

23

Output:

The value of an unsigned integer is: 123456789

Note When using any of these specifiers on type int, we can omit the int part
and write only the specifier(s) name(s).

The unsigned integer constants have u or U suffix, such as our 123456789u value. We

used the %u specifier to print out the value of an unsigned integer.

Other specifiers that can be applied are short and long. These specifiers change

the length of the integer type. Type short is often 2 bytes in length, and long is at least 4

bytes in length. Examples of short and long types:

#include <stdio.h>

int main(void)

{

 short x;

 x = 1234;

 printf("The value of a short integer is: %d\n", x);

 long y;

 y = 123456789l;

 printf("The value of a long integer is: %ld\n", y);

}

Output:

The value of a short integer is: 1234

The value of a long integer is: 123456789

The first part declares a short integer x and prints its value using the %d format. The

\n after the %d placeholder is just a newline character, and it is not part of the specifier.

The second part declares a long integer y. Long integer constants have the l or L suffix,

such as our 123456789l value. We used the %ld format to print out the value of a long

integer.

Chapter 3 types and deClarations

24

These type specifiers can be chained together so that we can have an unsigned

short:

#include <stdio.h>

int main(void)

{

 unsigned short x;

 x = 1234u;

 printf("The value of an unsigned short integer is: %hu\n", x);

}

Output:

The value of an unsigned short integer is: 1234

Here we used the %hu format specifier to format and print out the value of an

unsigned short. Our 1234u constant also has the u suffix as it is of unsigned type. There

is no specific suffix for a short type.

To declare and print out the unsigned long value, we write:

#include <stdio.h>

int main(void)

{

 unsigned long y;

 y = 123456789ul;

 printf("The value of an unsigned long variable is: %lu\n", y);

}

Output:

The value of an unsigned long variable is: 123456789

We used the %lu format to print out the value of an unsigned long. Notice that our

123456789ul constant now carries both u and l suffixes, since it is of unsigned long

type.

Chapter 3 types and deClarations

25

Starting with the C99 standard, there is also a long long integer type that is at least

8 bytes long. Its constants have the ll or LL suffixes. To print out the value of the long

long type, we use the %lld or %lli format specifier:

#include <stdio.h>

int main(void)

{

 long long x;

 x = 123456789ll;

 printf("The value of a long long integer is: %lld", x);

}

Remember to compile for at least the C99, C11, or the C17 standard such as:

gcc -Wall -std=c99 -pedantic source.c && ./a.out

or:

gcc -Wall -std=c11 -pedantic source.c && ./a.out

From C99 onward, there can also be an unsigned long long type. Its constants

carry the ull, ULL, llu, or LLU suffixes. We use the %llu format specifier to print out the

value:

#include <stdio.h>

int main(void)

{

 unsigned long long x;

 x = 123456789llu;

 printf("The value of an unsigned long long integer is: %llu", x);

}

3.5 Floating-Point Types
There are three types for representing floating-point numbers. The first is called float,

the second type is called double, and the third type is called a long double.

Chapter 3 types and deClarations

26

3.5.1 float
Type float is a type used for storing the single-precision floating-point numbers. The type

is 4 bytes wide. Floating-point numbers are also called real numbers. In a floating-type

number such as 123.456, there is the whole number part (123), the decimal separator (.),

and the fractional/decimal part 456. To declare a variable of type float, we write:

int main(void)

{

 float myfloat;

 myfloat = 123.456f;

}

We will describe two floating-point constants used to represent float values. The

floating-point constant, such as the 123.456f, carries a suffix f or F, which makes it of

type float. The same value represented by an exponent constant has the form 123456e-

3f. It means 123456 times 10 to the power of -3. To represent a number 100 using an

exponent constant, we would write 1e2f. To represent a value of 0.123 using a decimal

constant, we can also write .123 without the leading 0.

To print out a value of type float, we use the %f format specifier:

#include <stdio.h>

int main(void)

{

 float myfloat;

 myfloat = 123.456f;

 printf("The value of a floating-point variable is: %f", myfloat);

}

Output:

The value of a floating-point variable is: 123.456001

Chapter 3 types and deClarations

27

This example prints out the value of 123.456001 because the default precision of a %f

format specifier is 6, so it also adds the (imprecise) 001 part. To print out only the three

decimal places, we use the %.3f format:

#include <stdio.h>

int main(void)

{

 float myfloat;

 myfloat = 123.456f;

 printf("The value of a floating-point variable is: %.3f", myfloat);

}

The result is now 123.456. We can also explicitly specify the whole and the fractional

part’s length using the %3.3f format specifier.

3.5.2 double
Another type for storing floating-point values is type double. It is 8 bytes wide and offers

increased precision and range as compared to type float. To declare a variable of type

double, we write:

int main(void)

{

 double d;

 d = 123.456;

}

Floating-point constants without suffixes such as our 123.456 are of type double by

default. So, for a simple decimal constant of type double, we write 123.456, and for an

exponent constant, we write 123456e-3.

Chapter 3 types and deClarations

28

To print out the value of type double, we use the %f or the %lf format specifier inside

the printf function:

#include <stdio.h>

int main(void)

{

 double mydouble;

 mydouble = 123.456;

 printf("The value of a double variable is: %.3f", mydouble);

}

Output:

The value of a double variable is: 123.456

When to use float and when to use double? It depends on the context, the

hardware, and our needs. Float occupies less memory than double, might be faster than

double, but is less precise. When increased precision is required, we can opt for double.

In general, we should prefer double to float.

3.5.3 long double
The third floating type is called a long double. The type has increased precision and

range. To declare a variable of this type, we write:

int main(void)

{

 long double mylongdouble;

 mylongdouble = 123456.789l;

}

Chapter 3 types and deClarations

29

Long double constants have l or L suffixes. To print out the value of a long double,

we use the %Lf format specifier:

#include <stdio.h>

int main(void)

{

 long double mylongdouble;

 mylongdouble = 123456.789l;

 printf("The value of a long double variable is: %.3Lf",

mylongdouble);

}

Output:

The value of a long double variable is: 123456.789

Chapter 3 types and deClarations

31
© Slobodan Dmitrović 2021
S. Dmitrović, Modern C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6643-4_4

CHAPTER 4

Exercises

4.1 Hello World with Comments
Let us write a program that has comments in it and outputs a “Hello World!” message on

one line and “C rocks!” on a new line.

#include <stdio.h>

int main(void)

{

 // this is a comment

 /* This is an

 multi-line comment */

 printf("Hello World.\n");

 printf("C rocks!.\n");

}

Output:

Hello World.

C rocks!.

https://doi.org/10.1007/978-1-4842-6643-4_4#DOI

32

4.1.1 Declaration
Write a program that declares four variables of type char, int, float, and double,

respectively:

int main(void)

{

 char c;

 int x;

 float f;

 double d;

}

4.1.2 Definition
Write a program that declares and initializes four variables of type char, int, float, and

double, respectively:

int main(void)

{

 char c = 'a';

 int x = 123;

 float f = 123.456f;

 double d = 789.101112;

}

4.1.3 Outputting Values
Write a program that initializes and prints four variables of type char, int, float, and

double, respectively.

#include <stdio.h>

int main(void)

{

 char c = 'a';

 int x = 123;

 float f = 123.456f;

Chapter 4 exerCises

33

 double d = 789.101112;

 printf("%c\n", c);

 printf("%d\n", x);

 printf("%f\n", f);

 printf("%f\n", d);

}

Output:

a

123

123.456001

789.101112

Chapter 4 exerCises

35
© Slobodan Dmitrović 2021
S. Dmitrović, Modern C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6643-4_5

CHAPTER 5

Operators
Operators are an essential part of the language. This section explains what they are and

how they are used. It might seem that there is plenty of theory surrounding this subject,

but do not worry. We need to adopt the theoretical part to use it in practical code

examples later in the book.

5.1 Introduction
What is the operator? An operator is a language entity that performs operations on its

arguments. One or more different symbols represent operators. To better understand

the terminology, let us look at a simple mathematical expression: x + y. Here, + is an

operator. It performs an addition operation on x and y. Here, x and y are called operands,

where x is a left operand and y is the right operand. The entire x + y part is called an

expression.

Depending on the type of operation, we can have different categories of operators.

Some of them are arithmetic, relational, assignment, logical, bitwise, and other operators.

5.2 Arithmetic Operators
Arithmetic operators perform arithmetic operations on their arguments. Arithmetic

operators are:

• + – addition

• - – subtraction

• * – multiplication

• / – division

• % – modulus

https://doi.org/10.1007/978-1-4842-6643-4_5#DOI

36

The addition operator + allows us to add the operands together. The subtraction

allows us to subtract y from x. The multiplication operator multiplies the x and y, and the

division operator divides x with y.

The division can be an integer division or a floating-point division. The integral

division occurs when both operands are of some integral type, such as int. The result

of such division is the whole number only, and the remainder (the decimal part) is

discarded. For example, the result of the 9 / 2 expression is 4, and the remainder of

.5 is discarded. Since both 9 and 2 are of type int, the result of the entire expression is

also of type int. If only one operand is of floating-point type, the entire expression is of

the floating-point type. For example, the result of 9.0 / 2 is 4.5 as at least one of the

operands is of a floating-point type.

Let us look at what the % modulus (or modulo) operator does. The result of the x % y

expression is the remainder of the x / y division. It is the whole number in the decimal

part (the remainder) of the result but without the dot part. For example, the result of the

9 % 2 is equal to 5. In mathematical terms, 9 divided by 2 equals 4.5, so the result of the

modulus operation is 5.

As in math, the precedence of *, /, and % operators is higher than the + and –

operators. In an expression like x + y * z, the subexpression y * z is evaluated first.

The x + (the result of the y * z subexpression) is evaluated next.

5.3 Assignment Operator
The assignment operator = assigns a value to the variable/expression. A source code

example of a simple assignment operator would be:

#include <stdio.h>

int main(void)

{

 int x;

 x = 123;

 printf("%d", x);

}

In an x = 123 expression, the value of 123 gets assigned to variable x. In this

expression, everything occurring on the left side of the assignment operator = is called

a left-hand side expression or lhs for short. In our case, it is a simple variable x. And

Chapter 5 OperatOrs

37

everything occurring on the right of the assignment operator is called a right-hand side

expression or rhs for short, which in this example is an integer constant 123. We say that

the assignment operator assigns a value of rhs to lhs. In our case, it assigns a value of 123

to our variable x. We can also assign the value of one variable to another:

#include <stdio.h>

int main(void)

{

 int x;

 int y;

 x = 123;

 y = x;

 printf("%d", y);

}

In a y = x; statement, we assigned the value of x to y. In a y = x expression, we only

assigned the value of x to y, not the memory address. The two data objects x and y are

two different data objects in memory. Changing the value of either one does not affect

the value of the other one.

Let us use the assignment operator to assign values to variables of different types

such as char, int, and float:

#include <stdio.h>

int main(void)

{

 char c;

 c = 'A';

 int x;

 x = 123;

 float f;

 f = 123.456f;

 printf("Char: %c int: %d float: %.3f", c, x, f);

}

Here, we declare the variables, assign the values of constants to our variables, and

then print them. We used three different types, constants, and format specifiers.

Chapter 5 OperatOrs

38

5.4 Compound Assignment Operators
Compound assignment performs binary operation on both operands and then assigns

the value to its left-hand side operand. Some of the compound assignments are +=, -=,

*=, /=, and %=.

The compound assignment operator += in the x += 123 expression is equivalent to x

= x + 123. Example:

#include <stdio.h>

int main(void)

{

 int x = 0;

 x += 123;

 printf("%d", x);

}

To use a *= compound assignment operator, we would need to initialize x to 1 as we

use the multiplication inside the compound statement operator:

#include <stdio.h>

int main(void)

{

 int x = 1;

 x *= 123;

 printf("%d", x);

}

As before, the x *= 123; statement is a shorter way of writing the x = x * 123;

statement.

5.5 Relational Operators
Relational operators compare the values of two operands/expressions. They are:

• > – greater than

• < – less than

Chapter 5 OperatOrs

39

• >= – greater than or equal to

• <= – less than or equal to

In an expression x < y, we check if x is less than y. If that is true, the entire x < y

expression gets the value 1, which stands for true. If x is not less than y, the entire

expression is evaluated to 0, which is false. Example:

#include <stdio.h>

int main(void)

{

 int x = 123;

 int y = 456;

 int islessthan = x < y;

 int isgreaterthan = x > y;

 printf("The value of \"is less than\" expression is: %d\n",

islessthan);

 printf("The value of \"is greater than\" expression is: %d\n",

isgreaterthan);

}

Output:

The value of "is less than" expression is: 1

The value of "is greater than" expression is: 0

5.6 Equality Operators
There are two kinds of equality operators:

• == – equal to

• != – not equal to

In an x == y expression, we check if (the value of) x equals y. If that is the case, the

entire x == y expression gets the value of 1, which stands for true. If not, the expression

Chapter 5 OperatOrs

40

gets the value of 0, which means false. In an x != y expression, we check if x is not

equal to y. If true, the expression is evaluated to 1; else, it gets the value of 0. Example:

#include <stdio.h>

int main(void)

{

 int x = 123;

 int y = 456;

 int isequalto = x == y;

 int isnotequalto = x != y;

 printf("The value of \"is equal to\" expression is: %d\n", isequalto);

 printf("The value of \"is not equal\" to expression is: %d\n",

isnotequalto);

}

Output:

The value of "is equal to" expression is: 0

The value of "is not equal" to expression is: 1

Let us explain what the “entire x == y expression gets the value of 1 or 0” means. It

means expressions themselves are of a certain type, and they hold values.

These expressions are often used as conditions in the so-called conditional

statement. Their value is inspected. If the expression evaluates to 1, the condition is true;

if it evaluates to 0, the condition is false. We cover these topics in more detail later in the

book when we discuss the if-statement.

5.7 Logical Operators
The logical operators perform logical (bool/Boolean) operations on their operands and

return the result of such operations. The logical operators are:

• && – logical AND operator

• || – logical OR operator

• ! – unary negation operator

Chapter 5 OperatOrs

41

The logical operator && performs the logical AND operation on its operands and

returns the value of 1 when both operands are 1. In all other cases, it returns a value of 0.

The logical operator || performs the logical OR operation and returns 0 when both

operands are 0. In all other cases, it evaluates the expression to 1. The unary negation

operator ! performs the negation operation on its only right-hand side operand. So 0

becomes 1, and 1 or any other non-zero value becomes 0.

Example:

#include <stdio.h>

int main(void)

{

 int x = 1;

 int y = 0;

 int myand = x && y;

 int myor = x || y;

 int mynegation = !x;

 printf("The value of an AND expression is: %d\n", myand);

 printf("The value of an OR expression is: %d\n", myor);

 printf("The value of a NEGATION expression is: %d\n", mynegation);

}

Output:

The value of an AND expression is: 0

The value of an OR expression is: 1

The value of a NEGATION expression is: 0

5.8 Increment and Decrement Operators
Increment operator ++ is used to add 1 to a variable, and decrement operator -- is used

to subtract 1 from a variable.

Both these operators can be used in their so-called prefix or postfix forms. When used

before the variable name, as in ++my_var or --my_var, they are called prefix operators.

Chapter 5 OperatOrs

42

When they are used after the variable name, as in my_var++ or my_var--, they are called

postfix operators. We now have four possible combinations:

• ++var_name – prefix ++ operator

• var_name++ – postfix ++ operator

• --var_name – prefix -- operator

• var_name-- – postfix -- operator

The prefix operator increments/decrements the value of a variable before the

variable is used in an expression. When used as a postfix operator, the program evaluates

a variable in an expression and then increments its value.

A simple example:

#include <stdio.h>

int main(void)

{

 int x = 10;

 int y = 10;

 int myprefix = ++x;

 int mypostfix = y++;

 printf("The prefix result: %d, the postfix result: %d\n", myprefix,

mypostfix);

}

Output:

The prefix result: 11, the postfix result: 10

Explanation: we have two int variables, x and y, both having a value of 10. We use

the prefix ++ operator on x. The x is incremented by 1 before the result of an expression

is assigned to myprefix variable. Then we use a postfix operator on y. The result of an

expression is assigned to mypostfix var, and then the value is incremented by one.

Increment and decrement operators increment/decrement a variable value by 1, and

save of from typing the: my_var = myvar + 1 or my_var = myvar - 1.

Chapter 5 OperatOrs

43

Note Whether we use a prefix or a postfix form is relevant only in the context of
the current expression/statement where these operators are used. By the time
the program flow reaches the printf point, both x and y will have the value of 11.

There are also other kinds of operators, which we explain later in the book, as we

learn further and adopt new things.

5.9 Operator Precedence
Some operators have higher precedence than the others. For example, operators / and *

have higher precedence over operators + and -. This is also true in the science of math.

For example, in an expression x + y * z, the y * z part/subexpression gets evaluated

first. Then, this subexpression result gets added to x, as the * operator has higher

precedence over the + operator.

If we need the x + y subexpression to be evaluated first, we surround the

subexpression with parentheses ():

(x + y) * z

This forces the x + y subexpression to be evaluated first. Then, the result of

this subexpression gets multiplied by z. This is because the () operator has higher

precedence over + and * operators. The () operator groups the items together.

Here is the list of some of the operators sorted by precedence, from higher to lower:

++ -- postfix increment and decrement

() function call operator

[] array subscript

. structure member access

-> structure member access through a pointer

++ -- prefix increment and decrement

+ - unary plus and minus

! logical NOT

Chapter 5 OperatOrs

44

(type_name) cast operator

* dereference operator

& address-of

* / % multiplication, division, and remainder

+ - addition and subtraction

<< >> bitwise left shift and right shift

< <= relational operators

> >= relational operators

== != equality operators

&& logical AND

|| logical OR

?: ternary conditional operator

= assignment operator

+= -= compound assignments

Chapter 5 OperatOrs

45
© Slobodan Dmitrović 2021
S. Dmitrović, Modern C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6643-4_6

CHAPTER 6

Expressions
What is an expression? An expression can be operators and operands grouped to perform

some calculations and yield a result. There are different kinds of expressions. There are

arithmetic expressions, as in x + y; comparison expressions, as in x > y; assignment

expressions, as in x = y; and logical expressions such as x && y.

An expression can consist of multiple sub-expressions, as in z = x + y. Here the x +

y can be treated as an arithmetic sub-expression inside the assignment expression.

The entire expression is of a particular type. What that type is depends on the nature of

the result of the entire expression. For example, if we had a simple expression x + y, and

x and y were of type int, then the entire expression would be of type int too. But what if

one operand was of type double and the other was of type int? What would the expression

result/type be? The result would be double as the int operand is promoted to type double. In

general, smaller/narrower types are converted to wider types in arithmetic expressions. For

example, char becomes int, float, or a double, depending on the second operand type.

6.1 Initialization
We can declare a variable and assign a value to it on the same line. This approach is

called initialization. We say we initialize the variable to a certain value. The blueprint for

the initialization is:

type_name variable_name = some_value;

Initialization example:

#include <stdio.h>

int main(void)

{

 char c = 'a';

 int x = 123;

https://doi.org/10.1007/978-1-4842-6643-4_6#DOI

46

 float f = 123.456f;

 double d = 789.123;

 printf("The values are: %c, %d, %.3f, %.3f\n", c, x, f, d);

}

Output:

The values are: a, 123, 123.456, 789.123

This example initializes and prints out several different variables using appropriate

format specifiers. If we only declare and do not initialize those variables, they would hold

random, garbage values.

Having some_type myvar; is called declaration, and having some_type myvar =

some_value; is called initialization or definition. Initialization (definition) is also a

declaration.

Tip It is a good practice to always initialize your variables before using them.

6.2 Type Conversion
Expressions of one type can be converted to expressions of another type. Some

conversions are implicit and occur automatically. We can also explicitly convert an

expression to a certain type using the (convert_to_type)expression syntax. A simple

example where we explicitly convert the type char to type int:

#include <stdio.h>

int main(void)

{

 char c = 'A';

 int x;

 x = (int)c;

 printf("The result is: %d\n", x);

}

Chapter 6 expressIons

47

The following example relies on implicit conversion from int to double:

#include <stdio.h>

int main(void)

{

 int x = 10;

 int y = 30;

 double d = x / y;

 printf("The result is: %f\n", d);

}

Output:

The result is: 0.000000

The result of an integer division is implicitly converted to type double, and we get the

value of 0.000000. Suppose we explicitly cast the first operand x to double. In that case,

we get the expected result of a floating-point division, which is 0.333333. Example:

#include <stdio.h>

int main(void)

{

 int x = 10;

 int y = 30;

 double d = (double)x / y;

 printf("The result is: %f\n", d);

}

Output:

The result is: 0.333333

Chapter 6 expressIons

49
© Slobodan Dmitrović 2021
S. Dmitrović, Modern C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6643-4_7

CHAPTER 7

Statements
This section explains statements in general – expressions ending with a semicolon (;)

and statements built into the language itself.

7.1 Introduction
What is a statement? A statement is an expression ending with a semicolon symbol (;).

For example, x + y is an expression, but x + y; is a statement. Let us list a few simple

statements we have used so far:

• int x; – a statement containing a declaration

• int x = 123; – a statement containing an initialization

• x = 123; – a simple assignment statement

• z = x + y; – a statement with multiple expressions

• x++; – a statement having a postfix increment expression

• printf("Hello World!"); – a function call statement

Every statement except the last one is called an expression statement because they

consist solely of expressions. The last statement is a function call statement. We often say

that statements are executed and expressions are evaluated.

Let us write a simple source code example to explain the terminology:

#include <stdio.h>

int main(void)

{

 int x = 123;

 int y = 456;

https://doi.org/10.1007/978-1-4842-6643-4_7#DOI

50

 int z = x + y;

 printf("The result is: %d\n", z);

}

Output:

The result is: 579

In this example, statements inside the function main() are executed in a sequence,

one after the other. Statements inside the function body marked with { } are also called

compound statements. The entire block is often referred to as a block of statements or

code block.

Note There is no semicolon sign after the right brace } marking the end of a
code block.

Now, with the terminology out of the way, let us learn about the built-in statements.

These statements are part of the C programming language itself. They have reserved

names and special syntax and can be divided into several categories:

Selection statements (conditional statements):

• if statement

• if-else statement

• switch statement

Iteration statements or loops:

• for statement

• while statement

• do-while statement

ChapTer 7 STaTemenTS

51

7.2 Selection Statements
Selection statements execute other statements based on some expression (condition).

If that expression evaluates to anything other than 0, they proceed to execute other

statements. Here we will explain the following selection statements:

• if statement

• if-else statement

• switch statement

7.2.1 if
The if statement is of the following syntax:

if (some_condition)

 some_statement;

The if statement checks an expression (a condition) first. The condition is

surrounded by parentheses (). If that condition (expression) evaluates to true (anything

other than 0), the specified statement is executed. If the condition is false (the condition

evaluates to 0), the statement will not be executed.

The following example uses an if statement to execute a single printf statement:

#include <stdio.h>

int main(void)

{

 int x = 123;

 if (x < 150)

 printf("The x is less than 150.\n");

}

The if statement checks the condition first. In our case, it checks if x is less than

some arbitrary number 150. If so, the condition is true, and the printf statement is

executed. If the condition is false, the printf call will not be executed.

ChapTer 7 STaTemenTS

52

The if statement can also execute a block of statements/multiple statements marked

with braces {}. The syntax is:

if (some_condition)

{

 some_statement_1;

 some_statement_2;

 some_statement_3;

 // ...

}

An example that uses the if statement to execute a block of statements:

#include <stdio.h>

int main(void)

{

 int x = 123;

 if (x < 150)

 {

 printf("The x is less than 150.\n");

 printf("This is a second statement.\n");

 }

}

Output:

The x is less than 150.

This is a second statement.

The if statement is a perfect use case for logical operators && and || where these

operators can appear as part of the condition expression. An example that uses the

logical AND operator &&:

#include <stdio.h>

int main(void)

{

 int x = 123;

ChapTer 7 STaTemenTS

53

 int y = 456;

 if (x < 150 && y > 150)

 {

 printf("The condition is true.\n");

 }

}

Output:

The condition is true.

The condition in this if statement says: If both x is less than 150 and y is greater than

150, the entire condition is true, and the printf statement gets executed. Let us now

write a similar example that uses a logical OR operator || instead:

#include <stdio.h>

int main(void)

{

 int x = 123;

 int y = 456;

 if (x < 150 || y > 150)

 {

 printf("The condition is true.\n");

 }

}

Output:

The condition is true.

This condition checks if either x is less than 150 or y is greater than 150. If either of

these is true, the entire expression is true, and the printf function gets called/executed

inside the code block.

ChapTer 7 STaTemenTS

54

To use a negation operator ! inside the if statement condition, we write:

#include <stdio.h>

int main(void)

{

 int x = 0;

 if (!x)

 {

 printf("The condition is true.\n");

 }

}

Output:

The condition is true.

In this example, the negation operator ! negates the value of x. Since x was 0,

the negation operator turns it into 1, which stands for true, rendering the entire !x

expression true. Since now the condition is true, the if statement executes the code

block with our printf function in it.

Note It is a good practice always to use the code block marked with {} inside the
if and other conditional statements, even when the code block contains only one
statement. This is for readability reasons.

7.2.2 if-else
In addition to an if statement, there is also an if-else variation. The if-else statement

is of the following syntax:

if (some_condition)

 some_statement_1;

else

 some_statement_2;

ChapTer 7 STaTemenTS

55

The if-else statement checks the condition value, and if the condition is true,

it executes some_statement1. If the condition is false, it executes some_statement_2

coming after the else keyword. Example:

#include <stdio.h>

int main(void)

{

 int x = 123;

 if (x < 150)

 printf("The condition is true. X is less than 150.\n");

 else

 printf("The condition is false. X is not less than 150.\n");

}

Output:

The condition is true. X is less than 150.

This example uses a simple condition to check if x is less than some arbitrary

number 150. If the condition is true, the first printf function executes. Otherwise,

when x is not less than 150, (when the condition is false), the second printf statement

executes.

To execute more than one statement in either if or else sections, we surround the

statements with code blocks {}:

#include <stdio.h>

int main(void)

{

 int x = 123;

 if (x < 150)

 {

 printf("The condition is true. X is less than 150.\n");

 printf("This is the second statement in the if-block\n");

 }

ChapTer 7 STaTemenTS

56

 else

 {

 printf("The condition is false. X is not less than 150.\n");

 printf("This is the second statement in the else-block\n");

 }

}

Output:

The condition is true. X is less than 150.

This is the second statement in the if-block

As before, when executing statement(s) from conditional statements, it is a good

practice to use the code blocks {}, even if there is only one statement to be executed:

#include <stdio.h>

int main(void)

{

 int x = 123;

 if (x < 150)

 {

 printf("The condition is true. X is less than 150.\n");

 }

 else

 {

 printf("The condition is false. X is not less than 150.\n");

 }

}

Output:

The condition is true. X is less than 150.

ChapTer 7 STaTemenTS

57

7.2.3 switch
The switch statement executes a code based on integral expression value. It is of the

following syntax:

switch (expression)

{

 case value_1:

 statements;

 break;

 case value_2:

 statements;

 break;

 case value_3:

 statements;

 break;

 default:

 statement;

 break;

}

The code above is a switch statement blueprint. Let us break the above wordy syntax

into pseudo-code segments and analyze the switch statement structure, one segment at

a time.

The switch statement evaluates the value of an expression inside parentheses

followed by a switch statement body marked with {}. The expression inside parentheses

must be of type char, int, signed, unsigned, or enum (we cover enums later in the book).

So far, it looks like the following:

switch (expression)

{

}

ChapTer 7 STaTemenTS

58

The switch statement body can have one or more case: labels. Each case label has

a constant expression that is of char, int, signed, unsigned, or enum type followed by a

colon sign (:). Now the switch statement looks like this:

switch (expression)

{

 case value_1:

 case value_2:

 case value_3:

}

If the constant-expression value inside the case: label matches the value of the

expression, the statement inside that case label is executed. The statement needs to be

followed by a break; statement. A break or return statement exits the switch statement.

If we leave out the break; statement, the code would fall through, meaning the code in

the next case label would also execute. Now, our switch statement looks like:

switch (expression)

{

 case value_1:

 some_statement;

 break;

 case value_2:

 some_statement;

 break;

 case value_3:

 some_statement;

 break;

}

And finally, there is a default: label. If none of the case label values match the

expression value, the statement inside the default: label gets executed. It is good

practice to put a break statement inside the default label as well. Our full pseudo-code

switch statement now looks like:

ChapTer 7 STaTemenTS

59

switch (expression)

{

 case value_1:

 statements;

 break;

 case value_2:

 statements;

 break;

 default:

 statement;

 break;

}

Now we are ready to write a complete source code example that uses the switch

statement:

#include <stdio.h>

int main(void)

{

 int x = 123;

 switch (x)

 {

 case 100:

 printf("The value of x is 100.\n");

 break;

 case 123:

 printf("The value of x is 123.\n");

 break;

 case 456:

 printf("The value of x is 456.\n");

 break;

ChapTer 7 STaTemenTS

60

 default:

 printf("None of the above values matches the value of x.\n");

 break;

 }

}

Output:

The value of x is 123.

This example initializes an integer variable x to the value of 123. Then, it uses the

switch statement to check if the value of x is equal to either 100, 123, or 456. Since the

second case label indeed checks for the value of 123, the printf statement in that label is

executed.

Let us now write an example that uses type char:

#include <stdio.h>

int main(void)

{

 char c = 'a';

 switch (c)

 {

 case 'a':

 printf("The value of c is 'a'.\n");

 break;

 case 'b':

 printf("The value of c is 'b'.\n");

 break;

 case 'c':

 printf("The value of x is 'c'.\n");

 break;

ChapTer 7 STaTemenTS

61

 default:

 printf("None of the above values matches the value of c.\n");

 break;

 }

}

Output:

The value of c is 'a'.

We initialize a char variable to the value of 'a'. The switch statement checks for

matching value and executes the code in the appropriate case label. We are now using

the type char. This means the constant expressions inside the case labels can now use

character constants marked with single quotes ''. Here, the value inside the first case

label matches the value of the variable c, and the statement inside this label is executed.

We use the switch statement when we want to check for multiple values and then act

accordingly. The switch statement is equivalent to having multiple if branches.

7.3 Iteration Statements
Iteration statements allow us to execute other statements multiple times/repeatedly.

These statements are also called loops. There are three different loops in C:

• while loop

• do-while loop

• for loop

7.3.1 while
The while statement is of the following syntax:

while(some_expression)

{

 some_statements;

}

ChapTer 7 STaTemenTS

62

The while statement executes one or more statements while the expression inside

the parentheses is true/not equal to 0. A simple example that prints out a message 5

times:

#include <stdio.h>

int main(void)

{

 int mycounter = 0;

 while (mycounter < 5)

 {

 printf("Hello World from a while loop.\n");

 mycounter++;

 }

}

Explanation: we initialize a variable that represents a counter to a value of 0. The

while statement evaluates the expression mycounter < 5 inside the parentheses.

If the expression is true/other than 0, the while loop executes the code inside the

while loop body. This process repeats until the mycounter < 5 becomes false/0. In

this example, there are two statements inside the while loop body. The first statement

prints out a simple message, and the second statement mycounter++; increases the

counter by one. At some point, the mycounter will get the value of 5, causing the

condition mycounter < 5 to become 0 and the while statement to end. In general, the

while loop may execute 0 or more times as its condition is at the beginning.

7.3.2 do-while
The do-while statement is of the following syntax:

do

{

 some_statements;

} while (some_expression);

ChapTer 7 STaTemenTS

63

The do-while loop continues to execute statements until the condition/expression

while the condition is true/ other than 0. In different words, it repeatedly executes a

code block until the condition becomes equal to 0/false. The do-while statement is

guaranteed to execute the statements inside its body at least once. This is because the

condition is placed at the end, after the do-while code block. Let us write an example

that uses a do-while loop to display a message 5 times:

#include <stdio.h>

int main(void)

{

 int mycounter = 0;

 do

 {

 printf("Hello World from a do-while loop.\n");

 mycounter++;

 } while (mycounter < 5);

}

Explanation: the example initializes the integer variable to 0. Then the do-while

code block executes the printf and the mycounter++ statements. Then it checks the

condition mycounter < 5. If the condition evaluates to anything other than 0, the code

inside the code block is executed again. Once the mycounter reaches the value of 5, the

condition mycounter < 5 evaluates to 0 and the do-while loop exits.

7.3.3 for
The for loop has the following blueprint:

for (initialization; condition; iteration;)

{

 // loop body

}

The for loop repeatedly executes the statements in its loop body as long as the

condition is true. In addition to a condition, the for loop also has its initialization and

iteration parts.

ChapTer 7 STaTemenTS

64

The for loop initializes a counter variable in the initialization part, checks the

condition, executes the loop body, and then increments or decrements the counter in

the iteration part. The loop continues to execute the statements in the loop body as long

as the condition is true.

