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Preface

This book is written for high school and college students learning about probability
for the first time. Most of the book is very practical, with a large number of concrete
examples and worked-out problems. However, there are also parts that are a bit
theoretical (at least for an introductory book), with many mathematical derivations.
All in all, if you are looking for a book that serves as a quick reference, this may not
be the one for you. But if you are looking for a book that starts at the beginning and
derives everything from scratch in a comprehensive manner, then you’ve come to
the right place. In short, this book will appeal to the reader who has a healthy level
of enthusiasm for understanding how and why the standard results of probability
come about.

Probability is a very accessible (and extremely fun!) subject, packed with chal-
lenging problems that don’t require substantial background or serious math. The
examples in Chapter 2 are a testament to this. Of course, there are plenty of chal-
lenging topics in probability that do require a more formal background and some
heavy-duty math. This will become evident in Chapters 4 and 5 (and the latter part
of Chapter 3). However, technically the only math prerequisite for this book is a
comfort with algebra. Calculus isn’t relied on, although there are a few problems
that do involve calculus. These are marked clearly.

All of the problems posed at the ends of the chapters have solutions included.
The difficulty is indicated by stars; most problems have two stars. One star means
plug and chug, while three stars mean some serious thinking. Be sure to give a solid
effort when solving a problem, and don’t look at the solution too soon. If you can’t
solve a problem right away, that’s perfectly fine. Just set it aside and come back to
it later. It’s better to solve a problem later than to read the solution now. If you do
eventually need to look at a solution, cover it up with a piece of paper and read one
line at a time, to get a hint to get started. Then set the book aside and work things
out for real. That way, you can still (mostly) solve it on your own. You will learn
a great deal this way. If you instead head right to the solution and read it straight
through, you will learn very little.

For instructors using this book as the assigned textbook for a course, a set of
homework exercises is posted at www.people.fas.harvard.edu/ ˜djmorin/book.html.
A solutions manual is available to instructors upon request. When sending a request,
please point to a syllabus and/or webpage for the course.

The outline of this book is as follows. Chapter 1 covers combinatorics, which
is the study of how to count things. Counting is critical in probability, because
probabilities often come down to counting the number of ways that something can
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happen. In Chapter 2 we dive into actual probability. This chapter includes a large
number of examples, ranging from coins to cards to four classic problems presented
in Section 2.4. Chapter 3 covers expectation values, including the variance and
standard deviation. A section on the “sample variance” is included; this is rather
mathematical and can be skipped on a first reading. In Chapter 4 we introduce the
concept of a continuous distribution and then discuss a number of the more com-
mon probability distributions. In Chapter 5 we see how the binomial and Poisson
distributions reduce to a Gaussian (or normal) distribution in certain limits. We
also discuss the law of large numbers and the central limit theorem. Chapter 6 is
somewhat of a stand-alone chapter, covering correlation and regression. Although
these topics are usually found in books on statistics, it makes sense to include them
here, because all of the framework has been set. Chapter 7 contains six appendices.
Appendix C deals with approximations to (1 + a)n which are critical in the calcu-
lations in Chapter 5, Appendix E lists all of the main results we derive in the book,
and Appendix F contains a glossary of notation; you may want to refer to this when
starting each chapter.

A few informational odds and ends: This book contains many supplementary
remarks that are separated off from the main text; these end with a shamrock, “♣.”
The letters N , n, and k generally denote integers, while x and t generally denote
continuous quantities. Upper-case letters like X denote a random variable, while
lower-case letters like x denote the value that the random variable takes. We re-
fer to the normal distribution by its other name, the “Gaussian” distribution. The
numerical plots were generated with Mathematica. I will sometimes use “they” as
a gender-neutral singular pronoun, in protest of the present failing of the English
language. And I will often use an “ ’s” to indicate the plural of one-letter items (like
6’s on dice rolls). Lastly, we of course take the frequentist approach to probability
in this introductory book.

I would particularly like to thank Carey Witkov for meticulously reading through
the entire book and offering many valuable suggestions. Joe Swingle provided many
helpful comments and sanity checks throughout the writing process. Other friends
and colleagues whose input I am grateful for are Jacob Barandes, Sharon Bene-
dict, Joe Blitzstein, Brian Hall, Theresa Morin Hall, Paul Horowitz, Dave Patterson,
Alexia Schulz, and Corri Taylor.

Despite careful editing, there is essentially zero probability that this book is
error free (as you can show in Problem 4.16!). If anything looks amiss, please check
the webpage www.people.fas.harvard.edu/ ˜djmorin/book.html for a list of typos,
updates, additional material, etc. And please let me know if you discover some-
thing that isn’t already posted. Suggestions are always welcome.

David Morin
Cambridge, MA



Chapter 1

Combinatorics

TO THE READER: This book is available as both a paperback and an eBook. I
have made a few chapters available on the web, but it is possible (based on past
experience) that a pirated version of the complete book will eventually appear on
file-sharing sites. In the event that you are reading such a version, I have a request:

If you don’t find this book useful (in which case you probably would have returned
it, if you had bought it), or if you do find it useful but aren’t able to afford it, then
no worries; carry on. However, if you do find it useful and are able to afford the
Kindle eBook (priced below $10), then please consider purchasing it (available
on Amazon). If you don’t already have the Kindle reading app for your computer,
you can download it free from Amazon. I chose to self-publish this book so that I
could keep the cost low. The resulting eBook price of around $10, which is very
inexpensive for a 350-page math book, is less than a movie and a bag of popcorn,
with the added bonus that the book lasts for more than two hours and has zero
calories (if used properly!).

– David Morin

Combinatorics is the study of how to count things. By “things” we mean the various
combinations, permutations (different orderings), subgroups, and so on, that can be
formed from a given set of objects/people/etc. For example, how many different
outcomes are possible if you flip a coin four times? How many different full-house
hands are there in poker? How many different committees of three people can be
chosen from five people? What if we additionally designate one person as the com-
mittee’s president? Knowing how to count these types of things is critical for an
understanding of probability, because when calculating the probability of a given
event, we often need to count the number of ways that the event can happen.

The outline of this chapter is as follows. In Section 1.1 we introduce the con-
cept of factorials, which are ubiquitous in the study of probability. In Section 1.2
we learn how to count the number of possible permutations (orderings) of a set of
objects. Section 1.3 covers the number of possible combined outcomes of a repeated
experiment, where each repetition has an identical set of possible results. Examples
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2 Chapter 1. Combinatorics

include rolling dice and flipping coins. In Section 1.4 we learn how to count the
number of subgroups that can be formed from a given set of objects, where the or-
der within the subgroup matters. An example is choosing a committee of people
in which all of the positions are distinct. Section 1.5 covers the related question of
the number of subgroups that can be formed from a given set of objects, where the
order within the subgroup doesn’t matter. An example is a poker hand; the order
of the cards in the hand is irrelevant. We find that the answer takes the form of a
binomial coefficient. In Section 1.6 we summarize the various results we have found
so far. We discover that one result is missing from our counting repertoire, and we
remedy this in Section 1.7. In Section 1.8 we look at the binomial coefficients in
more detail.

After learning in this chapter how to count all sorts of things, we’ll see in Chap-
ter 2 how the counting can be used to calculate probabilities. It’s usually a trivial
step to obtain a probability once you’ve counted the relevant things, so the work we
do here will prove well worth it.

1.1 Factorials
Before getting into the discussion of actual combinatorics, we first need to look at a
certain quantity that comes up again and again. This quantity is called the factorial.
We’ll see throughout this chapter that when dealing with a situation that involves
an integer N , we often need to consider the product of the first N integers. This
product is called “N factorial,” and it is denoted by “N!”.1 For the first few integers,
we have:

1! = 1,
2! = 1 · 2 = 2,
3! = 1 · 2 · 3 = 6,
4! = 1 · 2 · 3 · 4 = 24,
5! = 1 · 2 · 3 · 4 · 5 = 120,
6! = 1 · 2 · 3 · 4 · 5 · 6 = 720. (1.1)

As N increases, N! gets very large very fast. For example, 10! = 3,628,800, and
20! ≈ 2.43 · 1018. In Chapter 2 we will introduce an approximation to N! called
Stirling’s formula. This formula makes it clear what we mean by the statement, “N!
gets very large very fast.”

We should add that 0! is defined to be 1. Of course, 0! doesn’t make much sense,
because when we talk about the product of the first N integers, it is understood that
we start with 1. Since 0 is below this starting point, it is unclear what 0! actually
means. However, there is no need to try too hard to make sense of it, because as
we’ll see below, if we simply define 0! to be 1, then a number of formulas turn out
to be very nice.

1I don’t know why someone long ago picked the exclamation mark for this notation. But just re-
member that it has nothing to do with the more common grammatical use of the exclamation mark for
emphasis. So try not to get too excited when you see “N!”!
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Having defined N!, we can now start counting things. With the exception of the
result in Section 1.3, all of the main results in this chapter involve factorials.

1.2 Permutations

A permutation of a set of objects is a way of ordering them. For example, if we have
three people – Alice, Bob, and Carol – then one permutation of them is Alice, Bob,
Carol. Another permutation is Carol, Alice, Bob. Another is Bob, Alice, Carol. It
turns out that there are six permutations in all, as we will see below. The goal of this
section is to learn how to count the number of possible permutations. We’ll do this
by starting off with the very simple case where we have only one object. Then we’ll
consider two objects, then three, and so on, until we see a pattern. The route we
take here will be a common one throughout this book: Although many of the results
can be derived in a few lines of reasoning, we’ll take the longer route where we
start with a few simple examples and then generalize until we arrive at the desired
results. Concrete examples always make it easier to understand a general result.

One object

If we have only one object, then there is clearly only one way to “order” it; there is
no ordering to be done. A list of one object simply consists of that one object, and
that’s that. If we use the notation where PN stands for the number of permutations
of N objects, then we have P1 = 1.

Two objects

With two objects, things aren’t completely trivial like they are in the one-object
case, but they’re still very simple. If we label our two objects as 1 and 2, then we
can order them in two ways:

1 2 or 2 1

So we have P2 = 2. At this point, you might be thinking that this result, along with
the above P1 = 1 result, suggests that PN = N for any positive integer N . This
would mean that there should be three different ways to order three objects. Well,
not so fast. . .

Three objects

Things get more interesting with three objects. If we call them 1, 2, and 3, then we
can list out the possible orderings. The permutations are shown in Table 6.1.

1 2 3 2 1 3 3 1 2
1 3 2 2 3 1 3 2 1

Table 1.1: Permutations of three objects.
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So we have P3 = 6. Note that we’ve grouped these six permutations into three
subgroups (the three columns), according to which number comes first. It isn’t nec-
essary to group them this way, but we’ll see below that this method of organization
has definite advantages. It will simplify how we think about the case where the
number of objects is a general number N .

Remark: There is no need to use the numbers 1, 2, 3 to represent the three objects. You can
use whatever symbols you want. For example, the letters A, B, C work fine, as do the letters
H, Q, Z. You can even use symbols like ⊗, ♠, ♡. Or you can mix things up with ⊙, W, 7. The
point is that the numbers/letters/symbols/whatever simply stand for three different things, and
they need not have any meaningful properties except for their different appearances when you
write them down. However, having said this, there is certainly something simple about the
numbers 1, 2, 3, . . ., or the letters A, B, C, . . ., so we’ll generally work with these. In any
case, it is usually a good idea to be as economical as possible and not write down the full
names, such as Alice, Bob, Carol, etc. ♣

Four objects

The pattern so far is P1 = 1, P2 = 2, and P3 = 6. Although you might be able to
guess the general rule from these three results, it will be easier to see the pattern
if we look at the next case with four objects. Taking a cue from the above list of
six permutations of three objects, let’s organize the permutations of four objects
(labeled 1, 2, 3, 4) according to which number comes first. We end up with the 24
permutations shown in Table 1.2.

1 2 3 4 2 1 3 4 3 1 2 4 4 1 2 3
1 2 4 3 2 1 4 3 3 1 4 2 4 1 3 2
1 3 2 4 2 3 1 4 3 2 1 4 4 2 1 3
1 3 4 2 2 3 4 1 3 2 4 1 4 2 3 1
1 4 2 3 2 4 1 3 3 4 1 2 4 3 1 2
1 4 3 2 2 4 3 1 3 4 2 1 4 3 2 1

Table 1.2: Permutations of four objects.

If we look at the last column, where all the permutations start with 4, we see that if
we strip off the 4, we’re simply left with the six permutations of the three numbers
1, 2, 3 that we listed in Table 6.1. A similar thing happens with the column of per-
mutations that start with 3. If we strip off the 3, we’re left with the six permutations
of the numbers 1, 2, 4. Likewise for the columns of permutations that start with 2
or 1. The 24 permutations listed in Table 1.2 can therefore be thought of as four
groups (the four columns), each consisting of six permutations.

Five objects

For five objects, you probably don’t want to write down all the permutations, be-
cause it turns out that there are 120 of them. But you can imagine writing them
all down. And for the present purposes, that’s just as good as (or even better than)
actually writing them down for real.
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Consider the permutations of 1, 2, 3, 4, 5 that start with 1. From the above result
for the N = 4 case, the other four numbers 2, 3, 4, 5 can be permuted in 24 ways.
So there are 24 permutations that start with 1. Likewise, there are 24 permutations
that start with 2. And similarly for 3, 4, and 5. So we have five groups (columns,
if you want to imagine writing them that way), each consisting of 24 permutations.
The total number of permutations of five objects is therefore 5 · 24 = 120.

General case of N objects

Collecting the above results, we have

P1 = 1, P2 = 2, P3 = 6, P4 = 24, P5 = 120. (1.2)

Do these numbers look familiar? Yes indeed, they are simply the N! results in
Eq. (1.1). Does this equivalence make sense? Yes, due to the following reasoning.

• P1 = 1, of course.

• P2 = 2, which can be written in the suggestive form, P2 = 2 · 1.

• For P3, Table 6.1 shows that P3 = 6 can be thought of as three groups (char-
acterized by which number appears first) of the P2 = 2 permutations of the
second and third numbers. So we have P3 = 3P2 = 3 · 2 · 1.

• Similarly, for P4, Table 1.2 shows that P4 = 24 can be thought of as four
groups (characterized by which number appears first) of the P3 = 6 permu-
tations of the second, third, and fourth numbers. So we have P4 = 4P3 =

4 · 3 · 2 · 1.

• Likewise, the above reasoning for N = 5 shows that P5 = 5P4 = 5 · 4 · 3 · 2 · 1.
And so on and so forth. Therefore:

• At each stage, we have PN = N · PN−1. Since the sequence of numbers starts
with P1 = 1, this relation is easily seen to be satisfied by the general formula,

PN = N! (1.3)

Basically, you just need to tack on a factor of N at each stage, due to the
fact that the permutations can start with any of the N numbers (or whatever
objects you’re dealing with). The number of permutations of N objects is
therefore N!.

The strategy of assigning seats

An equivalent way of thinking about the PN = N! result is the following. For
concreteness, let’s say that we have four people, Alice, Bob, Carol, and Dave. And
let’s assume that they need to be assigned to four seats arranged in a line. The N!
result tells us that there are 4! = 24 different permutations they can take. We’ll now
give an alternative derivation that shows how these 24 orderings can be understood
easily by imagining the seats being filled one at a time. We’ll get a lot of mileage
out of this type of “seat filling” argument throughout this chapter and the next.
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• There are four possibilities for who is assigned to the first seat.

• For each of these four possibilities, there are three possibilities for who is
assigned to the second seat (because we’ve already assigned one person, so
there are only three people left). There are therefore 4 · 3 = 12 possibilities
for how the inhabitants of the first two seats are chosen.

• For each of these 12 possibilities, there are two possibilities for who is as-
signed to the third seat (because there are only two people left). There are
therefore 4 · 3 · 2 = 24 possibilities for how the inhabitants of the first three
seats are chosen.

• Finally, for each of these 24 possibilities, there is only one possibility for who
is assigned to the fourth seat (because there is only one person left, so we’re
stuck with him/her). There are therefore 4 · 3 · 2 · 1 = 24 possibilities for
how the inhabitants of all four seats are chosen. The 1 here doesn’t matter, of
course; it just makes the formula look nicer.

You can see how this counting works for the N = 4 case in Table 1.2. There
are four possibilities for the first entry, which stands for the person assigned to the
first seat if we label the people by 1, 2, 3, 4. Once we pick the first entry, there are
three possibilities for the second entry. And once we pick the second entry, there
are two possibilities for the third entry. And finally, once we pick the third entry,
there is only one possibility for the fourth entry. You can verify all these statements
by looking at the table.

If you want to think in terms of a picture, the above process is depicted in the
branching tree in Fig. 1.1. We’ve changed the numbers 1, 2, 3, 4 to the letters A,
B, C, D, with the different possibilities at each branch being listed in alphabetical
order, left to right. We’ve listed the four possibilities in the first stage and the twelve
possibilities in the second stage. However, we haven’t listed the 24 possibilities in
each of the last two stages, because there isn’t room in the figure. But one possibility
in each stage is shown.

A B C D

AB AC AD BA BC BD CA CB CD DA DB DC

BCD

(N = 4)

4 possibilities

12 possibilities
24 possibilities

24 possibilities
BCDA

Figure 1.1: The branching tree for permutations of four objects. The number of branches in
each fork decreases by one at each successive stage.

It should be emphasized that when dealing with situations that involve state-
ments such as, “There are a possibilities for Outcome 1, and for each of these there
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are b possibilities for Outcome 2, and for each of these there are c possibilities for
Outcome 3, and so on. . . ,” the total number of different possibilities when all of the
outcomes are listed together is the product (not the sum!) of the numbers of possibil-
ities for the different outcomes, that is, a · b · c · · · . You should stare at Table 1.2 and
Fig. 1.1 until you’re comfortable with this. The reason for the product boils down to
the words, “. . . for each of these. . . ,” in the above statement. As a simple analogy, if
7 people are each carrying 3 books, then there are 7 · 3 = 21 (not 7 + 3 = 10) books
in all.

Example (Five plus four): Nine people are to be assigned to nine seats in a row, with
the stipulation that five specific people go in the left five seats, and the remaining four
people go in the right four seats. How many different assignments can be made?

Solution: There are five ways to put someone (from the five specific people) in the
leftmost seat, and then for each of these five ways there are four ways to put someone
(from the remaining four of the five specific people) in the next seat, and so on. So
there are 5! = 120 ways to assign the five specific people to the left five seats. For each
of these 5! ways, there are 4! = 24 ways to assign the remaining four people to the right
four seats (by the same reasoning as above). The total number of ways of assigning
the nine people (with the given restriction) is therefore 5! · 4! = 120 · 24 = 2,880.
Note that this result is much smaller than the 9! = 362,880 result in the case where
there is no restriction, that is, where any person can sit in any seat. The ratio of these
two results is 9!/(5! · 4!) = 126. This sort of number (a quotient involving three
factorials) will play a huge role in Section 1.5.

1.3 Ordered sets, repetitions allowed
In this section we’ll learn how to count the number of possible outcomes of repeated
identical processes/trials/experiments, where the order of the individual results mat-
ters. This scenario is the first of four related scenarios we’ll discuss in this chapter.
These are summarized later in Tables 1.11 and 1.12, with the present scenario being
the upper-left one in the table. Two common examples are repeated rolls of a die
and repeated flips of a coin. We’ll discuss these below, but let’s start off with an
example that involves drawing balls from a box.

Let’s say that we have a box containing five balls labeled A, B, C, D, E. We
reach in and pick a ball and write down the letter. We then put the ball back in the
box, shake the box around, and pick a second ball (which might be the same as the
first ball) and write down this letter next to the first one, to the right of it (so the
order matters). Equivalently, we can imagine having two boxes (a left one and a
right one) with identical sets of balls labeled A, B, C, D, E, and we pick one ball
from each box. We can think about it either way. The point is that the process of
picking a ball is identical each time. We’ll refer to this kind of setup in various
equivalent ways, but you should remember that all of the following phrases mean
the same thing:
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• identical trials

• with replacement

• repetitions allowed

Basically, identical trials can be constructed by placing the ball you just drew
back in the box, which means that it’s possible for a future ball to be a repeat of a
ball you’ve already drawn. Of course, with things like dice and coins, the trials are
inherently identical, which means that repetitions are automatically allowed. So we
don’t need to talk about replacement. You don’t remove the dots on a die after you
roll it!

How many possible pairs of letters (where repetition is allowed and where the
order matters) can we pick in the above five-ball example? More generally, how
many different ordered sets of letters can we pick if we do n trials instead of only
two? Or if we have N balls instead of five?

In the case of N = 5 balls and n = 2 trials, the various possibilities are shown
in Table 1.3. There are five possibilities for the first pick (represented by the five
columns in the table), and then for each of these there are five possibilities for the
second pick (represented by the five different entries in each column, or equivalently
by the five rows). The total number of possible pairs of letters is therefore 5 ·5 = 25.
Remember that the order matters. So AC is different from CA, for example.

A A B A C A D A E A
A B B B C B D B E B
A C B C C C D C E C
A D B D C D D D E D
A E B E C E D E E E

Table 1.3: Drawing two balls from a box containing five balls, with replacement.

If we do only n = 1 trial instead of two, then there are of course just 51 = 5
possibilities. Instead of the square in Table 1.3, we simply have one column (just
looking at the second letter in each pair), or one row (just looking at the first letter
in each pair).

If we increase the number of trials to n = 3, then the square in Table 1.3 becomes
a cube, with the third axis (pointing into the page) representing the third pick. For
each of the 52 possibilities in Table 1.3 for the first two letters, there are five pos-
sibilities for the third, yielding 52 · 5 = 53 = 125 possible triplets in all. Again
remember that the order matters. So AAD is different from ADA, for example.

Similarly, n = 4 trials yield 53 · 5 = 54 = 625 possibilities. In this case the cor-
responding geometrical shape is a 4-dimensional hypercube – not exactly an easy
thing to visualize! Now, the point of listing out the possibilities in a convenient ge-
ometrical shape is that it can help you do the counting. However, if the geometrical
shape is a pain to visualize, then you shouldn’t bother with it. Fortunately there is
no need to visualize higher-dimensional cubes. The above pattern of reasoning tells
us that there are 5n different possible results when doing n trials of picking a letter
from a 5-letter box, with replacement and with the order mattering.
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More generally, if we do n trials involving a box that contains N letters instead
of the specific number 5, then the total number of possible results is Nn . This is
true because there are N possible results for the first pick. And then for each of
these N results, there are N possible results for the second pick, yielding N2 results
for the first two picks. And then for each of these N2 results for the first two picks,
there are N possible results for the third pick, yielding N3 results for the first three
picks. And so on. Remember (as we noted near the end of Section 1.2) that the
total number of results of n trials here is the product (not the sum) of the N possible
results for each trial. So we obtain Nn (and not nN).

Our main result in this section is therefore: The number of possible outcomes
when picking n objects from a box containing N distinct objects (with replacement
after each stage, and with the order mattering) is:

Number of possible outcomes = Nn (1.4)

This Nn “power-law” result is demonstrated pictorially for N = 3 in the branching
tree in Fig. 1.2. At each vertex, we have a choice of three paths. A diagonally
leftward path corresponds to picking the letter A, an upward path corresponds to
the letter B, and a diagonally rightward path corresponds to the letter C.

A

A

AA AB AC BA BB BC CA CB
CC

B C

ACAB

B C

(N = 3)

3 outcomes

9 outcomes
27 outcomes
81 outcomesn = 4 trials

n = 3 trials
n = 2 trials

n = 1 trial

Figure 1.2: The branching tree for ordered lists chosen from three objects, with replacement.

After n = 1 trial, there are 3 possibilities: A, B, C. After n = 2 trials, there are
32 = 9 possibilities: AA, AB, AC, BA, BB, BC, CA, CB, CC. After n = 3 trials,
there are 33 = 27 possibilities. We haven’t labeled them in the figure, because they
wouldn’t fit, but they are listed in Table 1.4 (grouped in a reasonable manner).

After n = 4 trials, there are 34 = 81 possibilities: AAAA, AAAB, etc. We have
indicated one of these in Fig. 1.2, namely ACAB. (The arrow points at the middle
branch of the relevant top-level triplet.) If you want to list out all 81 possibilities,
you can put an A in front of all 27 entries in Table 1.4, and then a B in front of all
of them, and then finally a C in front of all of them.

After another trial or two, the branches in Fig. 1.2 become too small to distin-
guish the different outcomes. But as with the hypercubes mentioned above, there is
fortunately no need to write down the entire branching tree. The tree simply helps
in understanding the Nn result.

There are two differences between the present Nn result and the N! permutation
result in Eq. (1.3). First, the factors in Nn are all N’s, because there are N possible
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AAA BAA CAA
AAB BAB CAB
AAC BAC CAC

ABA BBA CBA
ABB BBB CBB
ABC BBC CBC

ACA BCA CCA
ACB BCB CCB
ACC BCC CCC

Table 1.4: The 27 ordered lists of three objects chosen from a set of three objects, with
replacement.

outcomes for each of the identical trials (because we put the ball back in the box
after each trial), whereas the factors in N! start with N and decrease to 1 (because
there is one fewer possibility at each stage; once a letter/number is used up, we can’t
use it again). This difference is evident in Figs. 1.1 and 1.2. In the latter, the number
of branches is always the same at each stage, whereas in the former, the number of
branches decreases by one at each stage. The second difference is that the Nn result
involves your choice of the number n of trials (which may very well be larger than
n; there is no restriction on the size of n), whereas N! involves exactly the N factors
from N down to 1, because we’re looking at orderings of the entire set of N objects.

Let’s now look at two classic examples, involving dice and cards, where the Nn

type of counting comes up.

Example 1 (Rolling dice): If you roll a standard six-sided die twice (or equivalently,
roll two dice), how many different possible ordered outcomes are there?

Solution: There are six possibilities for what the first die shows, and six for the
second. So there are 62 = 36 possibilities in all. If you want to list them out, they are
shown in Table 1.5.

1, 1 2, 1 3, 1 4, 1 5, 1 6, 1
1, 2 2, 2 3, 2 4, 2 5, 2 6, 2
1, 3 2, 3 3, 3 4, 3 5, 3 6, 3
1, 4 2, 4 3, 4 4, 4 5, 4 6, 4
1, 5 2, 5 3, 5 4, 5 5, 5 6, 5
1, 6 2, 6 3, 6 4, 6 5, 6 6, 6

Table 1.5: The 36 possible ordered outcomes for two dice rolls.

Since we are assuming that the order matters, a 2, 5 is different from a 5, 2. That is,
rolling a 2 on the first die (or, say, the left die if you’re rolling both at once) and then a
5 on the second die (or the right die) is different from rolling a 5 and then a 2. All 36
outcomes in Table 1.5 are distinct.
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Remark: This remark gets a little ahead of things, but as a precursor to our discussion
of probability in the next chapter, we can ask the question: what is the probability of
obtaining a sum of 7 when rolling two dice? If we look at Table 1.5, we see that six
different outcomes yield a sum of 7. They are 1,6; 2,5; 3,4; 4,3; 5,2; 6,1. Since all
36 possibilities are equally likely (because the probability of any number showing up
on any roll is the same, namely 1/6), and since six of the possibilities yield the desired
sum of 7, the probability of rolling a sum of 7 is 6/36 = 1/6 ≈ 16.7%. From the table,
you can quickly verify that 7 is the sum that has the most outcomes corresponding to
it. So 7 is the most probable sum. We’ll discuss all the various nuances and subtleties
about probability in the next chapter. For now, the lesson to take away from this is that
the ability to count things is extremely important in calculating probabilities! ♣

Example 2 (Flipping coins): If you flip a coin four times (or equivalently, flip four
coins), how many different possible ordered outcomes are there?

Solution: There are two possibilities (Heads or Tails) for what the first coin shows,
and two for the second, and two for the third, and two for the fourth. So there are
2 · 2 · 2 · 2 = 24 = 16 possibilities in all. If you want to list them out, they are shown
in Table 1.6.

HHHH THHH
HHHT THHT
HHTH THTH
HHTT THTT
HTHH TTHH
HTHT TTHT
HTTH TTTH
HTTT TTTT

Table 1.6: The 16 possible ordered outcomes for four coin flips.

We have grouped the various possibilities into two columns according to whether the
first coin shows a Heads or a Tails. Each column has eight entries, because 23 = 8 is
the number of possible outcomes for three coins. (Just erase the first entry in each four-
coin outcome, and then each column gives the eight possible three-coin outcomes.)
Similarly, it’s easy to see why five coins yield 25 = 32 possible outcomes. We just
need to take all 16 of the four-coin outcomes and tack on an H at the beginning, and
then take all 16 again and tack on a T at the beginning. This gives 2 · 16 = 32 possible
five-coin outcomes.

Remark: As another probability teaser, we can ask: What is the probability of obtain-
ing exactly two Heads in four coin flips? Looking at Table 1.6, we see that six out-
comes have two Heads. They are HHTT, HTHT, HTTH, THHT, THTH, and TTHH.
Since all 16 possibilities are equally likely (because the probability of either letter
showing up on any flip is the same, namely 1/2), and since six of the possibilities
yield the desired outcome of two Heads, the probability of obtaining two Heads is
6/16 = 3/8 = 37.5%. As with the sum of 7 in the previous example, you can quickly
verify by looking at Table 1.6 that two Heads is the most likely number. ♣
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1.4 Ordered sets, repetitions not allowed

In this section we will answer the question: How many different sets of n objects
can be chosen from a given set of N objects, where the order matters and where rep-
etitions are not allowed. This is the second of the four related scenarios summarized
in Tables 1.11 and 1.12. The present scenario is the upper-right one in the table. In
Section 1.5 we will answer the question for the case where the order doesn’t matter
(and where repetitions are again not allowed). Note that in both of these cases (un-
like in Section 1.3 where repetitions were allowed), we must of course have n ≤ N ,
because we can’t use a given object/person more than once.

When dealing with situations where repetitions are not allowed, it is customary
to talk about committees of people, because repeating a person is of course not
possible (no cloning allowed!). For example, we might have 13 people, and our
goal might be to assign four of them to a committee, where the order within the
committee matters.

The answer to our initial question above (namely, how many ordered sets of n
objects can be chosen from a given set of N objects, without replacement?) can be
obtained quickly with only a slight modification of either of the N! or Nn results
in the preceding two sections (as we’ll see below). But let’s first get a feel for
the problem by considering a simple example with small numbers (as is our usual
strategy). Let’s say that we want to choose a committee of two people from a group
of five people. We’ll assume that the positions on the committee are distinct. For
example, one of the members might be the president. In other words, the order
within the pair matters if we’re listing the president first. We’ll present two ways of
counting the number of ordered pairs. The second method is the one that we’ll be
able to extend to the general case of an ordered set of n objects chosen from a given
set of N objects.

Example (Two chosen from five): How many different ordered pairs of people can
be chosen from a group of five people?

First solution: Let the five given people be labeled A, B, C, D, E. We’ll write down all
of the possible ordered pairs of letters, temporarily including repetitions, even though
we can’t actually repeat a person. As we saw in Table 1.3, there are five possibilities
for the first entry, and also five possibilities for the second entry, so we end up with
the 5 by 5 square of possible pairs shown in Table 1.7.

A A B A C A D A E A
A B B B C B D B E B
A C B C C C D C E C
A D B D C D D D E D
A E B E C E D E E E

Table 1.7: Determining the number of ordered pairs chosen from five people. The
five pairs in bold aren’t allowed.
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However, the five pairs with repeated letters (shown in bold along the diagonal of the
square) aren’t allowed, because the two people on the committee must of course be
different. We therefore end up with 52 − 5 = 20 ordered pairs. So that’s our answer.
More generally, if we want to pick an ordered pair from a group of N people, we can
imagine writing down an N by N square, which yields N2 pairs, and then subtracting
off the N pairs with repeated letters, which leaves us with N2 − N pairs. Note that this
can be written as N (N − 1).

Second solution: This second method is superior to the first one, partly because it is
quicker, and partly because it can be generalized easily to larger numbers of people.
(For example, we might want to pick an ordered group of four people from a group
of 13 people.) Our strategy will be to pick the two committee members one at a time,
just as we did at the end of Section 1.2 when we assigned people to seats.
If we have two seats that need to be filled with the two committee members, then
there are five possibilities for who goes in the first seat. And then for each of these
possibilities, there are four possibilities for who goes in the second seat, because there
are only four people left. So there are 5 · 4 = 20 ways to plop down the two people
in the two seats. This is exactly the same reasoning as with the N! ways to assign N
people to N seats, except that we’re stopping the assignment process after two seats.
So we have only the product 5 · 4 instead of the product 5 · 4 · 3 · 2 · 1. The number of
ordered pairs we can pick from five people is therefore 5 · 4 = 20, as we found above.
The preceding reasoning generalizes easily to the case where we pick ordered pairs
from N people. There are N possibilities for who goes in the first seat, and then for
each of these, there are N − 1 possibilities for who goes in the second seat. The total
number of possible ordered pairs is therefore N (N − 1).

Let’s now consider the general case where we pick an ordered set of n objects
(without replacement) from a given set of N objects. Equivalently, we’re picking a
committee of n people from a group N people, where all n positions on the com-
mittee are distinct.

The first method in the above example works for any value of N , provided that
n = 2. However, for larger values of n, it quickly becomes intractable. As in
Section 1.3, this is due to the fact that instead of the nice 2-D square we have in
Table 1.7, we have a 3-D cube in the n = 3 case, and then higher-dimensional objects
for larger values of n. Even if you don’t want to think about things geometrically,
the analogous counting is still difficult, because it is harder to get a handle on the
n-tuples with doubly-counted (or triply-counted, etc.) people. In Table 1.7 it was
clear that we simply needed to subtract off five pairs from the 25 total (or more
generally, N pairs from the N2 total). But in the n = 3 case, it is harder to determine
the number of triplets that need to be subtracted off from the naive answer of 53.
However, see Problem 1.3 if you want to think about how the counting works out.

In contrast with the intractability of the first method above when applied to
larger values of n, the second method generalizes quickly. If we imagine assigning
people to n ordered seats, there are N ways to assign a person to the first seat. And
then for each of these possibilities, there are N − 1 ways to assign a person to the
second seat (because there are only N − 1 people left). So there are N (N − 1)
possibilities for the first two seats. And then for each of these possibilities, there are
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N − 2 ways to assign a person to the third seat (because there are only N − 2 people
left). So there are N (N − 1)(N − 2) possibilities for the first three seats. And so on,
until there are N (N −1) · · · (N − (n−1)

)
possibilities for all n seats. The last factor

here is N − (n−1) because there are only N − (n−1) people left when choosing the
person for the nth seat, since n − 1 people have already been chosen. Alternatively,
the last factor is N − (n − 1) because that makes there be n factors in the product;
this is certainly true in the simple cases of n = 2 and n = 3.

If we denote by N Pn the number of ordered sets of n objects chosen from N
objects (without repetition), then we can write our result as

N Pn = N (N − 1)(N − 2) · · · (N − (n − 1)
)
. (1.5)

If we multiply this by 1 in the form of (N − n)!/(N − n)!, we see that the number of
ordered sets of n objects chosen from N objects can be written in the concise form,

N Pn =
N!

(N − n)!
(ordered subgroups) (1.6)

The ordered sets of n objects chosen from N objects are often called partial per-
mutations (because we’re permuting a partial set of the N objects) or k-permutations
(because the letter k is often used in place of the n that we’ve been using). Note that
N PN = N! (remember that 0! = 1) of course, because if n = N then we’re form-
ing an ordered list of all N objects. That is, we’re forming a permutation of all N
objects. So the product in Eq. (1.5) runs from N all the way down to 1.

As mentioned near the beginning of this section, our result for N Pn can be ob-
tained with a quick modification to the reasoning in either of the preceding two
sections. From Eq. (1.5) we see that the permutation reasoning in Section 1.2 is
modified by simply truncating the product N (N − 1)(N − 2) · · · after n terms, in-
stead of including all N terms. The modification to Fig. 1.1 is that we stop the
branching at the nth level. The reasoning in Section 1.3 (involving ordered sets but
with repetitions allowed) is modified by simply replacing the Nn product of equal
factors N with the N (N − 1) · · · (N − (n − 1)

)
product of decreasing factors. The

factors get smaller because at each stage there is one fewer object/person available,
since repetitions aren’t allowed. (These decreasing factors lead to the n ≤ N re-
striction, as we noted above.) The modification to Fig. 1.2 is that we decrease the
number of branches by one at each stage (with the restriction n ≤ N).

1.5 Unordered sets, repetitions not allowed

In the preceding section, we considered committees/subgroups in which the order
mattered. But what if the order doesn’t matter? For example, how many ways
can we pick a committee of four people from 13 people, where all members of the
committee are equivalent? This is the third of the four related scenarios summarized
in Tables 1.11 and 1.12. The present scenario is the lower-right one in the table. As
usual, let’s start off with an example involving small numbers.
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Example (Two chosen from five): How many different unordered pairs of people
can be chosen from a group of five people?

First solution: Let the five given people be labeled A, B, C, D, E. We’ll write down
all of the possible pairs of letters, including repetitions (even though we can’t actu-
ally repeat a person) and including different orderings (even though the order doesn’t
matter). As in Table 1.7, there are five possibilities for the first entry, and also five
possibilities for the second entry, so we end up with the 5 by 5 square of possible pairs
shown in Table 1.8.

A A B A C A D A E A
A B B B C B D B E B
A C B C C C D C E C
A D B D C D D D E D
A E B E C E D E E E

Table 1.8: Determining the number of unordered pairs chosen from five people. The
five pairs in bold aren’t allowed, and the other pairs are all double counted.

However, as with Table 1.7, the five pairs with repeated letters (shown in bold along
the diagonal of the square) aren’t allowed, because the two people on the committee
must of course be different. Additionally, since we aren’t concerned with the order
within a given pair, the lower-left triangle of 10 pairs in the table is equivalent to the
upper-right triangle of 10 pairs. These two triangles are shown separated in Table 1.9.
We see that we have counted every pair twice in Table 1.8. For example, AB represents
the same pair as BA, and CE is the same as EC, etc. We therefore have (52−5)/2 = 10
unordered pairs. The subtraction of 5 gets rid of the pairs with repeated letters, and
the division by 2 gets rid of the double counting due to the duplicate triangles.

B A C A D A E A
A B C B D B E B
A C B C D C E C
A D B D C D E D
A E B E C E D E

Table 1.9: Equivalent sets of unordered pairs of people.

More generally, if we want to pick an unordered pair from a group of N people, we can
imagine writing down an N by N square, which yields N2 pairs, and then subtracting
the N pairs with repeated letters. This gives N2−N pairs. But we must then divide by
2 to get rid of the double counting; for every pair XY there is an equivalent pair YX.
This yields (N2 − N )/2 unordered pairs, which can also be written as N (N − 1)/2.

Second solution: As in the second solution in the example in Section 1.4, we can
imagine picking the committee members one at a time. And as before, this method
will generalize quickly to larger numbers of people. If we have two seats that need
to be filled with the two committee members, there are five possibilities for who goes
in the first seat. And then for each of these possibilities, there are four possibilities
for who goes in the second seat, because there are only four people left. So there are
5 · 4 = 20 ways to plop down the two people in the two seats. However, we double
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counted every pair in this reasoning; we counted the pair XY as distinct from the pair
YX. So we need to divide by 2 since we don’t care about the order. The number of
unordered pairs we can pick from five people is therefore (5 · 4)/2 = 10, as we found
above.
The preceding reasoning generalizes easily to the case where we pick unordered pairs
from N people. There are N possibilities for who goes in the first seat, and then for
each of these, there are N − 1 possibilities for who goes in the second seat. This
gives N (N − 1) possibilities. But since we don’t care about the order, this reasoning
double counts every pair. We therefore need to divide by 2, yielding the final result of
N (N − 1)/2, as we found above.

Let’s now consider the general case where we pick an unordered set of n objects
(without replacement) from a given set of N objects. Equivalently, we’re picking a
committee of n people from a group N people, where all n positions on the com-
mittee are equivalent.

As in Section 1.4, the first method above works for any value of N , provided
that n = 2. But for larger values of n, it again quickly becomes intractable. In
contrast, the second method generalizes easily. From Eq. (1.6) we know that there
are N Pn = N!/(N − n)! ways of assigning people to n ordered seats. However,
this expression counts every unordered n-tuplet n! times, due to the fact that our
permutation result in Eq. (1.3) tells us that there are n! ways to order any group of
n people. In our N Pn counting, we counted all of these groups as distinct. Since
they are not distinct in the present scenario where the order doesn’t matter, we must
divide by n! to get rid of this overcounting. For example, if we’re considering
committees of three people, the six triplets XYZ, XZY, YXZ, YZX, ZXY, ZYX are
distinct according to the N Pn counting. So we must divide by 3! = 6 to get rid of
this overcounting. We therefore arrive at the general result: The number of sets of
n objects that can be chosen from N objects (where the order doesn’t matter, and
where repetitions are not allowed) is

N Pn

n!
=

N!
n!(N − n)!

. (1.7)

This result is commonly denoted by the binomial coefficient
(
N
n

)
, which is read as

“N choose n.” We’ll have much more to say about binomial coefficients in Sec-
tion 1.8. Another notation for the above result is NCn , where the C stands for
“combinations.” The result in Eq. (1.7) can therefore be written as

NCn ≡
(
N
n

)
=

N!
n!(N − n)!

(unordered subgroups) (1.8)

For example, the number of ways to pick an unordered committee of four people
from six people is (

6
4

)
=

6!
4!2!

= 15. (1.9)

You should check this result by explicitly listing out the 15 groups of four people.
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Note that because of our definition of 0! = 1 in Section 1.1, Eq. (1.8) is valid
even in the case of n = N , because we have

(
N
N

)
= N!/N!0! = 1. And indeed, there

is only one way to pick N people from N people. You simply pick them all. Another
special case is n = 0. This gives

(
N
0

)
= N!/0!N! = 1. It’s a matter of semantics to

say that there is one way to pick zero people from N people; you simply don’t pick
any of them, and that’s the one way. But we’ll see later on, especially when dealing
with the binomial theorem, that

(
N
0

)
= 1 makes perfect sense.

In the end, the only difference between the
(
N
n

)
result in this section (where

the order doesn’t matter) and the N Pn result in Section 1.4 (where the order does
matter) is the division by n! to get rid of the overcounting. Remember that neither
of these results allows repetitions.

Example (Equal binomial coefficients): We found above that
(6
4

)
= 6!/(4!2!) = 15.

But note that
(6
2

)
= 6!/(2!4!) also equals 15. Both

(6
4

)
and

(6
2

)
involve the product of

2! and 4! in the denominator, and since the order doesn’t matter in this product, the
result is the same. We also have, for example,

(11
3

)
=

(11
8

)
. Both of these binomial

coefficients equal 165. In short, any two n’s that add up to N yield the same value of(
N
n

)
.

(a) Demonstrate this fact mathematically.

(b) Explain in words why it is true.

Solution:

(a) Let the two n values be n1 and n2. If they add up to N , then they must take the
forms of n1 = a and n2 = N − a, for some value of a. (The above example with
N = 11 was generated by either a = 3 or a = 8.) Our goal is to show that

(
N
n1

)
equals

(
N
n2

)
. And indeed,(

N
n1

)
=

N!
n1!(N − n1)!

=
N!

a!(N − a)!
, (1.10)(

N
n2

)
=

N!
n2!(N − n2)!

=
N!

(N − a)!
(
N − (N − a)

)
!
=

N!
(N − a)!a!

.

The order of the a! and (N − a)! factors in the denominators doesn’t matter, so
the two results are equal, as desired.
In practice, when calculating

(
N
n

)
by hand or on a calculator, you want to cancel

the larger of the factorials in the denominator. For example, you can quickly
cancel the 8! in both

(11
3

)
and

(11
8

)
and write them as (11 ·10 ·9)/(3 ·2 ·1) = 165.

(b) Imagine picking n objects from N objects and then putting them in a box. The
number of ways to do this is

(
N
n

)
. But note that you generated two sets of objects

in this process. You generated the n objects in the box, and you also generated
the N − n objects outside the box. There’s nothing special about being inside
the box versus being outside, so you can equivalently consider your process as
a way of picking the group of N − n objects that remain outside the box. Said in
another way, a perfectly reasonable way of picking a committee of n members
is to pick the N − n members who are not on the committee. There is a one-
to-one correspondence between each set of n objects and the complementary
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(remaining) set of N − n objects. The number of different sets of n objects is
therefore equal to the number of different sets of N − n objects, as we wanted to
show.

Let’s now mix things up a bit and consider an example involving a committee
that consists of distinct positions, but with some of the positions being held by more
than one person.

Example (Three different titles): From ten people, how many ways can you form a
committee of seven people consisting of a president, two (equivalent) vice presidents,
and four (equivalent) regular members? We’ll give four solutions.

First solution: We can start by picking an ordered set of seven people to sit in seven
seats in a row. There are 10P7 = 10 · 9 · 8 · 7 · 6 · 5 · 4 ways to do this. Let’s assume
that the president goes in the first seat, the two vice presidents go in the next two, and
the four regular members go in the last four. Then the order in which the two vice
presidents sit doesn’t matter, so 10P7 overcounts the number of distinct committees
by a factor of 2!. Likewise, the order in which the four regular members sit doesn’t
matter, so 10P7 overcounts the number of distinct committees by an additional factor
of 4!. The actual number of distinct committees is therefore

10P7
4!2!

=
10 · 9 · 8 · 7 · 6 · 5 · 4

4! · 2!
= 12,600. (1.11)

Second solution: There are 10
(
or more precisely,

(10
1

))
ways to pick the presi-

dent. And then for each of these possibilities, there are
(9
2

)
ways to pick the two vice

presidents from the remaining nine people; the order doesn’t matter between these two
people. And then for each scenario of president and vice presidents, there are

(7
4

)
ways

to pick the four regular members from the remaining seven people; again, the order
doesn’t matter among these four people. The total number of possible committees is
therefore (

10
1

) (
9
2

) (
7
4

)
=

10
1!
· 9 · 8

2!
· 7 · 6 · 5 · 4

4!
= 12,600. (1.12)

We chose not to cancel the factor of 4 in
(7
4

)
here, so that the agreement with Eq. (1.11)

would be clear.

Third solution: There is no reason why the president has to be picked first, so let’s
instead pick, say, the four regular members first, and then the two vice presidents, and
then the president. (Other orders will work perfectly well too.) There are

(10
4

)
ways to

pick the four regular members, and then
(6
2

)
ways to pick the two vice presidents from

the remaining six people, and then
(4
1

)
ways to pick the president from the remaining

four people. The total number of possible committees is therefore(
10
4

) (
6
2

) (
4
1

)
=

10 · 9 · 8 · 7
4!

· 6 · 5
2!
· 4

1!
= 12,600. (1.13)

We see that the order in which you pick the various subparts of the committee doesn’t
matter. It had better not matter, of course, because the number of possible committees
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is a definite number and can’t depend on your method of counting it (assuming your
method is a valid one!). Mathematically, all of the above solutions yield the same
result because all of the calculations have the same product 10 · 9 · 8 · 7 · 6 · 5 · 4 in the
numerator and the same product 1! · 2! · 4! in the denominator.

Fourth solution: We can do the counting in yet another way. We can first pick all
seven members; there are

(10
7

)
ways to do this. We can then pick the president from

these seven members; there are
(7
1

)
ways to do this. We can then pick the two vice

presidents from the remaining six members; there are
(6
2

)
ways to do this. We’re then

stuck with the remaining four members as regular members. The total number of
possible committees is therefore(

10
7

) (
7
1

) (
6
2

)
=

10 · 9 · 8
3!

· 7
1!
· 6 · 5

2!
= 12,600, (1.14)

If we multiply this expression by 4 over 4, then we have all the same factors in the
numerator and denominator as we had in the previous solutions.
Of course, after picking the seven members, we could alternatively then pick, say, the
four regular members from these seven, and then pick the two vice presidents from
the remaining three. You can verify that this again gives 12,600 possible committees.
The moral of all the above solutions is that there are usually many different ways to
count things!

For another example, let’s do some card counting. A standard deck of cards
consists of 52 cards, with four cards (the four suits) for each of the 13 values: 2, 3,
. . . , 9, 10, J(Jack), Q(Queen), K(King), A(Ace). There is a nearly endless number
of subgroup-counting examples relevant to the card game of poker. In the following
example, the ordering will matter in some cases but not in others.

Example (Full houses): How many different full-house hands are possible in stan-
dard five-card poker? A full house consists of three cards of one value plus two cards
of another. An example is 999QQ. (The suits don’t matter.)

Solution: Our strategy will be to determine how many hands there are of a given
type (999QQ is one type; 88833 is another; etc.) and then multiply this result by the
number of different types.
If the hand consists of, say, three 9’s and two queens, then there are

(4
3

)
= 4 ways to

choose the three 9’s from the four 9’s (the four suits) in the deck, and likewise
(4
2

)
= 6

ways to choose the two Q’s from the four Q’s in the deck. So there are 4 · 6 = 24
possible full houses of the type 999QQ. Note that we used 4C3 =

(4
3

)
and 4C2 =

(4
2

)
here, instead of 4P3 and 4P2, because the order of the 9’s and the order of the Q’s in
the hand doesn’t matter.
How many different AAABB types are there? There are 13 different values of cards
in the deck, so there are 13 ways to pick the value that occurs three times. And then
there are 12 ways to pick the value that occurs twice, from the remaining 12 values.
So there are 13 · 12 = 156 different types. Note that this result is 13P2 = 13 · 12, and
not 13C2 =

(13
2

)
= (13 · 12)/2, because the order does matter. Having three 9’s and
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two Q’s is different from having three Q’s and two 9’s. The total number of possible
full-house hands is therefore

13 · 12 ·
(
4
3

)
·
(
4
2

)
= 156 · 24 = 3,744. (1.15)

This should be compared with the total number of possible poker hands, which is
much larger:

(52
5

)
= 2,598,960. The 3,744 full-house hands account for only about

0.14% of the total number of hands. Many more examples of counting poker hands
are given in Problem 1.10.

Remark: With regard to the 13 · 12 = 156 number of AAABB types, you can alter-
natively arrive at this by first noting that there are

(13
2

)
= (13 · 12)/2 possibilities for

the two values that appear in the hand, and then realizing that you need to multiply by
2 because each pair of values represents two different types, depending on which of
the two values occurs three times. If poker hands instead consisted of only four cards,
and if a full house were defined to be a hand of the type AABB, then the number
of different types would be

(13
2

)
, because the A’s and B’s are equivalent; each occurs

twice. ♣

1.6 What we know so far
In Sections 1.2 through 1.5 we learned how to count various things. Here is a
summary of the results:

• Section 1.2: Permutations of N objects:

N!

• Section 1.3: Ordered sets (n objects chosen from N), with repetitions al-
lowed:

Nn

• Section 1.4: Ordered sets (n objects chosen from N), with repetitions not
allowed:

N Pn =
N!

(N − n)!

• Section 1.5: Unordered sets (n objects chosen from N), with repetitions not
allowed:

NCn ≡
(
N
n

)
=

N!
n!(N − n)!

As we derived these results, we commented along the way on how they relate to
each other. It is instructive to pause for a moment and collect all of these relations
in one place. They are shown in Fig. 1.3 and summarized as follows.

If we start with the N! result for permutations, we can obtain the N Pn result
(for subgroups where the order matters) by simply truncating the product N (N −
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1)(N − 2) · · · after n terms instead of including all N terms down to 1. The
(
N
n

)
result (for subgroups where the order doesn’t matter) is then obtained from N Pn

by dividing by n! to get rid of the overcounting of the equivalent subgroups with
different orderings.

If we instead start with the Nn result for a set of n objects chosen from N objects
with replacement, we can obtain the N Pn result (where there is no replacement) by
simply changing the product of the n factors N · N · N · · · to the product of the n
factors N (N − 1)(N − 2) · · · . Each factor decreases by 1 because there is one fewer
possibility for each pick, since there is no replacement.

N!

N!
(N-n)!

N 
n

N
n

N Pn =
_____

N!
n!(N-n)!
_______( ) =

n chosen from N,

with replacement,

order matters

n chosen from N,

without replacement,

order matters

n chosen from N,

without replacement,

order doesn’t matter

(permutations)
Section 1.2

Section 1.4

Section 1.5

Section 1.3

divide by n!

stop product

after n terms
N ’s N-1, N-2, etc.

N chosen from N,

without replacement,

order matters

Figure 1.3: Summary of the counting results.

1.7 Unordered sets, repetitions allowed

In Fig. 1.3, the N! result for permutations is somewhat of a different result from the
other three (the ones in the righthand column), in that these three involve picking a
general number n of objects from N objects. Permutations involve the special case
where n = N . So let’s concentrate on the three results in the righthand column.
Since there are two possibilities with regard to replacement (we can replace things
or not), and also two possibilities with regard to the order mattering (it matters or
it doesn’t), there are 2 · 2 = 4 possible scenarios when picking a general number
n of objects from N objects. One scenario is therefore missing in the righthand
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column. This missing scenario is the one where we pick n objects from N objects,
with replacement, and with the order not mattering. This is indicated in Table 1.10.

N!
(N-n)!

N 
n _____

N!
n!(N-n)!
_______

      with 

replacement

    without 

replacement

  order 

matters

       order 

doesn’t matter
?

Table 1.10: The missing result: unordered sets with repetitions allowed.

The missing scenario indicated by the question mark doesn’t come up as often
as the other three when solving standard problems in combinatorics and probability.
And it also doesn’t relate to the other three as simply as they relate to each other in
Fig. 1.3. But it certainly does have its uses, so let’s try to figure it out. We can’t just
let the question mark sit there, after all! An everyday example of this scenario is
the game of YahtzeeTM, where five dice are rolled in a group. The order of the dice
doesn’t matter, so the setup is equivalent to drawing n = 5 balls from a box (with
replacement, and with the order not mattering), with the balls being labeled with the
N = 6 numbers 1 through 6.

Before determining what the question mark in Table 1.10 is, let’s do a few ex-
amples to get a feel for things. These examples will allow us to see a pattern and
make a conjecture.

Example 1 (n = 4 chosen from N = 3): Pick n = 4 letters (with replacement, and
with the order not mattering) from a hat containing N = 3 letters: A, B, C. How many
different sets of four letters are possible? It turns out that there are only four different
basic types of sets, so let’s list them out.

• All four letters can be the same, for example AAAA. There are three sets of this
type, because the common letter can be A, B, or C.

• We can have three of one letter and one of another, for example AAAB. (Re-
member that the order doesn’t matter, so AAAB, AABA, ABAA, and BAAA
are all equivalent.) There are 3 · 2 = 6 sets of this type, because there are three
choices for the letter that appears three times, and then for each of these choices
there are two choices for the letter that appears once.

• We can have two of one letter and two of another, for example AABB. There are
three sets of this type, because there are

(3
2

)
= 3 ways to choose the two letters

that appear. Note that there are only
(3
2

)
ways, and not 3 · 2 = 6 ways as there

are for the AAAB type, because two A’s and two B’s are the same as two B’s
and two A’s.

• We can have two of one letter, one of a second, and one of the third; for example
AABC. There are three sets of this type, because there are three ways to choose
the letter that appears twice.
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We can summarize the above results for the numbers of the different types of sets:

AAAA AAAB AABB AABC
3 6 3 3

The total number of ways to pick four letters from a set of three letters (with replace-
ment, and with the order not mattering) is therefore 3 + 6 + 3 + 3 = 15. Note that 15
can be written as

(6
2

)
. Be careful not to confuse the actual number of different sets (15

here) with the number of different types of sets (4 here).

Remark: In the above discussion, we counted the number of different possible sets.
We weren’t concerned with the probability of actually obtaining a given set. Although
we won’t tackle probability until Chapter 2, we’ll make one comment here.

Consider the set with, say, three C’s and one A, which we label as CCCA; remember
that the order of the letters doesn’t matter. And consider another set with, say, four
B’s, which we label as BBBB. Each of these sets is one of the 15 sets that we counted
above. As far as counting the possible sets goes, these two sets count equally. How-
ever, if we’re concerned with the probability of obtaining a given set, then we must
take into account the fact that while four B’s can occur in only one way, three C’s and
one A can occur in four different ways, namely CCCA, CCAC, CACC, and ACCC.
Three C’s and one A are therefore four times as likely to occur as four B’s. (We’re
assuming that the three letters A, B, C are equally likely to be drawn on each of the
four draws.)

Note that when we list out each of the ordered sets (such as CCCA, CCAC, CACC,
and ACCC) associated with a particular unordered set, we are now in the realm of the
Nn result in Eq. (1.4). Each of the four ordered sets just mentioned counts equally
as one set in the total number of Nn = 34 = 81 ordered sets. For more on how this
example relates to the Nn result in Eq. (1.4), see the last example in this section.

But to emphasize, in the present section this difference in probabilities is irrelevant.
We are simply counting the number of different unordered sets, paying no attention
to the actual probability of each set. We’ll have plenty to say about probability in
Chapter 2. ♣

Example 2 (n = 3 chosen from N = 4): Pick n = 3 letters (with replacement, and
with the order not mattering) from a hat containing N = 4 letters: A, B, C, D. There
are now only three different basic types of sets. We’ll just list them out, along with the
number of each:

AAA AAB ABC
4 12 4

You can verify that the three numbers here are correct. For example, there are 12 sets
of the AAB type, because there are four ways to choose the letter that appears twice,
and then three ways to choose the letter that appears once. Remember that there is a
fourth letter D now.

The total number of ways to pick three letters from a set of four letters (with replace-
ment, and with the order not mattering) is therefore 4 + 12 + 4 = 20. Note that 20 can
be written as

(6
3

)
.
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Example 3 (n = 5 chosen from N = 3): Pick n = 5 letters (with replacement, and
with the order not mattering) from a hat containing N = 3 letters: A, B, C. There are
now five different basic types of sets, and we have:

AAAAA AAAAB AAABB AAABC AABBC
3 6 6 3 3

Again you can verify that the five numbers here are correct. For example, there are six
sets of the AAABB type, because there are three ways to choose the letter that appears
three times, and then two ways to choose the letter that appears twice. And there are
three sets of the AABBC type, because there are three ways to choose the letter that
appears once.

The total number of ways to pick five letters from a set of three letters (with replace-
ment, and with the order not mattering) is therefore 3 + 6 + 6 + 3 + 3 = 21. Note that
21 can be written as

(7
2

)
.

The above results suggest that the answer to our problem (namely, how many
ways are there to pick n objects from N objects, with replacement, and with the
order not mattering?) most likely involves binomial coefficients. And a little trial
and error shows that the above three results of

(
6
2

)
,
(

6
3

)
, and

(
7
2

)
are all consistent

with the expression
(
n+(N−1)

N−1

)
. We’ll now explain why this is indeed the general

form of the answer.
In the above examples, we concentrated on the different basic types of sets.

However, although this gave us enough information to make an educated guess for
the general result, this method becomes intractable when dealing with large values
of n and N . We therefore need to think about the counting in a different way. This
new way of counting is the following.

The different sets (of which there are
(
n+(N−1)

N−1

)
, but let’s pretend we don’t know

this yet) are characterized by how many A’s, B’s, etc., there are. And since the order
of the letters doesn’t matter, we might as well list out the n letters by putting all the
A’s first, and then all the B’s, and so on. We can therefore imagine putting n objects
in a row and labeling them with various letters in alphabetical order. (We’ll write
these objects as stars, for a reason we’ll get to below.) As a concrete example, let’s
work with n = 6 and N = 3. So we’re picking six letters from A, B, C. Two possible
sets are shown in Fig. 1.4. The second set happens to have no A’s.

A A A B C C

B B B B B C

Figure 1.4: Two possible unordered sets of n = 6 objects chosen with replacement from
N = 3 objects.
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In writing down an arbitrary set of letters, the decision of how many of each
letter to include is equivalent to the decision of where to put the transitions between
the letters. If these transitions are represented by vertical dividing lines, then the
two sets in Fig. 1.4 can be represented by the two configurations in Fig. 1.5.

Figure 1.5: Separating the different letters in Fig. 1.4.

The number of stars before the first dividing line is the number of A’s (which is zero
in the second configuration), the number of stars between the two dividing lines
is the number of B’s, and the number of stars after the second dividing line is the
number of C’s. Each different placement of the dividing lines produces a different
set of letters. So our task reduces to determining how many different ways there are
to plop down the dividing lines.

In the present setup with n = 6 and N = 3, we have six stars and two dividing
lines, so we have eight things in all. We can therefore imagine eight spaces lined up
that need to be filled, in one way or another, with six stars and two bars.2 The two
configurations in Fig. 1.5 then become the two shown in Fig. 1.6.

Figure 1.6: The stars-and-bars representations of the two sets in Fig. 1.4.

How many different ways can we plop down the stars and bars? The answer is
just

(
8
2

)
= 28, because we simply need to pick two of the eight spaces as the ones

where the bars go. Equivalently, the number of ways is
(

8
6

)
= 28, because we need

to pick six of the eight spaces as the ones where the stars go. As an exercise, you
can verify this result of 28 by explicitly counting the different sets, as we did in the
above examples.

We now see where the
(
n+(N−1)

N−1

)
result comes from. If we have N different

letters, then we have N − 1 bars signifying the transitions between them. If we’re
picking n letters (with replacement, and with the order not mattering), then we have
n stars and N − 1 bars that need to be plopped down in a total of n + (N − 1) spaces
arranged in a line. There are

(
n+(N−1)

N−1

)
, or equivalently

(
n+(N−1)

n

)
, ways to do this.

For example, if we’re picking n = 6 letters (with replacement, and with the
order not mattering) from N = 4 letters A, B, C, D, then there are

(
9
3

)
= 84 ways to

do this. The ABBBDD set, for example, is represented by the configuration of six
stars and three bars shown in Fig. 1.7.

2In keeping with the normal convention, we’ll refer to the dividing lines as bars. The objects that
we’re placing down are then stars and bars, and who could possibly dislike a rhyming name like that?
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Figure 1.7: The stars-and-bars representation of the ABBBDD set for n = 6 and N = 4.

If we let NUn (with the U standing for “unordered”) denote the number of ways
to pick n objects from N objects (with replacement, and with the order not matter-
ing), we can write our result as

NUn =

(
n + (N − 1)

N − 1

)
(unordered, with repetition) (1.16)

Remember that it is N (the number of distinct letters, or whatever) that has the 1
subtracted from it in the

(
n+(N−1)

N−1

)
expression, and not n (the number of picks you

make). We can now fill in the missing result in Table 1.10, as shown in Table 1.11.

N!
(N-n)!

N 
n _____

N!
n!(N-n)!
_______(n+N-1)!

n!(N-1)!
________

      with 

replacement

    without 

replacement

  order 

matters

       order 

doesn’t matter

n+N-1
N-1( )n+N-1

n
( ) N

n( )=

Table 1.11: Filling in the missing result in Table 1.10.

Let’s quickly verify that Eq. (1.16) holds in two simple cases.

• If n is arbitrary and N = 1, then Eq. (1.16) gives 1Un =
(
n
0

)
= 1. This is

correct, because if there is only N = 1 possible result (call it A) for each of
the n picks, then there is only one combined result for all n picks, namely
AAAA. . . .

• If n = 1 and N is arbitrary, then Eq. (1.16) gives NU1 =
(

N
N−1

)
= N . This is

correct, because if there are N possible results (call them A1, A2, . . . , AN ) for
each pick, then there are simply N possible results for the n = 1 pick, namely
A1 or A2 or . . . AN .

See Problems 1.11 and 1.12 for two other simple cases, namely n = 2 with
arbitrary N , and arbitrary n with N = 2. See also Problem 1.13 for an alternative
proof of Eq. (1.16) that doesn’t use the “stars and bars” reasoning.

Let’s now do an example that might seem like a non sequitur at first, but in fact
is essentially the same as the “with replacement, order doesn’t matter” case that
we’ve been discussing in this section.
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Example (Dividing the money): You have ten one-dollar bills that you want to divide
among four people. How many different ways can you do this? For example, if the
four people are seated in a line, they might receive amounts of 4, 0, 3, 3, or 1, 6, 2, 1, or
0, 10, 0, 0, etc. The dollar bills are identical, but the people are not. So, for example,
4, 0, 3, 3 is different from 3, 4, 0, 3.

Solution: This setup is equivalent to a setup where we draw n = 10 letters (with
replacement, and with the order not mattering) from a box containing N = 4 letters A,
B, C, D. This equivalence can be seen as follows. Label the four people as A, B, C,
D. Reach into the box and pull out a letter, and then give a dollar to the person labeled
with that letter. Replace the letter, and then pick a second letter and give a dollar to
that person. And so on, a total of ten times. This process will generate a string of
letters, for example, CBBDCBDBAD.
Now, since it doesn’t matter when you give a particular dollar bill to a person, the
order of the letters in the string is irrelevant. The above string is therefore equivalent
to ABBBBCCDDD, if we arbitrarily list the letters in alphabetical order. The four
people A, B, C, D receive, respectively, 1, 4, 2, 3 dollars. There is a one-to-one
correspondence between unordered strings of letters and the partitions of the dollar
bills. So the desired number of partitions is equal to the number of unordered strings
of n = 10 letters chosen from N = 4 letters, which we know from Eq. (1.16) is equal
to (

10 + (4 − 1)
4 − 1

)
=

(
13
3

)
= 286. (1.17)

We have now seen two equivalent scenarios where the stars-and-bars result in
Eq. (1.16) applies: unordered strings of letters/objects, and money partitions. An-
other equivalent scenario is the number of ways to throw n identical balls into N
boxes. This is equivalent to the money-partition scenario, because in that setup
we’re basically throwing n dollar bills at N people. Yet another equivalent scenario
is the number of ways that N non-negative integers can add up to n. For example, if
N = 4 and n = 10, then one way is 2+ 2+ 4+ 2 = 10. Another is 3+ 0+ 6+ 1 = 10.
And yet another is 0 + 3 + 6 + 1 = 10. (We’ll assume that the order of the numbers
matters.) This is equivalent to the money-partition scenario, because the four num-
bers in the preceding sums correspond to the amounts of money that the four people
get.

The common underlying process in all of these equivalent scenarios is that we’re
always effectively just throwing down n identical objects onto N spaces. In our
original setup with strings of letters, you can imaging throwing n darts at N letters;
the number of times a number gets hit is the number of times we write it down.
(Picking a letter randomly from a box is equivalent to throwing a dart randomly at
the letters in the box.) In the case of N non-negative integers adding up to n, you
can imaging throwing n darts at N spaces in a line; the number of times a space gets
hit is the number that we write down in that space when forming the sum.

Let’s now check that the two entries in the left column in Table 1.11 relate
properly, at least in one particular case. The Nn result in the table holds for ordered
sets (with replacement), while the

(
n+(N−1)

N−1

)
result holds for unordered sets (again
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with replacement). We should be able to extract the former from the latter if we
consider how many different ways we can order each of our unordered sets. This is
demonstrated in the following example for n = 4 and N = 3.

Example (Reproducing Nn ): The Nn result tells us that there are 34 = 81 different
ordered sets that are possible when drawing n = 4 objects (with replacement) from a
hat containing N = 3 objects. Let’s reproduce this result by considering the number of
possible orderings of each of the four different basic types of unordered sets (AAAA,
AAAB, AABB, AABC) in Example 1 at the beginning of this section. This is clearly
a laborious way of producing the simple 34 = 81 result for ordered sets, but it can’t
hurt to check that it does indeed work.

Solution: From Example 1, we know that the numbers of unordered sets of the four
types (AAAA, AAAB, AABB, AABC) are, respectively, 3, 6, 3, and 3.
Consider the first type, where all the letters are the same. For a given unordered set of
this type, there is only one way to order the letters, since they are all the same. So the
total number of ordered sets associated with the three unordered sets of the AAAA
type is simply 3 · 1 = 3.
Now consider the second type of set, with three of one letter and one of another. For a
given unordered set of this type, there are four ways to order the letters (for example,
AAAB, AABA, ABAA, BAAA). So the total number of ordered sets associated with
the six unordered sets of the AAAB type is 6 · 4 = 24.
Now consider the third type of set, with two of one letter and two of another. For a
given unordered set of this type, there are six ways to order the letters (for example,
AABB, ABAB, ABBA, BAAB, BABA, BBAA). So the total number of ordered sets
associated with the three unordered sets of the AABB type is 3 · 6 = 18.
Finally, consider the fourth type of set, with two of one letter, one of another, and one
of the third. For a given unordered set of this type, there are 12 ways to order the
letters. (We won’t list them out, but for AABC there are four places to put the B, and
then three places to put the C. Alternatively, there are

(4
2

)
= 6 ways to assign the A’s,

and then two possible ways to order B and C.) So the total number of ordered sets
associated with the three unordered sets of the AABC type is 3 · 12 = 36.
The complete total of the number of ordered sets involving n = 4 letters chosen from
N = 3 letters (with replacement) is therefore 3 + 24 + 18 + 36 = 81, as desired.

As mentioned at the beginning of this section, the case of unordered sets with
replacement doesn’t come up as often in standard probability setups as the other
three cases in Table 1.11. One reason for this is that the sets in each of the other
three cases are all equally likely (assuming that all of the objects in a box at a given
time are equally likely to be drawn), whereas the sets in the case of unordered draws
with replacement are not all equally likely (as we noted in the remark in the first
example in this section). Counting sets in the latter case is therefore not as useful in
probability as it is in the other three cases.

As we noted at the beginning of Section 1.3, the phrase “with replacement”
(or “with repetition”) means the same thing as “identical trials.” Examples include
rolling dice, flipping coins, and drawing balls from a box with replacement. In
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contrast, “without replacement” means the same thing as “depleting trials,” that
is, trials where the number of possible outcomes decreases by 1 after each trial.
Examples include picking committees of people (because a given person can’t be
repeated, of course), assigning people to seats, and drawing balls from a box without
replacement.

As far as the “order matters” and “order doesn’t matter” descriptors in Table 1.11
go, you can simply imagine the ordered objects appearing in a line, and the un-
ordered objects appearing in an amorphous group, or blob. We can therefore de-
scribe the four possibilities in Table 1.11 with the four phrases given in Table 1.12.
A standard example of each case is given in Table 1.13.

      with 

replacement

     without 

replacement

  order 

matters

identical trials

     in a line  

depleting trials

     in a line

identical trials

     in a blob

depleting trials

     in a blob  

       order 

doesn’t matter

Table 1.12: Descriptions of the four possibilities with regard to ordering and replacement.

      with 

replacement

     without 

replacement

  order 

matters

 ordered 

dice rolls

unordered 

 dice rolls

   committees with 

distinct assignments

   committees with 

equivalent members

       order 

doesn’t matter

Table 1.13: Examples of the four possibilities with regard to ordering and replacement.

1.8 Binomial coefficients

1.8.1 Coins and Pascal’s triangle

Let’s look at the coin-flipping example at the end of Section 1.3 in more detail. We
found that with four coins there are six different ways to obtain exactly two Heads.
How many ways are there to obtain other numbers of Heads? From Table 1.6, we
see that the numbers of ways to obtain exactly zero, one, two, three, or four Heads
are, respectively, 1, 4, 6, 4, 1. (These same numbers are relevant for Tails too, of
course.) The sum of these numbers correctly equals the total number of possibilities,
which is 24 = 16 from Eq. (1.4) with N = 2 and n = 4.
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If we instead consider only three coins, the 23 = 8 possibilities are obtained by
taking either column in Table 1.6 and removing the first letter. We quickly see that
the numbers of ways to obtain exactly zero, one, two, or three Heads are 1, 3, 3, 1.
With two coins, the numbers for zero, one, or two Heads are 1, 2, 1. And for one
coin, the numbers for zero or one Heads are just 1, 1. Also, for zero coins, you can
only obtain zero Heads, and there’s just one way to do this; you simply don’t list
anything down, and that’s that. This is somewhat a matter of semantics, but if we
use a “1” for this case, it will fit in nicely with the rest of the results below.

Note that for three coins, 1 + 3 + 3 + 1 = 23. And for two coins, 1 + 2 + 1 = 22.
And for one coin, 1 + 1 = 21. So in each case the total number of possibilities for n
flips ends up being 2n , consistent with Eq. (1.4).

We can collect the above results and arrange them as shown in Table 1.14. Each
row lists the number of different ways we can obtain the various possible numbers
of Heads. These numbers range from 0 to n.

n = 0: 1

n = 1: 1 1

n = 2: 1 2 1

n = 3: 1 3 3 1

n = 4: 1 4 6 4 1

Table 1.14: Pascal’s triangle up to n = 4.

The arrangement in Table 1.14 is known as Pascal’s triangle (for n = 4). Do these
numbers look familiar? A couple more rows might help. If you figure things out
for the n = 5 and n = 6 coin-flipping cases by explicitly listing out the possibilities,
you will arrive at Table 1.15.

n = 0: 1

n = 1: 1 1

n = 2: 1 2 1

n = 3: 1 3 3 1

n = 4: 1 4 6 4 1

n = 5: 1 5 10 10 5 1

n = 6: 1 6 15 20 15 6 1

Table 1.15: Pascal’s triangle up to n = 6.

At this point, you might be getting a feeling of deja vu with the 10’s and 15’s,
since we’ve seen them before at various times in this chapter. You might then make
the (correct) guess that the entries in Table 1.15 are nothing other than the binomial
coefficients! We defined these coefficients in Section 1.5 as the number of ways of
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picking unordered subgroups; see Eq. (1.8). Written out explicitly in terms of the
binomial coefficients, Table 1.15 becomes Table 1.16.

n = 0:
(

0
0

)
n = 1:

(
1
0

) (
1
1

)
n = 2:

(
2
0

) (
2
1

) (
2
2

)
n = 3:

(
3
0

) (
3
1

) (
3
2

) (
3
3

)
n = 4:

(
4
0

) (
4
1

) (
4
2

) (
4
3

) (
4
4

)
n = 5:

(
5
0

) (
5
1

) (
5
2

) (
5
3

) (
5
4

) (
5
5

)
n = 6:

(
6
0

) (
6
1

) (
6
2

) (
6
3

) (
6
4

) (
6
5

) (
6
6

)
Table 1.16: Binomial coefficients up to n = 6.

Now, observing a pattern and guessing the correct rule is most of the battle. But
is there a way to prove that the entries in Table 1.16 (which are the numbers of ways
of obtaining the various numbers of Heads) are in fact equal to the binomial coeffi-
cients (which we defined as the numbers of ways of picking unordered subgroups)?
For example, can we demonstrate that the number of ways of obtaining two Heads
in six coin flips is

(
6
2

)
? Indeed we can. It’s actually almost a matter of definition, as

the following reasoning shows.
If we flip six coins, we can imagine having six blank spaces on the paper that

need to be filled with H’s and T’s. If we’re considering the scenarios where two
Heads come up, then we need to fill two of the blanks with H’s and four of them
with T’s. So the question reduces to: How many different ways can we plop down
two H’s in six possible spots? But this is exactly the same question as: How many
different (unordered) committees of two people can we form from six people? The
equivalence of these two questions is made clear if we imagine six people sitting in
a row, and we plop down an H on two of them, with the understanding that the two
people who get tagged with an H are the two people on the committee.

In general, the
(
n
k

)
ways that k Heads can come up in n flips of a coin correspond

exactly to the
(
n
k

)
committees of k people that can be chosen from n people. Each

coin flip corresponds to a person, and that person is declared to be on the committee
if the result of the coin flip is Heads.

1.8.2 (a + b)n and Pascal’s triangle

A quick examination of Pascal’s triangle in Table 1.16 shows (as we observed
above) that the sum of the numbers in a given row equals 2n . For example,(

4
0

)
+

(
4
1

)
+

(
4
2

)
+

(
4
3

)
+

(
4
4

)
= 24, (1.18)
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or more generally, (
n
0

)
+

(
n
1

)
+

(
n
2

)
+ · · · +

(
n

n − 1

)
+

(
n
n

)
= 2n (1.19)

We know that this relation must be true, because both sides represent the total num-
ber of possible outcomes for n coin flips (with the lefthand side enumerated accord-
ing to how many Heads appear). But is there a way to demonstrate this equality
without invoking the fact that both sides are relevant to coin flips? Indeed there is.
We’ll give the proof in Section 1.8.3, but first we need some background.