In plain words, the for loop is like a while loop, but with its own counter, a condition,

and an iteration part. Let us write an example that prints out a message 5 times:

#include <stdio.h>

int main(void)

{

 for (int i = 0; i < 5; i++)

 {

 printf("Hello World from a for loop.\n");

 }

}

Explanation: in the for loop section, we declare an integer variable called I and

initialize it to 0. This variable will serve as our counter, and this expression is evaluated

only once. Next, the condition i < 5 is evaluated. If it evaluates to true/other than 0, the

statement in the for loop body is executed. Then the i variable is incremented by one in

the i++; part. Now the entire process (except the initialization part) repeats itself. When

i reaches 5, the condition i < 5 evaluates to 0 and the for loop exits.

To execute a loop body 10 times, we would rewrite the condition to i < 10 and so

on. The counter can also use the prefix variation in the iteration segment:

#include <stdio.h>

int main(void)

{

 for (int i = 0; i < 5; ++i)

 {

 printf("Hello World from a for loop.\n");

 }

}

ChapTer 7 STaTemenTS

65

To print out the value of a counter, we write:

#include <stdio.h>

int main(void)

{

 for (int i = 0; i < 5; i++)

 {

 printf("Counter value: %d\n", i);

 }

}

The type of the counter variable i can also be size_t (which stands for unsigned

integer type), unsigned.

The counter itself does not have to start from 0, it can start from any number. It

is zero by convention. for loops are often used to print out array elements which

themselves are indexed from 0. We will cover this in more detail when we learn about

arrays and array indexes.

In a nutshell, the for loop is a convenient way to repeatedly execute statements a

given (fixed) number of times while having access to an index/counter. One example is

iterating over array elements. We discuss this topic in the next section.

ChapTer 7 STaTemenTS

67
© Slobodan Dmitrović 2021
S. Dmitrović, Modern C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6643-4_8

CHAPTER 8

Exercises
8.1 Arithmetic Operations
Write a program that initializes two int numbers. Declare a third int variable that

represents the sum of the previous two integers. Print out the result:

#include <stdio.h>

int main(void)

{

 int x = 123;

 int y = 456;

 int z = x + y;

 printf("The result is: %d\n", z);

}

Output:

The result is: 579

8.2 Integral Division
Write a program that performs an integer division:

#include <stdio.h>

int main(void)

{

 int x = 9;

https://doi.org/10.1007/978-1-4842-6643-4_8#DOI

68

 int y = 2;

 int z = x / y;

 printf("The result is: %d\n", z);

}

Output:

The result is: 4

8.3 Floating-Point Division and Casting
Write a program that performs a floating-point division using integral operands. Cast

one of the operands to type double to obtain a floating-point result:

#include <stdio.h>

int main(void)

{

 int x = 9;

 int y = 2;

 double z = (double)x / y;

 printf("The result is: %.3f\n", z);

}

Output:

The result is: 4.500

8.4 Equality Operator
Write a program that checks if two integer variables are of the same value.

#include <stdio.h>

int main(void)

{

 int x = 10;

Chapter 8 exerCises

69

 int y = 20;

 if (x == y)

 {

 printf("The values are equal.\n");

 }

 else

 {

 printf("The values are not equal.\n");

 }

}

Output:

The values are not equal.

8.5 Relational and Logical Operators
Write a program that checks if an integer variable is greater than 50 and less than 100.

#include <stdio.h>

int main(void)

{

 int x = 75;

 if (x > 50 && x < 100)

 {

 printf("The value is greater than 50 and less than 100.\n");

 }

 else

 {

 printf("The value is not within the (50..100) range.\n");

 }

}

Chapter 8 exerCises

70

Output:

The value is greater than 50 and less than 100.

8.6 The switch Statement
Write a program that defines a simple integer variable with a value of 2. Use the switch

statement to check if the value is inside the [1..3] range:

#include <stdio.h>

int main(void)

{

 int x = 2;

 switch (x)

 {

 case 1:

 printf("The value is equal to 1.\n");

 break;

 case 2:

 printf("The value is equal to 2.\n");

 break;

 case 3:

 printf("The value is equal to 3.\n");

 break;

 default:

 printf("The value is not inside the [1..3] range.\n");

 break;

 }

}

Output:

The value is equal to 2.

Chapter 8 exerCises

71

8.7 Iteration Statements
Write a program that increments and prints out an integer variable five times using a for

loop and a while loop:

#include <stdio.h>

int main(void)

{

 printf("Using a for-loop:\n");

 for (int i = 0; i < 10; i++)

 {

 printf("%d ", i);

 }

 printf("\nUsing a while-loop:\n");

 int counter = 0;

 while (counter < 10)

 {

 printf("%d ", counter);

 counter++;

 }

}

Output:

Using a for loop:

0 1 2 3 4 5 6 7 8 9

Using a while loop:

0 1 2 3 4 5 6 7 8 9

Chapter 8 exerCises

73
© Slobodan Dmitrović 2021
S. Dmitrović, Modern C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6643-4_9

CHAPTER 9

Arrays
What is an array? An array is one or more data objects of the same type positioned next

to each other in memory. Once declared, the array size is fixed, we cannot add nor

remove elements to and from the array. The array itself is also a type.

9.1 Declaration
An array is a sequence of (one or more) elements of a certain type. To declare an array,

we use the following syntax:

type_name array_name[array_size];

To declare an array of five integers, we write:

int main(void)

{

 int myarr[5];

}

The number 5 in the square brackets [] says how many array elements there are. We

declared an array of five elements in our example, so the compiler reserves the space in

memory for five integers.

To declare an array of, for example, five floats, we would write:

int main(void)

{

 float myarr[5];

}

Array elements are indexed. The first array element has an index of 0, and the last

array element has an index of number_of_elements - 1.

https://doi.org/10.1007/978-1-4842-6643-4_9#DOI

74

9.2 Subscript Operator
Individual array elements are accessed using a subscript operator [] and an index. To

access the first array element, we write myarr[0]. To access the second array element, we

write myarr[1]. Using this operator, we can assign values to each array element. Example:

int main(void)

{

 int myarr[5];

 myarr[0] = 10;

 myarr[1] = 20;

 myarr[2] = 30;

 myarr[3] = 40;

 myarr[4] = 50;

}

To print out the entire array, we can use a for loop and a subscript operator []:

#include <stdio.h>

int main(void)

{

 int myarr[5];

 myarr[0] = 10;

 myarr[1] = 20;

 myarr[2] = 30;

 myarr[3] = 40;

 myarr[4] = 50;

 for (int i = 0; i < 5; i++)

 {

 printf("%d ", myarr[i]);

 }

}

Output:

10 20 30 40 50

Chapter 9 arrays

75

In this example, we used a for loop to go through the entire array and print out the

individual array elements. The loop has a counter i that goes from 0 to 4. We use this

variable as an index inside the subscript operator [i] to access and print out individual

array elements with myarr[i].

Let us now print out both the array indexes and array values:

#include <stdio.h>

int main(void)

{

 int myarr[5];

 myarr[0] = 10;

 myarr[1] = 20;

 myarr[2] = 30;

 myarr[3] = 40;

 myarr[4] = 50;

 for (int i = 0; i < 5; i++)

 {

 printf("myarr[%d] = %d\n", i, myarr[i]);

 }

}

Output:

myarr[0] = 10

myarr[1] = 20

myarr[2] = 30

myarr[3] = 40

myarr[4] = 50

In this example, the counter i represents an array element’s index, and the

expression myarr[i] represents the array element’s value.

Chapter 9 arrays

76

9.3 Array Initialization
Instead of assigning array values one by one, we can also initialize the entire array using

the brace-enclosed list {value1, value2, value3, ...}. Example:

#include <stdio.h>

int main(void)

{

 int myarr[5] = {10, 20, 30, 40, 50};

 for (int i = 0; i < 5; i++)

 {

 printf("%d ", myarr[i]);

 }

}

Output:

10 20 30 40 50

This line – int myarr[5] = {10, 20, 30, 40, 50}; – declares and initializes an

array of five elements using the values inside the initializer list { }.

arr

10 20 30 40 50

The comma-separated values (numbers in our case) inside the brace-init list { }

are called initializers. The first array element is initialized with the first value inside the

initializer list, which is 10. The second array element is initialized with the second value

inside the list, which is 20, and so on.

Let us write an example that initializes the array and then uses the subscript operator

to change the initial values of individual elements:

Chapter 9 arrays

77

#include <stdio.h>

int main(void)

{

 int myarr[5] = {10, 20, 30, 40, 50}; /* initialize the array */

 for (int i = 0; i < 5; i++)

 {

 printf("%d ", myarr[i]);

 }

 printf("\n");

 myarr[0] = 100; /* change the value of the first element */

 myarr[2] = 300; /* change the value of the third element */

 for (int i = 0; i < 5; i++)

 {

 printf("%d ", myarr[i]);

 }

}

Output:

10 20 30 40 50

100 20 300 40 50

This example declares and initializes an array of five integers and prints out the

entire array. Then, we assign new values to the first and the third array element using

the subscript [] and the assignment operator = . As before, we print out the entire array

using the for loop.

When using an initializer to define arrays, we do not have to specify the array length

explicitly; the compiler will do this for us. Example:

#include <stdio.h>

int main(void)

{

 int myarray[] = {10, 20, 30, 40, 50};

 for (int i = 0; i < 5; i++)

 {

Chapter 9 arrays

78

 printf("%d ", myarray[i]);

 }

}

Output:

10 20 30 40 50

The compiler deduces the size of the array based on the number of initializers in the

brace-enclosed list, which is 5. The array declaration would be identical to having int

myarray[5] = {10, 20, 30, 40, 50};.

9.4 Character Arrays
To initialize an array of characters, we use the string constant as an initializer. Example:

#include <stdio.h>

int main(void)

{

 char myarray[] = "Hello";

 printf("%s", myarray);

}

Output:

Hello

The "Hello" is a string constant, also called a character string literal. It is an array

of characters enclosed in double quotes (""). This string constant also has a hidden \0

character at the end, marking the end of a string:

H e l l o \o

Instead of using the for loop to print out the characters in an array, we used the

printf function with the %s format specifier instead. The %s format specifier is used to

print out the string characters.

Chapter 9 arrays

79

The length of the "Hello" string constant is 6, five for the characters, plus one for the

invisible null terminator \0 character. We did not specify the array size explicitly. But,

since we have the initializer, the compiler will deduce the size of the array to be 6 for us.

It is the same as if we explicitly wrote char myarray[6] = "Hello";.

We use arrays when we want to group data objects of the same type. So instead of

having to declare five individual variables of type int like int myvar1, myvar2, myvar3,

myvar4, myvar5;, we declare a single array variable having five elements: int myarr[5];.

9.5 Multidimensional Arrays
There are also arrays of arrays or the so-called multidimensional arrays. To declare a

two-dimensional array, we use the following blueprint:

some_type myarr[number_of_rows][number_of_columns]

Let us write an example that declares and initializes an array of integers with two

rows and three columns:

int main(void)

{

 int myarr[2][3] = {{1, 2, 3},

 {4, 5, 6}};

}

This example defines a two-dimensional array with two rows (rows are horizontal)

and three columns (columns are vertical). We used as many inner initialization lists

as there are rows with as many elements as there are columns to initialize our entire

array. The inner initialization lists {1, 2, 3} and {4, 5, 6} are comma-separated and

surrounded by an outer initialization list.

To print out this two-dimensional array, we use two for loops. Example:

#include <stdio.h>

int main(void)

{

 int myarr[2][3] = {{1, 2, 3},

 {4, 5, 6}};

Chapter 9 arrays

80

 for (int i = 0; i < 2; i++)

 {

 for (int j = 0; j < 3; j++)

 {

 printf("%d ", myarr[i][j]);

 }

 printf("\n");

 }

}

Output:

1 2 3

4 5 6

The example initializes a two-dimensional array. We use two for loops to print out

the values. There is one outer loop going from zero to 1, and there is one inner loop (the

loop inside a loop) going from zero to 2. To access an element in a two-dimensional array,

we use two subscript operators, one next to the other like myarr[row_index][column_

index];. For example, to access the first element in a second row, we write myarr[0][1];

to access the third element in the first column, we write myarr[2][0]; and so on. The outer

loop is used for indexing rows, and the inner loop is used for indexing columns. That way,

we can loop through all the rows and all the columns and print out the array.

9.6 Array Size and Count
To determine the array size in bytes, we can use the sizeof operator. Example:

#include <stdio.h>

int main(void)

{

 int arr[3] = {1, 2, 3};

 size_t arrsize = sizeof(arr);

 printf("Total array size in bytes: %ld\n", arrsize);

}

Chapter 9 arrays

81

Output:

Total array size in bytes: 12

This example uses the sizeof(arr) expression to determine the entire array’s size

in bytes. The size is equal to the size of int (which is probably 4 bytes on our machines)

times the number of array elements, which is 3. So, depending on the machine and the

compiler, the result will likely be equal to 12 bytes.

To obtain the number of elements in the array, we divide the total array size

sizeof(arr) by the size of the type (sizeof(int) in our case). Example:

#include <stdio.h>

int main(void)

{

 int arr[3] = {1, 2, 3};

 size_t arrcount = sizeof(arr) / sizeof(int);

 printf("The number of array elements is: %ld\n", arrcount);

}

Output:

The number of array elements is: 3

The number of elements can also be obtained by dividing the total array size by the

size of the first array element sizeof(arr[0]):

#include <stdio.h>

int main(void)

{

 int arr[3] = {1, 2, 3};

 size_t arrcount = sizeof(arr) / sizeof(arr[0]);

 printf("The number of array elements is: %ld\n", arrcount);

}

Output:

The number of array elements is: 3

Chapter 9 arrays

83
© Slobodan Dmitrović 2021
S. Dmitrović, Modern C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6643-4_10

CHAPTER 10

Pointers
Data is stored in computer memory. The CPU reads from and writes to this memory.

Computer memory, in simple terms, is an array of cells, where each cell has its own

number we call an address. Our data objects reside in these memory cells, and each

of these data objects has its address. If we know the address of an object, we can use

pointers to access data objects in memory.

10.1 Introduction
So far, we have used regular variables to access these data objects in memory. Another

way to manipulate data in these data objects is through pointers. A pointer is just like

any other variable. It is of a certain type and has certain values. The type of the pointer is

called a pointer type. The value of a pointer is the address of another variable/data object

in memory. Since pointers hold addresses of other variables or array elements, we say

they point to other objects.

10.2 Declaration and Initialization
To declare a pointer, we use the following syntax:

some_type* pointer_name;

The star symbol * after the type name signals this is a pointer type. To declare a

pointer to int (a pointer to another variable of type int), we write int *p;, a pointer to

type float is float *p;, a pointer to type char is char *p;, and so on.

Let us declare and initialize the pointer to int. To initialize the pointer with the

address of another object, we use the address-of operator &. This operator returns the

address (in memory) of its operand. Example:

https://doi.org/10.1007/978-1-4842-6643-4_10#DOI

84

int main(void)

{

 int x = 123;

 int *p = &x;

}

Here we declare a variable of type int and initialize it to a value of 123. Then we

declare a pointer of type int* and initialize it with the address of x. We say that p now

points to x, and its value is the address of x in memory.

p 123

x

To access the value the p points to, we prepend the pointer name with the * symbol

as in *p. This * symbol is called the dereference operator. We say we dereference the

pointer. This allows us to access and change the value the p points at:

#include <stdio.h>

int main(void)

{

 int x = 123;

 printf("The value before the change: %d\n", x);

 int* p = &x;

 *p = 456;

 printf("The value after the change: %d\n", x);

}

Output:

The value before the change: 123

The value after the change: 456

We initialize a simple integer variable called x to the value of 123. Then we declare

a pointer and make it point to this variable (data object in memory) using the address

of & operator. Then we dereference the pointer with *p and assign a new value to the

pointed-to object.

Chapter 10 pointers

85

In a nutshell, *p is the value of x, and we use it to manipulate the value of x.

Let us now write an example where we have multiple pointers to multiple types:

#include <stdio.h>

int main(void)

{

 char c = 'a';

 int x = 123;

 float f = 456.789f;

 char *mycharp = &c;

 int *myintp = &x;

 float *myfloatp = &f;

 printf("The value of a pointed-to char: %c\n", *mycharp);

 printf("The value of a pointed-to int: %d\n", *myintp);

 printf("The value of a pointed-to float: %.3f\n", *myfloatp);

}

Output:

The value of a pointed-to char: a

The value of a pointed-to int: 123

The value of a pointed-to float: 456.789

Here we define variables of type char, int, and float, respectively. Then we declare

pointers to each of these types and initialize them with addresses of the variables. We

print out the values of pointed-to objects by dereferencing the pointers.

There are a few points we should remember:

• We can declare a pointer type by placing a star next to the type name

as in some_type* p; or placing a star symbol next to the variable

name as in some_type *p;. It makes no difference. It is a matter of

coding style and preference.

• When used in different contexts, the star symbol * means different things.

When used in a declaration such as some_type *p;, it denotes a pointer

type. When used in front of the variable name, as in the expressions *p;

or *p = some_value;, the star symbol denotes a dereferencing operator.

Chapter 10 pointers

86

We can re-assign a pointer and make it point at another object in memory. Example:

#include <stdio.h>

int main(void)

{

 int x = 10;

 int y = 20;

 printf("The value of x and y before the change: %d, %d\n", x, y);

 int *p; /* declare a pointer to int called p */

 p = &x; /* p points at x */

 p = 100; / change the value of x by dereferencing a pointer */

 p = &y; /* p now points at y */

 p = 200; / change the value of y */

 printf("The value of x and y after the change: %d, %d\n", x, y);

}

Output:

The value of x and y before the change: 10, 20

The value of x and y after the change: 100, 200

Here we define two integer variables. We then declare a pointer p and assign it the

address of x with p = &x;. We then use the dereferenced pointer to access and change

the value of x with *p = 100;. After that, we re-assign a pointer to point at the y with

p = &y. We then change the value of a pointed-to object (y) to 200 with *p = 200;.

We print out the x and y values before and after the changes. Here we used one pointer

to change the values of several variables of the same type.

10.3 Pointers and Arrays
There are many similarities between arrays and pointers. We can use a pointer to point

to an array and use it to access array elements. We simply assign the pointer to the array

name. Example:

Chapter 10 pointers

87

#include <stdio.h>

int main(void)

{

 int arr[5] = {10, 20, 30, 40, 50};

 int *p = arr; /* p now points at the first array element */

 printf("The first array element is: %d\n", *p);

}

Output:

The first array element is: 10

The pointer now points at the first array element:

p 10 20 30 40 50

arr

To printout the entire array, we can dereference a pointer using a subscript []

operator. Example:

#include <stdio.h>

int main(void)

{

 int arr[5] = {10, 20, 30, 40, 50};

 int *p = arr; /* p now points at the first array element */

 for (int i = 0; i < 5; i++)

 {

 printf("%d ", p[i]);

 }

}

Output:

10 20 30 40 50

Chapter 10 pointers

88

The p[i] expression is equivalent to a *(p + i) expression. Each time, we increment

the pointer value by i to point at the next array element. Then we dereference the

pointer and print the pointed-to value.

We can access individual array elements using a pointer. We simply use the address

of an appropriate array element. If we want to access the first and the last array elements

through a pointer, we write:

#include <stdio.h>

int main(void)

{

 int arr[5] = {10, 20, 30, 40, 50};

 for (int i = 0; i < 5; i++)

 {

 printf("%d ", arr[i]);

 }

 int *p;

 p = &arr[0]; /* get the address of the first array element */

 p = 11; / change its value */

 p = &arr[4]; /* get the address of the last array element */

 p = 55; / change its value */

 printf("\nAfter the changes:\n");

 for (int i = 0; i < 5; i++)

 {

 printf("%d ", arr[i]);

 }

}

Output:

10 20 30 40 50

After the changes:

11 20 30 40 55

Chapter 10 pointers

89

This example defines an array of five integers and a pointer to int. We assign the

address of the first array element to our pointer using the p = &arr[0]; statement. We

change the element’s value by dereferencing a pointer with *p = 11;. We repeat this

process for the last array element arr[4]. Remember, array elements are indexed from 0,

not 1. In an array declared as int arr[5];, the last array element is arr[4], not arr[5].

We assign the address of the last array element to our pointer with p = &arr[4];. By

dereferencing a pointer, we change the pointed-to object’s value with *p = 55;.

Note When used as function arguments, arrays get converted to a pointer to
the array’s first element. We say the array decays to a pointer. so if a function
signature has a pointer type parameter, we can pass in either a pointer variable or
an array name variable.

10.4 Pointer Arithmetics
The expressions &arr[0] and arr are equivalent, as the name of the array arr is also

an address of the first element in an array. The previous example will serve as an

introduction to pointer arithmetic. We can apply arithmetic operators to pointers, and

we can add or subtract numbers to and from a pointer. For example, let us have a pointer

that points at the first array element, similar to what we had in the previous example.

#include <stdio.h>

int main(void)

{

 int arr[5] = {10, 20, 30, 40, 50};

 int* p = arr; /* the same as int *p = &arr[0]; */

 printf("The pointed-to value is: %d.\n", *p);

 p++;

 printf("The pointed-to value is: %d.\n", *p);

}

Chapter 10 pointers

90

Output:

The pointed-to value is: 10.

The pointed-to value is: 20.

This example defines an array of 5 integers and initializes the pointer to point to

the first array element with int *p = arr;. We print out the value by dereferencing

a pointer with *p. We then increment the pointer by one by applying the ++ operator.

What does it mean to increment the pointer by one? It means that it now points at the

next data object in memory. And since array elements are positioned sequentially in

memory, the pointer now points to the next array element, which has a value of 20. The

pointer is incremented by one times the size of the type of the element it points to. The

number we add to the pointer scales to the size of the pointed-to object; it scales to the

number of bytes of that object.

If we wanted to print out the third array element, we would add 2 to the pointer:

#include <stdio.h>

int main(void)

{

 int arr[5] = {10, 20, 30, 40, 50};

 int* p = arr; /* the same as int* p = &arr[0]; */

 p += 2;

 printf("The pointed-to value is: %d.\n", *p);

}

Output:

The pointed-to value is: 30.

Here we define an array of five elements and make our pointer point to the first

element in an array.

Then we increment the pointer by 2 so that it now moves by two integer places

in memory and points at the third array element. When adding 2 to out pointer, the

actual value of the pointer is incremented by 2 times the size of an int. But for us, it just

increments by two (integers).

Chapter 10 pointers

91

Note adding/subtracting/multiplying one pointer by another pointer is not
allowed.

10.5 Void Pointers
Pointers point only to specific types. A pointer of type int* can only point to an int

value in memory. It cannot point to, for example, a float. But the pointer of type void*

can point to any type. All pointer types are implicitly convertible to type void*. The

void* type is also called a pointer to void or a generic pointer type. Let us write a simple

example that uses a void* pointer to access the value of an int* pointer:

#include <stdio.h>

int main(void)

{

 int x = 123;

 int *ip = &x; // get an address of an integer object

 void *vp;

 vp = ip; // void pointer gets the value of an integer pointer

 printf("The pointed-to value is: %d\n", *((int *)vp));

}

Output:

The pointed-to value is: 123

This example defines a pointer of type int* and then assigns that value to a void

pointer. Void pointers must be cast to the appropriate pointer type before they are

dereferenced. So, we are not allowed to type the *vp;. First, we must cast the void

pointer to the appropriate pointer type. In our case, it is the int* type, and we use

the (int*)vp expression. Only then can we dereference the entire expression with

(int(vp));.

Chapter 10 pointers

92

One use of the void* type is when printing out the value of a pointer (the memory

address it points to). To print out the value of a pointer, we need to cast/convert the

pointer to type void* using the (void*)some_pointer_name syntax and then utilize the

%p format specifier. Example:

#include <stdio.h>

int main(void)

{

 char c = 'a';

 int x = 123;

 float f = 456.789f;

 char *mycharp = &c;

 int *myintp = &x;

 float *myfloatp = &f;

 printf("The value of a char pointer: %p\n", (void *)mycharp);

 printf("The value of an int pointer: %p\n", (void *)myintp);

 printf("The value of a float pointer: %p\n", (void *)myfloatp);

}

Output:

The value of a char pointer: 0x7ffd3dbcde17

The value of an int pointer: 0x7ffd3dbcde18

The value of a float pointer: 0x7ffd3dbcde1c

The value printed out using the %p specifier is the value of the pointer itself. That

value is the memory address of another object. Depending on the C implementation,

this address value might be printed out as a hexadecimal number similar to

0x7ffd3dbcde1c.

Note this example prints the value of the pointer itself, not the value of the
pointed-to object. the value of a pointed-to object is obtained by dereferencing a
pointer.

Chapter 10 pointers

93

All pointers can also have a special value of NULL. When a pointer has a value of NULL,

it does not point to any other object. We say it points to nothing, or it is a NULL pointer.

The value of NULL can be used to initialize pointers to point to nothing. Example:

#include <stdio.h>

int main(void)

{

 char* mycharp = NULL;

 int* myintp = NULL;

 float* myfloatp = NULL;

 printf("The value of a char pointer: %p\n", (void *)mycharp);

 printf("The value of an int pointer: %p\n", (void *)myintp);

 printf("The value of a float pointer: %p\n", (void *)myfloatp);

}

Output:

The value of a char pointer: (nil)

The value of an int pointer: (nil)

The value of a float pointer: (nil)

Note pointer arithmetics on a void pointer is not allowed.

10.6 Pointer to Character Arrays
We can initialize a pointer with a string constant such as "Hello World!".

#include <stdio.h>

int main(void)

{

 char* p = "Hello World!";

 printf("%s", p);

}

Chapter 10 pointers

94

Output:

Hello World!

The string constant "Hello World!" is an array of characters enclosed in double

quotes. Our char* pointer p points at the beginning of that array – at the first element.

We use the %s format specifier to print out the entire string pointed by p. The %s specifier

prints out the entire string pointed to by p. The %c format specifier prints out only one

(the first) character in a string when using a dereferenced string pointer *p. Example:

#include <stdio.h>

int main(void)

{

 char* p = "Hello World!";

 printf("%c", *p);

}

Output:

H

10.7 Arrays of Pointers
Since a pointer type is just another type, we can have arrays of pointers. To declare an

array of pointers, we use the following syntax:

some_type* pointer_name[number_of_elements];

One use case is an array of char* type. To declare an array of pointers to char, we

write:

#include <stdio.h>

int main(void)

{

 char *p[] = {"First sentence.",

 "Second sentence.",

Chapter 10 pointers

95

 "Third sentence."};

 for (int i = 0; i < 3; i++)

 {

 printf("%s\n", p[i]);

 }

}

Output:

First sentence.

Second sentence.

Third sentence.

This statement:

char *p[] = {"First sentence", "Second sentence.", "Third sentence."};

declares an array of three pointers of type char* and initializes them with string

constants. The compiler inserts the number 3 as a length of our array, and the statement

now becomes char *p[3];. These three pointers point at three different character

strings. We can look at these strings as having three separate sentences.

We then use the for loop to print out all three sentences by accessing an appropriate

pointer through a subscript operator as in p[i]. So p[0] points at the "First

sentence.", p[1] points at the "Second sentence.", and p[2] points at the "Third

sentence.".

The subscript operator [] acts as a dereference operator as the p[i] expression is

equivalent to *(p+i). Using a subscript operator with an index on a pointer as in p[i]

means increment a pointer by i places and dereference it.

Note so far, we have used pointers with automatic variables. in later sections,
we will explore how pointers are used in dynamic memory allocations.

Chapter 10 pointers

97
© Slobodan Dmitrović 2021
S. Dmitrović, Modern C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6643-4_11

CHAPTER 11

Command-Line
Arguments
There is another main function signature that allows us to work with the command-line

arguments. These are arguments we can pass to our executable file in the command line.

Example:

myexe param1 param2

Here, the myexe is the name of our executable file, and param1 and param2 are

some arbitrary arguments we pass in. The function main that allows us to parse these

arguments has the following signature:

int main(int argc, char *argv[])

The argc is the number of command-line arguments we pass to our executable.

The argv is the pointer to an array of strings that represent the arguments. If we pass

no arguments to our executable file, the argc is 1. The first pointer to an array of

strings argv[0] is the name of our executable. Suppose we pass two parameters to

our executable file as in the example above. In that case, the argc is equal to 3 as there

are three arguments in total, one that represents the name of our executable and the

additional two arguments, param1 and param2, we explicitly pass in. In that case, argv[1]

is equal to param1, and argv[2] is equal to param2. Example:

#include <stdio.h>

int main(int argc, char *argv[])

{

 printf("The command-line arguments are:\n");

 for (int i = 0; i < argc; i++)

 {

https://doi.org/10.1007/978-1-4842-6643-4_11#DOI

98

 printf("%s\n", argv[i]);

 }

}

If we invoke our executable with ./a.out param1 param2, the output would be:

The command-line arguments are:

./a.out

param1

param2

Chapter 11 Command-Line arguments

99
© Slobodan Dmitrović 2021
S. Dmitrović, Modern C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6643-4_12

CHAPTER 12

Exercises
12.1 Character Array
Write a program that defines and initializes a character array. Print the array using the %s

format specifier:

#include <stdio.h>

int main(void)

{

 char arr[] = "Hello World!";

 printf("The value is: %s\n", arr);

}

Output:

The value is: Hello World!

12.2 Array Elements
Write a program that defines and initializes an array of five integers. Change the values of

the first and last array elements. Print out the array:

#include <stdio.h>

int main(void)

{

 int arr[] = {10, 20, 30, 40, 50};

 arr[0] = 11; // change the first element

 arr[4] = 55; // change the last element

https://doi.org/10.1007/978-1-4842-6643-4_12#DOI

100

 for (int i = 0; i < 5; i++)

 {

 printf("%d ", arr[i]);

 }

}

Output:

11 20 30 40 55

12.3 Pointer to an Existing Object
Write a program that defines a simple double variable and a pointer that points to that

variable. Print the variable’s value by dereferencing a pointer. Change the variable’s value

by dereferencing a pointer:

#include <stdio.h>

int main(void)

{

 double d = 123.456;

 double* p = &d;

 printf("The value before the change is: %f\n", *p);

 *p = 789.101;

 printf("The value after the change is: %f\n", *p);

}

Output:

The value before the change is: 123.456000

The value after the change is: 789.101000

Chapter 12 exerCises

101

12.4 Pointers and Arrays
Write a program that defines an array of five integers. Use a pointer to print out the entire

array:

#include <stdio.h>

int main(void)

{

 int arr[] = {10, 20, 30, 40, 50};

 int *p = arr;

 for (int i = 0; i < 5; i++)

 {

 printf("%d\n", p[i]);

 }

}

Output:

10 20 30 40 50

12.5 Pointer to a Character Array
Write a program that defines a pointer to a character array. Print the character array

using a pointer:

#include <stdio.h>

int main(void)

{

 char *p = "This is a character array.";

 printf("The result is: %s", p);

}

Output:

The result is: This is a character array.

Chapter 12 exerCises

102

12.6 Pointer Arithmetics
Write a program that defines an array of five integers. Use pointer arithmetics to printout

the third and fourth array element:

#include <stdio.h>

int main(void)

{

 int arr[] = {10, 20, 30, 40, 50};

 int *p = arr;

 p += 2; // p now points at the third array element

 printf("The third array element is: %d\n", *p);

 p += 1; // p now points at the fourth array element

 printf("The fourth array element is: %d\n", *p);

}

Output:

The third array element is: 30

The fourth array element is: 40

12.7 Array of Pointers
Write a program that defines an array of four pointers to sentences. Sentences

themselves are arrays of characters:

#include <stdio.h>

int main(void)

{

 char *p[] = {"This is the first sentence.",

 "This is the second sentence.",

 "This is the third sentence.",

 "This is the last sentence."};

Chapter 12 exerCises

103

 for (int i = 0; i < 4; i++)

 {

 printf("%s\n", p[i]);

 }

}

Output:

This is the first sentence.

This is the second sentence.

This is the third sentence.

This is the last sentence.

Chapter 12 exerCises

105
© Slobodan Dmitrović 2021
S. Dmitrović, Modern C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6643-4_13

CHAPTER 13

Functions
In short, functions are named reusable pieces of code. A function is made up of a

function body associated with a function name. A function can accept zero or more

parameters and optionally return a result.

13.1 Introduction
A function has a type, a name, a list of optional parameters, and a function body.

The function blueprint is of the following syntax:

some_type function_name(optional_parameters_declarations)

{

 // function body with declarations and statements

 return some_value; // optional return statement

}

So far, we have used only a main() function, which is the main program entry point.

Let us now learn how to create our user-defined functions. The following program

defines a simple user-defined function that outputs a "Hello World from a function."

message and calls this function from our main program. Example:

#include <stdio.h>

void printMessage(void)

{

 printf("Hello World from a function.\n");

}

https://doi.org/10.1007/978-1-4842-6643-4_13#DOI

106

int main(void)

{

 printMessage();

}

Output:

Hello World from a function.

Here we define a function called printMessage() before our main() function. The

printMessage(void) function outputs a simple message to the console window. The

function is of type void, followed by a function name printMessage followed by an

empty list of parameters inside parentheses indicated by (void) followed by a function

body marked with braces {}. Inside a function body, we execute statements. In our case,

it is a simple printf statement that outputs a message.

We call the printmessage function from our main program by specifying a function

name followed by parentheses printMessage();. We also say we invoke the function.

Let us now write a function called mySum() that sums the two integer numbers and

returns a result:

#include <stdio.h>

int mySum(int x, int y)

{

 return x + y;

}

int main(void)

{

 int myresult = mySum(10, 20);

 printf("The result is: %d\n", myresult);

}

Output:

The result is: 30

Chapter 13 FunCtions

107

This example defines a function called mySum. The function is of type int and accepts

two parameters we named x and y. Both parameters are of type int. We declare these

two parameters by specifying their types and names. We separate the declarations with a

comma sign as with int x, int y function parameters signature.

The return statement terminates the function and returns the result of the x + y

expression to the function call expression which in our case is the mySum(10, 20)

expression. We sometimes simplify and say the return statement assigns the value of the

x + y expression to our mySum function.

We then call/invoke the mySum function in our main program by writing the function

name followed by the actual arguments for our parameters inside parentheses as in

mySum(10, 20);. The first parameter x now becomes (receives a value of) 10, and the

second parameter y now becomes 20. The function performs the calculation, and the

return statement assigns the value of an x + y expression to a function call expression

mySum(10, 20) and returns the control to our caller. A caller is another function that

calls/invokes our function. In this case, our main() function is the caller, as it calls the

mySum() function. The main program assigns the value of the mySum() function to a local

variable mySum and prints out the result.

13.2 Function Declaration
Similar to the variable declaration, we can have a function declaration. A function

declaration introduces the function type, name, and parameter declarations list into the

current scope. A function declaration does not have a function body and ends with a

semicolumn. The blueprint for the function declaration is:

some_type function_name(optional_parameters_declarations);

Let us write an example that declares a simple function called myFunction that

accepts no parameters and does not return a value:

#include <stdio.h>

void myFunction(void);

int main(void)

{

 printf("Function declared.");

}

Chapter 13 FunCtions

108

Output:

Function declared.

Function’s return type void indicates the function does not return a value. The void

inside parentheses (void) indicates the function accepts no parameters.

To declare a function that accepts two integer parameters and returns an integer

type, we write:

#include <stdio.h>

int myFunction(int x, int y);

int main(void)

{

 printf("Function declared.\n");

}

Output:

Function declared.

When declaring a function that has parameters, we can omit the names of the

parameters and supply only the parameter types:

#include <stdio.h>

int myFunction(int, int);

int main(void)

{

 printf("Function declared.\n");

}

Output:

Function declared.

If you are asking yourself, “So what is the point of these function declarations?”, you

are asking a valid question. The answer is as follows:

Chapter 13 FunCtions

109

The function can indeed be split into a function declaration and a function

definition. If we declare a function, we assume it is defined somewhere else. By

declaring a function, we are saying to our compiler/linker: “There is this function

called myFunction, and I know for sure it is fully defined somewhere else, whether in

an external source file or a library. So here is the function declaration, and I want to be

able to call this function from my program.” The compiler and linker then search for the

function definition by following a set of predetermined rules. We discuss these in more

detail later in the book.

In general, we keep the function declarations in header files (.h files), and we keep

the function definitions in source files (.c files). This way, we separate the declarations

from the implementations (definitions). And indeed, if we open a header file that is part

of the standard library, we will see a lot of function declarations there. In our examples

above, we put the function declarations in .c files for illustrative purposes.

For example, the printf function is declared inside the <stdio.h> header file. And

when we want to use the printf function in our main program, we must include this

header file.

13.3 Function Definition
A function definition is a whole function with a function signature plus the function

body. To define a function, we use the following blueprint:

some_type function_name(optional_parameters_declarations)

{

 // function body with declarations and statements

 return some_value; // optional return statement

}

To define a simple function that outputs a simple message and accepts no

parameters, we write:

#include <stdio.h>

void myFunction(void)

{

 printf("Function defined.\n");

}

Chapter 13 FunCtions

110

int main(void)

{

 myFunction();

}

Output:

Function defined.

To define a function of type int that returns the sum of two integer parameters, we write:

#include <stdio.h>

int myFunction(int x, int y)

{

 return x + y;

}

int main(void)

{

 int myresult = myFunction(10, 20);

 printf("The result is: %d\n", myresult);

}

Output:

The result is: 30

While the function declaration can be placed inside another function’s body, a

function definition must be placed outside any other function’s body, including the

function main. We say we place the function definition in a file scope.

Notice how we placed the myFunction definition before the main’s definition. If we

place the user-defined function definition after the main’s definition, there will be a

compiler error. The compiler encounters a function call myFunction(10, 20); inside

a main’s body but does not know what function this is. To overcome this, we can put a

function declaration before the main’s body and the function definition after the main’s

body. The program now compiles successfully:

Chapter 13 FunCtions

111

#include <stdio.h>

//function declaration

int myFunction(int x, int y);

int main(void)

{

 int myresult = myFunction(10, 20);

 printf("The result is: %d\n", myresult);

}

// function definition

int myFunction(int x, int y)

{

 return x + y;

}

Output:

The result is: 30

13.4 Parameters and Arguments
Parameters are variable declarations inside parentheses in a function declaration or

a function definition. A function can have zero, one, or fixed number of parameters.

If a function accepts no parameters, we write my_function_name(void). If it has one

parameter, we use the following blueprint: my_function_name(some_type parameter_

name). If a function has a fixed number of parameters, we use the comma-separated

declarations like my_function_name(some_type param_name1, some_type param_name2).

Let us write an example that demonstrates the use of no parameters function:

#include <stdio.h>

void myFunction(void)

{

 printf("No parameters function.\n");

}

Chapter 13 FunCtions

112

int main(void)

{

 myFunction();

}

Output:

No parameters function.

When we define a function that accepts no parameters, we use the (void) function

signature. When calling a function, we simply use the function call operator () as in

myFunction();.

An example that uses a function accepting one parameter:

#include <stdio.h>

int myFunction(int x)

{

 return x;

}

int main(void)

{

 int myresult;

 myresult = myFunction(5);

 printf("One parameter function result: %d\n", myresult);

}

Output:

One parameter function result: 5

We defined a function that accepts one parameter. The x parameter in the function

definition is also called a formal parameter. We then call the function in our main

program and pass it a value of 5. This value is called an argument. So, argument 5

replaces the formal parameter x. Wherever there was a formal parameter x in our

function, we now use the actual value of 5 to do whatever the calculation is needed.

Chapter 13 FunCtions

113

We can also use local variables as arguments. Example:

#include <stdio.h>

int myFunction(int x)

{

 return x;

}

int main(void)

{

 int myint = 5;

 int myresult;

 myresult = myFunction(myint);

 printf("One parameter function result: %d\n", myresult);

}

Output:

One parameter function result: 5

Here we used the local variable myint as a function argument. So now x gets the

value of myint, which is 5. More precisely, it gets a copy of the value of myint, as

arguments are passed by value. The function makes a copy of myint and works on that

copy. Any changes done to a parameter inside a function do not affect the original myint

variable.

To use a function with multiple parameters, we can write:

#include <stdio.h>

int myFunction(int x, int y)

{

 return x + y;

}

int main(void)

{

 int myresult;

 myresult = myFunction(10, 20);

Chapter 13 FunCtions

114

 printf("Two parameters function result: %d\n", myresult);

}

Output:

Two parameters function result: 30

In this example, we defined a function accepting two parameters. We separate the

parameter declarations with a comma, as in (int x, int y). We then call a function

and supply two comma-separated arguments 10 and 20 as in myfunction(10, 20).

Parameter x now takes the value of 10, and parameter y receives the value of 20.

As before, we can use the local variables as arguments:

#include <stdio.h>

int myFunction(int x, int y)

{

 return x + y;

}

int main(void)

{

 int a = 10;

 int b = 20;

 int myresult;

 myresult = myFunction(a, b);

 printf("Two parameters function result: %d\n", myresult);

}

Output:

Two parameters function result: 30

13.4.1 Passing Arguments
Arguments, in general, can be passed by value or by reference/pointer/address. By

default, all arguments are passed by value in C. Here we discuss both scenarios.

Chapter 13 FunCtions

115

13.4.1.1 Passing by Value

When we pass an argument to a function, a function makes a copy and works on that

copy. The original argument value is unaffected. For example, let us have a function that

has one parameter and assigns a new value to that parameter inside the function body:

#include <stdio.h>

void myFunction(int x)

{

 x = 456;

}

int main(void)

{

 int a = 123;

 printf("The value before the function call: %d\n", a);

 myFunction(a);

 printf("The value after the function call: %d\n", a);

}

Output:

The value before the function call: 123

The value after the function call: 123

The function has a parameter x that takes the value of the argument a. The function

makes a copy of a and does not affect the original a variable. The value of a remains the

same before and after the function call. The function makes temporary copies of a and

works on those copies, not the argument a itself.

13.4.1.2 Passing by Pointer/Address

To change the actual values of arguments a using a function, we use the pointer type

parameter in the function signature. And when we call the function, we supply the

address of the argument using an address-of operator &. Let us rewrite the above example

so that the function changes the value of argument a:

Chapter 13 FunCtions

116

#include <stdio.h>

void myFunction(int *x)

{

 *x = 456;

}

int main(void)

{

 int a = 123;

 printf("The value before the function call: %d\n", a);

 myFunction(&a);

 printf("The value after the function call: %d\n", a);

}

Output:

The value before the function call: 123

The value after the function call: 456

The function accepts a pointer to int. It then dereferences the pointer and assigns a

new value to a pointed-to object. We then call the function, and instead of supplying a as

an argument name, we supply the addresses of a by using &a. The function is now able

to modify the argument itself. This trick allows us to mimic the behavior of passing by

reference present in other languages.

Note By default, all arguments are passed by copy/value, and the function cannot
modify the arguments’ values. using pointer parameters and addresses of arguments,
we can pass arguments by address/reference and change the arguments’ values.

13.5 Return Statement
The return statement inside our function body is of the following syntax:

return;

return some_expression_or_value;

Chapter 13 FunCtions

117

The return statements return a control (of the program flow) and a value to the

caller/calling function. But in everyday life, we simply say it returns a value to our

function. However, the correct way to put it is to say it returns a value to our function call,

the place where our function is called using the myFunction(); statement. An example

with a simple function that returns a hard-coded integer value of 10:

#include <stdio.h>

int myFunction()

{

 return 10;

}

int main(void)

{

 int x;

 x = myFunction();

 printf("The function returned a value of: %d\n", x);

}

Output:

The function returned a value of: 10

The return statement causes our function to exit. Statements following the return

statement will not be executed. Example:

#include <stdio.h>

int myFunction()

{

 return 10;

 printf("This statement will not be executed.\n");

}

int main(void)

{

 int x;

 x = myFunction();

Chapter 13 FunCtions

118

 printf("The function returned a value of: %d\n", x);

}

Output:

The function returned a value of: 10

A function can have multiple return statements. Example:

#include <stdio.h>

int myFunction(int a)

{

 if (a > 0)

 {

 return 1;

 }

 if (a < 0)

 {

 return -1;

 }

 return 0;

}

int main(void)

{

 int x;

 x = myFunction(10);

 printf("The function returned a value of: %d\n", x);

}

Output:

The function returned a value of: 1

This function has three return statements. When any of these is encountered, the

function will return the value and the control to the caller. The remaining statements

in the function body will not be executed. Return values of 1, 0, and -1 are here for

illustrative purposes.

Chapter 13 FunCtions

119
© Slobodan Dmitrović 2021
S. Dmitrović, Modern C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6643-4_14

CHAPTER 14

Exercises
14.1 A Simple Function
Write a program that defines a function of type void called printMessage(). The

function outputs a simple message on the standard output. Call the user-defined

function from the main function:

#include <stdio.h>

void printMessage()

{

 printf("Hello World! from a function.\n");

}

int main(void)

{

 printMessage();

}

Output:

Hello World! from a function.

14.2 Function Declaration and Definition
Write a program that both declares and defines a function of type void called

printMessage(). The function outputs a simple message on the standard output.

Call the user-defined function from the main function:

https://doi.org/10.1007/978-1-4842-6643-4_14#DOI

120

#include <stdio.h>

void printMessage(); // function declaration

int main(void)

{

 printMessage(); // function call

}

void printMessage() // function definition

{

 printf("Hello World! from a function.\n");

}

Output:

Hello World! from a function.

14.3 Passing Arguments by Value
Write a program that defines a function that accepts a single argument by value. In its

body, the function increments an argument by one. Invoke the function in the main

program:

#include <stdio.h>

void byValue(int arg)

{

 arg++;

}

int main(void)

{

 int x = 123;

 printf("The value before the function call: %d\n", x);

 byValue(x);

 printf("The value after the function call: %d\n", x);

}

Chapter 14 exerCises

121

Output:

The value before the function call: 123

The value after the function call: 123

14.4 Passing Arguments by Pointer/Address
Write a program that defines a function that accepts a single argument by a pointer (an

address). In its body, the function increments an argument by one. Invoke the function

in the main program by passing in the address of a local variable:

#include <stdio.h>

void byAddress(int *arg)

{

 (*arg)++;

}

int main(void)

{

 int x = 123;

 printf("The value before the function call: %d\n", x);

 byAddress(&x);

 printf("The value after the function call: %d\n", x);

}

Output:

The value before the function call: 123

The value after the function call: 124

14.5 Function – Multiple Parameters
Write a program that defines a function called multiply. The function accepts two

arguments of type int, multiplies them, and returns a result. Invoke the function inside the

function main. Assign the result of a function call to a local variable and print the result:

Chapter 14 exerCises

122

#include <stdio.h>

int multiply(int a, int b)

{

 return a * b;

}

int main(void)

{

 int x = 123;

 int y = 456;

 int z = multiply(x, y);

 printf("The result is: %d\n", z);

}

Output:

The result is: 56088

Chapter 14 exerCises

123
© Slobodan Dmitrović 2021
S. Dmitrović, Modern C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6643-4_15

CHAPTER 15

Structures
A structure is a type that has members. These members can be variables of other types.

15.1 Introduction
The structure declaration is of the following syntax:

struct some_name

{

 type_name member_name_1;

 type_name member_name_2;

 // ...

};

A structure is also a type. The name of this type is the name of the structure. A structure

is a collection of variables, an excellent way to group the variables and organize data.

Let us write a simple example that declares a structure with three members:

#include <stdio.h>

struct MyStruct

{

 char c;

 int x;

 double d;

};

int main(void)

{

 printf("Declared a structure of type: struct MyStruct.\n");

}

https://doi.org/10.1007/978-1-4842-6643-4_15#DOI

124

Output:

Declared a structure of type: struct MyStruct.

This example declares a structure called MyStruct. The structure name MyStruct

is also called a tag. This structure has three different members. The first member is of

type char and is called c. The remaining two members are of other types, and we gave

them different names x and d. The structure declaration ends with a semicolon after the

closing brace as in };.

We can now declare a variable s of this struct MyStruct type either by placing the

variable name after the structure's closing brace:

#include <stdio.h>

struct MyStruct

{

 char c;

 int x;

 double d;

} s;

int main(void)

{

 printf("Structure type struct MyStruct declared.\n");

 printf("Variable s of type struct MyStruct declared.\n");

}

Output:

Structure type struct MyStruct declared.

Variable s of type struct MyStruct declared.

or by writing struct MyStruct s; as in:

#include <stdio.h>

struct MyStruct

{

 char c;

Chapter 15 StruCtureS

125

 int x;

 double d;

};

int main(void)

{

 printf("Structure type struct MyStruct declared.\n");

 struct MyStruct s;

 printf("Variable s of type struct MyStruct declared.\n");

}

Both examples declare a structure called MyStruct and a variable s of that struct

MyStruct type. We say that s is a structure of type struct MyStruct type. We can

eliminate the lengthy struct MyStruct wording when defining a structure type by

utilizing the typedef declaration:

#include <stdio.h>

typedef struct MyStruct MyStruct;

struct MyStruct

{

 char c;

 int x;

 double d;

};

int main(void)

{

 MyStruct s;

 printf("Variable s of type MyStruct declared.\n");

}

The typedef struct MyStruct MyStruct; statement creates an alias for a struct

MyStruct type. This alias is now simply called MyStruct, so we can now omit the struct

part when declaring a variable of this type.

Chapter 15 StruCtureS

126

Another way to create an alias for a structure type is to use the following code:

#include <stdio.h>

typedef struct

{

 char c;

 int x;

 double d;

} MyStruct;

int main(void)

{

 MyStruct s;

 printf("Variable s of type MyStruct declared.\n");

}

15.2 Initialization
A structure can be initialized by providing an initializer list with comma-separated

values, as in {value_1, value_2, value_n}:

#include <stdio.h>

typedef struct

{

 char c;

 int x;

 double d;

} MyStruct;

int main(void)

{

 MyStruct s = {'a', 123, 456.789};

 printf("Variable s of type MyStruct initialized.\n");

 printf("Member c has a value of %c\n", s.c);

 printf("Member x has a value of %d\n", s.x);

 printf("Member d has a value of %f\n", s.d);

}

Chapter 15 StruCtureS

127

Output:

Variable s of type MyStruct initialized.

Member c has a value of a

Member x has a value of 123

Member d has a value of 456.789000

Member c is initialized with a value of 'a', member x is initialized with a value of

123, and member d receives a value of 456.789. Members are initialized in the order in

which they are declared.

We can also initialize a structure using the so-called designated initializers. These

allow us to initialize the structure not just in the order in which the members are

declared but in any order. We specify the member name and the value for that particular

member using the {.member_name_1 = value_1, .member_name_2 = value_2,

.member_name_n = value_n} syntax. Example:

#include <stdio.h>

typedef struct

{

 char c;

 int x;

 double d;

} MyStruct;

int main(void)

{

 MyStruct s = {.x = 123, .c = 'a', .d = 456.789};

 printf("Variable s of type MyStruct initialized.\n");

 printf("Member c has a value of %c\n", s.c);

 printf("Member x has a value of %d\n", s.x);

 printf("Member d has a value of %f\n", s.d);

}

Here we initialized member x first, then c, and then d. We print out the values of

individual members using the member access operator (.).

Chapter 15 StruCtureS

128

The following variant where we declare a structure and initialize a variable in the

same statement is also valid:

#include <stdio.h>

struct MyStruct

{

 char c;

 int x;

 double d;

} s = {'c', 123, 456.789};

int main(void)

{

 printf("Structure initialized.\n");

 printf("Member c has a value of %c\n", s.c);

 printf("Member x has a value of %d\n", s.x);

 printf("Member d has a value of %f\n", s.d);

}

15.3 Member Access Operator
To access individual structure members, we use the variable s name, followed by a

member access operator., followed by the name of the appropriate member:

#include <stdio.h>

typedef struct

{

 char c;

 int x;

 double d;

} MyStruct;

int main(void)

{

 MyStruct s = {'a', 123, 456.789};

 printf("Variable s of type MyStruct initialized.\n");

Chapter 15 StruCtureS

129

 printf("Member c has a value of %c\n", s.c);

 printf("Member x has a value of %d\n", s.x);

 printf("Member d has a value of %f\n", s.d);

}

Output:

Variable s of type MyStruct initialized.

Member c has a value of a

Member x has a value of 123

Member d has a value of 456.789000

Here we access and print out the individual members by using the variable_name.

member_name syntax as in s.c, s.x, and s.d. This member access operator . is also referred

to as a dot operator.

To access and change the values of individual members, we write:

#include <stdio.h>

typedef struct

{

 char c;

 int x;

 double d;

} MyStruct;

int main(void)

{

 MyStruct s = {'a', 123, 456.789};

 printf("Variable s of type MyStruct initialized.\n");

 printf("Changing member values...\n");

 s.c = 'b';

 s.x = 456;

 s.d = 789.101;

 printf("Member c has a value of %c\n", s.c);

 printf("Member x has a value of %d\n", s.x);

 printf("Member d has a value of %f\n", s.d);

}

Chapter 15 StruCtureS

130

Output:

Variable s of type MyStruct initialized.

Changing member values...

Member c has a value of b

Member x has a value of 456

Member d has a value of 789.101000

In this example, we used the member access operator . to access, change, and print

out the values of individual members.

15.4 Copying Structures
We can assign (copy) one variable of type struct to another variable of the same type.

When assigning, we are copying member values, the assignment operator = copies

member values:

#include <stdio.h>

typedef struct

{

 char c;

 int x;

 double d;

} MyStruct;

int main(void)

{

 MyStruct s1 = {'a', 123, 456.789};

 MyStruct s2;

 s2 = s1; /* copies member values */

 printf("Values from s1 copied to s2.\n");

 printf("Member s2.c has a value of %c\n", s2.c);

 printf("Member s2.x has a value of %d\n", s2.x);

 printf("Member s2.d has a value of %f\n", s2.d);

}

Chapter 15 StruCtureS

131

Output:

Values from s1 copied to s2.

Member s2.c has a value of a

Member s2.x has a value of 123

Member s2.d has a value of 456.789000

In this example, we have two variables of type MyStruct, named s1 and s2. We

initialized s1 with some arbitrary values. Then we copied values from s1 to s2 using the

s2 = s1; statement. We can also say we assigned s1 to s2. The copy of the s1's member

values is made and then assigned to appropriate s2 members. Now both struct variables

have identical values. Remember, at this point, changing the value of one structure does

not affect the value of another and vice-versa.

15.5 Pointers to Structures
We can also use pointers to structures. Let us see how to create a pointer to a structure

and assign it an address of an existing structure variable:

#include <stdio.h>

struct MyStruct

{

 char c;

 int x;

 double d;

};

int main(void)

{

 struct MyStruct s = {'a', 123, 456.789};

 struct MyStruct *ps = &s;

 printf("Member c has a value of %c\n", (*ps).c);

 printf("Member x has a value of %d\n", (*ps).x);

 printf("Member d has a value of %f\n", (*ps).d);

}

Chapter 15 StruCtureS

132

Output:

Member c has a value of a

Member x has a value of 123

Member d has a value of 456.789000

Here we declared a simple structure. Then, in the main program, we initialized a

variable s of that struct MyStruct type. Then we declared a variable ps that is a pointer

to that structure type. We initialize this variable with an address of a data object s. To

access a structure member via a pointer, we dereference the pointer using a * symbol.

We then use the member access operator, followed by a member name as in (*ps).c

to access and print the member value. The . operator has higher precedence than the

* operator, so we must use parentheses to ensure the dereferencing happens before the

member access.

Another way to access the structure member through a pointer is by using the arrow

operator ->. This operator both dereferences the pointer to a structure and accesses a

member. Example:

#include <stdio.h>

typedef struct

{

 char c;

 int x;

 double d;

} MyStruct;

int main(void)

{

 MyStruct s = {'a', 123, 456.789};

 MyStruct *ps = &s;

 printf("Member c has a value of %c\n", ps->c);

 printf("Member x has a value of %d\n", ps->x);

 printf("Member d has a value of %f\n", ps->d);

}

Chapter 15 StruCtureS

133

Output:

Member c has a value of a

Member x has a value of 123

Member d has a value of 456.789000

The use of an -> operator replaces the need for both the dereference (*) and

member access operator (.), as it does both operations. To access a single member,

instead of having to write the (*ps).c expression, we simply write ps->c.

15.6 Self-Referencing Structures
A structure can have a field that is a pointer to the structure type itself. This field is not an

instance of a structure but a pointer to a structure type. Example:

struct MyStruct

{

 int x;

 struct MyStruct* next;

};

This declaration allows us to create multiple objects of type struct MyStruct

representing a singly linked list.

To declare a structure that can represent a doubly-linked list, we need two pointer

fields, one that will point to the previous element in the list and another that will point to

the next element in the list. Example:

struct MyStruct

{

 int x;

 struct MyStruct* previous;

 struct MyStruct* next;

};

Chapter 15 StruCtureS

134

Similarly, to declare a structure that will represent a node in the binary tree, we can

write:

struct MyNode

{

 int x;

 struct MyNode* left;

 struct MyNode* right;

};

15.7 Structures as Function Arguments
We can use a structure as a function argument. The function argument is passed by value,

meaning the function makes a copy of the arguments and continues to work with that copy.

The original argument is unaffected by function. To pass the structure by value, we write:

#include <stdio.h>

struct MyStruct

{

 char c;

 int x;

 double d;

};

void myfunction(struct MyStruct myparameter)

{

 printf("Member c has a value of %c\n", myparameter.c);

 printf("Member x has a value of %d\n", myparameter.x);

 printf("Member d has a value of %f\n", myparameter.d);

}

int main(void)

{

 struct MyStruct s = {'a', 123, 456.789};

 myfunction(s);

}

Chapter 15 StruCtureS

135

Output:

Member c has a value of a

Member x has a value of 123

Member d has a value of 456.789000

This example uses a function that accepts the structure as a parameter. We have one

function parameter called myparameter of type struct MyStruct. In the main program,

we initialize a variable of type struct MyStruct called s. Then we pass this variable as

an argument to our myfunction function, which prints out its member values.

To avoid typing a lengthy struct MyStruct type name, we can use a typedef to

create an alias and shorten the declaration:

#include <stdio.h>

typedef struct

{

 char c;

 int x;

 double d;

} MyStruct;

void myfunction(MyStruct myparameter)

{

 printf("Member c has a value of %c\n", myparameter.c);

 printf("Member x has a value of %d\n", myparameter.x);

 printf("Member d has a value of %f\n", myparameter.d);

}

int main(void)

{

 MyStruct s = {'a', 123, 456.789};

 myfunction(s);

}

Chapter 15 StruCtureS

136

Output:

Member c has a value of a

Member x has a value of 123

Member d has a value of 456.789000

Instead of having to type the entire struct MyStruct type name in the declarations,

we can now simply use the MyStruct name.

Let us now create a function that is of some structure type and returns a structure

value. Function parameters represent the values for the structure members. Example:

#include <stdio.h>

struct MyStruct

{

 char c;

 int x;

 double d;

};

struct MyStruct createStruct(char cparam, int xparam, double dparam)

{

 struct MyStruct temps;

 temps.c = cparam;

 temps.x = xparam;

 temps.d = dparam;

 return temps;

}

int main(void)

{

 struct MyStruct s;

 s = createStruct('c', 123, 456.789);

 printf("Member c has a value of %c\n", s.c);

 printf("Member x has a value of %d\n", s.x);

 printf("Member d has a value of %f\n", s.d);

}

Chapter 15 StruCtureS

137

Output:

Member c has a value of c

Member x has a value of 123

Member d has a value of 456.789000

Since a structure is a type, we can have a function of that (structure) type. Here, we

created a function called createStruct of type struct MyStruct. The function accepts

three parameters, which will be used to assign values to three structure members. The

function body declares a temporary variable called temps of type struct MyStruct. We

then assign the parameter values to this temporary structure variable and return the

variable temps to our caller using the return temps; statement. In our main program,

we declare a variable s of type struct MyStruct and assign it a value returned by a

function call. We used arbitrary values of 'c', 123, 456.789 as function arguments.

When a structure gets large, it is better/more efficient to pass the pointer to a

structure, rather than a structure itself. Example:

#include <stdio.h>

struct MyStruct

{

 char c;

 int x;

 double d;

};

void printStruct(struct MyStruct *myparameter)

{

 printf("Member c has a value of %c\n", myparameter->c);

 printf("Member x has a value of %d\n", myparameter->x);

 printf("Member d has a value of %f\n", myparameter->d);

}

int main(void)

{

 struct MyStruct s = {'a', 123, 456.789};

 printStruct(&s);

}

Chapter 15 StruCtureS

138

Output:

Member c has a value of a

Member x has a value of 123

Member d has a value of 456.789000

Here we defined a function called printStruct that accepts a pointer to a structure

as a parameter. Since this function accepts a pointer type, we use an address of an

existing variable &s as an argument, not the s itself.

Chapter 15 StruCtureS

139
© Slobodan Dmitrović 2021
S. Dmitrović, Modern C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6643-4_16

CHAPTER 16

Unions
A union is a user-defined type whose members overlap in memory. Unlike a structure

whose members occupy separate regions of memory, the union’s members all occupy

the same memory region. The size of the union is equal to the size of its largest field.

When declaring a union, we use the following syntax:

union some_name

{

 type_name member_name_1;

 type_name member_name_2;

 // ...

};

To define and use a simple union having three fields, we write:

#include <stdio.h>

union MyUnion

{

 char c;

 int x;

 double d;

};

int main(void)

{

 union MyUnion u;

 u.c = 'A';

 printf("The union's char member value: %c\n", u.c);

 u.x = 123;

 printf("The union's int member value: %d\n", u.x);

https://doi.org/10.1007/978-1-4842-6643-4_16#DOI

140

 u.d = 456.789;

 printf("The union's double member value: %f\n", u.d);

}

Output:

The union's char member value: A

The union's int member value: 123

The union's double member value: 456.789000

With unions, we can access only the last modified field. In this example, we set the

c field to the value of 'A' and then print/access it using the printf function. We did

the same for x and d. Trying to access the field that was not the last one to be modified

results in undefined behavior. Since all three members share the same memory, we

cannot do u.x = 123; and then try to access u.c or u.d. We can only access the u.x,

since it was the last modified field.

Chapter 16 Unions

141
© Slobodan Dmitrović 2021
S. Dmitrović, Modern C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6643-4_17

CHAPTER 17

Conditional Expression
The following example uses the if-else statement to assign the revalue to our result

variable based on some (x > 10) condition:

#include <stdio.h>

int main(void)

{

 int x = 123;

 int result;

 if (x > 10)

 {

 result = 456;

 }

 else

 {

 result = 789;

 }

 printf("The result is: %d\n", result);

}

Output:

The result is: 456

The same behavior can be achieved using the conditional expression, which has the

following syntax:

(condition) ? expression1 : expression2

https://doi.org/10.1007/978-1-4842-6643-4_17#DOI

142

The conditional expression inspects the value of a condition. If the condition is true

/ anything else than 0, the conditional expression returns the expression1. Otherwise, it

returns the expression2. The ?: is a ternary operator used in the syntax. The above code

example can be rewritten as:

#include <stdio.h>

int main(void)

{

 int x = 123;

 int result;

 result = (x > 10) ? 456 : 789;

 printf("The result is: %d\n", result);

}

Output:

The result is: 456

We can use the conditional expression in the same way we would use any other

expression. An example where we use the conditional expression inside the printf

function:

#include <stdio.h>

int main(void)

{

 int x = 123;

 printf("Conditional expression result: %d\n", (x > 10) ? 456 : 789);

}

Output:

Conditional expression result: 456

Chapter 17 Conditional expression

143
© Slobodan Dmitrović 2021
S. Dmitrović, Modern C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6643-4_18

CHAPTER 18

Typedef
The typedef declaration creates a synonym for the existing type. We use the typedef to

create an alias name for the existing type name. The usage is of the following syntax:

typedef some_type our_new_name;

To create a new synonym for the type int and, for example, call it MyInteger,

we type:

typedef int MyInteger;

Now, we can use the new MyInteger alias in the same way we would use int.

Example:

#include <stdio.h>

typedef int MyInt;

int main(void)

{

 MyInt x = 123;

 printf("The value is: %d\n", x);

}

Output:

The value is: 123

https://doi.org/10.1007/978-1-4842-6643-4_18#DOI

144

We can also create an alias for a pointer type:

#include <stdio.h>

typedef char* MyString;

int main(void)

{

 MyString s = "Hello World!";

 printf("The value is: %s\n", s);

}

Output:

The value is: Hello World!

To create an alias for a structure type, we write:

#include <stdio.h>

typedef struct MyStruct MyStruct;

struct MyStruct

{

 char c;

 int x;

 double d;

};

int main(void)

{

 MyStruct s;

 printf("Variable s of type MyStruct declared.\n");

}

Output:

Variable s of type MyStruct declared.

Chapter 18 typedef

145

or the equivalent, more widely used typedef struct {} MyStruct; approach:

#include <stdio.h>

typedef struct

{

 char c;

 int x;

 double d;

} MyStruct;

int main(void)

{

 MyStruct s;

 printf("Variable s of type MyStruct declared.\n");

}

Output:

Variable s of type MyStruct declared.

The alias MyStruct, in this case, has the same name as the structure tag, which is

allowed. Now, instead of typing the lengthy structure type name struct MyStruct, we

simply type MyStruct.

Note With structs, the entire struct MyStruct wording represents the type
name. to avoid having to type the lengthy struct MyStruct name, we create a
type alias using the typedef struct {} MyStruct; approach. Now our type
is simply called MyStruct.

Chapter 18 typedef

147
© Slobodan Dmitrović 2021
S. Dmitrović, Modern C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6643-4_19

CHAPTER 19

Const Qualifier
To make the variable a read-only, we apply the const qualifier to its declaration. Once

initialized or assigned to, these variables become read-only. Attempting to change their

values results in a compile-time error. Let us write an example that defines a few simple

constants:

#include <stdio.h>

int main(void)

{

 const char c = 'a';

 const int x = 123;

 const double d = 456.789;

 printf("We have defined three constants.\n");

 printf("Their values are: %c, %d, %.3f.\n", c, x, d);

}

Output:

We have defined three constants.