Consider the quantity (a+b)n . You can quickly show that (a+b)2 = a2+2ab+
b2. And then you can multiply this by (a + b) to arrive at (a + b)3 = a3 + 3a2b +
3ab2 + b3. And then you can multiply by (a + b) again to obtain the expression for
(a + b)4, and so on. The results are shown in Table 1.17.

(a + b)1 = a + b

(a + b)2 = a2 + 2ab + b2

(a + b)3 = a3 + 3a2b + 3ab2 + b3

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4

(a + b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5

(a + b)6 = a6 + 6a5b + 15a4b2 + 20a3b3 + 15a2b4 + 6ab5 + b6

Table 1.17: Binomial expansion up to n = 6.

The coefficients here are exactly the numbers in Table 1.15! And there is a very
good reason for this. Consider, for example, (a + b)5. This is shorthand for

(a + b)(a + b)(a + b)(a + b)(a + b). (1.20)

In multiplying this out, we obtain a number of terms; 32 of them in fact, although
many take the same form. There are 32 terms because in multiplying out the five
factors of (a + b), every term in the result will involve either the a or the b from
the first (a + b) factor, and similarly either the a or the b from the second (a + b)
factor, and so on with the third, fourth, and fifth (a + b) factors. Since there are two
possibilities (the a or the b) for each factor, we end up with 25 = 32 different terms.

However, many of the terms are equivalent. For example, if we pick the a from
the first and third terms, and the b from the second, fourth, and fifth terms, then we
obtain ababb, which equals a2b3. Alternatively, we can pick, say, the a from the
second and fifth terms, and the b from the first, third, and fourth terms, which gives
babba, which also equals a2b3.

How many ways can we obtain an a2b3 product? Well, we have five choices
(the five (a + b) factors) of where to pick the three b’s from (or equivalently five
choices of where to pick the two a’s from). So the number of ways to obtain an
a2b3 product is

(
5
3

)
= 10 (or equivalently

(
5
2

)
= 10), in agreement with Table 1.17.

This reasoning makes it clear why the coefficients of the terms in the expansion of
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(a + b)n take the general form of
(
n
k

)
, where k is the power of b in a given term. (It

also works if k is the power of a.)
In general, just as with the coin flips in Section 1.8.1, the

(
n
k

)
ways that k b’s

can be chosen from the n factors of (a+b) correspond exactly to the
(
n
k

)
committees

of k people that can be chosen from n people. Each factor of (a + b) corresponds to
a person, and that person is declared to be on the committee if the b is chosen from
that factor.

To sum up, we have encountered three situations
(
committees, coins, and (a +

b)n
)

that involve binomial coefficients. And they all involve binomial coefficients
for the same reason: they all deal with the number of ways that k things can be
chosen from n things (unordered, and without repetition). The answer to all three
of the following questions is the binomial coefficient

(
n
k

)
.

• How many different (unordered) committees of k people can be chosen from
n people?

• Flip a coin n times. How many different outcomes involve exactly k Heads?

• Expand (a + b)n . What is the coefficient of an−kbk?

In each case, a binary choice in made n times, with k choices having the same
result: k of the n people are given a “yes” to be on the committee, or k of the n coin
flips are Heads, or k of the n factors of (a + b) have a b chosen from them. Note
that, as we have observed on various occasions, the three bullet points above still
have the answer of

(
n
k

)
if we make the complementary substitution of k → n − k.

This substitution is equivalent to picking k people to not be on the committee, or
replacing Heads with Tails, or replacing an−kbk with akbn−k .

A word on the order of our logic in this section. We originally defined the
binomial coefficients in Section 1.5 as the number of ways of picking unordered
subgroups (see Eq. (1.8)), and then we showed here that the binomial coefficients
are also the coefficients that arise in the binomial expansion. This might seem a little
backwards, because the name “binomial coefficients” suggests that they should be
defined via the binomial expansion. But since we encountered unordered subgroups
first in this chapter, we chose to take the “backwards” route. In the end, it doesn’t
matter, of course, because both results are equal to N!/n!(N − n)!, and it’s just
semantics what name we use for this quantity.

See Problem 1.8 for a generalization of the binomial coefficient, called the multi-
nomial coefficient.

1.8.3 Properties of Pascal’s triangle

Having established that the coefficients of the terms in the expansion of (a + b)n

take the form of
(
n
k

)
, we can now quickly explain why the relation in Eq. (1.19)

holds, without invoking anything about coins flips. The general form of the results
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in Table 1.17 is

(a + b)n =
(
n
0

)
an +

(
n
1

)
an−1b +

(
n
2

)
an−2b2 + · · · +

(
n

n − 1

)
abn−1 +

(
n
n

)
bn

=

n∑
k=0

(
n
k

)
an−kbk . (1.21)

This is known as the binomial expansion, or binomial theorem, or binomial formula.
It holds for any values of a and b. Therefore, since we are free to pick a and b to
be whatever we want, let’s pick them both to be 1. Multiplication by 1 doesn’t
affect anything, so we can just erase all of the a’s and b’s on the righthand side
of Eq. (1.21). We then see that the righthand side is equal to the lefthand side of
Eq. (1.19). But the lefthand side of Eq. (1.21) is (1+1)n , which is simply 2n , which
is equal to the righthand side of Eq. (1.19). We have therefore proved Eq. (1.19).

Another nice property of Pascal’s triangle, which you can verify by looking at
Table 1.15, is that each number is the sum of the two numbers above it (or just the
“1” above it, if it occurs at the end of a line). For example, in the n = 6 line, 20 is
the sum of the two 10’s above it

(
that is,

(
6
3

)
=

(
5
2

)
+

(
5
3

))
. And the first 15 is the

sum of the 5 and 10 above it
(
that is,

(
6
2

)
=

(
5
1

)
+

(
5
2

))
. Likewise for the second 15

and all the other numbers. Written out explicitly, the general property is

(
n
k

)
=

(
n − 1
k − 1

)
+

(
n − 1

k

)
(1.22)

The task of Problem 1.15 is to give a mathematical proof of this relation, using the
explicit form of the binomial coefficients. But let’s demonstrate it here in a more
intuitive way by taking advantage of what the binomial coefficients mean in terms
of choosing committees. Relations among binomial coefficients often have intuitive
proofs like this which involve no (or very little) math.

In words, Eq. (1.22) says that the number of ways to pick k people from n people
equals the number of ways to pick k − 1 people from n − 1 people, plus the number
of ways to pick k people from n− 1 people. Does this make sense? Yes indeed, due
to the following reasoning.

Let’s single out one of the n people, whom we will call Alice. There are two
types of committees of k people: those that contain Alice, and those that don’t. How
many committees of each type are there? If the committee does contain Alice, then
the other k − 1 members must be chosen from the remaining n − 1 people. There
are

(
n−1
k−1

)
ways to do this. If the committee does not contain Alice, then all k of the

members must be chosen from the remaining n − 1 people. There are
(
n−1
k

)
ways to

do this. Since each of the total
(
n
k

)
number of committees falls into one or the other

of these two categories, we therefore arrive at Eq. (1.22).
The task of Problem 1.16 is to reproduce the reasoning in the preceding para-

graph to demonstrate Eq. (1.22), but instead in the language of coin flips or the
(a + b)n binomial expansion.
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1.9 Summary
In this chapter we learned how to count things. In particular, we learned:

• N! (“N factorial”) is defined to be the product of the first N integers:

N! = 1 · 2 · 3 · · · (N − 2) · (N − 1) · N. (1.23)

• The number of different permutations of N objects (that is, the number of
different ways of ordering them) is N!.

• Consider a process for which there are N possible results each time it is per-
formed. If it is performed n times, then the total number of possible combined
outcomes, where the order does matter, equals

Nn (ordered, with repetition) (1.24)

Examples include rolling an N-sided die n times, or drawing one of N balls
from a box n times, with replacement each time (so that all of the draws are
equivalent).

• Given N people, the number of different ways to choose an n-person com-
mittee where the order does matter (for example, where there are n distinct
positions) equals

N Pn =
N!

(N − n)!
(ordered, without repetition) (1.25)

• Given N people, the number of different ways to choose an n-person commit-
tee where the order doesn’t matter is denoted by

(
N
n

)
, and it equals

NCn ≡
(
N
n

)
=

N!
n!(N − n)!

(unordered, without repetition) (1.26)

• Consider a process for which there are N possible results each time it is per-
formed. If it is performed n times, then the total number of possible combined
outcomes, where the order doesn’t matter, equals

NUn =

(
n + (N − 1)

N − 1

)
(unordered, with repetition) (1.27)

• The binomial coefficients
(
n
k

)
, which appear in Pascal’s triangle, are relevant

in three situations we have discussed: (1) choosing committees, (2) flipping
coins, and (3) expanding (a+ b)n . All three of these situations involve count-
ing the number of ways that k things can be chosen from n things (unordered,
and without repetition).

1.10 Exercises
See www.people.fas.harvard.edu/ ˜ djmorin/book.html for a supply of problems
without included solutions.
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1.11 Problems
Section 1.2: Permutations

1.1. Assigning seats *
Six girls and four boys are to be assigned to ten seats in a row, with the
stipulations that a girl sits in the third seat and a boy sits in the eighth seat.
How many arrangements are possible?

Section 1.3: Ordered sets, repetitions allowed

1.2. Number of outcomes *
One person rolls two six-sided dice, and another person flips six two-sided
coins. Which setup has the larger number of possible outcomes, assuming
that the order matters?

Section 1.4: Ordered sets, repetitions not allowed

1.3. Subtracting the repeats **

(a) From Eq. (1.6) we know that the number of ordered sets of three people
chosen from five people is 5 · 4 · 3 = 60. Reproduce this result by
starting with the naive answer of 53 = 125 ordered sets where repetitions
are allowed, and then subtracting off the number of triplets that have
repeated people.

(b) It’s actually not much more difficult to solve this problem in the general
case where triplets are chosen from N people, instead of five. Repeat
part (a) for a general N .

1.4. Subtracting the repeats, again **
Repeat the task of Problem 1.3(a), but now in the case where you pick quadru-
plets (instead of triplets) from five people.

Section 1.5: Unordered sets, repetitions not allowed

1.5. Sum from 1 to N *
In Table 1.9 we saw that if we pick two (unordered) people from a group of
five people, the

(
5
2

)
= 10 possibilities can be listed as shown in Table 1.18.

A B
A C B C
A D B D C D
A E B E C E D E

Table 1.18: Unordered pairs chosen from five people.

If we look at the number of pairs in each row, we see that we can write 10
as 1 + 2 + 3 + 4. If we add on a sixth person, we’ll need to add on a fifth
row (AF, BF, CF, DF, EF), so we see that the number of possibilities, namely
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(
6
2

)
= 15, can be written as 1 + 2 + 3 + 4 + 5. This patterns continues, and

we find that the number of possible (unordered) pairs that we can pick from
N people equals the sum of 1 through N − 1. But we already know that the
number of pairs equals

(
N
2

)
= N (N−1)/2. So it must be the case that the sum

of 1 through N − 1 equals N (N − 1)/2. Equivalently, if we replace N − 1 by
N here, it must be the case that the sum of 1 through N equals (N + 1)N/2,
which people usually write as N (N + 1)/2. Demonstrate this result in two
other ways:

(a) Write down the numbers 1 through N in increasing order in a horizontal
line. And then below this string of numbers, write them down again but
in decreasing order. Then add each number to the one above/below it,
and take it from there.

(b) First, quickly verify that the result holds for N = 1. Second, demon-
strate mathematically that if the result holds for the sum of 1 through N ,
then it also holds for the sum of 1 through N + 1. Since the latter sum
is simply N + 1 larger than the former, this amounts to demonstrating
that N (N + 1)/2 + (N + 1) = (N + 1)(N + 2)/2. (The righthand side
here is the proposed result, with N replaced by N + 1.) Third, explain
why the preceding two facts imply that the result is valid for all N . The
technique here is called mathematical induction. (This problem is an
exercise more in mathematical induction than in combinatorics. But it’s
included here because the induction technique is something that every-
one should see at least once!)

1.6. Many ways to count *
How many different orderings are there of the six letters: A, A, A, B, B, C?
How many different ways can you think of to answer this question?

1.7. Committees with a president **
Two students are given the following problem: From N people, how many
ways are there to choose a committee of n people, with one person chosen as
the president? One student gives an answer of n

(
N
n

)
, while the other student

gives an answer of N
(
N−1
n−1

)
.

(a) By writing out the binomial coefficients, show that the two answers are
equal.

(b) Explain the (valid) reasonings that lead to these two (correct) answers.

1.8. Multinomial coefficients **

(a) A group of ten people are divided into three committees. Three people
are on committee A, two are on committee B, and five are on committee
C. How many different ways are there to divide up the people?

(b) A group of N people are divided into k committees. n1 people are on
committee 1, n2 people are on committee 2, . . . , and nk people are on
committee k, with n1 + n2 + . . . + nk = N . How many different ways
are there to divide up the people?
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1.9. One heart and one 7 **
How many different five-card poker hands contain exactly one heart and ex-
actly one 7? (If the hand contains the 7 of hearts, then this one card satisfies
both requirements.)

1.10. Poker hands ***
In a standard 52-card deck, how many different five-card poker hands are
there of each of the following types? For each type, it is understood that we
don’t count hands that also fall into a higher category. For example, when
counting the three-of-a-kind hands, we don’t count the full-house or four-of-
a-kind hands, even though they technically contain three cards of the same
kind.

(a) Full house (three cards of one value, two of another). We already solved
this in the last example in Section 1.5, but we’re listing it again here so
that all of the results for the various hands are contained in one place.

(b) Straight flush (five consecutive values, all of the same suit). In the spirit
of being realistic, assume that aces can be either high (above kings) or
low (below 2’s).

(c) Flush (five cards of the same suit), excluding straight flushes.

(d) Straight (five consecutive values), excluding straight flushes.

(e) One pair.

(f) Two pairs.

(g) Three of a kind.

(h) Four of a kind.

(i) None of the above.

Section 1.7: Unordered sets, repetitions allowed

1.11. Rolling two dice *

(a) Two standard 6-sided dice are rolled. Find the total number of un-
ordered outcomes by looking at Table 1.5.

(b) Find the total number of unordered outcomes by using Eq. (1.16).

(c) By taking the lead from Table 1.5, find the total number of unordered
outcomes for two N-sided dice, and then verify that your result agrees
with Eq. (1.16).

1.12. Unordered coins *
If you flip n coins and write down the unordered list of Heads and Tails that
you obtain, what does Eq. (1.16) give for the number of possible outcomes?

The simplicity of the result you just obtained suggests that there is alternative
way of deriving it. Give an intuitive explanation of your answer that doesn’t
rely on Eq. (1.16).
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1.13. Proof without stars and bars ***

This problem gives a (longer) proof of Eq. (1.16) that doesn’t rely on the
stars-and-bars reasoning that we used in Section 1.7.

(a) When explicitly counting (that is, without using Eq. (1.16)) the number
of unordered outcomes for n identical trials, each with N possible out-
comes, we saw in Problem 1.12 that it is helpful to list the outcomes
according to how many times a given individual result (such as Heads)
appears. Use this strategy to count the number of possible outcomes for
the N = 3 case (with arbitrary n). You may assume that you already
know the result for the N = 2 case in Problem 1.12. You will need to
use the result from Problem 1.5.

(b) The way in which the N = 3 result (with arbitrary n) follows from the
N = 2 result (with arbitrary n) suggests an inductive proof of Eq. (1.16)
for general N . By again listing (or imagining listing) the outcomes ac-
cording to how many times a given individual result appears, and by
making use of Problem 1.17 below (so you should look at that problem
before solving this one), show inductively that if Eq. (1.16) holds for
N − 1, then it also holds for N . (See Problem 1.5 for an explanation of
mathematical induction.)

1.14. Yahtzee ***

In the game of YahtzeeTM, five dice are rolled in a group, with the order not
mattering.

(a) Using Eq. (1.16), how many unordered rolls (sets) are possible?

(b) In the spirit of the examples at the beginning of Section 1.7, reproduce
the result in part (a) by determining how many unordered rolls there
are of each general type (for example, three of one number and two of
another, etc.).

(c) In the spirit of the example at the end of Section 1.7, show that the total
number of ordered Yahtzee rolls is 65 = 7776.

Section 1.8: Binomial coefficients

1.15. Pascal sum 1 *

Using
(
n
k

)
= n!/k!(n − k)!, show that

(
n
k

)
=

(
n − 1
k − 1

)
+

(
n − 1

k

)
. (1.28)
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1.16. Pascal sum 2 **

At the end of Section 1.8.3, we demonstrated the relation
(
n
k

)
=

(
n−1
k−1

)
+

(
n−1
k

)
by using an argument involving committees. Repeat this reasoning, but now
in terms of:

(a) coin flips,

(b) the (a + b)n binomial expansion.

1.17. Pascal diagonal sum **

(a) If we pick an unordered committee of three people from five people (A,
B, C, D, E), we can list the

(
5
3

)
= 10 possibilities as show in Table 1.19.

We have grouped them according to which letter comes first. (The or-
der of letters doesn’t matter, so we’ve written each triplet in increasing
alphabetical order.) The columns in the table tell us that we can think of
10 as equaling 6 + 3 + 1. Explain why it makes sense to write this sum
as

(
4
2

)
+

(
3
2

)
+

(
2
2

)
.

A B C
A B D
A B E
A C D B C D
A C E B C E
A D E B D E C D E

Table 1.19: Unordered triplets chosen from five people.

(b) You can also see from Tables 1.15 and 1.16 that, for example,
(

6
3

)
=(

5
2

)
+

(
4
2

)
+

(
3
2

)
+

(
2
2

)
. More generally,(

n
k

)
=

(
n − 1
k − 1

)
+

(
n − 2
k − 1

)
+

(
n − 3
k − 1

)
+ · · · +

(
k

k − 1

)
+

(
k − 1
k − 1

)
. (1.29)

In words: A given number
(
for example,

(
6
3

))
in Pascal’s triangle equals

the sum of the numbers in the diagonal string that starts with the number
that is above and to the left of the given number

((5
2

)
in this case

)
and

then proceeds upward to the right. So the string contains
(

5
2

)
,
(

4
2

)
,
(

3
2

)
,

and
(

2
2

)
in this case.

Prove Eq. (1.29) by making repeated use of Eq. (1.22), which says that
each number in Pascal’s triangle is the sum of the two numbers above it
(or just the “1” above it, if it occurs at the end of a line). Hint: No math
needed! You just need to draw a few pictures of Pascal’s triangle after
successive applications of Eq. (1.22).
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1.12 Solutions
1.1. Assigning seats

There are six ways to pick the girl who sits in the third seat, and then for each of these
choices there are four ways to pick the boy who sits in the eighth seat. For each of
these 6 · 4 = 24 combinations, there are 8! = 40,320 permutations of the remaining
eight people in the remaining eight seats. The total number of possible arrangements
with the given stipulations is therefore 24 · 40,320 = 967,680. This is smaller than
the answer of 10! in the case with no stipulations, by a factor of (6 · 4 · 8!)/10! =
(6 · 4)/(10 · 9) ≈ 0.27.

1.2. Number of outcomes
In the case of the two six-sided dice, using N = 6 and n = 2 in Eq. (1.4) gives 62 = 36
possible outcomes. In the case of the six two-sided coins, using N = 2 and n = 6 in
Eq. (1.4) gives 26 = 64 possible outcomes. The latter setup therefore has the larger
number of possible outcomes.

If we replace the number 6 in this problem with, say, 20 (for example, we can roll
the icosahedral die on the cover of this book), and if we keep the 2 the same, then
the above two results become, respectively, 202 = 400 and 220 = 1,048,576. The
latter result is larger than the former by a factor of about 2600, whereas in the original
problem the factor was only about 1.8. The two results are equal if we replace the 6
with 4 (which corresponds to a tetrahedral die).

1.3. Subtracting the repeats

(a) If repetitions are allowed, there are two general types of ordered triplets that
contain repeated people: all three people can be the same (such as AAA), or
two people can be the same, with the third being different (such as AAB). Since
we are choosing from five people, there are five triplets of the first type (AAA
through EEE).

How many triplets are there of the second type? There are five ways to pick
the letter that appears twice, and then four ways to pick the letter that appears
once from the remaining four letters. And then for each of these 5 · 4 = 20
combinations, there are three ways to order the letters (AAB, ABA, BAA). So
there are 20 · 3 = 60 ordered triplets of the general type AAB.

The total number of ordered triplets that contain repeated people is therefore
5 + 60 = 65. Subtracting this from the 53 = 125 total number of ordered
triplets (with repetitions allowed) gives 125 − 65 = 60 ordered triplets without
repetitions, as desired.

(b) Again, if repetitions are allowed, there are two general types of ordered triplets
that contain repeated people: AAA and AAB. Since we are choosing from N
people, there are now N possible letters, so there are N triplets of the first type.

How many triplets are there of the second type? There are N ways to pick the
letter that appears twice, and then N − 1 ways to pick the letter that appears
once from the remaining N − 1 letters. And then for each of these N (N − 1)
combinations, there are three ways to order the letters (AAB, ABA, BAA). So
there are N (N − 1) · 3 ordered triplets of the general type AAB.

The total number of ordered triplets that contain repeated people is therefore
N+3N (N−1) = 3N2−2N . Our goal is to show that when this is subtracted from
the N3 total number of ordered triplets (with repetitions allowed), we obtain the
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N (N − 1)(N − 2) result in Eq. (1.6) for triplets without repetitions. So we want
to show that

N3 − (3N2 − 2N ) = N (N − 1)(N − 2). (1.30)

If you multiply out the righthand side, you will quickly see that the desired
equality holds.

1.4. Subtracting the repeats, again
Our goal is to show that when the number of ordered quadruplets with repeated people
is subtracted from the 54 = 625 total number of ordered quadruplets (with repetitions
allowed), we obtain the correct number 5 · 4 · 3 · 2 = 120 of ordered quadruplets
without repetitions. If repetitions are allowed, there are four general types of ordered
quadruplets that contain repeated people: AAAA, AAAB, AABB, and AABC. Let’s
look at each of these in turn.

• First type: Since we are choosing from five people, there are five quadruplets
of this type (AAAA through EEEE).

• Second type: There are five ways to pick the letter that appears three times,
and then four ways to pick the letter that appears once from the remaining four
letters. And then for each of these 5 · 4 = 20 combinations, there are four ways
to order the letters (AAAB, AABA, ABAA, BAAA). So there are 20 · 4 = 80
ordered quadruplets of the general type AAAB.

• Third type: There are
(5
2

)
= 10 ways to pick the two letters that appear. And

then for each of these combinations, there are
(4
2

)
= 6 ways to order the let-

ters (AABB, ABAB, ABBA, BBAA, BABA, BAAB). So there are 10 · 6 = 60
ordered quadruplets of the general type AABB.

• Fourth type: There are five ways to pick the letter that appears twice, and then(4
2

)
= 6 ways to pick the other two letters from the remaining four letters. And

then for each of these 5 · 6 = 30 combinations, there are 12 ways to order the
letters (four ways to pick the location of one of the single letters, and then three
for the other). So there are 30 ·12 = 360 ordered quadruplets of the general type
AABC.

The total number of ordered quadruplets that contain repeated people is therefore 5 +
80 + 60 + 360 = 505. Subtracting this from the 54 = 625 total number of ordered
quadruplets (with repetitions allowed) gives 625 − 505 = 120 ordered quadruplets
without repetitions, as desired.
In the same manner as in Problem 1.3(b), you can solve this problem in the general
case where quadruplets are chosen from N people, instead of five. The math gets a
little messy, but in the end it comes down to replacing every 5 in the above solution
with an N , and replacing the appropriate 4’s with (N − 1)’s.

1.5. Sum from 1 to N

(a) Our instructions are to write down the following two horizontal strings of num-
bers:

1 2 3 · · · N − 2 N − 1 N
N N − 1 N − 2 · · · 3 2 1

Note that every column of two numbers has the same sum, namely N + 1. And
since there are N columns, the total sum of the two rows (viewed as N columns)
is N (N +1). We have counted every number twice, so the sum of the numbers 1
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through N is half of N (N + 1), that is, N (N + 1)/2. As we’ve seen many times
throughout this chapter, and as we’ll see many more times, things become much
clearer if you group objects in certain ways!

Remark: One day when he was in grade school (or so the story goes), the Ger-
man mathematician Carl Friedrich Gauss (1777-1855) encountered the above
problem. His teacher was trying to quiet the students by giving them the task of
adding up the numbers 1 through 100, thinking that it would occupy them for a
while. But to the teacher’s amazement, Gauss quickly came up with the correct
answer, 5050, by cleverly thinking of the above method on the spot. ♣

(b) Our first task is easy. If N = 1 then the sum of the numbers 1 through N = 1 is
simply 1, which equals N (N + 1)/2 when N = 1.
For our second task, if we assume that the sum of 1 through N equals N (N +
1)/2, then the sum of 1 through N + 1 is N + 1 more than that, so it equals

1 + 2 + 3 + · · · + N + (N + 1) =
(
1 + 2 + 3 + · · · + N

)
+ (N + 1)

=
N (N + 1)

2
+ (N + 1)

= (N + 1)
(

N
2
+ 1

)
= (N + 1)

(
N + 2

2

)
=

(N + 1)(N + 2)
2

, (1.31)

which is the proposed result with N replaced by N + 1, as desired.
Now for the third task. We have demonstrated two facts: First, we have shown
that the result (that the sum of 1 through N equals N (N +1)/2) holds for N = 1.
And second, we have shown that if the result holds for N , then it also holds
for N + 1. (This second fact is called the inductive step in the proof.) The
combination of these two facts implies that the result holds for all N , by the
following reasoning. Since the result holds for N = 1, the second fact implies
that it also holds for N = 2. And then since it holds for N = 2, the second fact
implies that it also holds for N = 3. And then since it holds for N = 3, the
second fact implies that it also holds for N = 4. And so on. The result therefore
holds for all N (positive integers).

Remarks: This method of proof (mathematical induction) requires that you
already have a guess for what the answer is. The induction reasoning then lets
you rigorously prove that your guess is correct. If you don’t already know the
answer (which is N (N + 1)/2 in the present case), then mathematical induction
doesn’t help you. In short, with mathematical induction, you can prove a result,
but you can’t derive it.
Note that although it was trivial to demonstrate, the first of the above two facts
(that the result holds for N = 1) is critical in an inductive proof. The second fact
alone isn’t sufficient for the proof. As an example of why this is true, let’s say
that someone proposes that the sum 1+ 2+ 3+ · · ·+ N equals N (N + 1)/2+ 73.
(Any other additive constant would serve the purpose here just as well.) This
expression is obviously incorrect, even though it does satisfy the inductive step.
This can be seen by tacking a 73 on to the N (N +1)/2 term in the second line of
Eq. (1.31). So our new (incorrect) guess does indeed satisfy the statement, “If it
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holds for N , then it also holds for N + 1.” The problem, however, is that the “if”
part of this statement is never satisfied. The guess doesn’t hold for N = 1 (or
any other value of N), so there is no number at which we can start the inductive
chain of reasoning. ♣

1.6. Many ways to count
We’ll present four solutions:

First solution: There are
(6
3

)
= 20 ways to choose where the three A’s go in the six

possible places. For each of these 20 ways, there are
(3
2

)
= 3 ways to choose where

the two B’s go in the remaining three places (or equivalently
(3
1

)
= 3 ways to choose

where the one C goes). The total number of orderings is therefore 20 · 3 = 60.

Second solution: There are
(6
2

)
= 15 ways to choose where the two B’s go in the six

possible places. For each of these 15 ways, there are
(4
3

)
= 4 ways to choose where

the three A’s go in the remaining four places (or equivalently
(4
1

)
= 4 ways to choose

where the one C goes). The total number of orderings is therefore 15 · 4 = 60.

Third solution: There are
(6
1

)
= 6 ways to choose where the C goes in the six possible

places. For each of these 6 ways, there are
(5
3

)
= 10 ways to choose where the three

A’s go in the remaining five places (or equivalently
(5
2

)
= 10 ways to choose where

the two B’s go). The total number of orderings is therefore 6 · 10 = 60.

Fourth solution: Let’s forget for a moment that the three A’s, along with the two B’s,
are equivalent. If we treat all six letters as distinguishable, then there are 6! = 720
ways to order them. However, since the three A’s are in fact indistinguishable, we
have overcounted the number of orderings by a factor of 3!, because that is the number
of ways to order the three A’s. Similarly, the two B’s are indistinguishable, so we
have also overcounted by 2!. The actual number of different orderings is therefore
6!/(3!2!) = 720/(6 · 2) = 60.

1.7. Committees with a president

(a) If we write out the binomial coefficients, the equality to be demonstrated is

n
(
N
n

)
= N

(
N − 1
n − 1

)
⇐⇒ n

N!
n!(N − n)!

= N
(N − 1)!

(n − 1)!(N − n)!

⇐⇒ N!
(n − 1)!(N − n)!

=
N!

(n − 1)!(N − n)!
, (1.32)

which is indeed true.

(b) First student’s reasoning: Imagine first picking the n committee members
(there are

(
N
n

)
ways to do this), and then picking the president from these n

people (there are n ways to do this). The total number of ways to form a com-
mittee with a president is therefore n

(
N
n

)
.

Second student’s reasoning: Imagine first picking the president from the com-
plete set of N people (there are N ways to do this), and then picking the other
n − 1 committee members from the remaining N − 1 people (there are

(
N−1
n−1

)
ways to do this). The total number of ways to form a committee with a president
is therefore N

(
N−1
n−1

)
.



1.12. Solutions 45

1.8. Multinomial coefficients

(a) First solution: There are
(10

3

)
ways to choose the three members of committee

A. And then from the remaining seven people, there are
(7
2

)
ways to choose the

two members of committee B. The five remaining people are then on committee
C. The total number of ways to choose the committees is therefore(

10
3

) (
7
2

)
=

10!
3!7!

7!
2!5!

=
10!

3!2!5!
= 2,520. (1.33)

Alternatively, we can use the above reasoning but consider the committees in a
different order. For example, we can first pick the two members of committee
B, and then the five members of committee C. This yields an answer of(

10
2

) (
8
5

)
=

10!
2!8!

8!
5!3!

=
10!

2!5!3!
= 2,520. (1.34)

Considering the committees in any other order will give the same answer, as you
can check. One of the factorials will always cancel, and you will be left with
the product 3!2!5! in the denominator.

Second solution: Since the numbers of people on the committees are 3, 2, and
5, the appearance of the product 3!2!5! in the denominator suggests that there
is a more streamlined way of obtaining the answer. And indeed, imagine lining
up ten seats, with the first three labeled A, the next two labeled B, and the last
five labeled C. There are 10! different ways to assign the ten people to the ten
seats. But the 3! possible permutations of the first three people don’t change
the committee A assignments, because we don’t care about the order of people
within a committee. So the 10! figure overcounts the number of committee
assignments by 3!. We therefore need to divide 10! by 3!. Likewise, the 2!
permutations of the people in the B seats and the 5! permutations of the people
in the C seats don’t change the committee assignments. So we also need to
divide by 2! and 5!. The correct number of different committee assignments is
therefore 10!/(3!2!5!).

(b) The reasoning in the second solution above immediately extends to the general
case, so the answer is

N!
n1!n2! · · · nk !

. (1.35)

In short, there are N! ways to assign N people to N seats in a row. But the ni !
permutations of the people within each committee don’t change the committee
assignments. So N! overcounts the true number of assignments by the product
n1!n2! · · · nk !. We must therefore divide N! by this product.
Alternatively, we can use the reasoning in the first solution above. There are(
N
n1

)
ways to choose the n1 members of committee 1. And then from the re-

maining N − n1 people, there are
(
N−n1
n2

)
ways to choose the n2 members of

committee 2. And so on. The total number of ways to choose the committees is
therefore(

N
n1

) (
N − n1

n2

) (
N − n1 − n2

n3

)
· · ·

=
N!

n1!(N − n1)!
· (N − n1)!

n2!(N − n1 − n2)!
· (N − n1 − n2)!

n3!(N − n1 − n2 − n3)!
· · ·

=
N!

n1!n2! · · · nk !
. (1.36)
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Most of the factorials cancel in pairs. The last factorial in the denominator,
namely (N − n1 − n2 − · · · − nk )!, equals 0! = 1, because the sum of the ni
equals N .
The above result can be extended quickly to the case where only a subset of the
N people are assigned to be on the committees, that is, where

∑
ni < N . In

this case, we can simply pretend that the leftover people are on one additional
committee. So we now have k + 1 committees, where

∑
ni = N . For example,

if the task of this problem were instead to pick the three committees (with 3, 2,
and 5 people) from a set of 16 people, then the number of possible ways would
be 16!/(3!2!5!6!), which is about 20 million.

Remark: The expression in Eq. (1.35) is called a multinomial coefficient (anal-
ogous to the binomial coefficient) and is denoted by(

N
n1,n2, . . . ,nk

)
≡ N!

n1!n2! · · · nk !
, (1.37)

where it is understood that n1+n2+ · · ·+nk = N . In the multinomial-coefficient
notation, the standard binomial coefficient

(
N
n

)
is written as

(
N

n,N−n
)
. But in

this k = 2 case, people always just write
(
N
n

)
. However, for all other k, the

convention is to list all k numbers in the lower entry of the coefficient.
The multinomial coefficients appear the expansion,

(x1 + x2 + · · · + xk )N =
∑

∑
ni=N

(
N

n1,n2, . . . ,nk

)
xn1

1 xn2
2 · · · x

nk

k
. (1.38)

The multinomial coefficients appear here for exactly the same reason they ap-
pear in the above solution involving the number of committees. If we look at a
particular xn1

1 xn2
2 · · · x

nk

k
term on the righthand side of Eq. (1.38), the n1 factors

of x1 can come from any n1 of the N factors of (x1+x2+· · ·+xk ) on the lefthand
side. Picking these n1 factors is equivalent to picking a specific set of n1 people
to be on committee 1. Likewise for the xn2

2 factor and the n2 people on com-
mittee 2. And so on. The number of ways to pick a particular xn1

1 xn2
2 · · · x

nk

k
product is therefore equal to the number of ways to pick committees of n1, n2,
. . . , nk people. That is, the coefficient in the sum in Eq. (1.38) equals the ex-
pression in Eq. (1.35). The reasoning we used here is basically the same as the
reasoning we used in Section 1.8.2 for the case of binomial coefficients. ♣

1.9. One heart and one 7
It is easiest to deal with the 7 of hearts separately. If the hand contains this card, then
none of the other four cards in the hand can be a heart or a 7. There are 12 other
hearts and three other 7’s. So including the 7 of hearts, 16 cards are ruled out, which
leaves 36. The number of ways to choose four cards from 36 is

(36
4

)
= 58,905. This

is therefore the number of desired hands that contain the 7 of hearts.
Now consider the hands that don’t contain the 7 of hearts. There are 12 other hearts
and three other 7’s to choose from. So there are 12 · 3 = 36 ways to choose the two
cards of the required type. For the remaining three cards, there are again 36 cards to
choose from, yielding

(36
3

)
= 7,140 possibilities. The total number of desired hands

that lack the 7 of hearts is then 36 · 7,140 = 257,040.
The total number of desired hands (with or without the 7 of hearts) is therefore 58,905+
257,040 = 315,945. This is about 12% of the

(52
5

)
= 2,598,960 total number of poker

hands.
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1.10. Poker hands

(a) Full house: There are 13 ways to choose the value that appears three times, and(4
3

)
= 4 ways to choose the specific three cards from the four (the four suits)

that have this value. And then there are 12 ways to choose the value that appears
twice from the remaining 12 values, and

(4
2

)
= 6 ways to choose the specific two

cards from the four that have this value. The total number of full-house hands is
therefore

13 ·
(
4
3

)
· 12 ·

(
4
2

)
= 3,744. (1.39)

(b) Straight flush: The five consecutive values can be A, 2, 3, 4, 5, or 2, 3, 4, 5, 6,
and so on until 10, J, Q, K, A. There are 10 of these sequences; remember that
aces can be high or low. Each sequence can occur in four possible suits, so the
total number of straight-flush hands is

4 · 10 = 40. (1.40)

Of these 40 hands, four of them are the Royal flushes, consisting of 10, J, Q, K, A
(one for each suit).

(c) Flush: The number of ways to pick five cards from the 13 cards of a given suit
is

(13
5

)
. Since there are four suits, the total number of flush hands is 4 ·

(13
5

)
=

5,148. However, 40 of these were already counted in the straight-flush category
above, so that leaves

4 ·
(
13
5

)
− 40 = 5,108 (1.41)

hands that are “regular” flushes.

(d) Straight: The 10 sequences listed in part (b) are relevant here. But now there
are four possible choices (the four suits) for each of the five cards. The total
number of straight hands is therefore 10 · 45 = 10,240. However, 40 of these
were already counted in the straight-flush category above, so that leaves

10 · 45 − 40 = 10,200 (1.42)

hands that are “regular” straights.

(e) One pair: There are 13 ways to pick the value that appears twice, and
(4
2

)
= 6

ways to choose the specific two cards from the four that have this value. The
other three values must all be different, and they must be chosen from the re-
maining 12 values. There are

(12
3

)
ways to do this. And then there are four

possible choices (the four suits) for each of these three values, which brings in
a factor of 43. The total number of pair hands is therefore

13 ·
(
4
2

)
·
(
12
3

)
· 43 = 1,098,240. (1.43)

Alternatively, you can count this as 13 ·
(4
2

)
· 48 · 44 · 40/3! = 1,098,240,

because after picking the pair, there are 48 choices for the third card (because
one value is off limits), then 44 choices for the fourth card (because two values
are off limits), and then 40 choices for the fifth card (because three values are
off limits). But we have counted the 3! possible permutations of a given set
of third/fourth/fifth cards as distinct. Since the order doesn’t matter, we must
correct for this by dividing by 3!, which gives the above result.
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Note that when counting the pair hands, we don’t need to worry about double
counting any flushes, because the two cards in the pair necessarily have different
suits. Likewise, we don’t need to worry about double counting any straights,
because the two cards in the pair have the same value, by definition.

(f) Two pairs: There are
(13

2

)
ways to choose the two values for the two pairs. For

each pair, there are
(4
2

)
= 6 ways to choose the specific two cards from the four

that have that value. This brings in a factor of 62. And then there are 44 choices
for the fifth card, since two values are off limits. The total number of two-pair
hands is therefore (

13
2

)
·
(
4
2

)2
· 44 = 123,552. (1.44)

(g) Three of a kind: There are 13 ways to pick the value that appears three times,
and

(4
3

)
= 4 ways to choose the specific three cards from the four that have this

value. The other two values must be different, and they must be chosen from the
remaining 12 values. There are

(12
2

)
to do this. And then there are four possible

choices for each of these two values, which brings in a factor of 42. The total
number of three-of-a-kind hands is therefore

13 ·
(
4
3

)
·
(
12
2

)
· 42 = 54,912. (1.45)

Alternatively, as in part (e), you can think of this as 13 ·
(4
3

)
·48 ·44/2! = 54,912.

(h) Four of a kind: There are 13 ways to pick the value that appears four times,
and then only

(4
4

)
= 1 way to choose the specific four cards from the four that

have this value. There are 48 choices for the fifth card, so the total number of
four-of-a-kind hands is

13 ·
(
4
4

)
· 48 = 624. (1.46)

(i) None of the above: The easy way to calculate this number is to subtract the
sum of the results in parts (a) through (h) from the total number of possible
poker hands, namely

(52
5

)
= 2,598,960. But let’s do it the hard way.

We’ll start by considering only the values of the cards and ignoring the suits.
Since we don’t want any pairs, we’re concerned with hands where all five values
are different (for example, 3, 4, 7, J, K). There are

(13
5

)
ways to pick these five

values. However, we also don’t want any straights (such as 3, 4, 5, 6, 7), so we
must exclude these. As in parts (b) and (d), there are 10 different sequences of
straights (remembering that aces can be high or low). So the number of possible
none-of-the-above sets of values is

(13
5

)
− 10.

We must now account for the possibility of different suits. For each of the(13
5

)
− 10 sets of values, each value has four options for its suit, so this brings

in a factor of 45. However, we don’t want any flushes, so we must exclude
these. There are four possible flushes (one for each suit) for each set of values,
so the number of possible none-of-the-above suit combinations for each of the(13

5

)
− 10 sets of values is 45 − 4. The total number of none-of-the-above hands

is therefore ((
13
5

)
− 10

)
· (45 − 4

)
= 1,302,540. (1.47)

These none-of-the-above hands are commonly known as “high card” hands, be-
cause the hand’s rank is determined by the highest card it contains (or the second
highest if there is a tie, etc.).



1.12. Solutions 49

Let’s now check that all of our results correctly add up to the total number
of possible hands,

(52
5

)
= 2,598,960. The various results (along with their

percentages) are listed in Table 1.20 in order of increasing frequency. We see
that they do indeed add up correctly. Note that one-pair and none-of-the-above
hands account for 92% of the total number of hands.

Royal flush = 4 0.00015%
Straight flush (not Royal) = 36 0.0014%

Four of a kind = 624 0.024%
Full house = 3,744 0.14%

Flush (not straight flush) = 5,108 0.20%
Straight (not straight flush) = 10,200 0.39%

Three of a kind = 54,912 2.1%
Two pairs = 123,552 4.8%
One pair = 1,098,240 42.3%

None of the above = 1,302,540 50.1%

Total = 2,598,960

Table 1.20: The numbers of different poker hands.

1.11. Rolling two dice

(a) Table 1.5 lists all 62 = 36 ordered outcomes of two rolls. Since we aren’t
concerned with the order here, we are interested only in the upper-right, or the
lower-left, triangle of the square (with non-repeated numbers), along with the
diagonal (with repeated numbers). The upper-right, or the lower-left, triangle
has

(6
2

)
= 15 entries. And the diagonal has six entries. So the total number of

unordered outcomes is 15 + 6 = 21.
Alternatively, if we ignore the duplicate lower-left triangle, there are six entries
in the top row, five in the second, four in the third, etc. So the total number of
unordered outcomes is the sum 6 + 5 + 4 + 3 + 2 + 1 = 21.

(b) This setup is the N = 6 and n = 2 case of Eq. (1.16), because there are N = 6
possible results for each of the n = 2 rolls. So Eq. (1.16) gives the total number
of unordered outcomes of two rolls as(

2 + (6 − 1)
6 − 1

)
=

(
7
5

)
= 21. (1.48)

(c) If we generalize Table 1.5 to an N by N square, then the upper-right, or the
lower-left, triangle has

(
N
2

)
= N (N − 1)/2 entries. And the diagonal has N

entries. So the total number of unordered outcomes is N (N − 1)/2 + N =
N (N + 1)/2.
Alternatively, as in part (a), if we ignore the duplicate lower-left triangle, there
are N entries in the top row, N − 1 in the second, N − 2 in the third, etc. So the
total number of unordered outcomes is the sum of 1 through N , which equals
N (N + 1)/2 from Problem 1.5.
This result agrees with Eq. (1.16) when n = 2 (with general N), because that
equation gives

NU2 =

(
2 + (N − 1)

N − 1

)
=

(
N + 1
N − 1

)
=

(N + 1)N
2

. (1.49)
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1.12. Unordered coins
This is the N = 2 case (with arbitrary n) of Eq. (1.16), because there are N = 2
possible results for each of the n coin flips. So Eq. (1.16) gives the total number of
unordered outcomes for n flips as

2Un =

(
n + (2 − 1)

2 − 1

)
=

(
n + 1

1

)
= n + 1. (1.50)

To see why this result makes sense, consider the concrete case with, say, n = 5 flips.
The possible outcomes are (if we arbitrarily list the Heads first in each string, since
the order doesn’t matter):

HHHHH HHHHT HHHTT HHTTT HTTTT TTTTT

If we label each of these outcomes by the number of Tails, then we can write them as
0, 1, 2, 3, 4, and 5. There are six possibilities here. More generally, if we have n flips,
the number of Tails can range from 0 to n. There are n + 1 possibilities here, so this is
the number of unordered outcomes.

1.13. Proof without stars and bars

(a) With the notation NUn for the result in Eq. (1.16), our goal is to determine 3Un .
Let the N = 3 individual results be labeled A, B, and C. We can categorize the
unordered outcomes of the n trials according to the number of A’s that appear.
Let’s do this for the concrete case of n = 4, to get a feel for what’s going on.
We’ll then consider general n. We’ll need to list all of the unordered outcomes
here, as opposed to just one of each general type (as we did in the examples at
the beginning of Section 1.7). The possible unordered outcomes are shown in
Table 1.21.

BBBB ABBB AABB AAAB AAAA
BBBC ABBC AABC AAAC
BBCC ABCC AACC
BCCC ACCC
CCCC

Table 1.21: Unordered lists of n = 4 letters chosen from N = 3 letters, with
replacement. The lists are grouped in columns according to how many A’s
appear.

This table is consistent with the results in the first example in Section 1.7, where
we found that there are three sets of the AAAA type, six of the AAAB type,
three of the AABB type, and three of the AABC type.
Look at each column in the table. The first column has no A’s, so we’re forming
sets of n = 4 letters from the N = 2 other letters, B and C. The first column
therefore has 2U4 entries, which we see equals 5 (consistent with Problem 1.12).
The second column has one A, so we’re forming sets of n = 4 − 1 = 3 letters
from the N = 2 letters B and C. The second column therefore has 2U3 entries,
which we see equals 4. Similarly, the third column has three entries, the fourth
has two, and the fifth has one.
Note that even if we don’t know what all the various 2Un values are, the reason-
ing in the preceding paragraph still tells us that if we group the sets according
to the number of A’s that appear, we can write down the relation,

3U4 = 2U4 + 2U3 + 2U2 + 2U1 + 2U0. (1.51)
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If we then invoke the 2Un = n + 1 result from Problem 1.12, the righthand side
of Eq. (1.51) equals 5 + 4 + 3 + 2 + 1 = 15. This agrees with the

(6
2

)
result in

Eq. (1.16) for n = 4 and N = 3.
Now consider a general value of n instead of the specific n = 4 value we used
above (but still with N = 3). The list of unordered outcomes has the same
general form as in Table 1.21, except that there are now n + 1 columns instead
of five. In the first column (with no A’s), we’re forming sets of n letters from the
N = 2 other letters, B and C. In the second column (with one A), we’re forming
sets of n − 1 letters from the N = 2 letters B and C. And so on, until the last
column has one set with n A’s. For example, the possible outcomes for n = 6
are shown in Table 1.22.

BBBBBB ABBBBB AABBBB AAABBB AAAABB AAAAAB AAAAAA
BBBBBC ABBBBC AABBBC AAABBC AAAABC AAAAAC
BBBBCC ABBBCC AABBCC AAABCC AAAACC
BBBCCC ABBCCC AABCCC AAACCC
BBCCCC ABCCCC AACCCC
BCCCCC ACCCCC
CCCCCC

Table 1.22: Unordered lists with n = 6 and N = 3.

The same reasoning that led to Eq. (1.51) carries through here, and we end up
with

3Un = 2Un + 2Un−1 + 2Un−2 + · · · + 2U1 + 2U0. (1.52)

If we then invoke the 2Un = n + 1 result from Problem 1.12, we obtain

3Un = (n + 1) + (n) + (n − 1) + · · · + 2 + 1

=
(n + 1)(n + 2)

2
, (1.53)

in agreement with the
(
n+2

2

)
result in Eq. (1.16) for N = 3. We have used the

result from Problem 1.5 that the sum of the first k integers equals k (k + 1)/2,
with k = n + 1 here.

(b) In the case of general N (and n), we can again group the sets of letters according
to how many times a given individual letter (call it A) appears. If A doesn’t
appear, then we’re forming sets of n letters from the N − 1 other letters, B, C,
. . . . If A appears once, then we’re forming sets of n − 1 letters from the N − 1
other letters. If A appears twice, then we’re forming sets of n−2 letters from the
N − 1 other letters. And so on, until A appears all n times, and we’re forming
sets of zero letters from the N −1 other letters. (There’s only one way to do that;
simply don’t pick any letters.) If we add up all of these possibilities, we obtain

NUn = N−1Un + N−1Un−1 + N−1Un−2 + · · · + N−1U1 + N−1U0. (1.54)

If we then invoke the inductive hypothesis that N−1Un equals
(
n+N−2
N−2

)
for any

n, from Eq. (1.16), we can rewrite Eq. (1.54) as

NUn =

(
n + N − 2

N − 2

)
+

(
n + N − 3

N − 2

)
+

(
n + N − 4

N − 2

)
+ · · · +

(
N − 1
N − 2

)
+

(
N − 2
N − 2

)
.

(1.55)
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But this sum takes exactly the same form as the sum in the Eq. (1.29) result in
Problem 1.17, which we’ll copy here:(

n
k

)
=

(
n − 1
k − 1

)
+

(
n − 2
k − 1

)
+

(
n − 3
k − 1

)
+ · · · +

(
k

k − 1

)
+

(
k − 1
k − 1

)
. (1.56)

When applying this equation, all we have to do is observe that the two entries
in the binomial coefficient on the lefthand side are each 1 more than the corre-
sponding entries in the first binomial coefficient on the righthand side. Applying
this result to Eq. (1.55) yields

NUn =

(
n + N − 1

N − 1

)
, (1.57)

in agreement with Eq. (1.16), as desired.
Note that if N = 1 (with arbitrary n), then Eq. (1.16) gives 1Un =

(
n
0

)
= 1. This

is correct, because if there is only N = 1 possible outcome (call it A) for each
of the n trials, then there is only one possible combined outcome for all n trials,
namely AAAA. . . .
We have therefore shown two things: (1) Eq. (1.16) holds for N = 1 (and all n),
and (2) if Eq. (1.16) holds for N − 1 (and all n) then it also holds for N (and
all n). It therefore follows inductively that Eq. (1.16) holds for all N (and n), as
desired.

1.14. Yahtzee

(a) As mentioned near the beginning of Section 1.7, a roll of five dice is equivalent
to drawing n = 5 balls in succession from a box (with replacement, and with
the order not mattering), with the balls being labeled with the N = 6 numbers 1
through 6. So Eq. (1.16) does indeed apply. With n = 5 and N = 6, we obtain(10

5

)
= 252 possible rolls.

(b) There are seven different basic types of unordered rolls (sets):

1. All five numbers are the same, for example 11111: There are six sets of
this type, because the common number can be 1, 2, 3, 4, 5, or 6.

2. Four of one number and one of another, for example 11112: (Remember
that the order doesn’t matter, so 11112, 11121, etc. are all equivalent.)
There are 6 · 5 = 30 sets of this type, because there are six choices for the
number that appears four times, and then for each of these choices there
are five choices for the number that appears once.

3. Three of one number and two of another, for example 11122: There are
again 6 · 5 = 30 sets of this type, because there are six choices for the
number that appears three times, and then five choices for the number that
appears twice.

4. Three of one number, one of a second, and one of a third, for example
11123: There are 6 ·10 = 60 sets of this type, because there are six choices
for the number that appears three times, and then

(5
2

)
= 10 ways to choose

the other two numbers from the remaining five.
5. Two of one number, two of a second, and one of a third, for example 11223:

There are again 6 · 10 = 60 sets of this type, because there are six choices
for the number that appears once, and then

(5
2

)
= 10 ways to choose the

other two (repeated) numbers from the remaining five.
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6. Two of one number and one each of three other numbers, for example
11234: There are 6 ·10 = 60 sets of this type, because there are six choices
for the number that appears twice, and then

(5
3

)
= 10 ways to choose the

other three numbers from the remaining five.
7. One each of five numbers, for example 12345: There are six sets of this

type, because there are six ways to choose the number that doesn’t appear.

Let’s summarize the above results for the numbers of each of the different types
of unordered sets:

11111 11112 11122 11123
6 30 30 60

11223 11234 12345
60 60 6

The total number of (unordered) 5-dice Yahtzee rolls is therefore

6 + 30 + 30 + 60 + 60 + 60 + 6 = 252, (1.58)

in agreement with the result in part (a).

(c) We’ll now determine the number of ordered sets associated with each of the
above seven types of unordered sets.

1. All five numbers are the same: For a given unordered set of this type, there
is only one way to order the numbers, because they are all the same. So
the total number of ordered sets associated with the six unordered sets of
the 11111 type is simply 6 · 1 = 6.

2. Four of one number and one of another: For a given unordered set of this
type, there are five ways to order the numbers, because there are five places
to put the single number. So the total number of ordered sets associated
with the 30 unordered sets of the 11112 type is 30 · 5 = 150.

3. Three of one number and two of another: For a given unordered set of this
type, there are

(5
2

)
= 10 ways to order the numbers, because there are

(5
2

)
places to put the two common numbers. So the total number of ordered sets
associated with the 30 unordered sets of the 11122 type is 30 · 10 = 300.

4. Three of one number, one of a second, and one of a third: For a given
unordered set of this type, there are 20 ways to order the numbers, because
there are five places to put one of the single numbers, and then four places
to put the other. So the total number of ordered sets associated with the 60
unordered sets of the 11123 type is 60 · 20 = 1200.

5. Two of one number, two of a second, and one of a third: For a given
unordered set of this type, there are 30 ways to order the numbers, because
there are five places to put the single number, and then

(4
2

)
= 6 ways to

place one of the pairs. So the total number of ordered sets associated with
the 60 unordered sets of the 11223 type is 60 · 30 = 1800.

6. Two of one number and one each of three other numbers: For a given
unordered set of this type, there are 60 ways to order the numbers, because
there are five places to put one of the single numbers, four places to put the
second, and three places to put the third. So the total number of ordered
sets associated with the 60 unordered sets of the 11234 type is 60 · 60 =
3600.
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7. One each of five numbers: For a given unordered set of this type, there are
120 ways to order the numbers, because there are 5! permutations of the
five numbers. So the total number of ordered sets associated with the 6
unordered sets of the 12345 type is 6 · 120 = 720.

These results are summarized in Table 1.23. The entries in the “Unordered”
row are the results from part (b) for the number of unordered sets of each type.
Each entry in the “Ordered” row is the number of ordered sets for each of the
unordered sets. For example, there are 5 ordered sets for each of the 30 un-
ordered sets of the 11112 type. Each entry in the “Total” row is the total number
of ordered sets of a certain type; this is the product of the entries in the “Un-
ordered” and “Ordered” rows. The complete total number of ordered sets (rolls)
involving n = 5 dice, each with N = 6 sides, is therefore

6 + 150 + 300 + 1200 + 1800 + 3600 + 720 = 7776, (1.59)

which equals 65, as desired.

Type 11111 11112 11122 11123 11223 11234 12345

Unordered 6 30 30 60 60 60 6

Ordered 1 5 10 20 30 60 120

Total 6 150 300 1200 1800 3600 720

Table 1.23: Verifying that the total number of ordered rolls of five dice is 65 =

7776.

1.15. Pascal sum 1
Using

(
n
k

)
= n!/k!(n − k)!, the righthand side of Eq. (1.28) can be written as(

n − 1
k − 1

)
+

(
n − 1

k

)
=

(n − 1)!
(k − 1)!(n − k)!

+
(n − 1)!

k!(n − k − 1)!
. (1.60)

Let’s get a common denominator in these fractions, so that we can add them. The
common denominator is k!(n − k)!, so multiplying the first fraction by k/k and the
second by (n − k)/(n − k) gives(

n − 1
k − 1

)
+

(
n − 1

k

)
=

k (n − 1)!
k!(n − k)!

+
(n − k)(n − 1)!

k!(n − k)!
. (1.61)

If we cancel the ±k (n − 1)! terms in the numerators, we obtain(
n − 1
k − 1

)
+

(
n − 1

k

)
=

n(n − 1)!
k!(n − k)!

=
n!

k!(n − k)!

=

(
n
k

)
, (1.62)

as desired.
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1.16. Pascal sum 2

(a) The binomial coefficients give the number of ways of obtaining k Heads in
n coin flips. So to demonstrate the given relation, we want to show that the
number of ways of obtaining k Heads in n coin flips equals the number of ways
of obtaining k−1 Heads in n−1 coin flips, plus the number of ways of obtaining
k Heads in n − 1 coin flips. This is true due to the following reasoning.
If we single out the first coin flip, we see that there are two basic ways to obtain
k Heads: either we obtain a Heads on the first flip, or we don’t. How many
possibilities are there for each of these two ways? If the first flip is a Heads,
then the other k − 1 Heads must come from the remaining n − 1 flips. There are(
n−1
k−1

)
ways for this to happen. If the first flip isn’t a Heads, then all k Heads

must come from the remaining n − 1 flips. There are
(
n−1
k

)
ways for this to

happen. Since each of the total
(
n
k

)
number of ways of obtaining k Heads falls

into one or the other of these two categories, we therefore arrive at Eq. (1.22).

(b) The binomial coefficients are the coefficients of the terms in the binomial ex-
pansion of (a+b)n . So to demonstrate the given equation, we want to show that
the coefficient of the term involving bk in (a + b)n equals the coefficient of the
term involving bk−1 in (a + b)n−1, plus the coefficient of the term involving bk

in (a + b)n−1. This is true due to the following reasoning.
Let’s write (a+ b)n in the form of (a+ b) · (a+ b)n−1, and imagine multiplying
out the (a + b)n−1 part. The result contains many terms, but the two relevant
ones are

(
n−1
k−1

)
an−k bk−1 and

(
n−1
k

)
an−k−1bk . So we have

(a + b)n = (a + b)
(
· · · +

(
n − 1
k − 1

)
an−k bk−1 +

(
n − 1

k

)
an−k−1bk + · · ·

)
.

(1.63)
There are two ways to obtain a bk term on the righthand side. Either the b
in the first factor gets multiplied by the

(
n−1
k−1

)
an−k bk−1 term in the second

factor, or the a in the first factor gets multiplied by the
(
n−1
k

)
an−k−1bk term in

the second factor. The net coefficient of the bk term on the righthand side is
therefore

(
n−1
k−1

)
+

(
n−1
k

)
. But the coefficient of the bk term on the lefthand side

is
(
n
k

)
, so we have demonstrated Eq. (1.22).

1.17. Pascal diagonal sum

(a) The
(4
2

)
comes from the fact that once we’ve chosen the first letter to be A, there

are
(4
2

)
= 6 ways to pick the other two letters from B, C, D, E. This yields

the first column in the table. Likewise, the second column has
(3
2

)
= 3 triplets

starting with B and involving two letters from C, D, E. (We’ve already listed all
the groups with A.) And the third column has

(2
2

)
= 1 triplet starting with C and

involving the two letters D, E. (We’ve already listed all the groups with A and
B.)

(b) Consider an arbitrary number in Pascal’s triangle, such as the one represented
by the circled dot in the first triangle in Fig. 1.8. The number happens to be(5

2

)
, but the actual value isn’t important here. By Eq. (1.22) this number equals

the sum of the two numbers above it, as shown in the second triangle. At every
stage from here on, we will replace the righthand of the two numbers (that were
just circled) with the two numbers above it. This doesn’t affect the sum, due to
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Eq. (1.22). The number that just got replaced will be shown with a dotted circle.
The end result is the four circled numbers in the fifth triangle in the figure; this
is the desired diagonal string of numbers. Since the sum is unaffected by the
replacements at each stage, the sum of the numbers in the diagonal string equals
the original number in the first triangle. In this specific case, we have shown
that

(5
2

)
=

(4
1

)
+

(3
1

)
+

(2
1

)
+

(1
1

)
. But the result holds for any starting point.

1 2

3 4

5

Figure 1.8: Illustration of
(5
2

)
=

(4
1

)
+

(3
1

)
+

(2
1

)
+

(1
1

)
. Each number (dot) can

be replaced with the two numbers above it.

Remark: We can give another proof of Eq. (1.29) by generalizing what we
observed about Table 1.19 in part (a). Let’s imagine picking a committee of k
people from n people, and let’s label the people as 1, 2, 3, etc. When we list out
the

(
n
k

)
possible committees, we can arrange them in groups according to what

the lowest number in the committee is. For example, some committees have a
1; other committees don’t have a 1 but have a 2; other committees don’t have
a 1 or a 2 but have a 3; and so on. How many committees are there of each of
these types?
If the lowest number is a 1, then the other k − 1 people on the committee must
be chosen from the n−1 people who are 2 or higher. There are

(
n−1
k−1

)
ways to do

this. Similarly, if the lowest number is a 2, then the other k − 1 people must be
chosen from the n − 2 people who are 3 or higher. There are

(
n−2
k−1

)
ways to do

this. Likewise, if the lowest number is a 3, then the other k − 1 people must be
chosen from the n − 3 people who are 4 or higher. There are

(
n−3
k−1

)
ways to do

this. This method of counting continues until we reach the stage where there are
only k − 1 numbers higher than the lowest one (which occurs when the lowest
number equals n − (k − 1)), in which case there is just

(
k−1
k−1

)
= 1 way to choose

the other k −1 people. Since the total number of possible committees is
(
n
k

)
, we

therefore arrive at Eq. (1.29). ♣



Chapter 2

Probability

Having learned in Chapter 1 how to count things, we can now talk about probability.
We will find that in many situations it is a trivial matter to generate probabilities
from our counting results. So we will be justly rewarded for the time and effort we
spent in Chapter 1.

The outline of this chapter is as follows. In Section 2.1 we give the definition
of probability. Although this definition is fairly easy to apply in most cases, there
are a number of subtleties that come up. These are discussed in Appendix A. In
Section 2.2 we present the various rules of probability. We show how these can
be applied in a few simple examples, and then we work through a number of more
substantial examples in Section 2.3. In Section 2.4 we present four classic prob-
ability problems that many people find counterintuitive. Section 2.5 is devoted to
Bayes’ theorem, which is a relation between certain conditional probabilities. Fi-
nally, in Section 2.6 we discuss Stirling’s formula, which gives an approximation to
the ubiquitous factorial, n!.

2.1 Definition of probability
Probability gives a measure of how likely it is for something to happen. It can be
defined as follows:

Definition of probability: Consider a very large number of identical trials
of a certain process; for example, flipping a coin, rolling a die, picking a ball
from a box (with replacement), etc. If the probability of a particular event
occurring (for example, getting a Heads, rolling a 5, or picking a blue ball) is
p, then the event will occur in a fraction p of the trials, on average.

Some examples are:

• The probability of getting a Heads on a coin flip is 1/2 (or equivalently 50%).
This is true because the probabilities of getting a Heads or a Tails are equal,
which means that these two outcomes must each occur half of the time, on
average.

57
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• The probability of rolling a 5 on a standard 6-sided die is 1/6. This is true
because the probabilities of rolling a 1, 2, 3, 4, 5, or 6 are all equal, which
means that these six outcomes must each happen one sixth of the time, on
average.

• If there are three red balls and seven blue balls in a box, then the probabilities
of picking a red ball or a blue ball are, respectively, 3/10 and 7/10. This
follows from the fact that the probabilities of picking each of the ten balls are
all equal (or at least let’s assume they are), which means that each ball will be
picked one tenth of the time, on average. Since there are three red balls, a red
ball will therefore be picked 3/10 of the time, on average. And since there
are seven blue balls, a blue ball will be picked 7/10 of the time, on average.

Note the inclusion of the words “on average” in the above definition and examples.
We’ll discuss this in detail in the subsection below.

Many probabilistic situations have the property that they involve a number of
different possible outcomes, all of which are equally likely. For example, Heads
and Tails on a coin are equally likely to be tossed, the numbers 1 through 6 on a die
are equally likely to be rolled, and the ten balls in the above box are all equally likely
to be picked. In such a situation, the probability of a certain scenario happening is
given by

p =
number of desired outcomes

total number of possible outcomes
(for equally likely outcomes) (2.1)

Calculating a probability then simply reduces to a matter of counting the number
of desired outcomes, along with the total number of outcomes. For example, the
probability of rolling an even number on a die is 1/2, because there are three desired
outcomes (2, 4, and 6) and six total possible outcomes (the six numbers). And the
probability of picking a red ball in the above example is 3/10, as we already noted,
because there are three desired outcomes (picking any of the three red balls) and
ten total possible outcomes (the ten balls). These two examples involved trivial
counting, but we’ll encounter many examples where it is more involved. This is
why we did all of that counting in Chapter 1!

It should be stressed that Eq. (2.1) holds only under the assumption that all of
the possible outcomes are equally likely. But this usually isn’t much of a restriction,
because this assumption will generally be valid in the setups we’ll be dealing with in
this book. In particular, it holds in setups dealing with permutations and subgroups,
both of which we studied in detail in Chapter 1. Our ability to count these sorts of
things will allow us to easily calculate probabilities via Eq. (2.1). Many examples
are given in Section 2.3 below.

There are three words that people often use interchangeably: “probability,”
“chance,” and “odds.” The first two of these mean the same thing. That is, the
statement, “There is a 40% chance that the bus will be late,” is equivalent to the
statement, “There is a 40% probability that the bus will be late.” However, the word
“odds” has a different meaning; see Problem 2.1 for a discussion of this.
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The importance of the words “on average”

The above definition of probability includes the words “on average.” These words
are critical, because the definition wouldn’t make any sense if we omitted them and
instead went with something like: “If the probability of a particular event occurring
is p, then the event will occur in exactly a fraction p of the trials.” This can’t be a
valid definition of probability, for the following reason. Consider the roll of one die,
for which the probability of each number occurring is 1/6. This definition would
imply that on one roll of a die, we will get 1/6 of a 1, and 1/6 of a 2, and so on. But
this is nonsense; you can’t roll 1/6 of a 1. The number of times a 1 appears on one
roll must of course be either zero or one. And in general for many rolls, the number
must be an integer, 0, 1, 2, 3, . . . .

There is a second problem with this definition, in addition to the problem of non
integers. What if we roll a die six times? This definition would imply that we will
get exactly (1/6) · 6 = 1 of each number. This prediction is a little better, in that
at least the proposed numbers are integers. But it still can’t be correct, because if
you actually do the experiment and roll a die six times, you will find that you are
certainly not guaranteed to get each of the six numbers exactly once. This scenario
might happen (we’ll calculate the probability in Section 2.3.4 below), but it is more
likely that some numbers will appear more than once, while other numbers won’t
appear at all.

Basically, for a small number of trials (such as six), the fractions of the time that
the various events occur will most likely not look much like the various probabili-
ties. This is where the words “very large number” in our original definition come
in. The point is that if you roll a die a huge number of times, then the fractions of
the time that each of the six numbers appears will be approximately equal to 1/6.
And the larger the number of rolls, the closer the fractions will generally be to 1/6.

In Chapter 5 we’ll explain why the fractions are expected to get closer and closer
to the actual probabilities, as the number of trials gets larger and larger. For now, just
take it on faith that if you flip a coin 100 times, the probability of obtaining either
49, 50, or 51 Heads isn’t so large. It happens to be about 24%, which tells you
that there is a decent chance that the fraction of Heads will deviate moderately from
1/2. However, if you flip a coin 100,000 times, the probability of obtaining Heads
between 49% and 51% of the time is 99.999999975%, which tells you that there is
virtually no chance that the fraction of Heads will deviate much from 1/2. If you
increase the number of flips to 109 (a billion), this result is even more pronounced;
the probability of obtaining Heads in the narrow range between 49.99% and 50.01%
of the time is 99.999999975% (the same percentage as above). We’ll discuss such
matters in detail in Section 5.2. For more commentary on the words “on average,”
see the last section in Appendix A.

2.2 The rules of probability

So far we’ve talked only about the probabilities of single events, for example, rolling
an even number on a die, getting a Heads on a coin toss, or picking a blue ball
from a box. We’ll now consider two (or more) events. Reasonable questions we
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can ask are: What is the probability that both of the events occur? What is the
probability that either of the events occurs? The rules presented below will answer
these questions. We’ll provide a few simple examples for each rule, and then we’ll
work through some longer examples in Section 2.3.

2.2.1 AND: The “intersection” probability, P(A and B)

Let A and B be two events. For example, if we roll two dice, we can let A = {rolling
a 2 on the left die} and B = {rolling a 5 on the right die}. Or we might have A =
{picking a red ball from a box} and B = {picking a blue ball without replacement
after the first pick}. What is the probability that A and B both occur? In answering
this question, we must consider two cases: (1) A and B are independent events, or
(2) A and B are dependent events. Let’s look at each of these in turn. In each case,
the probability that A and B both occur is known as the joint probability.

Independent events

Two events are said to be independent if they don’t affect each other, or more pre-
cisely, if the occurrence of one doesn’t affect the probability that the other occurs.
An example is the first setup mentioned above – rolling two dice, with A = {rolling
a 2 on the left die} and B = {rolling a 5 on the right die}. The probability of ob-
taining a 5 on the right die is 1/6, independent of what happens with the left die.
And similarly the probability of obtaining a 2 on the left die is 1/6, independent of
what happens with the right die. Independence requires that neither event affects
the other. The events in the second setup mentioned above with the balls in the box
are not independent; we’ll talk about this below.

Another example of independent events is picking one card from a deck, with
A = {the card is a king} and B = {the (same) card is a heart}. The probability of
the card being a heart is 1/4, independent of whether or not it is a king. And the
probability of the card being a king is 1/13, independent of whether or not it is a
heart. Note that it is possible to have two different events even if we have only one
card. This card has two qualities (its suit and its value), and we can associate an
event with each of these qualities.

Remark: A note on terminology: The words “event” and “outcome” sometimes mean the
same thing in practice, but there is technically a difference. An outcome is the result of an
experiment. If we draw a card from a deck, then there are 52 possible outcomes; for example,
the 4 of clubs, the jack of diamonds, etc. An event is a set of outcomes. For example, an event
might be “drawing a heart.” This event contains 13 outcomes, namely the 13 cards that are
hearts. A given card may belong to many events. For example, in addition to belonging to the
A and B events in the preceding paragraph, the king of hearts belongs to the events C = {the
card is red}, D = {the card’s value is higher than 8}, E = {the card is the king of hearts},
and so on. As indicated by the event E, an event may consist of a single outcome. An event
may also be the empty set (which occurs with probability 0), or the entire set of all possible
outcomes (which occurs with probability 1), which is known as the sample space. ♣
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The “And” rule for independent events is:

• If events A and B are independent, then the probability that they both occur
equals the product of their individual probabilities:

P(A and B) = P(A) · P(B) (2.2)

We can quickly apply this rule to the two examples mentioned above. The prob-
ability of rolling a 2 on the left die and a 5 on the right die is

P(2 and 5) = P(2) · P(5) =
1
6
· 1

6
=

1
36
. (2.3)

This agrees with the fact that one out of the 36 pairs of (ordered) numbers in Table
1.5 is “2, 5.” Similarly, the probability that a card is both a king and a heart is

P(king and heart) = P(king) · P(heart) =
1
13
· 1

4
=

1
52
. (2.4)

This makes sense, because one of the 52 cards in a deck is the king of hearts.
The logic behind Eq. (2.2) is the following. Consider N trials of a given process,

where N is very large. In the case of the two dice, a trial consists of rolling both
dice. The outcome of such a trial takes the form of an ordered pair of numbers. The
first number is the result of the left roll, and the second number is the result of the
right roll. On average, the fraction of the outcomes that have a 2 as the first number
is (1/6) · N .

Let’s now consider only this “2-first” group of outcomes and ignore the rest.
Then on average, a fraction 1/6 of these outcomes have a 5 as the second number.
This is where we are invoking the independence of the events. As far as the second
roll is concerned, the set of (1/6) ·N trials that have a 2 as the first roll is no different
from any other set of (1/6) ·N trials, so the probability of obtaining a 5 on the second
roll is simply 1/6. Putting it all together, the average number of trials that have both
a 2 as the first number and a 5 as the second number is 1/6 of (1/6) · N , which
equals (1/6) · (1/6) · N .

In the case of general probabilities P(A) and P(B), it is easy to see that the two
(1/6)’s in the above result get replaced by P(A) and P(B). So the average number
of outcomes where A and B both occur is P(A)·P(B)·N . And since we performed N
trials, the fraction of outcomes where A and B both occur is P(A) ·P(B), on average.
From the definition of probability in Section 2.1, this fraction is the probability that
A and B both occur, in agreement with Eq. (2.2).

If you want to think about the rule in Eq. (2.2) in terms of a picture, then consider
Fig. 2.1. Without worrying about specifics, let’s assume that different points within
the overall square represent different outcomes. And let’s assume that they’re all
equally likely, which means that the area of a region gives the probability that an
outcome located in that region occurs (assuming that the area of the whole region is
1). The figure corresponds to P(A) = 0.2 and P(B) = 0.4. Outcomes to the left of
the vertical line are ones where A occurs, and outcomes to the right of the vertical
line are ones where A doesn’t occur. Likewise for B and outcomes above and below
the horizontal line.
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A

B

not A

20% of the width

40% of 
the height

not B

A and B

B and not A

A and not B

not A and not B

Figure 2.1: A probability square for independent events.

From the figure, we see that not only is 40% of the entire square above the
vertical line, but also that 40% of the left vertical strip (where A occurs) is above
the vertical line, and likewise for the right vertical strip (where A doesn’t occur).
In other words, B occurs 40% of the time, independent of whether or not A occurs.
Basically, B couldn’t care less what happens with A. Similar statements hold with
A and B interchanged. So this type of figure, with a square divided by horizontal
and vertical lines, does indeed represent independent events.

The darkly shaded “A and B” region is the intersection of the region to the left
of the vertical line (where A occurs) and the region above the horizontal line (where
B occurs). Hence the word “intersection” in the title of this section. The area of
the darkly shaded region is 20% of 40% (or 40% of 20%) of the total area, that is,
(0.2)(0.4) = 0.08 of the total area. The total area corresponds to a probability of 1,
so the darkly shaded region corresponds to a probability of 0.08. Since we obtained
this probability by multiplying P(A) by P(B), we have therefore given a pictorial
proof of Eq. (2.2).

Dependent events

Two events are said to be dependent if they do affect each other, or more precisely, if
the occurrence of one does affect the probability that the other occurs. An example
is picking two balls in succession from a box containing two red balls and three
blue balls (see Fig. 2.2), with A = {choosing a red ball on the first pick} and B =
{choosing a blue ball on the second pick, without replacement after the first pick}.
If you pick a red ball first, then the probability of picking a blue ball second is 3/4,
because there are three blue balls and one red ball left. On the other hand, if you
don’t pick a red ball first (that is, if you pick a blue ball first), then the probability of
picking a blue ball second is 2/4, because there are two red balls and two blue balls
left. So the occurrence of A certainly affects the probability of B.

Another example might be something like: A = {it rains at 6:00} and B = {you
walk to the store at 6:00}. People are generally less likely to go for a walk when
it’s raining outside, so (at least for most people) the occurrence of A affects the
probability of B.
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Red Red

Blue Blue Blue

Figure 2.2: A box with two red balls and three blue balls.

The “And” rule for dependent events is:

• If events A and B are dependent, then the probability that they both occur
equals

P(A and B) = P(A) · P(B |A) (2.5)

where P(B |A) stands for the probability that B occurs, given that A occurs.
It is called a “conditional probability,” because we are assuming a given
condition, namely that A occurs. It is read as “the probability of B, given A.”

There is actually no need for the “dependent” qualifier in the first line of this rule,
as we’ll see in the second remark near the end of this section.

The logic behind Eq. (2.5) is the following. Consider N trials of a given process,
where N is very large. In the above setup with the balls in a box, a “trial” consists
of picking two balls in succession, without replacement. On average, the fraction
of the outcomes in which a red ball is drawn on the first pick is P(A) · N . Let’s
now consider only these outcomes and ignore the rest. Then a fraction P(B |A) of
these outcomes have a blue ball drawn second, by the definition of P(B |A). So
the number of outcomes where A and B both occur is P(B |A) · P(A) · N . And
since we performed N trials, the fraction of outcomes where A and B both occur is
P(A) · P(B |A), on average. This fraction is the probability that A and B both occur,
in agreement with the rule in Eq. (2.5).