Their values are: a, 123, 456.789.

This example defines three constants of three different types, const char, const

int, and const double. These variables are now read-only. From now on, any attempt

to change their values will result in a compile-time error. Example:

#include <stdio.h>

int main(void)

{

 const char c = 'a';

 const int x = 123;

https://doi.org/10.1007/978-1-4842-6643-4_19#DOI

148

 const double d = 456.789;

 c = 'b'; // compile-time error

 x = 124; // compile-time error

 d = 457.789; // compile-time error

 printf("Defined three constants.\n");

 printf("Their values are: %c, %d, %.3f.\n", c, x, d);

}

In this example, we tried to change the values of constant (read-only) variables.

This results in three compile-time errors similar to:

error: assignment of read-only variable ‘c’

error: assignment of read-only variable ‘x’

error: assignment of read-only variable ‘d’

We can also apply a const qualifier to pointer types. But, with pointers, we have

two things, a pointer variable itself and a pointed-to object. To make a pointer variable

read-only, we put the const qualifier after the type name, using the some_type* const p

syntax:

#include <stdio.h>

int main(void)

{

 int x = 123;

 int *const p = &x; // constant pointer

 printf("Defined a constant pointer.\n");

 printf("Pointer value is: %p\n", (void *)p);

 printf("Pointed-to object value is: %d\n", *p);

}

Output:

Defined a constant pointer.

Pointer value is: 0x7fff8cb8dc7c

Pointed-to object value is: 123

Chapter 19 Const Qualifier

149

If we now try to change the value of a pointer, for example, using a p = NULL;, we get

a compile-time error as p is a constant.

To make a pointed-to object a read-only object, we place the const qualifier before

the pointer type name using the const some_type* syntax. Example:

#include <stdio.h>

int main(void)

{

 int x = 123;

 const int *p = &x; // constant pointed-to object

 printf("Defined a constant, pointed-to object.\n");

 printf("Pointer value is: %p\n", (void *)p);

 printf("Pointed-to object value is: %d\n", *p);

}

Output:

Defined a constant, pointed-to object.

Pointer value is: 0x7ffdce8d2cac

Pointed-to object value is: 123

If we now attempt to change a pointed-to object’s value, using a *p = 456;, we get a

compile-time error as *p is a constant. This only makes the pointed-to object a read-only

object when trying to modify its value via the dereferenced pointer. But we are still able

to change the value of that object using the variable x.

To make both the pointer and the pointed-to object read-only, we place the const

qualifier both before and after the pointer type name using the const some_type*

const syntax. Example:

#include <stdio.h>

int main(void)

{

 int x = 123;

 const int *const p = &x; // constant pointer and constant pointed-to

object

Chapter 19 Const Qualifier

150

 printf("Defined a constant pointer and a constant pointed-to

object.\n");

 printf("Pointer value is: %p\n", (void *)p);

 printf("Pointed-to object value is: %d\n", *p);

}

Output:

Defined a constant pointer and a constant pointed-to object.

Pointer value is: 0x7ffd3c1cc12c

Pointed-to object value is: 123

If we now try to change the pointer value or the pointed-to object value, we get a

compile-time error.

Similar to making variables constant, we can also have constant function

parameters. Declaring a constant function parameter ensures the function cannot alter

the parameter’s value. An example of a function having a constant parameter:

#include <stdio.h>

void myfunction(const int *myparam)

{

 printf("Using a constant function parameter.\n");

 printf("Pointer value is: %p\n", (void *)myparam);

 printf("Pointed-to object value is: %d\n", *myparam);

}

int main(void)

{

 int x = 123;

 int *p = &x;

 myfunction(p);

}

Chapter 19 Const Qualifier

151

Output:

Using a constant function parameter.

Pointer value is: 0x7fff605a268c

Pointed-to object value is: 123

This example defines a function that declares a constant parameter called myparam.

Having a constant parameter ensures the function does not alter the parameter value.

Constants can be used when declaring an array of constant size:

#include <stdio.h>

int main(void)

{

 const int maxSize = 3;

 int arr[maxSize];

 arr[0] = 1;

 arr[1] = 2;

 arr[2] = 3;

 for (int i = 0; i < maxSize; i++)

 {

 printf("%d\n", arr[i]);

 }

}

Output:

1

2

3

Here we initialized a constant variable maxSize with a value of 3. Then we used this

constant as an array size in the array declaration int arr[maxSize];. We also used this

constant as a condition in our for loop. If there is a need to change the array size in the

future, we simply change the value of our constant. That way, we do not have to type the

hard-coded values in our code manually every time. We simply update our constant variable.

Chapter 19 Const Qualifier

153
© Slobodan Dmitrović 2021
S. Dmitrović, Modern C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6643-4_20

CHAPTER 20

Enumerations
Enumerations are types whose values have symbolic names. These names have

underlying integral values. To declare an enumeration type, we use the following syntax:

enum MyEnumName { Some_Enum_Name1, Some_Enum_Name2 };

We give enum a name, and then we provide a list of enumerator names inside the

curly braces. These names are also called enumerators or enumeration constants. The first

enumerator has an underlying value of 0. The subsequent enumerators have the value of

2, 3, ... To declare an enum type and a variable of that type, we write:

#include <stdio.h>

int main(void)

{

 enum MyEnum

 {

 FIRST,

 SECOND,

 THIRD

 };

 enum MyEnum myEnumVar;

 myEnumVar = SECOND;

 printf("Declared an enum. Setting the value to: %d\n", myEnumVar);

}

Output:

Declared an enum. Setting the value to: 1

https://doi.org/10.1007/978-1-4842-6643-4_20#DOI

154

This example declares an enum type called MyEnum. The type has three symbolic

constants we named FIRST, SECOND, and THIRD. These enumerators have underlying

values of 0, 1, and 2, respectively. We then declare a variable of this type and assign it a

value of SECOND. When declaring a variable of enum type, we must also use the enum

word as in enum MyEnum myEnumVar;.

We can also explicitly specify the underlying enum values. An example where we

declare an enum whose first enumerator starts from 3:

#include <stdio.h>

int main(void)

{

 enum Days

 {

 WEDNESDAY = 3,

 THURSDAY,

 FRIDAY

 };

 enum Days myDays;

 myDays = FRIDAY;

 printf("Declared an enum. Setting the value to: %d\n", myDays);

}

Output:

Declared an enum. Setting the value to: 5

In this example, we explicitly specify that the first enum has a value of 3 and

subsequent enums have a value of 4 and 5, respectively.

Another way to declare a variable of enum type is to put the variable name after the

enum declaration. Example:

Chapter 20 enumerations

155

#include <stdio.h>

int main(void)

{

 enum Days

 {

 WEDNESDAY = 3,

 THURSDAY,

 FRIDAY

 } myDays;

 myDays = FRIDAY;

 printf("Declared an enum. Setting the value to: %d\n", myDays);

}

Output:

Declared an enum. Setting the value to: 5

Enums can also be declared in a global scope and can be converted to integers.

Example:

#include <stdio.h>

enum Lights

{

 RED,

 YELLOW,

 GREEN

};

int main(void)

{

 enum Lights myLights;

 myLights = GREEN;

 int x = myLights;

 printf("Converting an enum to integer. The value is: %d\n", x);

}

Chapter 20 enumerations

156

Output:

Converting an enum to integer. The value is: 2

In this example, we declared an enum type inside a global/file scope, outside the

function main. We then used a variable of enum type to initialize another variable of an

int type.

In short, enums are a convenient way of having a list of named integral constants.

Chapter 20 enumerations

157
© Slobodan Dmitrović 2021
S. Dmitrović, Modern C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6643-4_21

CHAPTER 21

Function Pointers
Functions are not variables, but we can still have pointers to functions or function

pointers. For example, if we have a simple function:

void myfunction()

{

 printf("Hello World from a function.\n");

}

and we want to declare a function pointer to this function, we write:

void (*fp)();

We need to enclose the function pointer name in parentheses due to * operator

precedence.

The return type of a function pointer matches the function’s return type, which in

our case is void. To assign a function to our function pointer, we write:

fp = myfunction;

Now, we can invoke a function using a function pointer:

#include <stdio.h>

void myfunction()

{

 printf("Hello World from a function.\n");

}

https://doi.org/10.1007/978-1-4842-6643-4_21#DOI

158

int main(void)

{

 void (*fp)();

 fp = myfunction;

 fp();

}

Output:

Hello World from a function.

Suppose our function has one parameter, of type char* for example. In that case, we

modify the function pointer declaration to include that argument’s type:

#include <stdio.h>

void myfunction(char *arg)

{

 printf("%s\n", arg);

}

int main(void)

{

 void (*fp)(char *);

 fp = myfunction;

 fp("This is a function argument.");

}

Output:

This is a function argument.

Similarly, if a function has multiple parameters, we match those parameters’ types in

the function pointer declaration as well:

Chapter 21 FunCtion pointers

159

#include <stdio.h>

void myfunction(char *arg1, int arg2)

{

 printf("%s %d\n", arg1, arg2);

}

int main(void)

{

 void (*fp)(char *, int);

 fp = myfunction;

 fp("The value of an int argument is:", 123);

}

Output:

The value of an int argument is: 123

Please note that we do not need to free the function pointer explicitly.

Chapter 21 FunCtion pointers

161
© Slobodan Dmitrović 2021
S. Dmitrović, Modern C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6643-4_22

CHAPTER 22

Exercises
22.1 Structure Definition
Write a program that defines a simple structure called Person. The structure has the

char*, int, and double fields. Declare a variable of this structure type inside the main

and assign values to each member field. Print out the values:

#include <stdio.h>

struct Person

{

 char *name;

 int age;

 double salary;

};

int main(void)

{

 struct Person o;

 o.name = "John Doe";

 o.age = 35;

 o.salary = 2500.00;

 printf("Name: %s\n", o.name);

 printf("Age: %d\n", o.age);

 printf("Salary: %.2f\n", o.salary);

}

https://doi.org/10.1007/978-1-4842-6643-4_22#DOI

162

Output:

Name: John Doe

Age: 35

Salary: 2500.00

22.2 Structure Typedef Alias
Write a program that defines a typedef alias for the structure type called TPerson. The

structure has the char*, int, and double fields. Declare a variable of this structure type

inside the main and assign values to each member field. Print out the values:

#include <stdio.h>

typedef struct

{

 char *name;

 int age;

 double salary;

} TPerson;

int main(void)

{

 TPerson o;

 o.name = "Sample Name";

 o.age = 35;

 o.salary = 2500.00;

 printf("Name: %s\n", o.name);

 printf("Age: %d\n", o.age);

 printf("Salary: %.2f\n", o.salary);

}

Chapter 22 exerCises

163

Output:

Name: John Doe

Age: 35

Salary: 2500.00

22.3 Structure Initialization
Write a program that defines a structure. The structure has the char[], int, and double

fields. Declare and initialize a variable of this structure type. Print out the values:

#include <stdio.h>

typedef struct

{

 char name[50];

 int age;

 double salary;

} TPerson;

int main(void)

{

 TPerson o = {"John Doe", 25, 2500.00};

 printf("Name: %s\n", o.name);

 printf("Age: %d\n", o.age);

 printf("Salary: %.2f\n", o.salary);

}

Output:

Name: John Doe

Age: 25

Salary: 2500.00

Chapter 22 exerCises

164

Note since we are initializing and not assigning to a variable, we can use the
type char[] instead of char*. remember, arrays can only be initialized, not
assigned to.

22.4 Pointers to Structures
Write a program that defines an arbitrary structure. Create an instance of this structure

in the main program. Define a pointer variable that points at this structure instance. Print

the object fields using a pointer:

#include <stdio.h>

typedef struct

{

 char arr[50];

 int x;

 double d;

} TMyStruct;

int main(void)

{

 TMyStruct o = {"Hello World from a struct!", 123, 456.789};

 TMyStruct *p = &o;

 printf("Array field: %s\n", p->arr);

 printf("Integer field: %d\n", p->x);

 printf("Double field: %f\n", p->d);

}

Output:

Array field: Hello World from a struct!

Integer field: 123

Double field: 456.789000

Chapter 22 exerCises

165

22.5 Unions
Write a program that defines a union type using a typedef alias. The union has the fields

of type char*, int, and double. Create an instance of this union in the main program.

Modify and print each of the fields. Ensure that only the last modified field is accessed:

#include <stdio.h>

typedef union

{

 char *arr;

 int x;

 double d;

} TMyUnion;

int main(void)

{

 TMyUnion u;

 u.arr = "Hello World from a union!";

 printf("Union's array field: %s\n", u.arr);

 u.x = 123;

 printf("Union's integer field: %d\n", u.x);

 u.d = 456.789;

 printf("Union's double field: %f\n", u.d);

}

Output:

Union's array field: Hello World from a union!

Union's integer field: 123

Union's double field: 456.789000

22.6 Const Variables and Pointers
Write a program that defines a const variable, a const pointer, and a const pointee. The

values are arbitrary:

Chapter 22 exerCises

166

#include <stdio.h>

int main(void)

{

 // const variable

 const int x = 123;

 // const pointer, can not use: p = "Something else";

 char *const p = "Hello World";

 int y = 456;

 // const pointee, can not use: *p2 = 789;

 const int *p2 = &y;

 printf("Constant variable: %d\n", x);

 printf("Constant pointer: %p\n", (void *)p);

 printf("Constant pointee: %d\n", *p2);

}

Output:

Constant variable: 123

Constant pointer: 0x5570c62d0004

Constant pointee: 456

22.7 Constant Function Parameters
Write a program that defines a function having constant parameters. Invoke the function

in the main program. Function parameter types and argument values are arbitrary:

#include <stdio.h>

double myfunction(const int a, const double b)

{

 return a / b;

}

Chapter 22 exerCises

167

int main(void)

{

 int x = 123;

 double y = 456.789;

 double result = myfunction(x, y);

 printf("The function call result is: %f\n", result);

}

Output:

The function call result is: 0.269271

22.8 Enums
Write a program that defines an enum type called MyEnum. The enum has three

enumerators, representing arbitrary colors. Create an object of that enum and use it in a

switch statement. Use the switch statement to print the value of an enum object:

#include <stdio.h>

enum MyEnum

{

 Red,

 Yellow,

 Green

};

int main(void)

{

 enum MyEnum myenum;

 myenum = Green;

 switch (myenum)

 {

 case Red:

 printf("The color is Red.\n");

 break;

Chapter 22 exerCises

168

 case Yellow:

 printf("The color is Yellow.\n");

 break;

 case Green:

 printf("The color is Green.\n");

 break;

 default:

 break;

 }

}

Output:

The color is Green.

22.9 Pointers to Functions
Write a program that defines two functions. The types of functions and the types of

parameters are arbitrary. Define function pointers to these two functions. Invoke the

functions using function pointers:

#include <stdio.h>

void printmessage(const char *arg)

{

 printf("%s\n", arg);

}

double division(int a, double b)

{

 return a / b;

}

int main(void)

{

 void (*fp1)(const char *);

 double (*fp2)(int, double);

Chapter 22 exerCises

169

 fp1 = printmessage;

 fp2 = division;

 fp1("This is the function call through a function pointer.");

 double result = fp2(123, 456.789);

 printf("The result obtained through a function pointer is: %f\n", result);

}

Output:

This is the function call through a function pointer.

The result obtained through a function pointer is: 0.269271

Chapter 22 exerCises

171
© Slobodan Dmitrović 2021
S. Dmitrović, Modern C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6643-4_23

CHAPTER 23

Preprocessor
When we compile our program, roughly three things happen in sequence:

• Preprocessing

• Compilation

• Linking

The preprocessing is a process in which the preprocessor modifies the content of our

source file(s) in various ways. The compiler then compiles the source code and turns it

into object files. The linker then links the object files together and produces an executable

file or a library.

When we start the compilation process, a preprocessor tool modifies our file’s source

code before the compilation process begins. It does so by using various preprocessor

directives. Directives start with a # sign and do not end with a semicolon. Directives are

not statements. Although they appear as statements to us humans when we are reading

the code, they are instructions to a preprocessor on how to modify our source code’s

content before the compilation phase. Remember the use of #include <stdio.h>? That

is also a preprocessor directive. Let us start with the #include directive.

23.1 #include
The #include directive includes/inserts the content of a specified file into our source file.

The files to be included are usually header files with the extension of (.h). The directive is

of the following syntax:

#include <filename.ext>

and:

#include "filename.ext"

https://doi.org/10.1007/978-1-4842-6643-4_23#DOI

172

When we need to include the file that is part of the standard library, we enclose

the file name in angle brackets < >. This tells the compiler to search for the file in a

predetermined standard-library location.

We can create header files of our own and refer to them as user-defined header files.

To include the user-defined header file, we enclose the file name with double quotes (" ").

Now, the compiler searches for the file in the same directory where our source code file

is. If it cannot find it there, it searches in the standard-library location too.

Let us create an example that includes several standard-library files:

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int main(void)

{

 printf("Included several standard-library headers.\n");

}

Output:

Included several standard-library headers.

This example includes multiple standard-library header files. This enables us to use

the facilities declared in those header files in our main program. We discuss the standard

library in greater detail in Part 2.

Let us now create a header file of our own, name it myheaderfile.h, and place it in

the same folder where our source.c file is. The header file can be empty for now as we are

only using it to demonstrate how to include the user-defined header file into our source

file. The content of our source.c file is:

#include <stdio.h>

#include "myheaderfile.h"

int main(void)

{

 printf("Included one standard-library header and one user-defined

header file.\n");

}

Chapter 23 preproCessor

173

Output:

Included one standard-library header and one user-defined header file.

The first #include directive includes the standard-library header file called

stdio.h, and the second #include directive includes our user-defined header file called

myheaderfile.h into our source.c file.

So, instead of copying the header file content by hand and then pasting it into our

source file, we simply use the #include directive, which does this job for us.

23.2 #define
The #define directive creates a macro name. It is of the following syntax:

#define some_identifier replacement_text

The #define directive replaces an identifier with the replacement_text in our source

code. The preprocessor replaces all occurrences of some_identifier_name with the some_

replacement_text in our source code when the compilation begins. Example:

#include <stdio.h>

#define MAX 100

int main(void)

{

 printf("Symbolic identifier MAX is: %d\n", MAX);

}

Output:

Symbolic identifier MAX is: 100

This example defines a symbolic name MAX that we can use in our program. Every

occurrence of this identifier gets replaced by the text 100. The macro identifier name is

all uppercase by convention. We can use this macro as an initializer for our variables:

Chapter 23 preproCessor

174

#include <stdio.h>

#define MAX 100

int main(void)

{

 int x = MAX;

 printf("The value of x is: %d\n", x);

}

Output:

The value of x is: 100

or in array declarations and loops:

#include <stdio.h>

#define ARRAY_ELEMENTS 3

int main(void)

{

 int arr[ARRAY_ELEMENTS];

 arr[0] = 10;

 arr[1] = 20;

 arr[2] = 30;

 for (int i = 0; i < ARRAY_ELEMENTS; i++)

 {

 printf("%d\n", arr[i]);

 }

}

Output:

10

20

30

Chapter 23 preproCessor

175

Remember, identifier ARRAY_ELEMENTS here is just a text macro that gets expanded

to some other text when the compilation begins. The name itself is not a variable/object

that occupies a memory. The pre-processor simply replaces every occurrence of

ARRAY_ELEMENTS with 100 when the compilation begins. It is more meaningful to us to

use some symbolic name ARRAY_ELEMENTS instead of a magic number 100.

We can also define a macro that represents a character value:

#include <stdio.h>

#define MY_NEW_LINE '\n'

#define MY_SPACE ' '

int main(void)

{

 printf("This example%cuses %cmacros.", MY_SPACE, MY_NEW_LINE);

}

Output:

This example uses

macros.

23.3 #undef
When we no longer need a macro, or we want to redefine a macro, we use the #undef

directive to undefine a macro name. An example where we undefine a macro:

#include <stdio.h>

#define MY_MAX 123

int main(void)

{

 int x = MY_MAX;

 printf("The value is: %d\n", x);

#undef MY_MAX

 printf("Macro undefined. The name MY_MAX no longer exists.\n");

}

Chapter 23 preproCessor

176

Output:

The value is: 123

Macro undefined. The name MY_MAX no longer exists.

Before we can redefine a macro, we must first undefine it. Example:

#include <stdio.h>

#define MY_MAX 123

int main(void)

{

 int x = MY_MAX;

 printf("The value is: %d\n", x);

#undef MY_MAX

 printf("Macro undefined. The name MY_MAX no longer exists.\n");

#define MY_MAX 456

 printf("Macro MY_MAX redefined and exists again.\n");

 x = MY_MAX;

 printf("The value is: %d\n", x);

}

Output:

The value is: 123

Macro undefined. The name MY_MAX no longer exists.

Macro MY_MAX redefined and exists again.

The value is: 456

This example redefines an MY_MAX macro with a new value. The workflow was as

follows: define a macro, use it, undefine it, and then define it again with a new value. If

we left out the #undef step, the compiler would issue a warning.

23.4 Conditional Compilation
We can compile parts (portions, sections, areas) of the source code and exclude others.

We do so by utilizing a few conditional directives.

Chapter 23 preproCessor

177

23.4.1 #if
The #if directive is of the following syntax:

#if some_condition_that_is_constant_expression

 Our source code

#endif

The portion of the code surrounded by the #if and #endif directives will get

compiled if the condition is true.

The #if directive checks the value of a condition (that is a constant expression). It

marks the beginning of the source code that we want to compile. Every #if directive is

matched by an #endif directive. The #endif directive marks the end of the #if block –

the end of the source code chunk we want to compile. If the condition checked by the

#if directive is true, the portion of the code gets compiled. If not, it is skipped. Example:

#include <stdio.h>

#define MY_FLAG 123

int main(void)

{

#if MY_FLAG < 123

 printf("This portion of the code (A)\n");

 printf("will not get compiled.\n");

#endif

 printf("This portion of the code (B)\n");

 printf("Will get compiled.\n");

}

Output:

This portion of the code (B)

Will get compiled.

Here we define a macro called MY_FLAG that expands to a constant expression of

123. We then use the #if directive to check if the macro expression is less than 123. Since

it is not, the portion of the code surrounded by the #if and #endif directive will not be

compiled. It will be skipped.

Chapter 23 preproCessor

178

We can also include additional #else and #elseif directives inside the #if #endif

block to make multiple branches or check for multiple conditions. Example:

#include <stdio.h>

#define MY_FLAG 123

int main(void)

{

#if MY_FLAG < 123

 printf("This portion of the code (A)\n");

 printf("will not get compiled.\n");

#elif MY_FLAG == 123

 printf("This portion of the code (B)\n");

 printf("will get compiled.\n");

#else

 printf("This portion of the code (C)\n");

 printf("will also be skipped.\n");

#endif

}

Output:

This portion of the code (B)

Will get compiled.

In this example, only the source code portion in the #elif part/branch will be

compiled because only the MY_FLAG == 123 condition evaluates to true.

23.4.2 #ifdef
The #ifdef directive checks if a macro name is defined. The directive is of the following

syntax:

#ifdef macro_name

 Our source code

#endif

Chapter 23 preproCessor

179

We use the #ifdef directive to conditionally compile parts of the source code by

checking if some macro was previously defined. If true, the source code portion gets

compiled. Example:

#include <stdio.h>

#define MY_MACRO

int main(void)

{

#ifdef MY_MACRO

 printf("This portion of the code (A)\n");

 printf("will get compiled.\n");

#endif

#ifdef NON_EXISTING_MACRO

 printf("This portion of the code (B)\n");

 printf("will not get compiled.\n");

#endif

}

Output:

This portion of the code (A)

will get compiled.

Explanation: in this example, we define a macro called MY_MACRO using the #define

MY_MACRO statement (without specifying the replacement value, it is ok, we can do

that with #define). Then we check if this macro is defined with the #ifdef MY_MACRO

preprocessor command. Since it is defined, the source code chunk gets compiled.

Then we proceed to check if some nonexistent macro called NON_EXISTING_MACRO

is defined using the #ifdef NON_EXISTING_MACRO command. It is not, as there is no

previously defined macro with the name of NON_EXISTING_MACRO, and the source

code below gets excluded from the compilation.

Chapter 23 preproCessor

180

23.4.3 #ifndef
The #ifndef directive checks if a macro name is not defined. The directive uses the

following syntax:

#ifndef macro_name

 Our source code

#endif

This directive checks if a given macro name is not defined and, if that is the case,

compiles the portion of source code ending with a #endif directive. Example:

#include <stdio.h>

#define MY_MACRO

int main(void)

{

#ifndef MY_MACRO

 printf("This portion of the code (A)\n");

 printf("will not get compiled.\n");

#endif

#ifndef NON_EXISTING_MACRO

 printf("This portion of the code (B)\n");

 printf("will get compiled.\n");

#endif

}

Output:

This portion of the code (B)

will get compiled.

This example defines a macro called MY_MACRO and then checks if this macro is not

defined. Since the macro is defined earlier, the portion of the source code is skipped and

not compiled.

The example then checks if a NON_EXISTING_MACRO is not defined. This is true, the

macro indeed is not defined, and the source code that follows gets compiled.

Chapter 23 preproCessor

181

We can utilize this directive to define a macro in case it was not already defined.

Example:

#include <stdio.h>

int main(void)

{

#ifndef MY_MACRO

#define MY_MACRO

 printf("Macro defined.\n");

#endif

}

Output:

Macro defined.

This example checks if MY_MACRO is not defined. Since it is not, we continue and define

it in the code that follows. This code is also referred to as a code guard, often used in header

files to avoid multiple file inclusions. We discuss code guards in more detail in later sections.

23.5 Built-in Macros
There are built-in macros we can use. For example, the __LINE__ built-in macro gives us

the line number of the statement in which the macro is used:

#include <stdio.h>

int main(void)

{

 printf("The current source code line is: %d\n", __LINE__);

 printf("This statement is on line: %d\n", __LINE__);

}

Output:

The current source code line is: 5

This statement is on line: 6

Chapter 23 preproCessor

182

The __FILE__ macro gives us (expands to) the name of the source code file:

#include <stdio.h>

int main(void)

{

 printf("This source code file is called: %s\n", __FILE__);

}

Output:

This source code file is called: source2.c

There are also __TIME__ and __DATE__ macros that expand to the time and date

the preprocessor is used. Another built-in macro is the __STDC_VERSION__ macro that

expands to a constant integer value representing the C standard used for compilation.

The __func__ string returns the name of the calling function. Example:

#include <stdio.h>

void myfunction()

{

 printf("This function's name is: %s\n", __func__);

}

int main(void)

{

 myfunction();

}

Output:

This function's name is: myfunction

23.6 Function-Like Macros
There are more complex macros that can accept arguments. These are called function-

like macros. We invoke these macros the same way we call the functions.

Chapter 23 preproCessor

183

Let us write a simple function-like macro that accepts two arguments and expands

into a text that represents the sum of these two arguments:

#include <stdio.h>

#define MY_SUM(x, y) ((x) + (y))

int main(void)

{

 int mysum = MY_SUM(10, 20);

 printf("The result is: %d\n", mysum);

}

Output:

The result is: 30

This example defines a function-like macro that has two parameters x and y. The

macro then expands into a ((x) + (y)) text that uses the same arguments. We used

extra parentheses around parameters in the macro expansion to avoid any operator

precedence issues. In the main program, we call this macro the same way we would

call a function, and we provide two arbitrary arguments 10 and 20. At that point, the

preprocessor substitutes the MY_SUM(10, 20) text with the ((10) + (20)) text. We can

also say the macro MY_SUM(10, 20) expands to ((10) + (20)) text.

We can also use the above macro to sum two floating-point numbers:

#include <stdio.h>

#define MY_SUM(x, y) ((x) + (y))

int main(void)

{

 double mysum = MY_SUM(123.456, 789.101);

 printf("The result is: %.3lf\n", mysum);

}

Output:

The result is: 912.557

Chapter 23 preproCessor

184

This example uses the same macro MY_SUM but with different types of arguments.

Here we used the macro to sum two arguments of type double.

While macro-like functions and macro-programming might look useful at first

glance, they should be avoided for several reasons. Function-like macros are evaluated

twice, do not preserve the type safety, are harder to read, and introduce unnecessary

complexity.

Note prefer real functions to macro-like functions.

Chapter 23 preproCessor

185
© Slobodan Dmitrović 2021
S. Dmitrović, Modern C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6643-4_24

CHAPTER 24

Exercises
24.1 Define and Undefine a Macro
Write a program that defines uses and then undefines a macro. The macro names and

their contents are arbitrary:

#include <stdio.h>

// define the macro

#define MAX 999

int main(void)

{

 printf("Macro defined. The name MAX exists.\n");

 int x = MAX;

 printf("The variable assigned to macro has a value: %d\n", x);

// undefine the macro

#undef MAX

 printf("Macro undefined. The name MAX no longer exists.\n");

}

Output:

Macro defined. The name MAX exists.

The variable assigned to macro has a value: 999

Macro undefined. The name MAX no longer exists.

https://doi.org/10.1007/978-1-4842-6643-4_24#DOI

186

24.2 Conditional Compilation
Write a program that defines an arbitrary macro called MY_CONDITIONAL_MACRO. Perform

a conditional compilation based on existing and nonexisting macros. Utilize the

#define, #ifdef, and #endif directives:

#include <stdio.h>

#define MY_CONDITIONAL_MACRO

int main(void)

{

#ifdef MY_CONDITIONAL_MACRO

 printf("This code will get compiled.\n");

#endif

#ifdef NON_EXISTING_MACRO

 printf("This code will not get compiled.\n");

#endif

}

Output:

This code will get compiled.

24.3 Built-in Macros
Write a program that utilizes built-in macro names. The program prints out the

statement’s line number, the file name, the date when the file was created, the name of

the function called, and the current C standard used:

#include <stdio.h>

void myfunction()

{

 printf("The name of the function called is: %s\n", __func__);

}

Chapter 24 exerCises

187

int main(void)

{

 printf("This statement is on line: %d\n", __LINE__);

 printf("The name of the source file is: %s\n", __FILE__);

 printf("The file was created on: %s\n", __DATE__);

 myfunction();

 printf("The C standard used is: %ld\n", __STDC_VERSION__);

}

Output:

This statement is on line: 10

The name of the source file is: source.c

The file was created on: Nov 18 2020

The name of the function called is: myfunction

The C standard used is: 201112

24.4 Function Macros
Write a program that defines two function-like macros. The first macro accepts two

parameters and returns the lesser out of two values. The second macro also accepts

two parameters and returns the greater out of two arguments. Call the macros in the

main program:

#include <stdio.h>

#define MY_MIN(a, b) (((a) < (b)) ? (a) : (b))

#define MY_MAX(a, b) (((a) > (b)) ? (a) : (b))

int main(void)

{

 int x = 123;

 int y = 456;

Chapter 24 exerCises

188

 printf("The MY_MIN macro expands to: %d.\n", MY_MIN(x, y));

 printf("The MY_MAX macro expands to: %d.\n", MY_MAX(x, y));

}

Output:

The MY_MIN macro expands to: 123.

The MY_MAX macro expands to: 456.

Chapter 24 exerCises

189
© Slobodan Dmitrović 2021
S. Dmitrović, Modern C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6643-4_25

CHAPTER 25

Dynamic Memory
Allocation
So far, we have used pointers that point to regular, statically allocated variables. We

used an address-of operator & to assign the address of an existing object to our pointer.

Example:

#include <stdio.h>

int main(void)

{

 int x = 123;

 int *p = &x;

 printf("The value of a pointed-to object is: %d\n", *p);

}

Output:

The value of a pointed-to object is: 123

We also showed how a pointer could point to an array:

#include <stdio.h>

int main(void)

{

 int arr[] = {10, 20, 30, 40, 50};

 int *p = arr;

 printf("The first array element is: %d\n", *p);

}

https://doi.org/10.1007/978-1-4842-6643-4_25#DOI

190

Output:

The first array element is: 10

or a string constant:

#include <stdio.h>

int main(void)

{

 char *p = "Hello World!";

 printf("String constant: %s\n", p);

}

Output:

String constant: Hello World!

So far, we have used pointers only as another level of indirection for existing objects

in memory.

There is another way we can utilize a pointer. During our program’s execution, we

can dynamically allocate the needed memory, use it, and free it. To do so, we use a

few functions and a pointer. In this section, we discuss the functions and techniques

involved in dynamic memory allocation.

25.1 malloc
The malloc function allocates n bytes of memory from a system and returns a pointer to

the newly allocated memory. The function has the following signature:

void* malloc(size_t size_in_bytes);

We need to include the <stdlib.h> header when using this function. To learn how

to work with this function, we start with small, incomplete code examples and build in

complexity until we have covered all the concepts.