The reasoning in the previous paragraph is equivalent to the mathematical iden-
tity,

nA and B

N
=

nA

N
· nA and B

nA
, (2.6)

where nA is the number of trials where A occurs, etc. By definition, the lefthand
side of this equation equals P(A and B), the first term on the righthand side equals
P(A), and the second term on the righthand side equals P(B |A). So Eq. (2.6) is
equivalent to the relation,

P(A and B) = P(A) · P(B |A), (2.7)

which is Eq. (2.5). In terms of the Venn-diagram type of picture in Fig. 2.3, Eq. (2.6)
is the statement that the darkly shaded area (which represents P(A and B)) equals
the area of the A region (which represents P(A)) multiplied by the fraction of the
A region that is taken up by the darkly shaded region. This fraction is P(B |A), by
definition.
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A
B

A and B

Figure 2.3: Venn diagram for probabilities of dependent events.

As in Fig. 2.1, we’re assuming in Fig. 2.3 that different points within the over-
all boundary represent different outcomes, and that they’re all equally likely. This
means that the area of a region gives the probability that an outcome located in
that region occurs (assuming that the area of the whole region is 1). We’re using
Fig. 2.3 for its qualitative features only, so we’re drawing the various regions as
general blobs, as opposed to the specific rectangles in Fig. 2.1, which we used for a
quantitative calculation.

Because the “A and B” region in Fig. 2.3 is the intersection of the A and B
regions, and because the intersection of two sets is usually denoted by A ∩ B, you
will often see the P(A and B) probability written as P(A ∩ B). That is,

P(A ∩ B) ≡ P(A and B). (2.8)

But we’ll stick with the P(A and B) notation in this book.
There is nothing special about the order of A and B in Eq. (2.5). We could just

as well interchange the letters and write P(B and A) = P(B) ·P(A|B). However, we
know that P(B and A) = P(A and B), because it doesn’t matter which event you say
first when you say that two events both occur. So we can also write P(A and B) =
P(B) ·P(A|B). Combining this with Eq. (2.5), we see that we can write P(A and B)
in two different ways:

P(A and B) = P(A) · P(B |A)
= P(B) · P(A|B). (2.9)

The fact that P(A and B) can be written in these two ways will be critical when we
discuss Bayes’ theorem in Section 2.5.

Example (Balls in a box): Let’s apply Eq. (2.5) to the setup with the balls in the box
in Fig. 2.2 above. Let A = {choosing a red ball on the first pick} and B = {choosing a
blue ball on the second pick, without replacement after the first pick}. For shorthand,
we’ll denote these events by Red1 and Blue2, where the subscript refers to the first
or second pick. We noted above that P(Blue2 |Red1) = 3/4. And we also know that
P(Red1) is simply 2/5, because there are initially two red balls and three blue balls.
So Eq. (2.5) gives the probability of picking a red ball first and a blue ball second
(without replacement after the first pick) as

P(Red1 and Blue2) = P(Red1) · P(Blue2 |Red1) =
2
5
· 3

4
=

3
10
. (2.10)
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We can verify that this is correct by listing out all of the possible pairs of balls that can
be picked. If we label the balls as 1, 2, 3, 4, 5, and if we let 1, 2 be the red balls, and
3, 4, 5 be the blue balls, then the possible outcomes are shown in Table 2.1. The first
number stands for the first ball picked, and the second number stands for the second
ball picked.

Red first Blue first

Red second
— 2 1 3 1 4 1 5 1
1 2 — 3 2 4 2 5 2

Blue second
1 3 2 3 — 4 3 5 3
1 4 2 4 3 4 — 5 4
1 5 2 5 3 5 4 5 —

Table 2.1: Ways to pick two balls from the box in Fig. 2.2, without replacement.

The “—” entries stand for the outcomes that aren’t allowed; we can’t pick two of the
same ball, because we’re not replacing the ball after the first pick. The dividing lines
are drawn for clarity. The internal vertical line separates the outcomes where a red
or blue ball is drawn on the first pick, and the internal horizontal line separates the
outcomes where a red or blue ball is drawn on the second pick. The six pairs in the
lower left corner are the outcomes where a red ball (numbered 1 and 2) is drawn first
and a blue ball (numbered 3, 4, and 5) is drawn second. Since there are 20 possible
outcomes in all, the desired probability is 6/20 = 3/10, in agreement with Eq. (2.10).
Table 2.1 also gives a verification of the P(Red1) and P(Blue2 |Red1) probabilities we
wrote down in Eq. (2.10). P(Red1) equals 2/5 because eight of the 20 entries are to
the left of the vertical line. And P(Blue2 |Red1) equals 3/4 because six of these eight
entries are below the horizontal line.
The task of Problem 2.4 is to verify that the second expression in Eq. (2.9) also gives
the correct result for P(Red1 and Blue2) in this setup.

We can think about the rule in Eq. (2.5) in terms of a picture analogous to
Fig. 2.1. If we consider the above example with the red and blue balls, then the
first thing we need to do is recast Table 2.1 in a form where equal areas yield equal
probabilities. If we get rid of the “—” entries in Table 2.1, then all entries have
equal probabilities, and we end up with Table 2.2.

1 2 2 1 3 1 4 1 5 1
1 3 2 3 3 2 4 2 5 2
1 4 2 4 3 4 4 3 5 3
1 5 2 5 3 5 4 5 5 4

Table 2.2: Rewriting Table 2.1.

In the spirit of Fig. 2.1, this table becomes the square shown in Fig. 2.4. The
upper left region corresponds to red balls on both picks. The lower left region
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corresponds to a red ball and then a blue ball. The upper right region corresponds to
a blue ball and then a red ball. And the lower right region corresponds to blue balls
on both picks. This figure makes it clear why we formed the product (2/5) · (3/4)
in Eq. (2.10). The 2/5 gives the fraction of the outcomes that lie to the left of the
vertical line (these are the ones that have a red ball first), and the 3/4 gives the
fraction of these outcomes that lie below the horizontal line (these are the ones that
have a blue ball second). The product of these fractions gives the overall fraction
(namely 3/10) of the outcomes that lie in the lower left region.

R1 and R2

R1 and B2

B1 and R2

B1 and B2

B1R1

B2

R2

R2

B2

40% of the width

25% of 
the height 50% of 

the height

Figure 2.4: Pictorial representation of Table 2.2.

The main difference between Fig. 2.4 and Fig. 2.1 is that the one horizontal
line in Fig. 2.1 is now two different horizontal lines in Fig. 2.4. The heights of the
horizontal lines in Fig. 2.4 depend on which vertical strip we’re dealing with. This
is the visual manifestation of the fact that the red/blue probabilities on the second
pick depend on what happens on the first pick.

Remarks:

1. The method of explicitly counting the possible outcomes in Table 2.1 shows that you
don’t have to use the rule in Eq. (2.5), or similarly the rule in Eq. (2.2), to calculate
probabilities. You can often instead just count up the various outcomes and solve the
problem from scratch. However, the rules in Eqs. (2.2) and (2.5) allow you to take
a shortcut that avoids listing out all the outcomes, which might be rather difficult if
you’re dealing with large numbers.

2. The rule in Eq. (2.2) for independent events is a special case of the rule in Eq. (2.5)
for dependent events. This is true because if A and B are independent, then P(B |A) is
simply equal to P(B), because the probability of B occurring is just P(B), independent
of whether or not A occurs. Eq. (2.5) then reduces to Eq. (2.2) when P(B |A) = P(B).
Therefore, there was technically no need to introduce Eq. (2.2) first. We could have
started with Eq. (2.5), which covers all possible scenarios, and then showed that it
reduces to Eq. (2.2) when the events are independent. But pedagogically, it is often
better to start with a special case and then work up to the more general case.

3. In the above “balls in a box” example, we encountered the conditional probabil-
ity P(Blue2 |Red1). We can also talk about the “reversed” conditional probability,
P(Red1 |Blue2). However, since the second pick happens after the first pick, you
might wonder how much sense it makes to talk about the probability of the Red1
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event, given the Blue2 event. Does the second pick somehow influence the first pick,
even though the second pick hasn’t happened yet? When you make the first pick, are
you being affected by a mysterious influence that travels backward in time?

No, and no. When we talk about P(Red1 |Blue2), or about any other conditional
probability in the example, everything we might want to know can be read off from
Table 2.1. Once the table has been created, we can forget about the temporal or-
der of the events. By looking at the Blue2 pairs (below the horizontal line), we see
that P(Red1 |Blue2) = 6/12 = 1/2. This should be contrasted with P(Red1 |Red2),
which is obtained by looking at the Red2 pairs (above the horizontal line); we find
that P(Red1 |Red2) = 2/8 = 1/4. Therefore, the probability that your first pick is red
does depend on whether your second pick is blue or red. But this doesn’t mean that
there is a backward influence in time. All it says is that if you perform a large number
of trials of the given process (drawing two balls, without replacement), and if you look
at all of the cases where your second pick is blue (or conversely, red), then you will
find that your first pick is red in 1/2 (or conversely, 1/4) of these cases, on average. In
short, the second pick has no causal influence on the first pick, but the after-the-fact
knowledge of the second pick affects the probability of what the first pick was.

4. A trivial yet extreme example of dependent events is the two events: A, and “not A.”
The occurrence of A highly affects the probability of “not A” occurring. If A occurs,
then “not A” occurs with probability zero. And if A doesn’t occur, then “not A” occurs
with probability 1. ♣

In the second remark above, we noted that if A and B are independent (that is,
if the occurrence of one doesn’t affect the probability that the other occurs), then
P(B |A) = P(B). Similarly, we also have P(A|B) = P(A). Let’s prove that one of
these relations implies the other. Assume that P(B |A) = P(B). Then if we equate
the two righthand sides of Eq. (2.9) and use P(B |A) = P(B) to replace P(B |A) with
P(B), we obtain

P(A) · P(B |A) = P(B) · P(A|B)
=⇒ P(A) · P(B) = P(B) · P(A|B)

=⇒ P(A) = P(A|B). (2.11)

So P(B |A) = P(B) implies P(A|B) = P(A), as desired. In other words, if B is
independent of A, then A is also independent of B. We can therefore talk about
two events being independent, without worrying about the direction of the indepen-
dence. The condition for independence is therefore either of the relations,

P(B |A) = P(B) or P(A|B) = P(A) (independence) (2.12)

Alternatively, the condition for independence may be expressed by Eq. (2.2),

P(A and B) = P(A) · P(B) (independence) (2.13)

because this equation implies (by comparing it with Eq. (2.5), which is valid in any
case) that P(B |A) = P(B).
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2.2.2 OR: The “union” probability, P(A or B)
Let A and B be two events. For example, let A = {rolling a 2 on a die} and B =
{rolling a 5 on the same die}. Or we might have A = {rolling an even number
(that is, 2, 4, or 6) on a die} and B = {rolling a multiple of 3 (that is, 3 or 6) on
the same die}. A third example is A = {rolling a 1 on one die} and B = {rolling
a 6 on another die}. What is the probability that either A or B (or both) occurs?
In answering this question, we must consider two cases: (1) A and B are exclusive
events, or (2) A and B are nonexclusive events. Let’s look at each of these in turn.

Exclusive events

Two events are said to be exclusive if one precludes the other. That is, they can’t both
happen. An example is rolling one die, with A = {rolling a 2 on the die} and B =
{rolling a 5 on the same die}. These events are exclusive because it is impossible
for one number to be both a 2 and a 5. (The events in the second and third scenarios
mentioned above are not exclusive; we’ll talk about this below.) Another example
is picking one card from a deck, with A = {the card is a diamond} and B = {the
card is a heart}. These events are exclusive because it is impossible for one card to
be both a diamond and a heart.

The “Or” rule for exclusive events is:

• If events A and B are exclusive, then the probability that either of them occurs
equals the sum of their individual probabilities:

P(A or B) = P(A) + P(B) (2.14)

The logic behind this rule boils down to Fig. 2.5. The key feature of this figure
is that there is no overlap between the two regions, because we are assuming that A
and B are exclusive. If there were a region that was contained in both A and B, then
the outcomes in that region would be ones for which A and B both occur, which
would violate the assumption that A and B are exclusive. The rule in Eq. (2.14) is
simply the statement that the area of the union (hence the word “union” in the title
of this section) of regions A and B equals the sum of their areas. There is nothing
fancy going on here. This statement is no deeper than the statement that if you have
two separate bowls, the total number of apples in the two bowls equals the number
of apples in one bowl plus the number of apples in the other bowl.

We can quickly apply this rule to the two examples mentioned above. In the
example with the die, the probability of rolling a 2 or a 5 on one die is

P(2 or 5) = P(2) + P(5) =
1
6
+

1
6
=

1
3
. (2.15)

This makes sense, because two of the six numbers on a die are the 2 and the 5. In
the card example, the probability of a card being either a diamond or a heart is

P(diamond or heart) = P(diamond) + P(heart) =
1
4
+

1
4
=

1
2
. (2.16)



2.2. The rules of probability 69

A

B

Figure 2.5: Venn diagram for the probabilities of exclusive events.

This makes sense, because half of the 52 cards in a deck are diamonds or hearts.
A special case of Eq. (2.14) is the “Not” rule, which follows from letting B =

“not A.”

P(A or (not A)) = P(A) + P(not A)
=⇒ 1 = P(A) + P(not A)

=⇒ P(not A) = 1 − P(A). (2.17)

The first equality here follows from Eq. (2.14), because A and “not A” are certainly
exclusive events; you can’t both have something and not have it. To obtain the
second line in Eq. (2.17), we have used P(A or (not A)) = 1, which holds because
every possible outcome belongs to either A or “not A.”

Nonexclusive events

Two events are said to be nonexclusive if it is possible for both to happen. An
example is rolling one die, with A = {rolling an even number (that is, 2, 4, or 6)}
and B = {rolling a multiple of 3 (that is, 3 or 6) on the same die}. If you roll a 6,
then A and B both occur. Another example is picking one card from a deck, with
A = {the card is a king} and B = {the card is a heart}. If you pick the king of hearts,
then A and B both occur.

The “Or” rule for nonexclusive events is:

• If events A and B are nonexclusive, then the probability that either (or both)
of them occurs equals

P(A or B) = P(A) + P(B) − P(A and B) (2.18)

The “or” here is the so-called “inclusive or,” in the sense that we say “A or B occurs”
if either or both of the events occur. As with the “dependent” qualifier in the “And”
rule in Eq. (2.5), there is actually no need for the “nonexclusive” qualifier in the
“Or” rule here, as we’ll see in the third remark below.

The logic behind Eq. (2.18) boils down to Fig. 2.6. The rule in Eq. (2.18) is the
statement that the area of the union of regions A and B equals the sum of their areas
minus the area of the overlap. This subtraction is necessary so that we don’t double
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count the region that belongs to both A and B. This region isn’t “doubly good”
just because it belongs to both A and B. As far as the “A or B” condition goes, the
overlap region is just the same as any other part of the union of A and B.

A
B

A and B

Figure 2.6: Venn diagram for the probabilities of nonexclusive events.

In terms of a physical example, the rule in Eq. (2.18) is equivalent to the state-
ment that if you have two bird cages that have a region of overlap, then the total
number of birds in the cages equals the number of birds in one cage, plus the num-
ber in the other cage, minus the number in the overlap region. In the situation shown
in Fig. 2.7, we have 7 + 5 − 2 = 10 birds (which oddly all happen to be flying at the
given moment).

Figure 2.7: Birds in overlapping cages.

Things get more complicated if you have three or more events and you want to
calculate probabilities like P(A or B or C). But in the end, the main task is to keep
track of the overlaps of the various regions; see Problem 2.2.

Because the “A or B” region in Fig. 2.6 is the union of the A and B regions, and
because the union of two sets is usually denoted by A ∪ B, you will often see the
P(A or B) probability written as P(A ∪ B). That is,

P(A ∪ B) ≡ P(A or B). (2.19)

But we’ll stick with the P(A or B) notation in this book.
We can quickly apply Eq. (2.18) to the two examples mentioned above. In the

example with the die, the only way to roll an even number and a multiple of 3 on a
single die is to roll a 6, which happens with probability 1/6. So Eq. (2.18) gives the
probability of rolling an even number or a multiple of 3 as

P(even or mult of 3) = P(even) + P(mult of 3) − P(even and mult of 3)

=
1
2
+

1
3
− 1

6
=

4
6
=

2
3
. (2.20)
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This makes sense, because four of the six numbers on a die are even numbers or
multiples of 3, namely 2, 3, 4, and 6. (Remember that whenever we use “or,” it
means the “inclusive or.”) We subtracted off the 1/6 in Eq. (2.20) so that we didn’t
double count the roll of a 6.

In the card example, the only way to pick a king and a heart with a single card
is to pick the king of hearts, which happens with probability 1/52. So Eq. (2.18)
gives the probability that a card is a king or a heart as

P(king or heart) = P(king) + P(heart) − P(king and heart)

=
1
13
+

1
4
− 1

52
=

16
52
=

4
13
. (2.21)

This makes sense, because 16 of the 52 cards in a deck are kings or hearts, namely
the 13 hearts, plus the kings of diamonds, spades, and clubs; we already counted the
king of hearts. As in the previous example with the die, we subtracted off the 1/52
here so that we didn’t double count the king of hearts.

Remarks:

1. If you want, you can think of the area of the union of A and B in Fig. 2.6 as the area of
only A, plus the area of only B, plus the area of “A and B.” (Equivalently, the number
of birds in the cages in Fig. 2.7 is 5 + 3 + 2 = 10.) This is easily visualizable, because
these three areas are the ones you see in the figure. However, the probabilities of only
A and of only B are often a pain to deal with, so it’s generally easier to think of the
area of the union of A and B as the area of A, plus the area of B, minus the area of the
overlap. This way of thinking corresponds to Eq. (2.18).

2. As we mentioned in the first remark on page 66, you don’t have to use the above
rules of probability to calculate things. You can often instead just count up the various
outcomes and solve the problem from scratch. In many cases you’re doing basically
the same thing with the two methods, as we saw in the above examples with the die
and the cards.

3. As with Eqs. (2.2) and (2.5), the rule in Eq. (2.14) for exclusive events is a special
case of the rule in Eq. (2.18) for nonexclusive events. This is true because if A and
B are exclusive, then P(A and B) = 0, by definition. Eq. (2.18) then reduces to
Eq. (2.14) when P(A and B) = 0. Likewise, Fig. 2.5 is a special case of Fig. 2.6 when
the regions have zero overlap. There was therefore technically no need to introduce
Eq. (2.14) first. We could have started with Eq. (2.18), which covers all possible
scenarios, and then showed that it reduces to Eq. (2.14) when the events are exclusive.
But as in Section 2.2.1, it is often better to start with a special case and then work up
to the more general case. ♣

2.2.3 (In)dependence and (non)exclusiveness
Two events are either independent or dependent, and they are also either exclusive
or nonexclusive. There are therefore 2 · 2 = 4 combinations of these characteris-
tics. Let’s see which combinations are possible. You’ll need to read this section
very slowly if you want to keep everything straight. This discussion is given for
curiosity’s sake only, in case you were wondering how the dependent/independent
characteristic relates to the exclusive/nonexclusive characteristic. There is no need
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to memorize the results below. Instead, you should think about each situation indi-
vidually and determine its properties from scratch.

• Exclusive and Independent: This combination isn’t possible. If two events
are independent, then their probabilities are independent of each other, which
means that there is a nonzero probability (namely, the product of the individ-
ual probabilities) that both events happens. Therefore, they cannot be exclu-
sive.

Said in another way, if two events A and B are exclusive, then the probability
of B given A is zero. But if they are also independent, then the probability
of B is independent of what happens with A. So the probability of B must be
zero, period. Such a B is a very uninteresting event, because it never happens.

• Exclusive and Dependent: This combination is possible. An example con-
sists of the events

A = {rolling a 2 on a die},
B = {rolling a 5 on the same die}. (2.22)

Another example consists of A as one event and B = {not A} as the other.
In both of these examples the events are exclusive, because they can’t both
happen. Furthermore, the occurrence of one event certainly affects the proba-
bility of the other occurring, in that the probability P(B |A) takes the extreme
value of zero, due to the exclusive nature of the events. The events are there-
fore quite dependent (in a negative sort of way). In short, if two events are
exclusive, then they are necessarily also dependent.

• Nonexclusive and Independent: This combination is possible. An example
consists of the events

A = {rolling a 2 on a die},
B = {rolling a 5 on another die}. (2.23)

Another example consists of the events A = {getting a Heads on a coin flip}
and B = {getting a Heads on another coin flip}. In both of these examples the
events are clearly independent, because they involve different dice or coins.
And the events can both happen (a fact that is guaranteed by their indepen-
dence, as mentioned in the “Exclusive and Independent” case above), so they
are nonexclusive. In short, if two events are independent, then they are neces-
sarily also nonexclusive. This statement is the logical “contrapositive” of the
corresponding statement in the “Exclusive and Dependent” case above.

• Nonexclusive and Dependent: This combination is possible. An example
consists of the events

A = {rolling a 2 on a die},
B = {rolling an even number on the same die}. (2.24)
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Another example consists of picking balls without replacement from a box
with two red balls and three blue balls, with the events being A = {picking a
red ball on the first pick} and B = {picking a blue ball on the second pick}.
In both of these examples the events are dependent, because the occurrence
of A affects the probability of B. (In the die example, P(B |A) takes on the
extreme value of 1, which isn’t equal to P(B) = 1/2. Also, P(A|B) = 1/3,
which isn’t equal to P(A) = 1/6. Likewise for the box example.) And the
events can both happen, so they are nonexclusive.

To sum up, we see that all exclusive events must be dependent, but nonexclusive
events can be either independent or dependent. Similarly, all independent events
must be nonexclusive, but dependent events can be either exclusive or nonexclusive.
These facts are summarized in Table 2.3, which indicates which combinations are
possible.

Independent Dependent

Exclusive

Nonexclusive

YES

YESYES

NO

Table 2.3: Relations between (in)dependence and (non)exclusiveness.

2.2.4 Conditional probability
In Eq. (2.5) we introduced the concept of conditional probability, with P(B |A) de-
noting the probability that B occurs, given that A occurs. In this section we’ll talk
more about conditional probabilities. In particular, we’ll show that two probabilities
that you might naively think are equal are in fact not equal. Consider the following
example.

Fig. 2.8 gives a pictorial representation of the probability that a random person’s
height is greater than 6′3′′ (6 feet, 3 inches) or less than 6′3′′, along with the prob-
ability that a random person’s last name begins with Z or not Z. We haven’t tried
to mimic the exact numbers, but we have indicated that the vast majority of people
are under 6′3′′ (this case takes up most of the vertical span of the square), and also
that the vast majority of people have a last name that doesn’t begin with Z (this case
takes up most of the horizontal span of the square). We’ll assume that the proba-
bilities involving heights and last-name letters are independent. This independence
manifests itself in the fact that the horizontal and vertical dividers of the square are
straight lines (as opposed to, for example, the shifted lines in Fig. 2.4). This inde-
pendence makes things a little easier to visualize, but it isn’t critical in the following
discussion.
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under 6’3’’

over 6’3’’

not Z Z

a b

cd

Figure 2.8: Probability square for independent events (height, and first letter of last name).

Let’s now look at some conditional probabilities. Let the areas of the four rect-
angles in Fig. 2.8 be a,b,c,d, as indicated. The area of a region represents the
probability that a given person is in that region. Let Z stand for “having a last name
that begins with Z,” and let U stand for “being under 6′3′′ in height.”

Consider the conditional probabilities P(Z|U) and P(U|Z). P(Z|U) deals with
the subset of cases where we know that U occurs. These cases are associated with
the area below the horizontal dividing line in the figure. So P(Z|U) equals the
fraction of the area below the horizontal line (which is a+ b) that is also to the right
of the vertical line (which is b). This fraction b/(b + a) is very small.

In contrast, P(U|Z) deals with the subset of cases where we know that Z occurs.
These cases are associated with the area to the right of the vertical dividing line in
the figure. So P(U|Z) equals the fraction of the area to the right of the vertical line
(which is b + c) that is also below the horizontal line (which is b). This fraction
b/(b + c) is very close to 1. To sum up, we have

P(Z|U) =
b

b + a
≈ 0,

P(U|Z) =
b

b + c
≈ 1. (2.25)

We see that P(Z|U) is not equal to P(U|Z). If we were dealing with a situation
where a = c, then these conditional probabilities would be equal. But that is an
exception. In general, the two probabilities are not equal.

If you’re too hasty in your thinking, you might say something like, “Since U
and Z are independent, one doesn’t affect the other, so the conditional probabili-
ties should be the same.” This conclusion is incorrect. The correct statement is,
“Since U and Z are independent, one doesn’t affect the other, so the conditional
probabilities are equal to the corresponding unconditional probabilities.” That is,
P(Z|U) = P(Z) and P(U|Z) = P(U). But P(Z) and P(U) are vastly different, with
the former being approximately zero, and the latter being approximately 1.

In order to make it obvious that the two conditional probabilities P(A|B) and
P(B |A) aren’t equal in general, we picked an example where the various probabil-
ities were all either close to zero or close to 1. We did this solely for pedagogical
purposes; the non-equality of the conditional probabilities holds in general (except
in the a = c case). Another extreme example that makes it clear that the two con-
ditional probabilities are different is: The probability that a living thing is human,
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given that it has a brain, is very small; but the probability that a living thing has a
brain, given that it is human, is 1.

The takeaway lesson here is that when thinking about the conditional probability
P(A|B), the order of A and B is critical. Great confusion can arise if one forgets this
fact. The classic example of this confusion is the “Prosecutor’s fallacy,” discussed
below in Section 2.4.3. That example should convince you that a lack of basic
knowledge of probability can have significant and possibly tragic consequences in
real life.

2.3 Examples
Let’s now do some examples. Introductory probability problems generally fall into
a few main categories, so we’ve divided the examples into the various subsections
below. There is no better way to learn how to solve probability problems (or any
kind of problem, for that matter) than to just sit down and do a bunch of them, so
we’ve presented quite a few.

If the statement of a given problem lists out the specific probabilities of the
possible outcomes, then the rules in Section 2.2 are often called for. However, in
many problems you encounter, you’ll be calculating probabilities from scratch (by
counting things), so the rules in Section 2.2 generally don’t come into play. You
simply have to do lots of counting. This will become clear in the examples below.
For all of these, be sure to try the problem for a few minutes on your own before
looking at the solution.

In virtually all of these examples, we’ll be dealing with situations in which the
various possible outcomes are equally likely. For example, we’ll be tossing coins,
picking cards, forming committees, forming permutations, etc. We will therefore
be making copious use of Eq. (2.1),

p =
number of desired outcomes

total number of possible outcomes
(for equally likely outcomes) (2.26)

We won’t, however, bother to specifically state each time that the different outcomes
are all equally likely. Just remember that they are, and that this fact is necessary for
Eq. (2.1) to be valid.

Before getting into the examples, let’s start off with a problem-solving strategy
that comes in very handy in certain situations.

2.3.1 The art of “not”
There are many setups in which the easiest way to calculate the probability of a
given event A is not to calculate it directly, but rather to calculate the probability of
“not A” and then subtract the result from 1. This yields P(A) because we know from
Eq. (2.17) that P(A) = 1 − P(not A). The event “not A” is called the complement
of the event A.

The most common situation of this type involves a question along the lines of,
“What is the probability of obtaining at least one of such-and-such?” The “at least”
part appears to make things difficult, because it could mean one, or two, or three, etc.
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It would be at best rather messy, and at worst completely intractable, to calculate
the individual probabilities of all the different numbers and then add them up to
obtain the answer. The “at least one” question is very different from the “exactly
one” question.

The key point that simplifies things is that the only way to not get at least one
of something is to get exactly zero of it. This means that we can just calculate the
probability of getting zero, and then subtract the result from 1. We therefore need to
calculate only one probability, instead of a potentially large number of probabilities.

Example (At least one 6): Three dice are rolled. What is the probability of obtaining
at least one 6?

Solution: We’ll find the probability of obtaining zero 6’s and then subtract the result
from 1. In order to obtain zero 6’s, we must obtain something other than a 6 on the
first die (which happens with 5/6 probability), and likewise on the second die (5/6
probability again), and likewise on the third die (5/6 probability again). These are
independent events, so the probability of obtaining zero 6’s equals (5/6)3 = 125/216.
The probability of obtaining at least one 6 is therefore 1 − (5/6)3 = 91/216, which is
about 42%.
If you want to solve this problem the long way, you can add up the probabilities of
obtaining exactly one, two, or three 6’s. This is the task of Problem 2.11.

Remark: Beware of the following incorrect reasoning for this problem: There is
a 1/6 chance of obtaining a 6 on each of the three rolls. The total probability of
obtaining at least one 6 therefore seems like it should be 3 · (1/6) = 1/2. This is
incorrect because we’re trying to find the probability of “a 6 on the first roll” or “a 6
on the second roll” or “a 6 on the third roll.” (This “or” combination is equivalent to
obtaining at least one 6. Remember that when we write “or,” we mean the “inclusive
or.”) But from Eq. (2.14) (or its simple extension to three events) it is appropriate to
add up the individual probabilities only if the events are exclusive. For nonexclusive
events, we must subtract off the “overlap” probabilities, as we did in Eq. (2.18); see
Problem 2.2(d) for the case of three events. The above three events (rolling 6’s) are
clearly nonexclusive, because it is possible to obtain a 6 on, say, both the first roll and
the second roll. We have therefore double (or triple) counted many of the outcomes,
and this is why the incorrect answer of 1/2 is larger than the correct answer of 91/216.
The task of Problem 2.12 is to solve this problem by using the result in Problem 2.2(d)
to keep track of all the double (and triple) counting.
Another way of seeing why the “3 · (1/6) = 1/2” reasoning can’t be correct is that it
would imply that if we had, say, 12 dice, then the probability of obtaining at least one
6 would be 12 · (1/6) = 2. But probabilities larger than 1 are nonsensical. ♣

2.3.2 Picking seats
Situations often come up where we need to assign various things to various spots.
We’ll generally talk about assigning people to seats. There are two common ways to
solve problems of this sort: (1) You can count up the number of desired outcomes,



2.3. Examples 77

along with the total number of outcomes, and then take their ratio via Eq. (2.1),
or (2) you can imagine assigning the seats one at a time, finding the probability of
success at each stage, and using the rules in Section 2.2, or their extensions to more
than two events. It’s personal preference which method you use. But it never hurts
to solve a problem both ways, of course, because that allows you to double check
your answer.

Example 1 (Middle in the middle): Three chairs are arranged in a line, and three
people randomly take seats. What is the probability that the person with the middle
height ends up in the middle seat?

First solution: Let the people be labeled from tallest to shortest as 1, 2, and 3. Then
the 3! = 6 possible orderings are

1 2 3 1 3 2 2 1 3 2 3 1 3 1 2 3 2 1 (2.27)

We see that two of these (1 2 3 and 3 2 1) have the middle-height person in the middle
seat. So the probability is 2/6 = 1/3.

Second solution: Imagine assigning the people randomly to the seats, and let’s
assign the middle-height person first, which we are free to do. There is a 1/3 chance
that this person ends up in the middle seat (or any other seat, for that matter). So 1/3
is the desired answer. Nothing fancy going on here.

Third solution: If you want to assign the tallest person first, then there is a 1/3 chance
that she ends up in the middle seat, in which case there is zero chance that the middle-
height person ends up there. There is a 2/3 chance that the tallest person doesn’t end
up in the middle seat, in which case there is a 1/2 chance that the middle-height person
ends up there (because there are two seats remaining, and one yields success). So the
total probability that the middle-height person ends up in the middle seat is

1
3
· 0 + 2

3
· 1

2
=

1
3
. (2.28)

Remark: The preceding equation technically comes from one application of Eq. (2.14)
and two applications of Eq. (2.5). If we let T stand for tallest and M stand for middle-
height, and if we use the notation Tmid to mean that the tallest person is in the middle
seat, etc., then we can write

P(Mmid) = P(Tmid and Mmid) + P(Tnot mid and Mmid)

= P(Tmid) · P(Mmid |Tmid) + P(Tnot mid) · P(Mmid |Tnot mid)

=
1
3
· 0 + 2

3
· 1

2
=

1
3
. (2.29)

Eq. (2.14) is relevant in the first line because the two events “Tmid and Mmid” and
“Tnot mid and Mmid” are exclusive events, since T can’t be both in the middle seat and
not in the middle seat.
However, when solving problems of this kind, although it is sometimes helpful to
explicitly write down the application of Eqs. (2.14) and (2.5) as we just did, this often
isn’t necessary. It is usually quicker to imagine a large number of trials and then
calculate the number of these trials that yield success. For example, if we do 600 trials
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of the present setup, then (1/3) · 600 = 200 of them (on average) have T in the middle
seat, in which case failure is guaranteed. Of the other (2/3) · 600 = 400 trials where T
isn’t in the middle seat, half of them (which is (1/2) ·400 = 200) have M in the middle
seat. So the desired probability is 200/600 = 1/3. In addition to being more intuitive,
this method is safer than just plugging things into formulas (although it’s really the
same reasoning in the end). ♣

Example 2 (Order of height in a line): Five chairs are arranged in a line, and five peo-
ple randomly take seats. What is the probability that they end up in order of decreasing
height, from left to right?

First solution: There are 5! = 120 possible arrangements of the five people in the
seats. But there is only one arrangement where they end up in order of decreasing
height. So the probability is 1/120.

Second solution: If we randomly assign the tallest person to a seat, there is a 1/5
chance that she ends up in the leftmost seat. Assuming that she ends up there, there is a
1/4 chance that the second tallest person ends up in the second leftmost seat (because
there are only four seats left). Likewise, the chances that the other people end up
where we want them are 1/3, then 1/2, and then 1/1. (If the first four people end up
in the desired seats, then the shortest person is guaranteed to end up in the rightmost
seat.) So the probability is 1/5 · 1/4 · 1/3 · 1/2 · 1/1 = 1/120.

The product of these five probabilities comes from the extension of Eq. (2.5) to five
events (see Problem 2.2(b) for the three-event case), which takes the form,

P(A and B and C and D and E) = P(A) · P(B |A) · P(C |A and B)

· P(D |A and B and C) (2.30)

· P(E |A and B and C and D).

We will use similar extensions repeatedly in the examples below.

Alternatively, instead of assigning people to seats, we can assign seats to people. That
is, we can assign the first seat to one of the five people, and then the second seat to
one of the remaining four people, and so on. Multiplying the probabilities of success
at each stage gives the same product as above, 1/5 · 1/4 · 1/3 · 1/2 · 1/1 = 1/120.

Example 3 (Order of height in a circle): Five chairs are arranged in a circle, and
five people randomly take seats. What is the probability that they end up in order
of decreasing height, going clockwise? The decreasing sequence of people can start
anywhere in the circle. That is, it doesn’t matter which seat has the tallest person.

First solution: As in the previous example, there are 5! = 120 possible arrangements
of the five people in the seats. But now there are five arrangements where they end up
in order of decreasing height. This is true because the tallest person can take five pos-
sible seats, and once her seat is picked, the positions of the other people are uniquely
determined if they are to end up in order of decreasing height. The probability is
therefore 5/120 = 1/24.
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Second solution: If we randomly assign the tallest person to a seat, it doesn’t matter
where she ends up, because all five seats in the circle are equivalent. But given that
she ends up in a certain seat, the second tallest person needs to end up in the seat next
to her in the clockwise direction. This happens with probability 1/4. Likewise, the
third tallest person has a 1/3 chance of ending up in the next seat in the clockwise
direction. And then 1/2 for the fourth tallest person, and 1/1 for the shortest person.
The probability is therefore 1/4 · 1/3 · 1/2 · 1/1 = 1/24.

If you want, you can preface this product with a “5/5” for the tallest person, because
there are five possible seats she can take (this is the denominator), and there are also
five successful seats she can take (this is the numerator) because it doesn’t matter
where she ends up.

Example 4 (Three girls and three boys): Six chairs are arranged in a line, and three
girls and three boys randomly pick seats. What is the probability that the three girls
end up in the three leftmost seats?

First solution: The total number of possible seat arrangements is 6! = 720. There are
3! = 6 different ways that the three girls can be arranged in the three leftmost seats,
and 3! = 6 different ways that the three boys can be arranged in the other three (the
rightmost) seats. So the total number of successful arrangements is 3! · 3! = 36. The
desired probability is therefore 3!3!/6! = 36/720 = 1/20.

Second solution: Let’s assume that the girls pick their seats first, one at a time. The
first girl has a 3/6 chance of picking one of the three leftmost seats. Then, given that
she is successful, the second girl has a 2/5 chance of success, because only two of
the remaining five seats are among the left three. And finally, given that she too is
successful, the third girl has a 1/4 chance of success, because only one of the remain-
ing four seats is among the left three. If all three girls are successful, then all three
boys are guaranteed to end up in the three rightmost seats. The desired probability is
therefore 3/6 · 2/5 · 1/4 = 1/20.

Third solution: The 3!3!/6! result in the first solution looks suspiciously like the
inverse of the binomial coefficient

(6
3

)
= 6!/3!3!. This suggests that there is another

way to solve the problem. And indeed, imagine randomly choosing three of the six
seats for the girls. There are

(6
3

)
ways to do this, all equally likely. Only one of

these is the successful choice of the three leftmost seats, so the desired probability is
1/

(6
3

)
= 3!3!/6! = 1/20.

2.3.3 Socks in a drawer

Picking colored socks from a drawer is a classic probabilistic setup. As usual, if
you want to deal with such setups by counting things, then subgroups and binomial
coefficients will come into play. If, however, you want to imagine picking the socks
in succession, then you’ll end up multiplying various probabilities and using the
rules in Section 2.2.



80 Chapter 2. Probability

Example 1 (Two blue and two red): A drawer contains two blue socks and two
red socks. If you randomly pick two socks, what is the probability that you obtain a
matching pair?

First solution: There are
(4
2

)
= 6 possible pairs you can pick. Of these, two are

matching pairs (one blue pair, one red pair). So the probability is 2/6 = 1/3. If you
want to list out all the pairs, they are (with 1 and 2 being the blue socks, and 3 and 4
being the red socks):

1, 2 1, 3 1, 4 2, 3 2, 4 3, 4 (2.31)

The pairs in bold are the matching pairs.

Second solution: After you pick the first sock, there is one sock of that color (what-
ever it may be) left in the drawer, and two of the other color. So of the three socks
left, one gives you a matching pair, and two don’t. The desired probability is therefore
1/3. See Problem 2.9 for a generalization of this example.

Example 2 (Four blue and two red): A drawer contains four blue socks and two red
socks, as shown in Fig. 2.9. If you randomly pick two socks, what is the probability
that you obtain a matching pair?

Red Red

Blue Blue Blue Blue

Figure 2.9: A box with four blue socks and two red socks.

First solution: There are
(6
2

)
= 15 possible pairs you can pick. Of these, there are(4

2

)
= 6 blue pairs and

(2
2

)
= 1 red pair. The desired probability is therefore(4

2

)
+

(2
2

)(6
2

) =
7
15
. (2.32)

Second solution: There is a 4/6 chance that the first sock you pick is blue. If this
happens, there is a 3/5 chance that the second sock you pick is also blue (because
there are three blue and two red socks left in the drawer). Similarly, there is a 2/6
chance that the first sock you pick is red. If this happens, there is a 1/5 chance that the
second sock you pick is also red (because there are one red and four blue socks left in
the drawer). The probability that the socks match is therefore

4
6
· 3

5
+

2
6
· 1

5
=

14
30
=

7
15
. (2.33)
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If you want to explicitly justify the sum on the lefthand side here, it comes from the
sum on the righthand side of the following relation (with B1 standing for a blue sock
on the first pick, etc.):

P(B1 and B2) + P(R1 and R2) = P(B1) ·P(B2 |B1) + P(R1) ·P(R2 |R1). (2.34)

However, equations like this can be a bit intimidating, so it’s often better to think
in terms of a large set of trials, as mentioned in the remark in the first example in
Section 2.3.2.

2.3.4 Coins and dice

There is never a shortage of probability examples involving dice rolls or coin flips.

Example 1 (One of each number): Six dice are rolled. What is the probability of
obtaining exactly one of each of the numbers 1 through 6?

First solution: The total number of possible (ordered) outcomes for what all six dice
show is 66, because there are six possibilities for each die. How many outcomes are
there that have each number appearing once? This is simply the question of how many
permutations there are of six numbers, because we need all six numbers to appear, but
it doesn’t matter in what order. There are 6! permutations, so the desired probability
is

6!
66 =

5
324
≈ 1.5%. (2.35)

Second solution: Let’s imagine rolling six dice in succession, with the goal of having
each number appear once. On the first roll, we get what we get, and there’s no way to
fail. So the probability of success on the first roll is 1. However, on the second roll,
we don’t want to get a repeat of the number that appeared on the first roll (whatever
that number happened to be). Since there are five “good” options left, the probability
of success on the second roll is 5/6. On the third roll, we don’t want to get a repeat
of either of the numbers that appeared on the first and second rolls, so the probability
of success on the third roll (given success on the first two rolls) is 4/6. Likewise, the
fourth roll has a 3/6 chance of success, the fifth has 2/6, and the sixth has 1/6. The
probability of complete success all the way through is therefore

1 · 5
6
· 4

6
· 3

6
· 2

6
· 1

6
=

5
324
, (2.36)

in agreement with the first solution. Note that if we write the initial 1 here as 6/6, then
this expression becomes 6!/66, which is the fraction that appears in Eq. (2.35).

Example 2 (Three pairs): Six dice are rolled. What is the probability of getting three
pairs, that is, three different numbers that each appear twice?
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Solution: We’ll count the total number of (ordered) ways to get three pairs, and then
we’ll divide that by the total number of possible (ordered) outcomes for the six rolls,
which is 66.
There are two steps in the counting. First, how many different ways can we pick the
three different numbers that show up? We need to pick three numbers from six, so the
number of ways is

(6
3

)
= 20.

Second, given the three numbers that show up, how many different (ordered) ways
can two of each appear on the dice? Let’s says the numbers are 1, 2, and 3. We
can imagine plopping two of each of these numbers down on six blank spots (which
represent the six dice) on a piece of paper. There are

(6
2

)
= 15 ways to pick where the

two 1’s go. And then there are
(4
2

)
= 6 ways to pick where the two 2’s go in the four

remaining spots. And then finally there is
(2
2

)
= 1 way to pick where the two 3’s go in

the two remaining spots.
The total number of ways to get three pairs is therefore

(6
3

)
·
(6
2

)
·
(4
2

)
·
(2
2

)
. So the

probability of getting three pairs is

p =

(6
3

)
·
(6
2

)
·
(4
2

)
·
(2
2

)
66 =

20 · 15 · 6 · 1
66 =

25
648
≈ 3.9%. (2.37)

If you try to solve this problem in a manner analogous to the second solution in the
previous example (that is, by multiplying probabilities for the successive rolls), then
things get a bit messy because there are many different scenarios that lead to three
pairs.

Example 3 (Five coin flips): A coin is flipped five times. Calculate the probabilities
of getting the various possible numbers of Heads (0 through 5).

Solution: We’ll count the number of (ordered) ways to get the different numbers of
Heads, and then we’ll divide that by the total number of possible (ordered) outcomes
for the five flips, which is 25.
There is only

(5
0

)
= 1 way to get zero Heads, namely TTTTT. There are

(5
1

)
= 5 ways

to get one Heads (such as HTTTT), because there are
(5
1

)
ways to choose the one coin

that shows Heads. There are
(5
2

)
= 10 ways to get two Heads, because there are

(5
2

)
ways to choose the two coins that show Heads. And so on. The various probabilities
are therefore

P(0) =

(5
0

)
25 , P(1) =

(5
1

)
25 , P(2) =

(5
2

)
25 ,

P(3) =

(5
3

)
25 , P(4) =

(5
4

)
25 , P(5) =

(5
5

)
25 . (2.38)

Plugging in the values of the binomial coefficients gives

P(0) =
1
32
, P(1) =

5
32
, P(2) =

10
32
,

P(3) =
10
32
, P(4) =

5
32
, P(5) =

1
32
. (2.39)

The sum of all these probabilities correctly equals 1. The physical reason for this is
that the number of Heads must be something, which means that the sum of all the
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probabilities must be 1. (This holds for any number of flips, of course, not just 5.)
The mathematical reason is that the sum of the binomial coefficients (the numerators
in the above fractions) equals 25 (which is the denominator). See Section 1.8.3 for the
explanation of this.

2.3.5 Cards
We already did a lot of card counting in Chapter 1 (particularly in Problem 1.10),
and some of those results will be applicable here. As we have mentioned a number
of times, exercises in probability are often just exercises in counting. There is ef-
fectively an endless number of probability questions we can ask about cards. In the
following examples, we will always assume a standard 52-card deck.

Example 1 (Royal flush from seven cards): A few variations of poker involve being
dealt seven cards (in one way or another) and forming the best five-card hand that can
be made from these seven cards. What is the probability of being able to form a Royal
flush in this setup? A Royal flush consists of 10, J, Q, K, A, all from the same suit.

Solution: The total number of possible seven-card hands is
(52

7

)
= 133,784,560. The

number of seven-card hands that contain a Royal flush is 4 ·
(47

2

)
= 4,324, because

there are four ways to choose the five Royal flush cards (the four suits), and then
(47

2

)
ways to choose the other two cards from the remaining 52 − 5 = 47 cards in the deck.
The probability is therefore

4 ·
(47

2

)(52
7

) =
4,324

133,784,560
≈ 0.0032%. (2.40)

This is larger than the result for five-card hands. In that case, only four of the
(52

5

)
=

2,598,960 hands are Royal flushes, so the probability is 4/2,598,960 ≈ 0.00015%,
which is about 20 times smaller than 0.0032%. As an exercise, you can show that the
ratio happens to be exactly 21.

Example 2 (Suit full house): In a five-card poker hand, what is the probability of
getting a “full house” of suits, that is, three cards of one suit and two of another? (This
isn’t an actual poker hand worth anything, but that won’t stop us from calculating the
probability!) How does your answer compare with the probability of getting an actual
full house, that is, three cards of one value and two of another? Feel free to use the
result from part (a) of Problem 1.10.

Solution: There are four ways to choose the suit that appears three times, and
(13

3

)
=

286 ways to choose the specific three cards from the 13 of this suit. And then there
are three ways to choose the suit that appears twice from the remaining three suits,
and

(13
2

)
= 78 ways to choose the specific two cards from the 13 of this suit. The total
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number of suit-full-house hands is therefore 4 ·
(13

3

)
· 3 ·

(13
2

)
= 267,696. Since there

is a total of
(52

5

)
possible hands, the desired probability is

4 ·
(13

3

)
· 3 ·

(13
2

)(52
5

) =
267,696

2,598,960
≈ 10.3%. (2.41)

From part (a) of Problem 1.10, the total number of actual full-house hands is 3,744,
which yields a probability of 3,744/2,598,960 ≈ 0.14%. It is therefore much more
likely (by a factor of about 70) to get a full house of suits than an actual full house of
values. (You can show that the exact ratio is 71.5.) This makes intuitive sense; there
are more values than suits (13 compared with four), so it is harder to have all five cards
involve only two values as opposed to only two suits.

Example 3 (Only two suits): In a five-card poker hand, what is the probability of
having all of the cards be members of at most two suits? (A single suit falls into this
category.) The suit full house in the previous example is a special case of “at most two
suits.” This problem is a little tricky, at least if you solve it a certain way; be careful
about double counting some of the hands!

First solution: If two suits appear, then there are
(4
2

)
= 6 ways to pick them. For a

given choice of two suits, there are
(26

5

)
ways to pick the five cards from the 2 ·13 = 26

cards of these two suits. It therefore seems like there should be
(4
2

)
·
(26

5

)
= 394,680

different hands that consist of cards from at most two suits.
However, this isn’t correct, because we double (or actually triple) counted the hands
that involve only one suit (the flushes). For example, if all five cards are hearts, then we
counted such a hand in the heart/diamond set of

(26
5

)
hands, and also in the heart/spade

set, and also in the heart/club set. We counted it three times when we should have
counted it only once. Since there are

(13
5

)
hands that are heart flushes, we have in-

cluded an extra 2 ·
(13

5

)
hands, so we need to subtract these from our total. Likewise

for the diamond, spade, and club flushes. The total number of hands that involve at
most two suits is therefore(

4
2

) (
26
5

)
− 4 · 2 ·

(
13
5

)
= 394,680 − 10,296 = 384,384. (2.42)

The desired probability is then(4
2

) (26
5

)
− 8 ·

(13
5

)(52
5

) =
384,384

2,598,960
≈ 14.8%. (2.43)

This is larger than the result in Eq. (2.41), as it should be, because suit full houses are
a subset of the hands that involve at most two suits.

Second solution: There are three general ways that we can have at most two suits:
(1) all five cards can be of the same suit (a flush), (2) four cards can be of one suit, and
one card of another, or (3) three cards can be of one suit, and two cards of another; this
is the suit full house from the previous example. We will denote these types of hands
by (5,0), (4,1), and (3,2), respectively. How many hands of each type are there?
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There are 4 ·
(13

5

)
= 5,148 hands of the (5,0) type, because there are

(13
5

)
ways to pick

five cards from the 13 cards of a given suit, and there are four suits. From the previous
example, there are 4 ·

(13
3

)
· 3 ·

(13
2

)
= 267,696 hands of the (3,2) type. To figure out

the number of hands of the (4,1) type, we can use exactly the same kind of reasoning
as in the previous example. This gives 4 ·

(13
4

)
· 3 ·

(13
1

)
= 111,540 hands. Adding up

these three results gives the total number of “at most two suits” hands as

4·
(
13
5

)
+ 4·

(
13
4

)
·3·

(
13
1

)
+ 4·

(
13
3

)
·3·

(
13
2

)
= 5,148 + 111,540 + 267,696

= 384,384, (2.44)

in agreement with the first solution. (The repetition of the “384” here is due in part to
the factors of 13 and 11 in all of the terms in the first line of Eq. (2.44). These numbers
are factors of 1001.) The hands of the (3,2) type account for about 2/3 of the total,
consistent with the fact that the 10.3% result in Eq. (2.41) is about 2/3 of the 14.8%
result in Eq. (2.43).

2.4 Four classic problems

Let’s now look at four classic probability problems. No book on probability would
be complete without a discussion of the “Birthday Problem” and the “Game-Shown
Problem.” Additionally, the “Prosecutor’s Fallacy” and the “Boy/Girl Problem” are
two other classics that are instructive to study in detail. All four of these problems
have answers that might seem counterintuitive at first, but they eventually make
sense if you think about them long enough!

After reading the statement of each problem, be sure to try solving it on your
own before looking at the solution. If you can’t solve it on your first try, set it aside
and come back to it later. There’s no hurry; the problem will still be there. There
are only so many classic problems like these, so don’t waste them. If you look at
a solution too soon, the opportunity to solve it is gone, and it’s never coming back.
If you do eventually need to look at the solution, cover it up with a piece of paper
and read one line at a time, to get a hint. That way, you can still (mostly) solve it on
your own.

2.4.1 The Birthday Problem

We’ll present the Birthday Problem first. Aside from being a very interesting prob-
lem, its unexpected result allows you to take advantage of unsuspecting people and
win money on bets at parties (as long as they’re large enough parties, as we’ll see!).

Problem: How many people need to be in a room in order for there to be a greater
than 1/2 probability that at least two of them have the same birthday? By “same
birthday” we mean the same day of the year; the year may differ. Ignore leap years.
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(At this point, as with all of the problems in this section, don’t read any further until
you’ve either solved the problem or thought hard about it for a long time.)

Solution: If there was ever a problem that called for the “art of not” strategy in
Section 2.3.1, this is it. There are many different ways for there to be at least
one common birthday (one pair, two pairs, one triple, etc.), and it is completely
intractable to add up all of these individual probabilities. It is much easier (and even
with the italics, this is a vast understatement) to calculate the probability that there
isn’t a common birthday, and then subtract this from 1 to obtain the probability that
there is at least one common birthday.

The calculation of the probability that there isn’t a common birthday proceeds
as follows. Let there be n people in the room. We can imagine taking them one at a
time and randomly plopping their names down on a calendar, with the (present) goal
being that there are no common birthdays. The first name can go anywhere. But
when we plop down the second name, there are only 364 “good” days left, because
we don’t want the day to coincide with the first name’s day. The probability of suc-
cess for the second name is therefore 364/365. Then, when we plop down the third
name, there are only 363 “good” days left (assuming that the first two people have
different birthdays), because we don’t want the day to coincide with either of the
other two days. The probability of success for the third name is therefore 363/365.
Similarly, when we plop down the fourth name, there are only 362 “good” days left
(assuming that the first three people have different birthdays). The probability of
success for the fourth name is therefore 362/365. And so on.

If there are n people in the room, the probability that all n birthdays are dis-
tinct (that is, there isn’t a common birthday among any of the people; hence the
superscript “no” below) therefore equals

Pno
n = 1 · 364

365
· 363

365
· 362

365
· 361

365
· · · · · 365 − (n − 1)

365
. (2.45)

If you want, you can write the initial 1 here as 365/365, to make things look nicer.
Note that the last term involves (n − 1) and not n, because (n − 1) is the number
of names that have already been plopped down. As a double check that this (n −
1) is correct, it works for small numbers like n = 2 and 3. You should always
perform a simple check like this whenever you write down any expression involving
a parameter such as n.

We now just have to multiply out the product in Eq. (2.45) to the point where it
becomes smaller than 1/2, so that the probability that there is a common birthday is
larger than 1/2. With a calculator, this is tedious, but not horribly painful. We find
that Pno

22 = 0.524 and Pno
23 = 0.493. If Pyes

n is the probability that there is a common
birthday among n people, then Pyes

n = 1 − Pno
n , so Pyes

22 = 0.476 and Pyes
23 = 0.507.

Since our original goal was to have Pyes
n > 1/2 (or equivalently Pno

n < 1/2), we see
that there must be at least 23 people in a room in order for there to be a greater than
50% chance that at least two of them have the same birthday. The probability in the
n = 23 case is 50.7%.

The task of Problem 2.14 is to calculate the probability that among 23 people,
exactly two of them have a common birthday. That is, there aren’t two different
pairs with common birthdays, or a triple with the same birthday, etc.
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Remark: The n = 23 answer to our problem is much smaller than most people would
expect. As mentioned above, it therefore provides a nice betting opportunity. For n = 30,
the probability of a common birthday increases to 70.6%, and most people would still find
it hard to believe that among 30 people, there are probably two who have the same birthday.
Table 2.4 lists various values of n and the probabilities, Pyes

n = 1 − Pno
n , that at least two

people have a common birthday.

n 10 20 23 30 50 60 70 100

Pyes
n 11.7% 41.1% 50.7% 70.6% 97.0% 99.4% 99.92% 99.99997%

Table 2.4: Probability of a common birthday among n people.

Even for n = 50, most people would probably be happy to bet, at even odds, that no two
people have the same birthday. But you’ll win the bet 97% of the time.

One reason why many people can’t believe the n = 23 result is that they’re asking them-
selves a different question, namely, “How many people (in addition to me) need to be present
in order for there to be at least a 1/2 chance that someone else has my birthday?” The answer
to this question is indeed much larger than 23. The probability that no one out of n people has
a birthday on a given day is simply (364/365)n , because each person has a 364/365 chance
of not having that particular birthday. For n = 252, this is just over 1/2. And for n = 253,
it is just under 1/2; it equals 0.4995. Therefore, you need to come across 253 other people
in order for the probability to be greater than 1/2 that at least one of them does have your
birthday (or any other particular birthday). See Problem 2.16 for further discussion of this. ♣

2.4.2 The Game-Show Problem
We’ll now discuss the Game-Show Problem. In addition to having a variety of
common incorrect solutions, this problem also also a long history of people arguing
vehemently in favor of those incorrect solutions.

Problem: A game-show host offers you the choice of three doors. Behind one
of these doors is the grand prize, and behind the other two are goats. The host
(who knows what is behind each of the doors) announces that after you select a
door (without opening it), he will open one of the other two doors and purposefully
reveal a goat. You select a door. The host then opens one of the other doors and
reveals the promised goat. He then offers you the chance to switch your choice to
the remaining door. To maximize the probability of winning the grand prize, should
you switch or not? Or does it not matter?

Solution: We’ll present three solutions, one right and two wrong. You should
decide which one you think is correct before reading beyond the third solution.
Cover up the page after the third solution with a piece of paper, so that you don’t
inadvertently see which one is correct.

• Reasoning 1: Once the host reveals a goat, the prize must be behind one of
the two remaining doors. Since the prize was randomly located to begin with,
there must be equal chances that the prize is behind each of the two remaining
doors. The probabilities are therefore both 1/2, so it doesn’t matter if you
switch.
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If you want, you can imagine a friend (who is aware of the whole procedure
of the host announcing that he will open a door and reveal a goat) entering the
room after the host opens the door. This person sees two identical unopened
doors (he doesn’t know which one you initially picked) and a goat. So for him
there must be a 1/2 chance that the prize is behind each unopened door. The
probabilities for you and your friend can’t be any different, so you also say
that each unopened door has a 1/2 chance of containing the prize. It therefore
doesn’t matter if you switch.

• Reasoning 2: There is initially a 1/3 chance that the prize is behind any of the
three doors. So if you don’t switch, your probability of winning is 1/3. No
actions taken by the host can change the fact that if you play a large number
n of these games, then (roughly) n/3 of them will have the prize behind the
door you initially pick.

Likewise, if you switch to the other unopened door, there is a 1/3 chance that
the prize is behind that door. (There is obviously a goat behind at least one
of the other two doors, so the fact that the host reveals a goat doesn’t tell you
anything new.) Therefore, since the probability is 1/3 whether or not you
switch, it doesn’t matter if you switch.

• Reasoning 3: As in the first paragraph of Reasoning 2, if you don’t switch,
your probability of winning is 1/3.

However, if you switch, your probability of winning is greater than 1/3. It
increases to 2/3. This can be seen as follows. Without loss of generality,
assume that you pick the first door. (You can repeat the following reasoning
for the other doors if you wish. It gives the same result.) There are three
equally likely possibilities for what is behind the three doors: PGG, GPG, and
GGP, where P denotes the prize and G denotes a goat. If you don’t switch,
then in only the first of these three cases do you win, so your odds of winning
are 1/3 (consistent with the first paragraph of Reasoning 2). But if you do
switch from the first door to the second or third, then in the first case PGG
you lose, but in the other two cases you win, because the door not opened by
the host has the prize. (The host has no choice but to reveal the G and leave
the P unopened.) Therefore, since two out of the three equally likely cases
yield success if you switch, your probability of winning if you switch is 2/3.
So you do in fact want to switch.

Which of these three solutions is correct? Don’t read any further until you’ve firmly
decided which one you think is right.

The third solution is correct. The error in the first solution is the statement,
“there must be equal chances that the prize is behind each of the two remaining
doors.” This is simply not true. The act of revealing a goat breaks the symmetry
between the two remaining doors, as explained in the third solution. One door is the
one you initially picked, while the other door is one of the two that you didn’t pick.
The fact that there are two possibilities doesn’t mean that their probabilities have to
be equal, of course!



2.4. Four classic problems 89

The error in the supporting reasoning with your friend (who enters the room after
the host opens the door) is the following. While it is true that both probabilities are
1/2 for your friend, they aren’t both 1/2 for you. The statement, “the probabilities
for you and your friend can’t be any different,” is false. You have information that
your friend doesn’t have; you know which of the two unopened doors is the one you
initially picked and which is the door that the host chose to leave unopened. (And
as seen in the third solution, this information yields probabilities of 1/3 and 2/3.)
Your friend doesn’t have this critical information. Both doors look the same to him.
Probabilities can certainly be different for different people. If I flip a coin and peek
and see a Heads, but I don’t show you, then the probability of a Heads is 1/2 for
you, but 1 for me.

The error in the second solution is that the act of revealing a goat does give you
new information, as we just noted. This information tells you that the prize isn’t
behind that door, and it also distinguishes between the two remaining unopened
doors. One is the door you initially picked, while the other is one of the two doors
that you didn’t initially pick. As seen in the third solution, this information has the
effect of increasing the probability that the goat is behind the other door. Note that
another reason why the second solution can’t be correct is that the two probabilities
of 1/3 don’t add up to 1.

To sum up, it should be no surprise that the probabilities are different for the
switching and non-switching strategies after the host opens a door (the probabilities
are obviously the same, equal to 1/3, whether or not a switch is made before the host
opens a door), because the host gave you some of the information he had about the
locations of things.

Remarks:

1. If you still doubt the validity of the third solution, imagine a situation with 1000 doors
containing one prize and 999 goats. After you pick a door, the host opens 998 other
doors and reveals 998 goats (and he said beforehand that he was going to do this). In
this setup, if you don’t switch, your chances of winning are 1/1000. But if you do
switch, your chances of winning are 999/1000, which can be seen by listing out (or
imagining listing out) the 1000 cases, as we did with the three PGG, GPG, and GGP
cases in the third solution. It is clear that the switch should be made, because the only
case where you lose after you switch is the case where you had initially picked the
prize, and this happens only 1/1000 of the time.

In short, a huge amount of information is gained by the revealing of 998 goats. There
is initially a 999/1000 chance that the prize is somewhere behind the other 999 doors,
and the host is kindly giving you the information of exactly which door it is (in the
highly likely event that it is in fact one of the other 999).

2. The clause in the statement of the problem, “The host announces that after you select
a door (without opening it), he will open one of the other two doors and purposefully
reveal a goat,” is crucial. If it is omitted, and it is simply stated that, “The host then
opens one of the other doors and reveals a goat,” then it is impossible to state a pre-
ferred strategy. If the host doesn’t announce his actions beforehand, then for all you
know, he always reveals a goat (in which case you should switch, as we saw above).
Or he randomly opens a door and just happened to pick a goat (in which case it doesn’t
matter if you switch, as you can show in Problem 2.18). Or he opens a door and reveals
a goat if and only if your initial door has the prize (in which case you definitely should
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not switch). Or he could have one procedure on Tuesdays and another on Fridays,
each of which depends on the color of the socks he’s wearing. And so on.

3. As mentioned above, this problem is infamous for the intense arguments it lends itself
to. There’s nothing terrible about getting the wrong answer, nor is there anything
terrible about not believing the correct answer for a while. But concerning arguments
that drag on and on, it doesn’t make any sense to argue about this problem for more
than, say, 20 minutes, because at that point everyone should stop and just play the
game! You can play a number of times with the switching strategy, and then a number
of times with the non-switching strategy. Three coins with a dot on the bottom of
one of them are all you need.1 Not only will the actual game yield the correct answer
(if you play enough times so that things average out), but the patterns that form will
undoubtedly convince you of the correct reasoning (or reinforce it, if you’re already
comfortable with it). Arguing endlessly about an experiment, when you can actually
do the experiment, is as silly as arguing endlessly about what’s behind a door, when
you can simply open the door.

4. For completeness, there is one subtlety we should mention here. In the second so-
lution, we stated, “No actions taken by the host can change the fact that if you play
a large number n of these games, then (roughly) n/3 of them will have the prize be-
hind the door you initially pick.” This part of the reasoning was correct; it was the
“switching” part of the second solution that was incorrect. After doing Problem 2.18
(where the host randomly opens a door), you might disagree with the above statement,
because it will turn out in that problem that the actions taken by the host do affect this
n/3 result. However, the above statement is still correct for “these games” (the ones
governed by the original statement of this problem). See the second remark in the
solution to Problem 2.18 for further discussion. ♣

2.4.3 The Prosecutor’s Fallacy

We now present one of the most classic problems/paradoxes in the subject of proba-
bility. This classic nature is due in no small part to the problem’s critical relevance to
the real world. After reading the statement of the problem below, you should think
carefully and settle on an answer before looking at the solution. The discussion of
conditional probability in Section 2.2.4 gives a hint at the answer.

Problem: Consider the following scenario. Detectives in a city, say, Boston (whose
population we will assume to be one million), are working on a crime and have put
together a description of the perpetrator, based on things such as height, a tattoo, a
limp, an earing, etc. Let’s assume that only one person in 10,000 fits the description.
On a routine patrol the next day, police officers see a person fitting the description.
This person is arrested and brought to trial based solely on the fact that he fits the
description.

During the trial, the prosecutor tells the jury that since only one person in 10,000
fits the description (a true statement), it is highly unlikely (far beyond a reasonable
doubt) that an innocent person fits the description (again a true statement); it is

1You actually don’t need three objects. It’s hard to find three exactly identical coins anyway. The
“host” can simply roll a die, without showing the “contestant” the result. Rolling a 1 or 2 can mean that
the prize is located behind the first door, a 3 or 4 the second, and a 5 or 6 the third. The game then
basically involves calling out door numbers.
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therefore highly unlikely that the defendant is innocent. If you were a member of
the jury, would you cast a “guilty” vote? If yes, what is your level of confidence? If
no, what is wrong with the prosecutor’s reasoning?

Solution: We’ll assume that we are concerned only with people living in Boston.
There are one million such people, so if one person in 10,000 fits the description,
this means that there are 100 people in Boston who fit it (one of whom is the perpe-
trator). When the police officers pick up someone fitting the description, this person
could be any one of these 100 people. So the probability that the defendant in the
courtroom is the actual perpetrator is only 1/100. In other words, there is a 99%
chance that the person is innocent. A guilty verdict (based on the given evidence)
would therefore be a horrible and tragic vote.

The above (correct) reasoning is fairly cut and dry, but it contradicts the prose-
cutor’s reasoning. The prosecutor’s reasoning must therefore be incorrect. But what
exactly is wrong with it? It seems quite plausible at every stage. To isolate the flaw
in the logic, let’s list out the three separate statements the prosecutor made in his
argument:

1. Only one person in 10,000 fits the description.

2. It is highly unlikely (far beyond a reasonable doubt) that an innocent person
fits the description.

3. It is therefore highly unlikely that the defendant is innocent.

As we noted above when we posed the problem, the first two of these statements are
true. Statement 1 is true by assumption, and Statement 2 is true basically because
1/10,000 is a small number. Let’s be precise about this and work out the exact
probability that an innocent person fits the description. Of the one million people
in Boston, the number who fit the description is (1/10,000)(106) = 100. Of these
100 people, only one is guilty, so 99 are innocent. And the total number of inno-
cent people is 106 − 1 = 999,999. The probability that an innocent person fits the
description is therefore

innocent and fitting description
innocent

=
99

999,999
≈ 9.9 · 10−5 ≈ 1

10,000
. (2.46)

As expected, the probability is essentially equal to 1/10,000.
Now let’s look at the third statement above. This is where the error is. This

statement is false, because Statement 2 simply does not imply Statement 3. We
know this because we have already calculated the probability that the defendant is
innocent, namely 99%. This correct probability of 99% is vastly different from the
incorrect probability of 1/10,000 that the prosecutor is trying to mislead you with.
However, even though the correct result of 99% tells us that Statement 3 must be
false, where exactly is the error? After all, at first glance Statement 3 seems to
follow from Statement 2. The error is the confusion of conditional probabilities. In
detail:
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• Statement 2 deals with the probability of fitting the description, given inno-
cence. The (true) statement is equivalent to, “If a person is innocent, then
there is a very small probability that he fits the description.” This probability
is the conditional probability P(D|I), with D for description and I for inno-
cence.

• Statement 3 deals with the probability of innocence, given that the descrip-
tion is fit. The (false) statement is equivalent to, “If a person (such as the
defendant) fits the description, then there is a very small probability that he is
innocent.” This probability is the conditional probability P(I|D).

These two conditional probabilities are not the same. The error is the assump-
tion (or implication, on the prosecutor’s part) that they are. As we saw above,
P(D|I) = 99/999,999 ≈ 0.0001, whereas P(I|D) = 0.99. These two probabili-
ties are markedly different.

Intuitively, P(D|I) is very small because a very small fraction of the population
(in particular, a very small fraction of the innocent people) fit the description. And
P(I|D) is very close to 1 because nearly everyone (in particular, nearly everyone
who fits the description) is innocent. This state of affairs is indicated in Fig. 2.10.
(This a just a rough figure; the areas aren’t actually in the proper proportions.) The
large oval represents the 999,999 innocent people, and the small oval represents the
100 people who fit the description.

A B C

(999,900)

(999,999)

(99) (1)

innocent

(100)

fit description

Figure 2.10: The different types of people in the prosecutor’s fallacy.

There are three basic types of people in the figure: There are A = 999,900
innocent people who don’t fit the description, B = 99 innocent people who do
fit the description, and C = 1 guilty person who fits the description. (The fourth
possibility – a guilty person who doesn’t fit the description – doesn’t exist.) The
two conditional probabilities that are relevant in the above discussion are then

P(D|I) = B
innocent

=
B

B + A
=

99
999,999

,

P(I|D) =
B

fit description
=

B
B + C

=
99
100
. (2.47)

Both of these probabilities have B in numerator, because B represents the people
who are innocent and fit the description. But the A in the first denominator is much
larger than the C in second denominator. Or said in another way, B is a very small
fraction of the innocent people (the large oval in Fig. 2.10), whereas it is a very large
fraction of the people who fit the description (the small oval in Fig. 2.10).
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The prosecutor’s faulty reasoning has been used countless times in actual court
cases, with tragic consequences. Innocent people have been convicted, and guilty
people have walked free (the argument can work in that direction too). These conse-
quences can’t be blamed on the jury, of course. It is inevitable that many jurors will
fail to spot the error in the reasoning. It would be silly to think that the entire pop-
ulation should be familiar with this issue in probability. Nor can the blame be put
on the attorney making the argument. This person is either (1) overzealous and/or
incompetent, or (2) entirely within his/her right to knowingly make an invalid argu-
ment (as distasteful as this may seem). In the end, the blame falls on either (1) the
opposing attorney for failing to rebut the known logical fallacy, or (2) a legal system
that in some cases doesn’t allow a final rebuttal.

2.4.4 The Boy/Girl Problem

The well-known Boy/Girl Problem can be stated in many different ways, with an-
swers that may or may not be the same. Three different formulations are presented
below, and a fourth is given in Problem 2.19. Assume in all of them that any pro-
cess involved in the scenario is completely random. That is, assume that any child
is equally likely to be a boy or a girl (even though this isn’t quite true in real life),
and assume that there is nothing special about the person you’re talking with, and
assume that there are no correlations between children (as there are with identical
twins), and so on.

Problem:

(a) You bump into a random person on the street who says, “I have two children.
At least one of them is a boy.” What is the probability that the other child is
also a boy?

(b) You bump into a random person on the street who says, “I have two children.
The older one is a boy.” What is the probability that the other child is also a
boy?

(c) You bump into a random person on the street who says, “I have two children,
one of whom is this boy standing next to me.” What is the probability that the
other child is also a boy?

Solution:

(a) The key to all three of these formulations is to list out the various equally
likely possibilities for the family’s children, while taking into account only
the “I have two children” information, and not yet the information about the
boy. With B for boy and G for girl, the family in the present scenario in part
(a) can be of four types (at least before the parent gives you information about
the boy), each with probability 1/4:

BB BG GB GG
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Ignore the boxes for a moment. In each pair of letters, the first letter stands
for the older child, and the second letter stands for the younger child.

Note that there are indeed four equally likely possibilities (BB, BG, GB, GG),
as opposed to just three equally likely possibilities (BB, BG, GG), because the
older child has a 50-50 chance of being a boy or a girl, as does the younger
child. The BG and GB cases each get counted once, just as the HT and TH
cases each get counted once when flipping two coins, where the four equally
likely possibilities are HH, HT, TH, TT.

Under the assumption of general randomness stated in the problem, we are
assuming that you are equally likely (at least before the parent gives you in-
formation about the boy) to bump into a parent of any one of the above four
types of two-child families.

Let us now invoke the information that at least one child is a boy. This infor-
mation tells us that you can’t be talking with a GG parent. The parent must be
a BB, BG, or GB parent, all equally likely. (They are equally likely, because
they are all equivalent with regard to the “at least one of them is a boy” state-
ment.) These are the boxed families in the above list. Of these three cases,
only the BB case has the other child being a boy. The desired probability that
the other child is a boy is therefore 1/3.

If don’t trust the reasoning in the preceding paragraph, just imagine perform-
ing many trials of the setup. This is always a good strategy when solving
probability problems. Imagine that you encounter 1000 random parents of
two children. You will encounter about 250 of each of the four types of par-
ent. The 250 GG parents have nothing to do with the given setup, so we must
discard them. Only the other 750 parents (BB, BG, GB) are able to provide
the given information that at least one child is a boy. Of these 750 parents,
250 are of the BB type and thereby have a boy as the other child. The desired
probability is therefore 250/750 = 1/3.

(b) As in part (a), before the information about the boy is taken into account,
there are four equally likely possibilities for the children (again ignore the
boxes for a moment):

BB BG GB GG

But once the parent tells you that the older child is a boy, the GB and GG
cases are ruled out; remember that the first letter in each pair corresponds to
the older child. So you must be talking with a BB or BG parent, both equally
likely. Of these two cases, only the BB case has the other child being a boy.
The desired probability that the other child is a boy is therefore 1/2.

(c) This version of the problem is a little trickier, because there are now eight
equally likely possibilities (before the information about the boy is taken into
account), instead of just four. This is true because for each of the four types of
families in the above lists, the parent may choose to take either of the children
for a walk (with equal probabilities, as we are assuming for everything). The
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eight equally likely possibilities are therefore shown in Fig. 2.5 (again ignore
the boxes for a moment). The bold letter indicates the child you encounter.

BB BG GB GG

BB BG GB GG

Table 2.5: The eight types of families, accounting for the child present.

Once the parent tells you that one of the children is the boy standing there,
four of the eight possibilities are ruled out. Only the four boxed pairs in
Fig. 2.5 (the ones with a bold B) satisfy the condition that the child standing
there is a boy. Of these four (equally likely) possibilities, two of them have
the other child being a boy. The desired probability that the other child is a
boy is therefore 1/2.

Remarks:

1. We used the given assumption of general randomness many times in the above solu-
tions. One way to make things nonrandom is to assume that the parent who is out for
a walk is chosen randomly with equal 1/3 probabilities of being from BB families,
or GG families, or one-boy-and-one-girl families. This is an artificial construction,
because it means that a given BG or GB family (which together make up half of all
two-child families) is less likely to be chosen than a given BB or GG family. This
violates our assumption of general randomness. In this scenario, you can show that
the answers to parts (a), (b), and (c) are 1/2, 2/3, and 2/3.
Another way to make things nonrandom is to assume that in part (c) a girl is always
chosen to go on the walk if the family has at least one girl. The answer to part (c) is
then 1, because the only way a boy will be standing there is if both children are boys.
On the other hand, if we assume that a boy is always chosen to go on the walk if the
family has at least one boy, then the answer to part (c) is 1/3. This is true because for
BB, the other child is a boy; and for both BG and GB (for which the boy is always
chosen to go on the walk), the other child is a girl. Basically, the middle four pairs in
Table 2.5 will all have a bold B, so they will all be boxed. There are countless ways
to make things nonrandom, so unless we make an assumption of general randomness,
there is no way to solve the problem.

2. Let’s compare the scenarios in parts (a) and (b), to see exactly why the probabilities
differ. In part (a), the parent’s statement rules out the GG case. The BB, BG, and GB
cases survive, with the BB families representing 1/3 of all of the possibilities. If the
parent then changes the statement, “at least one of them is a boy” to “the older one
is a boy,” we are now in the realm of part (b). The GB case is now also ruled out (in
addition to the GG case). So only the BB and BG cases survive, with the BB families
representing 1/2 of all of the possibilities. This is why the probability jumps from 1/3
to 1/2 in going from part (a) to part (b). An additional group of families (GB) is ruled
out.
Let’s now compare the scenarios in parts (a) and (c), to see exactly why the proba-
bilities differ. As in the preceding paragraph, the parent’s statement in part (a) rules
out the GG case. If the parent then makes the additional statement “. . . and there he
is over there next to that tree,” we are now in the realm of part (c). Which additional
families are ruled out? Well, in part (a), you could be talking with a parent in any of



96 Chapter 2. Probability

the families in Table 2.5 except the two GG entries. So there are six valid possibilities.
But as soon as the parent adds the “and there he is” comment, the unboxed GB and
BG entries are ruled out. So a larger fraction of the valid possibilities (now two out of
four, instead of two out of six) have the other child being a boy.