Chapter 25 DynamiC memory alloCation

191

To allocate memory for a single integer, we write:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 int *p = malloc(sizeof(int));

 *p = 123;

 printf("The value is: %d\n", *p);

}

Output:

The value is: 123

Here, the malloc function allocates memory for a single integer. The pointer p

now points at the beginning of the allocated memory block. We used the sizeof(int)

expression to determine how many bytes we need for a single integer:

p

We have allocated space for a single integer. Assuming the size of the int is 4 bytes

on our machine, we have allocated 4 bytes of memory:

p

When we dereference a pointer and assign a value of 123 to a pointed-to object, the

image becomes:

p 123

If we inspect the individual bytes and their hexadecimal values and assume big-

endian, the image might look like:

p 0x00 0x00 0x00 0x7B

Chapter 25 DynamiC memory alloCation

192

If the allocation fails, the function returns NULL. It is good practice to check for the

malloc’s return result using an if statement:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 int *p = malloc(sizeof(int));

 if (p)

 {

 *p = 123;

 printf("The value is: %d\n", *p);

 }

}

Output:

The value is: 123

If we want to check if the result of memory allocation is NULL, we could write:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 int *p = malloc(sizeof(int));

 if (p == NULL)

 {

 printf("Error allocating the memory. Exiting. ");

 return -1;

 }

 *p = 123;

}

Chapter 25 DynamiC memory alloCation

193

Note the previous examples are missing an important piece of code, and that is
the free function.

The expression sizeof(int) could have been rewritten as sizeof *p so that we do

not repeat the type name. The type size_t represents an unsigned integer type often

used for indexing and as a loop counter. It is also the return type of the sizeof operator.

Once allocated, we must manually release (free) the memory when we are done

using it. We do so by using a free() function to which we pass the pointer returned by

malloc as in free(p);. If we left out the free part, we would cause the so-called memory

leak. This means that the dynamically allocated memory (using malloc) is never freed.

We are leaking away available memory. It cannot be allocated again. So, the situation

where we fail to release the dynamically allocated memory is called a memory leak. With

that in mind, let us now write a complete example:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 int *p = malloc(sizeof(int));

 if (p)

 {

 *p = 123;

 printf("The value is: %d\n", *p);

 }

 free(p);

}

Output:

The value is: 123

One school of thought says it is good practice to set the pointer to NULL after we

have freed the memory. While this might not be the case in modern C, we will provide a

simple example:

Chapter 25 DynamiC memory alloCation

194

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 int *p = malloc(sizeof(int));

 if (p)

 {

 *p = 123;

 printf("The value is: %d\n", *p);

 }

 free(p);

 p = NULL;

}

Output:

The value is: 123

Instead of using the sizeof(type_name) expression, we can also use the size of the

dereferenced pointer, sizeof *p, which is the same. Example:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 int *p = malloc(sizeof *p);

 if (p)

 {

 *p = 123;

 printf("The value is: %d\n", *p);

 }

 free(p);

}

Chapter 25 DynamiC memory alloCation

195

Output:

The value is: 123

Let us write an example that allocates space for five integers, sets the values of all five

members, and frees the memory once done:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 int *p = malloc(5 * sizeof(int));

 if (p)

 {

 p[0] = 10;

 p[1] = 20;

 p[2] = 30;

 p[3] = 40;

 p[4] = 50;

 printf("Allocated an array of 5 integers.\n");

 // print out the array

 for (int i = 0; i < 5; i++)

 {

 printf("%d ", p[i]);

 }

 }

 free(p);

}

Output:

Allocated an array of 5 integers.

10 20 30 40 50

Chapter 25 DynamiC memory alloCation

196

In this example, we allocated the space for five integers using the malloc function

and the 5 * sizeof(int) expression. This expression evaluates to a number of bytes

capable of holding five integers. Then we assign the values to each (array) element and

print out the values.

In plain words, the workflow is as follows:

 1. Allocate (reserve/borrow) enough heap (free-store) memory from

the system using a malloc function.

 2. Access and manipulate this memory using a pointer.

 3. Free the memory using a free function which will free (release/

return) the previously allocated memory to the system, so that it

can be allocated again.

We can similarly allocate memory for a char:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 char *p = malloc(sizeof(char));

 if (p)

 {

 *p = 'A';

 printf("The value is: %c\n", *p);

 }

 free(p);

}

Output:

The value is: A

Chapter 25 DynamiC memory alloCation

197

To dynamically allocate a memory space for a structure, we write:

#include <stdio.h>

#include <stdlib.h>

typedef struct

{

 char c;

 int x;

 double d;

} MyStruct;

int main(void)

{

 MyStruct *p = malloc(sizeof(MyStruct));

 if (p)

 {

 p->c = 'A';

 p->x = 123;

 p->d = 456.789;

 printf("The value is: %c\n", p->c);

 printf("The value is: %d\n", p->x);

 printf("The value is: %f\n", p->d);

 }

 free(p);

}

Output:

The value is: A

The value is: 123

The value is: 456.789000

Chapter 25 DynamiC memory alloCation

198

We declare a structure called MyStruct. The structure has three fields, char c, int x,

and double d. We then allocate memory space for one data object of type MyStruct using

a malloc function. The function returns a pointer p. We use this pointer to access our

object in memory and populate the fields using the -> operator. We print out the values

and, finally, free the memory.

This struct–malloc combination is often used when creating data structures in

memory, such as linked lists, binary trees, and similar.

25.2 calloc
The memory block allocated with malloc is uninitialized. Bytes inside this block do not

hold any meaningful values. If we need to allocate space that will be initialized with

zeros, we use the calloc function instead. Unlike malloc, this function accepts two

parameters and has the following signature:

void* calloc(size_t number_of objects, size_t size_of_the_object)

To allocate space for a single integer and fill the allocated memory with zero(s), we

write:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 int *p = calloc(1, sizeof(int));

 if (p)

 {

 printf("The initial value is: %d\n", *p);

 }

 free(p);

}

Output:

The initial value is: 0

Chapter 25 DynamiC memory alloCation

199

The calloc function allocates the memory space needed and initializes all the

allocated bytes with zeros:

p 0x00 0x00 0x00 0x00

To allocate space for a single integer, fill the memory with zeros, and then change the

value of the pointed-to data object in memory, we write:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 int *p = calloc(1, sizeof(int)); // or (1, sizeof *p)

 if (p)

 {

 printf("The initial value is: %d\n", *p);

 *p = 123;

 printf("The new value is: %d\n", *p);

 }

 free(p);

}

Output:

The initial value is: 0

The new value is: 123

To allocate a space for an array of five, initially zeroed-out integers, we write:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 int *p = calloc(5, sizeof(int));

 if (p)

 {

Chapter 25 DynamiC memory alloCation

200

 printf("Initial values:\n");

 for (int i = 0; i < 5; i++)

 {

 printf("%d ", p[i]);

 }

 // set some values and print them out

 printf("\nNew values:\n");

 for (int i = 0; i < 5; i++)

 {

 p[i] = (i + 1) * 10;

 printf("%d ", p[i]);

 }

 }

 free(p);

}

Output:

Initial values:

0 0 0 0 0

New values:

10 20 30 40 50

25.3 realloc
Once we allocate space using malloc or calloc, we can grow or shrink that memory

space using realloc. The realloc function has the following signature:

void *realloc(void *pointer_to_a_previously_allocated_memory, size_t

new_size_in_bytes)

The function takes two parameters. The first is the original pointer, and the second is

the new memory size. The function returns a pointer to the newly allocated/reallocated

memory block. For now, let us start with a simple yet incomplete example with error

checking omitted:

Chapter 25 DynamiC memory alloCation

201

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 int *p = malloc(sizeof(int));

 printf("Allocated %zu bytes.\n", sizeof *p);

 printf("Resizing allocated memory...\n");

 int *pnew = realloc(p, 10 * sizeof(int));

 printf("The memory block is now %zu bytes long.\n", 10 * sizeof(int));

}

Output:

Allocated 4 bytes.

Resizing allocated memory...

The memory block is now 40 bytes long.

This example allocates the memory block large enough to hold a single integer using

the malloc function. It then assigns the address of this newly allocated memory block

to pointer p. We then pass this pointer to the realloc function as a first argument. The

second argument is the new size of a memory block. In our case, we want to expand the

memory block so that it can hold ten integers using the 10 * sizeof(int) expression.

Let us now write a complete example with error checking and properly placed free

functions:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 int *p = malloc(sizeof(int));

 if (p)

 {

 printf("Allocated %zu bytes.\n", sizeof *p);

 }

Chapter 25 DynamiC memory alloCation

202

 int *pnew = realloc(p, 10 * sizeof(int));

 if (pnew)

 {

 printf("Resizing allocated memory...\n");

 printf("The memory block is now %zu bytes long.\n", 10 *

sizeof(int));

 // reallocation successful, free the new pointer

 free(pnew);

 }

 else

 {

 // if reallocation fails, free the original pointer

 free(p);

 }

}

Output:

Allocated 4 bytes.

Resizing allocated memory...

The memory block is now 40 bytes long.

This example allocates space for a single int and then reallocates/grows space so

that it can hold ten integers. If reallocation succeeds, a new pointer is returned, and the

old/original pointer is invalidated. We need to free this new/reallocated pointer using

free(pnew). If reallocation fails, the function returns NULL, and the old/original pointer

is preserved, so we must free the original memory/pointer using free(p).

Chapter 25 DynamiC memory alloCation

203
© Slobodan Dmitrović 2021
S. Dmitrović, Modern C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6643-4_26

CHAPTER 26

Storage and Scope
Variables and data objects have certain properties, such as visibility, scope, storage, and

lifetime. These terms are all closely related, and here we explain how they affect each

other. We describe how names are visible to other names and how much time the data

objects spend in memory.

26.1 Scope
When a variable (or a function) is declared, its name is only valid inside some portion/

section of a source code. That section of a source code is called a scope. There are

different kinds of scopes – local scope and global scope.

26.1.1 Local Scope
A function body starting with the { and ending with a } can be seen as a local scope. It is

local to a function. Variables declared inside a function are visible and accessible only

there. They are not accessible outside the function scope. We say those variables have a

local scope. Example:

#include <stdio.h>

void myFunction(void)

{

 int x = 10; // x is a local variable, local to myFunction

 printf("Local scope variable x value: %d\n", x);

}

https://doi.org/10.1007/978-1-4842-6643-4_26#DOI

204

int main(void)

{

 myFunction();

 int y = 20; // y is a local variable, local to main

 printf("Local scope variable y value: %d\n", y);

}

Output:

Local scope variable x value: 10

Local scope variable y value: 20

In this example, x is only visible and accessible within the myFunction and nowhere

else. Similarly, y is only visible inside the function main and nowhere else.

26.1.2 Global Scope
When we look at the source file as a whole, we are looking at the file scope or a global

scope. Everything declared inside a file scope is accessible and visible to everything else

in the file scope that follows its declaration. Example:

#include <stdio.h>

int x = 123; // x has a global scope

int main(void)

{

 printf("X has a global scope and a value of: %d\n", x);

}

Output:

X has a global scope and a value of: 123

Chapter 26 Storage and SCope

205

Variables and functions (names) inside a global scope are visible to names in a local

scope. Example:

#include <stdio.h>

int x = 123; // x has a global scope

void printX(void)

{

 // x is visible here because it has a global scope

 printf("X has a global scope and a value of: %d\n", x);

}

int main(void)

{

 printX();

}

Output:

X has a global scope and a value of: 123

Names in a local scope are not visible to names inside a global scope. Example:

#include <stdio.h>

void myFunction(void)

{

 int x = 123; // x has a local scope

 // and is only visible in this block

}

// x is not visible here because it has a local scope

int main(void)

{

 // x is not visible here because it has a local scope

}

Chapter 26 Storage and SCope

206

26.2 Storage
Every data object has its storage or storage duration. The storage duration determines the

object’s lifetime. The lifetime is a period of time (while our program is executing) during

which the object occupies a memory. There are different kinds of storage durations. Here

we discuss a few.

26.2.1 Automatic Storage Duration
The default storage duration is automatic storage duration. This storage is allocated when

the control flow enters the block in which the data object is declared. It is automatically

deallocated when the control flow exits the block marked with }. Here we can say the

scope determines the lifetime of automatic storage variables. When our program’s control

flow reaches the function’s closing brace (}), the variable goes out of scope. Once it goes

out of scope, it gets destroyed, and the previously occupied memory is automatically

released. The automatic storage is often referred to as stack memory. Example:

#include <stdio.h>

int main(void)

{

 int x = 123; // x is declared here

 printf("Variable x has automatic storage and a value of: %d\n", x);

} // x goes out of scope here

Output:

Variable x has automatic storage and a value of: 123

Our variable x is declared inside a function main. This variable’s storage is

allocated when our program starts when the control flow enters the main’s { brace and

deallocated when the control flow hits the closing brace }. Here, the x goes out of scope,

and the memory it occupied is automatically released. The same applies to user-defined

functions:

Chapter 26 Storage and SCope

207

#include <stdio.h>

void myFunction(void)

{

 int x = 123; // x is declared here

 printf("Variable x has an automatic storage and a value of: %d\n", x);

} // x goes out of scope here

int main(void)

{

 myFunction();

}

Output:

Variable x has an automatic storage and a value of: 123

26.2.2 Static Storage Duration
When we apply a static specifier to our variable declaration, our data object then has a

static storage duration. It remains in memory throughout the execution of our program.

Objects marked with static and objects declared in global/file scope have this duration.

The static storage duration object is initialized only once and preserves its (last) value

across multiple function calls. Example:

#include <stdio.h>

void myCounter(void)

{

 static int x = 10; // initialized only once

 x++;

 printf("Static variable value: %d\n", x);

}

Chapter 26 Storage and SCope

208

int main(void)

{

 myCounter(); // x == 11

 myCounter(); // x == 12

 myCounter(); // x == 13

}

Output:

Static variable value: 11

Static variable value: 12

Static variable value: 13

Also, applying the static specifier to a variable or a function declared inside the

global (file) scope makes them visible only inside that file/translation unit.

26.2.3 Allocated Storage Duration
Objects that are dynamically allocated have a so-called allocated storage duration. This

means the storage for these objects dynamically changes throughout the execution of

our program. We manually allocate memory for an object, use it, and then manually

deallocate it when we no longer need it. It is our responsibility to manually and explicitly

free the memory once we no longer need it. Objects with allocated storage duration

do not automatically deallocate the memory once they go out of scope. We need to

deallocate the memory manually. Example:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 printf("Allocating an object...\n");

 int *p = malloc(sizeof(int));

 *p = 123;

 printf("Object with allocated storage has a value of: %d\n", *p);

Chapter 26 Storage and SCope

209

 printf("Deallocating an object...\n");

 free(p);

 printf("Done.\n");

}

Output:

Allocating an object...

Object with allocated storage has a value of: 123

Deallocating an object...

Done.

Objects allocated with malloc, calloc, and realloc have an allocated storage

duration.

Chapter 26 Storage and SCope

211
© Slobodan Dmitrović 2021
S. Dmitrović, Modern C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6643-4_27

CHAPTER 27

Exercises
27.1 Dynamic Memory Allocation
Write a program that dynamically allocates space for a single double using the size of

a type and a space for a single int using a dereferenced pointer size. Free the memory

blocks afterward:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 // allocate space for a double

 double *p1 = malloc(sizeof(double));

 if (p1)

 {

 *p1 = 123.456;

 printf("The value is: %f\n", *p1);

 }

 free(p1);

 // allocate space for an int

 int *p2 = malloc(sizeof *p2);

 if (p2)

 {

 *p2 = 789;

 printf("The value is: %d\n", *p2);

 }

 free(p2);

}

https://doi.org/10.1007/978-1-4842-6643-4_27#DOI

212

Output:

The value is: 123.456000

The value is: 789

27.2 Dynamic Memory Allocation: Arrays
Write a program that dynamically allocates space for an array of five doubles. Using a for

loop, set and print out all the array elements. Free the memory afterward:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 // allocate space for 5 doubles

 double *p = malloc(5 * sizeof(double));

 if (p)

 {

 printf("The values are:\n");

 for (int i = 0; i < 5; i++)

 {

 p[i] = i;

 printf("%.2f ", p[i]);

 }

 }

 free(p);

}

Output:

The values are:

0.00 1.00 2.00 3.00 4.00

Chapter 27 exerCises

213

27.3 Dynamic Memory Resizing
Write a program that dynamically allocates memory for an array of five integers and

then resizes the allocated block so that it can now hold an array of ten integers. Free the

memory afterward:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 int *p = malloc(5 * sizeof(int));

 if (p)

 {

 printf("Allocated %zu bytes.\n", 5 * sizeof(int));

 }

 int *pnew = realloc(p, 10 * sizeof(int));

 if (pnew)

 {

 printf("Resizing allocated memory...\n");

 printf("The memory block is now %zu bytes long.\n", 10 *

sizeof(int));

 // resizing successful, free the realloc pointer

 free(pnew);

 }

 else

 {

 // resizing fails, free the original pointer

 free(p);

 }

}

Output:

Allocated 20 bytes.

Resizing allocated memory...

The memory block is now 40 bytes long.

Chapter 27 exerCises

214

27.4 Automatic and Allocated Storage
Write a program that defines two variables. The first variable will have an automatic

storage duration, and the second variable will have an allocated storage duration:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 int x = 123;

 printf("The variable with an automatic storage duration: %d\n", x);

 int *p = malloc(sizeof(int));

 printf("The variable with an allocated storage duration: %p\n",

(void *)p);

 free(p); // p is manually freed here

} // x is automatically freed here

Output:

The variable with an automatic storage duration: 123

The variable with an allocated storage duration: 0x555fd1ec16b0

Chapter 27 exerCises

215
© Slobodan Dmitrović 2021
S. Dmitrović, Modern C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6643-4_28

CHAPTER 28

Standard Input and
Output
The C standard library provides functions that allow us to accept data/characters from

the standard input and to output data/characters to the standard output. The standard

input is usually a keyboard. The standard output is usually a monitor/console window to

which we output the data.

28.1 Standard Input
This chapter describes a few functions that allow us to accept data from the standard

input/keyboard. Here, we mention the scanf and the fgets functions. Worth noticing is

that these functions are not part of the language per se, but rather a part of the standard

library.

28.1.1 scanf
The scanf function allows us to accept the formatted data from the standard input and

store it into a variable(s). The function is declared inside the <stdio.h> header and has

the following signature:

int scanf(const char* format, …)

The function accepts the following arguments: format specifiers and addresses of

variables that will store/hold the input data. The format specifier interprets/formats the

data from the standard input. The addresses of variables are used for storing the read

data. The function returns the number of successfully assigned variables or EOF on error.

To accept a single character from a keyboard and store it into our char variable, we

would use the %c format specifier and an address of a char variable:

https://doi.org/10.1007/978-1-4842-6643-4_28#DOI

216

#include <stdio.h>

int main(void)
{
 printf("Enter a single character: ");
 char mychar;
 scanf("%c", &mychar);
 printf("You entered: %c\n", mychar);
}

Output:

Enter a single character: a
You entered: a

To accept an integer number from a keyboard and store it into our int variable, we
use the %d format specifier and an address of an int variable. Example:

#include <stdio.h>

int main(void)
{
 printf("Enter an integer number: ");
 int x;
 scanf("%d", &x);
 printf("You entered: %d\n", x);
}

Output:

Enter an integer number: 123
You entered: 123

To accept multiple values from the standard input, we can use multiple format
specifiers separated by spaces and multiple addresses of variables, separated by
commas. For example, to accept an int and a double from a keyboard, we write:

#include <stdio.h>

int main(void)

Chapter 28 Standard Input and Output

217

{

 printf("Enter an integer and a double: ");

 int x;

 double d;

 scanf("%d %lf", &x, &d);

 printf("You entered: %d and %lf\n", x, d);

}

Output:

Enter an integer and a double: 123 456.789

You entered: 123 and 456.789000

Note the scanf function does not perform bounds checking and can cause a
buffer overflow.

28.1.2 sscanf
The sscanf function reads from a character array buffer instead of a standard input.
It stores the read data into a comma-separated list of variables based on the provided
format specifiers. The function has the following syntax:

int sscanf (const char * buffer, const char * format, …);

To extract a character array buffer into separate variables, we write:

#include <stdio.h>

int main(void)
{
 char buff[50] = "A 123 456.789";
 char c;
 int x;
 double d;
 sscanf(buff, "%c %d %lf", &c, &x, &d);
 printf("The values are: %c, %d and %lf\n", c, x, d);

}

Chapter 28 Standard Input and Output

218

Output:

The values are: A, 123 and 456.789000

In this example, the character buffer of "A 123 456.789" is matched by a "%c %d

%f" format descriptor inside the sscanf function. If the string in the buffer contained

the comma-separated values of "A,123,456.789", we would match those with the

"%c,%d,%f" specifier in the sscanf function.

28.1.3 fgets
When accepting a string, it is better to use a fgets function instead of scanf. The scanf

can cause the so-called buffer overflow. A buffer overflow occurs when the number of

characters read is greater than the buffer size. It occurs when trying to accept a string

larger than the buffer size. The fgets function is safe in that regard and does not cause

the mentioned error. The fgets function is defined inside the <stdio.h> header, accepts

three parameters, and has the following signature:

char *fgets(char *str, int how_many_characters, FILE *stream_name);

The fgets function reads the input/characters from the given stream and stores

the read characters into a character array/buffer pointed to by str. The function

stops reading the input when we press ENTER, that is, when a newline character is

encountered in a stream. To read (accept an input) from a keyboard, we pass in the

stdin parameter representing our keyboard.

The following example reads the input from the keyboard and stores it into our

character array. A simple example with error checking omitted:

#include <stdio.h>

int main(void)

{

 // error checking omitted

 printf("Enter a string: ");

 char str[10];

 fgets(str, 10, stdin);

 printf("You entered: %s\n", str);

}

Chapter 28 Standard Input and Output

219

Output:

Enter a string: Sample string

You entered: Sample st

This example accepts an input from the keyboard and stores it into an str buffer.

It does so by accepting at most nine characters, reserving the tenth place for the null

character ‘\0’. Any remaining characters are discarded.

We provide the pointer to buffer str, a simple array of ten characters. We then tell

the fgets function how many characters it should accept: 10 (actually 9 as the tenth

place is reserved for null character). This number is often the same as the array size.

Finally, with the third argument, we tell the function where to accept the input from,

which is a keyboard in our case (represented by stdin).

If the function succeeds, it returns the pointer to the buffer we provided, str in our

case. If it fails, the function returns NULL. Here is a full example with the error checking:

#include <stdio.h>

int main(void)

{

 printf("Enter a string: ");

 char str[10];

 if (fgets(str, 10, stdin) != NULL)

 {

 printf("You entered: %s\n", str);

 }

 else

 {

 printf("Failure. No characters are read.\n");

 }

}

Output:

Enter a string: Sample string

You entered: Sample st

Chapter 28 Standard Input and Output

220

28.2 Standard Output
This section describes the functions that allow us to write/output data to a standard
output stream, which in most cases is our console window.

28.2.1 printf
The printf function sends/outputs a formatted string to standard output. It can read our
variables, format them according to the format specifier, and place them in an output
string. The function has the following signature:

int printf(const char *message, optional_var1, optional_var2...);

To output a simple string to our console window, we write:

#include <stdio.h>

int main(void)
{
 printf("This message ends with a new-line character.\n");
}

Output:

This message ends with a new-line character.

To output the values of our variables, we write:

#include <stdio.h>

int main(void)
{
 char c = 'A';
 int x = 123;
 double d = 456.789;
 printf("The values are: %c, %d, and %3.2lf\n", c, x, d);
}

Output:

The values are: A, 123, and 456.79

Chapter 28 Standard Input and Output

221

Here we used three different format specifiers %c, %d, and %f to format char, int, and

double values. The format specifier describes how the content of our variable should be

formatted for the output. The format specifier also acts as a placeholder for the values, a

placeholder within the output string.

The format specifier can also include the length/the number of characters needed to

output our value. For example, to output a double value of 123.456 using three character

spaces for an integral part and two spaces for the fractional part, we use the %3.2f format

specifier:

#include <stdio.h>

int main(void)

{

 double d = 123.456;

 printf("%3.2lf\n", d);

}

Output:

123.46

This example displays a rounded second decimal. The value of the variable remains

unchanged.

The following list includes some of the most used format specifiers:

%c – writes one character, used for type char

%s – writes a string, used for char arrays

%d or %i – writes (converts) an integer, used for types char, short,

or int

%u - used for unsigned char, unsigned short, or unsigned int

%ld – outputs a long int

%f – outputs a float or a double value into a decimal

representation

%lf – outputs a double value into a decimal representation

x – writes a hexadecimal representation of char, short, or int

Chapter 28 Standard Input and Output

222

28.2.2 puts
This function simply writes a string and a newline character to the standard output

(a console window). The function is defined inside the <stdio.h> header and has the

following syntax:

int puts(const char *message);

To use this function, we type:

#include <stdio.h>

int main(void)

{

 puts("This is a puts() message.");

}

Output:

This is a puts() message.

The function outputs a simple message to the standard output. It also adds an extra

newline character to the output string. This saves us from having to explicitly type the \n

character at the end of our message.

28.2.3 fputs
Another function for writing to the output stream is fputs. The function writes the

null-terminated string to the chosen output stream. This function is defined inside the

<stdio.h> header and has the following signature:

int fputs(const char *message, FILE *stream_name);

Chapter 28 Standard Input and Output

223

To write to the standard output, we supply the message string and the stdout

parameter for the standard output. Example:

#include <stdio.h>

int main(void)

{

 fputs("This is a fputs() message.\n", stdout);

}

Output:

This is a fputs() message.

28.2.4 putchar
The putchar function outputs/writes a character to the standard output. The function is

declared inside a <stdio.h> header and has the following syntax:

int putchar (int ch);

To write a single character to the standard output, we use:

#include <stdio.h>

int main(void)

{

 char c = 'A';

 putchar(c);

}

Output:

A

Chapter 28 Standard Input and Output

224

To print out a character array, one character at a time, without error checking,

we write:

#include <stdio.h>

int main(void)

{

 char arr[] = "Hello!";

 for (size_t i = 0; i < 7; i++)

 {

 putchar(arr[i]);

 }

}

Output:

Hello!

If the function fails to print the character, it returns an int value equal to EOF.

Chapter 28 Standard Input and Output

225
© Slobodan Dmitrović 2021
S. Dmitrović, Modern C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6643-4_29

CHAPTER 29

File Input and Output
A file is an array of bytes, usually stored on mediums such as drives. We can write to and

read from a file using a few C standard-library functions. The following sections explain

the workflow and the functions used.

29.1 File Input
To be able to read from a file, we need to utilize a couple of functions. The workflow is as

follows:

• Open a file for reading using the fopen function.

• Read a line of text from a file using the fgets function.

• Close the file using the fclose function when done.

Let us first create a text file called myfile.txt and fill it with arbitrary text. We then

place the text file in the same folder as our executable. A simple example with error

checking omitted:

#include <stdio.h>

int main(void)

{

 char str[100];

 FILE *fp = fopen("myfile.txt", "r"); // open a file

 while (fgets(str, 100, fp) != NULL) // read line of text

 {

 printf("%s", str); // print the line of text

 }

 fclose(fp); // close the file

}

https://doi.org/10.1007/978-1-4842-6643-4_29#DOI

226

Possible Output:

This is line no. 1

Sample text

Hello World!

The statement FILE *fp = fopen("myfile.txt", "r"); opens a file for reading

using the fopen function. The fopen function returns a pointer to a file stream

represented by a FILE * type. The function accepts two parameters. The first parameter

is a file name, in our case "myfile.txt". The second parameter is a read mode, in our

case "r", which specifies we are opening a file for reading.

Then, inside a loop, we read from a file, one line at the time, using the fgets

function: while (fgets(str, 100, fp) != NULL).

Inside the while loop, we print out the read lines using the printf function. When

we reach the end of the file, the fgets function returns NULL and the while loop exits.

Finally, we close the file handle by using the fclose(fp); statement. All these

functions are defined inside the <stdio.h> header.

To check if the file can be opened, we inspect the pointer’s value using the if (!fp)

expression. If it is NULL, the opening of a file failed, and we exit the program:

#include <stdio.h>

int main(void)

{

 char str[100];

 FILE *fp = fopen("myfile.txt", "r"); // open a file for reading

 if (!fp)

 {

 printf("Error opening the file. Exiting...\n");

 return 1; // exit the program with an error

 }

 while (fgets(str, 100, fp) != NULL) // read line of text

 {

 printf("%s", str); // print line of text

 }

 fclose(fp); // close the file

}

Chapter 29 File input and Output

227

Possible Output:

This is line no. 1

Sample text

Hello World!

29.2 File Output
To write to a file, we use several functions in a sequence. The workflow when writing to a

file is:

• Open a file for writing using the fopen function.

• Write to a file using the fprintf function.

• When done writing, close the file using the fclose function.

The following example creates a file named myfile.txt and writes a single line of

text to it:

#include <stdio.h>

int main(void)

{

 FILE *fp = fopen("myfile.txt", "w"); // open a file for writing

 fprintf(fp, "%s", "my line of text"); // write a line of text

 fclose(fp); // close the file

}

This statement opens/creates a file for writing: FILE *fp = fopen("myfile.txt",

"w");. The fopen function returns a pointer to the file stream which is our fp. We then

use the fprintf function to write a single line of text to this stream/file. The fprintf

function is similar to fprint but accepts one more parameter, which is our pointer to a

file stream.

When done writing, we need to close the file handle by passing a file pointer fp to

our fclose function using the fclose(fp); statement.

Chapter 29 File input and Output

228

To write two lines of text, we use the following example:

#include <stdio.h>

int main(void)

{

 FILE *fp = fopen("myfile.txt", "w"); // open a file for writing

 fprintf(fp, "%s\n%s", "Line 1", "Line 2"); // write two lines

 fclose(fp); // close the file

}

Chapter 29 File input and Output

229
© Slobodan Dmitrović 2021
S. Dmitrović, Modern C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6643-4_30

CHAPTER 30

Exercises
30.1 Standard Input
Write a program that accepts two variables of type int and double from the standard

input. Use the fgets function to store the input into a buffer. Use the sscanf function to

extract the buffer into variables:

#include <stdio.h>

int main(void)

{

 printf("Enter an int and a double and press <enter>: \n");

 char buffer[50];

 int x;

 double d;

 // read the input and store it into a buffer string

 if (fgets(buffer, 50, stdin) != NULL)

 {

 // read from a buffer string into our variables

 sscanf(buffer, "%d %lf", &x, &d);

 printf("You entered: %d and %lf\n", x, d);

 }

 else

 {

 printf("Failure. No characters are read.\n");

 }

}

https://doi.org/10.1007/978-1-4842-6643-4_30#DOI

230

Output:

Enter an int and a double and press <enter>:

123 456.789

You entered: 123 and 456.789000

30.2 Standard Output
Write a program that defines several variables of built-in types. Print the variables using

the appropriate format specifiers inside the printf function:

#include <stdio.h>

int main(void)

{

 char c = 'A';

 int x = 123;

 double d = 456.789;

 size_t size = sizeof(long);

 int *p = &x;

 long l = 12345678910L;

 char str[] = "Hello World!";

 printf("Type char: %c\n", c);

 printf("Type int: %d\n", x);

 printf("Type double: %f\n", d);

 printf("Type size_t: %zu\n", size);

 printf("Pointer type: %p\n", (void *)p);

 printf("Type long: %ld\n", l);

 printf("Character array: %s\n", str);

}

Chapter 30 exerCises

231

Output:

Type char: A

Type int: 123

Type double: 456.789000

Type size_t: 8

Pointer type: 0x7ffcc5acd424

Type long: 12345678910

Character array: Hello World!

Chapter 30 exerCises

233
© Slobodan Dmitrović 2021
S. Dmitrović, Modern C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6643-4_31

CHAPTER 31

Header and Source Files
Our C source code can be divided into multiple files called header files and source files.

These files are plain text files containing C source code. By convention, the header files

have the .h extension, and source files have the .c extension. Other extensions are also

possible.

Standard-library header files are included by surrounding the header name with

angle brackets <> as in:

#include <stdio.h>

And user-defined header files are included by surrounding the header file name with

double quotes:

#include "someheader.h"

In general, we can place variable and function declarations/interfaces in header

files, and we can place the implementation/definitions in source files. In simple words,

we declare things in header files, include that header file in the source files, and define

things in source files. This way, we can organize the code and separate the declarations

from the definitions.

The compiler does not make a distinction between the header and the source files.

When the compilation begins, the content of the included header is stitched together

with the source file. This produces one source code file, the so-called translation unit.

So, having the #include "someheader.h" is the same as if we manually typed the header

file’s entire content in our source file.

https://doi.org/10.1007/978-1-4842-6643-4_31#DOI

234

Having declarations in header files allows us to share these declarations with

multiple source files. For example, let us create a header file titled myutils.h where we

declare some function, for example:

#include <stdio.h>

void myFunction();

Let us then create a source file called myutils.c where we include this header and

define a function:

#include "myutils.h"

void myFunction()

{

 printf("Declared in a header file and defined in a source file.\n");

}

Finally, we include the myutils.h header in our main source.c file and call the

function:

#include <stdio.h>

#include "myutils.h"

int main(void)

{

 myFunction();

}

Output:

Declared in a header file and defined in a source file.