3. Having gone through all of the above reasonings and the comparisons of the different
cases, we should note that there is actually a much quicker way of obtaining the prob-
abilities of 1/2 in parts (b) and (c). If the parent says that the older child is a boy, or
that one of the children is the boy standing next to her, then the parent is making a
statement solely about a particular child (the older one, or the present one). The par-
ent is saying nothing about the other child (the younger one, or the absent one). We
therefore know nothing about that child. So by our assumption of general random-
ness, the other child is equally likely to be a boy or a girl. This should be contrasted
with part (a). In that scenario, when the parent says that at least one child is a boy, the
parent is not making a claim about a specific child, but rather about the collective set
of the two children together. We are therefore not able to uniquely define the “other
child” and simply say that the answer is 1/2. The answer depends on both children
together, and it turns out to be different from 1/2 (namely 1/3).

4. There is a subtlety in this problem that we should address: How does the parent decide
what information to give you? A reasonable rule could be that in part (a) the parent
says, “At least one child is a boy,” if she is able to; otherwise she says, “At least one
child is a girl.” This is consistent with all of our above reasoning. But consider what
happens if we tweak the rule so that now the parent says, “At least one child is a girl,”
if she is able to; otherwise she says, “At least one child is a boy.” In this case, the
answer to part (a) is 1, because the only parents making the “boy” statement are the
BB parents. This minor tweak completely changes the problem.
If you want to avoid this issue, you can rephrase part (a) as: You bump into a random
person on the street and ask, “Do you have (exactly) two children? If so, is at least one
of them a boy?” In the cases where the answers to both of these questions are “yes,”
what is the probability that the other child is also a boy? Alternatively, you can just
remove the parent and pose the problem as: Consider all two-child families that have
at least one boy. What is the probability that both children are boys? This phrasing
isn’t as catchy as the original, but it gets rid of the above issue.

5. In the various lists of types of families in the above solutions, only the boxed types
were applicable. The unboxed ones didn’t satisfy the conditions given in the statement
of the problem, so we discarded them. This act of discarding the unboxed types is
equivalent to using the conditional-probability statement in Eq. (2.5), which can be
rearranged to say

P(B |A) =
P(A and B)

P(A)
. (2.48)

For example, in part (a) if we let A = {at least 1 boy} and B = {2 boys}, then we
obtain

P
(
(2 boys)��(at least 1 boy)

)
=

P
(
(at least 1 boy) and (2 boys)

)
P
(
at least 1 boy

) . (2.49)

The lefthand side of this equation is the probability we’re trying to find. On the right-
hand side, we can rewrite P

(
(at least 1 boy) and (2 boys)

)
as just P(2 boys), because

{2 boys} is a subset of {at least 1 boy}. So we have

P
(
(2 boys)��(at least 1 boy)

)
=

P
(
2 boys

)
P
(
at least 1 boy

) = 1/4
3/4
=

1
3
. (2.50)
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The preceding equations might look a bit intimidating, which is why we took a more
intuitive route in the above solution to part (a), where we imagined doing 1000 trials
and then discarding the 250 GG families. Discarding these families accomplishes
the same thing as having the P

(
at least 1 boy

)
term in the denominator in Eq. (2.50);

namely, they both signify that we are concerned only with families that have at least
one boy. This remark leads us into the following section on Bayes’ theorem.

6. If you thought that some of the answers to this problem were counterintuitive, then,
well, you haven’t seen anything yet! Tackle Problem 2.19 and you’ll see why. ♣

2.5 Bayes’ theorem
We now introduce Bayes’ theorem, which gives a relation between certain condi-
tional probabilities. The theorem is relevant to much of what we have been dis-
cussing in this chapter, particularly Section 2.4. We have technically already de-
rived everything we need for the theorem (and we have actually already been using
the theorem without realizing it), so the proof will be very quick. There are three
common forms of the theorem. After we prove these, we’ll do an example and then
present a helpful way of thinking about the theorem in terms of pictures.

Theorem 2.1 (Bayes’ theorem) The “simple form” of Bayes’ theorem is

P(A|Z ) =
P(Z |A) ·P(A)

P(Z )
(2.51)

The “explicit form” is (with “∼A” shorthand for “not A”)

P(A|Z ) =
P(Z |A) ·P(A)

P(Z |A) ·P(A) + P(Z | ∼A) ·P(∼A)
(2.52)

And the “general form” is

P(Ak |Z ) =
P(Z |Ak ) ·P(Ak )∑
i P(Z |Ai ) ·P(Ai )

(2.53)

where the Ai are a complete and mutually exclusive set of events. That is, every
possible outcome belongs to one (hence the “complete”) and only one (hence the
“mutually exclusive”) of the Ai .

Proof: The simple form of Bayes’ theorem in Eq. (2.51) follows from what we
noted back in Eq. (2.9). Since the order of A and Z doesn’t matter in P(A and Z ),
we can write down two different expressions for this probability:

P(A and Z ) = P(A|Z ) · P(Z )
= P(Z |A) · P(A). (2.54)

If we equate the two righthand sides of these equations and divide through by P(Z ),
we obtain Eq. (2.51).
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The explicit form in Eq. (2.52) follows from the fact that the P(Z ) in the de-
nominator of Eq. (2.51) can be written as

P(Z ) = P(Z and A) + P(Z and ∼A)
= P(Z |A) ·P(A) + P(Z | ∼A) ·P(∼A). (2.55)

The first line here comes from the fact that every outcome is a member of either A
or ∼A, and the second line comes from two applications of Eq. (2.54).

The general form in Eq. (2.53) is obtained by replacing the A in Eq. (2.51) with
Ak and noting that

P(Z ) =
∑
i

P(Z and Ai )

=
∑
i

P(Z |Ai ) ·P(Ai ). (2.56)

The first line here comes from the fact that every outcome is a member of exactly
one of the Ai , and the second line comes from n applications (where n is the number
of Ai) of Eq. (2.54). Note that Eq. (2.52) is a special case of Eq. (2.53), with A1 = A
and A2 = ∼A, and with k = 1 (so Ak = A). Note also that all of the numerators on
the righthand sides of the three formulations of the theorem are equal to P(A and Z )
or P(Ak and Z ), from Eq. (2.54).

As promised, these proofs were very quick. All we needed was Eq. (2.54) and the
fact that P(Z ) =

∑
i P(Z and Ai ), which holds because the Ai are mutually exclu-

sive and complete. However, even though the proofs were quick, and even though
the theorem isn’t anything we didn’t already know (since we already knew the two
ingredients in the preceding sentence), the theorem can still be a bit intimidating, es-
pecially the general form in Eq. (2.53). So we’ll do an example to get some practice.
But first some remarks.

Remarks:

1. In Eq. (2.53) the P(Ai ) are known as the prior probabilities, the P(Z |Ai ) are known
as the conditional probabilities, and P(Ak |Z ) is known as the posterior probability.
The prior and conditional probabilities are the ones you are given (at least in this book;
see the following remark), and the posterior probability is the one you are trying to
find.

2. Since Bayes’ theorem is simply a restatement of what we already know, you might
be wondering what good it is and why it comes up so often when people talk about
probability. Does it actually give us anything new? Well, yes and no. The theorem
itself doesn’t give us anything new, but the way in which it is used does.
It would take many pages to do justice to this topic, but in a nutshell, there are two main
types of probability reasoning. Frequentist reasoning (which is what we are using
in this book) defines probability by imagining a large number of trials. In contrast,
Bayesian reasoning doesn’t require a large number of trials. The difference between
these two reasonings shows up when one gets into statistical inference, that is, when
one tries to estimate probabilities by gathering data (which we won’t do in this book).
In the end, the difference comes down to how one treats the prior probabilities P(Ai )
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in Eq. (2.53). A frequentist considers them to be definite quantities (based on the
frequencies obtained in large numbers of trials), whereas a Bayesian considers them
to be unknowns whose values are given by specified distributions (determined in some
manner). However, this difference is moot in this book, because we will always deal
with situations where the prior probabilities take on definite values that are given. In
this case, the frequentist and Bayesian reasonings are identical. They both boil down
to Eq. (2.54). ♣

Let’s now do an example. A common setup where Bayes’ theorem is relevant
involves false positives on a diagnostic test, so that’s the setup we’ll use here. Af-
ter working through the example, we’ll see how we can alternatively make use of
a particularly helpful type of picture. There are many different probabilities that
appear in Eq. (2.53), and it can be hard to remember what the theorem says or to get
an intuitive feel for what’s going on. In contrast, a quick glance at a figure such as
Fig. 2.14 below makes it easy to remember the theorem and understand it intuitively.

Example (False positives): A hospital administers a test to see if a patient has a
certain disease. Assume that we know the following three things:

• 2% of the overall population has the disease.

• If a person does have the disease, then the test has a 95% chance of correctly
indicating that the person has it. (So 5% of the time, the test incorrectly indicates
that the person doesn’t have the disease.)

• If a person does not have the disease, then the test has a 10% chance of incor-
rectly indicating that the person has it; this is a “false positive” result. (So 90%
of the time, the test correctly indicates that the person doesn’t have the disease.)

The question we want to answer is: If a patient tests positive, what is the probability
that they2 actually have the disease?
We’ll answer this question first by pretending that we haven’t seen Bayes’ theorem,
and then by using the theorem. The reasoning will be exactly the same in both so-
lutions, because in the first solution we’ll actually be using Bayes’ theorem without
realizing it.

First solution: Imagine taking a large number of people (say, 1000) from the general
population and testing them for the disease. A given person either has the disease or
doesn’t (two possibilities), and their test is either positive or negative (two possibili-
ties). So there are 2 · 2 = 4 different types of people, with regard to the disease and the
test. Let’s make a probability tree to determine how many people of each type there
are; see Fig. 2.11. The three given facts correspond to the three forks in the tree:

• The first fact tells us that of the given 1000 people, 2% (which is 20 people)
have the disease (on average), while 98% (which is 980 people) don’t have the
disease.

• The second fact tells us that of the 20 people with the disease, 95% (which is 19
people) test positive, while 5% (which is 1 person) tests negative.

2I am using “they” as a gender-neutral singular pronoun, in protest of the present failing of the English
language.
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• The third fact tells us that of the 980 people without the disease, 10% (which is
98 people) test positive, while 90% (which is 882 people) test negative.

2%

98%

95%

90%

10%

5%

no disease

disease

positive
(false)

positive
(true)

negative

negative

1000

20

19

1

98

882

980

Figure 2.11: The probability tree for yes/no disease and positive/negative test.

The answer to the above question (namely, “If a patient tests positive, what is the
probability that they actually have the disease?”) can now simply be read off from
the tree. The total number of people who test positive is the sum of the two circled
numbers, which is 19 + 98 = 117. And of these 117 people, only 19 have the disease.
So our answer is

p =
19

19 + 98
=

19
117
= 16%. (2.57)

If we want to write this directly in terms of the given probabilities, then if we recall
how we arrived at the numbers 19 and 98, we obtain

p =
(0.95)(0.02)

(0.95)(0.02) + (0.10)(0.98)
= 0.16. (2.58)

Second solution: We’ll use the “explicit form” of Bayes’ theorem in Eq. (2.52),
which is a special case of the “general form” in Eq. (2.53). In the notation of Eq. (2.52)
we have

A = have disease,

∼A = don’t have disease,

Z = test positive. (2.59)

Our goal is to calculate P(A|Z ), that is, the probability of having the disease, given a
positive test. From the given facts in the three bullet points, we know that

P(A) = 0.02,

P(Z |A) = 0.95,

P(Z | ∼A) = 0.10. (2.60)

Plugging these probabilities into Eq. (2.52) gives

P(A|Z ) =
P(Z |A) ·P(A)

P(Z |A) ·P(A) + P(Z | ∼A) ·P(∼A)

=
(0.95)(0.02)

(0.95)(0.02) + (0.10)(0.98)
= 0.16, (2.61)
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in agreement with the first solution. This is the same expression as in Eq. (2.58),
which is consistent with the fact that (as we mentioned above) our reasoning in the
first solution was equivalent to using Bayes’ theorem.

Remark: We see that if a person tests positive, they have only a 16% chance of
actually having the disease. This answer might seem surprisingly low. After all, the
test seems fairly reliable; it gives the correct result 95% of the time if a person has the
disease, and 90% of the time if a person doesn’t have the disease. So how did we end
up with an answer that is much smaller than either of these two percentages?
The explanation is that because the percentage of people with the disease is so tiny
(2%), the small percentage (10%) of false positives among the non-disease people
yields a number of false positives that is significantly larger than the number of true
positives. Basically, 10% of 98% of 1000 (which is 98) is significantly larger than 95%
of 2% of 1000 (which is 19). The 98 false positives dominate the 19 true positives.
Although the 10% false-positive rate is small, it isn’t small enough to prevent the
smallness of the 2% disease rate from controlling the outcome. A takeaway from this
discussion is that one must be very careful when testing for rare diseases. If the disease
is very rare, then the test must be extremely accurate, otherwise a positive test isn’t
meaningful.
If we decrease the 10% percentage (that is, reduce the percentage of false positives)
and/or increase the 2% percentage (that is, increase the percentage of people with
the disease), then the answer to our original question will increase. That is, a larger
fraction of the people who test positive will actually have the disease. For example, if
we assume that 40% of the population have the disease (so 60% don’t have it), and if
we keep all the other percentages in the problem the same, then Eq. (2.58) becomes

p =
(0.95)(0.40)

(0.95)(0.40) + (0.10)(0.60)
= 0.86. (2.62)

This probability is closer to 1 than in the original scenario, because if we have 1000
people, then the 60 (instead of the earlier 98) false positives are dominated by the 380
(instead of the earlier 19) true positives. You can verify these numbers.
In the limit where the 10% false-positive percentage in the original scenario goes to
zero, or the 2% disease percentage goes to 100%, the number of false positives goes
to zero. This is true because if 10% → 0% then the test never incorrectly says that a
person has the disease when they don’t; and if 2%→ 100% then the entire population
has the disease, so every positive test is a true one. In either of these limits, the answer
to our question goes to 1 (or 100%); a positive test always correctly indicates the
disease. ♣

In the first solution above, we calculated the various numbers and probabilities
by using a probability tree. We can alternatively use a figure along the lines of
Fig. 2.4. In the following discussion we’ll pretend that we haven’t seen Bayes’
theorem, and then we’ll circle back to the theorem and show in Fig. 2.14 how the
different ingredients in the theorem correspond to the different parts of the figure.

Fig. 2.12 shows a pictorial representation of the probability tree in Fig. 2.11.
The overall square represents the given 1000 people.3 A vertical line divides the

3When drawing a figure like this, the area of a region can represent either the probability of being in
that region, or the actual number of outcomes/people/etc. in that region. The usage should be clear from
the context. We’re using actual numbers here.
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square into two rectangles – a very thin one on the left representing the 20 people
with the disease, and a wide one on the right representing the 980 people without the
disease. These two rectangles are further divided into the people who test positive
(the shaded lower regions, with 19 and 98 people) or test negative (the unshaded
upper regions, with 1 and 882 people). The desired probability of a person having
the disease if they test positive equals the 19 true positives (the darkly shaded thin
rectangle) divided by the total 19 + 98 = 117 number of positives (both shaded
regions).

disease (2%)

positive (95%)

negative (5%)

positive (10%)

negative (90%)

no disease (98%)

1

19

98

882

(true positives)

(false  positives)

Figure 2.12: The probability square for yes/no disease and positive/negative test.

In Fig. 2.12 there are only two types of people in the population – those with the
disease and those without it. As an example of a more general setup, let’s consider
how people commute to work. We’ll assume that we are given the percentages of
people who walk, bike, drive, take the bus, etc. And then for each of these types,
we’ll assume that we are also given the percentage who have a particular attribute –
for example, the ability to play the guitar. We can then ask questions such as, “If we
pick a random person (among those who commute to work) from the set of people
who can play the guitar, what is the probability that this person walks to work?” If
we compare this question to our earlier one involving the disease testing, we see that
guitar playing is analogous to testing positive, and walking to work is analogous to
having the disease. It’s just that now we have many types of commuters instead of
only two types of disease carriers (carriers or non carriers).

To answer the above question, we can draw a figure analogous to Fig. 2.12;
see Fig. 2.13 with some made-up percentages for the various types of commuters.
These percentages are undoubtedly completely unrealistic, but they’re good enough
for the sake of an example.

For simplicity, we’ll assume that there are only four possible ways to commute
to work. If the guitar players are represented by the shaded regions, then the answer
to our question is obtained by dividing the area of the darkly shaded region (which
represents the guitar players who are walkers) by the total area of all the shaded
regions (which represents all of the guitar players). Mathematically, the preceding
sentence is equivalent to dividing the first equality in Eq. (2.54) through by P(Z )
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walk 

guitar 

no guitar 

bike drive bus 

Figure 2.13: The probability square for a hypothetical commuting example.

and then letting A = “walk” and Z = “guitar”:

P(walk|guitar) =
P(walk and guitar)

P(guitar)

=
dark shaded area
total shaded area

. (2.63)

Assuming that there are only four possible ways to commute to work, we need
to be given eight pieces of information:

• We need to be given the four percentages of people who walk, bike, drive, or
take the bus. (Actually, since these percentages must add up to 100%, there
are only three independent bits of information here.) These percentages deter-
mine the relative widths of the vertical rectangles in Fig. 2.13. The analogous
information in the “False positives” example was contained in the first bullet
point on page 99 (the percentage of people who have the disease).

• For each of the four types of commuters, we need to be given the percent-
age who play the guitar. These four percentages determine the heights of the
shaded areas within the vertical rectangles in Fig. 2.13. The analogous infor-
mation in the “False positives” example was contained in the second and third
bullet points on page 99.

Of course, if we are simply given the area of the darkly shaded region (which
represents the number of guitar players who are walkers), and also the total area of
all the shaded regions (which represents the total number of guitar players), then
we can just divide the first of these two pieces of information by the second, and
we’re done. But in most situations, we’re given the above eight (or whatever the
relevant number is) pieces of information instead of these two, and the main task is
to determine these two.

If you want to instead think in terms of a probability tree, as in Fig. 2.11,
then in the present commuting example, the initial fork has four branches (for the
walk/bike/drive/bus options), and then each of these four options splits into two pos-
sibilities (guitar or no guitar). We therefore end up with four circled numbers (the
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guitar players) instead of the two in Fig. 2.11, and we need to divide one of these
(the one in the walking branch) by the sum of all four.

The interpretation of Bayes’ theorem in terms of a figure like Fig. 2.13 is sum-
marized in Fig. 2.14. In this figure, we are considering areas to represent proba-
bilities instead of actual numbers (although either way is fine), because heights and
widths then represent the relevant probabilities. It is invariably much more intuitive
to think of the theorem in terms of a figure instead of algebraic manipulations, so
when you think of Bayes’ theorem, you’ll probably want to think of Fig. 2.14.

A1 

P(A1|Z )
P(Z | A1) P(A1)

P(Z | Ai) P(Ai)

A2 A3 A4 

Z 

not Z

(walk)

(no guitar)

(guitar)

(bike) (drive) (bus)

dark shaded area

total shaded area
denominator =
total shaded area

numerator =
dark shaded area

p of walk

(width of A1 rectangle)

(widths of Ai rectangles)

p of guitar, given walk

p of walk, given guitar

p of guitar, given general type of commute

  (heights of shaded rectangles)

(height of dark shaded rectangle)

p of general type of commute

.
.Σ

______________
______________

=
=

Figure 2.14: Pictorial representation of Bayes’ theorem.

Remarks:

1. It is often the case that you aren’t given P(Z ) in the simple form of Bayes’ theorem in
Eq. (2.51), but instead need to calculate it via

∑
P(Ai ) ·P(Z |Ai ) or P(Z |A) ·P(A) +

P(Z | ∼A) ·P(∼A), as we did in the “False positives” example. So the general form
of Bayes’ theorem in Eq. (2.53) or the explicit form in Eq. (2.52) is often the relevant
one.

2. When using Bayes’ theorem to calculate P(A1 |Z ), remember that in the notation of
Fig. 2.14, the first letter A1 in P(A1 |Z ) is one of the many Ai that divide up the
horizontal span of the square, while the second letter Z is associated with the vertical
span of the shaded areas.
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3. In setups involving Bayes’ theorem, there can be an arbitrary number n of the Ai

columns in Fig. 2.14. (We’ve drawn the case with n = 4.) But each column is divided
into only two regions, namely the Z region and the not-Z region. Of course, the not-Z
region might very well be broken down into other regions, but that isn’t relevant here.
If you wish, you can think of there being only two columns, namely the A1 column
and the “not-A1” column, which consists of all the other Ai . However, if you are given
information for each of the Ai , then you will need to consider them separately. But
after calculating all the relevant numbers, it is certainly fine to lump all the other Ai

together into a single “not-A1” column. Fig. 2.14 then becomes Fig. 2.15. The lightly
shaded area here is the same as the total lightly shaded area in Fig. 2.14. Fig. 2.15
corresponds to the explicit form of Bayes’ theorem in Eq. (2.52), while Fig. 2.14
corresponds to the general form in Eq. (2.53).

walk 

guitar 

no guitar 

bike/drive/bus 

Figure 2.15: Grouping all of the nonwalkers together.

4. The essence of Bayes’ theorem comes down to the fact that P(A and Z ) can be written
in the two different ways given in Eq. (2.54). In terms of Fig. 2.14, you can think of
P(A1 and Z ), which is the area of the darkly shaded rectangle, in two different ways.
It is a certain fraction (namely P(A1 |Z )) of the overall shaded area (namely P(Z ));
this leads to the first equality in Eq. (2.54). And P(A1 and Z ) is also a certain fraction
(namely P(Z |A1)) of the leftmost (walking) rectangle area (namely P(A1)); this leads
to the second equality in Eq. (2.54).
Said in another way, the number of guitar players who are walkers equals the num-
ber of walkers who are guitar players. This common number equals the area of the
darkly shaded rectangle (which is the probability P(A1 and Z )) multiplied by the total
number of people. Note that the first sentence above is not true (in general) if the
word “number” is replaced by “fraction.” That is, it is not true that the fraction of
guitar players who are walkers equals the fraction of walkers who are guitar players.
Equivalently, it is not true that P(A1 |Z ) = P(Z |A1). Instead, these two conditional
probabilities are related according to Eq. (2.51).

5. In Section 2.4 we solved the game-show problem, the prosecutor’s fallacy, and the
boy/girl problem without using Bayes’ theorem. However, if we had used the theorem,
the reasoning would have been basically the same, just as the reasoning that led to
Eq. (2.58) in the “False positives” example was basically the same as the reasoning that
led to Eq. (2.61). We chose to discuss the problems in Section 2.4 before discussing
Bayes’ theorem, so that it would be clear that the problems are still perfectly solvable
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even if you’ve never heard of the theorem. If you want to solve the prosecutor’s fallacy
by explicitly using Bayes’ theorem, see Problem 2.21. ♣

2.6 Stirling’s formula
Stirling’s formula gives an approximation to n! that is valid for large n, in the sense
that the larger n is, the better the approximation is. By “better,” we mean that as n
gets large, the approximation gets closer and closer to n! in a multiplicative sense
(as opposed to an additive sense). That is, the ratio of the approximation and n!
approaches 1. (The additive difference between the approximation and n! gets larger
and larger as n grows, but we don’t care about that.) Stirling’s formula is given by:

n! ≈ nne−n
√

2πn (Stirling’s formula) (2.64)

Here e is the base of the natural logarithm, equal to e ≈ 2.71828. See Appendix B
for a discussion of e, often referred to as Euler’s number. There are various proofs
of Stirling’s formula, but they generally involve calculus, so we’ll just accept the
formula here. It does indeed give an accurate approximation to n! (an extremely
accurate one, if n is large), as you can see from Table 2.6, where S(n) stands for the
nne−n

√
2πn Stirling approximation. Even if n is just 10, the approximation is off

by only about 0.8%. And although there is never any need to use the formula for
small numbers like 1 or 5, it works surprisingly well in those cases too.

n n! S(n) S(n)/n!
1 1 0.922 0.922
5 120 118.0 0.983

10 3.629 · 106 3.599 · 106 0.992
100 9.3326 · 10157 9.3249 · 10157 0.9992

1000 4.02387 · 102567 4.02354 · 102567 0.99992

Table 2.6: Showing the accuracy of Stirling’s formula.

You will note that for the powers of 10 in the table, the ratios of S(n) to n! all
take the same form, namely decimals with an increasing number of 9’s and then a 2.
It’s actually not a 2, because we rounded off, but it’s essentially the same rounding
off for all the numbers. This isn’t a coincidence. It follows from a more accurate
version of Stirling’s formula, but we won’t get into that here.

Stirling’s formula will be critical in Chapter 5 when we talk about approxima-
tions to certain probability distributions. But for now, it is relevant when dealing
with binomial coefficients of large numbers, because these binomial coefficients in-
volve the factorials of large numbers. There are two main benefits to using Stirling’s
formula:

• Depending on the type of calculator you have, you might get an error mes-
sage when you plug in the factorial of a number that is too big. Stirling’s
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formula allows you to avoid this problem if you first simplify the expression
that results from Stirling’s formula (using the letter n to stand for the specific
number you’re dealing with), and then plug the simplified result into your
calculator.

• If you use Stirling’s formula and arrive at a simplified answer in terms of n
(we’ll call this a symbolic answer since it’s written in terms of the symbol n
instead of specific numbers), you can then plug in your specific value of n.
Or you can plug in any other value, for that matter. The benefit of having a
symbolic answer in terms of n is that you don’t need to solve the problem
from scratch every time you’re given a new value of n. You simply need to
plug the new value of n into your symbolic answer.

These two benefits are illustrated in the following example.

Example (50 out of 100): A coin is flipped 100 times. Calculate the probability of
obtaining exactly 50 Heads.

Solution: In 100 flips, there are 2100 possible outcomes (all equally likely), of which(100
50

)
have exactly 50 Heads. The probability of obtaining exactly 50 Heads is there-

fore

P(50) =
1

2100

(
100
50

)
=

1
2100 ·

100!
50! 50!

. (2.65)

Now, although this is the correct answer, your calculator might not be able to handle
the large factorials. But even if it can, let’s use Stirling’s formula so that we can
produce a symbolic answer. To this end, we’ll replace the number 50 with the letter n
(and hence 100 with 2n). In terms of n, we can write down the probability of obtaining
exactly n Heads in 2n flips, and then we can use Stirling’s formula (applied to both n
and 2n) to simplify the result. The first steps of this simplification will actually go in
the wrong direction and create a big mess, but nearly everything will cancel out in the
end. We obtain:

P(n) =
1

22n

(
2n
n

)
=

1
22n ·

(2n)!
n! n!

≈ 1
22n ·

(2n)2ne−2n √2π(2n)(
nne−n

√
2πn

)2

=
1

22n ·
22nn2ne−2n · 2

√
πn

n2ne−2n · 2πn

=
1
√
πn
. (2.66)

A simple answer indeed! And the “π” is a nice touch, too. In our specific case with
n = 50, we have

P(50) ≈ 1
√
π · 50

≈ 0.07979 ≈ 8%. (2.67)

This is small, but not negligible. If we instead have n = 500, we obtain P(500) ≈
2.5%. This is the probability of obtaining exactly 500 Heads in 1000 coin flips. As
noted above, we can just plug in whatever number we want, and not have to redo the
entire calculation!
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The 1/
√
πn result in Eq. (2.66) is extremely clean. It is much simpler than the

expression in Eq. (2.65), and much simpler than the expressions in the first two lines
of Eq. (2.66). True, it’s only an approximate result, but it’s a good one. The exact
result in Eq. (2.65) happens to be about 0.07959, so for n = 50 the ratio of the
approximate result in Eq. (2.67) to the exact result is 1.0025. In other words, the
approximation is off by only 0.25%. That’s plenty good for most purposes.

When you derive a symbolic approximation like Eq. (2.66), you gain something
and you lose something. You lose some truth, of course, because your answer tech-
nically isn’t correct (although invariably its accuracy is quite sufficient). But you
gain a great deal of information about how the answer depends on your input num-
ber, n. And along the same lines, you gain some aesthetics. The resulting symbolic
answer is invariably nice and concise, so it allows you to easily see how the an-
swer depends on n. For example, in our coin-flipping example, the expression in
Eq. (2.66) is proportional to 1/

√
n. This means that if we increase n by a factor

of, say, 100, then P(n) decreases by a factor of
√

100 = 10. So without doing any
work, we can quickly use the P(50) ≈ 8% result to deduce that P(5000) ≈ 0.8%.
In short, there is far more information contained in the symbolic result in Eq. (2.66)
than in the numerical 8% result obtained directly from Eq. (2.65).

2.7 Summary
In this chapter we learned about probability. In particular, we learned:

• The probability of an event is defined to be the fraction of the time the event
occurs in a very large number of identical trials. In many situations the possi-
ble outcomes are all equally likely, in which case the probability of a certain
class of outcomes occurring is

p =
number of desired outcomes

total number of possible outcomes
(for equally likely outcomes)

(2.68)

• The various “and” and “or” rules of probability are:

1. For any two (possibly dependent) events,

P(A and B) = P(A) · P(B |A). (2.69)

2. In the special case of independent events, we have P(B |A) = P(B), so
Eq. (2.69) reduces to

P(A and B) = P(A) · P(B). (2.70)

3. For any two (possibly nonexclusive) events,

P(A or B) = P(A) + P(B) − P(A and B). (2.71)

4. In the special case of exclusive events, we have P(A and B) = 0, so
Eq. (2.71) reduces to

P(A or B) = P(A) + P(B). (2.72)
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• A and B are independent events if any one of the following relations is true:

P(B |A) = P(B),
P(A|B) = P(A),

P(A and B) = P(A) · P(B). (2.73)

• The conditional probabilities P(A|B) and P(B |A) are not equal, in general.

• Two common ways to calculate probabilities are: (1) count up the number of
desired outcomes, along with the total number of possible outcomes, and use
Eq. (2.68) (assuming that the outcomes are equally likely), and (2) imagine
things happening in succession (for example, picking seats or rolling dice),
and then multiply the relevant probabilities. The results for some problems,
in particular the Birthday Problem and the Game-Show Problem, might seem
surprising at first, but you can avoid confusion by methodically using one (or
both) of these strategies.

• Bayes’ theorem takes a variety of forms; see Eqs. (2.51)–(2.53). The last of
these is the “general form” of the theorem:

P(Ak |Z ) =
P(Z |Ak ) ·P(Ak )∑
i P(Z |Ai ) ·P(Ai )

. (2.74)

The theorem tells us how the conditional probability P(Ak |Z ) is obtained
from the set of conditional probabilities P(Z |Ai ).

• Stirling’s formula, which gives an approximation to n!, takes the form,

n! ≈ nne−n
√

2πn (Stirling’s formula) (2.75)

This approximation is very helpful for simplifying binomial coefficients. We
will use it a great deal in Chapter 5.

2.8 Exercises
See www.people.fas.harvard.edu/ ˜ djmorin/book.html for a supply of problems
without included solutions.

2.9 Problems
Section 2.1: Definition of probability

2.1. Odds *
If an event occurs with probability p, then the odds in favor of the event
occurring are defined to be “p to (1 − p).” (And similarly, the odds against
the event occurring are defined to be “(1− p) to p.”) In other words, the odds
are simply the ratio of the probabilities of the event occurring (namely p) and
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not occurring (namely 1−p). It is customary to write “p : (1−p)” as shorthand
for “p to (1− p).” (The odds are sometimes also written as the ratio p/(1− p).
But this fraction can look like a probability, which may cause confusion, so
we’ll avoid this notation.) In practice, the probabilities p and 1− p are usually
multiplied through by the smallest number that turns them into integers. For
example, odds of 1/3 : 2/3 are generally written as 1 : 2. Find the odds of the
following events:

(a) Getting a Heads on a coin toss.

(b) Rolling a 5 on a die.

(c) Rolling a multiple of 2 or 3 on a die.

(d) Randomly picking a day of the week with more than six letters.

Section 2.2: The rules of probability

2.2. Rules for three events **

(a) Consider three events, A, B, and C. If they are all independent of each
other, show that

P(A and B and C) = P(A) · P(B) · P(C). (2.76)

(b) If they are (possibly) dependent, show that

P(A and B and C) = P(A) · P(B |A) · P(C |A and B). (2.77)

(c) If they are all mutually exclusive, show that

P(A or B or C) = P(A) + P(B) + P(C). (2.78)

(d) If they are (possibly) nonexclusive, show that

P(A or B or C) = P(A) + P(B) + P(C)
− P(A and B) − P(A and C) − P(B and C)
+ P(A and B and C). (2.79)

2.3. “Or” rule for four events ***
Parts (a), (b), and (c) of Problem 2.2 generalize quickly to more than three
events, but part (d) is tricker. Derive the “or” rule for four (possibly) nonex-
clusive events. That is, derive the rule analogous to Eq. (2.79).

2.4. Red and blue balls *
Show that the second expression in Eq. (2.9), with A = Red1 and B = Blue2,
gives the correct result of 3/10 for P(Red1 and Blue2) in the “balls in a box”
example on page 64.
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2.5. Dependent events *

Calculate the overall probability of B occurring in the scenario described by
Fig. 2.16.

A

B

B

not A

not B

not B

A and B

A and not B
not A and not B

20% of the width

40% of 
the height

70% of 
the height

B and not A

Figure 2.16: A hypothetical probability square.

2.6. A single horizontal line *

There is an asymmetry in Fig. 2.16. Because there is a single vertical line but
two horizontal lines, it is easy to read off the P(A) and P(not A) probabilities,
but not easy to read off the P(B) and P(not B) probabilities. Hence the
calculation in Problem 2.5. Redraw Fig. 2.16 with a single horizontal line
and two vertical lines (while keeping the areas (probabilities) of the four sub-
rectangles the same, of course).

2.7. Proofreading **

Two people each proofread the same book. One person finds 100 errors, and
the other finds 60. There are 20 errors common to both people. Assume that
all errors are equally likely to be found (which is undoubtedly not true in
practice), and also that the discovery of an error by one person is independent
of the discovery of that error by the other person. Given these assumptions,
roughly how many errors does the book have? Hint: Draw a picture similar
to Fig. 2.1, and then find the probability of each person finding a given error.

Section 2.3: Examples

2.8. Red balls, blue balls **

Three boxes sit on a table. One box contains two red balls, another contains
two blue balls, and the third contains one red ball and one blue ball. You
choose one of the boxes at random, and then you draw a ball from that box.
If it turns out to be a red ball, what is the probability that the other ball in the
box is also red?
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2.9. Sock pairs **

(a) Four red socks and four blue socks are in a drawer. You reach in and
pull out two socks at random. What is the probability that you obtain a
matching pair?

(b) Answer the same question, but now in the general case with n red socks
and n blue socks.

(c) Presumably you answered the above questions by counting the relevant
pairs of socks. Can you think of a quick probability argument, requiring
no counting, that gives the answer to part (b) (and part (a))?

2.10. Sock pairs, again **

(a) As in Problem 2.9, four red socks and four blue socks are in a drawer.
You reach in and pull out two socks at random. You then reach in and
pull out two more socks (without looking at the socks in the first pair).
What is the probability that the second pair you pull out is a matching
pair? Answer this by calculating the probabilities, given that the first
pair is (or is not) a matching pair.

(b) You should find that the answer to part (a) is the same as the answer to
part (a) of Problem 2.9. Can you think of a quick probability argument,
requiring no counting, that explains why this is the case? The reasoning
will work in the general case with n red socks and n blue socks. And
it will also work if you draw a third pair, or a fourth pair, etc. (without
looking at any of the other pairs).

2.11. At least one 6 **
Three dice are rolled. What is the probability of obtaining at least one 6? We
solved this in Section 2.3.1, but your task here is to solve it the long way, by
adding up the probabilities of obtaining exactly one, two, or three 6’s.

2.12. At least one 6, by the rules **
Three dice are rolled. What is the probability of obtaining at least one 6? We
solved this in Section 2.3.1, and again in Problem 2.11. But your task here is
to solve it by using Eq. (2.79) from Problem 2.2, with each of the three letters
in that formula standing for a 6 on each of the three dice.

2.13. Rolling sixes **
This problem was posed by Samuel Pepys to Isaac Newton in 1693 and is
therefore known as the Newton-Pepys problem.

(a) 6 dice are rolled. What is the probability of obtaining at least one 6?

(b) 12 dice are rolled. What is the probability of obtaining at least two 6’s?

(c) 18 dice are rolled. What is the probability of obtaining at least three 6’s?
Which of the above three probabilities is the largest?
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Section 2.4: Four classic problems

2.14. Exactly one pair **
If there are 23 people in a room, what is the probability that exactly two of
them have a common birthday? That is, we don’t want two different pairs
with common birthdays, or three people with a common birthday, etc.

2.15. My birthday **

(a) You are in a room with 100 other people. Let p be the probability that
at least one of these 100 people has your birthday. Without doing any
calculations, state whether p is larger, smaller, or equal to, 100/365.

(b) Now calculate the exact value of p.

2.16. My birthday, again **
We saw at the end of Section 2.4.1 that 253 is the answer to the question,
“How many people (in addition to me) need to be present in order for there
to be at least a 1/2 chance that someone else has my birthday?” We solved
this by finding the smallest n for which (364/365)n is less than 1/2. Answer
this question again, by making use of the approximation in Eq. (7.14) in Ap-
pendix C. What is the answer in the general case where there are N days in a
year instead of 365? Assume that N is large.

2.17. My birthday, yet again **
With 253 other people in a room, what is the probability that exactly one of
these people has your birthday? Exactly two? Exactly three?

2.18. A random game-show host **
Consider the following variation of the Game-Show Problem we discussed
in Section 2.4.2. A game-show host offers you the choice of three doors.
Behind one of these doors is the grand prize, and behind the other two are
goats. The host announces that after you select a door (without opening it),
he will randomly open one of the other two doors. You select a door. The
host then randomly opens one of the other doors, and the result happens to be
a goat. He then offers you the chance to switch your choice to the remaining
door. Should you switch or not? Or does it not matter?

2.19. Boy/girl problem with general information ***
This problem is an extension of the Boy/Girl Problem from Section 2.4.4.
You should study that problem thoroughly before tackling this one. As in
the original versions of the problem, assume that all processes are completely
random. The new variation is the following:

You bump into a random person on the street who says, “I have two children.
At least one of them is a boy whose birthday is in the summer.” What is the
probability that the other child is also a boy?
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What if the clause is changed to, “whose birthday is on August 11th”? Or
“who was born during a particular minute on August 11th”? Or more gen-
erally, “who has a particular characteristic that occurs with probability p”?
Hint: Make a table of all of the various possibilities, analogous to the tables
in Section 2.4.4.

Section 2.5: Bayes’ theorem

2.20. A second test **
Consider the setup in the “False positives” example in Section 2.5. If we
instead perform two successive tests on each person, what is the probability
that a person who tests positive both times actually has the disease?

2.21. Bayes’ theorem for the prosecutor’s fallacy **
In Section 2.4.3 we discussed the prosecutor’s fallacy. Explain the fallacy
again here, but now by using Bayes’ theorem. In particular, determine P(I|D)
(the probability of being innocent, given that the description is satisfied) by
drawing a figure analogous to Fig. 2.14

2.22. Black balls and white balls **
One box contains two black balls, and another box contains one black ball
and one white ball. You pick one of the boxes at random and draw a ball n
times, with replacement after each draw. If a black ball is drawn all n times,
what is the probability that you picked the box with two black balls?

2.10 Solutions
2.1. Odds

(a) The probability of getting a Heads is 1/2, as is the probability of not getting a
Heads. So the desired odds are 1/2 : 1/2, or equivalently 1 : 1. These are known
as “even odds.”

(b) The probability of rolling a 5 is 1/6, and the probability of not rolling a 5 is 5/6.
So the desired odds are 1/6:5/6, or equivalently 1 :5.

(c) There are four desired outcomes (2, 3, 4, 6), so the “for” and “against” probabil-
ities are 4/6 and 2/6, respectively. The desired odds are therefore 4/6 : 2/6, or
equivalently 2 :1.

(d) Tuesday, Wednesday, Thursday, and Saturday all have more than six letters, so
the “for” and “against” probabilities are 4/7 and 3/7, respectively. The desired
odds are therefore 4/7:3/7, or equivalently 4 :3.
Note that to convert from odds to probability, the odds of a : b in favor of an event
occurring are equivalent to a probability of a/(a + b) that the event occurs.

2.2. Rules for three events

(a) We can use the same type of reasoning that we used in Section 2.2.1. If we
perform a large number of trials, then A occurs in a fraction P(A) of them. (It is
understood here that the words “on average” follow all statements of this form.)
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And then B occurs in a fraction P(B) of these trials, because the events are
independent, which means that the occurrence of A doesn’t affect the probability
of B. So the fraction of the total number of trials where A and B both occur is
P(A) · P(B). And then C occurs in a fraction P(C) of these trials, because C
is independent of A and B. So the fraction of the total number of trials where
all three of A, B, and C occur is P(A) · P(B) · P(C). The desired probability is
therefore P(A) · P(B) · P(C). If you want to visualize this geometrically, you’ll
need to use a cube instead of the square in Fig. 2.1.
This reasoning can easily be extended to an arbitrary number of independent
events. The probability of all of the events occurring is simply the product of all
of the individual probabilities.

(b) The reasoning in part (a) works again, with only slight modifications. If we
perform a large number of trials, then A occurs in a fraction P(A) of them.
And then B occurs in a fraction P(B |A) of these trials, by definition. So the
fraction of the total number of trials where A and B both occur is P(A) ·P(B |A).
And then C occurs in a fraction P(C |A and B) of these trials, by definition.
So the fraction of the total number of trials where all three of A, B, and C
occur is P(A) · P(B |A) · P(C |A and B). The desired probability is therefore
P(A) · P(B |A) · P(C |A and B).
Again, this reasoning can easily be extended to an arbitrary number of (pos-
sibly) dependent events. For four events, we just need to tack on the factor
P(D |A and B and C), and so on.

(c) Since the events are all mutually exclusive, we don’t have to worry about any
double counting. The total number of trials where A or B or C occurs is simply
the sum of the number of trials where A occurs, plus the number where B oc-
curs, plus the number where C occurs. The same statement must be true if we
substitute the word “fraction” for “number,” because the fractions are related
to the numbers via division by the total number of trials. And since the frac-
tions are the probabilities, we end up with the desired result, P(A or B or C) =
P(A) + P(B) + P(C). If there are more events, we simply have more terms in
the sum.

(d) This rule is more involved than the preceding three. Let’s think of the proba-
bilities in terms of areas, as we did in Section 2.2.2. The generic situation for
three events is shown in Fig. 2.17. For simplicity, we’ve chosen the three re-
gions to be circles with the same size, but this of course isn’t necessary. The
various overlap regions are shown, with the juxtaposition of two letters stand-
ing for their intersection. So AB means “A and B.” The labels might appear to
suggest otherwise, but remember that A includes the whole circle, and not just
the white part. Similarly, AB includes the dark ABC region too, and not just the
lighter region where the AB label is.
Our goal is to determine the total area contained in the three circles, because
this represents the probability of “A or B or C.” We can add up the areas of the
A, B, and C circles, but then we need to subtract off the areas that we double
counted. These areas are the pairwise overlaps of the circles, that is, AB, AC,
and BC (remember that each of these regions includes the dark ABC region in
the middle). At this point, we’ve correctly counted all of the white and light
gray regions exactly once. But what about the ABC region in the middle? We
counted it three times in the A, B, and C regions, but then we subtracted it off
three times in the AB, AC, and BC regions. So at the moment, we haven’t
counted it at all. We therefore need to add it on once. Then every part of the
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A
AB

AC BC

ABC

B

C

Figure 2.17: Venn diagram for three nonexclusive events.

union of the circles will be counted exactly once. The total area is therefore

Total area = A + B + C − AB − AC − BC + ABC, (2.80)

where we are using the regions’ labels to stand for their areas. Translating this
from a statement about areas to a statement about probabilities yields the desired
result,

P(A or B or C) = P(A) + P(B) + P(C)

− P(A and B) − P(A and C) − P(B and C)

+ P(A and B and C). (2.81)

2.3. “Or” rule for four events

As in Problem 2.2(d), we’ll discuss things in terms of areas. If we add up the areas of
four regions, A, B, C, and D, then we have double counted the pairwise overlaps, so
we need to subtract these off. There are six of these regions: AB, AC, AD, BC, BD,
and CD. But then what about the triple overlaps, such as ABC? We counted ABC
three times in the A, B, and C regions, but then we subtracted it off three times in the
AB, AC, and BC regions. So at the moment, we haven’t counted it at all. We therefore
need to add it on once. (This is the same reasoning as in Problem 2.2(d).) Likewise
for ABD, ACD, and BCD. Finally, what about the quadruple overlap region, ABCD?
We counted this four times in the single regions (like A), then we subtracted it off six
times in the double regions (like AB), and then we added it on four times in the triple
regions (like ABC). So at the moment, we have counted it 4 − 6 + 4 = 2 times. Since
we want to count it only one time, we need to subtract it off once. The total area is
therefore

Total area = A + B + C + D

− AB − AC − AD − BC − BD − CD

+ ABC + ABD + ACD + BCD

− ABCD. (2.82)
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Writing this in terms of probabilities gives the result,

P(A or B or C or D) = P(A) + P(B) + P(C) + P(D)

− P(A and B) − P(A and C) − P(A and D)

− P(B and C) − P(B and D) − P(C and D)

+ P(A and B and C) + P(A and B and D)

+ P(A and C and D) + P(B and C and D)

− P(A and B and C and D). (2.83)

Remark: You might think that it’s a bit of a coincidence that at every stage, we either
overcounted or undercounted each region once. Equivalently, the coefficient of every
term in Eqs. (2.82) and (2.83) is ±1. The same thing is true in the case of three events
in Eqs. (2.80) and (2.81). Likewise in the case of two events in Eq. (2.18), and trivially
in the case of one event. Is it also true for larger numbers of events? Indeed it is, and
the binomial expansion is the key to understanding why.
We won’t go through every step, but if you want to think about it, the main points
to realize are: First, the numbers 4, 6, and 4 in the above counting in the four-event
case are actually the binomial coefficients

(4
1

)
,
(4
2

)
,
(4
3

)
. This makes sense because, for

example, the number of regions of double overlap (like AB) that contain the region
ABCD is simply the number of ways to pick two letters from four letters, which is(4
2

)
. Second, the “alternating sum”

(4
1

)
−

(4
2

)
+

(4
3

)
equals 2 (which means that we have

overcounted the ABCD region by one time), because this is what you obtain when
you expand the righthand side of 0 = (1 − 1)4 with the binomial expansion. (This is a
nice little trick.) And third, you can show how this generalizes to a larger number n of
events. For even n, the alternating sum of the relevant binomial coefficients is 2, as we
just saw for n = 4. For odd n, the alternating sum is zero, which means that we have
undercounted by one time. (The relevant binomial coefficients are all but the first and
last in the expansion of (1− 1)n , and these two coefficients are either 1 and 1 for even
n, or 1 and −1 for odd n.) For example,

(5
1

)
−

(5
2

)
+

(5
3

)
−

(5
4

)
= 0. This “alternating

sum” rule for counting is known as the inclusion–exclusion principle. ♣
2.4. Red and blue balls

By counting the various kinds of pairs in Table 2.1, we find P(Blue2) = 12/20 = 3/5
(by looking at all 20 pairs), and P(Red1 |Blue2) = 6/12 = 1/2 (by looking at only the
12 pairs below the horizontal line). So we have

P(Red1 and Blue2) = P(Blue2) · P(Red1 |Blue2)

=
3
5
· 1

2
=

3
10
, (2.84)

in agreement with Eq. (2.10). As mentioned in the third remark on page 66, it still
makes sense to talk about P(Red1 |Blue2), even though the second pick happens after
the first pick.

2.5. Dependent events
First solution: This problem is equivalent to finding the fraction of the total area
that lies above the horizontal line segments in Fig. 2.16. The upper left region is
40% = 2/5 of the area that lies to the left of the vertical line, which itself is 20% = 1/5
of the total area. And the upper right region is 70% = 7/10 of the area that lies to the
right of the vertical line, which itself is 80% = 4/5 of the total area. The fraction of
the total area that lies above the horizontal line segments is therefore

1
5
· 2

5
+

4
5
· 7

10
=

2
25
+

14
25
=

16
25
= 64%. (2.85)
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Second solution: We’ll use the rule in Eq. (2.5) twice. First, note that

P(B) = P(A and B) + P
(
(not A) and B

)
. (2.86)

This is true because either A happens or it doesn’t. We can apply Eq. (2.5) to each of
the two terms in Eq. (2.86) to obtain

P(B) = P(A) · P(B |A) + P(not A) · P(B | not A)

=
1
5
· 2

5
+

4
5
· 7

10
=

2
25
+

14
25
=

16
25
= 64%, (2.87)

which is exactly the same equation as in the first solution. This is no surprise, of
course, because the two solutions are actually same. They are simply presented in a
different language. Comparing the solutions makes it clear how conditional probabil-
ities like P(B |A) are related to fractional areas.

2.6. A single horizontal line
As usual, let the total area of the square in Fig. 2.16 be 1. Then from the given lengths
along the sides of the square, we find that the upper two areas (probabilities) are 0.08
and 0.56, for a total of 0.64; this is P(B). And the lower two areas are 0.12 and
0.24, for a total of 0.36; this is P(not B). The single horizontal line in Fig. 2.18 must
therefore be 64% of the way down from the top of the square. And the two vertical
lines must be 0.08/0.64 = 12.5% and 0.12/0.36 = 33.3% of the way from the left
side. The four areas are the same (by construction) as in Fig. 2.16. It’s just that in
Fig. 2.18, the P(B) = 0.64 probability is clear by simply looking at the figure. If we
wanted to calculate P(A) from Fig. 2.18, we would have to do a calculation analogous
to the one we did in Problem 2.5.

A

B

not A

A not A

not B

A and B

A and not B

not A and not B

12.5% of the width

33.3% of the width

64% of 
the height

B and not A

Figure 2.18: Redrawing Fig. 2.16 with a single horizontal line.

2.7. Proofreading
The breakdown of the errors is shown in Fig. 2.19. If the two people are labeled A and
B, then 20 errors are found by both A and B, 80 are found by A but not B, and 40 are
found by B but not A.
If we consider only the 100 errors found by A, we see that 20 of them are found by
B, which is a 1/5 fraction. Since we are assuming that B finding a given error is
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A

B

not A

not B

20

80

40

Figure 2.19: Breakdown of errors found by A and B.

independent of A finding it, we see that if B finds 1/5 of the errors found by A, then he
must find 1/5 of the complete set of errors (on average). So 1/5 is the probability that
B finds any given error. Therefore, since we know that B found a total of 60 errors,
the total number N of errors in the book must be given by 60/N = 1/5 =⇒ N = 300.
The unshaded region in Fig. 2.19 therefore represents 300−80−20−40 = 160 errors.
This is the number that both people missed.
We can also do things the other way around. If we consider only the 60 errors found
by B, we see that 20 of them are found by A, which is a 1/3 fraction. By the same
reasoning as above, this 1/3 is the probability that A finds any given error. And since
we know that A found a total of 100 errors, the total number N must be given by
100/N = 1/3 =⇒ N = 300, as above.
Another method (although in the end it’s the same as the above methods) is the fol-
lowing. Let the area of the unshaded region in Fig. 2.19 be x. Then if we look at how
the areas of the two vertical rectangles are divided by the horizontal line, we see that
the ratio of x to 40 must equal the ratio of 80 to 20. So x = 160, as we found above.
Alternatively, if we look at how the areas of the two horizontal rectangles are divided
by the vertical line, we see that the ratio of x to 80 must equal the ratio of 40 to 20. So
again, x = 160.
It is quite fascinating that you can get a sense of the total number of errors just by
comparing the results of two readers’ independent proofreadings. There is no need
to actually find all the errors and count them up, if you only want to make a rough
estimate. The larger the numbers involved, the better the estimate, in a multiplicative
sense.

2.8. Red balls, blue balls
Let’s ignore for a moment the fact that you happen to draw a red ball. Without this
condition, there are six equally likely results of the process; you are equally likely to
draw any of the six balls in the boxes. This fact can be argued by symmetry (there is
nothing special about any of the balls). Or you can break down the probabilities: you
have a 1/3 chance of drawing a given box, and then a 1/2 chance of drawing a given
ball in that box. So all of the probabilities are equal to (1/3)(1/2) = 1/6.
Let’s use the numbers 1 through 6 to label the balls: 1 and 2 are the two red balls in the
first box, 3 and 4 are the two blue balls in the second box, and 5 and 6 are, respectively,
the red and blue balls in the third box. If you play n games, where n is large, you will
obtain approximately n/6 of each of the numbers 1 through 6.
Let’s now invoke the fact that you draw a red ball. This means that the n/2 games
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where you draw a blue ball (3, 4, and 6) aren’t relevant. Only the n/2 games where
you draw a red ball (1, 2, and 5) are relevant. And of these games, 2/3 have the
ball coming from the first box (in which case the other ball is red), and 1/3 have the
ball coming from the third box (in which case the other ball is blue). The desired
probability that the other ball is red is therefore 2/3.

Remarks:

1. The statement of the problem asks for the probability that the other ball in the
box is also red, given that you draw a red ball. Since the word “probability” is
used, it is understood that we must consider a large number of trials and look
at what happens, on average, in these trials. Although the setup in the problem
mentions only one trial, we must consider many. The given question, namely
“If it turns out to be a red ball, what is the probability that the other ball in the
box is also red?,” is really just shorthand for the question, “If you run a large
number of trials and look only at the ones where the drawn ball is red, in what
fraction of these trials is the other ball in the box also red?”

2. In the statement of the problem, the clause, “You choose one of the boxes at
random,” is critical. Consider the alternative question: “Someone gives you a
box containing either two red balls, two blue balls, or one of each. You draw a
ball from this box. If it turns out to be a red ball, what is the probability that the
other ball in the box is also red?” This question is unanswerable, because for
all you know, the person always gives you a box with two red balls. Or perhaps
she always gives you a box with one ball of each color, and you just happened
to pick the red ball. Maybe it’s 90% the former and 10% the latter, or maybe it
depends on the day of the week. There is no way to tell what happens in a large
number of trials. Even if you do perform a large number of trials and throw
away the ones where you pick a blue ball, there is still no way to determine the
probability associated with a future trial, because at any point the person might
change her rules for the type of box she gives you.

3. What if, instead of three equally likely boxes sitting on the table, we have a
single box and we color each of the two balls red or blue, based on coin tosses?
There are then four equally likely possibilities for the contents of the box: RR,
RB, BR, and BB. We therefore effectively have four equally likely boxes instead
of three. You can show, with a quick modification of our original reasoning, that
the answer is now 1/2 instead of 2/3.
This result of 1/2 makes intuitive sense, due to the following alternative rea-
soning. Imagine picking a ball, without looking at it. The other ball has a 1/2
chance of being red, because its color is determined by a coin flip. Now look at
the ball you picked. The other ball still has a 1/2 chance of being red, because
your act of looking at the ball you picked can’t change the color of the other
ball. Therefore, if the ball you picked is red, then the other ball has a 1/2 chance
of being red. Of course, the same thing is true if the ball you picked is blue, but
those trials don’t have anything to do with the given setup where you pick a red
ball. ♣

2.9. Sock pairs

(a) The total number of possible pairs that you can draw from the eight socks in
the drawer is

(8
2

)
= 28. The number of ways that you can draw a red pair from

the four red socks is
(4
2

)
= 6. Likewise for the four blue socks. So there are
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12 ways in all that you can draw a matching pair. The desired probability is
therefore 12/28 = 3/7.

(b) If there are now n red and n blue socks in the drawer, the total number of possible
pairs that you can draw is

(2n
2

)
= 2n(2n − 1)/2. The number of ways that you

can draw a red pair from the n red socks is
(
n
2

)
= n(n− 1)/2. Likewise for the n

blue socks. So there are n(n − 1) ways in all that you can draw a matching pair.
The desired probability is therefore

n(n − 1)
2n(2n − 1)/2

=
n − 1

2n − 1
. (2.88)

If n = 4, this yields the probability of 3/7 that we obtained in part (a).

(c) For the quick probability argument, imagine drawing the two socks in succes-
sion. The first sock is either red or blue. Whichever color it is, there are now
n − 1 socks remaining of that color. And there are 2n − 1 socks remaining in
all. So the probability that the second sock has the same color as the first is
(n − 1)/(2n − 1).
For large n, this result approaches 1/2. This makes sense because if n is large,
the removal of the first sock from the drawer only negligibly changes the distri-
bution of socks from 50-50. So you’re basically flipping a coin with the second
sock.

2.10. Sock pairs, again

(a) We know from Problem 2.9 that there is a 3/7 probability of obtaining a match-
ing first pair, and hence a 4/7 probability of obtaining a non-matching first pair.
So there is a 3/7 probability that we are left with two socks of one color and
four of the other, and there is a 4/7 probability that we are left with three socks
of each color.
In the first of these two cases, there are

(6
2

)
= 15 possible pairs we can draw

for our second pair, of which
(2
2

)
+

(4
2

)
= 1 + 6 = 7 are matching pairs. The

probability that the second pair is matching, given that the first pair is matching
(which happens with probability 3/7), is therefore 7/15.
Similarly, in the second of the two cases, there are again

(6
2

)
= 15 possible pairs

we can draw for our second pair, of which
(3
2

)
+

(3
2

)
= 3 + 3 = 6 are matching

pairs. The probability that the second pair is matching, given that the first pair
isn’t matching (which happens with probability 4/7), is therefore 6/15.
The desired probability (that the second pair is matching) is therefore

3
7
· 7

15
+

4
7
· 6

15
=

21 + 24
105

=
3
7
. (2.89)

You can apply the same reasoning to the general case with n red and n blue
socks, but it gets a bit messy. In any event, there is no need to work through the
algebra, because there is a much quicker line of reasoning in part (b) below.

(b) We’ll be general from the start here. That is, we’ll assume that we have n socks
of each color, and that we successively draw n pairs until there are no socks left
in the drawer. We claim that all n pairs have the same (n−1)/(2n−1) probability
of matching, assuming that we haven’t looked at any of the other pairs yet. This
assumption is important; we must not have any knowledge of the other pairs. If
we do have knowledge, then this affects the probabilities for future pairs. For
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example, in part (a) above, we saw that if the first pair is matching, the second
pair has a 7/15 chance of matching. But if the first pair isn’t matching, the
second pair has a 6/15 chance of matching.
Imagine drawing the 2n socks in succession and lining them up on a table. We
can label them as s1, s2, s3, . . . , s2n . We can then divide them into n pairs,
(s1, s2), (s3, s4), . . . , (s2n−1, s2n ). If we ask for the probability that, say, the
third pair (socks s5 and s6) is matching (assuming we haven’t looked at any
of the other pairs), we can now imagine looking at this particular pair. And
if we look at s5 first and then at s6, we can use the reasoning in part (c) of
Problem 2.9 to say that the probability of a matching pair is (n − 1)/(2n − 1).
This reasoning works for any of the n pairs; there is nothing special about a
specific pair (assuming we haven’t looked at any of the other pairs). All pairs
therefore have equal (n − 1)/(2n − 1) probabilities of being matching pairs.
The point here is that if you don’t look at the pairs you’ve already picked, then
for all practical purposes the present pair you’re picking is the first pair. The
order in which you draw the pairs therefore doesn’t matter, so the desired prob-
abilities are all equal.

2.11. At least one 6
The probability of obtaining exactly one 6 equals

(3
1

)
· (1/6)(5/6)2, because there are(3

1

)
= 3 ways to pick which die is the 6. And then given this choice, there is a 1/6

chance that the die is in fact a 6, and a (5/6)2 chance that both of the other dice are
not 6’s.
The probability of obtaining exactly two 6’s equals

(3
2

)
· (1/6)2(5/6), because there

are
(3
2

)
= 3 ways to pick which two dice are the 6’s. And then given this choice, there

is a (1/6)2 chance that they are in fact both 6’s, and a 5/6 chance that the other die is
not a 6.
The probability of obtaining exactly three 6’s equals

(3
3

)
· (1/6)3, because there is just(3

3

)
= 1 way for all three dice to be 6’s. And then there is a (1/6)3 chance that they

are in fact all 6’s.
The total probability of obtaining at least one six is therefore(

3
1

)
·
(

1
6

) (
5
6

)2
+

(
3
2

)
·
(

1
6

)2 (
5
6

)
+

(
3
3

)
·
(

1
6

)3
=

75
216
+

15
216
+

1
216

=
91
216
, (2.90)

in agreement with the result in Section 2.3.1.

Remark: If we add this result to the probability of obtaining zero 6’s, which is (5/6)3,
the sum is 1, because we have now taken into account every possible outcome. This
fact was what we used to solve the problem the quick way in Section 2.3.1, after all.
But let’s pretend that we don’t know the sum is 1, and let’s verify this explicitly. If we
write (5/6)3 suggestively as

(3
0

)
· (5/6)3, then our goal is to show that(

3
0

)
·
(

5
6

)3
+

(
3
1

)
·
(

1
6

) (
5
6

)2
+

(
3
2

)
·
(

1
6

)2 (
5
6

)
+

(
3
3

)
·
(

1
6

)3
= 1. (2.91)

This is indeed a true statement, because the lefthand side is simply the binomial ex-
pansion of (5/6 + 1/6)3 = 1. This makes it clear why the sum of the probabilities of
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the various outcomes will still be 1, even if we have, say, an eight-sided die (again,
forgetting that we know intuitively that the sum must be 1). The only difference is
that we now have the expression (7/8 + 1/8)3 = 1, which is still true. And any other
exponent (that is, any other number of rolls) will also yield a sum of 1, as we know it
must. ♣

2.12. At least one 6, by the rules
We’ll copy Eq. (2.79) here:

P(A or B or C) = P(A) + P(B) + P(C)

− P(A and B) − P(A and C) − P(B and C)

+ P(A and B and C). (2.92)

The lefthand side of this equation is the probability of obtaining at least one 6. (Re-
member that the “or” is the “inclusive or.”) So our task is to evaluate the righthand
side, which involves three different types of terms.
The probability of obtaining a 6 on any given die (without caring what happens with
the other two dice) is 1/6, so

P(A) = P(B) = P(C) =
1
6
. (2.93)

The probability of obtaining 6’s on two given dice (without caring what happens with
the third die) is (1/6)2, so

P(A and B) = P(A and C) = P(B and C) =
1
36
. (2.94)

The probability of obtaining 6’s on all three dice is (1/6)3, so

P(A and B and C) =
1

216
. (2.95)

Eq. (2.92) therefore gives the probability of obtaining at least one 6 as

3 · 1
6
− 3 · 1

36
+

1
216
=

108 − 18 + 1
216

=
91
216
, (2.96)

in agreement with the result in Section 2.3.1 and Problem 2.11.

2.13. Rolling sixes

(a) In all three parts of this problem, there are far fewer ways to fail to obtain the
specified number of 6’s than to succeed. So we’ll calculate the probability of
failure and then subtract that from 1 to obtain the probability of success.
If 6 dice are rolled, the probability of obtaining zero 6’s is (5/6)6. The proba-
bility of obtaining at least one 6 is therefore

1 −
(

5
6

)6
= 0.665. (2.97)

(b) If 12 dice are rolled, the probability of obtaining zero 6’s is (5/6)12, and the
probability of obtaining exactly one 6 is

(12
1

)
(1/6)1(5/6)11, because there are(12

1

)
possibilities for the one die that shows a 6. The probability of obtaining at

least two 6’s is therefore

1 −
(

5
6

)12
−

(
12
1

) (
1
6

)1 (
5
6

)11
= 0.619. (2.98)
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(c) Similarly, if 18 dice are rolled, the probability of obtaining zero 6’s is (5/6)18,
the probability of obtaining exactly one 6 is

(18
1

)
(1/6)1(5/6)17, and the prob-

ability of obtaining exactly two 6’s is
(18

2

)
(1/6)2(5/6)16. The probability of

obtaining at least three 6’s is therefore

1 −
(

5
6

)18
−

(
18
1

) (
1
6

)1 (
5
6

)17
−

(
18
2

) (
1
6

)2 (
5
6

)16
= 0.597. (2.99)

We see that the probability in part (a) is the largest.

Remark: We can also pose the problem with larger numbers of rolls. For
example, if 600 dice are rolled, what is the probability of obtaining at least
100 6’s? Or more generally, if 6n dice are rolled, what is the probability of
obtaining at least n 6’s? From the same type of reasoning as above, the answer
in the general case is

1 −
n−1∑
k=0

(
6n
k

) (
1
6

)k (
5
6

)6n−k
. (2.100)

For large n, it is intractable to evaluate this sum by hand. But it’s easy to use a
computer to evaluate it for any n. For n = 10, 100, and 1000 we obtain prob-
abilities of, respectively, 0.554, 0.517, and 0.505. These probabilities decrease
with n, and they appear to approach the nice simple answer of 1/2 in the n → ∞
limit. See Problem 5.2 for an explanation of where this 1/2 comes from. ♣

2.14. Exactly one pair
There are

(23
2

)
possible pairs that can have the common birthday. Let’s look at one

particular pair and calculate the probability that these two people have a common
birthday, while everyone else has a unique birthday. We’ll then multiply this result by(23

2

)
to account for all the possible pairs.

The probability that a given pair has a common birthday is 1/365, because the first
person’s birthday can be chosen to be any day, and then the second person has a 1/365
chance of matching that day. We then need the 21 other people to have 21 different
birthdays, none of which is the same as the pair’s birthday. The first of these people
can end up in any of the remaining 364 days; this happens with probability 364/365.
The second of these people can end up in any of the remaining 363 days; this happens
with probability 363/365. And so on, until the 21st of these people can end up in any
of the remaining 344 days; this happens with probability 344/365.
The total probability that exactly one pair has a common birthday is therefore(

23
2

)
· 1

365
· 364

365
· 363

365
· 362

365
· · · · · 344

365
. (2.101)

Multiplying this out gives 0.363 = 36.3%. This is smaller than the “at least one com-
mon birthday” result of 50.7% that we found in Section 2.4.1 for 23 people, as it must
be. The remaining 50.7%−36.3% = 14.4% probability corresponds to occurrences of
two different pairs with common birthdays, or three people with a common birthday,
etc.

2.15. My birthday

(a) p is smaller than 100/365. If the events “Person A having your birthday” and
“Person B having your birthday,” etc., were all mutually exclusive, then p would
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be equal to 100/365. But these events are not mutually exclusive, because it is
certainly possible for two (or more) of the people to have your birthday. These
multiple-event probabilities are counted twice (or more) in the naive 100/365
result. So they must be subtracted off in order to obtain the correct probability.
The correct probability is therefore smaller than 100/365.
Note that if we replace the number 100 here by 365 (or anything larger), then
the “smaller” answer is obvious, because the probability p is certainly smaller
than 365/365 = 1. This suggests (although it doesn’t prove) that the answer for
the number 100 (or any other number) is “smaller.” The one exception is where
100 is replaced by 1, that is, where there is only one other person in the room.
In this case we don’t have to worry about double counting any probabilities, so
the answer is exactly 1/365.

(b) The probability that no one out of the 100 people has your birthday equals
(364/365)100. The probability that at least one of them does have your birthday
is therefore

p = 1 −
(

364
365

)100
= 0.24. (2.102)

This is indeed smaller than 100/365 = 0.27. It is only slightly smaller, though,
because the multiple-event probabilities are small.

2.16. My birthday, again
We may as well be general right from the start and assume that there are N days
in a year. We can eventually set N = 365. If there are N days in a year, then the
probability that no one out of n people has your birthday equals (1 − 1/N )n . This
is an exact expression, but we can simplify it by making use of the approximation in
Eq. (7.14), namely (1 + a)n ≈ ena . With a ≡ −1/N here, (1 − 1/N )n becomes(

1 − 1
N

)n
≈ e−n/N . (2.103)

Our goal is to have this probability be smaller than 1/2, so that the probability that
someone does have your birthday is larger than 1/2. Taking the log of both sides of
e−n/N < 1/2 gives

− n
N
< ln

(
1
2

)
=⇒ − n

N
< − ln 2 =⇒ n

N
> ln 2 (2.104)

=⇒ n > N ln 2 ≈ (0.693)N.

Therefore, if n > N ln 2, it is more likely than not that at least one of the n people
has your birthday. For N = 365, we find that N ln 2 is slightly less than 253, so this
agrees with the (exact) result we obtained by simply taking the nth power of 364/365.
Since ln 2 is very close to 0.7, a quick approximation to the answer to this problem is
(0.7)N .

2.17. My birthday, yet again
One person: The probability that a specific person has your birthday is 1/365. Since
we want exactly one person to have your birthday, we want none of the other 252
people to have it; this occurs with probability (364/365)252. There are 253 ways to
pick the specific person who has your birthday, so the total probability that exactly
one of the 253 people has your birthday is

253 · 1
365
·
(

364
365

)252
= 0.347. (2.105)
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Two people: The probability that two specific people have your birthday is (1/365)2.
The probability that none of the other 251 people have your birthday is (364/365)251.
There are

(253
2

)
ways to pick the two specific people who have your birthday, so the

total probability that exactly two of the 253 people have your birthday is(
253

2

) (
1

365

)2 (
364
365

)251
= 0.120. (2.106)

Three people: By similar reasoning, the probability that exactly three of the 253
people have your birthday is(

253
3

) (
1

365

)3 (
364
365

)250
= 0.0276. (2.107)

The pattern is clear. The probability that exactly k people have your birthday is

P(k) =
(
253

k

) (
1

365

)k (
364
365

)253−k
. (2.108)

For k = 0, this gives the (364/365)253 ≈ 1/2 probability (obtained at the end of
Section 2.4.1 and in Problem 2.16) that no one has your birthday. Note that the P(k)
probabilities are simply the terms in the binomial expansion:(

1
365
+

364
365

)253
=

253∑
k=0

(
253

k

) (
1

365

)k (
364
365

)253−k
. (2.109)

Since the lefthand side of this equation equals 1, we see that the sum of the P(k) also
equals 1. This must be the case, of course, because the number of other people who
have your birthday has to be something.

2.18. A random game-show host
We’ll solve this problem by listing out the various possibilities. Without loss of gener-
ality, assume that you pick the first door. (You can repeat the following reasoning for
the other doors if you wish. It gives the same result.) There are three equally likely
possibilities for what is behind the three doors: PGG, GPG, and GGP, where P denotes
the prize and G denotes a goat. For each of these three possibilities, since you picked
the first door, the host opens either the second or third door (with equal probabilities).
So there are six equally likely results of his actions. These are shown in Fig. 2.7, with
the bold letters signifying the object revealed.

PGG GPG GGP

open 2nd door PGG ���GPG GGP

open 3rd door PGG GPG ���GGP

Table 2.7: There are six equally likely scenarios with a randomly opened door, as-
suming that you pick the first door.

We now note that the two results where the prize is revealed (the crossed-out GPG
and GGP results) are not relevant to this problem, because we are told that the host
happens to reveal a goat. Only the four other results are relevant:

PGG PGG GPG GGP
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They are all still equally likely, so their probabilities must each be 1/4. We see that
if you don’t switch from the first door, you win on the first two of these results and
lose on the second two. And if you do switch, you lose on the first two and win on
the second two. So either way, your probability of winning is 1/2. It therefore doesn’t
matter if you switch.

Remarks:

1. In the original version of the problem in Section 2.4.2, the probability of winning
was 2/3 if you switched. How can it possibly decrease to 1/2 in the present
random version, when in both versions the exact same thing happened, namely
the host revealed a goat?
The difference is due to the two cases where the host reveals the prize in the
random version (the GPG and GGP cases). You don’t benefit from these cases
in the random version, because we are told in the statement of the problem that
they don’t exist. But in the original version, they represent guaranteed success
if you switch, because the host is forced to open the other door, which is a goat.
But still you may say, “If there are two setups, and if I pick, say, the first door
in each, and if the host reveals a goat in each (by prediction in one case, and by
random pick in the other), then exactly the same thing happens in both setups.
How can the resulting probabilities (for winning on a switch) be different?”
The answer is that although the two outcomes are the same, probabilities have
nothing to do with two setups. Probabilities are defined only for a large number
of setups. And if you play a large number of these pairs of games (prediction
in one, random pick in the other), then in 1/3 of the pairs the host will reveal
different things (a goat in the prediction version and the prize in the random
version). These cases yield success in the original prediction version, but they
are irrelevant in the random version. They are effectively thrown away there.

2. We will now address the issue mentioned in the fourth remark in Section 2.4.2.
We correctly stated in Section 2.4.2 that in the original version of the problem,
“No actions taken by the host can change the fact that if you play a large num-
ber n of these games, then (roughly) n/3 of them will have the prize behind the
door you initially pick.” However, in the present random version of the problem,
something does affect the probability that the prize is behind the door you ini-
tially pick. It is now 1/2 instead of 1/3. So can something affect this probability
or not?
Well, yes and no. If all of the n games are considered (as in the original version),
then n/3 of them have the prize behind the initial door, and that’s that. However,
the random version of the problem involves throwing away 1/3 of the games (the
ones where the host reveals the prize), because it is assumed in the statement of
the problem that the host happens to reveal a goat. So for the remaining games
(which are 2/3 of the initial total, hence 2n/3), 1/2 of them now have the prize
behind your initial door.
If you play a large number n of games of each version (including the n/3 games
that are thrown away in the random version), then the actual number of games
that have the prize behind your initial door is the same, namely n/3. It’s just
that in the original version this number can be thought of as 1/3 of n, whereas in
the random version it can be thought of as 1/2 of 2n/3. So in the end, the thing
that influences the probability (that the initial door you pick has the prize) and
changes it from 1/3 to 1/2 isn’t the opening of a door, but rather the throwing
away of 1/3 of the games. Since no games are thrown away in the original
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version, the above statement in quotes is correct (with the key phrase being
“these games”).

3. As with the original version of the problem, if you find yourself arguing about
the answer for an excessive amount of time, you should just play the game
a bunch of times (at least a few dozen, to get good enough statistics). The
randomness can be determined by a coin toss. As mentioned above, you will
end up throwing away 1/3 of the games (the ones where the host reveals the
prize). ♣

2.19. Boy/girl problem with general information
Let’s be general right from the start and consider the case where the boy has a partic-
ular characteristic that occurs with probability p. (So p = 1/4 if the characteristic is a
summer birthday.) As in all of the versions of this problem in Section 2.4.4, we’ll list
out the various possibilities in a table, before the parent’s additional information (be-
yond “I have two children”) is taken into account. It is still the case that the BB, BG,
GB, and GG types of two-child families are all equally likely, with a 1/4 probability
for each. We are again ordering the children in a given pair by age; the first letter is
associated with the older child. But we could just as well order them by, say, height or
shoe size.
In the present version of the problem, there are now various different subtypes within
each type of family, depending on whether or not the children have the given character-
istic (which occurs with probability p). For example, if we look at the BB types, there
are four possibilities for the occurrence(s) of the characteristic. With “y” standing
for “yes, the child has the characteristic,” and “n” standing for “no, the child doesn’t
have the characteristic,” the four possibilities are ByBy, ByBn, BnBy, and BnBn. (In
the second possibility here, for example, the older boy has the characteristic, and the
younger boy doesn’t.) Since y occurs with probability p, we know that n occurs with
probability 1 − p. The probabilities associated with each of the four possibilities are
therefore equal to the 1/4 probability that BB occurs, multiplied by, respectively, p2,
p(1 − p), (1 − p)p, and (1 − p)2.
The same reasoning holds with the BG, GB, and GG types, so we obtain a total of
4 · 4 = 16 distinct possibilities. These are listed in Table 2.8 (ignore the boxes for a
moment). The four subtypes in any given row all have the same occurrence(s) of the
characteristic, so they all have the same probability; this probability is listed on the
right. The subtypes in the middle two rows all have equal probabilities. As mentioned
above, in the case where the given characteristic is “having a birthday in the summer,”
p equals 1/4. So the probabilities associated with the four rows in that case are equal
to 1/4 multiplied by, respectively, 1/16, 3/16, 3/16, and 9/16.
Before the parent gives you the additional information, all 16 of the subtypes in the
table are possible. But after the statement is made that there is at least one boy with
the given characteristic (that is, there is at least one By in the pair of children), only
seven subtypes remain. These are indicted with boxes. The other nine subtypes are
ruled out.
We now simply observe that the three boxes in the left-most column in the table have
the other child being a boy, while the four other boxes in the second and third columns
have the other child being a girl. The desired probability that the other child is a boy
is therefore equal to the sum of the probabilities of the left three boxes, divided by the
sum of the probabilities of all seven boxes. This gives (ignoring the common factor of
1/4 in all of the probabilities)

PBB =
p2 + 2·p(1 − p)

3·p2 + 4·p(1 − p)
=

2p − p2

4p − p2 =
2 − p
4 − p

. (2.110)
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BB BG GB GG Probability

yy ByBy ByGy GyBy GyGy (1/4) · p2

yn ByBn ByGn GyBn GyGn (1/4) · p(1 − p)

ny BnBy BnGy GnBy GnGy (1/4) · p(1 − p)

nn BnBn BnGn GnBn GnGn (1/4) · (1 − p)2

Table 2.8: The 16 types of families.

In the case where the given characteristic is “having a birthday in the summer,” p
equals 1/4. Plugging this into Eq. (2.110) gives the probability that the other child is
also a boy as PBB = 7/15 = 0.467.
If the given characteristic is “having a birthday on August 11th,” then p = 1/365,
which yields PBB = 729/1459 = 0.4997 ≈ 1/2.
If the given characteristic is “being born during a particular minute on August 11th,”
then p is essentially equal to zero, so Eq. (2.110) tells us that PBB is essentially equal
to 1/2. This makes sense, because if p = 0, then the p(1 − p) probability for the
middle two rows in Table 2.8 is much larger than the p2 probability for the top row.
Of course, all of these probabilities are very small in the small-p limit, but p2 is much
smaller than p(1− p) ≈ p when p is small. So we can ignore the top row. We are then
left with four boxes, two of which are BB and two of which are BG/GB. The desired
probability therefore equals 1/2.
Another somewhat special case is p = 1/2. (You can imagine that every child flips
a coin, and we’re concerned with the children who get Heads.) In this case we have
p = 1−p, so all of the probabilities in the righthand column in Table 2.8 are equal. All
16 entries in the table therefore have equal probabilities (namely 1/16). Determining
probabilities is then just a matter of counting boxes, so the answer to the problem is
3/7, because three of the seven boxes are of the BB type.

Remarks:

1. The above PBB ≈ 1/2 result in the p ≈ 0 case leads to the following puzzle.
Let’s say that you bump into a random person on the street who says, “I have
two children. At least one of them is a boy.” At this stage, you know that the
probability that the other child is also a boy is 1/3, from part (a) of the original
problem in Section 2.4.4. But if the parent then adds, “. . . who was born during
a particular minute on August 11th,” then we just found that the probability that
the other child is also a boy jumps to (essentially) 1/2. Why exactly did this
jump take place?
In the original scenario in Section 2.4.4, there were three equally likely possi-
bilities after the parent gave the additional information, namely BB, BG, and
GB. Only 1/3 of these cases (namely BB) had the other child being a boy. In
the new scenario (with p ≈ 0), there are four equally likely possibilities after the
parent gives the additional information, namely ByBn, BnBy, ByGn, and GnBy.
(As mentioned above, we’re ignoring the top row in Table 2.8 since p ≈ 0.)
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So in the new scenario, 1/2 of these cases (the two BB cases) have the other
child being a boy. The critical point here is that BB now counts twice, whereas
it counted only once in the original scenario. This is due to the fact that a BB
parent is twice as likely (compared with a BG or GB parent) to be able to say
that a boy was born during a particular minute on August 11th, because with
two boys there are two chances to achieve this highly improbable characteristic.
In contrast, a BB parent is no more likely (compared with a BG or GB parent)
to be able to say simply that at least one child is a boy.

2. In the other extreme where the given characteristic is “being born on any day,”
we have p = 1. (This clearly isn’t much of a characteristic, since it is satisfied by
everyone.) So Eq. (2.110) gives PBB = 1/3. In this p = 1 case, only the entries
in the top row in Table 2.8 have nonzero probabilities. We are therefore in the
realm of the first scenario in Section 2.4.4, where we started off with the four
types of families (BB, BG, GB, GG) and then ruled out the GG type, yielding a
probability of 1/3. It makes sense that the 1/3 answer in the p = 1 case is the
same as the 1/3 answer in the first scenario in Section 2.4.4, because the “being
born on any day” statement provides no additional information. So the setup is
equivalent to the first scenario in Section 2.4.4, where the parent provided no
additional information (beyond the fact that one child was a boy). ♣

2.20. A second test
The relevant probability tree is obtained by simply tacking on one more iteration of
branches to Fig. 2.11. The result is shown in Fig. 2.20. (We’ve again arbitrarily
started with 1000 people.) We are concerned only with the two numbers 18.05 and
9.8, because these are the only numbers associated with positive results for both tests
(labeled as “++”). The desired probability is therefore

p =
18.05

18.05 + 9.8
= 64.8%. (2.111)

This is significantly larger than the result of 16% in the original example in Section 2.5.

Note that since we are concerned only with two of the final eight numbers, there was
actually no need to draw the entire probability tree. The two relevant numbers are
obtained from the products,

(1000)(0.02)(0.95)(0.95) = 18.05,

(1000)(0.98)(0.1)(0.1) = 9.8. (2.112)

These products make it clear how to proceed in the general case of n tests. If we
perform n successive tests on each person, then the probability that a person who tests
positive all n times actually has the disease is

p =
(0.02)(0.95)n

(0.02)(0.95)n + (0.98)(0.1)n
. (2.113)

If n = 1 then p = 0.16, as we found in the original example. If, say, n = 4, then
p = 99.4. Here the smallness of the (0.1)n factor in Eq. (2.113) wins out over the
smallness of the 0.02 factor. In this case, although not many people have the disease,
the number of people who falsely test positive all four times is even smaller. If n is
large, then p is essentially equal to 1.
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Figure 2.20: The probability tree for two tests.

2.21. Bayes’ theorem for the prosecutor’s fallacy
A given person is either innocent or guilty, and either fits the description or doesn’t.
Our goal is to find P(I|D). From the second remark at the end of Section 2.5, we want
the horizontal span of our square to be associated with the innocent and guilty possi-
bilities, and the vertical span to be associated with the description or not-description
possibilities. The result is shown in Fig. 2.21. This figure contains the same informa-
tion as Fig. 2.10, but in rectangular instead of oval form.

      innocent

(999,999 in 106)

  guilty

(1 in 106)

 fit description

(99 in 999,999)

fit description 

     (1 in 1)

   not fit description

(999,900 in 999,999)

Figure 2.21: The probability square for the prosecutor’s fallacy.

We haven’t draw things to scale, because if we did, both of the shaded rectangles
would be too thin to see. The thin vertical rectangle represents the single guilty person,
and the rest of the square represents the 999,999 innocent people. The guilty person
fits the description, so the entire thin vertical rectangle is shaded. (As in Fig. 2.10,
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the fourth possible group of people – guilty and not fitting the description – has zero
people in it.) Only about 0.01% of the innocent people fit the description, so the darkly
shaded rectangle is very squat. The desired probability P(I|D) equals the number of
people in the darkly shaded region (namely 99) divided by the total number of people
in both shaded regions (namely 99 + 1). So the desired probability P(I|D) of being
innocent, given that the description is satisfied, equals 99/100 = 0.99.
As we mentioned in Section 2.4.3, P(I|D) (which is close to 1) is not equal to P(D|I)
(which is close to 0). The former is the ratio of the darkly shaded area to the total
shaded area, while the latter is the ratio of the darkly shaded area to the area of the
entire left vertical rectangle (the whole square minus the one guilty person).
If you want to use the simple form of Bayes’ theorem in Eq. (2.51), instead of using
the probability square in Fig. 2.21, you can write

P(I|D) =
P(D|I) ·P(I)

P(D)
=

99
999,999

· 999,999
106

1
104

=
99
100
, (2.114)

as desired. You can verify that the various probabilities we used here are correct.

2.22. Black balls and white balls
Our goal is to calculate the probability that the box you pick is the one with two black
balls, given that all n draws are black. We’ll denote this probability by P(B2 |nB). The
two possibilities for the box you pick are the B2 box with two black balls, and the B1
box with one black ball. So with this notation, the general form (which is the same as
the explicit form in this case) of Bayes’ theorem in Eq. (2.53) gives

P(B2 |nB) =
P(nB |B2) ·P(B2)

P(nB |B2) ·P(B2) + P(nB |B1) ·P(B1)
. (2.115)

We are given that P(B1) = P(B2) = 1/2, and we also know that P(nB |B2) = 1 and
P(nB |B1) = (1/2)n . So Bayes’ theorem gives

P(B2 |nB) =
1· (1/2)

1· (1/2) + (1/2)n · (1/2)

=
1

1 + 1/2n
=

2n

2n + 1
. (2.116)

If n = 1, then P(B2 |nB) = 2/3. And if n = 10, then P(B2 |nB) = 1024/1025 ≈
99.9%.
If you want to solve the problem without explicitly using Bayes’ theorem, the math
turns out to be essentially the same. Imagine doing a large number N of trials of the
given process. On average, you will pick each of the two boxes N/2 times. All n
draws will be black in all of the N/2 cases where you pick B2. But all n draws will be
black in only 1/2n of the N/2 cases where you pick B1. The other 1 − 1/2n fraction
of the cases (where you draw at least one white ball) aren’t relevant here. You are
therefore dealing with the B2 box in N/2 of the N/2 + (N/2)/2n times that you draw
n black balls. The desired probability is then

P(B2 |nB) =
N/2

N/2 + (N/2)/2n

=
1

1 + 1/2n
, (2.117)

as above.



Chapter 3

Expectation values

We begin this chapter by introducing in Section 3.1 the important concept of an
expectation value. Roughly speaking, the expectation value is a fancy name for the
average. In Section 3.2 we discuss the variance, which is a particular type of ex-
pectation value related to the square of the result of a random process. Section 3.3
covers the standard deviation, which is defined to be the square root of the vari-
ance. The standard deviation gives a rough measure of the spread of the outcomes
of a random process. A special kind of standard deviation is the standard deviation
of the mean, discussed in Section 3.4. This is the standard deviation of the average
of a particular number of trials of a random process. We will see that the standard
deviation of the mean is smaller than the standard deviation of just one trial of a
random process. This fact leads to the law of large numbers, which we will dis-
cuss in detail in Chapter 5. Section 3.5 covers the sample variance, which gives a
proper estimate (based on a sample set of numbers) of the true variance of a proba-
bility distribution. This section is rather mathematical and can be skipped on a first
reading.

3.1 Expectation value

Consider a variable that can take on certain numerical values with certain probabil-
ities. Such a variable is appropriately called a random variable. For example, the
number of Heads that can arise in two coin tosses is a random variable, and it can
take on the values of 0, 1, and 2. A random variable is usually denoted with an
uppercase letter, such as X , while the actual values that the variable can take on are
denoted with lowercase letters, such as x. So we say, “The number of Heads that
can arise in two coin tosses is a random variable X , and the values that X can take
on are x1 = 0, x2 = 1, and x3 = 2.” Note that the subscript here is an index starting
with 1, and not the number of Heads.

The possible outcomes of a random process must be numerical if we are to
use the term “random variable.” So, for example, we don’t use the term “random
variable” to describe the possible outcomes of a coin toss if these outcomes are
Heads and Tails. But we do use this term if we assign, say, the number 1 to Heads

133
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and the number 0 to Tails. Many of the examples in Chapter 2 involved random
variables (for example, rolling dice or counting the number of Heads in a given
number of coin tosses), even though we waited until now to define what a random
variable is.

The probabilities of the three possible outcomes for X in the above example
of two coin tosses are P(x1) = 1/4, P(x2) = 1/2, and P(x3) = 1/4, because the
four possible outcomes (HH, HT, TH, TT) are all equally likely. The collection of
these probabilities is called the probability distribution for X . We’ll talk at length
about probability distributions in Chapter 4, but for now all you need to know is that
a probability distribution is simply the collective information about how the total
probability (which is always 1) is distributed among the various possible outcomes.

The expectation value (or expected value) of a random variable X is the expected
average obtained in a large number of trials of the process. So in some sense, the
expectation value is just the average. However, these two terms have different us-
ages. The average is generally associated with trials that have already taken place,
for example: the average number of points per game a player scored in last year’s
basketball season was 14. In contrast, the expectation value refers to the average
that you would expect to obtain in trials yet to be carried out, for example: the ex-
pectation value of the number of Heads you will obtain in 10 coin tosses is 5. A
third word meaning roughly the same thing is the mean. This can be used in either
of the above two contexts (past or future trials).

The expectation value (or the mean) of a random variable X is denoted by either
E(X ) or µX . However, if there is only one random variable at hand (and hence no
possibility of confusion), we often don’t bother writing the subscript X in µX . So
the various notations we’ll use are:

Expectation value: E(X ) ≡ µX ≡ µ. (3.1)

As an example of an expectation value, consider the roll of a die. Since the
numbers 1 through 6 are all equally probable, the expectation value is just their
average, which is (1 + 2 + 3 + 4 + 5 + 6)/6 = 3.5. Of course, if you roll one die,
there is no chance that you will actually obtain a 3.5, because you can roll only
the integers 1 through 6. But this is irrelevant as far as the expectation value goes,
because we’re concerned only with the expected average value of a large number
of trials. An expectation value of 3.5 is simply a way of saying that if you roll a die
1000 times and add up all the results, you should get a total of about 3500. Again,
it is extremely unlikely (but not impossible in this case) that you will get a total of
exactly 3500, but this doesn’t matter when dealing with the expectation value.

The colloquial use of the word “expected” can cause some confusion, because
you might think that the expected value is the value that is most likely to occur. This
is not the case. If we have a process with four equally likely outcomes, 1, 2, 2, 7,
then even though 2 is the most likely value, the “expected value” is the average of
the numbers, which is 3, which never occurs.

In order for an expectation value to exist, we need each possible outcome to be
associated with a number, as is always the case for a random variable, by definition.
If there are no actual numbers involved, then it is impossible to form the average
(or actually the weighted average; see Eq. (3.4) below). For example, let’s say we
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draw a card from a deck, and let’s assume that we’re concerned only with its suit.
It makes no sense to talk about the expected value of the suit, because it makes no
sense to take an average of a heart, diamond, spade, and club. If, however, we assign
“suit values” of 1 through 4, respectively, to these suits (so that we’re now dealing
with an actual random variable – the suit value), then it does make sense to talk
about the expected value of the suit value, and it happens to be 2.5 (the average of 1
though 4).

The above example with the rolled die consisted of six equally likely outcomes,
so we found the expectation value by simply taking the average of the six outcomes.
But what if the outcomes have different probabilities? For example, what if we have
three balls in a box, two labeled with a “1” and one labeled with a “4”? If we pick
a ball, what is the expectation value of the resulting number? (We’ll denote this
number by the random variable X .)

To answer this, imagine performing a large number of trials of the process. Let’s
be general and denote this large number by n. Since the probability of picking a 1
is 2/3, we expect about (2/3)n of the numbers to be a 1. Likewise, about (1/3)n
of the numbers should be a 4. The total sum of all the numbers should therefore be
about (2/3)n · 1 + (1/3)n · 4. To obtain the expected average, we just divide this
result by n, which gives

E(X ) =
(2/3)n ·1 + (1/3)n ·4

n
=

2
3
· 1 + 1

3
· 4 = 2. (3.2)

Note that the n’s canceled out, so the result is independent of n. This is how it should
be, because the expected average value shouldn’t depend on the exact hypothetical
number of trials you do.

In general, if a random variable X has two possible outcomes x1 and x2 instead
of 1 and 4, and if the associated probabilities are p1 and p2 instead of 2/3 and 1/3,
then the same reasoning as above gives the expectation value as

E(X ) =
(p1n) · x1 + (p2n) · x2

n
= p1x1 + p2x2. (3.3)

What if we have more than two possible outcomes? The same reasoning works
again, but now with more terms in the sum. You can quickly verify (by again imag-
ining a large number of trials, n) that if the outcomes are x1, x2, . . . , xm , and if the
associated probabilities are p1, p2, . . . , pm , then the expectation value is

E(X ) = p1x1 + p2x2 + · · · + pm xm (3.4)

This is called the weighted average of the outcomes, because each outcome is
weighted (that is, multiplied) by its probability. This weighting has the effect of
making outcomes with larger probabilities contribute more to the expectation value.
This makes sense, because these outcomes occur more often, so they should influ-
ence the average more than outcomes that occur less often.

Eq. (3.4) involves a discrete sum, because we’re assuming here that our random
variable takes on a discrete set of values. If we have a continuous random vari-
able (we’ll discuss these in Chapter 4), then the sum in Eq. (3.4) is replaced by an
integral.
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Example 1 (Expected number of Heads): If you flip a coin four times, what is the
expected value of the number of Heads you obtain?

Solution: Without doing any work, we know that the expected number of Heads is 2,
because half of the coins will be Heads and half will be Tails, on average.

We can also solve the problem by using Eq. (3.4). By looking at the 16 equally likely
outcomes in Table 1.6 in Section 1.3, the probabilities of obtaining 0, 1, 2, 3, or 4
Heads are, respectively, 1/16, 4/16, 6/16, 4/16, and 1/16. So Eq. (3.4) gives the
expectation value of the number of Heads as

1
16
· 0 + 4

16
· 1 + 6

16
· 2 + 4

16
· 3 + 1

16
· 4 = 32

16
= 2. (3.5)

Example 2 (Flip until Heads): If you flip a coin until you get a Heads, what is the
expected total number of coins you flip?

Solution: There is a 1/2 chance that you immediately get a Heads, in which case you
flip only one coin. There is a 1/2 · 1/2 = 1/4 chance that you get a Tails and then a
Heads, in which case you flip two coins. There is a 1/2 · 1/2 · 1/2 = 1/8 chance that
you get a Tails, then another Tails, then a Heads, in which case you flip three coins.
And so on. The expectation value of the total number of coins is therefore

1
2
· 1 + 1

4
· 2 + 1

8
· 3 + 1

16
· 4 + 1

32
· 5 + · · · . (3.6)

This sum has an infinite number of terms, although they eventually become negligibly
small. The sum is a little tricky to calculate; see Problem 3.1. However, if you use
a calculator to add up the first dozen or so terms, it becomes clear that the sum ap-
proaches 2. You are encouraged to convince yourself of this result experimentally, by
doing a reasonably large number of trials, say, 50.

Let’s now prove a handy theorem involving the sum of two random variables,
although you might think the theorem is so obvious that there’s no need to prove it.

Theorem 3.1 The expectation value of the sum of two random variables equals the
sum of the expectation values of the two variables. That is,

E(X + Y ) = E(X ) + E(Y ) (3.7)

Proof: Imagine performing a large number n of trials to experimentally determine
E(X +Y ). Each trial involves picking values of X and Y and then forming their sum
X +Y . That is, you pick values x1 and y1 and form the sum x1 + y1. Then you pick
values x2 and y2 and form the sum x2 + y2. You keep doing this a total of n times,
where n is large. In the n → ∞ limit, the average value that you obtain for X + Y



3.1. Expectation value 137

equals the expectation value of X + Y . So (with the n → ∞ limit understood)

E(X + Y ) ≡ 1
n

∑
(xi + yi )

=
1
n

∑
xi +

1
n

∑
yi

≡ E(X ) + E(Y ), (3.8)

as desired.

This theorem is intuitive. X simply contributes E(X ) to the average, and Y con-
tributes E(Y ). Note that we made no assumption about the independence of X and
Y in the proof. They can be independent or dependent, and the theorem still holds.

Having just used the word “independent,” we should define what we mean by
this. Two variables are independent random variables if the value of one variable
doesn’t affect the probability distribution of the other. For example, if X and Y are
the results of the rolls of two dice, then X and Y are independent. If you know that
the left die shows a 5, then the probability distribution for the right die still consists
of six equal probabilities of 1/6. Mathematically, the random variables X and Y are
independent if

P(x |y) = P(x) (independent random variables), (3.9)

for any values of x and y. Likewise with X and Y switched. (More formally,
Eq. (3.9) can be written as P(X = x |Y = y) = P(X = x).) This definition of in-
dependent random variables is similar to the definition of independent events given
near the start of Section 2.2.1 and in Eq. (2.12). But the definition for random
variables is more general. Two variables are independent if any event (that is, any
outcome or set of outcomes) associated with one variable is independent of any
event associated with the other variable. Alternatively, we can say that two random
variables X and Y are independent if

P(x, y) = P(x)P(y) (independent random variables), (3.10)

for any values of x and y. (More formally, Eq. (3.10) can be written as P(X =
x and Y = y) = P(X = x) · P(Y = y).) The equivalence of Eqs. (3.9) and (3.10) is
exactly analogous to the equivalence of Eqs. (2.12) and (2.13).

Example: Let X take on the values 1 and 2 with equal probabilities of 1/2, and let
Y take on the values 1, 2, and 3 with equal probabilities of 1/3. Assume that X and
Y are independent. Find E(X + Y ) by explicitly using Eq. (3.4), and then verify that
Eq. (3.7) holds.

Solution: We first quickly note that E(X ) = 1.5 and E(Y ) = 2. To use Eq. (3.4) to
calculate E(X + Y ), we must first determine the various pi probabilities. If X = 1,
the three possible values of X + Y are 2, 3, and 4. And if X = 2, the three possible
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values of X + Y are 3, 4, and 5. Because X and Y are independent, all six of these
combinations have probabilities of (1/2)(1/3) = 1/6, from Eq. (3.10). So we have

P(2) =
1
6
, P(3) =

2
6
, P(4) =

2
6
, P(5) =

1
6
. (3.11)

Eq. (3.4) then gives the expectation value of X + Y as

E(X + Y ) =
1
6
· 2 + 2

6
· 3 + 2

6
· 4 + 1

6
· 5 = 21

6
= 3.5. (3.12)

This is indeed equal to E(X ) + E(Y ) = 1.5 + 2 = 3.5, as Eq. (3.7) claims.
If X and Y are instead dependent, then we can’t apply Eq. (3.4) without being told
what the dependence is, because there is no way to determine the pi ’s in Eq. (3.4)
without knowing the specific dependence. But E(X + Y ) = E(X ) + E(Y ) will still
hold in any case. See Problem 3.3 for an example.

Using the same kind of reasoning as in the proof of Theorem 3.1, you can
quickly show that

E(aX + bY + c) = aE(X ) + bE(Y ) + c, (3.13)

where a, b, and c are numerical constants. The result in Theorem 3.1 is the special
case where a = 1, b = 1, and c = 0. Likewise, similar reasoning in the case of many
random variables gives

E(a1X1 + a2X2 + · · · + anXn ) = a1E(X1) + a2E(X2) + · · · + anE(Xn ), (3.14)

as you would expect. You can add on a constant c here, too.
A special case of Eq. (3.14) arises when we perform n trials of the same process.

In this case, the n random variables Xi are all associated with the same probability
distribution. That is, the Xi are identically distributed random variables. For ex-
ample, the Xi might all refer to the rolling of a die. With each ai chosen to be 1,
Eq. (3.14) then implies

E(X1 + X2 + · · · + Xn ) = nE(X ). (3.15)

We could just as well pick any particular i and write E(Xi ) on the righthand side
here. The expectation values E(Xi ) are all equal, because the Xi are all associated
with the same probability distribution. But for simplicity we are using the generic
letter X to stand for the random variable associated with the given probability dis-
tribution.

Remark: A word on notation: Since the Xi all come from the same distribution (that is, they
are identically distributed), it is tempting to replace all of them with the same letter (say, X)
and write the lefthand side of Eq. (3.15) as E(nX ). This is incorrect. The random variable
nX is not the same as the random variable X1 + X2 + · · · + Xn . The former involves picking
one value from the given distribution and multiplying it by n, whereas the latter involves
picking n different (or at least generally different) values and adding them up. The results
of these processes are not the same. They do happen to have the same expectation value, so
Eq. (3.15) would still be true with E(nX ) on the lefthand side. But the two processes have
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different spreads of the values around the common expectation value nE(X ), as we’ll see in
Section 3.2. Also, if you roll ten dice, for example, then nX must be a multiple of 10 (from
10 to 60), whereas the sum of ten Xi values can be any integer from 10 to 60. ♣

You often apply the result in Eq. (3.15) without even knowing it. For example,
let’s say we flip a coin and define our random variable X to be 1 if we get Heads
and 0 if we get Tails. These occur with equal probabilities, so the expectation value
of X is E(X ) = (1/2) · 1+ (1/2) · 0 = 1/2. If we then flip 100 coins, Eq. (3.15) tells
us that the expectation value of X1 + X2 + · · · + X100 (that is, the expected number
of Heads in the 100 flips) is 100 · E(X ) = 50, which is probably what you would
have thought anyway, without using Eq. (3.15).

However, you shouldn’t get carried away with this type of reasoning, because
Eq. (3.14) holds only for linear combinations of the random variables. It is not true,
for example, that E(1/X ) = 1/E(X ) or that E(X2) = (E(X ))2. You can verify
these non-equalities in the case where X is the result of a die roll. You can show
that E(1/X ) ≈ 0.41, whereas 1/E(X ) = 1/(3.5) ≈ 0.29. Similarly, you can show
that E(X2) ≈ 15.2, whereas (E(X ))2 = 3.52 = 12.25.

Theorem 3.1 and its corollaries deal with sums of random variables. Let’s now
prove a theorem involving the product of random variables.

Theorem 3.2 The expectation value of the product of two independent random vari-
ables equals the product of the expectation values of the two variables. That is,

E(XY ) = E(X ) · E(Y ) (independent variables) (3.16)

Note that this theorem (concerning the product XY ) requires that X and Y be inde-
pendent, unlike Theorem 3.1 (concerning the sum X + Y ).

Proof: The product XY is itself a random variable, and it takes on the values xi y j ,
where i runs through the nX possible values of X , and j runs through the nY possible
values of Y . There are therefore nXnY possible values of the product xi yi . Starting
with Eq. (3.4) and then applying Eq. (3.10), the expectation value of XY is

E(XY ) =
nX∑
i=1

nY∑
j=1

P(xi , y j ) · xi y j

=

nX∑
i=1

nY∑
j=1

P(xi )P(y j ) · xi y j

= *,
nX∑
i=1

P(xi ) · xi+- *.,
nY∑
j=1

P(y j ) · y j+/-
= E(X ) · E(Y ). (3.17)

The use of Eq. (3.10), which is valid only for independent random variables, is what
allowed us to break up the sum in the first line here into the product of two separate
sums.
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Example: Let X be the result of a coin flip where we assign the value 2 to Heads and
1 to Tails. And let Y be the result of another (independent) coin flip where we assign
the value 4 to Heads and 3 to Tails. Then E(X ) = 3/2 and E(Y ) = 7/2.

Let’s explicitly calculate E(XY ), to show that it equals E(X )E(Y ). There are four
equally likely outcomes for the random variable XY :

2 · 4 = 8, 2 · 3 = 6, 1 · 4 = 4, 1 · 3 = 3. (3.18)

E(XY ) is the average of these numbers, so E(XY ) = 21/4. And this is indeed equal
to the product E(X )E(Y ), as Eq. (3.16) claims.

As an example of a setup involving dependent random variables, where Eq. (3.16)
does not hold, consider again the above two coins. But let’s now stipulate that the
second coin always shows the same side as the first coin. So the values of 2 and 4 are
always paired together, as are the values 1 and 3. There are now only two (equally
likely) outcomes for XY , namely 2 · 4 = 8 and 1 · 3 = 3. The expectation value of XY
is then 11/2, which is not equal to E(X )E(Y ) = 21/4.

The expectation value plays an important role in betting and decision making,
because it is the amount of money you should be willing to pay up front in order
to have a “fair game.” By this we mean the following. Consider a game in which
you can win various amounts of money, based on the various possible outcomes.
For example, let’s say that you roll a die and that your winnings equal the resulting
number (in dollars). How much money should you be willing to pay to play this
game? Also, how much money should the “house” (the people running the game) be
willing to charge you for the opportunity to play the game? You certainly shouldn’t
pay, say, $6 each time you play it, because at best you will break even, and most of
the time you will lose money. On average, you will win the average of the numbers
1 through 6, which is $3.50. So this is the most that you should be willing to pay
for each trial of the game. If you pay more than this, then you will lose money on
average. Conversely, the “house” should charge you at least $3.50 to play the game
each time, because otherwise it will lose money on average.

Putting these two results together, we see that $3.50 is the amount the game
should cost if the goal is to have a fair game, that is, a game where neither side wins
any money on average. Of course, in games run by casinos and such, things are
arranged so that you pay more than the expectation value. So on average the house
wins, which is consistent with the fact that casinos stay in business.

Note the italics in the previous paragraph. These are important, because when
real-life considerations are taken into account, there might very well be goals that
supersede the goal of having a fair game. The above discussion should therefore
not be taken to imply that you should always play a game if the fee is smaller than
the expectation value, or that you should never play a game if the fee is larger than
the expectation value. It depends on the circumstances. See Problem 3.4 for a
discussion of this.
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3.2 Variance

In the preceding section, we defined the expectation value E(X ) as the expected
average value obtained in many trials of a random variable X . In addition to E(X ),
there are other expectation values that are associated with a random variable X .
For example, we can calculate E

(
X2) , which is the expectation value of the square

of the value of X . If we’re rolling a die, the square of the outcome can take on
the values of 12, 22, . . . , 62 (all equally likely). E

(
X2) is the average of these six

values, which is 91/6 = 15.17. We can also calculate other expectation values, such
as E(X7) or E(2X3 − 8X5), although arbitrary ones like these aren’t of much use.

A slight modification of E
(
X2) that turns out to be extremely useful in proba-

bility and statistics is the variance. It is denoted by Var(X ) and defined to be

Var(X ) ≡ E
[
(X − µ)2] (where µ ≡ E[X]) (3.19)

In words: the variance of a random variable X is the expectation value of the square
of the difference between X and the mean µ (which itself is the expectation value of
X). We’re using µ here (without bothering with the subscript X) instead of E(X ),
to make the above equation and future ones less cluttered.

When calculating the variance E
[
(X − µ)2] , Eq. (3.4) still applies. It’s just that

the X values are replaced with the (X − µ)2 values. E
[
(X − µ)2] is the same type

of quantity as E
(
X2) , except that we’re measuring the values of X relative to the

expectation value µ. That’s what we’re doing when we take the difference X − µ.
The examples below should make things clear.

In addition to “Var(X ),” the variance is also denoted by σ2
X (or just σ2), due

to the definition of the standard deviation, σ, below in Section 3.3. When talking
about the variance, sometimes people say “the variance of a random variable,” and
sometimes they say “the variance of a probability distribution.” These mean the
same thing.

Example 1 (Die roll): The expectation value of the six equally likely outcomes of a
die roll is µ = 3.5. The variance is therefore

Var(X ) = E
[
(X − 3.5)2]

=
1
6

[
(1 − 3.5)2 + (2 − 3.5)2 + (3 − 3.5)2

+ (4 − 3.5)2 + (5 − 3.5)2 + (6 − 3.5)2
]

=
1
6
[
6.25 + 2.25 + 0.25 + 0.25 + 2.25 + 6.25

]
= 2.92. (3.20)
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Example 2 (Coin flip): Consider a coin flip where we assign the value 1 to Heads and
0 to Tails. The expectation value of these two equally likely outcomes is µ = 1/2, so
the variance is

Var(X ) = E
[
(X − 1/2)2]

=
1
2

[
(1 − 1/2)2 + (0 − 1/2)2

]
=

1
4
. (3.21)

Example 3 (Biased coin): Consider a biased coin, where the probability of getting
Heads is p and the probability of getting Tails is 1 − p ≡ q. If we again assign the
value 1 to Heads and 0 to Tails, then the expectation value is µ = p ·1+ (1− p) ·0 = p.
The variance is therefore

Var(X ) = E
[
(X − p)2]

= p · (1 − p)2 + (1 − p) · (0 − p)2

= p(1 − p)[(1 − p) + p]

= p(1 − p) ≡ pq. (3.22)

As you can see in the above examples, the steps in finding the variance are:

1. Find the mean.

2. Find all the differences from the mean.

3. Square each of these differences.

4. Find the expectation value of these squares.

The variance of a random variable is related to how much the outcomes are
spread out away from the mean. Note well that the variance in Eq. (3.19) involves
first squaring the differences from the mean, and then finding the expectation value
of these squares. If instead you first find the expectation value of the differences
from the mean, and then square the result, you will obtain zero. This is true because(

E(X − µ))2
=

(
E(X ) − µ)2

= (µ − µ)2 = 0. (3.23)

We would obtain zero here even without the squaring operation, of course.
The variance depends only on the spread of the outcomes relative to the mean,

and not on the mean itself. For example, if we relabel the faces on a die by adding
100, so that they are now 101 through 106, then the mean changes significantly to
103.5. But the variance remains at the 2.92 value we found in the first example
above, because all of the differences from the mean are the same as for a normal
die.

If a is a numerical constant, then the variance of aX equals a2Var(X ). This
follows from the definition of the variance in Eq. (3.19), along with the result in
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Eq. (3.13). The latter tells us that E(aX ) = aE(X ) ≡ aµ, so the former (along with
another application of the latter) gives

Var(aX ) = E
[(

(aX ) − (aµ)
)2]
= E

[
a2(X − µ)2

]
= a2E

[
(X − µ)2

]
= a2Var(X ), (3.24)

as desired.
The variance of the sum of two independent variables turns out to be the sum

of the variances of the two variables, as we show in the following theorem. Due to
the nonlinearity of X in E

[
(X − µ)2] , it isn’t so obvious that the variances should

simply add linearly. But they indeed do.

Theorem 3.3 Let X and Y be two independent random variables. Then

Var(X + Y ) = Var(X ) + Var(Y ) (independent variables) (3.25)

Proof: We know from Eq. (3.7) that the mean of X + Y is µX + µY . So

Var(X + Y ) = E
[((

X + Y
) − (

µX + µY
))2]

(3.26)

= E
[((

X − µX
)
+

(
Y − µY

))2]
= E

[(
X − µX

)2
]
+ 2E

[(
X − µX

) (
Y − µY

)]
+ E

[(
Y − µY

)2
]

= Var(X ) + 0 + Var(Y ).

The zero here arises from the fact that X and Y (and hence X − µX and Y − µY ) are
independent variables, which from Eq. (3.16) implies that the expectation value of
the product equals the product of the expectation values. That is,

E
[
(X − µX )(Y − µY )

]
= E(X − µX ) · E(Y − µY )
=

(
E(X ) − µX

) · (E(Y ) − µY
)

= (µX − µX ) · (µY − µY )
= 0. (3.27)

Example (Two coins): Let’s verify that Eq. (3.25) holds if we define X and Y to each
be the result of independent coin flips where we assign the value 1 to Heads and 0 to
Tails. The random variable X + Y takes on the values of 0, 1, and 2 with probabilities
1/4, 1/2, and 1/4, respectively. The expectation value of X +Y is 1, so the variance is

Var(X + Y ) =
1
4

[
(0 − 1)2

]
+

1
2

[
(1 − 1)2

]
+

1
4

[
(2 − 1)2

]
=

1
2
. (3.28)

And we know from Eq. (3.21) that the variance of each single coin flip is Var(X ) =
Var(Y ) = 1/4. So it is indeed true that Var(X + Y ) = Var(X ) + Var(Y ).
As an example of a setup involving dependent random variables, where Eq. (3.25)
does not hold, consider again the above two coins. But let’s now stipulate that the
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second coin always shows the same side as the first coin. So the 1’s are always paired
together, as are the 0’s. There are then only two (equally likely) outcomes for X + Y ,
namely 0+0 = 0 and 1+1 = 2. The expectation value of X +Y is 1, so the variance is

Var(X + Y ) =
1
2

[
(0 − 1)2

]
+

1
2

[
(2 − 1)2

]
= 1, (3.29)

which is not equal to Var(X ) + Var(Y ) = 1/2.

Repeated application of Eq. (3.25) gives the variance of the sum of an arbitrary
number of independent variables as

Var(X1 + X2 + · · · + Xn ) = Var(X1) + Var(X2) + · · · + Var(Xn ). (3.30)

By “repeated application” we mean the following. Let the Y in Eq. (3.25) be equal
to Xn , and let the X be the sum of X1 through Xn−1. This gives

Var(X1 + X2 + · · · + Xn ) = Var(X1 + X2 + · · · + Xn−1) + Var(Xn ). (3.31)

Then repeat the process with Y ≡ Xn−1 and with X equal to the sum of X1 through
Xn−2. And so on. This eventually yields Eq. (3.30).

If all of the Xi are independent and identically distributed random variables
(i.i.d. variables, for short), then Eq. (3.30) gives

Var(X1 + X2 + · · · + Xn ) = nVar(X ) (i.i.d. variables) (3.32)

where X represents any one of the Xi . For example, we can flip a coin n times
and write down the total number of Heads obtained. (In doing this, we’re effec-
tively assigning the value 1 to Heads and 0 to Tails.) This sum of n independent
and identically distributed coin flips is the binomial process we discussed in Sec-
tion 1.8. Since we know the “1/4” result in Eq. (3.21) for the variance of a single
flip, Eq. (3.32) gives the variance of the binomial process as nVar(X ) = n/4. More
generally, if we have a biased coin with P(Heads) = p and P(Tails) = 1 − p ≡ q,
then the combination of Eqs. (3.22) and (3.32) tells us that the variance of the num-
ber of Heads in n flips is

Var(Heads in n flips) = npq (biased coin) (3.33)

Remark: As mentioned in the remark following Eq. (3.15), the sum X1 + X2 + · · · + Xn

in Eq. (3.32) is not the same as nX . Although the random variables Xi are all identically
distributed, that certainly doesn’t mean that their values are identical. The values of the Xi

will generally be different. So when forming the sum, we can’t just take one of the values and
multiply it by n. Although the expectation-value statement in Eq. (3.15) happens to remain
true if we replace the sum X1 + X2 + · · · + Xn with nX , the variance statement in Eq. (3.32)
does not remain true. From Eq. (3.24), the variance of nX equals n2Var(X ), which isn’t the
same as the nVar(X ) result in Eq. (3.32). ♣

When dealing with the product of two random variables, it turns out that the
equation analogous to Eq. (3.16) for expectation values does not hold for vari-
ances, even if X and Y are independent. That is, it is not true that Var(XY ) =
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Var(X )Var(Y ). See Problem 3.6 for an example showing that this equality doesn’t
hold.

It is often useful to write the variance, which we defined in Eq. (3.19), in the
following alternative form:

Var(X ) = E
(
X2) − µ2 (3.34)

That is, the variance equals the expectation value of the square, minus the square of
the expectation value. This can be demonstrated as follows. Starting with Eq. (3.19),
we have

Var(X ) = E
[
(X − µ)2]

= E
[
X2 − 2µ · X + µ2]

= E
(
X2) − 2µ · E (

X
)
+ µ2

= E
(
X2) − 2µ2 + µ2

= E
(
X2) − µ2, (3.35)

as desired. We have used the fact that E(X ) means the same thing as µ. And we
have used Eq. (3.13) (which says that the expectation value of the sum equals the
sum of the expectation values) to go from the second line to the third line. You
can quickly verify that this expression for Var(X ) gives the same variances that we
found in the three examples near the beginning of this section; see Problem 3.7.

Variance of a set of numbers

In the above discussion of the variance, the definition in Eq. (3.19) was based on
a random variable X with a given probability distribution. We can, however, also
define the variance for an arbitrary set of numbers, even if they don’t have any-
thing to do with a probability distribution. Given an arbitrary set S of n numbers,
x1, . . . , xn , let their average (or mean) be denoted by x. We’ll also occasionally use
⟨x⟩ to denote the average:

Average : x ≡ ⟨x⟩ ≡ 1
n

n∑
1

xi . (3.36)

Then the variance of the set S is defined to be

Var(S) ≡ 1
n

n∑
1

(
xi − x

)2 (for a set S of numbers) (3.37)

In words: the variance of the set S is the average value of the square of the difference
from the mean. Note the slight difference between the preceding sentence and the
sentence following Eq. (3.19). That sentence involved the “expectation value of
the square. . . ,” whereas the present sentence involves the “average value of the
square. . . .” This distinction is due to the fact that (as we noted near the beginning of
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Section 3.1) the term “expectation value” is relevant to a probability distribution for
a random variable X . If you are instead simply given a set S of numbers, then you
can take their average, but it doesn’t make sense to talk about an expectation value,
because there are no future trials for which you can expect anything. (Technically,
if you are imagining that the set S of numbers came from a probability distribution,
then you can talk about the best guess for the expectation value of the distribution.
But we won’t get into that here.)

As an example, if we have the set S of four numbers, 2.3, 5.6, 3.8, and 4.7, then
the average is 4.1, so the variance is

Var(S) =
1
4

[
(2.3 − 4.1)2 + (5.6 − 4.1)2 + (3.8 − 4.1)2 + (4.7 − 4.1)2

]
= 1.485. (3.38)

Note that all of the numbers are weighted equally here. This isn’t the case (in
general) when calculating the variance in Eq. (3.19).

Later on in Section 3.5 we’ll encounter a slightly modified version of Eq. (3.37)
called the “sample variance,” which has an n− 1 instead of an n in the denominator.

3.3 Standard deviation
The standard deviation of a random variable (or equivalently, of a probability dis-
tribution) is defined to be the square root of the variance:

σX ≡
√

Var(X ) (3.39)

As with the mean µ, the subscript X is usually dropped if there is no ambiguity
about which random variable we are referring to. With the definition in Eq. (3.39),
we can write the variance as σ2

X . You will often see this notation for the variance,
since it is quicker to write than Var(X ), and even quicker if you drop the subscript
X . Like the variance, the standard deviation gives a rough measure of how much
the outcomes are spread out away from the mean. We’ll draw some pictures below
that demonstrate this.

From Eqs. (3.19) and (3.34), we can write the standard deviation in two equiva-
lent ways:

σ =
√

E
[
(X − µ)2] = √

E
(
X2) − µ2 (3.40)

Using the first of these forms, the steps in finding the standard deviation are the
same as in finding the variance, with a square root tacked on the end:

1. Find the mean.

2. Find all the differences from the mean.

3. Square each of these differences.
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4. Find the expectation value of these squares.

5. Take the square root of this expectation value.

As with the variance, the standard deviation depends only on the spread relative
to the mean, and not on the mean itself. If we relabel the faces on a die by adding
100, so that they are now 101 through 106, then the mean changes significantly to
103.5, but the standard deviation remains at

√
2.92 = 1.71 (using the 2.92 value for

the variance in Eq. (3.20)).
Since the standard deviation is simply the square root of the variance, we can

quickly translate all of the statements we made about the variance in Section 3.2
into statements about the standard deviation. Let’s list them out.

• From Eq. (3.24) the standard deviation of aX is just a times the standard
deviation of X :

σaX = aσX . (3.41)

• If X and Y are two independent random variables, then Eq. (3.25) becomes

σ2
X+Y = σ

2
X + σ

2
Y (independent variables) (3.42)

This is the statement that standard deviations “add in quadrature” for inde-
pendent variables.

• The more general statement in Eq. (3.30) can similarly be rewritten as (again
only for independent variables)

σ2
X1+X2+· · ·+Xn

= σ2
X1
+ σ2

X2
+ · · · + σ2

Xn
. (3.43)

Taking the square root of Eq. (3.43) gives (again only for independent vari-
ables):

σX1+X2+· · ·+Xn =

√
σ2

X1
+ σ2

X2
+ · · · + σ2

Xn
. (3.44)

• If all of the Xi are independent and identically distributed random variables,
then Eq. (3.44) becomes

σX1+X2+· · ·+Xn =
√

nσX (i.i.d. variables) (3.45)

• From Eq. (3.22) the standard deviation of a single flip of a biased coin (with
Heads equalling 1 and Tails equalling 0) is

σ =
√

pq. (3.46)

• If we flip the biased coin n times, then from either Eq. (3.33) or Eq. (3.45),
the standard deviation of the number of Heads is

σ =
√

npq (n biased coins) (3.47)
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For a fair coin (p = q = 1/2), this equals

σ =
√

n/4 (n fair coins) (3.48)

For example, the standard deviation of the number of Heads in n = 100 fair
coin flips is σ =

√
100/4 = 5. This is a handy fact to remember. The standard

deviations for other numbers of flips can then quickly be determined by using
the fact that σ is proportional to

√
n. For example, 1000 is 10 times 100, and√

10 ≈ 3, so the σ for n = 1000 flips is about 3 · 5 = 15. (It’s actually more
like 16.) Similarly, 10,000 is 100 times 100, and

√
100 = 10, so the σ for

n = 10,000 flips is 10 · 5 = 50.

• In terms of σ, Eq. (3.34) becomes

σ2 = E
(
X2) − µ2. (3.49)

If we solve for E
(
X2) here, we see that the expectation value of the square of

a random variable X is

E
(
X2) = σ2 + µ2 (3.50)

This result checks in two limits. First, if µ = 0 then Eq. (3.50) says that σ2

(which is the variance) equals E
(
X2) . This agrees with what Eq. (3.19) says

when µ equals zero. Second, if σ = 0 then Eq. (3.50) says that E
(
X2) equals

µ2. This makes sense, because if σ = 0 then there is no spread in the possible
outcomes. That is, there is only one possible outcome, which must then be µ,
by definition; the expectation value of one number is simply that number. So
E
(
X2) = µ2.

As mentioned above, the standard deviation (like the variance) gives a rough
measure of how much the outcomes are spread out away from the mean. This mea-
sure is actually a much more appropriate one than the variance’s measure, because
whereas the units of the variance are the same as X2, the units of the standard devi-
ation are the same as X . It therefore makes sense to draw the standard deviation in
the same figure as the plot of the probability distribution for the various outcomes
(with the X values lying on the horizontal axis). We’ll talk much more about plots
of probability distributions in Chapter 4, but for now we’re concerned only with
what the standard deviation looks like when superimposed on the plot.

Example: Fig. 3.1 shows four examples of the standard deviation superimposed on
the probability distribution. The commentary on each plot is as follows.

• First plot: For a die roll, the probability of each of the six numbers is 1/6. And
since the variance in Eq. (3.20) is 2.92, the standard deviation is σ =

√
2.92 =

1.71. This is the rough spread of the outcomes, relative to the mean (which is
3.5). Some outcomes lie inside the range of ±σ around the mean, and some lie
outside.
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Figure 3.1: Four different probability distributions and standard deviations.

• Second plot: For a fair coin flip (with Heads = 1 and Tails = 0), Eq. (3.48)
gives the standard deviation as σ = 1/2. Both outcomes therefore lie right at
the ±σ locations relative to the mean (which is 1/2). This makes sense; all of
the outcomes (there are only two of them) are a distance of 1/2 from the mean.

• Third plot: For a biased coin flip (again with Heads = 1 and Tails = 0), we have
assumed that the probabilities are p = 1/10 for Heads and 1 − p = 9/10 ≡ q for
Tails. So Eq. (3.46) gives the standard deviation as σ =

√
(1/10)(9/10) = 3/10.

As noted prior to Eq. (3.22), the mean of the roll is p, which is 1/10 here. The
outcome of 0 lies inside the range of ±σ around the mean, while the outcome
of 1 lies (far) outside.

• Fourth plot: For n flips of a fair coin, Eq. (3.48) gives the standard deviation of
the number of Heads as

σ =

√
n

2
. (3.51)

If we pick n to be 20, then we have σ =
√

20/2 = 2.24. Five outcomes lie
inside the range of ±σ around the mean (which is 10), while the other 16 lie
outside. Although there are more outcomes outside, and additionally some of
them are far away from the mean, their probabilities are small, so they don’t

have an overwhelming influence on σ ≡
√

E
[
(X − µ)2] .
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In all of the above cases, σ gives a rough measure of the spread of the outcomes.
More precisely, Eq. (3.40) tells us that σ is the square root of the expectation value
of the square of the distance from the mean. This is a mouthful, so you might be
wondering – if we want to get a rough idea of the spread of the various outcomes,
why don’t we use something simpler? For example, we could just calculate the
expected distance from the mean, that is, E(|X − µ|). The absolute value bars
here produce the various distances (which are nonnegative quantities, by definition).
Although this is a perfectly reasonable definition, it is also a messy one. Quantities
involving absolute values are somewhat artificial, because if |x− µ| is negative, then
we have to throw in a minus sign by hand and say that |x − µ| = −(x − µ). In
contrast, the square of a quantity (which always yields a nonnegative number) is a
very natural thing. Additionally, the standard deviation defined by Eq. (3.39) has
some nice properties, one of which is Eq. (3.42). An analogous statement (with or
without the squares) wouldn’t hold in general if we defined σ as E(|X − µ|). A
quick counterexample is provided by two independent coin flips (with Heads = 1
and Tails = 0), as you can verify. The “σ” for each flip would be 1/2, and the “σ”
for the sum of the flips would also be 1/2.

3.4 Standard deviation of the mean

Consider the fourth plot in Fig. 3.1, which shows the probability distribution and
the standard deviation for the number of Heads in 20 fair coin tosses. What if we
are instead concerned not with the total number of Heads in 20 coin tosses, but
rather with the average number of Heads per toss (averaged over the 20 tosses)?
For example, if we happen to get 12 Heads in the 20 tosses (which, by looking at
the plot, has a probability of about 12%), then the average number of Heads per toss
is obtained by dividing 12 by 20, yielding 12/20 = 0.6.

In the same manner, to obtain the entire probability distribution for the average
number of Heads per toss, we simply need to keep the same dots in the plot in
Fig. 3.1, but divide the numbers on the x axis by 20. This gives the probability
distribution shown in Fig. 3.2(a). An average of 0.5 Heads per toss is of course the
most likely average, and it occurs with a probability of about 18% (the same as the
probability of getting a total of 10 Heads in 20 tosses).

The standard deviation of the total number of Heads that appear in n tosses is
the σtot =

√
n/2 result in Eq. (3.51). The standard deviation of the average number

of Heads per toss is therefore

σavg =
σtot

n
=

√
n/2
n
=

1
2
√

n
. (3.52)

This is true because if Xtot represents the total number of Heads in n flips, and if
Xavg represents the average number of Heads per flip, then Xavg = Xtot/n. Eq. (3.41)
then gives σavg = σtot/n. Equivalently, a given span of the x axis in Fig. 3.2(a) has
only 1/n (with n = 20) the length of the corresponding span in the fourth plot in
Fig. 3.1. So the spread in Fig. 3.2(a) is 1/n times the spread in Fig. 3.1. With n = 20,
Eq. (3.52) gives the standard deviation of the average (which is usually called the



3.4. Standard deviation of the mean 151
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Figure 3.2: The probability distribution for the average number of Heads per toss, for 20 or
2000 coin tosses.

standard deviation of the mean) as σavg = 1/
(
2
√

20
)
= 0.11. This is indicated in

Fig. 3.2(a); the bar shown has a total length of 2σavg.
Let’s repeat the above analysis, but now with 2000 tosses. The probability dis-

tribution for the total number of Heads is peaked around 1000, of course. From
Eq. (3.51) the standard deviation of the total number of Heads that appear in 2000
tosses is σtot =

√
2000/2 = 22.4. To obtain the probability distribution for the

average number of Heads per toss (which is peaked around 0.5), we just need to
divide all the numbers on the x axis (associated with the total number of Heads)
by 2000, analogous to what we did with 20 tosses, in going from the fourth plot in
Fig. 3.1 to Fig. 3.2(a). The resulting probability distribution for the average number
of Heads per toss is shown in Fig. 3.2(b). From Eq. (3.52) the standard deviation
of the average number of Heads per toss is σavg = 1/

(
2
√

2000
)
= 0.011. This is

indicated in the figure; the (very short) bar shown has a total length of 2σavg.
Since 2000 and 20 differ by a factor of 100, the σtot for 2000 tosses is 10 times

larger than the σtot for 20 tosses, because the result in Eq. (3.51) is proportional to√
n. But σavg is 10 times smaller, because the σavg in Eq. (3.52) is proportional to

1/
√

n. The latter of these two facts is why the bump of points in Fig. 3.2(b) is much
thinner than the bump in Fig. 3.2(a). The σavg that we have drawn in Fig. 3.2(b) is
barely long enough to be noticeable. But even if you don’t calculate and compare
the standard deviations of the two plots in Fig. 3.2, it is obvious that the bump is
much thinner in Fig. 3.2(b).

Let’s recap what we’ve learned. Although σtot is larger (by a factor of 10) in the
n = 2000 case, σavg is smaller (by a factor of 10) in the n = 2000 case. The first of
these results deals with the absolute (or additive) deviation σtot from the expected
value of n/2, while the second deals with the fractional (or multiplicative) deviation
σavg from the expected value of 1/2. The point here is that although the absolute
deviation σtot grows with n (which is intuitive), it does so in a manner that is only
proportional to

√
n. So when this deviation is divided by n when calculating the

average number of Heads, the fractional deviation σavg ends up being proportional
to 1/

√
n, which decreases with n (which might not be so intuitive).

Note that although the expectation value of the average number of Heads per
toss is independent of the number of tosses (it is always 0.5 for a fair coin, as it is
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in the two plots in Fig. 3.2(b)), the distribution of the average number of Heads per
toss does depend on the number of tosses. That is, the shapes of the two curves in
Fig. 3.2 are different (on the same scale from 0 to 1 on the x axis). For example,
in the case of 20 tosses, you have a reasonable chance of obtaining an average that
is 0.6 or more. But in the case of 2000 tosses, you are extremely unlikely to obtain
such an average.

Let us formalize the above results with the following theorem.

Theorem 3.4 Consider a random variable X with standard deviation σ. We make
no assumptions about the shape of the probability distribution. Let X be the random
variable formed by taking the average of n independent trials of the random variable
X. Then the standard deviation of X is given by σX = σX/

√
n, which is often

written in the slightly more succinct form,

σX =
σ
√

n
(standard deviation of the mean) (3.53)

This is the standard notation, although technically the letter n should appear as a
label somewhere on the lefthand side of the equation, because the standard deviation
of X depends on the number n of trials that you are averaging over.

Proof: Let the n independent trials of the variable X be labeled X1,X2, . . . ,Xn .
(So the Xi are independent and identically distributed random variables.) Then X is
given by

X ≡ X1 + X2 + · · · + Xn

n
. (3.54)

From Eq. (3.41) the standard deviation of X equals 1/n times the standard deviation
of X1+X2+ · · ·+Xn . But from Eq. (3.45) the latter is

√
nσ. The standard deviation

of X is therefore
√

nσ/n = σ/
√

n, as desired.

In short (as we’ve mentioned a number of times), the above proof comes down to
the fact that Eq. (3.45) says that the standard deviation of the sum of n independent
and identical trials grows with n, but only like

√
n. When we take the average and

divide by n, we obtain a standard deviation of the mean that is smaller than the
original σ by a factor of

√
n.

More generally, if we are concerned with the average of n different random
variables with different standard deviations, we can use Eqs. (3.41) and (3.44) to
say

σX ≡ σ X1+X2+···+Xn
n

=
1
n
σX1+X2+· · ·+Xn

=

√
σ2

X1
+ σ2

X2
+ · · · + σ2

Xn

n
. (3.55)

This reduces to Eq. (3.53) when all of the σXi are equal (even if the distributions
aren’t the same).
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The thinness of the curve in Fig. 3.2(b), which is a consequence of the
√

n in
the denominator in Eq. (3.53), is consistent with the “law of large numbers.” This
law says that if you perform a very large number of trials, the observed average will
likely be very close to the theoretically predicted average. In a little more detail:
many probability distributions, such as the ones in Fig. 3.2, are essentially Gaussian
(or “normal” or “bell-curve”) in shape. And it can be shown numerically that for
a Gaussian distribution, the probability of lying within one standard deviation from
the mean (that is, in the range µ ± σ) is 68%, the probability of lying within two
standard deviations from the mean is 95%, and the probability of lying within three
standard deviations from the mean is 99.7%. For wider ranges, the probability is
effectively 1, for most practical purposes. This is why we mentioned above that for
2000 coin tosses, the average number of Heads per toss is extremely unlikely to be
0.6 or larger. Since 0.6 exceeds the mean 0.5 by 0.1, and since σavg = 0.011 in
this case, we see that 0.6 is about nine standard deviations above the mean. The
probability of being more than nine standard deviations above the mean is utterly
negligible (it’s about 10−19).

We threw around a number of terms and results in the preceding paragraph.
We’ll eventually get to these. Section 4.8 covers the Gaussian distribution, and
Chapter 5 covers the law of large numbers and the central limit theorem. This
theorem explains why many probability distributions are approximately Gaussian.

Example (Rolling 10,000 dice):

(a) 10,000 dice are rolled. What is the expectation value of the total number of 6’s
that appear? What is the standard deviation of this number?

(b) What is the expectation value of the average number of 6’s that appear per roll?
What is the standard deviation of this average?

(c) Do you think you have a reasonable chance of getting a 6 on at least 20% of the
rolls?

Solution:

(a) The probability of getting a 6 on a given roll is p = 1/6, so the expected total
number of 6’s that appear in the 10,000 rolls is (1/6) · (10,000) = 1667. To find
the standard deviation of the total number of 6’s, we can assign the value 1 to a
roll of 6, and a value of 0 to the five other rolls. Since p = 1/6, we’re effectively
flipping a biased coin that has a p = 1/6 chance of success. From Eq. (3.47) the
standard deviation of the total number of 6’s that come up in 10,000 rolls is

σtot =
√

npq =
√

(10,000)(1/6)(5/6) = 37. (3.56)

(b) The expectation value of the average number of 6’s that appear per roll equals
1667/10,000 = 1/6, of course. The standard deviation of the average is ob-
tained from the standard deviation of the total number of 6’s (given in Eq. (3.56))
by dividing by 10,000 (just as we divided by n in the discussion of Fig. 3.2). So
we obtain σavg = 37/10,000 = 0.0037.
Alternatively, the standard deviation of the average (mean) is obtained from the
standard deviation of a single roll by using Eq. (3.53). Eq. (3.46) gives the
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standard deviation of a single roll as σsingle =
√

pq =
√

(1/6)(5/6) = 0.37. So
Eq. (3.53) gives

σavg =
σsingle√

n
=

0.37
√

10,000
= 0.0037. (3.57)

Note that three different σ’s have appeared in this problem:

σsingle = 0.37, σtot = 37, σavg = 0.0037. (3.58)

σtot is obtained from σsingle by multiplying by
√

n (see Eq. (3.45) or Eq. (3.47)),
while σavg is obtained from σsingle by dividing by

√
n (see Eq. (3.53)). Con-

sistent with these relations, σavg is obtained from σtot by dividing by n (see
Eq. (3.52)), because averaging involves dividing by n.

(c) You do not have a reasonable chance of getting a 6 on at least 20% of the rolls.
This is true because 20% of the rolls corresponds to 2000 6’s, which is 333
more than the expected number 1667. And 333 is 9 times the standard devi-
ation σtot = 37. The probability of a random process ending up at least nine
standard deviations above the mean is utterly negligible, as we noted in the dis-
cussion preceding this example. Fig. 3.3 shows the probability distribution for
the range of ±4σtot around the mean. It is clear from the figure that even if we
had posed the question with 18% (which corresponds to 1800 rolls, which is
about (3.6)σtot above the mean) in place of 20%, the answer would still be that
you do not have a reasonable chance of getting a 6 on at least 18% of the rolls.
The probability is about 0.016%.

p

number of 6’s

(10,000 rolls, µ = 1667, σ = 37)

σσ
µ

1550 1600 1650 1700 1750 1800

0.002

0.004

0.006

0.008

0.010

Figure 3.3: The probability distribution for the number of 6’s in 10,000 dice
rolls.

Alternatively, we can answer the question by working in terms of percentages.
The standard deviation of σavg = 0.0037 is equivalent to 0.37%. The difference
between 20% and 16.7% is 3.3%, which is 9 times the standard deviation of
0.37%. The probability is therefore negligibly small.

Remark: Interestingly, the probability curve in Fig. 3.3 looks quite symmetric
around the maximum. You might find this surprising, given that the probabili-
ties of rolling a 6 or not a 6 (namely 1/6 and 5/6) aren’t equal. In the special
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case where the two probabilities in the binomial process are both equal to 1/2
(as they are in Fig. 3.2), it is clear that the probability curve should be symmet-
ric. But when they aren’t equal, there isn’t a simple argument that explains the
symmetry. And indeed, for small numbers of dice rolls, the curve definitely isn’t
symmetric. And also when the whole range (from 0 to 10,000) is included, the
curve definitely isn’t symmetric (the bump is off to the left at the 1667 mark).
But for large numbers of rolls, the curve is approximately symmetric in the re-
gion near the maximum (where the probability is nonnegligible). We’ll show in
Section 5.1 why this is the case. ♣

3.5 Sample variance
[This section is rather mathematical and can be skipped on a first reading.]

Our goal in this section is to produce an estimate for the standard deviation of a
probability distribution, given only a collection of randomly chosen values from the
distribution. Up to this point in the book, we have been answering questions involv-
ing known distributions. In this section we’ll switch things up by starting with some
data and then trying to determine the probability distribution (or at least one aspect
of it, namely the standard deviation). We are foraging into the subject of statistics
here, so this section technically belongs more in a statistics book than a probability
book.1 However, we are including it here partly because it provides a nice excuse
to get some practice with expectation values, and partly because students often find
the factor of n − 1 in the “sample variance” below in Eq. (3.73) mysterious. We
hope to remedy this.

Recall that for a given probability distribution (or equivalently, for a given ran-
dom variable X), the variance is defined in Eq. (3.19) as

Var(X ) ≡ E
[
(X − µ)2] , where µ ≡ E

[
X
]
. (3.59)

We usually write Var(X ) as σ2, because the standard deviation σ is defined to be
the square root of the variance. As we noted in Eq. (3.35), the variance also takes
the (often more convenient) form of σ2 = E(X2) − µ2. Since µ is a constant, we
were able to take it outside the E operation in the middle term when going from
the second to third line in Eq. (3.35). In all of our past calculations, the probability
distribution was assumed to be given, so both µ and σ were known quantities.

Consider now a setup where we are working with a probability distribution P(x)
that we don’t know anything about. It may be discrete, or it may be continuous. We

1Although the words “probability” and “statistics” are often used interchangeably in a colloquial
sense, there is a difference between the two. In a nutshell, the difference comes down to what you are
given and what you are trying to find. Probability involves using (perhaps after deriving theoretically)
a probability distribution to predict the likelihood of future outcomes, whereas statistics involves using
observed outcomes to deduce the properties of the underlying probability distribution (invariably with
the eventual goal of using probability to predict the likelihood of future outcomes). Said in a slightly
different way, probability takes you from theory to experiment, and statistics takes you from experiment
to theory.
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don’t know the functional form of P(x), the mean µ, the standard deviation σ, or
anything else. These quantities do exist, of course; there is a definite distribution
with definite properties. It’s just that we don’t know what they are. Let’s say that
we try to calculate the variance σ2 by picking a random sample of n numbers (call
them x1, x2, . . . , xn) and finding their average x, and then finding the average value
of

(
xi − x

)2. That is, we calculate

s̃2 ≡ 1
n

n∑
1

(
xi − x

)2 where x ≡ 1
n

n∑
1

xi . (3.60)

Note that we cannot use the mean µ of the distribution in place of the average x of
our n numbers, because we don’t know what µ is. Although x is likely to be close to
µ (if n is large), it is unlikely to be exactly equal to µ, because there will be random
effects due to the finite size of n.

A word on notation: The s̃2 in Eq. (3.60) means exactly the same thing as Var(S)
in Eq. (3.37). We have switched notation to s̃2 simply because it is quicker to write.
We are using s̃ instead of σ, so that we don’t confuse the sum (1/n)

∑n
1

(
xi − x

)2

with the actual variance σ2 of the distribution. σ2 involves a theoretical expectation
value over the entire distribution, not just a particular set of n numbers. As with
x and µ, although s̃2 is likely to be close to σ2 (if n is large), it is unlikely to be
exactly equal to σ2. We are using a tilde in s̃ to distinguish it from the plain letter
s, which is reserved for the “sample variance” in Eq. (3.73) below. (Some people
make this distinction by using an uppercase S for s̃.) We should technically be
putting a subscript n on both s̃ and s (and x), because these quantities depend on
the specific set of n numbers. But we have omitted it to keep the calculations below
from getting too cluttered.

If we want to reduce the effects of the finite size of n, in order to make s̃2 be
as close as possible to the actual σ2 of the distribution, there are two reasonable
things we can do. First, we can take the n → ∞ limit. This will in fact give the
actual σ2 of the distribution, as we will show below. But let’s leave this option
aside for now. A second strategy is to imagine picking a huge number N of sets of
n numbers from the distribution, and then taking the average of the N values of s̃2,
each of which is itself an average of the n numbers

(
xi − x

)2. Will this average in
the N → ∞ limit get rid of any effects of the finite size of n and yield the actual σ2

for the distribution? It turns out, somewhat surprisingly, that it will not. Instead it
will yield, as we will show below in Theorem 3.5, an average value of s̃2 equal to

s̃2
avg =

(n − 1)σ2

n
. (3.61)

For any finite value of n, this expression for s̃2
avg is smaller than the actual variance

σ2 of the distribution. But s̃2
avg does approach σ2 in the n → ∞ limit.

Note that when we talk about taking the average of s̃2 over a huge number
N → ∞ of trials, we are equivalently talking about the expectation value of s̃2. This
is how an expectation value is defined. This expectation value is (using the fact
that the expectation value of the sum equals the sum of the expectation values; see
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Eq. (3.7))

E
[
s̃2] = E

1
n

n∑
1

(
Xi − X

)2
 = 1

n

n∑
1

E
[(

Xi − X
)2
]
, (3.62)

where X ≡ (1/n)
∑n

1 Xi .
In going from Eq. (3.60) to Eq. (3.62) and taking the expectation value of s̃2, we

have made an important change in notation from the lowercase xi to the uppercase
Xi . A lowercase xi refers to a specific value of the random variable Xi (where
the Xi are independent and identically distributed random variables, all associated
with the given probability distribution). There is nothing random about xi ; it has
a definite value. It would therefore be of no use to take the expectation value of
(1/n)

∑n
1

(
xi − x

)2. More precisely, we could take the expectation value if we
wanted to, but it would simply yield the same definite value of (1/n)

∑n
1

(
xi − x

)2,
just as the expectation value of the specific number 173.92 is 173.92. In contrast,
the random variable Xi can take on many values, and when taking an expectation
value of an expression involving Xi , it is understood that we are averaging over a
large number N of trials involving (generally) many different xi values of Xi .

Before we present the general proof that E
[
s̃2] = (n−1)σ2/n, let’s demonstrate

that this result holds in the special case of n = 2, just to make it more believable.

Example: In the n = 2 case, show that E
[
s̃2] = σ2/2.

Solution: If n = 2, then we have two independent and identically distributed random
variables, X1 and X2. The sum in Eq. (3.62) therefore has only two terms in it, so we
obtain

E
[
s̃2] = 1

2

2∑
1

E
[(

Xi − X
)2]

=
1
2
*,E


(
X1 −

X1 + X2
2

)2 + E

(
X2 −

X1 + X2
2

)2+- . (3.63)

The terms in parentheses are equal to ±(X1 − X2)/2. The overall sign doesn’t matter,
because these quantities are squared. The two expectation values are therefore the
same, so we end up with (using the fact that the expectation value of the sum equals
the sum of the expectation values)

E
[
s̃2] = 1

4
E
[(

X1 − X2
)2] = 1

4

(
E
[
X2

1
]
+ E

[
X2

2
] − 2E

[
X1X2

] )
. (3.64)

Let’s look at the two types of terms here. Since X1 and X2 are identically distributed,
the E

[
X2

1
]

and E
[
X2

2
]

terms are equal. And from Eq. (3.50) this common value is
E
[
X2] = σ2 + µ2. (Remember that σ and µ exist and have definite values, even

though we don’t know what they are.) For the E
[
X1X2

]
term, since X1 and X2 are

independent variables, Eq. (3.16) tells us that E
[
X1X2

]
= E

[
X1

]
E
[
X2

]
= µ · µ = µ2.

Plugging these results into Eq. (3.64) gives

E
[
s̃2] = 1

4

(
2 · (σ2 + µ2) − 2µ2

)
=
σ2

2
. (3.65)
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This is consistent with the E
[
s̃2] = (n − 1)σ2/n result (with n = 2) that we will

show below. We therefore see that if you want to use E
[
s̃2] (when n = 2) as an

approximation for the actual variance σ2 of the given distribution, you will be off by
a factor of 1/2. This isn’t a very good approximation! We will discuss below why
E
[
s̃2] is always an underestimate of σ2, for any finite value of n.

Note that the µ terms canceled out in Eq. (3.65). In retrospect, we know that this must
be the case (for any value of n, not just n = 2), because the original sum in Eq. (3.62)
is independent of µ. This is true because if we shift all of the Xi values by the same
amount, then the average X also shifts by this amount, so the differences Xi − X are
unchanged.

Let’s now prove the general result. The proof is a bit mathematical, but the final
result will be well worth it. As mentioned at the beginning of this section, we’ll get
some good practice with expectation values here.

Theorem 3.5 The expectation value of s̃2 (where s̃2 is given in Eq. (3.62)) equals
(n − 1)/n times the actual variance σ2 of the distribution. That is,

E
[
s̃2] ≡ E

1
n

n∑
1

(
Xi − X

)2
 = (n − 1)σ2

n
(3.66)

Proof: If we expand the square in Eq. (3.66), we obtain

E
[
s̃2] = 1

n
E


n∑
1

X2
i − 2

( n∑
1

Xi

)
X + nX

2
 . (3.67)

But
∑n

1 Xi equals nX , by the definition of X . We therefore have (using the fact that
the expectation value of the sum equals the sum of the expectation values)

E
[
s̃2] = 1

n


n∑
1

E
[
X2
i

] − 2E
[(

nX
)
X
]
+ nE

[
X

2] . (3.68)

As in the above example with n = 2, the E
[
X2
i

]
terms are all equal, because the Xi

are identically distributed variables. We’ll label the common value as E
[
X2] . We

have n such terms, so

E
[
s̃2] = 1

n

(
nE

[
X2] − 2nE

[
X

2]
+ nE

[
X

2])
= E

[
X2] − E

[
X

2]
. (3.69)

This result is similar to the result in Eq. (3.35). There is, however, a critical differ-
ence. X is now a random variable (being the average of the n random variables Xi),
whereas the µ in Eq. (3.35) was a constant.

Eq. (3.69) contains two terms that we need to evaluate. The E
[
X2] term is

simple. From Eq. (3.50) we have

E
[
X2] = σ2 + µ2. (3.70)
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The E
[
X

2]
term is a bit more involved. X equals (1/n)

∑n
1 Xi , so X

2
equals 1/n2

times the square of the sum of the Xi . When the sum (X1+X2+ · · ·+Xn ) is squared,
there will be n terms like X2

1 , X2
2 , etc., which are all identically distributed with a

common expectation value of E
[
X2] . And there will be

(
n
2

)
= n(n − 1)/2 cross

terms like 2X1X2, 2X1X3, 2X2X3, etc., which are again all identically distributed,
with a common expectation value of, say, E

[
X1X2

]
. We therefore have

E
[
X

2]
=

1
n2

(
nE

[
X2] + n(n − 1)

2
E
[
2X1X2

] )
=

1
n2

(
nE

[
X2] + n(n − 1)E

[
X1

]
E
[
X2

] )
=

1
n2

(
n(σ2 + µ2) + n(n − 1)µ2

)
=
σ2

n
+ µ2. (3.71)

As in the above example, we have used the fact that the Xi’s are independent random
variables, which allows us to write E

[
X1X2

]
= E

[
X1

]
E
[
X2

]
= µ2. But Xi isn’t

independent of itself, of course. That is why E
[
X2] isn’t equal to E

[
X
]
E
[
X
]
= µ2.

Instead, it is equal to σ2 + µ2.
Substituting Eqs. (3.70) and (3.71) into Eq. (3.69) gives

E
[
s̃2] = (σ2 + µ2) −

(
σ2

n
+ µ2

)
=

(
n − 1

n

)
σ2, (3.72)

as desired. As noted in the n = 2 example above, the µ dependence drops out.

In Eq. (3.71) we chose to derive the value of E
[
X

2]
from scratch by working

through some math, because this type of calculation will be helpful if you want
to tackle Problem 3.12. However, there is a much quicker way to find E

[
X

2]
.

From Eq. (3.50) we know that the expectation value of the square of a random
variable equals the square of the mean plus the square of the standard deviation.
With X ≡ (X1 + X2 + · · · + Xn )/n as our random variable, the mean is µ, of course.
And from Eq. (3.53) the standard deviation is σ/

√
n. The σ2/n + µ2 result in

Eq. (3.71) then immediately follows.
Let’s recap what the above theorem implies. If you want to determine the true

variance σ2 of an unknown distribution by picking numbers, you have two main
options:

• You can pick a huge set of numbers, because in the n → ∞ limit, s̃2 ap-
proaches σ2. This is due to two effects. First, the (n−1)/n factor in Eq. (3.72)
approaches 1 in the n → ∞ limit, so E

[
s̃2] equals σ2. And second, the re-

sult from Problem 3.12 tells us that the spread of the values of s̃2 around its
expected value (which is σ2 in the n → ∞ limit) goes to zero in the n → ∞
limit. So s̃2 is essentially guaranteed to be equal to σ2.

• You can pick a set with a “normal” size n (say, 20, although a small number
like 2 will work fine too) and calculate the variance s̃2 of the set of n numbers.
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You can then repeat this process a huge number N → ∞ of times and take the
average of the N variances you have calculated. From Eq. (3.53), the standard
deviation of this average will be proportional to 1/

√
N and will therefore be

very small. The average will therefore be very close to the expected value of
s̃2, which from Eq. (3.72) is (n − 1)σ2/n. This is always an underestimate of
the actual σ2 of the distribution. But if you multiply by n/(n − 1), then you
will obtain σ2.

In the above proof, we proved mathematically that E
[
s̃2] = (n − 1)σ2/n. But

is there an intuitive way of at least seeing why E
[
s̃2] is smaller than σ2, leaving

aside the exact (n−1)/n factor? Indeed there is, and in the end it comes down to the
fact that X is a random variable instead of a constant. In Eq. (3.66) the consequence
of this is that if we look at specific xi values of the Xi random variables, then the(
x1 − x

)2 term, for example, is smaller (on average) than (x1 − µ)2. This is true
because x involves x1, which implies that if x1 is, say, large, then the mean will
be shifted upward slightly toward x1. (The average of the other n − 1 numbers
equals µ, on average. So the average of all of the n numbers including x1 must lie
a little closer to x1, on average.) This effect is most pronounced for small n, such
as n = 2. Another line of reasoning involves looking at Eqs. (3.71) and (3.72).
E
[
X

2]
is larger than µ2 (by an amount σ2/n), due to the fact that the value of X

generally differs slightly from µ. The square of this difference contributes to E
[
X

2]
;

see the paragraph immediately following the proof. So a number larger than µ2 is
subtracted off in Eq. (3.72).