To compile this program, we must compile all the source files:

gcc -Wall source.c myutils.c -std=c11 -pedantic && ./a.out

Chapter 31 header and SourCe FileS

235

One final thing left to do is to have the code guards in the shared header file. Code

guard is a macro that prevents the inclusion of the header file contents more than once.

Now our myutils.h header looks like:

#ifndef MY_UTILS_H

#define MY_UTILS_H

#include <stdio.h>

void myFunction();

#endif

We still include our header file in multiple files using the #include "myutils.h"

directive. But, now, the code guards ensure that the header file source code is included

only once when compiling multiple files. As before, we compile with:

gcc -Wall source.c myutils.c -std=c11 -pedantic && ./a.out

Chapter 31 header and SourCe FileS

PART II

The C Standard Library

239
© Slobodan Dmitrović 2021
S. Dmitrović, Modern C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6643-4_32

CHAPTER 32

Introduction to C Standard
Library
The C compiler is accompanied by a number of useful functions and macros called the

C standard library. These functions are defined in standard-library header files. To use

the C standard-library functions, we simply include the appropriate header into our

program. Here are some of the C standard-library headers:

Available in all C standards:

<assert.h> Assertion macros

<ctype.h> Utils for individual characters

<errno.h> Macros reporting error conditions

<float.h> Floating type limits

<limits.h> Sizes of basic types

<locale.h> Localization utils

<math.h> Math functions

<setjmp.h> Jumps

<signal.h> Signal functions

<stdarg.h> Variable arguments

<stddef.h> Common macros

<stdio.h> Input and output functions

(continued)

https://doi.org/10.1007/978-1-4842-6643-4_32#DOI

240

<stdlib.h> General utilities for memory, string and program flow

<string.h> String manipulation functions

<time.h> Time and date

<wchar.h> Multibyte and wide characters utilities

<wctype.h> Wide character types

<iso646.h> Macros for alternative operator spellings

Available since C99:

<complex.h> Complex number arithmetic

<fenv.h> Floating-point environment

<inttypes.h> Format conversion of integer types

<stdbool.h> Type bool

<stdint.h> Fixed-width integer types

<tgmath.h> Generic math and complex macros

Available since C11:

<threads.h> Thread library

<stdalign.h> alignas and alignof macros

<stdatomic.h> Atomic types

<stdnoreturn.h> noreturn macros

<uchar.h> UTF-16 and UTF-32 utils

The following sections describe some of the most used functions inside the library.

32.1 String Manipulation
Here we describe a couple of useful functions we use to manipulate our character arrays

(strings).

ChApTer 32 InTrodUCTIon To C STAndArd LIbrAry

241

32.1.1 strlen
The strlen function returns the number of characters inside a null-terminated character
array, excluding the null-terminating character. The function is of the following
signature:

sizet_t strlen (const char* str);

To use this function, we include the <string.h> header and supply a character array
as an argument. Example:

#include <stdio.h>
#include <string.h>

int main(void)
{
 const char str[] = "How many characters here?";
 size_t myStrLength = strlen(str);
 printf("The string contains %zu characters.\n", myStrLength);
}

Output:

The string contains 25 characters.

We could rewrite the above example to use a const char *p pointer to a character
string:

#include <stdio.h>
#include <string.h>

int main(void)
{
 const char *p = "How many characters here?";
 size_t myStrLength = strlen(p);
 printf("The string contains %zu characters.\n", myStrLength);
}

Output:

The string contains 25 characters.

ChApTer 32 InTrodUCTIon To C STAndArd LIbrAry

242

32.1.2 strcmp
The strcmp function compares two strings. If strings are equal, the function returns the

value of 0. If strings are not equal, the function returns a value of either < 0 or > 0. The

function compares strings one character at a time. When a character from the left-hand

string does not match the character from the right-hand-side string, the function can

either:

 – Return a value less than 0 if unmatched left-hand side character

comes before the right-hand side character in lexicographical order

 – Return a value greater than 0 if unmatched left-hand side character

comes after the right-hand side character in lexicographical order

For the most part, we will be checking if two strings are equal. Example:

#include <stdio.h>

#include <string.h>

int main(void)

{

 const char *str1 = "Hello World!";

 const char *str2 = "Hello World!";

 if (strcmp(str1, str2) == 0)

 {

 printf("The strings are equal.\n");

 }

 else

 {

 printf("The strings are not equal.\n");

 }

}

Output:

The strings are equal.

ChApTer 32 InTrodUCTIon To C STAndArd LIbrAry

243

32.1.3 strcat
The strcat function concatenates two strings. It appends the source_str string to the

destination_str string. The function is of the following signature:

char *strcat(char *destination_str, const char *source_str);

To concatenate two strings, we write:

#include <stdio.h>

#include <string.h>

int main(void)

{

 char destination_str[30] = "Hello ";

 char source_str[30] = "World!";

 strcat(destination_str, source_str);

 printf("The concatenated string is: %s\n", destination_str);

}

Output:

The concatenated string is: Hello World!

The destination string array must be large enough to accept the concatenated string.

32.1.4 strcpy
The strcpy function copies one string to another. It copies the characters from the

source_str string to the destination_str string. The function signature is:

char *strcpy(char *destination_str, const char *source_str);

To copy one string to another, we write:

#include <stdio.h>

#include <string.h>

int main(void)

{

ChApTer 32 InTrodUCTIon To C STAndArd LIbrAry

244

 char destination_str[30];

 char source_str[30] = "Hello World!";

 strcpy(destination_str, source_str);

 printf("The copied string is: %s\n", destination_str);

}

Output:

The copied string is: Hello World!

The destination array must be large enough to accommodate the copied characters,

including the (invisible) null terminating character.

32.1.5 strstr
The strstr function searches for a substring inside a string. It returns the first position at

which the substring is found. The function is of the following signature:

char *strstr(const char* string, const char* substring);

To search for a substring within a string, we write:

#include <stdio.h>

#include <string.h>

int main(void)

{

 char myString[] = "Hello World!";

 char mySubstring[] = "World";

 if (strstr(myString, mySubstring))

 {

 printf("Substring found.\n");

 }

 else

 {

 printf("Substring not found.\n");

 }

}

ChApTer 32 InTrodUCTIon To C STAndArd LIbrAry

245

Output:

Substring found.

To print out the position at which the substring was found, we subtract the original
string’s address from the strstr’s function return value as in posFound - myString.
Remember, array names get converted to pointers when used as function arguments.
Subtracting pointers gives us a position of a substring:

#include <stdio.h>
#include <string.h>

int main(void)
{
 char myString[] = "Hello World!";
 char mySubstring[] = "World";
 char *posFound = strstr(myString, mySubstring);
 if (posFound)
 {
 printf("Substring found at position: %ld.\n", posFound - myString);
 }
 else
 {
 printf("Substring not found.\n");
 }
}

Output:

Substring found at position: 6.

32.2 Memory Manipulation Functions
The C standard library provides several functions that allow us to work with bytes inside
memory blocks. For example, these functions allow us to set the values of the entire
memory block, copy bytes from one memory block to another, compare memory blocks,

and more. Note that type unsigned char can be used to represent a single byte.

ChApTer 32 InTrodUCTIon To C STAndArd LIbrAry

246

32.2.1 memset
The memory obtained through malloc is not initialized. The allocated memory blocks

hold no meaningful values. Trying to read uninitialized memory will result in undefined

behavior. Earlier, we have used the calloc function to allocate and initialize the memory

blocks to zero.

Another way to initialize the memory is through a memset function declared inside

the <string.h> header file. The function has the following signature:

void *memset(void *destination, int value, size_t N);

The function accepts a pointer to allocated memory here called destination, the

value to fill the allocated bytes, and the memory block’s size in bytes, here named N.

To allocate space for five integers and then fill the entire memory block/all the bytes

in the allocated memory with zeros, we write:

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int main(void)

{

 int *p = malloc(5 * sizeof(int));

 if (p)

 {

 memset(p, 0, 5 * sizeof(int));

 for (int i = 0; i < 5; i++)

 {

 printf("%d ", p[i]);

 }

 }

 free(p);

}

Output:

0 0 0 0 0

ChApTer 32 InTrodUCTIon To C STAndArd LIbrAry

247

32.2.2 memcpy
The memcpy function copies N bytes/characters from a memory location/block pointed to

by source, to a memory area pointed to by destination. The function is of the following

signature:

void* memcpy(void *destination, const void *source, size_t N);

The function interprets memory bytes as unsigned char. The function is defined

inside the <string.h> header. For example, to copy 5 bytes from one string array to

another string array, we write:

#include <stdio.h>

#include <string.h>

int main(void)

{

 char source[] = "Hello World.";

 char destination[5];

 memcpy(destination, source, sizeof destination);

 printf("The source is: %s\n", source);

 printf("The destination after copying 5 characters is:\n");

 // write a character, one by one using putchar() function

 for (size_t i = 0; i < sizeof destination; i++)

 {

 putchar(destination[i]);

 }

}

Output:

The source is: Hello World.

The destination after copying 5 characters is:

Hello

This example copies five characters from a source array to a destination array and

uses the putchar() function to print out the destination characters one by one.

ChApTer 32 InTrodUCTIon To C STAndArd LIbrAry

248

To copy an array of elements into a dynamically allocated memory block, we write:

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int main(void)

{

 int myArr[] = {10, 20, 30, 40, 50};

 // allocate space for 5 integers

 int *p = malloc(5 * sizeof(int));

 // copy bytes from an array to an allocated space

 memcpy(p, myArr, 5 * sizeof(int));

 printf("Copied bytes from an array to an allocated space. The values

are:\n");

 for (int i = 0; i < 5; i++)

 {

 printf("%d ", p[i]);

 }

 free(p);

}

Output:

Copied bytes from an array to an allocated space. The values are:

10 20 30 40 50

To copy a struct data object into another struct object, we write:

#include <stdio.h>

#include <string.h>

typedef struct

{

 char c;

 int x;

 double d;

} MyStruct;

ChApTer 32 InTrodUCTIon To C STAndArd LIbrAry

249

int main(void)

{

 MyStruct source, destination;

 source.c = 'a';

 source.x = 123;

 source.d = 456.789;

 memcpy(&destination, &source, sizeof(destination));

 printf("The result after copying bytes from source to destination:\n");

 printf("Member destination.c has a value of: %c\n", destination.c);

 printf("Member destination.x has a value of: %d\n", destination.x);

 printf("Member destination.d has a value of: %f\n", destination.d);

}

Output:

The result after copying bytes from source to destination:

Member destination.c has a value of: a

Member destination.x has a value of: 123

Member destination.d has a value of: 456.789000

Here, we declared two variables of type MyStruct, called source and destination.

We populate the data of the source struct and then copy individual bytes of source into

destination using memcpy function. Since the memcpy function accepts pointers, we use

our structs’ addresses: &destination and &source. Now both structs have identical data.

32.2.3 memcmp
The memcmp function compares the first N bytes from the memory block pointed by p1

to the first N bytes pointed to by p2. The function returns 0 if the byte values match. The

function has the following signature:

int memcmp(const void* p1, const void* p2, size_t N);

To compare two arrays byte by byte using memcmp, we write:

#include <stdio.h>

#include <string.h>

ChApTer 32 InTrodUCTIon To C STAndArd LIbrAry

250

int main(void)

{

 int arr1[] = {10, 20, 30, 40, 50};

 int arr2[] = {10, 20, 20, 40, 50};

 int myResult = memcmp(arr1, arr2, 5 * sizeof(int));

 if (myResult == 0)

 {

 printf("The arrays values match.\n");

 }

 else

 {

 printf("The arrays values do not match.\n");

 }

}

Output:

The arrays values do not match.

This example compares the individual bytes of arr1 and arr2. It compares the first

20 bytes of both arrays. Remember, the size of int is 4, times 5 elements, equals 20 bytes

in total, the number calculated using the 5 * sizeof(int) expression. Since the arrays

are not equal, the function returns a value other than 0.

If the bytes do not match, the memcmp function can return one of the following:

 a. <0, if the first byte that does not match has a lower value in p1

than in p2

 b. >0, if the first byte that does not match has a higher value in p1

than in p2

The memcmp function is a convenient way to compare two data objects in memory,

byte by byte.

ChApTer 32 InTrodUCTIon To C STAndArd LIbrAry

251

32.2.4 memchr
The memchr function searches for a particular byte c in the initial N characters within a

memory block pointed to by p. The function is declared inside the <string.h> header

and is of the following signature:

void* memchr(const void* p, int c, size_t N);

The function searches for the first occurrence of c, and if the byte/char is found, the

function returns a pointer to the location of c. If the byte value is not found, the function

returns a NULL. Internally, the c byte is interpreted as unsigned char. The following

example searches for a byte with a value of 'W' inside a "Hello World!" character array:

#include <stdio.h>

#include <string.h>

int main(void)

{

 char mystr[] = "Hello World!";

 char *pfound = memchr(mystr, 'W', strlen(mystr));

 if (pfound != NULL)

 {

 printf("Character/byte found at: %s\n", pfound);

 }

 else

 {

 printf("Character/byte not found: %s\n", pfound);

 }

}

Output:

Character/byte found at: World!

32.3 Mathematical Functions
The C standard library provides a set of useful mathematical functions. The functions are

defined inside different header files. Here we discuss some of the most widely used ones.

ChApTer 32 InTrodUCTIon To C STAndArd LIbrAry

252

32.3.1 abs
The abs function returns an absolute value of an integer argument. The function is

defined inside the <stdlib.h> header. Example:

#include <stdlib.h>

#include <stdio.h>

int main(void)

{

 int x = -123;

 int y = 456;

 printf("The absolute value of x is: %d\n", abs(x));

 printf("The absolute value of y is: %d\n", abs(y));

}

Output:

The absolute value of x is: 123

The absolute value of y is: 456

There are also labs and llabs functions that return absolute values of long and long

long arguments, respectively.

32.3.2 fabs
The fabs function returns an absolute value of a double argument. The function is

defined inside the <math.h> header. Example:

#include <math.h>

#include <stdio.h>

int main(void)

{

 double x = -123.456;

 double y = 789.101;

 printf("The absolute value of x is: %f\n", fabs(x));

 printf("The absolute value of y is: %f\n", fabs(y));

}

ChApTer 32 InTrodUCTIon To C STAndArd LIbrAry

253

Output:

The absolute value of x is: 123.456000
The absolute value of y is: 789.101000

There are also fabsf and fabsl versions that return absolute values of float and
long double arguments, respectively.

32.3.3 pow
The pow function returns the value of base raised to the power of the exponent. The
function has the following syntax:

double pow(double base, double exponent);

The function is declared inside the <math.h> header file. Example:

#include <math.h>
#include <stdio.h>

int main(void)
{
 printf("The value of 2 to the power of 10 is: %f\n", pow(2, 10));
 printf("The value of 2 to the power of 20 is: %f\n", pow(2, 20));
}

Output:

The value of 2 to the power of 10 is: 1024.000000
The value of 2 to the power of 20 is: 1048576.000000

There are also powf and powl variants that accept float and long double arguments.

32.3.4 round
The round returns the result of rounding the floating-point argument to the nearest
integer, rounding halfway away from 0. The function is declared inside the <math.h>
header file and has the following syntax:

double round(double argument);

ChApTer 32 InTrodUCTIon To C STAndArd LIbrAry

254

Example:

#include <stdio.h>
#include <math.h>

int main(void)
{
 double d = 1.5;
 printf("The result of rounding the %f is: %f\n", d, round(d));
 d = 1.49;
 printf("The result of rounding the %f is: %f\n", d, round(d));
}

Output:

The result of rounding the 1.500000 is: 2.000000
The result of rounding the 1.490000 is: 1.000000

To run this example on Linux, we also need to link with the math library by supplying
the -lm flag to our compilation string.

There are also roundf and roundl versions that accept float and long double
arguments.

To have a rounding function that will return an integral type, we use the lround
function. Example:

#include <stdio.h>
#include <math.h>

int main(void)
{
 double d = 1.5;
 printf("The result of rounding the %f is: %ld\n", d, lround(d));
 d = 1.49;
 printf("The result of rounding the %f is: %ld\n", d, lround(d));
}

Output:

The result of rounding the 1.500000 is: 2

The result of rounding the 1.490000 is: 1

ChApTer 32 InTrodUCTIon To C STAndArd LIbrAry

255

32.3.5 sqrt
The sqrt function returns the square root of an argument. This function is declared
inside the <math.h> header and has the following syntax:

double sqrt(double argument);

Example:

#include <stdio.h>
#include <math.h>

int main(void)
{
 double d = 64.;
 printf("The square root of %f is: %f\n", d, sqrt(d));
 d = 256.00;
 printf("The square root of %f is: %f\n", d, sqrt(d));
}

Output:

The square root of 64.000000 is: 8.000000
The square root of 256.000000 is: 16.000000

We use the sqrtf variant for the type float and sqrtl for the type long double.

32.4 String Conversion Functions
There are functions in the C standard library that allow us to convert a string to a number
and vice versa. Here we discuss the strtol for converting a string to a number and
snprintf for converting a number to a string.

32.4.1 strtol
The strtol function allows us to convert a string to a long int number. The function is
defined inside the <stdlib.h> header and has the following syntax:

long strtol(const char *restrict str, char **restrict str_end, int base);

ChApTer 32 InTrodUCTIon To C STAndArd LIbrAry

256

Note The restrict keyword was introduced in C99. It helps the compiler to
optimize the code. It also says no other parameter in the function list will point to
this address/object.

The strtol function takes as many characters as possible from str to form an

integer number of base base. The base represents the base of the interpreted integer and

can have values from 2 to 36.

The function can also set the pointer pointed to by str_end to point at the one past

the last character interpreted. We can also ignore this pointer by passing it a null pointer.

To convert a string to a base 10 integer, where we ignore the str_end pointer, we write:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 const char * str = "123 to a number.";

 long result = strtol(str, NULL, 10);

 printf("The result is: %ld\n", result);

}

Output:

The result is: 123

To convert a string to an integer and get the remainder of the string that could not be

converted, we write:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 const char * str = "123 to a number.";

 char* str_end;

 long result = strtol(str, &str_end, 10);

 printf("The result is: %ld\n", result);

 printf("The remainder of the string is: %s\n", str_end);

}

ChApTer 32 InTrodUCTIon To C STAndArd LIbrAry

257

Output:

The result is: 123
The remainder of the string is: to a number.

32.4.2 snprintf
The snprintf function allows us to convert a number to a formatted string. Whereas the
printf writes to standard output, the snprintf writes to a character array. The function
is declared inside the <stdio.h> header and has the following syntax:

int snprintf(char *restrict str_buffer, size_t buffer_size,
 const char *restrict format, ...);

The function writes the result into a string buffer pointed to by str_buffer. The
buffer_size is the maximum number of characters to be written. The function writes
at most buffer-size - 1 characters, plus the automatically added null-terminating
character. To convert a single integer x to a string buffer pointed to by strbuffer,
without checking for the return value, we write:

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 int x = 123;
 char strbuffer [100];
 snprintf(strbuffer, sizeof strbuffer, "%d", x);
 printf("The result is: %s\n", strbuffer);
}

Output:

The result is: 123

If successful, the snprintf function returns a number of characters written minus
the null terminator. If the conversion was unsuccessful, the function returns a negative
number. To convert a single integer to a string and check how many characters were

written, we use:

ChApTer 32 InTrodUCTIon To C STAndArd LIbrAry

258

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 int x = 123;
 char strbuffer [100];
 int nc = snprintf(strbuffer, sizeof strbuffer, "%d", x);
 printf("The result is: %s\n", strbuffer);
 printf("The number of characters written is: %d\n", nc);
}

Output:

The result is: 123
The number of characters written is: 3

To form a more descriptive string out of int and double values, we use the string
constant with format specifiers. We also pass in the comma-separated list of numbers.
Example:

#include <stdio.h>
#include <stdlib.h>
int main(void)
{
 int x = 123;
 double d = 456.789;
 char strbuffer[100];
 int nc = snprintf(strbuffer, sizeof strbuffer, "int: %d, double: %g",

x, d);
 printf("%s\n", strbuffer);
 printf("The number of characters written is: %d\n", nc);
}

Output:

int: 123, double: 456.789
The number of characters written is: 25

ChApTer 32 InTrodUCTIon To C STAndArd LIbrAry

PART III

Modern C Standards

261
© Slobodan Dmitrović 2021
S. Dmitrović, Modern C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6643-4_33

CHAPTER 33

Introduction to C11
Standard
The C11 standard, formally known as ISO/IEC 9899:2011, was a C standard adopted in

late 2011. The C11 standard replaced the C99 standard and was superseded by C17. C11

introduces new features to the C language and C standard library and modifies a few

existing ones. Here, we discuss some of the notable features.

33.1 _Static_assert
The _Static_assert performs assertion during compile time, before our program starts.

The static assertion has the following syntax:

_Static_assert(expression, message);

The static assertion evaluates the constant expression during compile time. If the

expression is evaluated to 0(false), a message is displayed, and the compilation fails. If

the expression does not evaluate to 0, no message is displayed, and nothing happens. For

example, let us check if the size of type int is equal to 8 using static assertion. Chances

are the size of our int is equal to 4, and the assertion will fail. Example:

int main(void)

{

 _Static_assert(sizeof(int) == 8, "The size of int is not 8.\n");

}

https://doi.org/10.1007/978-1-4842-6643-4_33#DOI

262

If we used long instead of int, chances are there will be no error message, and the

compilation will continue. Example:

int main(void)

{

 _Static_assert(sizeof(long) == 8, "The size of long is not 8.\n");

}

The _Static_assert keyword can be replaced by a static_assert macro declared

inside the <assert.h> header. Example:

#include <assert.h>

int main(void)

{

 static_assert(sizeof(int) == 8, "The size of int is not 8.\n");

}

In short, static assertions are a convenient way to enforce assertions and catch errors

during compile time.

33.2 The _Noreturn Function Specifier
The _Noreturn function specifier, when applied to a function declaration, specifies

that the function does not return. More precisely, it specifies that the function does not

return by:

 – Executing a return statement

 – Hitting the end of the function block marked by the closing brace (})

Having the _Noreturn specifier suppresses some of the spurious warnings and

further optimizes the code. Example:

#include <stdlib.h>

#include <stdio.h>

Chapter 33 IntroduCtIon to C11 Standard

263

_Noreturn void justExit()

{

 printf("This function does not return. Exiting...\n");

 exit(0);

}

int main(void)

{

 justExit();

}

The specifier can be replaced by the equivalent noreturn macro declared inside the

<stdnoreturn.h> header. Example:

#include <stdlib.h>

#include <stdio.h>

#include <stdnoreturn.h>

noreturn void justExit()

{

 printf("This function does not return. Exiting...\n");

 exit(0);

}

int main(void)

{

 justExit();

}

33.3 Type Generic Macros Using _Generic
The use of _Generic provides a way to select one of several expressions during compile

time, based on a type of a given controlling expression. The blueprint for a generic

expression/macro is:

_Generic (controlling_expression, list_of_associations)

Chapter 33 IntroduCtIon to C11 Standard

264

The controlling expression is an expression whose type will be compared to types

listed in the association list. The association list is a comma-separated list of the

following content:

type1 : expression1,

type2 : expression2,

default : default_expression

The type of the controlling expression is compared to the types in the list. If it

matches one of them, the generic selection becomes the expression after the colon.

Let us assume we had several functions that accept different types of parameters.

We then want to choose the appropriate function based on a type of argument while

using a single generic macro name. In that case, we utilize the _Generic selection in the

following way:

#include <stdio.h>

#define myfn(X) _Generic((X), \

 int : myfn_i, \

 float : myfn_f, \

 double : myfn_d, \

 default : myfn_ld \

)(X)

void myfn_i(int x)

{

 printf("Printing int: %d\n", x);

}

void myfn_f(float x)

{

 printf("Printing float: %f\n", x);

}

void myfn_d(double x)

{

 printf("Printing double: %f\n", x);

}

Chapter 33 IntroduCtIon to C11 Standard

265

void myfn_ld(long double x)

{

 printf("Printing long double: %Lf\n", x);

}

int main(void)

{

 int x = 123;

 float f = 456.789f;

 double d = 101.112;

 long double ld = 134.456l;

 myfn(x);

 myfn(f);

 myfn(d);

 myfn(ld);

}

Output:

Printing int: 123

Printing float: 456.789001

Printing double: 101.112000

Printing long double: 134.456000

This example expands the myfn macro to the appropriate expression based on

the type of X. If no type can be matched in the association list, the macro expands to

the default expression. The default expression, in our case, is the myfn_ld function.

This approach closely matches the function overloading concept found in other

languages.

Chapter 33 IntroduCtIon to C11 Standard

266

33.4 The _Alignof Operator
The _Alignof operator returns the alignment requirements of the type. Let us assume

we have two data objects in memory of the same type, positioned in successive memory

addresses. The alignment requirement is the property of an object that says how many

bytes there must be between these two addresses in order to store the objects successfully.

The _Alignof operator gets this number for us and has the following blueprint:

_Alignof(type_name)

Example:

#include <stdio.h>

struct S1

{

 char c;

 char d;

};

struct S2

{

 char c;

 int x;

};

int main(void)

{

 printf("The alignment of char: %zu\n", _Alignof(char));

 printf("The alignment of int: %zu\n", _Alignof(int));

 printf("The alignment of struct S1: %zu\n", _Alignof(struct S1));

 printf("The alignment of struct S2: %zu\n", _Alignof(struct S2));

}

Output:

The alignment of char: 1

The alignment of int: 4

The alignment of struct S1: 1

The alignment of struct S2: 4

Chapter 33 IntroduCtIon to C11 Standard

267

There is also a convenience macro called alignof inside the <stdalign.h> header

that expands to our _Alignof operator.

33.5 The _Alignas Specifier
The _Alignas specifier modifies the alignment requirement when declaring an object.

The _Alignas specifier has two syntaxes, one in which it accepts an expression that

evaluates to the number of bytes and one in which it accepts a type name:

_Alignas (constant_int_expression)

_Alignas (type_name)

The alignment expression must be a positive power of 2. For example, if we want to

enforce a specific alignment of our structure, we write:

#include <stdio.h>

struct MyStruct

{

 _Alignas(16) int x[4];

};

int main(void)

{

 printf("The alignment of MyStruct is: %zu bytes\n", _Alignof(struct

MyStruct));

}

Output:

The alignment of MyStruct is: 16 bytes

Chapter 33 IntroduCtIon to C11 Standard

268

In this example, every object of type struct MyStruct will be aligned to a 16-byte

boundary. We can also use the alignas macro defined inside the <stdalign.h> header.

The compiler will issue an error if:

• The value is not 0 or a positive power of 2

• The value exceeds the maximum allowed alignment

• The value is less than physically possible minimum alignment

33.6 Anonymous Structures and Unions
Structures (or unions) without a name are called anonymous structures. They come

in handy when we want to nest a structure (or a union) inside another structure (or a

union). Example:

#include <stdio.h>

struct MyStruct

{

 int a;

 struct // anonymous structure

 {

 int b;

 int c;

 };

};

int main(void)

{

 struct MyStruct s;

 s.a = 123;

 s.b = 456;

 s.c = 789;

 printf("Field a: %d\n", s.a);

 printf("Inner field b: %d\n", s.b);

 printf("Inner field c: %d\n", s.c);

}

Chapter 33 IntroduCtIon to C11 Standard

269

Output:

Field a: 123

Inner field b: 456

Inner field c: 789

In this example, we used a structure and called it MyStruct. Inside that structure,

there is one integer field called a, and a nested, anonymous structure having two fields,

b and c. To access these fields, we simply use the s.b and s.c syntax as anonymous

struct members are members of the enclosing struct.

33.7 Aligned Memory Allocation: aligned_alloc
The C11 standard introduces an aligned_alloc function, which allocates a memory

block with a specified alignment. The syntax is:

void *aligned_alloc(size_t alignment_in_bytes, size_t size_in_bytes);

The function is defined inside the <stdlib.h> header. The memory is not initialized

and must be freed with free or deallocated with realloc. The size in bytes must be a

multiple of alignment. Example:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 int *p = aligned_alloc(512, 512 * sizeof *p);

 printf("Allocated a 512-byte aligned memory block.\n");

 printf("The address is: %p\n", (void *)p);

 free(p);

}

Output:

Allocated a 512-byte aligned memory block.

The address is: 0x55ca95945200

Chapter 33 IntroduCtIon to C11 Standard

270

33.8 Unicode Support for UTF-16 and UTF-32
The C11 standard provides types for storing UTF-16 and UTF-32 encoded strings. They

are char16_t and char32_t. Both types and the Unicode conversion functions are

declared in a <uchar.h> header file. Example:

#include <uchar.h>

int main(void)

{

 char16_t arr16[] = u"Our 16-bit wide characters here.\n";

 char32_t arr32[] = U"Our 32-bit wide characters here.\n";

}

We use the u prefix for the char16_t character array and U prefix for the char32_t

character array.

The width of the type char16_t can be larger than 16 bits, but the size of the value

stored will be exactly 16 bits wide. Similarly, for a char32_t type, the size of the char32_t

type itself can be larger than 32 bits, but the value stored inside this type will be exactly

32 bits wide.

33.9 Bounds Checking and Threads Overview
While the detailed analysis of the following features is out of scope for this book, we will

briefly mention two additional things introduced in the C11 standard. They are bounds

checking (safe) functions and thread support library.

33.9.1 Bounds-Checking Functions
A few string and I/O functions can cause a buffer overflow. The C11 standard offers an

optional extension containing the so-called bounds checking functions that rectify this

problem. These functions are also referred to as safety functions and carry the _s suffix.

Some of them are gets_s, fopen_s, printf_s, scanf_s, strcpy_s, and wcscpy_s. The

compiler might not provide these, and they are only available if the __STD_LIB_EXT1__

macro is defined.

Chapter 33 IntroduCtIon to C11 Standard

271

33.9.2 Threads Support
The C11 standard offers an optional thread support library. The functions are defined

inside the <threads.h> header. These functions bring the native thread support to the C

language. They allow for creating and joining threads, creating mutexes, synchronizing

access, working with conditional variables, and more.

The following example creates a thread that executes a code from a function which

accepts one argument:

#include <threads.h>

#include <stdio.h>

int dowork(void *arg)

{

 thrd_t mythreadid = thrd_current();

 for (int i = 0; i < 5; i++)

 {

 printf("Thread id: %lu, counter: %d, code: %s\n", mythreadid,

i, (char *)arg);

 }

 return 0;

}

int main(void)

{

 thrd_t mythread;

 // create a thread that executes a function code

 if (thrd_success != thrd_create(&mythread, dowork, "Hello from a

thread!"))

 {

 printf("Could not create a thread.\n");

 return 1;

 }

 // join a thread to the main thread

 thrd_join(mythread, NULL);

}

Chapter 33 IntroduCtIon to C11 Standard

272

Output:

Thread id: 140647017862912, counter: 0, code: Hello from a thread!

Thread id: 140647017862912, counter: 1, code: Hello from a thread!

Thread id: 140647017862912, counter: 2, code: Hello from a thread!

Thread id: 140647017862912, counter: 3, code: Hello from a thread!

Thread id: 140647017862912, counter: 4, code: Hello from a thread!

This example defines a function that will be executed by our thread. In the main

program, we create/spawn the thread by calling the thrd_create function to which

we pass the address of our local mythread variable, the name of the function to be

executed, dowork, and a string representing the function argument. Inside the user-

defined function dowork, we also print out the current thread id obtained through a

thrd_current() function call.

When compiling a multithreaded application on Linux, we need to add the -pthread

flag to the compilation string:

gcc -Wall source.c -std=c11 -pedantic -pthread

Note that <threads.h> support is optional, and might not be fully implemented in GCC.

Chapter 33 IntroduCtIon to C11 Standard

273
© Slobodan Dmitrović 2021
S. Dmitrović, Modern C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6643-4_34

CHAPTER 34

The C17 Standard
At the time of writing, the C17 standard, officially named ISO/IEC 9899:2018, is the last

published C standard. It replaces the C11 standard, does not introduce new features, and

fixes defects reported for C11. The __STDC_VERSION__ macro for this standard has the

value of 201710L. To compile for a C17 standard, we include the -stdc=17 flag. Example:

gcc -Wall source.c -std=c17 -pedantic

The C17 standard is sometimes also referred to as the C18 standard. The C17

standard will be replaced by the upcoming standard, informally referred to as the C2X

standard.

https://doi.org/10.1007/978-1-4842-6643-4_34#DOI

275
© Slobodan Dmitrović 2021
S. Dmitrović, Modern C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6643-4_35

CHAPTER 35

The Upcoming C2X
Standard
At the time of writing, there is a new C standard in the making. This standard is

informally referred to as the C2X and is expected to be voted on in 2021. Here we

describe some of the proposed features. We need to include the -std=c2x flag when

compiling for the C2X standard.

35.1 _Static_assert Without a Message
The _Static_assert in C2X performs a static assertion without issuing a message.