As mentioned above, a quick corollary of Theorem 3.5 is that if we multiply
E
[
s̃2] by n/(n − 1), we obtain the actual variance σ2 of the distribution. This

suggests that we might want to define a new quantity that is a slight modification of
the s̃2 in Eq. (3.60). We’ll label it as s2:

s2 ≡
( n

n − 1

)
s̃2 =

1
n − 1

n∑
1

(
xi − x

)2 (sample variance) (3.73)

This quantity s2 is called the sample variance. We’ll discuss this terminology below.
s2 is a function of a particular set of n numbers, x1 through xn , just as s̃2 is. But the
expectation value of s2 doesn’t depend on n. The combination of Eqs. (3.72) and
(3.73) tells us that the expectation value of s2 is simply σ2:

E
[
s2] = σ2 (3.74)

Our original quantity s̃2 is a biased estimator of σ2, in that its expectation value
E
[
s̃2] depends on n and is smaller than σ2 by the factor (n−1)/n. Our new quantity

s2 is an unbiased estimator of σ2, in that its expectation value E
[
s2] is independent

of n and equals σ2. To summarize, the two quantities

s̃2 ≡ 1
n

n∑
1

(
xi − x

)2 and s2 ≡ 1
n − 1

n∑
1

(
xi − x

)2 (3.75)
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have expectation values of

E
[
s̃2] = (n − 1)σ2

n
and E

[
s2] = σ2. (3.76)

A word on terminology: The quantity s̃2 is called the “variance” of a particular
set of n numbers, while the quantity s2 is called the “sample variance” of the set.
When talking about the sample variance, it is understood that you are concerned
with producing an estimate of the actual variance of the underlying distribution.
(This variance is often called the population variance, in view of the fact that it
takes into account the entire population of possible outcomes, as opposed to just
a sample of them.) The sample variance s2 has the correct expectation value of
σ2. However, this terminology can get a little tricky. What if someone asks you to
compute the variance of a sample of n numbers? Even though the word “sample”
is used here, you should calculate s̃2, because you are being asked to compute the
variance of a set/sample of numbers, and the variance is defined via Eq. (3.37) or
Eq. (3.60), with an n in the denominator. If someone actually wants you to compute
the sample variance, then they should use this specific term, which is defined to be
s2, with an (n − 1) in the denominator. Of course, any ambiguity in terminology
can be eliminated by simply using the appropriate symbol (s̃2 or s2) in addition to
words.

Terminology aside, which of s̃2 or s2 should you be concerned with if you are
given a set of n numbers? Well, if you are concerned only with these particular
n numbers and nothing else (in particular, the underlying distribution, if the num-
bers came from one), then you should calculate s̃2. This is the variance of these
numbers.2 But if the n numbers come from a distribution or a larger population,
and if you are concerned with making a statement about this distribution or popu-
lation, then you should calculate s2, because this gives an unbiased estimate of σ2.
However, having said this, it is often the case that n is large enough so that the dis-
tinction between the n and the n−1 in the denominators of s̃2 and s2 doesn’t matter.
To summarize, the three related quantities we have encountered are:

σ2: Distribution variance, or population variance.

s̃2: Variance of a set of n numbers (a biased estimator of σ2).

s2: Sample variance of a set of n numbers (an unbiased estimator of σ2).

Example (n = 100): We proved Theorem 3.5 mathematically, but let’s now give some
numerical evidence that E

[
s2] is in fact equal to σ2. We’ll arbitrarily choose n = 100.

To demonstrate E
[
s2] = σ2, we’ll numerically generate N = 105 sets of n = 100

values from a Gaussian (normal) distribution with µ = 0 and σ = 1. (Eq. (3.74) holds
for any type of distribution, so our Gaussian choice isn’t important. We’ll discuss the

2If you are concerned only with this set of numbers and nothing else, then you can rightly call the set
a “population,” in which case you can rightly call s̃2 a “population” variance. But we’ll just call it s̃2.
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Gaussian distribution in Section 4.8.) The µ value here is irrelevant, as we have noted.
The N = 105 number is large enough so that we’ll pretty much obtain the expectation
value E

[
s2] ; see the second remark below.

The results of a numerical run are shown in Fig. 3.4. For each of the N = 105 sets
of n = 100 values, we calculated the s2 given by Eq. (3.73). The histogram gives the
distribution of the N values of s2. The average of these N values is 1.00062, which is
very close to σ2 = 1, consistent with Eq. (3.74).

0.6 0.8 1.0 1.2 1.4 1.6

2000

4000

6000

s2

Figure 3.4: A histogram of the sample variances s2 of N = 105 sets of numbers, with
each set consisting of n = 100 numbers chosen from a Gaussian distribution with
σ = 1.

Remarks:

1. If you are interested in calculating the spread of the histogram, see Problem 3.12.
A corollary to that problem is that if the underlying probability distribution
is Gaussian (so now the Gaussian assumption matters), and if n is large, then
Var(s2) ≈ 2σ4/n. In the present setup with σ = 1 and n = 100, this gives
Var(s2) ≈ 0.02. The standard deviation of the s2 values is therefore about√

0.02 ≈ 0.14. This is consistent with a visual inspection of the histogram.

2. If we make N larger (say, 106 or 107), the spread of the histogram remains
the same. The standard deviation is still 0.14, because the variance Var(s2) ≈
2σ4/n depends only on n, not on N . So the histogram will look the same. As
far as the average value of s2 (which is 1.00062 for the data in Fig. 3.4) goes, a
larger N means that it is more likely to be very close to σ2 = 1, due to the result
in Eq. (3.53) for the standard deviation of the mean. (This effect is too small
to see, so the histogram will still look the same.) Remember that the standard
deviation of the average of N independent and identically distributed variables
(the N values of s2 here) is always smaller than the standard deviation of each
of the variables (which is

√
2σ4/n here), by a factor of 1/

√
N .

In the present case, the σ in Eq. (3.53) is 0.14, and the n there is now N . If
N = 105, then Eq. (3.53) says that the standard deviation of the average of the N
values of s2 is (0.14)/

√
105 = 4.4·10−4. Our above numerical result of 1.00062

for the average of s2 is therefore about one and a half standard deviations from
the expected value (σ2 = 1), which is quite reasonable. Larger values of N will
cause the average of the N values of s2 to be even closer to 1 (on average). ♣
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If you want to produce an estimate of the standard deviation σ of a distribution,
there are two things you might want to do. You can pick a value of n (say, 10) and
then take the average of a large number N (say, a million) of values of the sample
variance s2 of n numbers. For very large N , this will essentially give you σ2, by
Eq. (3.74). You can then take the square root to obtain σ. This is a valid method
for obtaining σ. Or, you can take the average of a large number N of values of
the sample standard deviation s, each of which is the square root of the s2 given in
Eq. (3.73). However, this second method will not give you σ. Your calculated aver-
age will be smaller than σ; see Problem 3.11. Therefore, although Eq. (3.74) tells
us that the sample variance s2 is an unbiased estimator of the distribution variance
σ2, it is not true that the sample standard deviation s is an unbiased estimator of the
distribution standard deviation σ.

3.6 Summary
• A random variable is a variable that can take on certain numerical values with

certain probabilities. A random variable is denoted with an uppercase letter,
such as X , while the actual values that the variable can take on are denoted
with lowercase letters, such as x.

• The expectation value of a random variable X is the expected average value
of the variable, over a large number of trials. It is given by

E(X ) = p1x1 + p2x2 + · · · + pm xm , (3.77)

where the x’s are the possible outcomes and the p’s are the associated proba-
bilities. The expectation value of the sum of two variables equals the sum of
the individual expectation values:

E(X + Y ) = E(X ) + E(Y ). (3.78)

The expectation value of the product of two independent variables equals the
product of the individual expectation values:

E(XY ) = E(X ) · E(Y ) (independent variables) (3.79)

• The variance of a random variable is related to the spread of the possible
outcomes of the variable. It is given by

Var(X ) ≡ E
[
(X − µ)2] . (3.80)

It can also be written as Var(X ) = E
(
X2) − µ2. The variance of the sum of

two independent variables equals the sum of the individual variances:

Var(X + Y ) = Var(X ) + Var(Y ) (independent variables) (3.81)

The variance of the number of Heads in n tosses of a biased coin (involving
probabilities p and 1 − p ≡ q) is

Var(Heads in n flips) = npq (biased coin) (3.82)
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The variance of a set S of n numbers xi is

s̃2 ≡ Var(S) ≡ 1
n

n∑
1

(
xi − x

)2. (3.83)

• The standard deviation of a random variable gives a rough measure of the
spread of the possible outcomes of the variable. It is defined as the square
root of the variance, so we can write it in two ways:

σX ≡
√

Var(X ) =
√

E
[
(X − µ)2] = √

E
(
X2) − µ2. (3.84)

If X and Y are two independent random variables, then

σ2
X+Y = σ

2
X + σ

2
Y (independent variables) (3.85)

This is the statement that standard deviations “add in quadrature” for inde-
pendent variables. The standard deviation of the number of Heads in n tosses
of a biased coin (involving probabilities p and 1 − p ≡ q) is

σ =
√

npq (biased coin) (3.86)

• The standard deviation of the mean is the standard deviation of the average
of a set of n random variables. If each of the random variables has the same
standard deviation σ, then the standard deviation of their average equals

σX =
σ
√

n
(standard deviation of the mean) (3.87)

• The sample variance s2 of a set of n numbers xi chosen from a given distri-
bution is defined as

s2 ≡ 1
n − 1

n∑
1

(
xi − x

)2. (3.88)

The sample variance has the property that its expected value equals the actual
variance σ2 of the distribution.

3.7 Exercises

See www.people.fas.harvard.edu/ ˜djmorin/book.html for a supply of problems
without included solutions.
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3.8 Problems
Section 3.1: Expectation value

3.1. Flip until Heads *
In Example 2 on page 136, we found that if you flip a coin until you get a
Heads, the expectation value of the total number of coins is

1
2
·1 + 1

4
·2 + 1

8
·3 + 1

16
·4 + 1

32
·5 + · · · . (3.89)

We claimed that this sum equals 2. Demonstrate this by writing the sum as a
geometric series starting with 1/2, plus another geometric series starting with
1/4, and so on. You can use the fact that the sum of a geometric series with
first term a and ratio r is a/(1 − r).

3.2. HT waiting time **
We know from Example 2 on page 136 that the expected number of flips
required to obtain a Heads is 2. What is the expected number of flips required
to obtain a Heads and a Tails in succession (in that order)?

3.3. Sum of dependent variables **
Consider the example on page 137, but now let X and Y be dependent in
the following manner: If Y = 1, then it is always the case that X = 1. If
Y = 2, then it is always the case that X = 2. If Y = 3, then there are equal
chances of X being 1 or 2. If we assume that Y takes on the values 1, 2, and
3 with equal probabilities of 1/3, then you can quickly show that X takes on
the values 1 and 2 with equal probabilities of 1/2. So we have reproduced
the probabilities in the original example. Show (by explicitly calculating the
probabilities of the various outcomes) that in the present scenario where X
and Y are dependent, the relation E(X + Y ) = E(X ) + E(Y ) still holds.

3.4. Playing “unfair” games **

(a) Assume that later on in life, things work out so that you have more than
enough money in your retirement savings to take care of your needs
and beyond, and that you truly don’t have a need for any more money.
Someone offers you the chance to play a one-time game where you have
a 3/4 chance of doubling your money, and a 1/4 chance of losing it all.
If you initially have N dollars, what is the expectation value of your
resulting amount of money if you play the game? Would you want to
play it?

(b) Assume that you are stranded somewhere, and that you have only $10
for a $20 bus ticket. Someone offers you the chance to play a one-time
game where you have a 1/4 chance of doubling your money, and a 3/4
chance of losing it all. What is the expectation value of your resulting
amount of money if you play the game? Would you want to play it?
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3.5. Simpson’s paradox **
During the baseball season in a particular year, player A has a higher batting
average than player B. In the following year, A again has a higher average
than B. But to your great surprise when you calculate the batting averages
over the combined span of the two years, you find that A’s average is lower
than B’s! Explain, by giving a concrete example, how this is possible.

Section 3.2: Variance

3.6. Variance of a product *
Let X and Y each be the result of independent (and fair) coin flips where we
assign the value 1 to Heads and 0 to Tails. Show that Var(XY ) is not equal to
Var(X )Var(Y ).

3.7. Variances *
For each of the three examples near the beginning of Section 3.2, show that
the alternative E

(
X2) − µ2 form of the variance given in Eq. (3.34) leads to

the same results we obtained in the examples.

Section 3.3: Standard deviation

3.8. Random walk **
Consider the following one-dimensional random walk. A person starts at the
origin and then takes n successive steps. Each step is equally likely to be to
the right or to the left. All steps have the same length.

(a) What is the probability that the person is located back at the origin after
the nth step?

(b) After n steps, what is the standard deviation of the person’s position
relative to the origin? (Assume that the length of each step is, say, one
foot.)

Section 3.4: Standard deviation of the mean

3.9. Expected product, without replacement **
Consider a set of N given numbers, a1, a2, . . . , aN . Let the mean of these N
numbers be µ, and let the standard deviation be σ. Draw two numbers X1 and
X2 randomly without replacement. Show that the expectation value of their
product is

E
[
X1X2] = µ2 − σ2

N − 1
. (3.90)

Hint: All of the aia j possibilities (with i , j) are equally likely.

3.10. Standard deviation of the mean, without replacement ***
Consider a set of N given numbers, a1, a2, . . . , aN . Let the mean of these
N numbers be µ, and let the standard deviation be σ. Draw a sample of n
numbers Xi randomly without replacement, and calculate their sample mean,
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∑
Xi/n. (n must be less than or equal to N , of course.) The variance of the

sample mean is E
[( ∑

Xi/n − µ
)2] . Show that this variance is given by

E

(∑

Xi

n
− µ

)2 = σ
2

n

(
1 − n − 1

N − 1

)
. (3.91)

The standard deviation of the sample mean is the square root of this. The
result from Problem 3.9 will come in handy.

Section 3.5: Sample variance

3.11. Biased sample standard deviation **
We mentioned on page 163 that the sample standard deviation s is a biased
estimator of the distribution standard deviation σ. The basic reason for this is
that the square root operation is nonlinear, which means that the square root
of the average of a set of numbers isn’t equal to the average of their square
roots. For example, the average of 1.1 and 0.9 is 1, but the average of

√
1.1

and
√

0.9 isn’t 1. It is smaller than 1. Let’s give a general proof that E[s] ≤ σ
(unlike E[s2] = σ2).

If we calculate the sample variances for a large number N of sets of n num-
bers, then the E[s2] = σ2 equality in Eq. (3.74) tells us that in the N → ∞
limit, we have

s2
1 + s2

2 + · · · + s2
N

N
= σ2. (3.92)

Our goal is to show that

s1 + s2 + · · · + sN
N

≤ σ, (3.93)

in the N → ∞ limit. To demonstrate this, square both sides of Eq. (3.93)
and make copious use of the arithmetic-geometric-mean inequality,

√
ab ≤

(a + b)/2.

3.12. Variance of the sample variance ***
Consider the sample variance s2 (given in Eq. (3.73)) of a sample of n values,
X1 through Xn , chosen from a distribution with standard deviation σ and
mean µ. We know from Eq. (3.74) that the expectation value of s2 is σ2, so
the variance of s2 (that is, the variance of the sample variance) is Var

(
s2) =

E
[
(s2 −σ2)2] . The square root of this variance gives a measure of the spread

of the results if you calculate s2 for many different sets of n numbers (as we
did in Fig. 3.4). Show that Var

(
s2) equals

Var
(
s2) = 1

n

[
µ4 − σ4

(
n − 3
n − 1

)]
, (3.94)

where µ4 is the distribution’s fourth moment relative to the mean, that is,
µ4 ≡ E

[
(X−µ)4] . The math here is extremely tedious, so you should attempt

this problem only if you really enjoyed the proof of Theorem 3.5. Whatever
adjective comes to mind for that proof, multiply it by 10 for this problem!
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3.13. Sample variance for two dice rolls **

(a) We know from the first example in Section 3.2 that the variance of a
single die roll is σ2 = 2.92. If you use Eq. (3.73) to calculate the
sample variance s2 for n = 2 dice rolls, the expected value of s2 should
be σ2 = 2.92, according to Eq. (3.74). By considering the 36 equally
likely pairs of dice in Table 1.5, verify that this is indeed the case.

(b) Using the information you generated from Table 1.5, calculate Var(s2).
Then show that the result agrees with the expression for Var(s2) in
Eq. (3.94), with n = 2.

3.9 Solutions
3.1. Flip until Heads

The given sum equals

1
2
+

1
4
+

1
8
+

1
16
+

1
32
+ · · ·

+
1
4
+

1
8
+

1
16
+

1
32
+ · · ·

+
1
8
+

1
16
+

1
32
+ · · ·

+
1
16
+

1
32
+ · · · (3.95)

...

This has the correct number of each type of term. For example, a “1/16” appears four
times. The first line is a geometric series that sums to a/(1−r) = (1/2)/(1−1/2) = 1.
The second line is also a geometric series, and it sums to (1/4)/(1 − 1/2) = 1/2.
Likewise the third line sums to (1/8)/(1 − 1/2) = 1/4. And so on. The sum of the
infinite number of lines in Eq. (3.95) therefore equals

1 +
1
2
+

1
4
+

1
8
+

1
16
+

1
32
+ · · · . (3.96)

But this itself is a geometric series, and it sums to a/(1 − r) = 1/(1 − 1/2) = 2, as
desired.

3.2. HT waiting time
Our goal is to find the average number of flips to obtain an HT pair (including these
two flips). We know that the average number of flips to obtain an H is 2. The impor-
tant point to now realize is that once we obtain our first H, the game ends when we
eventually obtain a T. This is true because if we obtain a T on the following flip, then
we have obtained our HT, so we’re done. If, on the other hand, we obtain a T, say,
four flips later (that is, if we obtain three more H’s and then a T), then our string looks
like . . . HHHHT, so we have obtained our HT pair. Basically, in any scenario, once
we’ve obtained our first H, the first subsequent appearance of a T, whenever that may
be, must necessarily follow an H, which means that we have obtained our HT pair.
We can therefore answer the original HT question if we can answer the question: How
many flips on average does it take to obtain a T, following an H? Now, since H and T
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are interchangeable, this is exactly the same question as: How many flips on average
does it take to obtain an H, starting at the beginning? (This is true because future flips
can’t depend on past flips. So we can imagine starting the process whenever we want.
Starting after the first H is as valid a place to start as the actual beginning.) We already
know that the answer to this question is 2. The average number of flips to obtain an
HT string is therefore 2+2=4. It takes an average of two flips to obtain an H, and then
an average of two more flips to obtain a T, at which point we necessarily have our HT
sequence, as we noted above.

3.3. Sum of dependent variables
In the (X,Y ) notation, the given information tells us that there is a 1/3 chance of
obtaining (1,1), a 1/3 chance of obtaining (2,2), a 1/6 chance of obtaining (1,3),
and a 1/6 chance of obtaining (2,3). Both (2,2) and (1,3) yield a sum of 4, so the
probabilities of the various values of X + Y are

P(2) =
1
3
, P(3) = 0, P(4) =

1
3
+

1
6
=

1
2
, P(5) =

1
6
. (3.97)

Eq. (3.4) then gives the expectation value of X + Y as

E(X + Y ) =
1
3
· 2 + 0 · 3 + 1

2
· 4 + 1

6
· 5 = 21

6
= 3.5. (3.98)

This equals E(X ) + E(Y ) = 1.5 + 2 = 3.5, as Eq. (3.7) claims.

3.4. Playing “unfair” games

(a) The expectation value of your money after you play the game is (3/4) · 2N +
(1/4) · 0 = 3N/2. So you will gain N/2 dollars, on average. It therefore seems
like it would be a good idea to play the game. However, further thought shows
that it would actually be a bad idea. There is basically no upside; you already
have plenty of money, so twice the money won’t help much. But there is a huge
downside; you might lose all your money, and that would certainly be a bad
thing.
The point here is that the important issue is your happiness, not the exact amount
of money you have. On the happiness scale (from 0 to 1), you stand to gain
nothing (or perhaps a tiny bit). Your happiness starts pretty much at 1, and even
if you win the game, you can’t climb any higher than 1. But you stand to lose
a huge amount. This isn’t to say that you can’t be happy without money. But
if you lose your entire savings, there’s no doubt that it would put a damper on
things. Let’s assume that if you lose the game, your happiness decreases roughly
to 0. Then if you play the game, the expectation value of your happiness is
essentially (3/4) · 1 + (1/4) · 0 = 3/4. This is less than the starting value of 1,
so it suggests that you shouldn’t play the game. However, there is still another
thing to consider; see the remark below.

(b) The expectation value of your money after you play the game is (3/4) · 0 +
(1/4) · 20 = 5. So you will lose $5, on average. It therefore seems like it
would be a bad idea to play the game. However, the $10 in your pocket is just
as useless as $0, because either way, you’re guaranteed to be stuck at the bus
station. You therefore should play the game. That way, at least there’s a 1/4
chance that you’ll make it home. (We’ll assume that the overall money you
have back home washes out any effect of gaining or losing $10, in the long run.)
The same argument we used above with the happiness level holds here. $0 and
$10 yield the same level of happiness (or perhaps we should say misery), so
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there is basically no downside. But there is definitely an upside with the $20,
because you can then buy a ticket. The expectation value of your happiness (on
a scale from 0 to 1) is essentially (3/4) · 0+ (1/4) · 1 = 1/4. This is greater than
the starting value of 0, so it suggests that you should play the game. But see the
following remark.

Remark: There is another consideration with these sorts of situations, in that
they are one-time events. Even if we rig things so that the expectation value
of your happiness level (or whatever measure you deem to be the important
one) increases, it’s still not obvious that you should play the game. Just as with
any other probabilistic quantity, the expectation value has meaning only in the
context of a large number of identical trials. You could imagine a situation
where a group of many people play a particular game and the average happiness
level increases. But you are only one person, and the increase in the overall
happiness level of the group is of little comfort to you if you lose your shirt.
Since you play the game only once, the expectation value is irrelevant to you.
The decision mainly comes down to an assessment of the risk. Different people’s
reactions to risk are different, and you could imagine someone being very risk-
averse and never playing a game with a significant downside, no matter what
the upside is. ♣

3.5. Simpson’s paradox
The two tables in Table 3.1 show an extreme scenario that gets to the heart of the
matter. In the first year, player A has a small number of at-bats (6), while player B
has a large number (600). In the second year, these numbers are reversed. You should
examine these tables for a minute to see what’s going on, before reading the next
paragraph.

First year Second year
Player A 3/6 (.500) 150/600 (.250)
Player B 200/600 (.333) 1/6 (.167)

Combined years
Player A 153/606 (.252)
Player B 201/606 (.332)

Table 3.1: Yearly and overall batting averages. The years with the large numbers of
at-bats dominate the overall averages.

The main point to realize is that in the combined span of the two years, A’s average is
dominated by the .250 average coming from the large number of at-bats in the second
year (yielding an overall average of .252, very close to .250), whereas B’s average is
dominated by the .333 average coming from the large number of at-bats in the first
year (yielding an overall average of .332, very close to .333). B’s .333 is lower than
A’s .500 in the first year, but that is irrelevant because A’s very small number of at-
bats that year hardly affects his overall average. Similarly, B’s .167 is lower than A’s
.250 in the second year, but again, that is irrelevant because B’s very small number of
at-bats that year hardly affects his overall average. What matters is that B’s .333 in the
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first year is higher than A’s .250 in the second year. The large numbers of associated
at-bats dominate the overall averages.
Fig. 3.5 shows a visual representation of the effect of the number of at-bats. The size
of a data point in the figure gives a measure of the number of at-bats. So although B’s
average is lower than A’s in each year, the large B data point in the first year is higher
than the large A data point in the second year. These data points are what dominate
the overall averages.

year

avg

.100

.200

.300

.400

.500 A

A

B

B

1st 2nd

Figure 3.5: Visual representation of Simpson’s paradox. The large data points domi-
nate the overall averages.

Remarks:

1. To generate the paradox where B’s overall average surprisingly ends up being
higher than A’s overall average, the higher of B’s two yearly averages must be
higher than the lower of A’s two yearly averages. If this weren’t the case (that
is, if the large B data point in Fig. 3.5 were lower than the large A data point),
then A’s overall average would necessarily be higher than B’s overall average
(as you can verify). So the paradox wouldn’t be realized.

2. To generate the paradox, we must also have a disparity in the number of at-bats.
If all four of the yearly at-bats in the first of the tables in Table 3.1 were the same,
then A’s overall average would necessarily be higher than B’s overall average
(as you can verify). The main point of the paradox is that when calculating the
overall average for a given player, we can’t just take the averages of the two
averages. A year with more at-bats influences the average more than a year with
fewer at-bats, as we saw above.
The paradox can certainly be explained with at-bats that don’t have values as
extreme as 6 and 600, but we chose these in order to make the effect as clear as
possible. Also, we chose the total number of at-bats in the above example to be
the same for A and B over the two years, but this of course isn’t necessary.

3. The paradox can also be phrased in terms of averages on exams, for example:
For 10th graders taking a particular test, boys have a higher average than girls.
For 11th graders taking the same test, boys again have a higher average than
girls. But for the 10th and 11th graders combined, girls have a higher average
than boys. Another real-life example deals with college admissions rates. The
paradox can arise when looking at male/female acceptance rates to individual
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departments, and then looking at the male/female acceptance rates to the college
as a whole. (The departments are analogous to the different baseball years.)

4. One shouldn’t get carried away with Simpson’s paradox. There are plenty of
scenarios where it doesn’t apply, for example: In a particular school, the per-
centage of soccer players in the 10th grade is larger than the percentage of mu-
sicians. And the percentage of soccer players in the 11th grade is again larger
than the percentage of musicians. Can the overall percentage of soccer players
(in the combined grades) be smaller than the overall percentage of musicians?
The answer to this question is a definite “No.” One way to see why is to consider
the numbers of soccer players and musicians, instead of the percentages. Since
there are more soccer players than musicians in each grade, the total number
(and hence percentage) of soccer players must be larger than the total number
(and hence percentage) of musicians.

Another way to understand the “No” answer is to note that when calculating the
percentages of soccer players and musicians in a given grade, we’re dividing the
number of students in each group by the same denominator (namely, the total
number of students in the grade). We therefore can’t take advantage of the effect
in the baseball scenario above, where B’s average was dominated by one year
while A’s was dominated by a different year, due to the different numbers of at-
bats in a given year. Instead of the data points in Fig. 3.5, the present setup might
yield something like the data points in Fig. 3.6. The critical feature here is that
the dots in each year have the same size. The dots for the 11th grade happen to
be larger because we’re arbitrarily assuming that there are more students in that
grade. The total percentage of soccer players in the two years is the weighted
average of the two soccer dots (weighted by the size of the dots, or equivalently
by the number of students in each grade). Likewise for the two music dots. The
soccer weighted average is necessarily larger than the music weighted average.
(This is fairly clear intuitively, but as an exercise you can prove it rigorously if
you have your doubts.) ♣

grade

10%

20%

30%

40%

50%

soccer

soccer

music

music

10th 11th

Figure 3.6: Simpson’s paradox doesn’t apply in this case. The overall per-
centage of soccer players is necessarily larger than the overall percentage of
musicians.
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3.6. Variance of a product
The random variable XY takes on the values of 0 and 1 with probabilities 1/4 and
3/4, because only HH yields an XY value of 1. The other three outcomes (HT, TH,
TT) all yield 0. We therefore effectively have a single biased coin with probability
p = 1/4 of obtaining a value of 1, and q = 3/4 of obtaining a value of 0. Eq. (3.33)
then tells us that the variance of XY is npq = 1 · (1/4) · (3/4) = 3/16. And we
know from Eq. (3.21) (or Eq. (3.33)) that the variance of each single (fair) coin flip is
Var(X ) = Var(Y ) = 1/4. So Var(X )Var(Y ) = (1/4)(1/4) = 1/16, which is not equal
to Var(XY ) = 3/16.

3.7. Variances
For a die roll, we have

E
(
X2) = 1

6

(
12 + 22 + 32 + 42 + 52 + 62

)
=

91
6
= 15.17. (3.99)

And µ = 3.5, so the variance is E
(
X2) − µ2 = 15.17 − 3.52 = 2.92, as desired.

For a fair coin flip, we have

E
(
X2) = 1

2

(
12 + 02

)
=

1
2
. (3.100)

And µ = 1/2, so the variance is E
(
X2) − µ2 = 1/2 − (1/2)2 = 1/4, as desired.

For a biased coin flip, we have

E
(
X2) = p · 12 + (1 − p) · 02 = p. (3.101)

And µ = p, so the variance is E
(
X2) − µ2 = p − p2 = p(1 − p) ≡ pq, as desired.

3.8. Random walk

(a) If the person ends up back at the origin after n steps, then it must be the case
that n/2 of the steps were to the right and n/2 were to the left. (Note that this
immediately tells us that n must be even, if there is to be any chance of ending up
at the origin.) You can imagine the person flipping a coin, with Heads meaning
a step to the right and Tails meaning a step to the left. So the given problem is
equivalent to finding the probability that you obtain equal numbers n/2 of Heads
and Tails in n coin flips. There is a total of 2n possible outcomes (all equally
likely) for the collection of n flips, and

(
n
n/2

)
of these have exactly n/2 each of

Heads and Tails. So the probability of obtaining exactly n/2 Heads is

p =
1

2n

(
n

n/2

)
=

1
2n
· n!(

(n/2)!
)2 . (3.102)

If n is even, this is the desired probability of ending up back at the origin. If n
is odd, the probability is zero.
If n is large, then Eq. (2.66) gives an approximation to Eq. (3.102). The n in
Eq. (2.66) corresponds to n/2 here, so the above result becomes 1/

√
π(n/2) =√

2/πn. For example, after n = 100 steps, the probability of being at the origin
is about 8%.

(b) First solution: Consider a single step, with the two possible outcomes of +1
and −1 (in feet). The mean displacement during the step is µ = 0, so the first (or
second) expression in Eq. (3.40) gives the standard deviation of a single step as

σ1 =

√
E
[
(X − µ)2] = √

(1/2) · (1)2 + (1/2) · (−1)2 = 1. (3.103)
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This makes sense, because the square of the length of a single step is guaranteed
to be 1. The standard deviation of n independent steps (involving identical 50-50
processes) is then given by Eq. (3.45) as

σn =
√

n · σ1 =
√

n. (3.104)

Remark: Since our random walk is basically the same as a series of coin flips
(with Heads and Tails corresponding to 1 and −1 instead of the usual 1 and 0
that we have used in the past), the probability distribution for where the person
is after n steps has the same basic shape as the binomial distribution in, say, the
fourth plot in Fig. 3.1. In particular, we can make the same types of statements
we made right before the example in Section 3.4. For example, assuming that
the number of steps is large, there is a 99.7% chance that after n steps the person
is within 3σn = 3

√
n of the origin. So for n = 10,000 steps, the person is 99.7%

likely to be within 3
√

n = 300 steps of the origin. ♣

Second solution: We can solve the problem from scratch, without invoking
Eq. (3.45). This method allows us to see intuitively where the σn =

√
n result

comes from. Let the n steps be represented by the independent and identically
distributed random variables Xi . Each Xi can take on the value of +1 or −1,
with equal probabilities. Let Z be the sum of the Xi . So Z is the position after
the n steps. We then have (see below for an explanation of these equations)

Z = X1 + X2 + X3 + · · · + Xn

=⇒ Z2 = (X1 + X2 + X3 + · · · + Xn )2

=⇒ Z2 = (X2
1 + X2

2 + · · · + X2
n ) + (cross terms, like 2X1X2)

=⇒ Z2 = (1 + 1 + · · · + 1) + (cross terms)

=⇒ E
[
Z2] = n + E

[
cross terms

]
=⇒ σ2

n = n + 0

=⇒ σn =
√

n. (3.105)

The second line is the square of the first. In the third line we expanded the
square to obtain n “diagonal” terms X2

i , along with
(
n
2

)
cross terms 2Xi X j .

In the fourth line we used the fact that since Xi = ±1, its square is always 1.
The fifth line is the expectation value of the fourth line. To obtain the sixth
line, we used the fact that since the mean value of Z is µ = 0, Eq. (3.50) gives
E
[
Z2] = σ2

n . And we also used the fact that the expectation value of the
product Xi X j (with i , j) equals zero. This is true because Xi and X j are
independent variables, so Eq. (3.16) tells us that E[Xi X j ] = E[Xi ]E[X j ]. And
these individual expectation values are zero. The standard deviation is then
σn =

√
n, as the seventh line states.

Whether we find σn in this manner or in the manner of the first solution above
which used Eq. (3.45) (which can be traced back to Eq. (3.27) in Theorem 3.3),
everything boils down to the fact that the cross terms in the squared expression
have zero expectation value. So we are left with only the diagonal terms.

3.9. Expected product, without replacement
When drawing two numbers without replacing the first one, all of the

(
N
2

)
= N (N −

1)/2 possibilities for the product aia j are equally likely to be the value that X1X2
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takes. The expectation value E
[
X1X2

]
is therefore simply the average of all the dif-

ferent aia j values. That is,3

E
[
X1X2

]
=

∑
i< j aia j

N (N − 1)/2
. (3.106)

Now, if we square the sum a1 + a2 + · · · + aN and then subtract off the “diagonal” a2
i

terms, we will be left with only the cross terms 2aia j . So we can rewrite the above
numerator to obtain

E
[
X1X2

]
=

[( ∑
ai

)2 −∑
a2
i

]
/2

N (N − 1)/2
, (3.107)

where the sums run from 1 to N . By the definition of the mean µ, we have µ ≡∑
ai/N =⇒ ∑

ai = N µ. And by the definition of E
[
X2] , we have E

[
X2] ≡∑

a2
i /N =⇒

∑
a2
i = N · E

[
X2] . (We are using X to denote a random draw from

the complete set.) But E
[
X2] = µ2 + σ2 from Eq. (3.50), which is true for an arbi-

trary distribution, in particular the present one involving N equally likely outcomes.
So

∑
a2
i = N (µ2 + σ2), and Eq. (3.107) becomes

E
[
X1X2

]
=

(N µ)2 − N (µ2 + σ2)
N (N − 1)

=
N µ2 − µ2 − σ2

N − 1
= µ2 − σ2

N − 1
, (3.108)

as desired.

Remarks:

1. This result for E
[
X1X2

]
is smaller than the E

[
X1X2

]
= E

[
X1

]
E
[
X2

]
= µ2

result in the case where the Xi are independent, as they would be if we drew
the numbers with replacement. This makes sense for the following reason. The
expectation value of the product of two independently drawn numbers (which
could be the same or different) is E[X] · E[X] = µ2, whereas Eq. (3.50) tells us
that the expectation value of the product of two identical numbers is E[X2] =
µ2 + σ2, which is larger than µ2. Therefore, if we remove these identical
cases, then the expectation value of the product of two different numbers must
be smaller than µ2, so that the expectation value of all of the products is µ2.
This reasoning is basically just Eq. (3.108) described in words.

2. A quick corollary to Eq. (3.108) is the following. Consider a set of N given
numbers, a1, a2, . . . , aN . Draw n numbers randomly without replacement.
(So we must have n ≤ N , of course.) Let Xi (with 1 ≤ i ≤ n) be the random
variables for these n draws. Then the expectation value of the product of any two
of the Xi (that is, not just the first two, X1 and X2) is the same as in Eq. (3.108):

E
[
Xi X j ] = µ2 − σ2

N − 1
(i , j) . (3.109)

This is true because the temporal ordering of the first draw through the nth draw
is irrelevant. We will end up with the same setup if we imagine labeling n boxes
1 through n and then throwing (simultaneously, or in whatever temporal order
we wish) n of the N given numbers into the n boxes, with one number in each.
All of the N Pn ordered subgroups of n numbers are equally likely, so all of the
expectation values E

[
Xi X j

]
(with i , j) are the same. They therefore all have

the common value of, say, E
[
X1X2

]
. And this value is given in Eq. (3.108). ♣

3Instead of writing i < j here, we can alternatively write i , j , as long as we divide by N (N − 1)
instead of N (N − 1)/2. The denominator is modified because the sum now includes, for example, both
a3a5 and a5a3.
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3.10. Standard deviation of the mean, without replacement
Note that we are calculating the variance here with respect to the known mean µ of
all N numbers, as opposed to the sample mean x of the n numbers we draw (as we
did for the sample variance in Section 3.5). The latter would make the lefthand side
of Eq. (3.91) identically zero, of course.
If we expand the square on the lefthand side of Eq. (3.91) and also expand the square
of

∑
Xi , we obtain

E

(∑

Xi

n
− µ

)2 = E

∑

X2
i + 2

∑
i< j Xi X j

n2 − 2
∑

Xi

n
µ + µ2

 (3.110)

=

∑
E
[
X2
i

]
+ 2

∑
i< j E

[
Xi X j

]
n2 − 2

∑
E
[
Xi

]
n

µ + µ2,

where the sums run from 1 to n. All of the E
[
Xi X j

]
terms are equal, with their

common value being µ2 − σ2/(N − 1) from the second remark in Problem 3.9; there
are n(n − 1)/2 of these terms. Likewise, all of the E

[
X2
i

]
terms are equal, with their

common value being µ2 + σ2 from Eq. (3.50); there are n of these terms. (They are
indeed all equal, by the same type of reasoning as in the second remark in Problem 3.9.
The temporal ordering is irrelevant.) And E

[
Xi

]
= µ, of course; there are n of these

terms. (Again, the temporal ordering is irrelevant.) So we have

E

(∑

Xi

n
− µ

)2 = n(µ2 + σ2)
n2 +

n(n − 1)
2

· 2
n2

(
µ2 − σ2

N − 1

)
− 2

nµ
n
µ + µ2

= σ2
(

1
n
− 1

n
· n − 1

N − 1

)
+ µ2

(
1
n
+

n − 1
n
− 2 + 1

)
,

=
σ2

n

(
1 − n − 1

N − 1

)
, (3.111)

as desired. The µ’s all cancel here, leaving us with only σ’s. It makes sense that the
variance shouldn’t depend on µ, because if we increase all of the N given numbers
by a particular value b, then b will cancel out in the difference (

∑
Xi )/n − µ on the

lefthand side of Eq. (3.111), because both (
∑

Xi )/n and µ increase by b.

Remark:

1. We can check some limiting cases of Eq. (3.111). If n = 1, then the variance
reduces to σ2. This is correct, because if n = 1 then we’re drawing only one
number X . The sample mean of one number is simply itself, so the variance on
the lefthand side of Eq. (3.111) is E

[
(X − µ)2] , which is σ2 by definition. In

this n = 1 case, the “without replacement” qualifier is irrelevant. We’re drawing
only one number, so it doesn’t matter if we replace it or not.
If n = N , then the variance in Eq. (3.111) reduces to 0. This is correct, because
we’re drawing without replacement, so at the end of the n = N drawings, we
must have chosen all of the N given numbers exactly once. The sample mean
(
∑

Xi )/N of the n = N numbers is therefore guaranteed to be the mean µ of the
entire set, so variance of the sample mean is zero.

2. If we instead draw n numbers with replacement, then all of the n draws are
identical processes. At all stages (from the first draw to the nth draw) each of
the N numbers in the complete set has a definite probability of being drawn; it
doesn’t matter what has already happened. (There is an equal probability of 1/N
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of picking any number on a given draw, but this equality isn’t important here.)
We therefore simply have a distribution consisting of N possible outcomes, in
which case the result in Eq. (3.53) for the standard deviation of the mean is
applicable. (Eq. (3.53) holds for independent and identical trials.) The variance
of the sample mean is therefore σ2/n.
Returning to the without-replacement case, we see that (except for n = 1) the
variance in Eq. (3.111) is smaller than the with-replacement variance σ2/n, due
to the nonzero (n−1)/(N−1) term that is subtracted off in Eq. (3.111). It makes
intuitive sense that the without-replacement variance is smaller than the with-
replacement variance, because the drawings are more constrained if there is no
replacement; there are fewer possibilities for future draws. There is therefore
less variance in the sample mean the larger n is, to the point where there is zero
variance if n = N . ♣

3.11. Biased sample standard deviation
Let’s label the lefthand side of Eq. (3.93) as K (in the N → ∞ limit). If we square
both sides of that equation, the numerator of K2 contains N terms of the form s2

i ,
along with

(
N
2

)
= N (N − 1)/2 cross terms of the form 2si s j . That is,

K2 =

(
s2

1 + s2
2 + · · · + s2

N

)
+

(
2s1s2 + 2s1s3 + · · · + 2sN−1sN

)
N2 . (3.112)

If we let a ≡ s2
i and b ≡ s2

j in the
√

ab ≤ (a + b)/2 arithmetic-geometric-mean
inequality, we obtain

√
s2
i
s2
j
≤

s2
i + s2

j

2
=⇒ 2si s j ≤ s2

i + s2
j . (3.113)

Therefore, in the above expression for K2, if we replace each of the
(
N
2

)
cross terms

2si s j with s2
i + s2

j , we obtain a result that is larger than (or equal to) K2. In this

modified expression for K2, a particular s2
i term such as s2

1 appears N − 1 times (once
with each of the other s2

i terms). Hence,

K2 ≤
(
s2

1 + s2
2 + · · · + s2

N

)
+ (N − 1)

(
s2

1 + s2
2 + · · · + s2

N

)
N2

=
N

(
s2

1 + s2
2 + · · · + s2

N

)
N2

=
s2

1 + s2
2 + · · · + s2

N

N
= σ2, (3.114)

in the N → ∞ limit. Therefore, K ≤ σ, and we have demonstrated Eq. (3.93), as
desired.

Remarks: The arithmetic-geometric-mean inequality,
√

ab ≤ (a + b)/2, is very easy
to prove. In fact, the ratio of its usefulness to proof-length is perhaps the largest of
any mathematical result! Since the square of a number is necessarily nonnegative, we
have (√

a −
√

b
)2 ≥ 0 =⇒ a − 2

√
ab + b ≥ 0 =⇒ a + b

2
≥
√

ab, (3.115)
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as desired.

How much smaller is E[s] than σ? Consider the n = 100 case in the example near the
end of Section 3.5. Fig. 3.4 showed the histogram of N = 105 values of s2. We can
take the square root of each of these N values of s2 to obtain N values of s. And then
we can average these N values to obtain the average value of s. The result is 0.9975,
give or take a little, depending on the numerical run. So E[s] must be about 0.9975,
which is 0.0025 smaller than σ = 1. This 0.9975 result is reasonable, based on the
following (extremely hand-wavy!) argument. We’re just trying to get the correct order
of magnitude here, so we won’t be concerned with factors of order 1.

If two values of s2 take the form of 1 + a and 1 − a, then their average equals 1, of
course. But the average value of s, which is

√
1 + a +

√
1 − a, is not equal to 1. It

is smaller than 1, and this is the basic idea behind the fact that E[s] is smaller than
σ. To produce some actual numbers, let’s pretend that the whole right half of the
histogram in Fig. 3.4 is lumped together at the one-standard-deviation mark. (This is
the hand-wavy part!) We found in the discussion of Fig. 3.4 that the standard deviation
of s2 is

√
2σ4/n = 0.14. So we’ll lump the whole right half of the histogram at the

1.14 mark. Similarly, we’ll lump the whole left half at the 0.86 mark. We then have
just two values of s2, so the average value of s is

(√
1.14 +

√
0.86

)
/2 = 0.9975.

This result agrees with the above numerical 0.9975 result a little too well. We had
no right to expect such good agreement. But in any case, it is clear that the σ − E[s]
difference decreases with n, because the above 0.14 standard-deviation value came
from

√
2σ4/n, which decreases with n. ♣

3.12. Variance of the sample variance

Starting with Var
(
s2) = E

[
(s2 − σ2)2] , we can rewrite this variance in the same

manner as in Eq. (3.35):

Var
(
s2) = E

[
(s2 − σ2)2]

= E
[
s4] − 2E

[
s2] · σ2 + σ4

= E
[
s4] − 2σ2 · σ2 + σ4

= E
[
s4] − σ4, (3.116)

where we have used the fact that E
[
s2] = σ2. Our task is therefore to calculate E

[
s4] .

Let’s rewrite the sample variance in Eq. (3.73), again in the manner of Eq. (3.35):

s2 =
1

n − 1

n∑
1

(
xi − x

)2

=
1

n − 1

((∑
x2
i

)
− 2

(∑
xi

)
x + nx2

)
=

1
n − 1

((∑
x2
i

)
− nx2

)
, (3.117)

where the sum runs from 1 to n. We have used the fact that
∑

xi = nx, by the
definition of x. Squaring the above s2 and plugging the resulting expression for s4

into Eq. (3.116), we find that the variance of s2 is (switching from definite values x to
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random variables X)

Var
(
s2) = E

[
s4] − σ4

=
1

(n − 1)2 E
[((∑

X2
i

)
− nX

2
)2]
− σ4 (3.118)

=
1

(n − 1)2

(
E
[(∑

X2
i

)2] − 2nE
[(∑

X2
i

)
X

2
]
+ n2E

[
X

4]) − σ4.

Note that we can’t combine the second and third terms of the expansion of the square
here, as we did in Eq. (3.117), because the expression analogous to

∑
Xi = nX isn’t

valid when dealing with the square of X . That is,
∑

X2
i , nX

2
. We therefore have to

treat the second and third terms separately.
When calculating the three expectation values that appear in Eq. (3.118), it is much
easier to work with random variables that are measured relative to the distribution’s
mean µ. So let’s define the random variable Z by Z ≡ X − µ. That is, Zi ≡ Xi − µ.
etc. The Zi ’s then all have the property that E

[
Zi

]
= 0. We’re effectively just shift-

ing the distribution so that its mean is zero. This will greatly simplify the following
calculations of the expectation values in Eq. (3.118).4 Since the s2 in Eq. (3.73) is
independent of µ, the Var

(
s2) in Eq. (3.118) is also independent of µ. We are there-

fore free to replace all the Xi ’s with Zi ’s in Eq. (3.118), without changing the value of
Var

(
s2) .

Look at the first term in Eq. (3.118). With Xi → Zi , this term is E
[( ∑

Z2
i

)2] . When(
Z2

1 + · · ·+ Z2
n
)2 is multiplied out, there will be n terms of the form Z4

i , which all have
the same expectation value; call it E

[
Z4] . And there will be

(
n
2

)
= n(n−1)/2 terms of

the form 2Z2
i Z2

j , which again all have the same expectation value; call it 2E
[
Z2

1 Z2
2
]
.

So we obtain

E
[(∑

Z2
i

)2]
= nE

[
Z4] + n(n − 1)

2
· 2E

[
Z2

1 Z2
2
]

= nE
[
Z4] + n(n − 1)E

[
Z2

1
]
E
[
Z2

2
]

= nE
[
Z4] + n(n − 1)σ4, (3.119)

where we have used the fact that E
[
Z2
i

]
= σ2 for any Zi , which is just Eq. (3.50) with

µ = 0. We have also used Eq. (3.16), which holds here because the Zi are independent
variables.
Now look at the second term in Eq. (3.118), with Xi → Zi . When Z

2
= (1/n2)(Z1 +

· · · + Zn )2 is expanded, there will be terms of the form Z2
i and 2Zi Z j . When the

latter is multiplied by
(
Z2

1 + · · · + Z2
n
)
, it will produce terms of the form Zi Z j Z2

k
and

Zi Z3
j
. Both of these contain a Zi raised to the first power, so from Eq. (3.16) the

expectation value will involve a factor of E
[
Zi

]
, which is zero. We therefore need

concern ourselves only with the Z2
i terms in Z

2
. The second term in the parentheses

in Eq. (3.118) then becomes

−2nE
[(∑

Z2
i

)
· 1

n2

(∑
Z2
i

)]
= −2

n
E
[(∑

Z2
i

)2]
= −2E

[
Z4] − 2(n − 1)σ4, (3.120)

4We could have used this strategy in the proof of Theorem 3.5, but it wouldn’t have saved a huge
amount of time. The µ’s that appeared in Eqs. (3.70) and (3.71) didn’t cause much of a headache. But
in the present solution they definitely would.
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where we have used the fact that we ended up with the same form as the first term in
Eq. (3.118), which we already calculated in Eq. (3.119).

Now for the third term in Eq. (3.118), with Xi → Zi . When we multiply out Z
4
=

(1/n4)(Z1 + · · · + Zn )4, we obtain five different types of terms, as you can verify.
They are Z4

i , Z3
i

Z j , Z2
i Z2

j , Z2
i Z j Zk , Zi Z j Zk Zl . The second, fourth, and fifth of

these terms involve a single power of at least one Zi , so their expectation values are
zero. We therefore care only about the Z4

i and Z2
i Z2

j terms. There are n of the former

type (all with the same expectation value). And there are
(
n
2

) (4
2

)
= 3n(n − 1) of the

latter type (again all with the same expectation value). This is true because there are(
n
2

)
ways to pick a particular pair of (i, j) indices, and for each of these pairs there are(4

2

)
= 6 ways to pick the two Zi ’s from the four factors of (Z1 + · · · + Zn ) in Z

4
. The

third term in the parentheses in Eq. (3.118) is therefore

n2E
[
Z

4]
= n2 · 1

n4

(
nE

[
Z4] + 3n(n − 1)E

[
Z2

1 Z2
2
] )

=
1
n

E
[
Z4] + 3(n − 1)

n
E
[
Z2

1
]
E
[
Z2

2
]

=
1
n

E
[
Z4] + 3(n − 1)

n
σ4, (3.121)

where we have used the fact that E
[
Z2] = σ2. Plugging the results from Eqs. (3.119),

(3.120), and (3.121) into Eq. (3.118), and grouping the E
[
Z4] and σ4 terms together,

gives

Var
(
s2) = 1

(n − 1)2

[
E
[
Z4] (

n − 2 +
1
n

)
+ σ4(n − 1)

(
n − 2 +

3
n

)]
− σ4. (3.122)

If we factor out a 1/n, the coefficient of E
[
Z4] in the parentheses becomes (n − 1)2,

so we obtain

Var
(
s2) = 1

n

[
E
[
Z4] + σ4

(
n2 − 2n + 3

n − 1
− n

)]
=

1
n

[
E
[
Z4] − σ4

(
n − 3
n − 1

)]
, (3.123)

which agrees with Eq. (3.94) because µ4 ≡ E
[
(X − µ)4] = E

[
Z4] .

In the case where Z is a Gaussian distribution, you can use Eq. (4.123) in Problem 4.23
to show that µ4 = 3σ4. Var

(
s2) then simplifies to Var

(
s2) = 2σ4/(n − 1). If n is

large, then this is essentially equal to 2σ4/n, as we claimed in the example near the
end of Section 3.5. Remember that this 2σ4/n result holds only in the case of a
Gaussian distribution and large n. In contrast, the result in Eq. (3.123) is valid for any
distribution and for any n.

3.13. Sample variance for two dice rolls

(a) When n = 2, the n − 1 factor in the denominator of Eq. (3.73) equals 1, so the
sample variance of two given dice rolls with values x1 and x2 is

s2 = (x1 − x)2 + (x2 − x)2, (3.124)

where x ≡ (x1+ x2)/2. Let’s determine the values of s2 that Table 1.5 produces.
If x1 equals x2, then s2 = 0. In the table, there are six such pairs (along the main
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diagonal). If x1 and x2 differ by 1, then they each differ from x by ±1/2, so
s2 = (1/2)2 + (1/2)2 = 1/2. There are ten such pairs (along the two diagonals
adjacent to the main diagonal). Continuing in this manner, if x1 and x2 differ
by 2, then s2 = 12 + 12 = 2; there are eight such pairs. If x1 and x2 differ by 3,
then s2 = (3/2)2 + (3/2)2 = 9/2; there are six such pairs. If x1 and x2 differ by
4, then s2 = 22+22 = 8; there are four such pairs. Finally, if x1 and x2 differ by
5, then s2 = (5/2)2 + (5/2)2 = 25/2; there are two such pairs. The expectation
value of s2 is therefore

E
[
s2] = 1

36

(
6 · 0 + 10 · 1

2
+ 8 · 2 + 6 · 9

2
+ 4 · 8 + 2 · 25

2

)
= 2.92, (3.125)

which correctly equals σ2, as Eq. (3.74) states. If we want to instead calculate
s̃2, we simply need to tack on a factor of n = 2 in the denominator. We then end
up with E

[
s̃2] = σ2/2 = 1.46, in agreement with Eq. (3.65) for the n = 2 case.

(b) Using the above results, the variance of s2 is

Var
(
s2) = E

[
(s2 − σ2)2]

=
1
36

(
6 · (0 − 2.92)2 + 10 · (0.5 − 2.92)2 + 8 · (2 − 2.92)2

+ 6 · (4.5 − 2.92)2 + 4 · (8 − 2.92)2 + 2 · (12.5 − 2.92)2
)

= 11.6. (3.126)

We’ll now show that this agrees with Eq. (3.94) when n = 2. The calculation
of µ4 ≡ E

[
(X − µ)4] is similar to the calculation of Var(X ) in Eq. (3.20). The

only difference is that we now have fourth powers instead of squares. So

µ4 = E
[
(X − 3.5)4]

=
1
6

[
(1 − 3.5)4 + (2 − 3.5)4 + (3 − 3.5)4

+ (4 − 3.5)4 + (5 − 3.5)4 + (6 − 3.5)4
]

= 14.73. (3.127)

When n = 2, the (n − 3)/(n − 1) factor in Eq. (3.94) equals −1, so Eq. (3.94)
gives

Var
(
s2) = 1

2

(
µ4 + σ

4
)
=

1
2

(
14.73 + 2.922

)
= 11.6, (3.128)

in a agreement with Eq. (3.126). The standard deviation of s2 is then
√

11.6 =
3.4, which seems reasonable, considering that the six possible values of s2 range
from 0 to 12.5.
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Distributions

At the beginning of Section 3.1, we introduced the concepts of random variables
and probability distributions. A random variable is a variable that can take on cer-
tain numerical values with certain probabilities. The collection of these probabilities
is called the probability distribution for the random variable. A probability distri-
bution specifies how the total probability (which is always 1) is distributed among
the various possible outcomes.

In this chapter, we will discuss probability distributions in detail. In Section 4.1
we warm up with some examples of discrete distributions, and then in Section 4.2
we discuss continuous distributions. These involve the probability density, which is
the main new concept in this chapter. It takes some getting used to, but we’ll have
plenty of practice with it. In Sections 4.3–4.8 we derive and discuss a number of
the more common and important distributions. They are, respectively, the uniform,
Bernoulli, binomial, exponential, Poisson, and Gaussian (or normal) distributions.

Parts of this chapter are a bit mathematical, but there’s no way around this if we
want to do things properly. However, we’ve relegated some of the more technical
issues to Appendices B and C. If you want to skip those and just accept the results
that we derive there, that’s fine. But you are strongly encouraged to at least take a
look at Appendix B, where we derive many properties of the number e, which is the
most important number in probability and statistics.

4.1 Discrete distributions

In this section we’ll give a few simple examples of discrete distributions. To start
off, consider the results from Example 3 in Section 2.3.4, where we calculated the
probabilities of obtaining the various possible numbers of Heads in five coin flips.
We found:

P(0) =
1
32
, P(1) =

5
32
, P(2) =

10
32
,

P(3) =
10
32
, P(4) =

5
32
, P(5) =

1
32
. (4.1)

182
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These probabilities add up to 1, as they should. Fig. 4.1 shows a plot of P(n) versus
n. The random variable here is the number of Heads, and it can take on the values
of 0 through 5, with the above probabilities.

0 1 2 3 4 5

n

P(n)

10/32

5/32

Figure 4.1: The probability distribution for the number of Heads in five coin flips.

As we’ve done in Fig. 4.1, the convention is to plot the random variable on the
horizontal axis and the probability on the vertical axis. The collective information,
given either visually in Fig. 4.1 or explicitly in Eq. (4.1), is the probability distri-
bution. A probability distribution simply tells you what all the probabilities are for
the values that the random variable can take. Note that P(n) in the present example
is nonzero only if n takes on one of the discrete values, 0, 1, 2, 3, 4, or 5. It’s a
silly question to ask for the probability of getting 4.27 Heads, because n must of
course be an integer. The probability of getting 4.27 Heads is trivially zero. Hence
the word “discrete” in the title of this section.

Another simple example of a discrete probability distribution is the one for the
six possible outcomes of the roll of one die. The random variable in this setup is the
number on the top face of the die. If the die is fair, then all six numbers have equal
probabilities, so the probability for each is 1/6, as shown in Fig. 4.2.

0 1 2 3 4 5 6

n

P(n)

1/6

Figure 4.2: The probability distribution for the roll of one die.

What if the die isn’t fair? For example, what if we make the “1” face heavier
than the others by embedding a small piece of lead in the center of that face, just
below the surface? The die is then more likely to land with the “1” face pointing
down. The “6” face is opposite the “1,” so the die is more likely to land with the “6”
pointing up. Fig. 4.2 will therefore be modified by raising the “6” dot and lowering
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the other five dots; the sum of the probabilities must still be 1, of course. P2 through
P5 are all equal, by symmetry. The exact values of all the probabilities depend in a
complicated way on how the mass of the lead weight compares with the mass of the
die, and also on the nature of both the die and the table on which the die is rolled
(how much friction, how bouncy, etc.).

As mentioned at the beginning of Section 3.1, a random variable is assumed to
take on numerical values, by definition. So the outcomes of Heads and Tails for a
single coin flip technically aren’t random variables. But it still makes sense to plot
the probabilities as shown in Fig. 4.3, even though the outcomes on the horizontal
axis aren’t associated with a random variable. Of course, if we define a random
variable to be the number of Heads, then the “Heads” in the figure turns into a 1,
and the “Tails” turns into a 0. In most situations, however, the outcomes take on
numerical values right from the start, so we can officially label them as random
variables. But even if they don’t, we’ll often take the liberty of still referring to the
thing being plotted on the horizontal axis of a probability distribution as a random
variable.

Heads

face 

Tails

P(face)

1/2

Figure 4.3: The probability distribution for a single coin flip.

4.2 Continuous distributions

4.2.1 Motivation

Probability distributions are fairly straightforward when the random variable is dis-
crete. You just list (or plot) the probabilities for each of the possible values of the
random variable. These probabilities will always add up to 1. However, not every-
thing comes in discrete quantities. For example, the temperature outside your house
takes on a continuous set of values, as does the amount of water in a glass. (We’ll
ignore the atomic nature of matter!)

In finding the probability distribution for a continuous random variable, you
might think that the procedure should be exactly the same as in the discrete case.
That is, if our random variable is the temperature at a particular location at noon
tomorrow, then you might think that you simply have to answer questions of the
form: What is the probability that the temperature at noon tomorrow will be 70◦

Fahrenheit?



4.2. Continuous distributions 185

Unfortunately, there is something wrong with this question, because it is too
easy to answer. The answer is that the probability is zero, because there is simply
no chance that the temperature at a specific time (and a specific location) will be
exactly 70◦. If it’s 70.1◦, that’s not good enough. And neither is 70.01◦, nor even
70.00000001◦. Basically, since the temperature takes on a continuous set of values
(and hence an infinite number of possible values), the probability of a specific value
occurring is 1/∞, which is zero.1

However, even though the above question (“What is the probability that the
temperature at noon tomorrow will be 70◦?”) is a poor one, that doesn’t mean we
should throw in the towel and conclude that probability distributions don’t exist for
continuous random variables. They do in fact exist, because there are some useful
questions we can ask. These useful questions take the general form of: What is
the probability that the temperature at a particular location at noon tomorrow lies
somewhere between 69◦ and 71◦? This question has a nontrivial answer, in the
sense that it isn’t automatically zero. And depending on what the forecast is for
tomorrow, the answer might be something like 20%.

We can also ask: What is the probability that the temperature at noon lies some-
where between 69.5◦ and 70.5◦? The answer to this question is smaller than the
answer to the previous one, because it involves a range of only one degree instead
of two degrees. If we assume that inside the range of 69◦ to 71◦ the temperature is
equally likely to be found anywhere (which is a reasonable approximation although
undoubtedly not exactly correct), and if the previous answer was 20%, then the
present answer is (roughly) 10%, because the range is half the size.

The point here is that the smaller the range, the smaller the chance that the tem-
perature lies in that range. Conversely, the larger the range, the larger the chance
that the temperature lies in that range. Taken to an extreme, if we ask for the prob-
ability that the temperature at noon lies somewhere between −100◦ and 200◦, then
the answer is exactly equal to 1 (ignoring liquid nitrogen spills, forest fires, and such
things!).

In addition to depending on the size of the range, the probability also of course
depends on where the range is located on the temperature scale. For example, the
probability that the temperature at noon lies somewhere between 69◦ and 71◦ is
undoubtedly different from the probability that it lies somewhere between 11◦ and
13◦. Both ranges have a span of two degrees, but if the given day happens to be
in late summer, the temperature is much more likely to be around 70◦ than to be
sub-freezing (let’s assume we’re in, say, Boston). To actually figure out the proba-
bilities, many different pieces of data would have to be considered. In the present
temperature example, the data would be of the meteorological type. But if we were
interested in the probability that a random person is between 69 and 71 inches tall,
then we’d need to consider a whole different set of data.

The lesson to take away from all this is that if we’re looking at a random variable
that can take on a continuous set of values, the probability that this random variable
falls into a given range depends on three things. It depends on:

1Of course, if you’re using a digital thermometer that measures the temperature to the nearest tenth of
a degree, then it does make sense to ask for the probability that the thermometer reads, say, 70.0 degrees.
This probability is generally nonzero. This is due to the fact that the reading on the digital thermometer
is a discrete random variable, whereas the actual temperature is a continuous random variable.



186 Chapter 4. Distributions

1. the location of the range,

2. the size of the range,

3. the specifics of the situation we’re dealing with.

The third of these is what determines the probability density, which is a function
whose argument is the location of the range. We’ll now discuss probability densities.

4.2.2 Probability density

Consider the plot in Fig. 4.4, which gives a hypothetical probability distribution for
the temperature example we’ve been discussing. This plot shows the probability
distribution on the vertical axis, as a function of the temperature T (the random
variable) on the horizontal axis. We have chosen to measure the temperature in
Fahrenheit. We’re denoting the probability distribution by2 ρ(T ) instead of P(T ),
to distinguish it from the type of probability distribution we’ve been talking about
for discrete variables. The reason for this new notation is that ρ(T ) is a probability
density and not an actual probability. We’ll talk about this below. When writing
the functional form of a probability distribution, we’ll denote probability densities
with lowercase letters, like the ρ in ρ(T ) or the f in f (x). And we’ll denote actual
probabilities with uppercase letters, like the P in P(n).

T

ρ(T)

6560 70 75 80

0.05

0.1

Figure 4.4: A hypothetical probability distribution for the temperature.

We haven’t yet said exactly what we mean by ρ(T ). But in any case, it’s clear
from Fig. 4.4 that the temperature is more likely to be near 70◦ than near 60◦. The
following definition of ρ(T ) allows us to be precise about what we mean by this.

2As mentioned at the beginning of Section 3.1, a random variable is usually denoted with an up-
percase letter, while the actual values are denoted with lowercase letters. So we should technically be
writing ρ(t ) here. But since an uppercase T is the accepted notation for temperature, we’ll use T for the
actual value.
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• Definition of the probability density function, ρ(T ):

ρ(T ) is the function of T that, when multiplied by a small interval ∆T, gives
the probability that the temperature lies between T and T + ∆T. That is,

P(temp lies between T and T + ∆T ) = ρ(T ) · ∆T. (4.2)

Note that the lefthand side contains an actual probability P, whereas the righthand
side contains a probability density, ρ(T ). The latter needs to be multiplied by a
range of T (or whatever quantity we’re dealing with) in order to obtain an actual
probability. The above definition is relevant to any continuous random variable, of
course, not just temperature.

Eq. (4.2) might look a little scary, but a few examples should clear things up.
From Fig. 4.4, it looks like ρ(70◦) is about 0.07. So if we pick ∆T = 1◦, we find
that the probability of the temperature lying between 70◦ and 71◦ is about

ρ(T ) · ∆T = (0.07)(1) = 0.07 = 7%. (4.3)

If we instead pick a smaller ∆T , say 0.5◦, we find that the probability of the tem-
perature lying between 70◦ and 70.5◦ is about (0.07)(0.5) = 3.5%. And if we pick
an even smaller ∆T , say 0.1◦, we find that the probability of the temperature lying
between 70◦ and 70.1◦ is about (0.07)(0.1) = 0.7%.

Similarly, we can apply Eq. (4.2) to any other value of T . For example, it looks
like ρ(60◦) is about 0.02. So if we pick ∆T = 1◦, we find that the probability of the
temperature lying between 60◦ and 61◦ is about (0.02)(1) = 2%. And as above, we
can pick other values of ∆T too.

Note that, in accordance with Eq. (4.2), we have been using the value of ρ at the
lower end of the given temperature interval. That is, when the interval was 70◦ to
71◦, we used ρ(70◦) and then multiplied this by ∆T . But couldn’t we just as well
use the value of ρ at the upper end of the interval? That is, couldn’t the righthand
side of Eq. (4.2) just as well be ρ(T + ∆T ) · ∆T? Indeed it could. But as long as
∆T is small, it doesn’t matter much which value of ρ we use. They will both give
essentially the same answer. See the second remark below.

Remember that three inputs are necessary when finding the probability that the
temperature lies in a specified range. As we noted at the end of Section 4.2.1, the
first input is the value of T we’re concerned with, the second is the range ∆T , and
the third is the information encapsulated in the probability density function, ρ(T ),
evaluated at the given value of T . The latter two of these three quantities are the two
quantities that are multiplied together on the righthand side of Eq. (4.2). Knowing
only one of these isn’t enough to give you a probability.

To recap, there is a very important difference between the probability distribu-
tion for a continuous random variable and that for a discrete random variable. For
a continuous variable, the probability distribution consists of a probability density.
But for a discrete variable, it consists of actual probabilities. We plot a density for a
continuous distribution, because it wouldn’t make sense to plot actual probabilities,
since they’re all zero. This is true because the probability of obtaining exactly a
particular value is zero, since there is an infinite number of possible values.

Conversely, we plot actual probabilities for a discrete distribution, because it
wouldn’t make sense to plot a density, since it consists of a collection of infinite
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spikes. This is true because on a die roll, for example, there is a 1/6 chance of
obtaining a number between, say, 4.9999999 and 5.0000001. The probability den-
sity at the outcome of 5, which from Eq. (4.2) equals the probability divided by the
interval length, is then (1/6)/(0.0000002), which is huge. And the interval can be
made arbitrarily small, which means that the density is arbitrarily large. To sum up,
the term “probability distribution” applies to both continuous and discrete variables,
whereas the term “probability density” applies only to continuous variables.

Remarks:

1. ρ(T ) is a function of T , so it depends on what units we’re using to measure T . We used
Fahrenheit above, but what if we instead want to use Celsius? Problem 4.1 addresses
this issue (but you will need to read Section 4.2.3 first).

2. Note the inclusion of the word “small” in the definition of the probability density in
Eq. (4.2). The reason for this word is that we want ρ(T ) to be (roughly) constant over
the specified range. If ∆T is small enough, then this is approximately true. If ρ(T )
varied greatly over the range of ∆T , then it wouldn’t be clear which value of ρ(T )
we should multiply by ∆T to obtain the probability. The point is that if ∆T is small
enough, then all of the ρ(T ) values are roughly the same, so it doesn’t matter which
one we pick.

An alternative definition of the density ρ(T ) is

P
(
temp lies between T − (∆T )/2 and T + (∆T )/2

)
= ρ(T ) · ∆T. (4.4)

The only difference between this definition and the one in Eq. (4.2) is that we’re now
using the value of ρ(T ) at the midpoint of the temperature range, instead of the left-
end value we used in Eq. (4.2). Both definitions are equally valid, because they give
essentially the same result for ρ(T ), provided that ∆T is small. Similarly, we could
use the value of ρ(T ) at the right end of the temperature range.

How small do we need ∆T to be? The answer to this will be evident when we talk
about probability in terms of area in Section 4.2.3. In short, we need the change in
ρ(T ) over the span of ∆T to be small compared with the values of ρ(T ) in that span.

3. The probability density function involves only (1) the value of T (or whatever) we’re
concerned with, and (2) the specifics of the situation at hand (meteorological data in
the above temperature example, etc.). The density is completely independent of the
arbitrary value of ∆T that we choose. This is how things work with any kind of density.

For example, consider the mass density of gold. This mass density is a property of the
gold itself. More precisely, it is a function of each point in the gold. For pure gold, the
density is constant throughout the volume, but we could imagine impurities that would
make the mass density be a varying function of position, just as the above probability
density is a varying function of temperature. Let’s call the mass density ρ(r), where
r signifies the possible dependence of ρ on the location of a given point within the
volume. (The position of a given point can be described by the vector pointing from
the origin to the point. And vectors are generally denoted by boldface letters like r.)
Let’s call the small volume we’re concerned with ∆V . Then the mass in the small
volume ∆V is given by the product of the density and the volume, that is, ρ(r) · ∆V .
This is directly analogous to the fact that the probability in the above temperature
example is given by the product of the probability density and the temperature span,
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that is, ρ(T ) · ∆T . The correspondence among the various quantities is

Mass in ∆V around location r ⇐⇒ Prob that temp lies in ∆T around T

ρ(r) ⇐⇒ ρ(T )

∆V ⇐⇒ ∆T. ♣ (4.5)

4.2.3 Probability equals area
The graphical interpretation of the product ρ(T ) · ∆T in Eq. (4.2) is that it is the
area of the rectangle shown in Fig. 4.5. This is true because ∆T is the base of the
rectangle, and ρ(T ) is the height.

T

6560 70 75 80

0.05

0.1

ρ(T)

Figure 4.5: Interpretation of the product ρ(T ) · ∆T as an area.

We have chosen ∆T to be 2◦ in the figure. With this choice, the area of the rectangle,
which equals ρ(70◦) · (2◦), gives a reasonably good approximation to the probability
that the temperature lies between 70◦ and 72◦. But it isn’t exact, because ρ(T ) isn’t
constant over the 2◦ interval. A better approximation to the probability that the
temperature lies between 70◦ and 72◦ is achieved by splitting the 2◦ interval into
two intervals of 1◦ each, and then adding up the probabilities of lying in each of
these two intervals. These two probabilities are approximately equal to ρ(70◦) · (1◦)
and ρ(71◦) · (1◦), and the two corresponding rectangles are shown in Fig. 4.6.

But again, the sum of the areas of these two rectangles is still only an approx-
imate result for the true probability that the temperature lies between 70◦ and 72◦,
because ρ(T ) isn’t constant over the 1◦ intervals either. A better approximation is
achieved by splitting the 1◦ intervals into smaller intervals, and then again into even
smaller ones. And so on. When we get to the point of having 100 or 1000 extremely
thin rectangles, the sum of their areas will essentially be the area shown in Fig. 4.7.
This area is the correct probability that the temperature lies between 70◦ and 72◦.
So in retrospect, we see that the rectangular area in Fig. 4.5 exceeds the true prob-
ability by the area of the tiny triangular-ish region in the upper righthand corner of
the rectangle.

We therefore arrive at a more precise definition (compared with Eq. (4.2)) of the
probability density, ρ(T ):
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T
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ρ(T)

Figure 4.6: Subdividing the area, to produce a better approximation to the probability.

T

6560 70 75 80

0.05

0.1

ρ(T)

Figure 4.7: The area below the curve between 70◦ and 72◦ equals the probability that the
temperature lies between 70◦ and 72◦.

• Improved definition of the probability density function, ρ(T ):

ρ(T ) is the function of T for which the area under the ρ(T ) curve between T
and T + ∆T gives the probability that the temperature (or whatever quantity
we’re dealing with) lies between T and T + ∆T.

This is an exact definition, and there is no need for ∆T to be small, as there was in the
definition in Eq. (4.2). The difference is that the present definition involves the exact
area, whereas Eq. (4.2) involved the area of a rectangle (via simple multiplication
by ∆T), which was only an approximation. But technically the only thing we need
to add to Eq. (4.2) is the requirement that we take the ∆T → 0 limit. That makes
the definition rigorous.

The total area under any probability density curve must be 1, because this area
equals the probability that the temperature (or whatever) takes on some value be-
tween −∞ and +∞, and because every possible result is included in the −∞ to +∞
range. However, in any realistic case, the density is essentially zero outside a spe-
cific finite region. So there is essentially no contribution to the area from the parts
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of the plot outside that region. There is therefore no need to go to ±∞. The total
area under each of the curves in the above figures, including the tails on either side
which we haven’t bothered to draw, is indeed equal to 1 (at least roughly; the curves
were drawn by hand).

Given a probability density function f (x), the cumulative distribution function
F (x) is defined to be the probability that X takes on a value that is less than or
equal to x. That is, F (x) = P(X ≤ x). For a continuous distribution, this definition
implies that F (x) equals the area under the f (x) curve from −∞ up to the given x
value. A quick corollary is that the probability P(a < x ≤ b) that x lies between
two given values a and b is equal to F (b) − F (a). For a discrete distribution,
the definition F (x) = P(X ≤ x) still applies, but we now calculate P(X ≤ x)
by forming a discrete sum instead of finding an area. Although the cumulative
distribution function can be very useful in probability and statistics, we won’t use it
much in this book.

We’ll now spend a fair amount of time in Sections 4.3–4.8 discussing some
common types of probability distributions. There is technically an infinite number
of possible distributions, although only a hundred or so come up frequently enough
to have names. And even many of these are rather obscure. A handful, however,
come up again and again in a variety of settings, so we’ll concentrate on these.
They are the uniform, Bernoulli, binomial, exponential, Poisson, and Gaussian (or
normal) distributions.

4.3 Uniform distribution
We’ll start with a very simple continuous probability distribution, one that is uni-
form over a given interval, and zero otherwise. Such a distribution might look like
the one shown in Fig. 4.8. If the distribution extends from x1 to x2, then the value
of ρ(x) in that region must be 1/(x2 − x1), so that the total area is 1.

x

x1 x2

ρ(x)

1/(x2-x1)

Figure 4.8: A uniform distribution.

This type of distribution could arise, for example, from a setup where a rubber
ball bounces around in an empty rectangular room. When it finally comes to rest,
we measure its distance x from a particular one of the walls. If you initially throw
the ball hard enough, then it’s a pretty good approximation to say that x is equally
likely to take on any value between 0 and L, where L is the length of the room in
the relevant direction. In this setup, the x1 in Fig. 4.8 equals 0 (so we would need
to shift the rectangle to the left), and the x2 equals L.
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The random variable here is X , and the value it takes is denoted by x. So x is
what we plot on the horizontal axis. Since we’re dealing with a continuous distri-
bution, we plot the probability density (not the probability!) on the vertical axis. If
L equals 10 feet, then outside the region 0 < x < 10, the probability density ρ(x)
equals zero. Inside this region, the density equals the total probability divided by
the total interval, which gives 1 per 10 feet, or equivalently 1/10 per foot. If we
want to find the actual probability that the ball ends up between, say, x = 6 and
x = 8, then we just multiply ρ(x) by the interval length, which is 2 feet. The result
is (1/10 per foot)(2 feet), which equals 2/10 = 1/5. This makes sense, of course,
because the 2-foot interval is 1/5 of the total distance.

A uniform density is easy to deal with, because the area under a given part
of the curve (which equals the probability) is simply a rectangle. And the area
of a rectangle is just the base times the height, which is the interval length times
the density. This is exactly the product we formed above. When the density isn’t
uniform, it can be very difficult sometimes to find the area under a given part of the
curve.

Note that the larger the region of nonzero ρ(x) in a uniform distribution, the
smaller the value of ρ(x). This follows from the fact that the total area under the
density “curve” (which is just a straight line segment in this case) must equal 1. So
if the base becomes longer, the height must become shorter.

4.4 Bernoulli distribution
We’ll now consider a very simple discrete distribution, called the Bernoulli distri-
bution. This is the distribution for a process in which only two possible outcomes,
1 and 0, can occur, with probabilities p and 1 − p, respectively. (They must add up
to 1, of course.) The plot of this probability distribution is shown in Fig. 4.9. It is
common to call the outcome of 1 a success and the outcome of 0 a failure. A special
case of a Bernoulli distribution is the distribution for a coin toss, where the proba-
bilities for Heads and Tails (which we can assign the values of 1 and 0, respectively)
are both equal to 1/2.

0 1

P

p

1-p

Figure 4.9: A Bernoulli distribution takes on the values 1 and 0 with probabilities p and
1 − p.

The Bernoulli distribution is the simplest of all distributions, with the exception
of the trivial case where only one possible outcome can occur, which therefore has



4.5. Binomial distribution 193

a probability of 1. The uniform and Bernoulli distributions are simple enough that
there isn’t much to say. In contrast, the distributions in the following four sections
(binomial, exponential, Poisson, and Gaussian) are a bit more interesting, so we’ll
have plenty to say about them.

4.5 Binomial distribution
The binomial distribution, which is discrete, is an extension of the Bernoulli dis-
tribution. The binomial distribution is defined to be the probability distribution for
the total number of successes that arise in an arbitrary number of independent and
identically distributed Bernoulli processes. An example of a binomial distribution is
the probability distribution for the number of Heads in, say, five coin tosses, which
we discussed in Section 4.1. We could just as well pick any other number of tosses.

In the case of five coin tosses, each coin toss is a Bernoulli process. When
we put all five tosses together and look at the total number of successes (Heads),
we get a binomial distribution. Let’s label the total number of successes as k. In
this specific example, there are n = 5 Bernoulli processes, with each one having a
p = 1/2 probability of success. The probability distribution P(k) is simply the one
we plotted earlier in Fig. 4.1, where we counted the number of Heads.

Let’s now find the binomial distribution associated with a general number n of
independent Bernoulli trials, each with the same probability of success, p. So our
goal is to find the value of P(k) for all of the different possible values of the total
number of successes, k. The possible values of k range from 0 up to the number of
trials, n.

To calculate the binomial distribution (for given n and p), we first note that pk is
the probability that a specific set of k of the n Bernoulli processes all yield success,
because each of the k processes has a p probability of yielding success. We then
need the other n − k processes to not yield success, because we want exactly k
successes. This happens with probability (1 − p)n−k , because each of the n − k
processes has a 1 − p probability of yielding failure. The probability that a specific
set of k processes (and no others) all yield success is therefore pk · (1 − p)n−k .
Finally, since there are

(
n
k

)
ways to pick a specific set of k processes, we see that

the probability that exactly k of the n processes yield success is

P(k) =
(
n
k

)
pk (1 − p)n−k (binomial distribution) (4.6)

This is the desired binomial distribution. Note that this distribution depends on
two parameters – the number n of Bernoulli trials and the probability p of success in
each trial. If you want to make these parameters explicit, you can write the Binomial
distribution P(k) as Bn,p (k). That is,

Bn,p (k) =
(
n
k

)
pk (1 − p)n−k . (4.7)

But we’ll generally just use the simple P(k) notation.
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In the special case of a binomial distribution generated from n coin tosses, we
have p = 1/2. So Eq. (4.6) gives the probability of obtaining k Heads as

P(k) =
1

2n

(
n
k

)
. (4.8)

To recap: In Eq. (4.6), n is the total number of Bernoulli processes, p is the prob-
ability of success in each Bernoulli process, and k is the total number of successes
in the n processes. (So k can be anything from 0 to n.) Fig. 4.10 shows the binomial
distribution for the cases of n = 30 and p = 1/2 (which arises from 30 coin tosses),
and n = 30 and p = 1/6 (which arises from 30 die rolls, with a particular one of the
six numbers representing success).

P(k) P(k)

n = 30,  p = 1/2 n = 30,  p = 1/6

k k
5 10 15 20 25 30

0.05

0.10

0.15

0.20

5 10 15 20 25 30

0.05

0.10

0.15

0.20

Figure 4.10: Two binomial distributions with n = 30 but different values of p.

Example (Equal probabilities): Given n, for what value of p is the probability of
zero successes equal to the probability of one success?

Solution: In Eq. (4.6) we want P(0) to equal P(1). This gives(
n
0

)
p0(1 − p)n−0 =

(
n
1

)
p1(1 − p)n−1

=⇒ 1 · 1 · (1 − p)n = n · p · (1 − p)n−1

=⇒ 1 − p = np =⇒ p =
1

n + 1
. (4.9)

This p = 1/(n + 1) value is the special value of p for which various competing effects
cancel. On one hand, P(1) contains an extra factor of n from the

(
n
1

)
coefficient, which

arises from the fact that there are n different ways for one success to happen. But on
the other hand, P(1) also contains a factor of p, which arises from the fact that one
success does happen. The first of these effects makes P(1) larger than P(0), while the
second makes it smaller.3 The effects cancel when p = 1/(n + 1). Fig. 4.11 shows the
plot for n = 10 and p = 1/11.
The p = 1/(n + 1) case is the cutoff between the maximum of P(k) occurring when
k is zero or nonzero. If p is larger than 1/(n + 1), as it is in both plots in Fig. 4.10

3Another effect is that P(1) is larger because it contains one fewer factor of (1 − p). But this effect
is minor when p is small, which is the case if n is large, due to the p = 1/(n + 1) form of the answer.
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P(k)

n = 10,  p = 1/11

k
2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

Figure 4.11: P(0) equals P(1) if p = 1/(n + 1).

above, then the maximum occurs at a nonzero value of k. That is, the distribution has
a bump. On the other hand, if p is smaller than 1/(n + 1), then the maximum occurs
at k = 0. That is, the distribution has its peak at k = 0 and falls off from there.

Having derived the binomial distribution in Eq. (4.6), there is a simple double
check that we can perform on the result. Since the number of successes, k, can take
on any integer value from 0 to n, the sum of the P(k) probabilities from k = 0
to k = n must equal 1. The P(k) expression in Eq. (4.6) does indeed satisfy this
requirement, due to the binomial expansion, which tells us that

(
p + (1 − p)

)n
=

n∑
k=0

(
n
k

)
pk (1 − p)n−k . (4.10)

This is just Eq. (1.21) from Section 1.8.3, with a = p and b = 1 − p. The lefthand
side of Eq. (4.10) is simply 1n = 1. And each term in the sum on the righthand side
is a P(k) term from Eq. (4.6). So Eq. (4.10) becomes

1 =
n∑

k=0

P(k), (4.11)

as we wanted to show. You are encouraged to verify this result for the probabilities
in, say, the left plot in Fig. 4.10. Feel free to make rough estimates of the probabili-
ties when reading them off the plot. You will find that the sum is indeed 1, up to the
rough estimates you make.

The task of Problem 4.4 is to use Eq. (3.4) to explicitly demonstrate that the ex-
pectation value of the binomial distribution in Eq. (4.6) equals pn. In other words,
if our binomial distribution is derived from n Bernoulli trials, each having a prob-
ability p of success, then we should expect a total of pn successes (on average, if
we do a large number of sets of n trials). This must be true, of course, because a
fraction p of the n trials yield success, on average, by the definition of p for the
given Bernoulli process.
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Remark: We should emphasize what is meant by a probability distribution. Let’s say that
you want to experimentally verify that the left plot in Fig. 4.10 is the correct probability
distribution for the total number of Heads that show up in 30 coin flips. You of course
can’t do this by flipping a coin just once. And you can’t even do it by flipping a coin 30
times, because all you’ll get from that is just one number for the total number of Heads. For
example, you might obtain 17 Heads. In order to experimentally verify the distribution, you
need to perform a large number of sets of 30 coin flips, and you need to record the total
number of Heads you get in each 30-flip set. The result will be a long string of numbers
such as 13, 16, 15, 16, 18, 14, 11, 17, . . . . If you then calculate the fractions of the time that
each number appears, these fractions should (roughly) agree with the probabilities shown in
Fig. 4.10. The longer the string of numbers, the better the agreement, in general. The main
point here is that the distribution does’t say much about one particular set of 30 flips. Rather,
it says what the expected distribution of outcomes is for a large number of sets of 30 flips. ♣

4.6 Exponential distribution
In Sections 4.6–4.8 we’ll look at three probability distributions (exponential, Pois-
son, and Gaussian) that are a bit more involved than the three we’ve just discussed
(uniform, Bernoulli, and binomial). We’ll start with the exponential distribution,
which takes the general form,

ρ(t) = Ae−bt , (4.12)

where A and b are quantities that depend on the specific situation at hand. We will
find below in Eq. (4.26) that these quantities must be related in a certain way in
order for the total probability to be 1. The parameter t corresponds to whatever
the random variable is. The exponential distribution is a continuous one, so ρ(t) is
a probability density. The most common type of situation where this distribution
arises is the following.

Consider a repeating event that happens completely randomly in time. By “com-
pletely randomly” we mean that there is a uniform probability that the event happens
at any given instant (or more precisely, in any small time interval of a given length),
independent of what has already happened. That is, the process has no “memory.”
The exponential distribution that we’ll eventually arrive at (after a lot of work!) in
Eq. (4.26) gives the probability distribution for the waiting time until the next event
occurs. Since the time t is a continuous quantity, we’ll need to develop some for-
malism to analyze the distribution. To ease into it, let’s start with the slightly easier
case where time is assumed to be discrete.

4.6.1 Discrete case
Consider a process where we roll a hypothetical 10-sided die once every second. So
time is discretized into 1-second intervals. It’s actually not necessary to introduce
time here at all. We could simply talk about the number of iterations of the process.
But it’s easier to talk about things like the “waiting time” than the “number of iter-
ations you need to wait for.” So for convenience, we’ll discuss things in the context
of time.

If the die shows a “1,” we’ll consider that a success. The other nine numbers rep-
resent failure. There are two reasonable questions we can ask: What is the average
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waiting time (that is, the expectation value of the waiting time) between successes?
And what is the probability distribution of the waiting times between successes?

Average waiting time

It is fairly easy to determine the average waiting time. There are 10 possible num-
bers on the die, so on average we can expect 1/10 of them to be 1’s. If we run the
process for a long time, say, an hour (which consists of 3600 seconds), then we
can expect about 360 1’s. The average waiting time between successes is therefore
(3600 seconds)/360 = 10 seconds.

More generally, if the probability of success in each trial is p, then the average
waiting time is 1/p (assuming that the trials happen at 1-second intervals). This
can be seen by the same reasoning as above. If we perform n trials of the process,
then pn of them will yield success, on average. The average waiting time between
successes is the total time (n) divided by the number of successes (pn):

Average waiting time =
n
pn
=

1
p
. (4.13)

Note that the preceding reasoning gives us the average waiting time, without
requiring any knowledge of the actual probability distribution of the waiting times
(which we will calculate below). Of course, once we do know what the probability
distribution is, we should be able to calculate the average (the expectation value) of
the waiting times. This is the task of Problem 4.7.

Distribution of waiting times

Finding the probability distribution of the waiting times requires a little more work
than finding the average waiting time. For the 10-sided die example, the question
we’re trying to answer is: What is the probability that if we consider two successive
1’s, the time between them will be 6 seconds? Or 30 seconds? Or 1 second? And
so on. Although the average waiting time is 10 seconds, this certainly doesn’t mean
that the waiting time will always be 10 seconds. In fact, we will find below that the
probability that the waiting time is exactly 10 seconds is quite small.

Let’s be general and say that the probability of success in each trial is p (so
p = 1/10 in our present setup). Then the question is: What is the probability, P(k),
that we will have to wait exactly k iterations (each of which is 1 second here) to
obtain the next success?

To answer this, note that in order for the next success to happen on the kth
iteration, there must be failure (which happens with probability 1 − p) on the first
k − 1 iterations, and then success on the kth one. The probability of this happening
is

P(k) = (1 − p)k−1p (geometric distribution) (4.14)

This is the desired (discrete) probability distribution for the waiting time. This
distribution goes by the name of the geometric distribution, because the probabilities
form a geometric progression, due to the increasing power of the (1− p) factor. The
geometric distribution is the discrete version of the exponential distribution that
we’ll arrive at in Eq. (4.26) below.
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Eq. (4.14) tells us that the probability that the next success comes on the very
next iteration is p, the probability that it comes on the second iteration is (1 − p)p,
the probability that it comes on the third iteration is (1 − p)2p, and so on. Each
probability is smaller than the previous one by the factor (1 − p). A plot of the
distribution for p = 1/10 is shown in Fig. 4.12. The distribution is maximum at
k = 1 and falls off from that value. Even though k = 10 is the average waiting
time, the probability of the waiting time being exactly k = 10 is only P(10) =
(0.9)9(0.1) ≈ 0.04 = 4%.
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Figure 4.12: The geometric distribution with p = 1/10.

If p is large (close to 1), the plot of P(k) starts high (at p, which is close to 1)
and then falls off quickly, because the factor (1− p) is close to 0. On the other hand,
if p is small (close to 0), the plot of P(k) starts low (at p, which is close to 0) and
then falls off slowly, because the factor (1 − p) is close to 1.

As a double check on the result in Eq. (4.14), we know that the next success has
to eventually happen sometime, so the sum of all the P(k) probabilities must be 1.
These P(k) probabilities form a geometric series whose first term is p and whose
ratio is 1 − p. The general formula for the sum of a geometric series with first term
a and ratio r is a/(1 − r), so we have

P(1) + P(2) + P(3) + · · · = p + p(1 − p) + p(1 − p)2 + · · ·

=
p

1 − (1 − p)
= 1, (4.15)

as desired. As another check, we can verify that the expectation value (the average)
of the waiting time for the geometric distribution in Eq. (4.14) equals 1/p, as we
already found above; see Problem 4.7.

You are encouraged to use a coin to experimentally “verify” Eq. (4.14) (or equiv-
alently, the plot analogous to Fig. 4.12) for the case of p = 1/2. Just flip a coin as
many times as you can in ten minutes, each time writing down a 1 if you get Heads
and a 0 if you get Tails. Then make a long list of the waiting times between the 1’s.
Then count up the number of one-toss waits, the number of two-toss waits, and so
on. Then divide each of these numbers by the total number of waits (not the total
number of tosses!) to find the probability of each waiting length. The results should
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be (roughly) consistent with Eq. (4.14) for p = 1/2. In this case, the probabilities in
Eq. (4.14) for k = 1, 2, 3, 4, . . . are 1/2, 1/4, 1/8, 1/16, . . . .

4.6.2 Rates, expectation values, and probabilities

Let’s now consider the case where time is a continuous quantity. That is, let’s as-
sume that we can have a “successful” event at any instant, not just at the evenly-
spaced 1-second marks as above. A continuous process whose probability is uni-
form in time can be completely described by just one number – the average rate of
success, which we’ll call λ. We generally won’t bother writing the word “average,”
so we’ll just call λ the “rate.” Before getting into the derivation of the continuous
exponential distribution in Section 4.6.3, we’ll need to talk a little about rates.

The rate λ can be determined by counting the number of successful events that
occur during a long time interval, and then dividing by this time. For example, if
300 (successful) events happen during 100 minutes, then the rate λ is 3 events per
minute. Of course, if you count the number of events in a different span of 100
minutes, you will most likely get a slightly different number, perhaps 313 or 281.
But in the limit of a very long time interval, you will find essentially the same rate,
independent of which specific long interval you use.

If the rate λ is 3 events per minute, you can alternatively write this as 1 event
per 20 seconds, or 1/20 of an event per second. There is an infinite number of ways
to write λ, and it’s personal preference which one you pick. Just remember that you
have to state the “per time” interval you’re using. If you just say that the rate is 3,
that doesn’t mean anything.

What is the expectation value of the number of events that happen during a time
t? This expected number simply equals the product λt, from the definition of λ.
If the expected number were anything other than λt, then if we divided it by t to
obtain the rate, we wouldn’t get λ. If you want to be a little more rigorous, consider
a very large number n of intervals with length t. The total time in these intervals
is nt. This total time is very large, so the number of events that happen during this
time is (approximately) equal to (nt)λ, by the definition of λ. The expected number
of events in each of the n intervals with length t is therefore ntλ/n = λt, as above.
So we can write

(Expected number of events in time t) = λt (4.16)

In the above setup where λ equals 3 events per minute, the expected number of
events that happen in, say, 5 minutes is

λt = (3 events per minute)(5 minutes) = 15 events. (4.17)

Does this mean that we are guaranteed to have exactly 15 events during a particular
5-minute span? Absolutely not. We can theoretically have any number of events,
although there is essentially zero chance that the number will differ significantly
from 15. (The probability of obtaining the various numbers of events is governed
by the Poisson distribution, which we’ll discuss in Section 4.7.) But the expectation
value is 15. That is, if we perform a large number of 5-minute trials and then
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calculate the average number of events that occur in each trial, the result will be
close to 15.

A trickier question to ask is: What is the probability that exactly one event
happens during a time t? Since λ is the rate, you might think that you can just
multiply λ by t, as we did above, to say that the probability is λt. But this certainly
can’t be correct, because it would imply a probability of 15 for a 5-minute interval
in the above setup. This is nonsense, because probabilities can’t be larger than 1. If
we instead pick a time interval of 20 seconds (1/3 of a minute), we obtain a λt value
of 1. This doesn’t have the fatal flaw of being larger than 1, but it has another issue,
in that it says that exactly one event is guaranteed to happen during a 20-second
interval. This can’t be correct either, because it’s certainly possible for zero (or
two or three, etc.) events to occur. We’ll figure out the exact probabilities of these
numbers in Section 4.7.

The strategy of multiplying λ by t to obtain a probability doesn’t seem to work.
However, there is one special case where it does work. If the time interval is ex-
tremely small (let’s call it ϵ , which is a standard letter to use for something that is
very small), then it is true that the probability of exactly one event occurring during
the ϵ time interval is essentially equal to λϵ . We’re using the word “essentially”
because, although this statement is technically not true, it becomes arbitrarily close
to being true in the limit where ϵ approaches zero. In the above example with
λ = 1/20 events per second, the statement, “λt is the probability that exactly one
event happens during a time t,” is a lousy approximation if t = 20 seconds, a decent
approximation if t = 2 seconds, and a very good approximation if t = 0.2 seconds.
And it only gets better as the time interval gets smaller. We’ll explain why in the
first remark below.

We can therefore say that if Pϵ (1) stands for the probability that exactly one
event happens during a small time interval ϵ , then

Pϵ (1) ≈ λϵ (if ϵ is very small) (4.18)

The smaller ϵ is, the better this approximation is. Technically, the condition in
Eq. (4.18) is really “if λϵ is very small.” But we’ll generally be dealing with “nor-
mal” sized λ’s, so λϵ being small is equivalent to ϵ being small. When we deal with
continuous time below, we’ll actually be taking the ϵ → 0 limit. In this mathemati-
cal limit, the “≈” sign in Eq. (4.18) becomes an exact “=” sign. To sum up:

• If t is very small, then λt is both the expected number of events that hap-
pen during the time t and (essentially) the probability that exactly one event
happens during the time t.

• If t isn’t very small, then λt is only the expected number of events.

Remarks:

1. We claimed above that λt equals the probability of exactly one event occurring, only
if t is very small. The reason for this restriction is that if t isn’t small, then there is the
possibility of multiple events occurring during the time t. We can be explicit about this
as follows. Since we know from Eq. (4.16) that the expected number of events during



4.6. Exponential distribution 201

any time t is λt, we can use the expression for the expectation value in Eq. (3.4) to
write

λt = Pt (0) · 0 + Pt (1) · 1 + Pt (2) · 2 + Pt (3) · 3 + · · · , (4.19)

where Pt (k) is the probability of obtaining exactly k events during the time t. Solving
for Pt (1) gives

Pt (1) = λt − Pt (2) · 2 − Pt (3) · 3 + · · · . (4.20)

We see that Pt (1) is smaller than λt due to the Pt (2) and Pt (3), etc., probabilities. So
Pt (1) isn’t equal to λt. However, if all of the probabilities of multiple events occurring
(Pt (2), Pt (3), etc.) are very small, then Pt (1) is essentially equal to λt. And this is
exactly what happens if the time interval is very small. For small times, there is hardly
any chance of the event even occurring once. So it is even less likely that it will occur
twice, and even less likely for three times, etc.

We can be a little more precise about this. The following argument isn’t completely
rigorous, but it should convince you that if t is very small, then Pt (1) is essentially
equal to λt. If t is very small, then assuming we don’t know yet that Pt (1) equals λt,
we can still say that it should be roughly proportional to λt. This is true because if an
event has only a tiny chance of occurring, then if you cut λ in half, the probability is
essentially cut in half. Likewise if you cut t in half. This proportionality then implies
that the probability that exactly two events occur is essentially proportional to (λt)2.
We’ll see in Section 4.7 that there is actually a factor of 1/2 involved here, but that
is irrelevant in the present argument. The important point is the quadratic nature of
(λt)2. If λt is sufficiently small, then (λt)2 is negligible compared with λt. Likewise
for Pt (3) ∝ (λt)3, etc. We can therefore ignore the scenarios where multiple events
occur. So with t → ϵ , Eq. (4.20) becomes

Pϵ (1) ≈ λϵ −���Pϵ (2) · 2 −���Pϵ (3) · 3 + · · · , (4.21)

in agreement with Eq. (4.18). As mentioned above, if λϵ is small, it is because ϵ is
small, at least in the situations we’ll be dealing with.

2. Imagine drawing the λ vs. t “curve.” We have put “curve” in quotes because the curve
is actually just a straight horizontal line, since we’re assuming a constant λ. If we
consider a time interval ∆t, the associated area under the curve equals λ∆t, because
we have a simple rectangular region. So from Eq. (4.18), this area gives the probability
that an event occurs during a time ∆t, provided that ∆t is very small. This might make
you think that λ can be interpreted as a probability distribution, because we found in
Section 4.2.3 that the area under a distribution curve gives the probability. However,
the λ “curve” cannot be interpreted as a probability distribution, because this area-
equals-probability result holds only for very small ∆t. The area under a distribution
curve has to give the probability for any interval on the horizontal axis. The λ “curve”
doesn’t satisfy this property. The total area under the λ “curve” is infinite (because the
straight horizontal line extends for all time), whereas actual probability distributions
must have a total area of 1.

3. Since only one quantity, λ, is needed to describe everything about a random process
whose probability is uniform in time, any other quantity we might want to determine
must be able to be written in terms of λ. This will become evident below. ♣
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4.6.3 Continuous case
In the case of discrete time in Section 4.6.1, we asked two questions: What is the
average waiting time between successes? And what is the probability distribution
of the waiting times between successes? We’ll now answer these two questions in
the case where time is a continuous quantity.

Average waiting time

As in the discrete case, the first of the two questions is fairly easy to answer. Let the
average rate of success be λ, and consider a large time t. We know from Eq. (4.16)
that the average total number of events that occur during the time t is λt. The aver-
age waiting time (which we’ll call τ) is the total time divided by the total number
of events, λt. That is,

τ =
t
λt

=⇒ τ =
1
λ

(average waiting time) (4.22)

We see that the average waiting time is simply the reciprocal of the rate at which
the events occur. For example, if the rate is 5 events per second, then the average
waiting time is 1/5 of a second, which makes sense. This would of course be true
in the nonrandom case where the events occur at exactly equally spaced intervals of
1/5 second. But the nice thing is that Eq. (4.22) holds even for the random process
we’re discussing, where the intervals aren’t equally spaced.

It makes sense that the rate λ is in the denominator in Eq. (4.22), because if λ is
small, the average waiting time is large. And if λ is large, the average waiting time
is small. And as promised in the third remark above, τ depends on λ.

Distribution of waiting times

Now let’s answer the second (more difficult) question: What is the probability distri-
bution of the waiting times between successes? Equivalently, what is the probability
that the waiting time from a given event to the next event is between t and t + ∆t,
where ∆t is small? To answer this, we’ll use the same general strategy that we used
in the discrete case in Section 4.6.1, except that now the time interval between iter-
ations will be a very small time ϵ instead of 1 second. We will then take the ϵ → 0
limit, which will make time continuous.

The division of time into little intervals is summarized in Fig. 4.13. From time
zero (which is when we’ll assume the initial event happens) to time t, we’ll break
up time into a very large number of very small intervals with length ϵ (which means
that there are t/ϵ of these intervals). And then the interval of ∆t sits at the end. Both
ϵ and ∆t are assumed to be very small, but they need not have anything to do with
each other. ϵ exists as a calculational tool only, while ∆t is the arbitrarily-chosen
small time interval that appears in Eq. (4.2).

In order for the next success (event) to happen between t and t + ∆t, there must
be failure during every one of the t/ϵ intervals of length ϵ shown in Fig. 4.13, and
then there must be success between t and t +∆t. From Eq. (4.18), the latter happens
with probability λ ∆t, because ∆t is assumed to be very small. Also, Eq. (4.18) says
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0 t

length = ε length = ∆t

number of intervals = t/ε

Figure 4.13: Dividing time into little intervals.

that the probability of success in any given small interval of length ϵ is λϵ , which
means that the probability of failure is 1 − λϵ . And since there are t/ϵ of these
intervals, the probability of failure in all of them is (1 − λϵ )t/ϵ . The probability
that the next success happens between t and t + ∆t, which we’ll label as P(t,∆t), is
therefore

P(t,∆t) =
(
(1 − λϵ )t/ϵ

) (
λ ∆t

)
. (4.23)

The reasoning that led to this equation is in the same spirit as the reasoning that led
to Eq. (4.14). See the first remark below.

It’s now time to use one of the results from Appendix C, namely the approxima-
tion given in Eq. (7.14), which says that for small a we can write4

(1 + a)n ≈ ena . (4.24)

This works for negative a as well as positive a. Here e is Euler’s number, which
has the value of e ≈ 2.71828. (If you want to know more about e, there’s plenty
of information in Appendix B!) For the case at hand, a comparison of Eqs. (4.23)
and (4.24) shows that we want to define a ≡ −λϵ and n ≡ t/ϵ , which yields na =
(t/ϵ )(−λϵ ) = −λt. Eq. (4.24) then gives (1− λϵ )t/ϵ ≈ e−λt , so Eq. (4.23) becomes

P(t,∆t) = e−λtλ ∆t. (4.25)

The probability distribution (or density) is obtained by simply erasing the ∆t,
because Eq. (4.2) says that the density is obtained by dividing the probability by
the interval length. We therefore see that the desired probability distribution for the
waiting time between successes is

ρ(t) = λe−λt (exponential distribution) (4.26)

This is known as the exponential distribution. This name is appropriate, of course,
because the distribution decreases exponentially with t. As promised in the third
remark on page 201, the distribution depends on λ (along with t, of course). In the
present setup involving waiting times, it is often more natural to work in terms of the
average waiting time τ than the rate λ, in which case the preceding result becomes
(using λ = 1/τ from Eq. (4.22))

ρ(t) =
e−t/τ

τ
(exponential distribution) (4.27)

4You are strongly encouraged to read Appendix C at this point, if you haven’t already. But if you
want to take Eq. (4.24) on faith, that’s fine too. However, you should at least verify with a calculator that
it works fairly well for, say, a = 0.01 and n = 200.
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In the notation of Eq. (4.12), both A and b are equal to 1/τ (or λ). So they are in
fact related, as we noted right after Eq. (4.12).

Fig. 4.14 shows plots of ρ(t) for a few different values of the average waiting
time, τ. The two main properties of each of these curves are the starting value at
t = 0 and the rate of decay as t increases. From Eq. (4.27), the starting value at t = 0
is e0/τ = 1/τ. So the bigger τ is, the smaller the starting value. This makes sense,
because if the average waiting time τ is large (equivalently, if the rate λ is small),
then there is only a small chance that the next event will happen right away.

0 10 20 30 40 50

0.00

0.05

0.10

0.15

0.20

τ = 20

τ = 10

τ = 5

t

ρ(t)

Figure 4.14: Examples of exponential distributions with different values of the average wait-
ing time τ.

How fast do the curves decay? This is governed by the denominator of the
exponent in Eq. (4.27). For every τ units that t increases by, ρ(t) decreases by a
factor of 1/e. This can be seen by plugging a time of t + τ into Eq. (4.27), which
gives

ρ(t + τ) =
e−(t+τ)/τ

τ
=

(
e−t/τ · e−1)
τ

=
1
e
· e−t/τ

τ
=

1
e
ρ(t). (4.28)

So ρ(t + τ) is 1/e times as large as ρ(t), and this holds for any value of t. A few
particular values of ρ(t) are

ρ(0) =
1
τ
, ρ(τ) =

1
eτ
, ρ(2τ) =

1
e2τ
, ρ(3τ) =

1
e3τ
, (4.29)

and so on. If τ is large, the curve takes longer to decrease by a factor of 1/e. This is
consistent with Fig. 4.14, where the large-τ curve falls off slowly, and the small-τ
curve falls off quickly. To sum up, if τ is large, the ρ(t) curve starts off low and then
decays slowly. And if τ is small, the curve starts off high and then decays quickly.
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Example (Same density): Person A measures a very large number of waiting times
for a process with τ = 5. Person B does the same for a process with τ = 20. To their
surprise, they find that for a special value of t, they both observe (roughly) the same
number of waiting times that fall into a given small interval around t. What is this
special value of t?

Solution: The given information tells us that the probability densities for the two
processes are equal at the special value of t. Plugging the τ values of 5 and 20 into
Eq. (4.27) and setting the results equal to each other gives

e−t/5

5
=

e−t/20

20
=⇒ 20

5
= et/5−t/20 =⇒ ln

(
20
5

)
= t

(
1
5
− 1

20

)
=⇒ ln 4 = t

(
15
100

)
=⇒ t = 9.24. (4.30)

This result agrees (at least to the accuracy of a visual inspection) with the value of t
where the τ = 5 and τ = 20 curves intersect in Fig. 4.14.
Although it might seem surprising that there exists a value of t for which the densities
associated with two different values of τ are equal, it is actually fairly clear, due to
the following continuity argument. For small values of t, the τ = 5 process has a
larger density (because the events happen closer together), while for large values of
t, the τ = 20 process has a larger density (because the events happen farther apart).
Therefore, by continuity, there must exist a particular value of t for which the densities
are equal. But it takes the above calculation to find the exact value.

Remarks:

1. In comparing Eq. (4.23) with Eq. (4.14), we see in retrospect that we could have
obtained Eq. (4.23) by simply replacing the first p in Eq. (4.14) with λϵ (because λϵ
is the probability of success at each intermediate step), the second p with λ ∆t (this is
the probability of success at the last step), and k − 1 with t/ϵ (this is the number of
intermediate steps). But you might find these replacements a bit mysterious without
the benefit of the reasoning preceding Eq. (4.23).

2. The area under each of the curves in Fig. 4.14 must be 1. The waiting time has to be
something, so the sum of all the probabilities must be 1. The proof of this fact is very
quick, but it requires calculus, so we’ll relegate it to Problem 4.8(a). (But note that
we did demonstrate this for the discrete case in Eq. (4.15).) Likewise, the expectation
value of the waiting time must be τ, because that’s how τ was defined. Again, the
proof is quick but requires calculus; see Problem 4.8(c). (The demonstration for the
discrete case is the task of Problem 4.7.)

3. We’ve been referring to ρ(t) as the probability distribution of the waiting times from
one event to the next. However, ρ(t) is actually the distribution of the waiting times
from any point in time to the occurrence of the next event. That is, you can start
your stopwatch at any time, not just at the occurrence of an event. If you go back
through the above discussion, you will see that nowhere did we use the fact that an
event actually occurred at t = 0.
However, beware of the following incorrect reasoning. Let’s say that an event happens
at t = 0, but that you don’t start your stopwatch until, say, t = 1. The fact that the
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next event after t = 1 doesn’t happen (on average) until t = 1 + τ (from the previous
paragraph) seems to imply that the average waiting time from t = 0 is 1 + τ. But it
better not be, because we know from above that it’s just τ. The error here is that we
forgot about the scenarios where the next event after t = 0 happens between t = 0 and
t = 1. When these events are included, the average waiting time, starting at t = 0,
ends up correctly being τ. (The demonstration of this fact requires calculus.) In short,
the waiting time from t = 1 is indeed τ, but the next event (after the t = 0 event) might
have already happened before t = 1.

4. In a sense, the curves for all of the different values of τ in Fig. 4.14 are really the same
curve. They’re just stretched or squashed in the horizontal and vertical directions.
The general form of the curve described by the expression in Eq. (4.27) is shown in
Fig. 4.15.

t

ρ(t)

1/τ

τ

Figure 4.15: The general form of the exponential distribution.

As long as we change the scales on the axes so that τ and 1/τ are always located at
the same positions, then the curves will look the same for any τ. For example, as we
saw in Eq. (4.29), no matter what the value of τ is, the value of the curve at t = τ
is always 1/e times the value at t = 0. Of course, when we plot things, we usually
keep the scales fixed, in which case the τ and 1/τ positions move along the axes, as
shown in Fig. 4.16 (these are the same curves as in Fig. 4.14). But by suitable uniform
stretching/squashing of the axes, the curve in Fig. 4.15 can be turned into any of the
curves in Fig. 4.16.

t t t
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Figure 4.16: These curves can be obtained from the curve in Fig. 4.15 by suitable
stretching/squashing of the axes.

5. The fact that any of the curves in Fig. 4.16 can be obtained from any of the other curves
by stretching and squashing the two directions by inverse (as you can verify) factors
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implies that the areas under all of the curves are the same. (This is consistent with the
fact that all of the areas must be 1.) To see how these inverse factors work together to
keep the area constant, imagine the area being broken up into a large number of thin
vertical rectangles, stacked side by side under the curve. The stretching and squashing
of the curve does the same thing to each rectangle. All of the widths get stretched
by a factor of f , and all of the heights get squashed by the same factor of f (or 1/ f ,
depending on your terminology). So the area of each rectangle remains the same. The
same thing must then be true for the area under the whole curve.

6. Note that the distribution for the waiting time is a discrete distribution in the case of
discrete time (see Eq. (4.14)), and a continuous distribution in the case of continuous
time (see Eq. (4.27)). Although these facts make perfect sense, one should be careful
about extrapolating to a general conclusion. In the Poisson discussion in the following
section, we’ll encounter a discrete distribution in the case of continuous time. ♣

4.7 Poisson distribution
The goal of this section is to derive the Poisson probability distribution,

P(k) =
ak e−a

k!
(Poisson distribution) (4.31)

The parameter a depends on the situation at hand, and k is the value of the random
variable, which is the number of events that occur in a certain region of time (or
space, or whatever), as we’ll discuss below. Since k is an integer (because it is the
number of events that occur), the Poisson distribution is a discrete one. A common
type of situation where this distribution arises is the following.

As with the exponential distribution in the previous section, consider a repeating
event that happens completely randomly in time. We will show that the probability
distribution of the number of events that occur during a given time interval takes
the form of the above Poisson distribution. Whereas the exponential distribution
deals with the waiting time until the next event, the Poisson distribution deals with
the number of events in a given time interval. As in the case of the exponential
distribution, our strategy for deriving the Poisson distribution will be to first consider
the case of discrete time, and then the case of continuous time.

4.7.1 Discrete case
Consider a process that is repeated each second (so time is discretized into 1-second
intervals), and let the probability of success in each trial be p (the same for all
trials). For example, as in Section 4.6.1, we can roll a hypothetical 10-sided die
once every second, and if the die shows a “1,” then we consider that a success. The
other nine numbers represent failure. As in Section 4.6.1, it isn’t actually necessary
to introduce time here. We could simply talk about the number of iterations of the
process, as we will in the balls-in-boxes example below.

The question we will answer here is: What is the probability distribution of the
number of successes that occur in a time interval of n seconds? In other words,
what is the probability, P(k), that exactly k events happen during a time span of
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n seconds? It turns out that this is exactly the same question that we answered in
Section 4.5 when we derived the binomial distribution in Eq. (4.6). So we can just
copy over the reasoning here. We’ll formulate things in the language of rolls of a
die, with a “1” being a success. But the setup could be anything with a probability
p of success.

The probability that a specific set of k of the n rolls all yield a 1 equals pk ,
because each of the k rolls has a p probability of yielding a 1. We then need the
other n − k rolls to not yield a 1, because we want exactly k 1’s. This happens with
probability (1 − p)n−k , because each of the n − k rolls has a 1 − p probability of
being something other than a 1. The probability that a specific set of k rolls (and
no others) all yield success is therefore pk · (1 − p)n−k . Finally, since there are

(
n
k

)
ways to pick a specific set of k rolls, we see that the probability that exactly k of the
n rolls yield a 1 is

P(k) =
(
n
k

)
pk (1 − p)n−k (4.32)

This distribution is exactly the same as the binomial distribution in Eq. (4.6), so
there’s nothing new here. But there will indeed be something new when we discuss
the continuous case in Section 4.7.2.

Example (Balls in boxes): Let n balls be thrown randomly into b boxes. What is the
probability, P(k), that a given box has exactly k balls in it?

Solution: This is a restatement of the problem we just solved. Imagine randomly
throwing one ball each second into the boxes, and consider a particular box. (As
mentioned above, the time interval of one second is irrelevant. All that matters is that
we perform n iterations of the process, sooner or later.) If a given ball ends up in that
box, we’ll call that a success. For each ball, this happens with probability 1/b, because
there are b boxes. So the p in the above discussion equals 1/b. Since we’re throwing
n balls into the boxes, we’re simply performing n iterations of a process that has a
probability p = 1/b of success. Eq. (4.32) is therefore applicable, and with p = 1/b
it gives the probability of obtaining exactly k successes (that is, exactly k balls in a
particular box) as

P(k) =
(
n
k

) (
1
b

)k (
1 − 1

b

)n−k
. (4.33)

We’ve solved the problem, but let’s now see if our answer makes sense. As a concrete
example, consider the case where we have n = 1000 balls and b = 100 boxes. On
average, we expect to have n/b = 10 balls in each box. But many (in fact, most) of the
boxes will have other numbers of balls. In theory, the number k of balls in a particular
box can take on any value from 0 to n = 1000. But intuitively we expect most of
the boxes to have roughly 10 balls (say, between 5 and 15 balls). We certainly don’t
expect many boxes to have 2 or 50 balls.
Fig. 4.17 shows a plot of the P(k) in Eq. (4.33), for the case where n = 1000 and
b = 100. As expected, it is peaked near the average value, n/b = 10, and it becomes
negligible a moderate distance away from k = 10. There is very little chance of having
fewer than 3 or more than 20 balls in a given box; Eq. (4.33) gives P(2) ≈ 0.2%
and P(21) ≈ 0.1%. We’ve arbitrarily chopped off the plot at k = 30 because the
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probabilities between k = 30 (or even earlier) and k = 1000 are indistinguishable from
zero. But technically all of these probabilities are nonzero. For example, P(1000) =
(1/100)1000, because if k = 1000 then all of the 1000 balls need to end up in the given
box, and each one ends up there with probability 1/100. The resulting probability of
10−2000 is utterly negligible.

k

P(k)
(n = 1000,  b = 100)
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Figure 4.17: The probability distribution for the number of balls in a given box, if
n = 1000 balls are thrown into b = 100 boxes.

4.7.2 Continuous case

As with the exponential distribution in Section 4.6.3, we’ll now consider the case
where time is continuous. That is, we’ll assume that we can have a successful event
at any instant, not just at the evenly-spaced 1-second marks, as we assumed above.
As in Section 4.6.3, such a process can be completely described by just one number
– the average rate of events, which we’ll again call λ. Eq. (4.18) tells us that λϵ
is the probability that exactly one event occurs in a very small time interval ϵ . The
smaller the ϵ , the smaller the probability that the event occurs. We’re assuming that
λ is constant in time, that is, the event is just as likely to occur at one time as any
other.

Our goal here is to answer the question: What is the probability, P(k), that
exactly k events occur during a given time span of t? To answer this, we’ll use the
same general strategy that we used above in the discrete case, except that now the
time interval between iterations will be a very small time ϵ instead of 1 second. We
will then take the ϵ → 0 limit, which will make time continuous. The division of
time into little intervals is summarized in Fig. 4.18. We’re dividing the time interval
t into a very large number of very small intervals with length ϵ . There are t/ϵ of
these intervals, which we’ll label as n. There is no need to stick a ∆t interval on the
end, as there was in Fig. 4.13.

Compared with the discrete case we addressed above, Eq. (4.18) tells us that
the probability of exactly one event occurring in a given small interval of length
ϵ is now λϵ instead of p. So we can basically just repeat the derivation preceding
Eq. (4.32), which itself was a repetition of the derivation preceding Eq. (4.6). You’re
probably getting tired of it by now!
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0 t

n

length = ε

number of intervals = t/ε

Figure 4.18: Dividing time into little intervals.

The probability that a specific set of k of the n little intervals all yield exactly
one event each equals (λϵ )k , because each of the k intervals has a λϵ probability
of yielding one event. We then need the other n − k intervals to not yield an event,
because we want exactly k events. This happens with probability (1 − λϵ )n−k ,
because each of the n − k intervals has a 1 − λϵ chance of yielding zero events.
The probability that a specific set of k intervals (and no others) all yield an event is
therefore (λϵ )k · (1 − λϵ )n−k . Finally, since there are

(
n
k

)
ways to pick a specific

set of k intervals, we see that the probability that exactly k of the n intervals yield
an event is

P(k) =
(
n
k

)
(λϵ )k (1 − λϵ )n−k . (4.34)

This is simply Eq. (4.32) with p replaced by λϵ .
Now it’s time to have some mathematical fun. Let’s see what Eq. (4.34) reduces

to in the ϵ → 0 limit, which will give us the desired continuous-time limit. Note
that ϵ → 0 implies that n ≡ t/ϵ → ∞. The math here will be a little more involved
than the math that led to the exponential distribution in Eq. (4.26).

If we write out the binomial coefficient and expand things a bit, Eq. (4.34) be-
comes

P(k) =
n!

(n − k)! k!
(λϵ )k (1 − λϵ )n (1 − λϵ )−k . (4.35)

Of the various letters in this equation, n is huge, ϵ is tiny, and λ and k are “normal,”
not assumed to be huge or tiny. λ is determined by the setup, and k is the number
of events we’re concerned with. (We’ll see below that the relevant k’s are roughly
the size of the product λt = λnϵ .) In the ϵ → 0 limit (and hence n → ∞ limit), we
can make three approximations to Eq. (4.35):

• First, in the n → ∞ limit, we can say that

n!
(n − k)!

≈ nk , (4.36)

at least in a multiplicative sense (we don’t care about an additive sense). This
follows from the fact that n!/(n − k)! is the product of the k numbers from
n down to n − k + 1. And if n is large compared with k, then all of these k
numbers are essentially equal to n (multiplicatively). Therefore, since there
are k of them, we simply get nk . You can verify this for, say, the case of
n = 1,000,000 and k = 10. The product of the 10 numbers from 1,000,000
down to 999,991 equals 1,000,00010 to within an error of 0.005%

• Second, we can apply the (1 + a)n ≈ ena approximation from Eq. (7.14) in
Appendix C, which we already used once in the derivation of the exponential
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distribution; see the discussion following Eq. (4.24). We can use this approx-
imation to simplify the (1 − λϵ )n term. With a ≡ −λϵ , Eq. (7.14) gives

(1 − λϵ )n ≈ e−nλϵ . (4.37)

• Third, in the ϵ → 0 limit, we can use the (1+a)n ≈ ena approximation again,
this time to simplify the (1 − λϵ )−k term. The result is

(1 − λϵ )−k ≈ ekλϵ ≈ e0 = 1, (4.38)

because for any fixed values of k and λ, the kλϵ exponent becomes infinites-
imally small as ϵ → 0. Basically, in (1 − λϵ )−k we’re forming a finite power
of a number that is essentially equal to 1. Note that this reasoning doesn’t
apply to the (1 − λϵ )n term in Eq. (4.37), because n isn’t a fixed number. It
changes with ϵ , in that it becomes large as ϵ becomes small.

In the ϵ → 0 and n → ∞ limits, the “≈” signs in the approximations in the
preceding three equations turn into exact “=” signs. Applying these three approxi-
mations to Eq. (4.35) gives

P(k) =
n!

(n − k)! k!
(λϵ )k (1 − λϵ )n (1 − λϵ )−k

=
nk

k!
(λϵ )k e−nλϵ · 1

=
1
k!

(λ · nϵ )k e−λ ·nϵ

=
1
k!

(λt)k e−λt , (4.39)

where we have used n ≡ t/ϵ =⇒ nϵ = t to obtain the last line. Now, from Eq. (4.16)
λt is the average number of events that are expected to occur in the time t. Let’s
label this average number of events as a ≡ λt. We can then write Eq. (4.39) as

P(k) =
ak e−a

k!
(Poisson distribution) (4.40)

where a is the average number of events in the time interval under consideration. If
you want, you can indicate the a value by writing P(k) as Pa (k).

Since a is the only parameter left on the righthand side of Eq. (4.40), the distri-
bution is completely specified by a. The individual values of λ and t don’t matter.
All that matters is their product a ≡ λt. This means that if we, say, double the
time interval t under consideration and also cut the rate λ in half, then a remains
unchanged; so we have exactly the same distribution P(k). Although it is clear that
doubling t and halving λ yields the same average number of events (since the aver-
age equals the product λt), it might not be intuitively obvious that the entire P(k)
distribution is the same. But the result in Eq. (4.40) shows that this is indeed the
case.

The Poisson distribution in Eq. (4.40) gives the probability of obtaining exactly
k events during a period of time for which the expected number is a. Since k is
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a discrete variable (being the integer number of times that an event occurs), the
Poisson distribution is a discrete distribution. Although the Poisson distribution
is derived from a continuous process (in that the time t is continuous, which means
that an event can happen at any time), the distribution itself is a discrete distribution,
because k must be an integer. Note that while the observed number of events k must
be an integer, the average number of events a need not be.

Remark: Let’s discuss this continuous/discrete issue a little further. In the last remark in
Section 4.6.3, we noted that the exponential distribution for the waiting time, t, is a discrete
distribution in the case of discrete time, and a continuous distribution in the case of contin-
uous time. This seems reasonable. But for the Poisson distribution, the distribution for the
number of events, k, is a discrete distribution in the case of discrete time, and also (as we just
noted) a discrete distribution in the case of continuous time. It is simply always a discrete
distribution, because the random variable is the number of events, k, which is discrete. The
fact that time might be continuous is irrelevant, as far as the discreteness of k goes. The
difference in the case of the exponential distribution is that time itself is the random variable
(because we’re considering waiting times). So if we make time continuous, then by definition
we’re also making the random variable continuous, which means that we have a continuous
distribution. ♣

Example (Number of shoppers): On average, one shopper enters a given store every
15 seconds. What is the probability that in a given time interval of one minute, zero
shoppers enter the store? Four shoppers? Eight shoppers?

Solution: The given average time interval of 15 seconds tells us that the average
number of shoppers who enter the store in one minute is a = 4. Having determined a,
we simply need to plug the various values of k into Eq. (4.40). For k = 0, 4, and 8 we
have

P(0) =
40e−4

0!
= 1 · e−4 ≈ 0.018 ≈ 2%,

P(4) =
44e−4

4!
=

32
3
· e−4 ≈ 0.195 ≈ 20%,

P(8) =
48e−4

8!
=

512
315
· e−4 ≈ 0.030 = 3%. (4.41)

We see that the probability that four shoppers enter the store in a given minute is about
10 times the probability that zero shoppers enter. The probabilities quickly die off as
k gets larger. For example, P(12) ≈ 0.06%.
The above results are a subset of the information contained in the plot of P(k) shown
in Fig. 4.19. Note that P(3) = P(4). This is evident from the above expression for
P(4), because if we cancel a factor of 4 in the numerator and denominator, we end up
with 43e−4/3! which equals P(3). See Problem 4.10 for more on this equality.
Remember that when finding P(k), the only parameter that matters is a. If we modify
the problem by saying that on average one shopper enters the store every 15 minutes,
and if we change the time interval to one hour (in which case a again equals 4), then
all of the P(k) values are exactly the same as above.
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(a = 4)
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Figure 4.19: The Poisson distribution with a = 4.

Example (Balls in boxes, again): Although Eq. (4.40) technically holds only in the
limit of a continuous process, it still provides a very good approximation for discrete
processes, as long as the numbers involved are fairly large. Consider the balls-in-boxes
example in Section 4.7.1. With n = 1000 and b = 100, the average number of balls in
a box is a = n/b = 10. Since b is fairly large, we expect that the Poisson distribution
in Eq. (4.40) with a = 10 will provide a good approximation to the exact binomial
distribution in Eq. (4.33) with n = 1000 and b = 100, or equivalently Eq. (4.32) with
n = 1000 and p = 1/b = 1/100.
Let’s see how good the approximation is. Fig. 4.20 shows plots for two different sets
of n and b values: n = 100, b = 10; and n = 1000, b = 100. With these values, both
plots have a = 10. The dots in the second plot are a copy of the dots in Fig. 4.17.
In both plots we have superimposed the exact discrete binomial distribution (the dots)
and the Poisson distribution (the curves).5 Since the plots have the same value of a,
they have the same Poisson curve. In the right plot, the points pretty much lie on the
curve, so the approximate Poisson probabilities in Eq. (4.40) are essentially the same
as the exact binomial probabilities in Eq. (4.33). In other words, the approximation is
a very good one.
However, in the left plot, the points lie slightly off the curve. The average a = n/b still
equals 10, so the Poisson curve is exactly the same as in the right plot. But the exact
binomial probabilities in Eq. (4.33) are changed from the n = 1000 and b = 100 case.
The Poisson approximation doesn’t work as well here, although it’s still reasonably
good. The condition under which the Poisson approximation is a good one turns out
to be the very simple relation, p ≡ 1/b ≪ 1. See Problem 4.14.

The Poisson distribution in Eq. (4.40) works perfectly well for small a, even
a < 1. It’s just that in this case, the plot of P(k) doesn’t have a bump, as it does in
Figs. 4.19 and 4.20. Instead, it starts high and then falls off as k increases. Fig. 4.21
shows the plot of P(k) for various values of a. We’ve arbitrarily decided to cut off
the plots at k = 20, even though they technically go on forever. Since we are assum-
ing that time is continuous, we can theoretically have an arbitrarily large number of

5We’ve drawn the Poisson distribution as a continuous curve (the k! in Eq. (4.40) can be extrapolated
to non-integer values of k), because it would be difficult to tell what’s going on in the figure if we plotted
two sets of points nearly on top of each other. But you should remember that we’re really only concerned
with integer values of k , since the k in Eq. (4.40) is the number of times something occurs. We’ve plotted
the whole curve for visual convenience only.



214 Chapter 4. Distributions
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Figure 4.20: Comparison between the exact binomial result and the Poisson approximation.

events in any given time interval, although the probability will be negligibly small.
In the plots, the probabilities are effectively zero by k = 20, except in the a = 15
case.
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Figure 4.21: The Poisson distribution for various values of a.

As a increases, the bump in the plots (once it actually becomes a bump) does
three things: (1) it shifts to the right, because it is centered near k = a, due to the
result in Problem 4.10, (2) it decreases in height, due to the result in Problem 4.11,
and (3) it becomes wider, due to the result in Problem 4.13. The last two of these
properties are consistent with each other, in view of the fact that the sum of all the
probabilities must equal 1, for any value of a.

Eq. (4.40) gives the probability of obtaining zero events as P(0) = e−a . If
a = 0.5 then P(0) = e−0.5 ≈ 0.61. This agrees with the first plot in Fig. 4.21.
Likewise, if a = 1 then P(0) = e−1 ≈ 0.37, in agreement with the second plot. If a
is large then the P(0) = e−a probability goes to zero, in agreement with the bottom
three plots. This makes sense; if the average number of events is large, then it is
very unlikely that we will obtain zero events. In the opposite extreme, if a is very
small (for example, a = 0.01), then the P(0) = e−a probability is very close to 1.
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This again makes sense; if the average number of events is very small, then it is very
likely that we will obtain zero events.

To make it easier to compare the six plots in Fig. 4.21, we have superimposed
them in Fig. 4.22. Although we have drawn these Poisson distributions as contin-
uous curves to make things clearer, remember that the distribution applies only to
integer values of k.
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Figure 4.22: Superimposing the plots in Fig. 4.21, drawn as continuous curves.

Problems 4.9 through 4.13 cover various aspects of the Poisson distribution,
namely: the fact that the total probability is 1, the location of the maximum, the
value of the maximum, the expectation value, and the variance.

4.8 Gaussian distribution
The Gaussian probability distribution (also known as the “normal distribution” or
the “bell curve”) is the most important of all the probability distributions. The
reason, as we will see in Chapter 5, is that in the limit of large numbers, many other
distributions reduce to a Gaussian. But for now, we’ll just examine the mathematical
properties of the Gaussian distribution. The distribution is commonly written in
either of the following forms:

f (x) =

√
b
π

e−b(x−µ)2
or

√
1

2πσ2 e−(x−µ)2/2σ2
(4.42)

If you want to explicitly indicate the parameters that appear, you can write the
distribution as fµ,b (x) or fµ,σ (x). The Gaussian distribution is a continuous one.
That is, x can take on a continuum of values, like t in the exponential distribution,
but unlike k in the binomial and Poisson distributions. The Gaussian probability
distribution is therefore a probability density. As mentioned at the beginning of
Section 4.2.2, the standard practice is to use lowercase letters (like the f in f (x))
for probability densities, and to use uppercase letters (like the P in P(k)) for actual
probabilities.

The second expression in Eq. (4.42) is obtained from the first by letting b =
1/2σ2. The first expression is simpler, but the second one is more common. This
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is due to the fact that the standard deviation, which we introduced in Section 3.3,
turns out simply to be σ. Hence our use of the letter σ here. Note that b (or σ)
appears twice in the distribution – in the exponent and in the prefactor. These two
appearances conspire to make the total area under the distribution equal to 1. See
Problem 4.22 for a proof of this fact.

The quantities µ and b (or µ and σ) depend on the specific situation at hand.
Let’s look at how these quantities affect the shape and location of the curve. We’ll
work mainly with the first form in Eq. (4.42) here, but any statements we make
about b can be converted into statements about σ by replacing b with 1/2σ2.

Mean

Let’s consider µ first. Fig. 4.23 shows the plots of two Gaussian distributions, one
with b = 2 and µ = 6, and the other with b = 2 and µ = 10. The two functions are

f (x) =

√
2
π

e−2(x−6)2
and f (x) =

√
2
π

e−2(x−10)2
. (4.43)
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Figure 4.23: Gaussian distributions with different means.

It is clear from the plots that µ is the location of the maximum of the curve.
Mathematically, this is true because the e−b(x−µ)2

exponential factor has an expo-
nent that is either zero or negative (because a square is always zero or positive). So
this exponential factor is always less than or equal to 1. Its maximum value occurs
when the exponent is zero, that is, when x = µ. The peak is therefore located at
x = µ. If we increase µ (while keeping b the same), the whole curve just shifts to
the right, keeping the same shape. This is evident from the figure.

Because the curve is symmetric around the maximum, µ is also the mean (or
expectation value) of the distribution:

Mean = µ. (4.44)

Since we used the letter µ for the mean throughout Chapter 3, it was a natural choice
to use µ the way we did in Eq. (4.42). Of course, for the same reason, it would also
have been natural to use µ for the mean of the exponential and Poisson distributions.
But we chose to label those means as τ and a, so that there wouldn’t be too many
µ’s floating around in this chapter.
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Height

Now let’s consider b. Fig. 4.24 shows the plots of two Gaussian distributions, one
with b = 2 and µ = 6, and the other with b = 8 and µ = 6. The two functions are

f (x) =

√
2
π

e−2(x−6)2
and f (x) =

√
8
π

e−8(x−6)2
. (4.45)

Note that the scales on both the x and y axes in Fig. 4.24 are different from those in
Fig. 4.23. The first function here is the same as the first function in Fig. 4.23.
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Figure 4.24: Gaussian distributions with different values of b. Both the heights and the
widths differ.

It is clear from the plots that b affects both the height and width of the curve.
Let’s see how these two effects come about. The effect on the height is easy to
understand, because the height of the curve (the maximum value of the function) is
simply

√
b/π. This is true because when x equals µ (which is the location of the

maximum), the e−b(x−µ)2
factor equals 1, in which case the value of

√
b/π e−b(x−µ)2

is just
√

b/π. (By the same reasoning, the second expression in Eq. (4.42) gives the
height in terms of σ as 1/

√
2πσ2. ) Looking at the two functions in Eq. (4.45), we

see that the ratio of the heights is
√

8/2 = 2. And this is indeed the ratio we observe
in Fig. 4.24. To summarize:

Height =

√
b
π
=

√
1

2πσ2 . (4.46)

Width in terms of b

Now for the width. We see that the second function in Fig. 4.24 is both taller and
narrower than the first. (But it has the same midpoint, because we haven’t changed
µ.) The factor by which it is shrunk in the horizontal direction appears to be about
1/2. And in fact, it is exactly 1/2. It turns out that the width of a Gaussian curve
is proportional to 1/

√
b. This means that since we increased b by a factor of 4 in

constructing the second function, we decreased the width by a factor of 1/
√

4 =
1/2. Let’s now show that the width is in fact proportional to 1/

√
b.

But first, what do we mean by “width”? A vertical rectangle has a definite width,
but a Gaussian curve doesn’t, because the “sides” are tilted. We could arbitrarily
define the width to be how wide the curve is at a height equal to half the maximum
height. Or instead of half, we could say a third. Or a tenth. We can define it



218 Chapter 4. Distributions

however we want, but the nice thing is that however we choose to define it, the above
“proportional to 1/

√
b ” result will still hold, as long as we pick one definition and

stick with it for whatever curves we’re looking at. Similarly, if we want to work
with the second expression in Eq. (4.42), then since 1/

√
b ∝ σ, the width will be

proportional to σ, independent of the specifics of our arbitrary definition.
The definition we’ll choose here is: The width of a curve is the width at the

height equal to 1/e (which happens to be about 0.37) times the maximum height
(which is

√
b/π ). This 1/e choice is a natural one, because the x values that corre-

spond to this height are easy to find. They are simply µ ± 1/
√

b, because the first
expression in Eq. (4.42) gives

f (µ ± 1/
√

b) =
√

b/π e−b[(µ±1/
√
b )−µ]2

=
√

b/π e−b(±1/
√
b )2

=
√

b/π e−b/b

=

√
b
π
· 1

e
, (4.47)

as desired. Since the difference between µ+ 1/
√

b and µ− 1/
√

b equals 2/
√

b, the
width of the Gaussian curve (by our arbitrary definition) is 2/

√
b. So 1/

√
b is half

of the width, which we’ll call the “half-width”. (The term “half-width” can also
refer to the full width of the curve at half of the maximum height. We won’t use
that meaning here.) Again, any other definition of the width would also yield the√

b in the denominator. That’s the important part. The 2 in the numerator doesn’t
have much significance. The half-width is shown below in Fig. 4.25, following the
discussion of the width in terms of σ.

Width in terms of σ

When working with the second form in Eq. (4.42) (which is the more common of
the two), the default definition of the width is the width at the height equal to 1/

√
e

times the maximum height. This definition (which is different from the above 1/e
definition) is used because the values of x that correspond to this height are simply
x ± σ. This is true because if we plug x = µ ± σ into the second expression in
Eq. (4.42), we obtain

f (µ ± σ) =
√

1/2πσ2 e−[(µ±σ)−µ]2/2σ2

=

√
1/2πσ2 e−(±σ)2/2σ2

=

√
1/2πσ2 e−1/2

=

√
1

2πσ2 ·
1
√

e
. (4.48)

The factor of 1/
√

e here equals 1/
√

2.718 ≈ 0.61, which is larger than the 1/e ≈
0.37 factor in our earlier definition. This is consistent with the fact that the x = µ±σ
points (where the height is 1/

√
e ≈ 0.61 times the maximum) are closer to the
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center than the x = µ ± 1/
√

b = µ ±
√

2σ points (where the height is 1/e ≈ 0.37
times the maximum). This is summarized in Fig. 4.25; we have chosen µ = 0 for
convenience.
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Figure 4.25: Different definitions of the half-width, in terms of b and σ.

Although the x = µ ± σ points yield a nice value of the Gaussian distribution
(1/
√

e times the maximum), the really nice thing about the x = µ± σ points is that
they are one standard deviation from the mean µ. It can be shown (with calculus,
see Problem 4.23) that the standard deviation (defined in Eq. (3.40)) of the Gaussian
distribution given by the second expression in Eq. (4.42) is simply σ. This is why
the second form in Eq. (4.42) is more widely used than the first. And for the same
reason, people usually choose to (arbitrarily) define the half-width of the Gaussian
curve to be σ instead of the 1/

√
b =
√

2σ half-width that we found earlier. That
is, they’re defining the width by looking at where the function is 1/

√
e times the

maximum, instead of 1/e times the maximum. As we noted earlier, any such defini-
tion is perfectly fine; it’s a matter of person preference. The critical point is that the
width is proportional to σ (or 1/

√
b). The exact numerical factor involved is just a

matter of definition.
As mentioned on page 153, it can be shown numerically that about 68% of the

total area (probability) under the Gaussian curve lies between the points µ ± σ.
In other words, you have a 68% chance of obtaining a value of x that is within
one standard deviation from the mean µ. We used the word “numerically” above,
because although the areas under the curves (or the discrete sums) for all of the other
distributions we’ve dealt with in the chapter can be calculated in closed form, this
isn’t true for the Gaussian distribution. So when finding the area under the Gaussian
curve, you always need to specify the numerical endpoints of your interval, and then
you can use a computer to calculate the area (numerically, to whatever accuracy
you want). It can likewise be shown that the percentage of the total area that is
within two standard deviations from µ (that is, between the points µ ± 2σ) is about
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95%. And the percentage within three standard deviations from µ is about 99.7%.
These percentages are consistent with a visual inspection of the shaded areas in
Fig. 4.26. The percentages rapidly approach 100%. The percentage within five
standard deviations from µ is about 99.99994%.

x

x x

e
-x2/2σ2

2πσ2

σ0 2σ 3σ

1____
=

σ0 2σ 3σ

σ0 2σ 3σ

f (x)

σ = 68%

(68%) (95%)

(99.7%)

2σ = 95%

3σ = 99.7%

Percentage 

of total area:

Figure 4.26: Areas under a Gaussian distribution within σ, 2σ, and 3σ from the mean.

Remarks:

1. The Gaussian distribution is a continuous one, because x can take on any value. The
distribution applies (either exactly or approximately) to a nearly endless list of pro-
cesses with continuous random variables such as length, time, light intensity, affinity
for butternut squash, etc.
We’ll find in Sections 5.1 and 5.3 that the Gaussian distribution is a good approxi-
mation to the binomial and Poisson distributions if the numbers involved are large.
In these cases, only integer values of x are relevant, so the distribution is effectively
discrete. You can still draw the continuous curve described by Eq. (4.42), but it is
relevant only for integer values of x.

2. We mentioned near the beginning of this section that the value of the prefactor in the
expressions in Eq. (4.42) makes the total area under the distribution curve be equal to
1. Problem 4.22 gives a proof of this, but for now we can at least present an argument
that explains why the prefactor must be proportional to 1/σ (or equivalently, to

√
b ).

Basically, since the width of the curve is proportional to σ (as we showed above), the
height must be proportional to 1/σ. This is true because if you increase σ by a factor
of, say, 10 and thereby stretch the curve by a factor of 10 in the horizontal direction,
then you also have to squash the curve by a factor of 10 in the vertical direction, if
you want to keep the area the same. (See the fifth remark on page 206.) A factor of
1/σ in the prefactor accomplishes this. But note that this reasoning tells us only that
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the prefactor is proportional to 1/σ, and not what the constant of proportionality is. It
happens to be 1/

√
2π.

3. Two parameters are needed to describe the Gaussian distribution: µ and σ (or µ and
b). This should be contrasted with the Poisson distribution, where only one parameter,
a, is needed. Similarly, the exponential distribution depends on only the one parameter
λ (or τ). In the Poisson case, not only does the width determine the height, but it also
determines the location of the bump. In contrast, the Gaussian mean µ need not have
anything to do with σ (or b). ♣

4.9 Summary
In this chapter we learned about probability distributions. In particular, we learned:

• A probability distribution is the collective information about how the total
probability (which is always 1) is distributed among the various possible out-
comes of the random variable.

• A probability distribution for a continuous random variable is given in terms
of a probability density. To obtain an actual probability, the density must be
multiplied by an interval of the random variable. More generally, the proba-
bility equals the area under the density curve.

We discussed six specific probability distributions:

• 1. Uniform: (Continuous) The probability density is uniform over a given
span of random-variable values, and zero otherwise. The uniform distribution
can be described by two parameters: the mean and the width, or alternatively
the endpoints of the nonzero region. These two parameters then determine
the height.

• 2. Bernoulli: (Discrete) The random variable can take on only two values, 1
and 0, with probabilities p and 1 − p. An example with p = 1/2 is a coin toss
with Heads = 1 and Tails = 0. The Bernoulli distribution is described by one
parameter: p.

• 3. Binomial: (Discrete) The random variable is the number k of successes
in a collection of n Bernoulli processes. An example is the total number of
Heads in n coin tosses. The distribution takes the form,

P(k) =
(
n
k

)
pk (1 − p)n−k . (4.49)

The number k of successes must be an integer, of course. The binomial dis-
tribution is described by two parameters: n and p.

• 4. Exponential: (Continuous) This is the probability distribution for the wait-
ing time t until the next event, for a completely random process. We derived
this by taking the continuum limit of the analogous discrete result, which was
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the geometric distribution given in Eq. (4.14). The exponential distribution
takes the form,

ρ(t) =
e−t/τ

τ
, (4.50)

where τ is the average waiting time. Equivalently, ρ(t) = λe−λt , where
λ = 1/τ is the average rate at which the events happen. The exponential
distribution is described by one parameter: τ (or λ).

• 5. Poisson: (Discrete) This is the probability distribution for the number of
events that happen in a given region (of time, space, etc.), for a completely
random process. We derived this by taking the continuum limit of the analo-
gous discrete result, which was simply the binomial distribution. The Poisson
distribution takes the form,

P(k) =
ak e−a

k!
, (4.51)

where a is the expected number of events in the given region. The number
k of observed events must be an integer, of course. But a need not be. The
Poisson distribution is described by one parameter: a.

• 6. Gaussian: (Continuous) This distribution takes the form,

f (x) =

√
b
π

e−b(x−µ)2
or

√
1

2πσ2 e−(x−µ)2/2σ2
. (4.52)

σ is the standard deviation of the distribution. About 68% of the probability
is contained in the range from µ − σ to µ + σ. The width of the distribution
is proportional to σ (and to 1/

√
b). The Gaussian distribution is described by

two parameters: µ and σ (or µ and b).

4.10 Exercises
See www.people.fas.harvard.edu/ ˜djmorin/book.html for a supply of problems
without included solutions.

4.11 Problems
Section 4.2: Continuous distributions

4.1. Fahrenheit and Celsius *
Fig. 4.4 shows the probability density for the temperature, with the temper-
ature measured in Fahrenheit. Draw a reasonably accurate plot of the same
probability density, but with the temperature measured in Celsius. (The con-
version from Fahrenheit temperature F to Celsius temperature C is C =

(5/9)(F − 32). So it takes a ∆F of 9/5 = 1.8 degrees to create a ∆C of 1
degree.)
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4.2. Expectation of a continuous distribution * (calculus)

The expectation value of a discrete random variable is given in Eq. (3.4).
Given a continuous random variable with probability density ρ(x), explain
why the expectation value is given by the integral

∫
xρ(x) dx.

Section 4.3: Uniform distribution

4.3. Variance of the uniform distribution * (calculus)

Using the general idea from Problem 4.2, find the variance of a uniform dis-
tribution that extends from x = 0 to x = a.

Section 4.5: Binomial distribution

4.4. Expectation of the binomial distribution **
Use Eq. (3.4) to explicitly demonstrate that the expectation value of the bino-
mial distribution in Eq. (4.6) equals pn. This must be true, of course, because
a fraction p of the n trials yield success, on average, by the definition of p.
Hint: The goal is to produce the result of pn, so try to factor a pn out of the
sum in Eq. (3.4). You will eventually need to use an expression analogous to
Eq. (4.10).

4.5. Variance of the binomial distribution ***
As we saw in Problem 4.4, the expectation value of the binomial distribution
is µ = pn. Use the technique in either of the solutions to that problem to
show that the variance of the binomial distribution is np(1 − p) ≡ npq (in
agreement with Eq. (3.33)). Hint: The form of the variance in Eq. (3.34)
works best. When finding the expectation value of k2 (or really K2, where K
is the random variable whose value is k), it is easiest to find the expectation
value of k (k − 1) and then add on the expectation value of k.

4.6. Hypergeometric distribution ***

(a) A box contains N balls. K of them are red, and the other N − K are
blue. (K here is just a given number, not a random variable.) If you
draw n balls without replacement, what is the probability of obtaining
exactly k red balls? The resulting probability distribution is called the
hypergeometric distribution.

(b) In the limit where N and K are very large, explain in words why the
hypergeometric distribution reduces to the binomial distribution given
in Eq. (4.6), with p = K/N . Then demonstrate this fact mathematically.
What exactly is meant by “N and K are very large”?

Section 4.6: Exponential distribution

4.7. Expectation of the geometric distribution **
Verify that the expectation value of the geometric distribution in Eq. (4.14)
equals 1/p. (This is the waiting time we found by an easier method in
Eq. (4.13).) The calculation involves a math trick, so you should do Prob-
lem 3.1 before solving this one.
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4.8. Properties of the exponential distribution ** (calculus)

(a) By integrating the exponential distribution in Eq. (4.27) from t = 0 to
t = ∞, show that the total probability is 1.

(b) What is the median value t? That is, for what value tmed are you equally
likely to obtain a t value larger or smaller than tmed?

(c) By using the result from Problem 4.2, show that the expectation value
is τ, as we know it must be.

(d) Again by using Problem 4.2, find the variance.

Section 4.7: Poisson distribution

4.9. Total probability *
Show that the sum of all of the probabilities in the Poisson distribution given
in Eq. (4.40) equals 1, as we know it must. Hint: You will need to use Eq. (7.7)
in Appendix B.

4.10. Location of the maximum **
For what (integer) value of k is the Poisson distribution P(k) maximum?

4.11. Value of the maximum *
For large a, what approximately is the height of the bump in the Poisson P(k)
plot? You will need the result from the previous problem. Hint: You will also
need to use Stirling’s formula, given in Eq. (2.64) in Section 2.6.

4.12. Expectation of the Poisson distribution **
Use Eq. (3.4) to verify that the expectation value of the Poisson distribution
equals a. This must be the case, of course, because a is defined to be the
expected number of events in the given interval.

4.13. Variance of the Poisson distribution **
As we saw in Problem 4.12, the expectation value of the Poisson distribution
is µ = a. Use the technique in the solution to that problem to show that
the variance of the Poisson distribution is a (which means that the standard
deviation is

√
a ). Hint: When finding the expectation value of k2, it is easiest

to find the expectation value of k (k−1) and then add on the expectation value
of k.

4.14. Poisson accuracy **
In the “balls in boxes, again” example on page 213, we saw that in the right
plot in Fig. 4.20, the Poisson distribution is an excellent approximation to the
exact binomial distribution. But in the left plot, it is only a so-so approxima-
tion. What parameter(s) determine how good the approximation is?

To answer this, we’ll define the “goodness” of the approximation to be the
ratio of the Poisson expression PP(k) in Eq. (4.40) to the exact binomial ex-
pression PB(k) in Eq. (4.32), with both functions evaluated at the expected
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value of k, namely a = pn, which we’ll assume is an integer. (We’re using
Eq. (4.32) instead of Eq. (4.33), just because it’s easier to work with. The ex-
pressions are equivalent, with p↔ 1/b.) The closer the ratio PP(pn)/PB(pn)
is to 1, the better the Poisson approximation is. Calculate this ratio. You will
need to use Stirling’s formula, given in Eq. (2.64). You may assume that n is
large (because otherwise there wouldn’t be a need to use the Poisson approx-
imation).

4.15. Bump or no bump *
In Fig. 4.21, we saw that P(0) = P(1) when a = 1. (This is the cutoff
between the distribution having or not having a bump.) Explain why this is
consistent with what we noted about the binomial distribution (namely, that
P(0) = P(1) when p = 1/(n + 1)) in the example in Section 4.5.

4.16. Typos *
A hypothetical writer has an average of one typo per 50 pages of work. (Wish-
ful thinking, perhaps!) What is the probability that there are no typos in a
350-page book?

4.17. Boxes with zero balls *
You randomly throw n balls into 1000 boxes and note the number of boxes
that end up with zero balls in them. If you repeat this process a large number
of times and observe that the average number of boxes with zero balls is 20,
what is n?

4.18. Twice the events **

(a) Assume that on average, the events in a random process happen a times,
where a is large, in a given time interval t. With the notation Pa (k)
representing the Poisson distribution, use Stirling’s formula (given in
Eq. (2.64)) to produce an approximate expression for the probability
Pa (a) that exactly a events happen during the time t.

(b) Consider the probability that exactly twice the number of events, 2a,
happen during twice the time, 2t. What is the ratio of this probability to
Pa (a)?

(c) Consider the probability that exactly twice the number of events, 2a,
happen during the same time, t. What is the ratio of this probability to
Pa (a)?

4.19. P(0) the hard way ***
For a Poisson process with a expected events, Eq. (4.40) gives the probability
of having zero events as

P(0) =
a0e−a

0!
= e−a = 1 −

(
a − a2

2!
+

a3

3!
− · · ·

)
, (4.53)

where we have used the Taylor series for ex given in Eq. (7.7). With the
above grouping of the terms, the sum in parentheses must be the probability
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of having at least one event, because when this is subtracted from 1, we obtain
the probability of zero events. Explain why this is the case, by accounting
for the various multiple events that can occur. You will want to look at the
remark in the solution to Problem 2.3 first. The task here is to carry over that
reasoning to a continuous Poisson process.

4.20. Probability of at least 1 **
A million balls are thrown at random into a billion boxes. Consider a particu-
lar one of the boxes. What (approximately) is the probability that at least one
ball ends up in that box? Solve this by:

(a) using the Poisson distribution in Eq. (4.40); you will need to use the
approximation in Eq. (7.9),

(b) working with probabilities from scratch; you will need to use the ap-
proximation in Eq. (7.14).

Note that since the probability you found is very small, it is also approxi-
mately the probability of obtaining exactly one ball in the given box, because
multiple events are extremely rare; see the discussion in the first remark in
Section 4.6.2.

4.21. Comparing probabilities ***

(a) A hypothetical 1000-sided die is rolled three times. What is the proba-
bility that a given number (say, 1) shows up all three times?

(b) A million balls are thrown at random into a billion boxes. (So from the
result in Problem 4.20, the probability that exactly one ball ends up in
a given box is approximately 1/1000.) If this process (of throwing a
million balls into a billion boxes) is performed three times, what (ap-
proximately) is the probability that exactly one ball lands in a given box
all three times? (It can be a different ball each time.)

(c) A million balls are thrown at random into a billion boxes. This process
is performed a single time. What (approximately) is the probability that
exactly three balls end up in a given box? Solve this from scratch by
using a counting argument.

(d) Solve part (c) by using the Poisson distribution.

(e) The setups in parts (b) and (c) might seem basically the same, because
both setups involve three balls ending up in the given box, and there is
a 1/b = 1/109 probability that any given ball ends up in the given box.
Give an intuitive explanation for why the answers differ.

Section 4.8: Gaussian distribution

4.22. Area under a Gaussian curve ** (calculus)

Show that the area (from −∞ to ∞) under the Gaussian distribution, f (x) =√
b/π e−bx

2
, equals 1. That is, show that the total probability equals 1. (We
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have set µ = 0 for convenience, since µ doesn’t affect the total area.) There is
a very sneaky way to do this. But since it’s completely out of the blue, we’ll
give a hint: Calculate the square of the desired integral by multiplying it by
the integral of

√
b/π e−by

2
. Then make use of a change of variables from

Cartesian to polar coordinates, to convert the Cartesian double integral into a
polar double integral.