Example:

int main(void)

{

 _Static_assert(sizeof(int) == 8);

}

Output:

source.c: In function ‘main’:

source.c:3:2: error: static assertion failed

 3 | _Static_assert(sizeof(int) == 8);

https://doi.org/10.1007/978-1-4842-6643-4_35#DOI

276

35.2 Attributes
There have been many implementation-defined language extensions throughout the

years. Adoption of attributes in C2X is an attempt to present a uniform, standard syntax

for specifying these extensions/attributes. Attributes are mostly used in declarations and

definitions, and they can relate to types, variables, declarations, and code. The attributes

syntax is:

[[attribute-list]] what_the_attribute_relates_to

One of the attributes can be [[deprecated]]. It marks the declaration as deprecated/

obsolete, causing the compiler to issue a warning. Example:

#include <stdio.h>

// deprecated definition

[[deprecated]]

void myoldfunction()

{

 printf("This is a deprecated function.\n");

}

int main(void)

{

 myoldfunction();

 printf("Using deprecated code.\n");

}

Some of the other attributes are:

• [[fallthrough]], where the fallthrough from the previous case is

indeed expected

• [[maybe_unused]], when we want to suppress compiler warnings on

unused names

• [[nodiscard]], where we expect the compiler to issue a warning

when the return value is discarded

Chapter 35 the UpComing C2X Standard

277

35.3 No Parameters Function Declaration
We can now declare a function that accepts no parameters without the need for the

inclusion of a void text inside parentheses. We can now ensure the function’s behavior

will be as intended. Example:

#include <stdio.h>

void noparamsfn()

{

 printf("This function does not accept parameters.\n");

}

int main(void)

{

 noparamsfn();

}

Output:

This function does not accept parameters.

35.4 The strdup Function
The strdup function returns a pointer to a copy of a string. It does so as if though the

place for a copy was allocated using malloc. The function is declared inside the

<string.h> header and has the following syntax:

char *strdup(const char* arg);

The pointer obtained through strdup must be freed afterward. Example:

#include <string.h>

#include <stdlib.h>

#include <stdio.h>

Chapter 35 the UpComing C2X Standard

278

int main(void)

{

 const char *s1 = "This will be duplicated.";

 char *s2 = strdup(s1);

 printf("The result is: %s\n", s2);

 free(s2);

}

Output:

The result is: This will be duplicated.

There is also a strndup variant that copies N bytes from the source string and has the

following syntax:

char *strndup(const char* arg, size_t N);

Example:

#include <string.h>

#include <stdlib.h>

#include <stdio.h>

int main(void)

{

 const char *s1 = "This will be duplicated.";

 char *s2 = strndup(s1, 17);

 printf("The result is: %s\n", s2);

 free(s2);

}

Output:

The result is: This will be dupl

Chapter 35 the UpComing C2X Standard

279

35.5 The memccpy Function
The memccpy functions copies characters from a data object pointed to by source to a

memory/object pointed to by destination. The function stops copying after any of the

two conditions are met:

• N characters were copied.

• The character c is found.

The function is declared inside the <string.h> header and has the following syntax:

void *memccpy(void *restrict destination, const void *restrict source,

int c, size_t N);

Example:

#include <stdio.h>

#include <string.h>

int main(void)

{

 const char source[] = "Copy this until ~ is found.";

 char destination[sizeof source];

 const char stopchar = '~';

 void *p = memccpy(destination, source, stopchar, sizeof destination);

 if (p)

 {

 printf("Terminating character found. The result is:\n");

 printf("%s\n", destination);

 }

 else

 {

 printf("Terminating character not found. The result is:\n");

 printf("%s\n", destination);

 }

}

Chapter 35 the UpComing C2X Standard

280

Output:

Terminating character found. The result is:

Copy this until ~

If the terminating character stopchar is found, the function returns a pointer to the

next character in the destination string after the stopchar. If the terminating character

is not found, the function returns a null pointer.

Chapter 35 the UpComing C2X Standard

PART IV

lDos and Don’ts
In the fourth part, we discuss some of the dos and don’ts when programming in C.

We talk about deprecated functions and dangers they pose, such as buffer overflow

attacks. We inspect workarounds, mention best practices, and, finally, provide a few

suggestions about lessons learned throughout the years. Let us get started!

283
© Slobodan Dmitrović 2021
S. Dmitrović, Modern C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6643-4_36

CHAPTER 36

Do Not Use the gets
Function
The gets function is declared inside the <stdio.h> header, reads the input into a

character array pointed to by str, and has the following syntax:

char *gets (char* str);

This function is extremely dangerous as it can cause a buffer overflow and allows for

potential buffer-overflow attacks. The function is deprecated in the C99 standard and

removed in the C11 standard. Do not use this function!

The workaround is to use the fgets alternative. Unlike gets, the fgets function

performs bounds checking and is safe from buffer overflow scenario.

To use the fgets, we simply pass in the pointer to a buffer buff, the maximum

number of characters that can be read, and stdio representing our standard input/

keyboard. A simple example:

#include <stdio.h>

int main(void)

{

 char buff[100];

 printf("Please enter a string:\n");

 fgets(buff, 100, stdin);

 printf("The result is: %s\n", buff);

}

https://doi.org/10.1007/978-1-4842-6643-4_36#DOI

284

Output:

Please enter a string:

Do not use the gets function!

The result is: Do not use the gets function!

Alternatively, opt for a gets_s function, which might be available on our computer

as part of the optional, bounds-checking interfaces extension.

Chapter 36 Do Not Use the gets FUNCtioN

285
© Slobodan Dmitrović 2021
S. Dmitrović, Modern C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6643-4_37

CHAPTER 37

Initialize Variables
Before Using Them
When we declare local variables, they are not initialized. Their values are undetermined.

Trying to access uninitialized variables causes undefined behavior. One use case would

be trying to print local, uninitialized variables. The following example demonstrates

what should be avoided:

#include <stdio.h>

int main(void)

{

 char c;

 int x;

 double d;

 printf("Accessing uninitialized variables...\n");

 printf("%c, %d, %f\n", c, x, d); // undefined behavior

}

Possible Output:

Accessing uninitialized variables...

[, 32767, 0.000000

In this example, we are trying to access/print out uninitialized local variables.

This leads to undefined behavior and, consequently, the strange output.

https://doi.org/10.1007/978-1-4842-6643-4_37#DOI

286

We should always initialize our variables before using them. Example:

#include <stdio.h>

int main(void)

{

 char c = 'a';

 int x = 0;

 double d = 0.0;

 printf("Accessing initialized variables...\n");

 printf("%c, %d, %f\n", c, x, d); // OK

}

Output:

Accessing initialized variables...

a, 0, 0.000000

Chapter 37 InItIalIze VarIables before UsIng them

287
© Slobodan Dmitrović 2021
S. Dmitrović, Modern C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6643-4_38

CHAPTER 38

Do Not Read Out
of Bounds
Trying to access an array element that is not there invokes undefined behavior. We say

we are reading out of bounds. The following example demonstrates a common scenario

of trying to access a nonexistent, out of bounds array element:

#include <stdio.h>

int main(void)

{

 int arr[5] = {10, 20, 30, 40, 50};

 printf("Trying to read out of bounds...\n");

 printf("The non-existent array element is: %d\n", arr[5]);

}

Possible Output:

Trying to read out of bounds...

The non-existent array element is: 32767

https://doi.org/10.1007/978-1-4842-6643-4_38#DOI

288

In this example, we declared an array of five integers. We then try to access a sixth

array element using a[5]. But since there is no element a[5], we are invoking undefined

behavior. This might cause our program to do anything, including the strange output

result above. The same effect would be if we tried to access a[10], a[256], and so on.

We can only access elements a[0] through a[4]. If we want to access only the last array

element, we can rewrite the above example to be:

#include <stdio.h>

int main(void)

{

 int arr[5] = {10, 20, 30, 40, 50};

 printf("Accessing the existent array element...\n");

 printf("The existent array element is: %d\n", arr[4]);

}

Output:

Accessing the existent array element...

The existent array element is: 50

Chapter 38 Do Not reaD out of BouNDs

289
© Slobodan Dmitrović 2021
S. Dmitrović, Modern C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6643-4_39

CHAPTER 39

Do Not Free the Allocated
Memory Twice
Trying to free the allocated memory two times causes undefined behavior. The following

example shows the wrong usage of two free statements:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 printf("Allocating memory...\n");

 int *p = malloc(sizeof(int));

 *p = 123;

 printf("The value is: %d\n", *p);

 printf("Freeing twice - undefined behavior.\n");

 free(p);

 free(p); // undefined behavior

}

Possible Output:

Allocating memory...

The value is: 123

Freeing twice - undefined behavior.

free(): double free detected in tcache 2

Aborted (core dumped)

https://doi.org/10.1007/978-1-4842-6643-4_39#DOI

290

In this example, we wrongly tried to free the already freed memory by invoking a

second free(p); statement.

The correct way is to free the allocated memory only once:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 printf("Allocating memory...\n");

 int *p = malloc(sizeof(int));

 *p = 123;

 printf("The value is: %d\n", *p);

 printf("Freeing once.\n");

 free(p); // OK

}

Output:

Allocating memory...

The value is: 123

Freeing once.

Chapter 39 Do Not Free the alloCateD MeMory twiCe

291
© Slobodan Dmitrović 2021
S. Dmitrović, Modern C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6643-4_40

CHAPTER 40

Do Not Cast the
Result of malloc
In C, we do not need to cast the result of malloc. The following example wrongly

performs the cast:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 printf("Casting the result of malloc. Not needed!\n");

 int *p = (int *)malloc(sizeof(int));

 *p = 123;

 printf("The result is: %d\n", *p);

 free(p);

}

Output:

Casting the result of malloc. Not needed!

The result is: 123

This example casts the result of malloc to type int*. This is not needed as the malloc’s

return value type is void*. And void* is safely and implicitly convertible to the correct

pointer type. The cast also adds unneeded code clutter. The proper example would be:

#include <stdio.h>

#include <stdlib.h>

https://doi.org/10.1007/978-1-4842-6643-4_40#DOI

292

int main(void)

{

 printf("Allocating memory without casting.\n");

 int *p = malloc(sizeof(int));

 *p = 123;

 printf("The result is: %d\n", *p);

 free(p);

}

Output:

Allocating memory without casting.

The result is: 123

Furthermore, we could also replace the sizeof(int) expression with the sizeof *p

expression, to not depend on the type name. Example:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 printf("Allocating memory without casting.\n");

 int *p = malloc(sizeof *p);

 *p = 123;

 printf("The result is: %d\n", *p);

 free(p);

}

Output:

Allocating memory without casting.

The result is: 123

This casting habit probably stems from the world of C++, where the cast is needed.

The rule of thumb is as follows: in C, we do not need to cast the result of malloc, while

in C++, we should. C and C++ are two completely different programming languages with

different sets of rules.

Chapter 40 Do Not Cast the result of malloC

293
© Slobodan Dmitrović 2021
S. Dmitrović, Modern C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6643-4_41

CHAPTER 41

Do Not Overflow a
Signed Integer
There are lower and upper limits to values a signed integer can hold. The maximum

signed integer value is represented by an INT_MAX macro, and the minimum signed

integer value is represented by the INT_MIN macro. These macros are declared inside the

<limits.h> header.

Trying to store the value that is higher than the allowable maximum or lower than

the allowable minimum causes undefined behavior. Example:

#include <stdio.h>

#include <limits.h>

int main(void)

{

 int x = INT_MAX;

 printf("The maximum integer value is: %d\n", x);

 printf("Trying to store a value higher than the maximum...\n");

 x = INT_MAX + 1; // undefined behavior

 printf("The variable value is now: %d\n", x);

}

Output:

The maximum integer value is: 2147483647

Trying to store a value higher than the maximum...

The variable value is now: -2147483648

https://doi.org/10.1007/978-1-4842-6643-4_41#DOI

294

This example tries to store the number that is higher than the allowable maximum

for type int. This causes undefined behavior and the so-called integer overflow, resulting

in strange negative value output. We should make sure we do not try to store signed

integer values outside the allowable range.

Note Overflowing an unsigned integer is well defined, but it should also be
avoided.

Chapter 41 DO NOt OverflOw a SigNeD iNteger

295
© Slobodan Dmitrović 2021
S. Dmitrović, Modern C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6643-4_42

CHAPTER 42

Cast a Pointer to
void* When Printing
Through printf
When printing out a pointer’s value (the memory address it points to) using a printf

function and a %p format specifier, we need to cast that pointer to type void* first.

Simply trying to print out the pointer value through printf causes undefined behavior.

Example:

#include <stdio.h>

int main(void)

{

 int x = 123;

 int *p = &x;

 printf("The pointer value is: %p\n", p); // undefined behavior

}

Possible Output:

The pointer value is: 0x7ffc57d762ec

This example causes undefined behavior because the %p format specifier expects a

type void*, and we are passing in int*. The same applies when trying to print out any

other pointer type.

https://doi.org/10.1007/978-1-4842-6643-4_42#DOI

296

We need to cast the pointer to type void* when printing out the pointer’s value using

a printf function. Example:

#include <stdio.h>

int main(void)

{

 int x = 123;

 int *p = &x;

 printf("The pointer value is: %p\n", (void *)p); // OK

}

Possible Output:

The pointer value is: 0x7ffe9d9262dc

Chapter 42 Cast a pointer to void* When printing through printf

297
© Slobodan Dmitrović 2021
S. Dmitrović, Modern C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6643-4_43

CHAPTER 43

Do Not Divide by Zero
Trying to divide by zero (0) causes undefined behavior, as shown in the following example:

#include <stdio.h>

int main(void)

{

 printf("Trying to divide with zero...\n");

 int x = 123;

 int y = x / 0; // undefined behavior

 printf("The result is: %d\n", y);

}

Possible Output:

Trying to divide with zero...

Floating point exception (core dumped)

Similar to math rules, we should not divide by zero in C either. The above example

causes undefined behavior. We should replace the zero with any other value.

https://doi.org/10.1007/978-1-4842-6643-4_43#DOI

299
© Slobodan Dmitrović 2021
S. Dmitrović, Modern C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6643-4_44

CHAPTER 44

Where to Use Pointers?
In this chapter, we discuss several pointers use cases, including the use of pointers as

function parameters.

44.1 Pointers to Existing Objects
Pointers can point to existing data objects using the address-of operator &. Example:

#include <stdio.h>

int main(void)

{

 char mychar = 'A';

 char *p = &mychar;

 printf("The pointed-to value is: %c\n", *p);

}

Output:

The pointed-to value is: A

https://doi.org/10.1007/978-1-4842-6643-4_44#DOI

300

This example defines a variable of type char and makes the pointer point at that

variable/data object using the & operator. The variable’s type char is matched by pointers

char * type. If we want to have a pointer that points to an existing int object, we will use

the int * type for a pointer. Example:

#include <stdio.h>

int main(void)

{

 int myvar = 123;

 int *p = &myvar;

 printf("The pointed-to value is: %d\n", *p);

}

Output:

The pointed-to value is: 123

44.2 Pointers to Arrays
A pointer can point to an array. We can simply assign the array name to a pointer name

without using the & operator. The pointer then points at the first element of the array.

Example:

#include <stdio.h>

int main(void)

{

 int arr[] = {10, 20, 30, 40, 50};

 int *p = arr;

 printf("The first array element is: %d\n", *p);

}

Output:

The first array element is: 10

Chapter 44 Where to Use pointers?

301

To print out the next array element, we can use pointer arithmetics. By adding 1 to

our pointer, we increase the address it points to by 1 (1 times the size of the pointed-to

element), which is the second array element with a value of 20. Example:

#include <stdio.h>

int main(void)

{

 int arr[] = {10, 20, 30, 40, 50};

 int *p = arr;

 printf("The first array element is: %d\n", *p);

 p++;

 printf("The next array element is: %d\n", *p);

}

Output:

The first array element is: 10

The next array element is: 20

To access all array elements using a pointer, we can dereference a pointer using a

subscript operator [] in combination with an index/counter to iterate through all array

elements:

#include <stdio.h>

int main(void)

{

 int arr[] = {10, 20, 30, 40, 50};

 int *p = arr;

 printf("Printing array elements using a pointer:\n");

 for (int i = 0; i < 5; i++)

 {

 printf("%d ", p[i]);

 }

}

Chapter 44 Where to Use pointers?

302

Output:

Printing array elements using a pointer:

10 20 30 40 50

44.3 Pointers to String Constants
A string constant is an array of characters enclosed in double quotes. The following is a

string constant:

"Hello World!"

The string constant is a character array made up of visible characters plus one invisible,

null terminating \0 character at the end. The type of string constant/character array is

char[]. We can directly assign this string constant to our pointer of type char*. Example:

#include <stdio.h>

int main(void)

{

 char *str = "Hello World!";

 printf("The value is: %s\n", str);

}

Output:

The value is: Hello World!

Since the string constant itself is read-only and cannot be modified, we should also

add the const qualifier:

#include <stdio.h>

int main(void)

{

 const char *str = "This string can not be modified!";

 printf("The value is: %s\n", str);

}

Chapter 44 Where to Use pointers?

303

Output:

The value is: This string can not be modified!

Note We do not free the pointers to existing variables, arrays, and string
constants. We only free the pointers to dynamically allocated memory.

We discuss pointers to dynamically allocated memory in the following sections.

44.4 Pointers to Dynamically Allocated Memory
Memory obtained through calls to malloc, calloc, and realloc is referred to as

dynamically allocated memory. Pointers can point to this newly allocated memory

(block). The dynamically allocated memory must be explicitly freed when we no longer

need it. The following example dynamically allocates a memory block for one integer

using malloc:

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 printf("Allocating memory...\n");

 int *p = malloc(sizeof(int)); // allocate the memory

 if (p)

 {

 *p = 123456; // manipulate memory

 printf("The value is: %d\n", *p);

 }

 printf("Deallocating memory...\n");

 free(p); // deallocate the memory

 printf("Done.\n");

}

Chapter 44 Where to Use pointers?

304

Output:

Allocating memory...

The value is: 123456

Deallocating memory...

Done.

Note Dynamically allocated memory obtained through malloc, calloc, or
realloc must be explicitly freed/deallocated.

44.5 Pointers as Function Arguments
Functions can have parameters of pointer types. We pass pointers to these functions as

arguments. The following example defines a function that expects an integer pointer as

an argument and modifies the pointed-to value. Example:

#include <stdio.h>

#include <stdlib.h>

void myfunction(int *arg)

{

 *arg = 456;

}

int main(void)

{

 int x = 123;

 int *p = &x;

 printf("The pointed-to value before the function call: %d\n", *p);

 myfunction(p);

 printf("The pointed-to value after the function call: %d\n", *p);

}

Chapter 44 Where to Use pointers?

305

Output:

The pointed-to value before the function call: 123

The pointed-to value after the function call: 456

This example defines a function that accepts a pointer as an argument. The function

then modifies the pointed-to value by dereferencing an argument. In the main function,

we have one pointer p that points to an int variable called x. We pass that pointer to our

function, and the function modifies the pointed-to value.

To pass a regular variable to our function accepting a pointer, we pass in the address

of a variable/object. Example:

#include <stdio.h>

#include <stdlib.h>

void myfunction(int *arg)

{

 *arg = 456;

}

int main(void)

{

 int x = 123;

 printf("The value before the function call: %d\n", x);

 myfunction(&x); // pass in the address of x

 printf("The value after the function call: %d\n", x);

}

Output:

The value before the function call: 123

The value after the function call: 456

This example uses the address of x (&x) expression as an argument for our function

accepting a pointer type. We say we pass the argument by address/reference.

Chapter 44 Where to Use pointers?

306

Suppose a function needs to modify the pointer’s value (not the pointed-to value).

For example, the function increments the value of a pointer by one. In that case, we use

a double pointer for a function parameter and pass in the address of a pointer variable in

the main program. Example:

#include <stdio.h>

#include <stdlib.h>

void myfunction(int **arg)

{

 (*arg)++;

}

int main(void)

{

 int arr[] = {10, 20, 30};

 int *p = arr;

 printf("Pointer value before the function call: %p\n", (void *)p);

 printf("Pointed-to value before the function call: %d\n", *p);

 myfunction(&p); // pass in the pointer

 printf("Pointer value after the function call: %p\n", (void *)p);

 printf("Pointed-to value after the function call: %d\n", *p);

}

Possible Output:

Pointer value before the function call: 0x7fffe590b22c

Pointed-to value before the function call: 10

Pointer value after the function call: 0x7fffe590b230

Pointed-to value after the function call: 20

The function accepts an argument of type int ** (a pointer to a pointer type).

It dereferences the double-pointer using the *arg expression (to an actual type of

the pointer, which is int*) and increments it using the ++ operator. The parentheses

inside the (*arg)++ expression ensure the dereferencing occurs before incrementing.

The function increments the value of a pointer itself. In the main program, we have a

pointer that points to the first element of an array. After the function call, its value is

incremented, and the pointer p now points at the second array element.

Chapter 44 Where to Use pointers?

307
© Slobodan Dmitrović 2021
S. Dmitrović, Modern C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6643-4_45

CHAPTER 45

Prefer Functions to
Function-Like Macros
Prefer writing and using real functions to function-like macros. While it might be

tempting to write and use function-like macros instead of functions, this might not be a

good choice for the following reasons:

• Macros can cause side effects.

• No type checking is performed.

• Macros are preprocessed, not compiled.

• They do not check compiler errors and are harder to debug.

Consider the following example, which uses a macro-like function to square a given

parameter:

#include <stdio.h>

#define SQR(a) ((a) * (a))

int main(void)

{

 int x = 1;

 int result = SQR(++x);

 printf("With the macro: %d\n", result);

}

Output:

With the macro: 9

https://doi.org/10.1007/978-1-4842-6643-4_45#DOI

308

This example defines a function-like macro that squares a value. For illustration

purposes, we pass in a ++x expression as an argument. We get the value of 9 and not 4 as

otherwise expected. This is because the SQR macro expands to ((++a) * (++a)), and the

value a gets incremented two times. Value a now becomes 3, and 3 squared is equal to 9.

When using a function, we get the expected result of 4. Example:

#include <stdio.h>

#define SQR(a) ((a) * (a))

int sqr(int a)

{

 return a * a;

}

int main(void)

{

 int x = 1;

 int result = SQR(++x);

 printf("With the macro: %d\n", result);

 int y = 1;

 result = sqr(++y);

 printf("With the function: %d\n", result);

}

Output:

With the macro: 9

With the function: 4

Chapter 45 prefer funCtions to funCtion-Like MaCros

309
© Slobodan Dmitrović 2021
S. Dmitrović, Modern C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6643-4_46

CHAPTER 46

static Global Names
When we define a variable or a function inside the file/global scope, they have external

linkage by default. They can be referred to from other .c files/translation units. The

static keyword in front of variables and functions in a global scope marks them visible

only to the current source file/translation unit, the unit in which they are declared/

defined. We say the static specifier makes them have internal linkage. So, globals we

do not want to share with other .c files should be marked as static. Here, both globals

globalx and globalfn() are defined inside the source.c file and can be referred to from

other .c files as well:

#include <stdio.h>

// global scope

int globalx = 123;

void globalfn(void)

{

 printf("The value of a global var is: %d\n", globalx);

}

int main(void)

{

 // local scope

 int localx = 456;

 globalfn();

 printf("The value of a local var is: %d\n", localx);

}

https://doi.org/10.1007/978-1-4842-6643-4_46#DOI

310

Output:

The value of a global var is: 123

The value of a local var is: 456

We can opt for static globals declarations instead, rendering our globalx and

globalfn() globals visible only to our source.c file/translation unit:

#include <stdio.h>

// global scope

static int globalx = 123;

static void globalfn(void)

{

 printf("The value of a global var is: %d\n", globalx);

}

int main(void)

{

 // local scope

 int localx = 456;

 globalfn();

 printf("The value of a local var is: %d\n", localx);

}

Output:

The value of a global var is: 123

The value of a local var is: 456

The static specifier is now applied to our globals, making them invisible to other

translation units. We say the names now have internal linkage, making them visible to

the current translation unit/source file only.

Chapter 46 statiC Global Names

311
© Slobodan Dmitrović 2021
S. Dmitrović, Modern C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6643-4_47

CHAPTER 47

What to Put in
Header Files?
This chapter explains what to and what not to keep in header files. In general, when we

want to share data between multiple source files, we create a common header file and

include it in each source file. For the following examples, we will use two source files and

one common header file:

• myheaderfile.h – shared header file

• source.c – main source file

• source2.c – second source file

A good practice is to guard the content of the myheaderfile.h file with the include

guards/header guards:

#ifndef MYHEADERFILE_H
#define MYHEADERFILE_H

// code goes here

#endif

47.1 Shared Macros
We can include a macro definition in our header file. This will make it accessible across

multiple source files/translation units. The myheaderfile.h file:

#ifndef MYHEADERFILE_H
#define MYHEADERFILE_H

#define MYMACRO 123

#endif

https://doi.org/10.1007/978-1-4842-6643-4_47#DOI

312

Then we include that header file into our source.c file:

#include "myheaderfile.h"

#include <stdio.h>

void myfunction(); // declaration of a function defined inside a source2.c

int main(void)

{

 printf("Calling macro from a main: %d\n", MYMACRO);

 myfunction();

}

And we include the same header file in our source2.c file:

#include "myheaderfile.h"

#include <stdio.h>

void myfunction(void)

{

 printf("Calling macro from a function inside a source2.c: %d\n",

MYMACRO);

}

We compile both source files using the following syntax:

gcc -Wall source.c source2.c -std=c11 -pedantic && ./a.out

Output:

Calling macro from a main: 123

Calling macro from a function inside a source2.c: 123

Summary: we created a common header file and put a macro definition code in that

file. We then included the header file in both source files. The MYMACRO is now accessible

from both the main (and any other) function inside source.c and myfunction (and any

other) function inside source2.c.

Note how we also needed to create a myfunction declaration inside a source.c to be

able to call it. The next section explains how we can move the function declaration to our

header file.

Chapter 47 What to put in header Files?

313

47.2 Function Declarations
When we want to share access to global functions across multiple source files, we put

those function declarations inside a common header file. If a function is defined inside

a file scope in any source file and we want to use it in other source files, we put that

function’s declaration inside a shared header file. Example of a myheaderfile.h file:

#ifndef MYHEADERFILE_H

#define MYHEADERFILE_H

void myfunction(); // function declaration

// this function is defined inside the source2.c file

#endif

The source.c file content:

#include "myheaderfile.h"
#include <stdio.h>

int main(void)
{
 printf("Calling a function defined in the source2.c file:\n");
 myfunction();
}

The source2.c file:

#include "myheaderfile.h"

#include <stdio.h>

// function definition

void myfunction(void)

{

 printf("This function is defined inside the source2.c.\n");

}

We compile both source files and observe the following output:

Calling a function defined in the source2.c file:

This function is defined inside the source2.c.

Chapter 47 What to put in header Files?

314

Summary: in our myheaderfile.h, we provided a myfunction declaration. Then we

included the header file in both source files. The myfunction function itself is defined

in a global/file scope inside a source2.c file. We can now call a myfunction function

from any source file that includes the myheaderfile.h file. We say the function now has

shared access.

47.3 Shared extern Variables and Constants
With shared global variables or constants, things are more involved than just putting the

variable definition inside a shared file. We need to put the shared variables declarations

inside the header file and mark them as extern. Then we need to define them only once

in some source file.

The extern specifier says the name has external linkage and is accessible across

multiple source files/translation units. Global names, including functions, are extern by

default, and we do not need to use extern on global functions explicitly. The extern also

means the object will have a static storage duration.

While the use of global variables is debatable, this approach allows us to have a

centralized place for all our shared constants and variables. The myheaderfile.h file is:

#ifndef MYHEADERFILE_H

#define MYHEADERFILE_H

// shared constants and variables declarations

extern const int MY_MAX;

extern const char *MY_MESSAGE;

extern const double MY_PI;

// shared variables

extern int mysharedint;

extern double myshareddouble;

#endif

Chapter 47 What to put in header Files?

315

The source.c file is:

#include "myheaderfile.h"

#include <stdio.h>

// myfunction declaration

void myfunction(void);

int main(void)

{

 printf("Accessing shared constants from source.c:\n");

 printf("%d, %s, %f\n", MY_MAX, MY_MESSAGE, MY_PI);

 printf("Accessing shared global variables from source.c:\n");

 printf("%d %f\n", mysharedint, myshareddouble);

 myfunction(); // defined inside the source2.c file

}

And the source2.c file is:

#include "myheaderfile.h"

#include <stdio.h>

// shared constants definitions

const int MY_MAX = 123;

const char *MY_MESSAGE = "This is a constant string.";

const double MY_PI = 3.14;

// shared variables definitions

int mysharedint = 123;

double myshareddouble = 456.789;

void myfunction(void)

{

 printf("\nAccessing shared constants from source2.c:\n");

 printf("%d, %s, %f\n", MY_MAX, MY_MESSAGE, MY_PI);

 printf("Accessing shared global variables from source2.c:\n");

 printf("%d %f\n", mysharedint, myshareddouble);

}

Chapter 47 What to put in header Files?

316

Output:

Accessing shared constants from source.c:

123, This is a constant string., 3.140000

Accessing shared global variables from source.c:

123 456.789000

Accessing shared constants from source2.c:

123, This is a constant string., 3.140000

Accessing shared global variables from source2.c:

123 456.789000

With shared global variables and shared constants, things are a bit more involved.

First, we need to declare the shared variables and constants in the myheaderfile.h file

and marked them as extern. Then we need to define them only once inside one of the

source files. By including the shared myheaderfile.h file in both source files, we can

access shared globals from any source file.

The header file should not provide the definition, only the declaration. The source

file should not contain external declarations, only definitions.

47.4 Other Header Files
Our header file can also include other header files if needed. For example, our user-

defined header file can include both the standard-library and user-defined header files.

The myheaderfile.h file that includes other headers can look like:

#ifndef MYHEADERFILE_H

#define MYHEADERFILE_H

#include <stdio.h> // include the standard library header

#include "userdefined.h" // include the user-defined header

#endif

Chapter 47 What to put in header Files?

PART V

lAppendices
The following appendices describe some of the C language and C standard library

features and concepts we are likely to encounter when working with C programs.

319
© Slobodan Dmitrović 2021
S. Dmitrović, Modern C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6643-4_48

 APPENDIX A

Linkage
When we compile our source code, the compiler stitches a header and source file's

content to create a single source file called a translation unit. The translation unit is then

used to produce an object file. If we compile multiple source files, we get multiple object

files. The linker then assembles these object files to produce an executable file.

A linkage can be seen as a name’s property that determines the name’s accessibility

across translation units. By name, we mean variables and functions. If a name is visible

only to/inside a current translation unit, we say it has internal linkage. If a name is visible

to all translation units, we say it has external linkage.

Static global names have internal linkage. Example:

#include <stdio.h>

// global scope

static int x = 123; // internal linkage

static void myfunction() // internal linkage

{

 printf("The value is: %d\n", x);

}

int main(void)

{

 printf("Calling a global function with internal linkage.\n");

 myfunction();

}

Output:

Calling a global function with internal linkage.

The value is: 123

https://doi.org/10.1007/978-1-4842-6643-4_48#DOI

320

Names declared inside a global/file scope have external linkage by default. Example:

#include <stdio.h>

// global scope

int x = 123; // external linkage

void myfunction() // external linkage

{

 printf("The value is: %d\n", x);

}

int main(void)

{

 printf("Calling a global function with external linkage.\n");

 myfunction();

}

Output:

Calling a global function with external linkage.

The value is: 123

Local names (names local to a function) have no linkage. Example:

#include <stdio.h>

// global scope

int main(void)

{

 // local scope

 int x = 123; // no linkage

 printf("The value of a variable with no linkage is: %d\n", x);

}

Output:

The value of a variable with no linkage is: 123

Appendix A LinkAge

321
© Slobodan Dmitrović 2021
S. Dmitrović, Modern C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6643-4_49

 APPENDIX B

Time and Date
The <time.h> header declares functions that allow us to work with date/time. In this

appendix, we explain how to obtain and format the current time and date.

The time function is declared inside the <time.h> header and returns the current

date-time (date-time since epoch) as an object of type time_t. The function has the

following signature:

timet_ time(time_t *arg);

The type time_t is a type capable of storing times. The time function can return the

calendar time when arg is NULL:

#include <stdio.h>

#include <time.h>

int main(void)

{

 time_t mytime = time(NULL);

 printf("Obtained the current time to a mytime variable.\n");

}

or store it inside an object pointed to by arg:

#include <stdio.h>

#include <time.h>

int main(void)

{

 time_t mytime;

 time(&mytime);

 printf("Obtained the current time to a mytime variable.\n");

}

https://doi.org/10.1007/978-1-4842-6643-4_49#DOI

322

There are a number of steps involved when getting and formatting the time.

• Get the current date-time using a time function.

• Store/convert the obtained date-time into a tm struct using

localtime or gmtime.

• Format the obtained time using the strftime.

The following example obtains a date-time and stores it into a tm struct using a

localtime function:

#include <stdio.h>

#include <time.h>

int main(void)

{

 time_t mytime = time(NULL);

 struct tm *now;

 now = localtime(&mytime);

 printf("Obtained and stored the current time.\n");

}

The localtime function converts obtained local time to a tm calendar time. The

tm structure holds the calendar date and time. The tm structure has the following

predefined member fields of type int:

• tm_sec – seconds from 0 to 60

• tm_min – minutes from 0 to 59

• tm_hour – hours from 0 to 23

• tm_mday – days from 1 to 31

• tm_mon – months from 0 to 11

• tm_year – years since 1900

• tm_wday – days since Sunday from 0 to 6

• tm_yday – days since January the 1st from 0 to 365

• tm_isdst – daytime saving value, positive if active, zero if not

Appendix B Time And dATe

323

The final thing left to do is to convert the tm time to a string using a strftime

function and appropriate format specifiers:

#include <stdio.h>

#include <time.h>

int main(void)

{

 time_t mytime = time(NULL);

 struct tm *nowtm;

 char str[70];

 nowtm = localtime(&mytime);

 strftime(str, sizeof str, "%T", nowtm);

 printf("The time is: %s\n", str);

}

Output:

The time is: 23:02:10

The strftime function converts the calendar date/time stored inside the tm structure

to a string according to format specifiers used. Here we used the %T format specifier,

which is the same as the %H:%M:%S format.

To format the obtained date/time as a date only, we can use the %D format specifier.

Example:

#include <stdio.h>

#include <time.h>

int main(void)

{

 time_t mytime = time(NULL);

 struct tm *nowtm;

 char str[70];

 nowtm = localtime(&mytime);

 strftime(str, sizeof str, "%D", nowtm);

 printf("The date is: %s\n", str);

}

Appendix B Time And dATe

324

Output:

The date is: 11/26/20

This example uses the %D format specifier inside the strftime function to output

only the date part of the obtained date-time. The %D format specifier is equivalent to

%m/%d/%y format.

When we populate the tm structure, we can access its individual fields. For example,

if we need to access and display minutes and seconds as integers, we write:

#include <stdio.h>

#include <time.h>

int main(void)

{

 time_t mytime = time(NULL);

 struct tm *nowtm;

 nowtm = localtime(&mytime);

 printf("Minutes and seconds are: %d:%d\n", nowtm->tm_min,

nowtm->tm_sec);

}

Output:

Minutes and seconds are: 42:12

In this example, we do not convert the obtained date-time to a string strftime

function. We simply use the tm structure’s fields representing minutes and numbers,

called tm_min and tm_sec, and print them out using the printf function.

Appendix B Time And dATe

325
© Slobodan Dmitrović 2021
S. Dmitrović, Modern C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6643-4_50

 APPENDIX C

Bitwise Operators
So far, we have talked about data in terms of bytes. A byte is the smallest addressable

region of memory/data storage. We access and manipulate this memory through

variables and pointers. One byte can be used to represent the value of a single char

variable. Four bytes can be used to represent the value of a single int.

A single byte usually consists of eight smaller parts called bits. A bit can have one of

two values we symbolically refer to as 0 and 1. A single byte that represents the decimal

number 1 can have the following bit representation:

0 0 0 0 0 0 0 1

A single byte representing the decimal value of 10 (usually, depending on the

implementation and endianness) has the following bits:

0 0 0 0 1 0 1 0

Bitwise operators allow us to manipulate individual bits of a byte or bytes in several

ways. The first bitwise operator we discuss is the bitwise NOT operator ~.

C.1 The Bitwise NOT Operator ~
The bitwise NOT operator ~, also called a unary complement operator, returns the result

of converting/fliping every bit inside an expression. The operator has the following

signature:

~expression_of_an_integral_type

https://doi.org/10.1007/978-1-4842-6643-4_50#DOI

326

Every bit’s value of 1 becomes 0, and the value of 0 becomes 1. The following

example flips the bits of an integer constant 10 and stores the result into our char

variable:

#include <stdio.h>

int main(void)

{

 char c = 10;

 printf("The value is: %d\n", c);

 printf("Applying the bitwise ~ operation...\n", c);

 c = ~10; // bitwise NOT

 printf("The value is: %d\n", c);

}

Output:

The value is: 10

Applying the bitwise ~ operation...

The value is: -11

This example first assigns the value of 10 to our char variable c. Remember, we can

assign both numbers and character constants to our chars. The decimal value of 10 is

equal to the binary value of 00001010. Now, our byte might look like:

0 0 0 0 1 0 1 0

Next, we perform the bitwise NOT operation on the integer constant 10 using the

~10 expression and assign the result to our char variable. All the bits are flipped, and the

resulting byte now looks like:

1 1 1 1 0 1 0 1

Our variable c now holds a decimal value of -11, which is equal to 11110101 in

binary.

Appendix C Bitwise OperAtOrs

327

C.2 Bitwise Shift Operators << and >>
The bitwise shift operators << and >> return the result of shifting the bits of an integral

expression to the left/right by N places. The bitwise operands have the following

signatures:

integral_expressions << n_places - shifts bits to the left by

n_places

integral_expressions >> n_places - shifts bits to the right by

n_places

To shift the bits to the left by four places, we write:

#include <stdio.h>

int main(void)

{

 char c = 10;

 printf("The value before the bit shifting is: %d\n", c);

 c = c << 4;

 printf("The value after the bit shifting is: %d\n", c);

}

Output:

The value before the bit shifting is: 10

The value after the bit shifting is: -96

This example assigns the value of decimal 10 to our char variable. Then it performs

the left shift by four places and assigns the result to the same variable. When shifting bits

to the left, the vacant bits are filled with zeros. Our byte having a value of 10 before the

left shift looked like:

0 0 0 0 1 0 1 0

Appendix C Bitwise OperAtOrs

328

After the left shift by four places, the byte looks like:

1 0 1 0 0 0 0 0

The binary value of 10100000 is equal to the decimal value of -96.

If we want to shift the bits to the right by four places, we use the right shift operator

>>. Example:

#include <stdio.h>

int main(void)

{

 char c = 10;

 printf("The value before the bit shifting is: %d\n", c);

 c = c >> 4;

 printf("The value after the bit shifting is: %d\n", c);

}

Output:

The value before the bit shifting is: 10

The value after the bit shifting is: 0

In this example, we performed a right shift to the right by four places. In this case, the

vacant bits are filled with zeros.

When performing the right shift of a signed integer, the vacant bits are filled either

with 0 or with a sign bit, depending on the implementation. An example where we shift

the bits of a signed number by four places:

#include <stdio.h>

int main(void)

{

 char c = -10;

 printf("The value before the bit shifting is: %d\n", c);

 c = c >> 4;

 printf("The value after the bit shifting is: %d\n", c);

}

Appendix C Bitwise OperAtOrs

329

Output:

The value before the bit shifting is: -10

The value after the bit shifting is: -1

Here we perform the bit shifting to the right by four places. The vacant bits are filled

with a sign bit value (vacant bits are filled with 1), resulting in a decimal value of -1.

Before the shift, the byte with a decimal value of -10 looked like:

1 1 1 1 0 1 1 0

After shifting all bits to the right by four places and filling the vacant bits with 1, the

byte looks like:

1 1 1 1 1 1 1 1

Hint try shifting the bits of values lesser than -16 to observe results other than -1.

Shifting the unsigned integer to the right always fills vacant bits with zeros. Example:

#include <stdio.h>

int main(void)

{

 unsigned x = 256;

 printf("The value before the bit shifting is: %d\n", x);

 x = x >> 4;

 printf("The value after the bit shifting is: %d\n", x);

}

Output:

The value before the bit shifting is: 256

The value after the bit shifting is: 16

Appendix C Bitwise OperAtOrs

330

In this example, we used a variable of an unsigned int type with a decimal value

of 256. Since unsigned can be 4 bytes long, the decimal number of 256 can have the

following binary representation:

00000000 00000000 00000001 00000000

After shifting all the bits to the right by four places, the binary value can look like:

00000000 00000000 00000000 00010000

The above bits represent the decimal value of 16.

Note the order of bytes in a multibyte type depends on endianness.

Endianness is the order of bytes (the sequence of bytes) in a multi-byte data/

memory. Big-endian stores the most significant bytes at the beginning. The little-endian

stores the most significant bytes at the end of a multi-byte memory region.

C.3 The Bitwise AND Operator &
The bitwise AND operator & returns the result of a logical AND operation using bits

from the left-hand side expression and the corresponding bits from a right-hand side

argument. The & operator has the following syntax:

left_integral_expression & right_integral_expression

If both bits from the left-hand side and the right-hand side expressions are 1, the

result will be 1, 0 otherwise. The following table shows the result of a bitwise AND

operation:

X Y X & Y

1 1 1

0 1 0

1 0 0

0 0 0

Appendix C Bitwise OperAtOrs

331

An example where we use the logical AND bitwise operator using the 1111 and the

1010 pattern:

#include <stdio.h>

int main(void)

{

 unsigned x = 255;

 printf("The value before the bitwise AND: %d\n", x);

 x = x & 0xffff; // 0xffff has the 1111 pattern

 printf("After the bitwise AND using the 1111 mask: %d\n", x);

 unsigned y = 255;

 printf("The value before the bitwise AND: %d\n", y);

 y = y & 0xaaaa; // 0xaaaa has the 1010 pattern

 printf("After the bitwise AND using the 1010 mask: %d\n", y);

}

Output:

The value before the bitwise AND: 255

After the bitwise AND using the 1111 mask: 255

The value before the bitwise AND: 255

After the bitwise AND using the 1010 mask: 170

This example applies the bitwise & operator on its two operands. First, it uses the

hexadecimal 0xffff constant as its right-hand side expression. The value of 0xffff

corresponds to the 1111 pattern. The result of a 255 & 0xffff expression remains the

same as the original 255 value. Next, we perform the bitwise AND operation on bits from

y with bits from 0xaaaa hexadecimal constant. The value of 0xaaaa corresponds to the

pattern of 1010, and the result of a 255 & 0xaaaa expression is 170 in decimal.

There are other, arguably less used bitwise operators as well. They are:

• Bitwise OR |

• Bitwise exclusive OR ^

• Compound left shift assignment >>=

• Compound right shift assignment <<=

Appendix C Bitwise OperAtOrs

333
© Slobodan Dmitrović 2021
S. Dmitrović, Modern C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6643-4_51

 APPENDIX D

Numeric Limits
The C standard library provides facilities that help us determine numeric limits for

various integer and floating-point types.

D.1 Integer Types Limits
The <limits.h> header provides useful macros for inspecting limits of various integer

types and objects. Here we describe a few.

The CHAR_BIT macro constant represents the number of bits in a byte. Example:

#include <stdio.h>

#include <limits.h>

int main(void)

{

 printf("The number of bits in a byte: %d\n", CHAR_BIT);

}

Output:

The number of bits in a byte: 8

The CHAR_MIN and CHAR_MAX macros represent the minimum and maximum values a

type char can store on our implementation. Example:

#include <stdio.h>

#include <limits.h>

https://doi.org/10.1007/978-1-4842-6643-4_51#DOI

334

int main(void)

{

 printf("The minimum value a char can store is: %d\n", CHAR_MIN);

 printf("The maximum value a char can store is: %d\n", CHAR_MAX);

}

Output:

The minimum value a char can store is: -128

The maximum value a char can store is: 127

The INT_MIN and INT_MAX macros represent the minimum and maximum values a

type int can hold. Example:

#include <stdio.h>

#include <limits.h>

int main(void)

{

 printf("The minimum value an int can store is: %d\n", INT_MIN);

 printf("The maximum value an int can store is: %d\n", INT_MAX);

}

Output:

The minimum value an int can store is: -2147483648

The maximum value an int can store is: 2147483647

Some of the other macro constants declared inside the <limits.h> header are:

• LONG_MIN – minimum value a type long can hold

• LLONG_MIN – minimum value a type long long can hold

• LONG_MAX – maximum value a type long can hold

• LLONG_MAX – maximum value a type long long can hold

• UCHAR_MAX – maximum value a type unsigned char can hold

Appendix d numeric Limits

335

• UINT_MAX – maximum value a type unsigned can hold

• ULONG_MAX – maximum value a type unsigned long can hold

• ULLONG_MAX – maximum value a type unsigned long long can hold

D.2 Floating-Point Types Limits
As part of the C standard library, the <float.h> header defines several macros used to

represent minimum and maximum values for floating-point types.

The FLT_MIN macro represents the minimum, positive value of type float. Example:

#include <stdio.h>

#include <float.h>

int main(void)

{

 printf("The minimum, positive value for a float is: %e\n", FLT_MIN);

}

Output:

The minimum, positive value for a float is: 1.175494e-38

In this example, we used the %e format specifier which converts the floating point

value to an exponent decimal (scientific) representation.

The FLT_MAX macro represents the maximum value for type float. Example:

#include <stdio.h>

#include <float.h>

int main(void)

{

 printf("The maximum value for a float is: %f\n", FLT_MAX);

}

Appendix d numeric Limits

336

Output:

The maximum value for a float is: 340282346638528859811704183484516925

440.000000

Another essential macro is the FLT_EPSILON constant, representing the difference

between 1.0 and the next number that can be represented using type float. Example:

#include <stdio.h>

#include <float.h>

int main(void)

{

 float f = 1.0f;

 printf("The value of f is: %e\n", f);

 printf("The next representable number is larger by: %e\n",

 FLT_EPSILON);

}

Output:

The value of f is: 1.000000e+00

The next representable number is larger by: 1.192093e-07

Other floating-point macro constants are:

• DBL_EPSILON – the difference between 1.0 and the next number that

can be represented using the type double

• LDBL_EPSILON – the difference between 1.0 and the next number that

can be represented using the type long double

• DBL_MIN – minimum, positive value for type double

• LDBL_MIN – minimum, positive value for type long double

• DBL_MAX – maximum value for type double

• LDBL_MAX – maximum value for type long double

Appendix d numeric Limits

337
© Slobodan Dmitrović 2021
S. Dmitrović, Modern C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6643-4_52

 APPENDIX E

Summary and Advice
Dear reader, congratulations on finishing this book. At this point, you should be more

than sufficiently familiar with the C language and C standard library essentials.

Even after many decades, the C programming language still grows strong. Where is

C used in the real world? Major operating systems were written in C. Our vehicles are

packed with sensors controlled by small computers whose software was written in C.

Large industrial facilities are controlled by machines that run on software written in C.

Majority of embedded development still relies on C. So, being a C developer is a good

career choice.

E.1 What to Learn Next?
When we write our program, we want to step through the code and inspect all the values.

This is called debugging. Learn about debugging using GDB if on Linux or using a built-

in debugger in Visual Studio.

When we have a large project consisting of multiple files, we want to compile them

by invoking an underlying build system. Learn about build systems such as MAKE and

CMAKE.

Software projects are managed using the so-called source control or version-control

software. This software allows us to manage and control changes to our source code.

We commit the source code to the repository, make changes, and revert the code when

needed. Learn about version control software such as GIT, Subversion, and others.

Explore existing C projects found on GitHub as well as other open-source projects

written in C.

https://doi.org/10.1007/978-1-4842-6643-4_52#DOI

338

E.2 Online References
There is a user-maintained, well-written online reference at:

https://en.cppreference.com/w/c

There is a community-driven Q&A programming site called Stack Overflow. The

Stack Overflow C section is located at:

https://stackoverflow.com/questions/tagged/c

The C language and standard library drafts can be downloaded as PDF documents

from:

https://en.cppreference.com/w/c/links

Linux manual pages are available at:

https://linux.die.net/man/

and:

https://man7.org/linux/man- pages/

E.3 Other C Books
For more C books, refer to a curated list of C books on Stack Overflow:

https://stackoverflow.com/questions/562303/the-

definitive-c- book- guide- and- list

E.4 Advice
C is a straightforward, procedural, and relatively concise language. It is a language that

efficiently maps to hardware and gives us immense control over the machine. Below is

some advice that might help you further advance your C knowledge.

Appendix e SummAry And Advice

https://en.cppreference.com/w/c
https://stackoverflow.com/questions/tagged/c
https://en.cppreference.com/w/c/links
https://linux.die.net/man/
https://man7.org/linux/man-pages/
https://stackoverflow.com/questions/562303/the-definitive-c-book-guide-and-list
https://stackoverflow.com/questions/562303/the-definitive-c-book-guide-and-list

339

Be sure to make the distinction between C and C++, as they are two completely

different languages.

Aim to be around knowledgeable people, get a 9 to 5 C job, or start your own.

Remember, C programmers are in high demand. The job pays well and also gets you

places.

But above all, the world of C programming is a rewarding and exciting place to be in.

Appendix e SummAry And Advice

341
© Slobodan Dmitrović 2021
S. Dmitrović, Modern C for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6643-4

Index

A
Allocated storage duration

memory twice, 289–290
object allocation, 208–209
variable definition, 214

Anonymous structures, 268–269
Arguments

address of operator (&), 115
passing by pointer/address, 115–121
passing by value, 115–120
structures, 134–138

Arithmetic operations, 67
Arrays

subscript operator ([]), 74–75
character string literal, 78–79
declaration, 73
elements, 99
initialization, 76–78
meaning, 73
multidimensional array, 79–80
pointers, 86–89
size/count, 80–81

Automatic storage duration,
206–207, 214

B
Bitwise operators

AND operator (&), 330–331
shift operators (<</>>), 327–330

NOT operator, 325–326
representation, 325

Bounds array element, 287–288
Buffer overflow, 218
Built-in macros, 181–182, 186

C
C11 standard, 261

alignment requirements
_Alignas specifier, 267–268
aligned_alloc function, 269–270
_Alignof operator, 266–267
unicode conversion

functions, 270
anonymous structures/unions,

268–269
bounds checking functions, 270
type generic macros

(_Generic), 263–265
_Noreturn function

specifier, 262–263
static assertion, 261–262
thread support library, 271–272

C17 standard, 273
C2X standard

extensions/attributes, 276
memccpy functions, 279
parameters, 277
_Static_assert, 275
strdup function, 277–279

https://doi.org/10.1007/978-1-4842-6643-4#DOI

342

Casting, 68
Character type, see Type char
Command-line arguments, 97
Comments, 11–12
Compilers

installation, 4
Linux, 4–6
process, 4
standards, 7
Windows, 7

Conditional compilation, 186
Conditional directives

#ifdef directive, 178–179
#ifndef directive, 180–181
#if directive, 177–178

Conditional expression, 141–142
Constant function

parameters, 166
Const qualifier

compile-time error, 147–149
parameter, 150–151
pointer types, 148–149
variables, 165

D
Date/time

arg object, 321
localtime function, 322
strftime function, 323
time function, 321
tm structure, 322–324

Debugging, 337
Declarations, 15
Define/undefined macro, 185
Divide by zero (0), 297
Doubly-linked list, 133
Dynamic memory allocation

arrays, 212
automatic storage duration, 214
calloc function, 198–200
malloc function (see malloc function)
memory blocks, 211
pointers, 189
realloc function, 200–202
resizes, 213
string constant, 190

E
Enumerations

declaration, 154
enum type, 153
integers, 155
objects, 167
symbolic constants, 154
syntax, 153

Equality operator, 68
Expression

initialization, 45–46
meaning, 45
type conversion, 46–47

External linkage, 320

F
File input/output

fgets functions, 226
myfile.txt, 225
output, 227–228
workflow, 225

Floating-point types
division, 68
double, 27–28
float, 26–27
limitation, 335–336

Index

343

long double, 28–29
Free statements, 289–290
Function-like macro

arguments, 182–185
function (see Macro-like function)
parameters and returns, 187
real functions, 307–308

Functions, 105
declaration, 107–109
declaration/definition, 119–120
definition, 109–111
function-like macros (see Macro- like

function)
main() function, 105
multiple parameters, 121–122
mySum() function, 106–107
parameters (see Parameters/

arguments)
pointers

argument’s type, 158
declaration, 157
functions, 168
parameters, 158
return type, 157

printMessage() function, 106, 119
return statement, 116–118
syntax, 105

G
gets function, 283–284

H
Header file

extern variables/constants, 314–316
function declarations, 313–314
myheaderfile.h, 311

shared macros, 311–312
source files

declarations, 234
extensions, 233
myutils.h code, 235
source.c file, 234
translation unit, 233
user-defined header files, 233

standard-library/user-defined header
files, 316

Hello World
comments, 31
declaration, 32
definition, 32
outputting values, 32
printf function, 12–14

I, J, K
If-else statement, 141–142
Initialized variables, 286
Integer type

decimal integer constants, 21
declaration, 20
division, 67
hexadecimal symbols, 21
modifiers/qualifiers, 22
objects, 333–335
overflow, 294
short/long types, 23
unsigned long type, 24–25

Internal linkage, 319
Iteration statements

do-while, 62
for loop, 63–65
increments/prints out, 71
loops, 61
while statement, 61

Index

344

L
Linkage, 319–320
Linux, 4–6

M
Macro-like function

parameter, 307
real functions, 184
squared values, 308

malloc function
allocate memory, 196
cast result, 291–292
expression, 193
hexadecimal values, 191
if statement, 192
integers, 191, 195
memory allocation, 192
memory leak, 193
MyStruct, 198
NULL, 193–194
signature, 190
sizeof(int) expression, 191, 292
sizeof(type_name) expression, 194
structure, 197
workflow, 196

Mathematical functions
abs function, 252
fabs function, 252–253
pow function, 253
round, 253–254
sqrt function, 255

Memory manipulation
memchr function, 251
memcmp function, 249–250
memcpy function, 247–249
memset function, 246
putchar() function, 247

N
Numeric limits

floating-point types, 335–336
integer types and objects, 333–335
INT_MIN and INT_MAX macros, 334

O
Online reference, 338
Operators, 35

P, Q
Parameters/arguments

arguments, 114–116
comma-separated arguments, 114
declaration/definition, 111
formal parameter/argument, 112
myFunction() function, 112
myint() function, 113

Passing argument by value, 115, 120
Pointers

subscript operator [], 95
arithmetic operator, 90–92, 102
array of pointers, 94, 102
arrays, 86–89, 101
character array, 94, 101
declaration/initialization, 83–86
dereference operator, 84
existing object, 100
memory cells, 83
const variables, 165
printf, 295
structures, 131–133
use of, 299

arrays, 300–302
dynamically allocates

memory, 303–304

Index

345

existing data objects, 299–300
function arguments, 304–305
regular variable, 305
string constants, 302–303

void pointers, 91–93
Preprocessing

#define directive, 173–175
#include directive, 171–173
object files, 171
#undef directive, 175–176
user-defined header file, 172

R
realloc function, 200–202
Relational and logical operators, 69
Return statement, 116–118

S
scanf function, 215–217
Scope variable

file/global scope, 204–205
local scope, 203–204
meaning, 203

Selection statements
execution, 51
if statement, 51–54
if-else statement, 54–57
switch statement, 57–61

Self-referencing structures, 133–134
Signed integer value, 293
Singly linked list, 133
Source control or version-control

software, 337
Standard input/output stream

console window, 220
fgets function, 218–220

format specifier, 221
fputs function, 222
meaning, 215
printf function, 220, 230
putchar() function, 223
puts, 222
scanf function, 215–217
sscanf function, 217–218, 229

Standard-library
headers files, 239–240
mathematical functions, 251–255
memory (see Memory manipulation

functions)
string conversion functions, 255–258
string manipulation, 240–245

Statements
built-in statements, 50
categories, 50
compound statements, 50
iteration, 61–65
meaning, 49
selection (see Selection statements)
source code, 49
use of, 49

static global names, 309–310
Static storage duration object, 207
Storage/storage duration

allocated duration, 208
automatic duration, 206–207
lifetime, 206
static duration object, 207

String conversion functions
snprintf function, 257–258
strtol function, 255

String manipulation
strcat function, 243
strcmp function, 242
strcpy function, 243–244

Index

346

strlen function, 241
strstr function, 244–245

Structures
copying member values, 130
declaration, 123
definition, 161
designated initializers, 127
function argument, 134–138
initialization, 126–128, 163
member access operator (.), 127–130
members, 123
MyStruct/tag, 124–125
pointer, 131–133, 164
self-referencing, 133–134
type, 123
typedef, 125, 162

Systems programming, 3
Switch statement, 70

T
Translation unit, 319
Type char

built-in types, 16
bytes, 16

character, 16–20
floating-point (see Floating-point

types)
integer type, 20–25
object/data object, 15
printf function, 19
structure (see Structures)

Typedef declaration
alias, 162
MyInteger, 143
MyStruct, 145
structure, 144
syntax, 143

U, V
Unary complement

operator, 325
Undefined behavior, 293
Uninitialized variables, 285
Unions, 139–140, 165

W, X, Y, Z
Windows, 7

String manipulation (cont.)

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Part I: The C Programming Language
	Chapter 1: Introduction
	1.1	 What Is C?
	1.2	 What Is C Used For?
	1.3	 C Compilers
	1.3.1 Installing Compilers
	1.3.1.1 On Linux
	1.3.1.2 On Windows

	1.4	 C Standards

	Chapter 2: Our First Program
	2.1	 Function main()
	2.2	 Comments
	2.3	 Hello World

	Chapter 3: Types and Declarations
	3.1	 Declarations
	3.2	 Introduction
	3.3	 Character Type
	3.4	 Integer Type
	3.5	 Floating-Point Types
	3.5.1 float
	3.5.2 double
	3.5.3 long double

	Chapter 4: Exercises
	4.1	 Hello World with Comments
	4.1.1 Declaration
	4.1.2 Definition
	4.1.3 Outputting Values

	Chapter 5: Operators
	5.1 Introduction
	5.2 Arithmetic Operators
	5.3 Assignment Operator
	5.4 Compound Assignment Operators
	5.5 Relational Operators
	5.6 Equality Operators
	5.7 Logical Operators
	5.8 Increment and Decrement Operators
	5.9 Operator Precedence

	Chapter 6: Expressions
	6.1 Initialization
	6.2 Type Conversion

	Chapter 7: Statements
	7.1	 Introduction
	7.2	 Selection Statements
	7.2.1 if
	7.2.2 if-else
	7.2.3 switch

	7.3	 Iteration Statements
	7.3.1 while
	7.3.2 do-while
	7.3.3 for

	Chapter 8: Exercises
	8.1	 Arithmetic Operations
	8.2	 Integral Division
	8.3	 Floating-Point Division and Casting
	8.4	 Equality Operator
	8.5	 Relational and Logical Operators
	8.6	 The switch Statement
	8.7	 Iteration Statements

	Chapter 9: Arrays
	9.1	 Declaration
	9.2	 Subscript Operator
	9.3	 Array Initialization
	9.4	 Character Arrays
	9.5	 Multidimensional Arrays
	9.6	 Array Size and Count

	Chapter 10: Pointers
	10.1 Introduction
	10.2 Declaration and Initialization
	10.3 Pointers and Arrays
	10.4 Pointer Arithmetics
	10.5 Void Pointers
	10.6 Pointer to Character Arrays
	10.7 Arrays of Pointers

	Chapter 11: Command-Line Arguments
	Chapter 12: Exercises
	12.1 Character Array
	12.2 Array Elements
	12.3 Pointer to an Existing Object
	12.4 Pointers and Arrays
	12.5 Pointer to a Character Array
	12.6 Pointer Arithmetics
	12.7 Array of Pointers

	Chapter 13: Functions
	13.1 Introduction
	13.2 Function Declaration
	13.3 Function Definition
	13.4 Parameters and Arguments
	13.4.1 Passing Arguments
	13.4.1.1 Passing by Value
	13.4.1.2 Passing by Pointer/Address

	13.5 Return Statement

	Chapter 14: Exercises
	14.1 A Simple Function
	14.2 Function Declaration and Definition
	14.3 Passing Arguments by Value
	14.4 Passing Arguments by Pointer/Address
	14.5 Function – Multiple Parameters

	Chapter 15: Structures
	15.1 Introduction
	15.2 Initialization
	15.3 Member Access Operator
	15.4 Copying Structures
	15.5 Pointers to Structures
	15.6 Self-Referencing Structures
	15.7 Structures as Function Arguments

	Chapter 16: Unions
	Chapter 17: Conditional Expression
	Chapter 18: Typedef
	Chapter 19: Const Qualifier
	Chapter 20: Enumerations
	Chapter 21: Function Pointers
	Chapter 22: Exercises
	22.1 Structure Definition
	22.2 Structure Typedef Alias
	22.3 Structure Initialization
	22.4 Pointers to Structures
	22.5 Unions
	22.6 Const Variables and Pointers
	22.7 Constant Function Parameters
	22.8 Enums
	22.9 Pointers to Functions

	Chapter 23: Preprocessor
	23.1 #include
	23.2 #define
	23.3 #undef
	23.4 Conditional Compilation
	23.4.1 #if
	23.4.2 #ifdef
	23.4.3 #ifndef

	23.5 Built-in Macros
	23.6 Function-Like Macros

	Chapter 24: Exercises
	24.1 Define and Undefine a Macro
	24.2 Conditional Compilation
	24.3 Built-in Macros
	24.4 Function Macros

	Chapter 25: Dynamic Memory Allocation
	25.1 malloc
	25.2 calloc
	25.3 realloc

	Chapter 26: Storage and Scope
	26.1 Scope
	26.1.1 Local Scope
	26.1.2 Global Scope

	26.2 Storage
	26.2.1 Automatic Storage Duration
	26.2.2 Static Storage Duration
	26.2.3 Allocated Storage Duration

	Chapter 27: Exercises
	27.1 Dynamic Memory Allocation
	27.2 Dynamic Memory Allocation: Arrays
	27.3 Dynamic Memory Resizing
	27.4 Automatic and Allocated Storage

	Chapter 28: Standard Input and Output
	28.1 Standard Input
	28.1.1 scanf
	28.1.2 sscanf
	28.1.3 fgets

	28.2 Standard Output
	28.2.1 printf
	28.2.2 puts
	28.2.3 fputs
	28.2.4 putchar

	Chapter 29: File Input and Output
	29.1 File Input
	29.2 File Output

	Chapter 30: Exercises
	30.1 Standard Input
	30.2 Standard Output

	Chapter 31: Header and Source Files

	Part II: The C Standard Library
	Chapter 32: Introduction to C Standard Library
	32.1 String Manipulation
	32.1.1 strlen
	32.1.2 strcmp
	32.1.3 strcat
	32.1.4 strcpy
	32.1.5 strstr

	32.2 Memory Manipulation Functions
	32.2.1 memset
	32.2.2 memcpy
	32.2.3 memcmp
	32.2.4 memchr

	32.3 Mathematical Functions
	32.3.1 abs
	32.3.2 fabs
	32.3.3 pow
	32.3.4 round
	32.3.5 sqrt

	32.4 String Conversion Functions
	32.4.1 strtol
	32.4.2 snprintf

	Part III: Modern C Standards
	Chapter 33: Introduction to C11 Standard
	33.1 _Static_assert
	33.2 The _Noreturn Function Specifier
	33.3 Type Generic Macros Using _Generic
	33.4 The _Alignof Operator
	33.5 The _Alignas Specifier
	33.6 Anonymous Structures and Unions
	33.7 Aligned Memory Allocation: aligned_alloc
	33.8 Unicode Support for UTF-16 and UTF-32
	33.9 Bounds Checking and Threads Overview
	33.9.1 Bounds-Checking Functions
	33.9.2 Threads Support

	Chapter 34: The C17 Standard
	Chapter 35: The Upcoming C2X Standard
	35.1 _Static_assert Without a Message
	35.2 Attributes
	35.3 No Parameters Function Declaration
	35.4 The strdup Function
	35.5 The memccpy Function

	Part IV:Dos and Don’ts
	Chapter 36: Do Not Use the gets Function
	Chapter 37: Initialize Variables Before Using Them
	Chapter 38: Do Not Read Out of Bounds
	Chapter 39: Do Not Free the Allocated Memory Twice
	Chapter 40: Do Not Cast the Result of malloc
	Chapter 41: Do Not Overflow a Signed Integer
	Chapter 42: Cast a Pointer to void* When Printing Through printf
	Chapter 43: Do Not Divide by Zero
	Chapter 44: Where to Use Pointers?
	44.1 Pointers to Existing Objects
	44.2 Pointers to Arrays
	44.3 Pointers to String Constants
	44.4 Pointers to Dynamically Allocated Memory
	44.5 Pointers as Function Arguments

	Chapter 45: Prefer Functions to Function-Like Macros
	Chapter 46: static Global Names
	Chapter 47: What to Put in Header Files?
	47.1 Shared Macros
	47.2 Function Declarations
	47.3 Shared extern Variables and Constants
	47.4 Other Header Files

	Part V:Appendices
	Appendix A:Linkage
	Appendix B:Time and Date
	Appendix C:Bitwise Operators
	C.1 The Bitwise NOT Operator ~
	C.2 Bitwise Shift Operators << and >>
	C.3 The Bitwise AND Operator &

	Appendix D:Numeric Limits
	D.1 Integer Types Limits
	D.2 Floating-Point Types Limits

	Appendix E:Summary and Advice
	E.1 What to Learn Next?
	E.2 Online References
	E.3 Other C Books
	E.4 Advice

	Index