4.23. Variance of the Gaussian distribution ** (calculus)

Show that the variance of the second Gaussian expression in Eq. (4.42) equals
σ2 (which means that the standard deviation is σ). You may assume that
µ = 0 (because µ doesn’t affect the variance), in which case the expression
for the variance in Eq. (3.19) becomes E

(
X2) . And then by the reasoning

in Problem 4.2, this expectation value is
∫

x2 f (x) dx. So the task of this
problem is to evaluate this integral. The straightforward method is to use
integration by parts.

4.12 Solutions
4.1. Fahrenheit and Celsius

A density is always given in terms of “something per something else.” In the temper-
ature example in Section 4.2, the “units” of probability density were probability per
Fahrenheit degree. These units are equivalent to saying that we need to multiply the
density by a certain number of Fahrenheit degrees (the ∆T) to obtain a probability; see
Eq. (4.2). Analogously, we need to multiply a mass density (mass per volume) by a
volume to obtain a mass.
If we want to instead write the probability density in terms of probability per Celsius
degree, we can’t simply use the same function ρ(T ) that appears in Fig. 4.4. Since
there are 1.8 Fahrenheit degrees in each Celsius degree, the correct plot of ρ(T ) is
shown in Fig. 4.27.

T

ρ(T)

15 18 21 24 27

0.05

0.1

0.15

Figure 4.27: Expressing Fig. 4.4 in terms of Celsius instead of Fahrenheit.

This plot differs from Fig. 4.4 in three ways. First, since the peak of the curve in
Fig. 4.4 was at about 68 degrees Fahrenheit, it is now shifted and located at about
(5/9)(68 − 32) = 20 degrees Celsius in Fig. 4.27.
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Second, compared with Fig. 4.4, the curve in Fig. 4.27 is contracted by a factor of
1.8 in the horizontal direction due to the conversion from Fahrenheit to Celsius. The
span is only about 11 Celsius degrees, compared with a span of about 20 Fahrenheit
degrees in Fig. 4.4. This follows from the fact that each Celsius degree is worth 1.8
Fahrenheit degrees.

Third, since the area under the entire curve in Fig. 4.27 must still be 1, the curve must
also be expanded by a factor of 1.8 in the vertical direction. So the maximum value is
about 0.13, compared with the maximum value of about 0.07 in Fig. 4.4.

Remark: These contraction and expansion countereffects cause the probabilities we
calculate here to be consistent with ones we calculated in Section 4.2. For example,
we found in Eq. (4.3) that the probability of the temperature falling between 70 ◦F and
71 ◦F is about 7%. Now, 70 ◦F and 71 ◦F correspond to 21.11 ◦C and 21.67 ◦C, as
you can show using C = (5/9)(F − 32). So the probability of the temperature falling
between 21.11 ◦C and 21.67 ◦C had better also be 7%. It’s the same temperature
interval; we’re just describing it in a different way. And indeed, from the Celsius
plot, the value of the density near 21◦ is about 0.12. Therefore, the probability of
falling between 21.11 ◦C and 21.67 ◦C, which equals the density times the interval, is
(0.12)(21.67 − 21.11) = 0.067 ≈ 7%, in agreement with the Fahrenheit calculation
(up to the rough readings we made from the plots). If we had forgotten to expand the
height of the curve by the factor of 1.8 in Fig. 4.27, we would have obtained only about
half of this probability, and therefore a different answer to exactly the same question
(asked in a different language). That wouldn’t be good. ♣

4.2. Expectation of a continuous distribution

For a general probability density ρ(x), the probability associated with a span dx
around a given value of x is ρ(x) dx; this is true by the definition of the probability
density. Now, the expectation value of a discrete random variable is given in Eq. (3.4).
To extract from this expression the expectation value of a continuous random variable,
we can imagine dividing up the x axis into a very large number of little intervals dx.
The probabilities pi in Eq. (3.4) get replaced with the various ρ(x) dx probabilities.
And the outcomes xi in Eq. (3.4) get replaced with the various values of x.

In making these replacements, we’re pretending that all of the x values in a tiny in-
terval dx are equal to the value at, say, the midpoint (call it xi ). This xi then occurs
with probability pi = ρ(xi ) dx. We therefore have a discrete distribution that in the
dx → 0 limit is the same as the original continuous distribution. The discreteness of
our approximate distribution allows us to apply Eq. (3.4) and say that the expectation
value equals

Expectation value =
∑

pi xi =
∑ (

ρ(xi ) dx
)
xi . (4.54)

In the dx → 0 limit, this discrete sum turns into the integral,

Expectation value =
∫ (
ρ(x) dx

)
x =

∫
xρ(x) dx, (4.55)

as desired. This is the general expression for the expectation value of a continuous
random variable. The limits of the integral are technically −∞ to ∞, although it is
often the case that ρ(x) = 0 everywhere except in a finite region. For example, the
density ρ(t) for the exponential distribution is zero for t < 0, and it becomes negligibly
small for t ≫ τ, where τ is the average waiting time.
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The above result generalizes to the expectation value of things other than x. For
example, the same reasoning shows that the expectation value of x2 (which is relevant
when calculating the variance) equals

∫
x2ρ(x) dx. And the expectation value of x7

(if you ever happened to be interested in such a quantity) equals
∫

x7ρ(x) dx.

4.3. Variance of the uniform distribution
First solution: Since the nonzero part of the distribution has length a on the x axis,
the value of the distribution in that region must be 1/a, so that the total area is 1. We’ll
use the E

(
X2) − µ2 form of the variance in Eq. (3.34), with µ = a/2 here. Our task is

therefore to calculate E(X2). From the last comment in the solution to Problem 4.2,
this equals

E(X2) =
∫ a

0
x2ρ(x) dx =

∫ a

0
x2 · 1

a
dx =

1
a
· x3

3

�����
a

0
=

a2

3
. (4.56)

The variance is then

Var(X ) = E(X2) − µ2 =
a2

3
−

( a
2

)2
=

a2

12
. (4.57)

The standard deviation is therefore a/(2
√

3 ) ≈ (0.29)a.

Second solution: Let’s shift the distribution so that it is nonzero from x = −a/2 to
x = a/2. This shift doesn’t affect the variance, which is now simply E(X2), because
µ = 0. So

Var(X ) = E(X2) =
∫ a/2

−a/2
x2ρ(x) dx =

1
a
· x3

3

�����
a/2

−a/2

=
1

3a

(( a
2

)3
−

(
− a

2

)3
)
=

a2

12
. (4.58)

Third solution: We can use the E
[
(X − µ)2] form of the variance in Eq. (3.19), with

the original 0 < x < a span. This gives

Var(X ) ≡ E
[
(X − a/2)2] = ∫ a

0
(x − a/2)2ρ(x) dx

=
1
a

∫ a

0
(x2 − ax + a2/4) dx

=
1
a

(
a3

3
− a

a2

2
+

a2

4
a
)
=

a2

12
. (4.59)

4.4. Expectation of the binomial distribution
First solution: The k = 0 term doesn’t contribute anything to the sum in Eq. (3.4), so
we can start with the k = 1 term. The sum goes up to k = n. Plugging the probabilities
from Eq. (4.6) into Eq. (3.4), we obtain an expectation value of

n∑
k=1

k · P(k) =
n∑

k=1

k ·
(
n
k

)
pk (1 − p)n−k . (4.60)

If the factor of k weren’t on the righthand side, we would know how to evaluate this
sum; see Eq. (4.10). So let’s get rid of the k and create a sum that looks like Eq. (4.10).
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The steps are the following.

n∑
k=1

k · P(k)

=

n∑
k=1

k · n!
k!(n − k)!

pk (1 − p)n−k (expanding the binomial coeff.)

= pn
n∑

k=1

k · (n − 1)!
k!(n − k)!

pk−1(1 − p)n−k (factoring out pn)

= pn
n∑

k=1

(n − 1)!
(k − 1)!(n − k)!

pk−1(1 − p)n−k (canceling the k)

= pn
n∑

k=1

(
n − 1
k − 1

)
pk−1(1 − p)(n−1)−(k−1) (rewriting)

= pn
n−1∑
j=0

(
n − 1

j

)
p j (1 − p)(n−1)− j (defining j ≡ k − 1)

= pn
(
p + (1 − p)

)n−1 (using the binomial expansion)

= pn · 1, (4.61)

as desired. Note that in the sixth line, the sum over j goes from 0 to n− 1, because the
sum over k went from 1 to n.
Even though we know that the expectation value has to be pn (as mentioned in the
statement of the problem), it’s nice to see that the math does in fact work out.

Second solution: Here is another (sneaky) way to obtain the expectation value. This
method uses calculus. The binomial expansion tells us that

(p + q)n =
n∑

k=0

(
n
k

)
pkqn−k . (4.62)

This relation is identically true for arbitrary values of p (and q), so we can take the
derivative with respect to p to obtain another valid relation:

n(p + q)n−1 =

n∑
k=1

k
(
n
k

)
pk−1qn−k . (4.63)

If we now multiply both sides by p and then set q to equal 1 − p (the relation is true
for all values of q, in particular this specific one), we obtain

np(1)n−1 =

n∑
k=1

k
(
n
k

)
pk (1 − p)n−k =⇒ np =

n∑
k=1

k · P(k), (4.64)

as desired.

4.5. Variance of the binomial distribution
First solution: As suggested in the statement of the problem, let’s find the expecta-
tion value of k (k−1). Since we’ve already done a calculation like this in Problem 4.4,
we won’t list out every step here as we did in Eq. (4.61). The k = 0 and k − 1 terms
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don’t contribute anything to the expectation value of k (k − 1), so we can start the sum
with the k = 2 term. We have (with j ≡ k − 2 in the 5th line)

n∑
k=2

k (k − 1) · P(k)

=

n∑
k=2

k (k − 1) · n!
k!(n − k)!

pk (1 − p)n−k

= p2n(n − 1)
n∑

k=2

(n − 2)!
(k − 2)!(n − k)!

pk−2(1 − p)n−k

= p2n(n − 1)
n∑

k=2

(
n − 2
k − 2

)
pk−2(1 − p)(n−2)−(k−2)

= p2n(n − 1)
n−2∑
j=0

(
n − 2

j

)
p j (1 − p)(n−2)− j

= p2n(n − 1)
(
p + (1 − p)

)n−2

= p2n(n − 1) · 1. (4.65)

The expectation value of k2 equals the expectation value of k (k − 1) plus the expec-
tation value of k. The latter is just pn, from Problem 4.4. So the expectation value of
k2 is

p2n(n − 1) + pn. (4.66)

To obtain the variance, Eq. (3.34) tells us that we need to subtract off µ2 = (pn)2 from
this result. The variance is therefore(

p2n(n − 1) + pn
)
− p2n2 =

(
p2n2 − p2n + pn

)
− p2n2

= pn(1 − p)

≡ npq, (4.67)

as desired. The standard deviation is then
√

npq.

Second solution: Instead of taking just one derivative, as we did in the second solution
in Problem 4.4, we’ll take two derivatives here. Starting with the binomial expansion,

(p + q)n =
n∑

k=0

(
n
k

)
pkqn−k , (4.68)

we can take two derivatives with respect to p to obtain

n(n − 1)(p + q)n−2 =

n∑
k=2

k (k − 1)
(
n
k

)
pk−2qn−k . (4.69)

If we now multiply both sides by p2 and then set q to equal 1 − p, we obtain

p2n(n − 1)(1)n−1 =

n∑
k=2

k (k − 1)
(
n
k

)
pk (1 − p)n−k

=⇒ p2n(n − 1) =
n∑

k=2

k (k − 1) · P(k). (4.70)
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The expectation value of k (k−1) is therefore p2n(n−1), in agreement with Eq. (4.65)
in the first solution. The solution proceeds as above.

4.6. Hypergeometric distribution

(a) There are
(
N
n

)
possible sets of n balls (drawn without replacement), and all of

these sets are equally likely to be drawn. We therefore simply need to count the
number of sets that have exactly k red balls. There are

(
K
k

)
ways to choose k

red balls from the K red balls in the box. And there are
(
N−K
n−k

)
ways to choose

the other n − k balls (which we want to be blue) from the N − K blue balls in
the box. So the number of sets that have exactly k red balls is

(
K
k

) (
N−K
n−k

)
. The

desired probability of obtaining exactly k balls when drawing n balls without
replacement is therefore

P(k) =

(
K
k

) (
N − K
n − k

)
(
N
n

) (Hypergeometric distribution) (4.71)

Remark: Since the number of red balls, k, that you draw can’t be larger than
either K or n, we see that P(k) is nonzero only if k ≤ min(K,n). Likewise, the
number of blue balls, n− k, that you draw can’t be larger than either N −K or n.
So P(k) is nonzero only if n − k ≤ min(N − K,n) =⇒ n −min(N − K,n) ≤ k.
Putting these inequalities together, we see that P(k) is nonzero only if

n −min(N − K,n) ≤ k ≤ min(K,n). (4.72)

If both K and N − K are larger than n, then this reduces to the simple relation,
0 ≤ k ≤ n. ♣

(b) If N and K are small, then the probabilities of drawing red/blue balls change
after each draw. This is true because you aren’t replacing the balls, so the ratio
of red and blue balls changes after each draw.
However, if N and K are large, then the “without replacement” qualifier is in-
consequential. The ratio of red and blue balls remains essentially unchanged
after each draw. Removing one red ball from a set of a million red balls is
hardly noticeable. The probability of drawing a red ball at each stage therefore
remains essentially fixed at the value K/N . Likewise, the probability of drawing
a blue ball at each stage remains essentially fixed at the value (N − K )/N . If
we define the red-ball probability as p ≡ K/N , then the blue-ball probability
is 1 − p. We therefore have exactly the setup that generates the binomial dis-
tribution, with red corresponding to success, and blue corresponding to failure.
Hence we obtain the binomial distribution in Eq. (4.6).
Let’s now show mathematically that the hypergeometric distribution in Eq. (4.71)
reduces to the binomial distribution in Eq. (4.6). Expanding the binomial coef-
ficients in Eq. (4.71) gives

P(k) =

K!
k!(K − k)!

· (N − K )!
(n − k)!

(
(N − K ) − (n − k)

)
!

N!
n!(N − n)!

. (4.73)

If K ≫ k, then we can say that

K!
(K − k)!

= K (K − 1)(K − 2) · · · (K − k + 1) ≈ Kk . (4.74)
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This is true because all of the factors here are essentially equal to K , in a mul-
tiplicative sense. (The “≫” sign in K ≫ k means “much greater than” in a
multiplicative, not additive, sense.) We can make similar approximations to
(N − K )!/

(
(N − K ) − (n − k)

)
! and N!/(N − n)!, so Eq. (4.73) becomes

P(k) ≈

Kk

k!
· (N − K )n−k

(n − k)!
Nn

n!

=
n!

k!(n − k)!

(
K
N

)k (
N − K

N

)n−k

=

(
n
k

)
pk (1 − p)n−k , (4.75)

where p ≡ K/N . This is the desired binomial distribution, which gives the
probability of k successes in n trials, where the probability of success in each
trial takes on the fixed value of p.
We made three approximations in the above calculation, and they relied on the
three assumptions,

(1) K ≫ k, (2) N − K ≫ n − k, (3) N ≫ n. (4.76)

In words, these three assumptions are: (1) the number of red balls you draw is
much smaller than the total number of red balls in the box, (2) the number of
blue balls you draw is much smaller than the total number of blue balls in the
box, and (3) the total number of balls you draw is much smaller than the total
number of balls in the box. (The third assumption follows from the other two.)
These three assumptions are what we mean by “N and K are very large.”

4.7. Expectation of the geometric distribution
From Eq. (4.14), the probability that we need to wait just one iteration for the next
success is p. For two iterations it is (1 − p)p, for three iterations it is (1 − p)2p, and
so on. The expectation value of the number of iterations (that is, the waiting time) is
therefore

1·p + 2· (1 − p)p + 3· (1 − p)2p + 4· (1 − p)3p + · · · . (4.77)

To calculate this sum, we’ll use the trick we introduced in Problem 3.1 and write the
sum as a geometric series starting with p, plus another geometric series starting with
(1− p)p, and so on. And we’ll use the fact that the sum of a geometric series with first
term a and ratio r is a/(1 − r). The expectation value in Eq. (4.77) then becomes

p + (1 − p)p + (1 − p)2p + (1 − p)3p + · · ·
(1 − p)p + (1 − p)2p + (1 − p)3p + · · ·

(1 − p)2p + (1 − p)3p + · · ·
(1 − p)3p + · · · (4.78)

...

This has the correct number of each type of term. For example, the (1 − p)2p term
appears three times. The first line above is a geometric series that sums to a/(1− r) =
p/

(
1 − (1 − p)

)
= 1. The second line is also a geometric series, and it sums to

(1−p)p/
(
1− (1−p)

)
= 1−p. Likewise the third line sums to (1−p)2p/

(
1− (1−p)

)
=

(1 − p)2. And so on. The sum of the infinite number of lines in Eq. (4.79) therefore
equals

1 + (1 − p) + (1 − p)2 + (1 − p)3 + · · · . (4.79)
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But this itself is a geometric series, and it sums to a/(1 − r) = 1/
(
1 − (1 − p)

)
= 1/p,

as desired.

4.8. Properties of the exponential distribution

(a) The total probability equals the total area under the distribution curve. And this
area is given by the integral of the distribution. The integral of e−t/τ/τ equals
−e−t/τ , as you can verify by taking the derivative (and using the chain rule).
The desired integral is therefore∫ ∞

0

e−t/τ

τ
dt = −e−t/τ

����∞0 = −e−∞ − ( − e−0) = 1, (4.80)

as desired

(b) This is very similar to part (a), except that we now want the probability from 0
to tmed to equal 1/2. That is,

1
2
=

∫ tmed

0

e−t/τ

τ
dt = −e−t/τ

����tmed

0
= −e−tmed/τ − ( − e−0) . (4.81)

This yields e−tmed/τ = 1/2. Taking the natural log of both sides then gives

−tmed/τ = − ln 2 =⇒ tmed = (ln 2)τ ≈ (0.7)τ. (4.82)

So the median value of t is (0.7)τ. In other words, (0.7)τ is the value of t for
which the two shaded areas in Fig. 4.28 are equal.

ρ(t)

t

1/τ

τ(0.7)τ

Figure 4.28: The areas on either side of the median are equal.

Note that the median value of t, namely (0.7)τ, is smaller than the mean value
(the expectation value) of t, namely τ. The reason for this is that the exponential
distribution has a tail that extends to large values of t. These values of t drag the
mean to the right, more so than the small values of t near zero drag it to the left
(because the former are generally farther from tmed than the latter). Whenever
you have an asymmetric distribution like this, the mean always lies on the “tail
side” of the median.

(c) In the specific case of the exponential distribution, Eq. (4.55) in the solution to
Problem 4.2 gives

Expectation value =
∫ ∞

0
t · e−t/τ

τ
dt . (4.83)
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You can evaluate this integral by performing “integration by parts,” or you can
just look it up. It turns out to be

Expectation value = −(t + τ)e−t/τ
����∞0

= −(∞ + τ)e−∞ + (0 + τ)e−0

= 0 + τ, (4.84)

as desired. In the first term here, we have used the fact that the smallness of
e−∞ wins out over the largeness of∞. You can check this on your calculator by
replacing∞ with, say, 100.

(d) Let’s use T to denote the random variable whose value is t. Since the mean of the
exponential distribution is τ, Eq. (3.34) tells us that the variance is E

(
T2) − τ2.

So we need to find E
(
T2) . Eq. (4.55) gives

E
(
T2) = ∫ ∞

0
t2 · e−t/τ

τ
dt . (4.85)

Evaluating this by integration by parts is rather messy, so let’s just look up the
integral. It turns out to be

E
(
T2) = −(t2 + 2τt + 2τ2)e−t/τ

����∞0
= −0 + (0 + 0 + 2τ2)e−0

= 2τ2. (4.86)

As in part (c), we have used the fact that the smallness of e−∞ makes the term
associated with the upper limit of integration be zero. The variance is therefore

Var(T ) = E
(
T2) − τ2 = 2τ2 − τ2 = τ2. (4.87)

The standard deviation is the square root of the variance, so it is simply τ, which
interestingly is the same as the mean. As with all other quantities associated with
the exponential distribution, the variance and standard deviation depend only on
τ, because that is the only parameter that appears in the distribution.

4.9. Total probability
The sum over k ranges from 0 to∞. The upper limit is∞ because with continuous time
(or space, or whatever), theoretically an arbitrarily large number of events can occur
in a given time interval (although if k is much larger than a, then P(k) is negligibly
small). We have (invoking Eq. (7.7) from Appendix B to obtain the third line)

∞∑
k=0

P(k) =
∞∑
k=0

ak e−a

k!

= e−a
∞∑
k=0

ak

k!

= e−aea

= 1, (4.88)

as desired. You are encouraged to look at the derivation of Eq. (7.7) in Appendix B.
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4.10. Location of the maximum
First solution: In this solution we’ll use the fact that the expression for P(k) in
Eq. (4.40) is actually valid for all positive values of k, not just integers (even though
we’re really only concerned with integers). This is due to the fact that it is possible
to extend the meaning of k! to non-integers. We can therefore treat P(k) as a con-
tinuous distribution. The maximum value of this distribution might not occur at an
integer value of k, but we’ll be able to extract the appropriate value of k that yields
the maximum when k is restricted to integers.

A convenient way to narrow down the location of the maximum of P(k) is to set
P(k) = P(k+1). (In calculus, this is equivalent to finding the maximum by setting the
first derivative equal to zero.) This will tell us roughly where the maximum is, because
this relation can hold only if k and k+1 are on opposite sides of the maximum. This is
true because the relation P(k) = P(k+1) can’t be valid on the right side of the curve’s
peak, because the curve is decreasing there, so all those points have P(k) > P(k + 1).
Similarly, all the points on the left side of the peak have P(k) < P(k + 1). The only
remaining possibility is that k is on the left side and k + 1 is on the right side. That is,
they are on opposite sides of the maximum.

Setting P(k) = P(k + 1) gives (after canceling many common factors to obtain the
second line)

P(k) = P(k + 1) =⇒ ak e−a

k!
=

ak+1e−a

(k + 1)!

=⇒ 1
1
=

a
k + 1

=⇒ k + 1 = a

=⇒ k = a − 1. (4.89)

The two relevant points on either side of the maximum, namely k and k + 1, are
therefore a − 1 and a. So the maximum of the P(k) plot (extended to non-integers)
lies between a−1 and a. Since we’re actually concerned only with integer values of k,
the maximum is located at the integer that lies between a−1 and a (or at both of these
values if a is an integer). In situations where a is large (which is often the case), the
distinction between a − 1 and a (or somewhere in between) isn’t all that important, so
we generally just say that the maximum of the probability distribution occurs roughly
at a.

Second solution: We can avoid any issues about extending the Poisson distribution
to non-integer values of k, by simply finding the integer value of k for which both
P(k) ≥ P(k + 1) and P(k) ≥ P(k − 1) hold. P(k) is then the maximum, because it is
at least as large as the two adjacent P(k ± 1) values.

By changing the “=” sign in Eq. (4.89) to a “≥” sign, we immediately see that P(k) ≥
P(k + 1) implies k ≥ a − 1. And by slightly modifying Eq. (4.89), you can show that
P(k) ≥ P(k − 1) implies a ≥ k. Combining these two results, we see that the integer
value of k that yields the maximum P(k) satisfies a − 1 ≤ k ≤ a. The desired value
of k is therefore the integer that lies between a − 1 and a (or at both of these values if
a is an integer), as we found in the first solution.

4.11. Value of the maximum
Since we know from the previous problem that the maximum of P(k) occurs essen-
tially at k = a, our goal is to find P(a). Stirling’s formula allows us to make a quick
approximation to this value. Plugging k = a into Eq. (4.40) and using Stirling’s for-
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mula, n! ≈ nne−n
√

2πn, yields

P(a) =
aae−a

a!
≈ aae−a

aae−a
√

2πa
=

1
√

2πa
. (4.90)

We see that the height is proportional to 1/
√

a. So if a goes up by a factor of, say, 4,
then the height goes down by a factor of 2.

It is easy to make quick estimates using this result. Consider the a = 10 plot in
Fig. 4.21. The maximum is between 0.1 and 0.2, a little closer to 0.1. Let’s say 0.13.
And indeed, if a = 10 (for which Stirling’s formula is quite accurate, from Table 2.6),
Eq. (4.90) gives

P(10) ≈ 1
√

2π(10)
≈ 0.126. (4.91)

This is very close to the exact value of P(10), which you can show is about 0.125.
Since a is an integer here (namely, 10), Problem 4.10 tells us that P(9) takes on this
same value.

4.12. Expectation of the Poisson distribution

The expectation value is the sum of k · P(k), from k = 0 to k = ∞. However, the
k = 0 term contributes nothing, so we can start the sum with the k = 1 term. Using
Eq. (4.40), the expectation value is therefore

∞∑
k=1

k · P(k) =
∞∑
k=1

k · ak e−a

k!

=

∞∑
k=1

ak e−a

(k − 1)!
(canceling the k)

= a ·
∞∑
k=1

ak−1e−a

(k − 1)!
(factoring out an a)

= a ·
∞∑
j=0

a j e−a

j!
(defining j ≡ k − 1)

= a ·
∞∑
j=0

P( j) (using Eq. (4.40))

= a · 1, (total probability is 1) (4.92)

as desired. In the fourth line, we used the fact that since j ≡ k − 1, the sum over j
starts with the j = 0 term, because the sum over k started with the k = 1 term. If you
want to show explicitly that the total probability is 1, that was the task of Problem 4.9.

4.13. Variance of the Poisson distribution

As suggested in the statement of the problem, let’s find the expectation value of k (k −
1). Since we’ve already done a calculation like this in Problem 4.12, we won’t list out
every step here as we did in Eq. (4.92). The k = 0 and k − 1 terms don’t contribute
anything to the expectation value of k (k − 1), so we can start the sum with the k = 2
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term. We have (with j ≡ k − 2 in the 3rd line)

∞∑
k=2

k (k − 1) · P(k) =
∞∑
k=2

k (k − 1) · ak e−a

k!

= a2 ·
∞∑
k=2

ak−2e−a

(k − 2)!

= a2 ·
∞∑
j=0

a j e−a

j!

= a2 ·
∞∑
j=0

P( j)

= a2 · 1. (4.93)

The expectation value of k2 equals the expectation value of k (k − 1) plus the expec-
tation value of k. The latter is just a, from Problem 4.12. So the expectation value of
k2 is a2 + a. To obtain the variance, Eq. (3.34) tells us that we need to subtract off
µ2 = a2 from this result. The variance is therefore

(a2 + a) − a2 = a, (4.94)

as desired. The standard deviation is then
√

a.
We will show in Section 5.3 that the standard deviation of the Poisson distribution
equals

√
a when a is large (when the Poisson looks like a Gaussian). But in this

problem we demonstrated the stronger result that the standard deviation of the Poisson
distribution equals

√
a for any value of a, even a small one (when the Poisson doesn’t

look like a Gaussian).

Remark: We saw in Problem 4.11 that for large a, the height of the bump in the
Poisson P(k) plot is 1/

√
2πa, which is proportional to 1/

√
a. The present σ =

√
a

result is consistent with this, because we know that the total probability must be 1.
For large a, the P(k) plot is essentially a continuous curve, so we need the total area
under the curve to equal 1. A rough measure of the width of the bump is 2σ. The area
under the curve equals (roughly) this width times the height. The product of 2σ and
the height must therefore be of order 1. And this is indeed the case, because σ =

√
a

implies that (2σ)(1/
√

2πa ) =
√

2/π, which is of order 1. This order-of-magnitude
argument doesn’t tell us anything about specific numerical factors, but it does tell us
that the height and standard deviation must have inverse dependences on a. ♣

4.14. Poisson accuracy
Replacing a with pn in the Poisson distribution in Eq. (4.40), and setting k = pn as
instructed, gives

PP(pn) =
(pn)pne−pn

(pn)!
. (4.95)

Similarly, setting k = pn in the exact binomial expression in Eq. (4.32) gives

PB(pn) =
(

n
pn

)
ppn (1 − p)n−pn

=
n!

(pn)!(n − pn)!
ppn (1 − p)n−pn . (4.96)
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The (pn)! term here matches up with the (pn)! term in PP(pn), so it will cancel in
the ratio PP(pn)/PB(pn). Let’s apply Stirling’s formula, m! ≈ mme−m

√
2πm, to the

other two factorials in PB(pn). Since n − pn = n(1 − p), we obtain (we’ll do the
simplification gradually here)

PB(pn) ≈ nne−n
√

2πn

(pn)! · (n(1 − p)
)n(1−p)e−n(1−p)

√
2πn(1 − p)

· ppn (1 − p)n(1−p)

=
nne−n

(pn)! · nn(1−p)e−n(1−p)
√

1 − p
· ppn

=
1

(pn)! · n−pnepn
√

1 − p
· ppn

=
1√

1 − p
· (pn)pne−pn

(pn)!
. (4.97)

This result fortuitously takes the same form as the PP(pn) expression in Eq. (4.95),
except for the factor of 1/

√
1 − p out front. The desired ratio is therefore simply

PP(pn)
PB(pn)

=
√

1 − p . (4.98)

This is the factor by which the peak of the Poisson plot is smaller than the peak of the
(exact) binomial plot.
In the two plots in Fig. 4.20, the p values are 1/10 and 1/100, so the

√
1 − p ratios

are
√

0.9 ≈ 0.95 and
√

0.99 ≈ 0.995. These correspond to percentage differences of
5% and 0.5%, or equivalently to fractional differences of 1/20 and 1/200. These are
consistent with a visual inspection of the two plots; the 0.5% difference is too small to
see in the second plot.
With the above

√
1 − p result, we can say that the Poisson approximation is a good

one if
√

1 − p is close to 1, or equivalently if p is much smaller than 1. How much
smaller? That depends on how good an approximation you want. If you want accuracy
to 1%, then p = 1/100 works, but p = 1/10 doesn’t.

Remarks:

1. A helpful mathematical relation that is valid for small p is
√

1 − p ≈ 1 − p/2.
(You can check this by plugging a small number like p = 0.01 into your calcu-
lator. Or you can square both sides to obtain 1 − p ≈ 1 − p + p2/4, which is
correct up to the quadratic p2/4 difference, which is very small if p is small.)
With this relation, our

√
1 − p result becomes 1 − p/2. The difference between

this result and 1 is therefore p/2. This makes it clear why we ended up with the
above ratios of 0.95 and 0.995 for p = 1/10 and p = 1/100.

2. Note that our “goodness” condition for the Poisson approximation involves only
p. That is, it is independent of n. This isn’t terribly obvious. For a given value
of p (say, p = 1/100), we will obtain the same accuracy whether n is, say, 103

or 105. Of course, the a = pn expected values in these two cases are different
(10 and 1000). But the ratio of PP(pn) to PB(pn) is the same (at least in the
Stirling approximation).

3. In the language of balls and boxes, since p = 1/b, the p ≪ 1 condition is
equivalent to saying that the number of boxes satisfies b ≫ 1. So the more
boxes there are, the better the approximation. This condition is independent of
the number n of balls (as long as n is large).



240 Chapter 4. Distributions

4. The result in Eq. (4.98) is valid even if the expected number of events pn is
small, for example, 1 or 2. The is true because the (pn)! terms cancel in the ratio
of Eqs. (4.95) and (4.96), so we don’t need to worry about applying Stirling’s
formula to a small number. The other two factorials, n! and (n − pn)!, are large
because we are assuming that n is large. ♣

4.15. Bump or no bump
We saw in Section 4.7.2 that the Poisson distribution is obtained by taking the n → ∞
and p → 0 limits of the binomial distribution (p took the form of λϵ in the derivation
in Section 4.7.2). But in the n → ∞ limit, the p = 1/(n+1) condition for P(0) = P(1)
in the binomial case becomes p ≈ 1/n. So pn ≈ 1. But pn is just the average number
of events a in the Poisson distribution. So a ≈ 1 is the condition for P(0) = P(1) in
the Poisson case, as desired.

4.16. Typos
First solution: Under the assumption that the typos occur randomly, the given setup
calls for the Poisson distribution. If the expected number of typos in 50 pages is
one, then the expected number of typos in a 350-page book is a = 350/50 = 7. So
Eq. (4.40) gives the probability of zero typos in the book as

P(0) =
a0e−a

0!
= e−a = e−7 ≈ 9 · 10−4 ≈ 0.1%. (4.99)

Second solution: (This is an approximate solution.) If there is one typo per 50 pages,
then the expected number of typos per page is 1/50. This implies that the probability
that a given page has at least one typo is approximately 2%, which means that the
probability that a given page has zero typos is approximately 98%. We are using the
word “approximately” here, because the probability of zero typos on a given page
must in fact be slightly larger than 98%. This is true because if it were exactly 98%,
then in the 2% of the pages where a typo occurs, there might actually be two (or
three, etc.) typos. Although these occurrences are rare in the present setup, they will
nevertheless cause the expected number of typos per page to be (slightly) larger than
1/50, in contradiction to the given assumption. The actual probability of having zero
typos per page must therefore be slightly larger than 98%, so that slightly fewer than
2% of the pages have at least one typo.
However, if we work in the (reasonable) approximation where the probability of hav-
ing zero typos per page equals 0.98, then the probability of having zero typos in 350
pages equals (0.98)350 = 8.5 · 10−4. This is close to the correct probability of 9 · 10−4

in Eq. (4.99). Replacing 0.98 with a slightly larger number would yield the correct
probability of 9 · 10−4.

Remarks: What should the probability of 0.98 (for zero typos on a given page) be
increased to, if we want to obtain the correct probability of 9 · 10−4 (for zero typos in
the book)? Since the expected number of typos per page is 1/50, we simply need to
plug a = 1/50 into the Poisson expression for P(0). This gives the true probability of
having zero typos on a given page as

P(0) =
a0e−a

0!
= e−a = e−1/50 = 0.9802. (4.100)

As expected, this is only a tiny bit larger than the approximate value of 0.98 that we
used above. If we use the new (and correct) value of 0.9802, the result of our second
solution is modified to (0.9802)350 = 9 · 10−4, which agrees with the correct answer
in Eq. (4.99).
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The relation between the (approximate) second solution and the (correct) first solution
can be seen by writing our approximate answer of (0.98)350 as

(0.98)350 =

(
1 − 1

50

)350
= *,

(
1 − 1

50

)50+-
7

≈ (
e−1)7 = e−7, (4.101)

which is the correct answer in Eq. (4.99). We have used the approximation in Eq. (7.4)
to produce the e−1 term here. ♣

4.17. Boxes with zero balls
First solution: The given information that 20 out of the 1000 boxes contain zero
balls (on average) tells us that the probability that a given box contains zero balls is
P(0) = 20/1000 = 0.02. The process at hand is approximately a Poisson process, just
as the balls-in-boxes setup in the example on page 213 was. We therefore simply need
to find the value of a in Eq. (4.40) that makes P(0) = 0.02. That is,

a0e−a

0!
= 0.02 =⇒ ea = 50 =⇒ a = ln 50 = 3.912. (4.102)

This a is the average number of balls in each of the 1000 boxes. The total number of
balls in each trial is therefore n = (1000)a = 3912.

Note that once we know what a is, we can determine the number of boxes that contain
other numbers of balls. For example P(3) ≈ (3.9)3e−3.9/3! ≈ 0.20. So about 200
of the 1000 boxes end up with three balls, on average. P(4) is about the same (a hair
smaller). About 4.5 boxes (on average) end up with 10 balls, as you can show.

Second solution: We can solve the problem from scratch, without using the Poisson
distribution. With k = 0, Eq. (4.33) tells us that the probability of obtaining zero balls
in a given box is P(0) = (1 − 1/1000)n . Setting this equal to 0.02 and using the
approximation in Eq. (7.14) gives

(1 − 1/1000)n = 0.02 =⇒ e−n/1000 = 0.02 =⇒ en/1000 = 50

=⇒ n/1000 = ln 50 =⇒ n = 3912. (4.103)

Alternatively, we can solve for n exactly, without using the approximation in Eq. (7.14).
We want to find the n for which (999/1000)n = 0.02. Taking the log of both sides
gives

n ln(0.999) = ln(0.02) =⇒ n =
−3.912

−1.0005 · 10−3 = 3910. (4.104)

Our approximate answer of n = 3912 was therefore off by only 2, or equivalently
0.05%.

4.18. Twice the events

(a) This part of the problem is a repeat of Problem 4.11. The Poisson distribution is
Pa (k) = ak e−a/k!, so the probability of obtaining a events is (using Stirling’s
formula for a!)

Pa (a) =
aae−a

a!
≈ aae−a

aae−a
√

2πa
=

1
√

2πa
. (4.105)
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(b) The average number of events during the time 2t is twice the average number
during the time t. So we now have a Poisson process governed by an average of
2a. The distribution is therefore P2a (k), and our goal is to calculate P2a (2a).
In the same manner as in part (a), we find

P2a (2a) =
(2a)2ae−2a

(2a)!
≈ (2a)2ae−2a

(2a)2ae−2a √2π(2a)
=

1
√

4πa
. (4.106)

This is smaller than the result in part (a) by a factor of 1/
√

2. In retrospect, we
could have obtained the result of 1/

√
4πa by simply substituting 2a for a in the

1/
√

2πa result in part (a). The setup is the same here; we’re still looking for the
value of the distribution when k equals the average number of events. It’s just
that the average is now 2a instead of a.

(c) Since we’re back to considering the original time t here, we’re back to the Pois-
son distribution with an average of a. But since k is now 2a, we want to calculate
Pa (2a). This equals

Pa (2a) =
a2ae−a

(2a)!
≈ a2ae−a

(2a)2ae−2a √2π(2a)

=
1

22ae−a
√

4πa
=

( e
4

)a 1
√

4πa
. (4.107)

This is smaller than the result in part (a) by a factor of (e/4)a/
√

2. The (e/4)a

part of this factor is approximately (0.68)a , which is very small for large a.
For example, if a = 10, then (e/4)a ≈ 0.02. And if a = 100, then (e/4)a ≈
1.7 · 10−17.
For a = 10, the above three results are summarized in Fig. 4.29. The three
dots indicate (from highest to lowest) the answers to parts (a), (b), and (c). This
figure makes it clear why the answer to part (c) is much smaller than the other
two answers; the P10(20) dot is on the tail of a curve, whereas the other two
dots are near a peak. Although we have drawn the Poisson distributions as
continuous curves, remember that the distribution applies only to integer values
of k. The two highest dots aren’t right at the peak of the curve, because the
peak of the continuous curve is located at a value of k between a − 1 and a; see
Problem 4.10.
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Figure 4.29: The Poisson curves for a = 10 and a = 20.
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4.19. P(0) the hard way
The given interval (of time, space, or whatever) associated with the Poisson process
has a expected events. Let’s divide the interval into a very large number n of tiny
intervals, each with a very small probability p of an event occurring. For simplicity,
we are using p here instead of the λϵ we used at the beginning of Section 4.7.2. As in
that section, we can ignore the distinction between the probability of an event in a tiny
interval and the expected number of events in that interval, because we are assuming
that p ≡ λϵ is very small; see Eq. (4.18).
The tasks of Problems 2.2 and 2.3 were to derive the “Or” rules for three and four
events. Our goal here is basically to derive the “Or” rule for a large number n of in-
dependent events, each with a small probability p. These independent events are of
course nonexclusive; we can certainly have more than one event occurring. Through-
out this solution, you will want to have a picture like Fig. 2.17 in your mind. Although
that picture applies to three events, it contains the idea for general n. Simple circles
(each of which represents the probability that an event occurs in a given tiny interval)
won’t work for larger n, but it doesn’t matter what the exact shapes are.
As in the solution to Problem 2.2(d), our goal is to determine the total area contained
in the n partially overlapping regions (each with tiny area p) in the generalization of
Fig. 2.17. The total area equals the probability of “Event 1 or Event 2 or . . . Event n,”
which is the desired probability that at least one event occurs in the original interval.
As in the solution to Problem 2.2(d), we can proceed as follows.

• If we add up the individual areas of all n tiny regions, we obtain np. (Each region
represents the probability p that an event occurs in that particular tiny interval,
with no regard for what happens with any of the other n − 1 tiny intervals.) But
np equals the total expected number of events a in the original interval, because
p is the expected number of events in each of the n tiny intervals. The sum of
the individual areas of all n tiny regions therefore equals a. This a is the first
term in the parentheses in Eq. (4.53).

• However, in adding up the individual areas of all n tiny regions, we have double
counted each of the overlap regions where two events occur. The number of
these regions is

(
n
2

)
= n(n − 1)/2, which essentially equals (in a multiplicative

sense) n2/2 for large n. The area (probability) of each double-overlap region is
p2, because that is the probability that two given events occur (with no regard for
what else happens). The sum of the individual areas of the n2/2 double-overlap
regions is therefore (n2/2)p2 = (np)2/2 = a2/2. Since we have counted this
area twice, and since we want to count it only once, we must correct for this by
subtracting it off once. Hence the −a2/2! term in the parentheses in Eq. (4.53).

• We have now correctly determined the areas (probabilities) where exactly one
or exactly two events occur. But what about the regions where three (or more)
events occur? Each of these “triple” regions was counted

(3
1

)
= 3 times when

dealing with the “single” regions (because a triple region contains
(3
1

)
differ-

ent single regions), but then uncounted
(3
2

)
= 3 times when dealing with the

“double” regions (because a triple region contains
(3
2

)
different double regions).

We have therefore counted each triple region
(3
1

)
−

(3
2

)
= 0 times. There are(

n
3

)
= n(n − 1)(n − 2)/3! ≈ n3/3! of these regions. The area of each region is

p3, because that is the probability that three given events occur (with no regard
for what else happens). The sum of the individual areas of the n3/3! triple re-
gions is therefore (n3/3!)p3 = (np)3/3! = a3/3!. Since we have not counted
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this area at all, and since we want to count it once, we must correct for this by
adding it on once. Hence the +a3/3! term in the parentheses in Eq. (4.53).

• One more iteration for good measure: We have now correctly determined the
areas (probabilities) where exactly one or exactly two or exactly three events
occur. But what about the regions where four (or more) events occur? Each
of these “quadruple” regions was counted

(4
1

)
= 4 times when dealing with the

single regions, then uncounted
(4
2

)
= 6 times when dealing with the double

regions, then counted
(4
3

)
= 4 times when dealing with the triple regions. We

have therefore counted each quadruple region
(4
1

)
−

(4
2

)
+

(4
3

)
= 2 times. There

are
(
n
4

)
= n(n − 1)(n − 2)(n − 3)/4! ≈ n4/4! of these regions. The area of each

region is p4, because that is the probability that four given events occur (with
no regard for what else happens). The sum of the individual areas of the n4/4!
quadruple regions is therefore (n4/4!)p4 = (np)4/4! = a4/4!. Since we have
counted this area twice, and since we want to count it only once, we must correct
for this by subtracting it off once. Hence the −a4/4! term in the parentheses in
Eq. (4.53).

Continuing in this manner gives the entire area in Fig. 2.17, or rather, the entire area
in the analogous figure for the case of n events instead of three. In the n → ∞ limit,
we will obtain an infinite number of terms inside the parentheses in Eq. (4.53). All of
the multiple counting is removed, so each region is counted exactly once. The total
area represents the probability that at least one event occurs. Subtracting this from 1
gives the probability P(0) in Eq. (4.53) that zero events occur.
As mentioned in the remark in the solution to Problem Eq. (2.3), we have either
overcounted or undercounted each region once at every stage. This is the inclusion–
exclusion principle, and it follows from the binomial expansion of 0 = (1−1)m . Using
the expansion in Eq. (1.21) with a = 1 and b = −1, we have

(1− 1)m =
(
m
0

)
−

(
m
1

)
+

(
m
2

)
−

(
m
3

)
+ · · ·+

(
m

m − 1

)
(−1)m−1 +

(
m
m

)
(−1)m . (4.108)

The lefthand side equals zero, and the
(
m
0

)
and

(
m
m

)
terms equal 1, so we obtain(

m
1

)
−

(
m
2

)
+

(
m
3

)
−

(
m

m − 1

)
(−1)m−1 = 1 + (−1)m . (4.109)

From the pattern of reasoning in the above bullet points, the lefthand side here is the
number of times we have already counted each m-tuple region, in our handling of all of
the ‘lesser” regions – the single regions up through the (m − 1)-tuple regions. (We are
assuming inductively that we have overcounted or undercounted by 1 at each earlier
stage.) The righthand side is either 2 or 0, depending on whether m is even or odd. We
have therefore either overcounted or undercounted each m-tuple region by 1, which is
consistent with the above results for m = 2, 3, and 4. There are

(
n
m

)
of the m-tuple

regions, each of which has an area of pm . So at each stage, we need to either subtract
or add an area (probability) of

(
n
m

)
pm ≈ (nm/m!)pm = (np)m/m! = am/m!. These

are the terms in parentheses in Eq. (4.53).

Remark: In the end, the solution to this problem consists of the reasoning in the re-
mark in the solution to Problem Eq. (2.3), combined with the fact that if n is large,
we can say that

(
n
m

)
pm ≈ (nm/m!)pm , which equals am/m!. Now, taking into ac-

count all of the above double (and triple, etc.) counting is of course a much more



4.12. Solutions 245

laborious way to find P(0) than simply using Eq. (4.40). Equivalently, the double-
counting solution is more laborious than using Eq. (4.32) with k = 0, which quickly
gives P(0) = (1 − p)n ≈ e−pn = e−a , using Eq. (7.14). (Eq. (4.32) is equivalent to
Eq. (4.34), which led to Eq. (4.40).) The reasoning behind Eq. (4.32) involved directly
finding the probability that zero events occur, by multiplying together all of the prob-
abilities (1 − p) that each event doesn’t occur. This is clearly a much quicker method
than the double-counting method of finding the probability that at least one event oc-
curs, and then subtracting that from 1. This double-counting method is exactly the
opposite of the helpful “art of not” strategy we discussed in Section 2.3.1! ♣

4.20. Probability of at least 1

(a) In finding the probability that at least one ball ends up in the given box, our
strategy (in both parts of this problem) will be to find the probability that zero
balls end up in the given box, and then subtract this probability from 1. The
process at hand is approximately a Poisson process, just as the balls-in-boxes
setup in the example on page 213 was. So from the Poisson distribution in
Eq. (4.40), the probability that zero balls end up in the given box is P(0) =
a0e−a/0! = e−a . The probability that at least one ball ends up in the given box
is then 1 − e−a . This is an approximate result, because the process isn’t exactly
Poisson.
In the given setup, we have n = 106 balls and b = 109 boxes. So the average
number of balls in a given box is a = n/b = 1/1000. Since this number is small,
we can use the approximation in Eq. (7.9) (with x ≡ −a) to write e−a ≈ 1 − a.
The desired probability that at least one ball ends up in the given box is therefore

1 − e−a ≈ 1 − (1 − a) = a =
1

1000
. (4.110)

This makes sense. The expected number, a, of balls is small, which means that
double (or triple, etc.) events are rare. The probability that at least one ball ends
up in the given box is therefore essentially equal to P(1). Additionally, since
double (or triple, etc.) events are rare, we have P(1) ≈ a, because the expected
number of balls can be written as a = P(1) ·1+��P(2) ·2+ · · · =⇒ P(1) ≈ a. The
two preceding sentences tell us that the probability that at least one ball ends up
in the given box is approximately equal to a, as desired.

(b) The probability that a particular ball ends up in the given box is 1/b, where
b = 109 is the number of boxes. So the probability that the particular ball
doesn’t end up in the given box is 1 − 1/b. This holds for all n = 106 of the
balls, so the probability that zero balls end up in the given box is (1 − 1/b)n .
(This is just Eq. (4.33) with k = 0.) The probability that at least one ball ends
up in the given box is therefore 1 − (1 − 1/b)n . This is the exact answer.
We can now use the (1+α)n ≈ enα approximation in Eq. (7.14) to simplify the
answer. (We’re using α in place of the a in Eq. (7.14), because we’ve already
reserved the letter a for the average number of balls, n/b, here.) With α ≡ −1/b,
Eq. (7.14) turns the 1 − (1 − 1/b)n probability into

1 − (1 − 1/b)n ≈ 1 − e−n/b = 1 − e−a . (4.111)

The e−a ≈ 1 − a approximation then turns this into a, as in part (a).

Remark: We have shown that for small a = n/b, the probability that at least
one ball ends up in the given box is approximately a. This result of course
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doesn’t hold for non-small a because, for example, if we consider the a = 1
case, there certainly isn’t a probability of 1 that at least one ball ends up in the
given box. And we would obtain a nonsensical probability larger than 1 if a > 1.
From either Eq. (4.110) or Eq. (4.111), the correct probability (in the Poisson
approximation) that at least one ball ends up in the given box is 1 − e−a . For
non-small a, we can’t use the e−a ≈ 1 − a approximation to turn 1 − e−a into
a. ♣

4.21. Comparing probabilities

(a) The three events are independent. So with p = 1/1000, the desired probability
is simply p3, which equals 10−9.

(b) The three trials of the process are independent, so the desired probability is
again p3, where p = 1/1000 is the probability that exactly one ball lands in the
given box in a given trial of the process. So we again obtain an answer of 10−9.
This setup is basically the same as the setup in part (a).

(c) If we perform a single trial of throwing a million balls into a billion boxes, the
probability that three specific balls end up in the given box is (1/b)3 (where
b = 109), because each ball has a 1/b chance of landing in the box.6 There
are

(
n
3

)
ways to pick the three specific balls from the n = 106 balls, so the

probability that exactly three balls end up in the box is
(
n
3

)
/b3. We can simplify

this result by making an approximation to the binomial coefficient. Using the
fact that n − 1 and n − 2 are both essentially equal (multiplicatively) to n if n is
large, we have (

n
3

)
1
b3 =

n(n − 1)(n − 2)
3!

1
b3 ≈

n3

3!
1
b3

=
1
3!

( n
b

)3
=

(10−3)3

3!
=

10−9

3!
. (4.112)

(d) The process in part (c) is approximately a Poisson process with a = n/b =
1/000. The probability that exactly three balls end up in the given box is there-
fore given by Eq. (4.40) as

P(3) =
a3e−a

3!
. (4.113)

Since a = 1/000 is small, the e−a factor is essentially equal to 1, so we can
ignore it. We therefore end up with

P(3) ≈ a3

3!
=

(10−3)3

3!
=

10−9

3!
, (4.114)

in agreement with the result in part (c).
In all of the parts to this problem, there is of course nothing special about the
number 3 in the statement of the problem. If 3 is replaced by a general number
k, then the results in parts (c) and (d) simply involve k! instead of 3!. (Well,
technically k needs to be small compared with n, but that isn’t much of a re-
striction in the present setup with n = 106.)

6There is technically a nonzero probability that other balls also land in the box. But this probability
is negligible, so we don’t have to worry about subtracting it off, even though we want exactly three balls
in the box. Equivalently, the binomial distribution also involves a factor of (1− 1/b)n−3 (which ensures
that the other n − 3 balls don’t land in the box), but this factor is essentially equal to 1 in the present
setup.
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(e) The result in part (c) is smaller than the result in part (b) by a factor of 1/3! =
1/6. Let’s explain intuitively why this is the case.
In comparing the setups in parts (b) and (c), let’s compare the respective prob-
abilities (labeled p(b)

3 and p(c)
3 ) that three specific balls (labeled A, B, and C)

end up in the given box. Although we solved part (b) in a quicker manner (by
simply cubing p), we’ll need to solve it here in the same way that we solved
part (c), in order to compare the two setups. Note that in comparing the setups,
it suffices to compare the probabilities for three specific balls, because both se-
tups involve the same number of groups of three specific balls, namely

(
n
3

)
. So

the total probabilities in each case are
(
n
3

)
p(b)

3 and
(
n
3

)
p(c)

3 , with the
(
n
3

)
factor

being common to both.
Consider first the setup in part (c), with the single trial. There is only one way
that all three of A, B, and C can end up in the box: If you successively throw
down the n balls, then when you get to ball A, it must end up in the box (which
happens with probability 1/b); and then when you get to ball B, it must also end
up in the box (which again happens with probability 1/b); and finally when you
get to ball C, it must also end up in the box (which again happens with prob-
ability 1/b). The probability that all three balls end up in the box is therefore
p(c)

3 = (1/b)3. (This is just a repeat of the reasoning we used in part (c).)
Now consider the setup in part (b), with the three trials. There are now six ways
that the three balls can end up in the box, because there are 3! permutations of
the three balls. Ball A can end up in the box in the first of the three trials of n
balls (which happens with probability 1/b), and then B can end up in the box
in the second trial (which again happens with probability 1/b), and then C can
end up in the box in the third trial (which again happens with probability 1/b).
We’ll label this scenario as ABC. But the order in which the balls go into the
boxes in the three successive trials can take five other permutations too, namely
ACB, BAC, BCA, CAB, CBA. Each of the six possible permutations occurs
with probability (1/b)3, so the probability that all three balls (A, B, and C) end
up in the box equals p(b)

3 = 6(1/b)3. This explains why the answer to part (b) is
six times the answer to part (b).
As mentioned above, if we want to determine the total probabilities in each
setup, we just need to multiply each of p(b)

3 and p(c)
3 by the number

(
n
3

)
≈ n3/3!

of groups of three balls. This was our strategy in part (c), and the result was
(n/b)3/3!. In part (b) this gives (n3/3!)(6/b3) = (n/b)3 = p3, in agreement
with our original (quicker) solution. Note that it isn’t an extra factor of 3! in the
denominator that makes the answer to part (c) be smaller; parts (b) and (c) both
have the 3! arising from the

(
n
3

)
binomial coefficient. Rather, the answer to part

(c) is smaller because it doesn’t have the extra 3! in the numerator arising from
the different permutations.

Remark: Alternatively, you can think in terms of probabilities instead of per-
mutations. In part (c) the probability (as we noted above) that three specific balls
end up in the box is (1/b)(1/b)(1/b), because each of the three balls must end
up in the box when you throw it down. In contrast, in part (b) the probability
that three specific balls end up in the box is (3/b)(2/b)(1/b), because in the first
trial of n balls, any of the three specific balls can end up in the box. And then in
the second trial, one of the two other balls must end up in the box. And finally
in the third trial, the remaining one of the three balls must end up in the box.
The probability in part (b) is therefore larger by a factor of 3! = 6.
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Intuitively, it makes sense that the probability in part (b) is larger, because in
part (c) if ball A doesn’t end up in the box when you throw it down, you are
guaranteed failure (for the three specific balls A, B, and C). But in part (b) if
ball A doesn’t end up in the box in the first of the three trials of n balls, you still
have two more chances (with balls B and C) in that trial to get a ball in the box.
So you have three chances to put one of the balls in the box in the first trial. And
likewise you have two chances in the second trial. ♣

4.22. Area under a Gaussian curve
Let I be the desired integral. Then following the hint, we have

I2 = *,
√

b
π

∫ ∞

−∞
e−bx

2
dx+- *,

√
b
π

∫ ∞

−∞
e−by

2
dy+-

=
b
π

∫ ∞

−∞

∫ ∞

−∞
e−b(x2+y2) dx dy. (4.115)

If we convert from Cartesian to polar coordinates, then x2 + y2 becomes r2 (by the
Pythagorean theorem), and the area element dx dy in the plane becomes r dr dθ. This
expression follows from the fact that we can imagine covering the plane with infinitesi-
mal rectangles with sides of length dr in the radial direction and r dθ (the general form
of an arclength) in the tangential direction.
The original double Cartesian integral runs over the entire x-y plane, so the new double
polar integral must also run over the entire plane. The polar limits of integration are
therefore 0 to∞ for r , and 0 to 2π for θ. The above integral then becomes

I2 =
b
π

∫ 2π

0

∫ ∞

0
e−br

2
r dr dθ. (4.116)

The θ integral simply gives 2π. The indefinite r integral is −e−br
2
/2b, as you can

verify by differentiating this. The factor of r in the area element is what makes this
integral doable, unlike the original Cartesian integral. We therefore have

I2 =
b
π
· 2π · *,− e−br

2

2b
+-
������
∞

0

=
b
π
· 2π · −1

2b
·
(
0 − 1

)
= 1. (4.117)

So I =
√

1 = 1, as desired. Note that if we didn’t have the factor of
√

b/π in the
distribution, we would have ended up with∫ ∞

−∞
e−bx

2
dx =

√
π

b
. (4.118)

This is a useful general result.
The above change-of-coordinates trick works if we’re integrating over a circular region
centered at the origin. (An infinitely large circle covering the entire plane falls into
this category.) If we want to calculate the area under a Gaussian curve with the limits
of the x integral being arbitrary finite numbers a and b, then our only option is to
evaluate the integral numerically. (The change-of-coordinates trick doesn’t help with
the rectangular region that arises in this case.) For example, if we want the limits to be
±σ = ±1/

√
2b, then we must resort to numerics to show that the area is approximately

68% of the total area.
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4.23. Variance of the Gaussian distribution
First solution: With µ = 0, the variance of the second expression for f (x) in
Eq. (4.42) is

E
(
X2) = ∫

x2 f (x) dx =

√
1

2πσ2

∫ ∞

−∞
x2e−x

2/2σ2
dx. (4.119)

We can evaluate this integral by using integration by parts. That is,
∫

f g′ = f g −∫
f ′g. If we write the x2 factor as x · x, then with f ≡ x and g′ ≡ xe−x

2/2σ2
, we can

integrate g′ to obtain g = −σ2e−x
2/2σ2

. So we have∫ ∞

−∞
x · xe−x

2/2σ2
dx = x ·

(
− σ2e−x

2/2σ2 ) �����
∞

−∞
−

∫ ∞

−∞
1 ·

(
− σ2e−x

2/2σ2 )
dx

= 0 + σ2
∫ ∞

−∞
e−x

2/2σ2
dx. (4.120)

The 0 comes from the fact that the smallness of e−∞
2

wins out over the largeness of
the factor of ∞ out front. The remaining integral can be evaluated by invoking the
general result in Eq. (4.118). With b ≡ 1/2σ2 the integral is

√
2πσ2. So Eq. (4.120)

gives ∫ ∞

−∞
x2e−x

2/2σ2
dx = σ2

√
2πσ2. (4.121)

Plugging this into Eq. (4.119) then gives

E
(
X2) = √

1
2πσ2 · σ

2
√

2πσ2 = σ2, (4.122)

as desired.

Second solution: This solution involves a handy trick for calculating integrals of the
form

∫ ∞
−∞ x2ne−bx

2
dx. Using the

∫ ∞
−∞ e−bx

2
dx =

√
πb−1/2 result from Eq. (4.118)

and successively differentiating both sides with respect to b, we obtain∫ ∞

−∞
e−bx

2
dx =

√
πb−1/2,∫ ∞

−∞
x2e−bx

2
dx =

1
2
√
πb−3/2,∫ ∞

−∞
x4e−bx

2
dx =

3
4
√
πb−5/2, (4.123)

and so on. On the lefthand side, it is indeed legal to differentiate the integrand (the
expression inside the integral) with respect to b. If you have your doubts about this,
you can imagine writing the integral as a sum over, say, a million terms. It is then
certainly legal to differentiate each of the million terms with respect to b. In short, the
derivative of the sum is the sum of the derivatives.
The second line in Eq. (4.123) is exactly the integral we need when calculating the
variance. With b ≡ 1/2σ2, the second line gives∫ ∞

−∞
x2e−x

2/2σ2
dx =

1
2
√
π

(
1

2σ2

)−3/2
=
√

2π σ3, (4.124)

in agreement with Eq. (4.121).



Chapter 5

Gaussian approximations

In this chapter we will concentrate on three of the distributions we studied in Chap-
ter 4, namely the binomial, Poisson, and Gaussian distributions. In Section 5.1 we
show how a binomial distribution reduces to a Gaussian distribution when the num-
bers involved are large. Section 5.2 covers the law of large numbers, which says
that in a very large number of trials, the observed fraction of events will be very
close to the theoretical probability. In Section 5.3 we show how a Poisson distri-
bution reduces to a Gaussian distribution when the numbers involved are large. In
Section 5.4 we tie everything together. This leads us in Section 5.5 to the central
limit theorem, which is the statement that no matter what distribution you start with,
the sum (or average) of the outcomes of many trials will be approximately Gaus-
sian. As in Chapter 4, parts of this chapter are a bit mathematical, but there’s no
way around this if we want to do things properly. We will invoke some results from
Appendix C.

5.1 Binomial and Gaussian

In Section 4.5 we discussed the binomial distribution, in particular the binomial
distribution that arises from a series of coin flips. The probability distribution for
the total number of Heads in, say, 30 flips takes the form of the left plot in Fig. 4.10.
The shape of this plot looks suspiciously similar to the shape of the Gaussian plot
in Fig. 4.25, so you might wonder if the binomial distribution is actually a Gaussian
distribution (or more precisely, if the discrete binomial points lie on a continuous
Gaussian curve). It turns out that for small numbers of coin flips, this isn’t quite
true. But for large numbers of flips, a binomial distribution takes essentially the
form of a Gaussian distribution. The larger the number of flips, the closer it comes
to a Gaussian.

For three different numbers of coin flips (2, 6, and 20), Fig. 5.1 shows the com-
parison between the exact binomial distribution (the dots) and the Gaussian approx-
imation (the curve), which we’ll derive below in Eq. (5.13). The coordinate on the x
axis is the number of Heads relative to the expected value (which is half the number
of flips). So for n flips, the possible x values range from −n/2 to n/2. The Gaussian
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Figure 5.1: Comparison of the binomial distribution and the Gaussian approximation, for
various numbers of coin flips. x is the number of Heads relative to the expected number.

approximation is clearly very good for 20 flips. And it gets even better for larger
numbers of flips.

We will now demonstrate why the binomial distribution takes essentially the
form of a Gaussian distribution when the number of flips is large. For convenience,
we’ll let the number of flips be 2n, just to keep some factors of 1/2 from cluttering
things up. We will assume that n is large.

We’ll need two bits of mathematical machinery for this derivation. The first is
Stirling’s formula, which we introduced in Section 2.6. It says that if n is large, then
n! is approximately given by

n! ≈ nne−n
√

2πn. (5.1)

It’s a good idea at this point to go back and review Section 2.6. The second thing
we’ll need is the approximation in Eq. (7.15) in Appendix C:

(1 + a)m ≈ emae−ma2/2. (5.2)

We’re using m instead of n here, because we’ve already reserved n for half the
number of flips. You are encouraged to read Appendix C at this point (after reading
Appendix B), to see where this approximation comes from. However, feel free to
just accept it for now if you want. But in that case, you should at least verify with a
calculator that it works fairly well for, say, a = 0.1 and m = 30.

The following derivation is a bit mathematical, but the result (that a binomial
distribution can be approximated by a Gaussian distribution) is well worth it. We’ll
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demonstrate this result just for coin flips (that is, a binomial distribution with p =
1/2), but it actually holds for any p; see the discussion following the remarks below.

We’ll start with the binomial distribution in Eq. (4.8), which gives the probabil-
ity of obtaining k Heads in n coin flips. However, since we’re letting the number of
coin flips be 2n here, the n in Eq. (4.8) gets replaced by 2n. Also, let’s replace k by
n + x, which just means that we’re defining x to be the number of Heads relative to
the expected number (which is n). Writing the number of Heads as n + x will make
our calculations much simpler than if we had stuck with k. With these adjustments,
Eq. (4.8) becomes (with the subscript B for binomial)

PB(x) =
1

22n

(
2n

n + x

)
(for 2n coin flips) (5.3)

We will now show that if n is large, PB(x) takes the approximate form,

PB(x) ≈ e−x
2/n

√
πn
, (5.4)

which is the desired Gaussian. This takes the same form as the first Gaussian ex-
pression in Eq. (4.42), with b = 1/n and µ = 0.

So here we go – get ready for some math! But it’s nice math, in the sense that
a huge messy equation will undergo massive cancelations and yield a nice simple
result. The first step is to use Stirling’s approximation to rewrite each of the three
factorials in the binomial coefficient in Eq. (5.3). This gives(

2n
n + x

)
=

(2n)!
(n + x)!(n − x)!

(5.5)

≈ (2n)2ne−2n √2π(2n)[
(n + x)n+xe−(n+x)

√
2π(n + x)

] · [(n − x)n−xe−(n−x)
√

2π(n − x)
] .

Canceling all the e’s and a few other factors gives(
2n

n + x

)
≈ (2n)2n √n

(n + x)n+x (n − x)n−x
√
π
√

n2 − x2
. (5.6)

Let’s now divide both the numerator and denominator by n2n . In the denominator,
we’ll do this by dividing the first and second factors by nn+x and nn−x , respectively.
The result is (

2n
n + x

)
≈ 22n √n(

1 + x
n

)n+x (
1 − x

n

)n−x √
π
√

n2 − x2
. (5.7)

It’s now time to apply the approximation in Eq. (5.2). With the a and m in that
relation defined to be a ≡ x/n and m ≡ n + x, we have (using the notation exp(y)
for ey , to avoid writing lengthy exponents)(

1 +
x
n

)n+x
≈ exp

(
(n + x)

( x
n

)
− 1

2
(n + x)

( x
n

)2
)
. (5.8)
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When we multiply things out here, we find that there is a −x3/2n2 term. However,
we’ll see below that the x’s we’ll be dealing with are much smaller than n, which
means that the −x3/2n2 term is much smaller than the other terms. So we’ll ignore
it. We are then left with (

1 +
x
n

)n+x
≈ exp

(
x +

x2

2n

)
. (5.9)

Although the x2/2n term here is much smaller than the x term (assuming x ≪ n),
we will in fact need to keep it, because the x term will cancel in Eq. (5.11) below.
(The −x3/2n2 term would actually cancel too, for the same reason.) In a similar
manner, we obtain (

1 − x
n

)n−x
≈ exp

(
−x +

x2

2n

)
. (5.10)

Using these results in Eq. (5.7), we find(
2n

n + x

)
≈ 22n √n

exp
(
x + x2

2n

)
exp

(
− x + x2

2n

) √
π
√

n2 − x2
. (5.11)

When combining (adding) the exponents, the x and −x cancel. Also, under the
assumption that x ≪ n, we can say that

√
n2 − x2 ≈

√
n2 − 0 = n. (As with any

approximation claim, if you don’t trust this, you can simply plug in some numbers
and see how well it works. For example, you can let n = 10,000 and x = 100,
which satisfy the x ≪ n relation.) Eq. (5.11) then becomes(

2n
n + x

)
≈ 22n √n

ex2/n
√
π n
. (5.12)

Finally, if we substitute Eq. (5.12) into Eq. (5.3), the 22n factors cancel, and we are
left with the desired result (with the subscript G for Gaussian),

PB(x) ≈ e−x
2/n

√
πn
≡ PG(x) (for 2n coin flips) (5.13)

This is the probability of obtaining n+ x Heads in 2n coin flips. If we want to switch
back to having the number of flips be n instead of 2n, then we just need to replace
n with n/2 in Eq. (5.13). The result is (with x now being the deviation from n/2
Heads)

PB(x) ≈ e−2x2/n

√
πn/2

≡ PG(x) (for n coin flips) (5.14)

Whether you use Eq. (5.13) or Eq. (5.14), the coefficient of π and the inverse of the
coefficient of x2 are both equal to half the number of flips.

If you want to write the above results in terms of the actual number k of Heads,
instead of the number x of Heads relative to the expected number, you can just
replace x with either k − n in Eq. (5.13), or k − n/2 in Eq. (5.14).
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The most important part of the above results is the n in the denominator of the
exponent, because this determines the width of the distribution. We’ll talk about
this in Section 5.2, but first some remarks.

Remarks:
1. In the above derivation, we claimed that if n is large (as we are assuming), then any

values of x that we are concerned with are much smaller than n. This allowed us to
simplify various expressions by ignoring certain terms. Let’s be explicit about how
the logic of the x ≪ n assumption proceeds.
What we showed above (assuming n is large) is that if the x ≪ n condition is satisfied,
then Eq. (5.13) is valid. And the fact of the matter is that if n is large, we’ll never be
interested in values of x that don’t satisfy x ≪ n (and hence for which Eq. (5.13) might
not be valid), because the associated probabilities are negligible. This is true because
if, for example, x = 10

√
n (which certainly satisfies x ≪ n if n is large, which means

that Eq. (5.13) is indeed valid), then the e−x
2/n exponential factor in Eq. (5.13) equals

e−102
= e−100 ≈ 4 ·10−44, which is completely negligible. (Even if x is only 2

√
n, the

e−x
2/n factor equals e−22

= e−4 ≈ 0.02.) Larger values of x will yield even smaller
probabilities, because we know that the binomial coefficient in Eq. (5.3) decreases as
x gets farther from zero; recall Pascal’s triangle in Section 1.8.1. These probabilities
might not satisfy Eq. (5.13), but we don’t care, because they’re so small.

2. In the terminology of Eq. (5.14) where the number of coin flips is n, the plots in
Fig. 5.1 correspond to n equalling 2, 6, and 20. So in the third plot, for example, the
continuous curve is a plot of PG(x) = e−x

2/10/
√

10π.
3. PG(x) is an even function of x. That is, x and −x yield the same value of the function;

it is symmetric around x = 0. This is true because x appears only through its square.
This evenness makes intuitive sense, because we’re just as likely to get, say, four
Heads above the average as four Heads below the average.

4. We saw in Eq. (2.66) in Section 2.6 that the probability that exactly half (that is, n) of
2n coin flips come up Heads equals 1/

√
πn. This result is a special case of the PG(x)

result in Eq. (5.13), because if we plug x = 0 (which corresponds to n Heads) into
Eq. (5.13), we obtain PG(x) = e−0/

√
πn = 1/

√
πn.

5. Note that we really did need the e−ma2/2 factor in the approximation in Eq. (5.2). If
we had used the less accurate version, (1+a)m ≈ ema from Eq. (7.14) in Appendix C,
we would have had incorrect x2/n terms in Eqs. (5.9) and (5.10), instead of the correct
x2/2n terms.

6. If we compare the Gaussian result in Eq. (5.14) with the second of the Gaussian ex-
pressions in Eq. (4.42), we see that they agree if σ =

√
n/4. This correspondence

makes both the prefactor and the coefficient of x2 in the exponent agree. The standard
deviation of our Gaussian approximation in Eq. (5.14) (for the binomial distribution
for n coin flips) is therefore σ =

√
n/4. This agrees (as it must) with the exact bino-

mial standard deviation we obtained in Eq. (3.48).
Before going through the above derivation, it certainly wasn’t obvious that a bino-
mial should reduce to a Gaussian when n is large. However, the previous paragraph
shows that if it reduces to a Gaussian, then the n’s must appear exactly as they do in
Eq. (5.14), because we know that the standard deviation (which is the σ in Eq. (4.42))
must agree with the

√
n/4 value that we already found in Eq. (3.48).

7. Since the area (probability) under the Gaussian distribution in Eq. (4.42) is 1 (see
Problem 4.22), and since Eq. (5.14) takes the same form as Eq. (4.42), the area un-
der the distribution in Eq. (5.14) must likewise be 1. Of course, we already knew
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this, because Eq. (5.14) is an approximation to the binomial distribution, whose total
probability is 1. ♣

If the two probabilities involved in a binomial distribution are p and 1−p instead
of the two 1/2’s in the case of a coin toss, then the probability of k successes in n
trials is given in Eq. (4.6) as P(k) =

(
n
k

)
pk (1− p)n−k . (We’ve gone back to using n

to represent the total number of trials, instead of the 2n we used in Eq. (5.3).) For
example, if we’re concerned with the number of 5’s we obtain in n rolls of a die,
then p = 1/6.

It turns out that for large n, the binomial distribution P(k) is essentially a Gaus-
sian distribution for any value of p, not just the p = 1/2 value we discussed above.
The Gaussian is centered around the expected value of k (namely pn), as you would
expect. The derivation of this Gaussian form follows the same steps as above. But
it gets rather messy, so we’ll just state the result: For large n, the probability of
obtaining k = pn + x successes in n trials is approximately equal to

PG(x) ≈ e−x
2/[2np(1−p)]√

2πnp(1 − p)
(for n biased coin flips) (5.15)

If p = 1/2, this reduces to the result in Eq. (5.14), as it should.
Eq. (5.15) implies that the bump in the plot of PG(x) is symmetric around x = 0

(or equivalently, around k = pn) for any p, not just p = 1/2. This isn’t so obvious,
because for p , 1/2, the bump isn’t centered around n/2. That is, the location of
the bump is lopsided with respect to n/2. So you might think that the shape of the
bump should be lopsided too. But it isn’t. (Well, the tail extends farther to one side,
but PG(x) is essentially zero in the tails.) Fig. 5.2 shows a plot of Eq. (5.15) for
p = 1/6 and n = 60, which corresponds to rolling a die 60 times and seeing how
many, say, 5’s you get. The x = 0 point corresponds to having pn = (1/6)(60) = 10
rolls of a 5. The bump is quite symmetric (although technically not exactly). This is
consistent with what we noted about the binomial distribution in the remark at the
end of the example in Section 3.4.
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Figure 5.2: The probability distribution for the number of 5’s in 60 dice rolls. x is the
deviation from the expected number (which is 10). The bump in the distribution is essentially
symmetric.

As in the sixth remark above, if we compare the Gaussian result in Eq. (5.15)
with the second of the Gaussian expressions in Eq. (4.42), we see that they agree
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if σ =
√

np(1 − p) ≡ √npq. Again, this correspondence makes both the prefac-
tor and the coefficient of x2 in the exponent agree. The standard deviation of our
Gaussian approximation in Eq. (5.15) (for the binomial distribution for n biased
coin flips) is therefore σ =

√
npq. This agrees (as it must) with the exact binomial

standard deviation we obtained in Eq. (3.47).
As we also noted in the sixth remark, if someone claims (correctly) that a general

binomial distribution involving probability p reduces to a Gaussian, then they must
also claim that the np(1− p) factors appear exactly as they do in Eq. (5.15), because
we know that the standard deviation (which is the σ in Eq. (4.42)) must agree with
the

√
np(1 − p) ≡ √npq value that we already found in Eq. (3.47).

5.2 The law of large numbers
The law of large numbers is, in a sense, the law that makes the subject of probability
a useful one, in that it allows us to make meaningful predictive statements about
future outcomes. The law can be stated in various ways, but we’ll go with:

• Law of large numbers:

If you repeat a random process a very large number of times, then the ob-
served fraction of times that a certain event occurs will be very close to the
theoretical probability.

More precisely, consider the probability, pd (with the “d” for “differ”), that the
observed fraction differs from the theoretical probability by more than a specified
small number, say δ = 0.01 or 0.001. Then the law of large numbers says that pd
goes to zero as the number of trials becomes large. Said in a more down-to-earth
way, if you perform enough trials, the observed fraction will be pretty much what it
“should” be.

Remark: The probability pd in the preceding paragraph deals with the results of a large
number (call it n1) of trials of a given random process (such as a coin flip). If you want to
experimentally measure pd, then you need to perform a large number (call it n2) of sets, each
of which consists of a large number n1 of coin flips (or whatever). For example, we might
be concerned with the fraction of Heads that show up in n1 = 10,000 coin flips. If we ask
for the probability pd that this fraction differs from 50% by more than 1%, then we could
do, say, n2 = 100,000 sets of n1 = 10,000 flips (which means a billion flips in all!) and
then make a list or a histogram of the resulting n2 observed fractions. The fraction of these
fractions that are smaller than 49% or larger than 51% is our desired probability pd. The
larger n2 is, the closer our result for pd will be to its true value (which happens to be 5%; see
Problem 5.3). This is how you experimentally determine pd. The law of large numbers says
that if you make n1 larger and larger (which means that you need to make n2 larger too), then
pd approaches zero. ♣

The clause “a very large number of times” is critical in the law. If you flip a coin
only, say, 10 times, then you of course cannot be nearly certain that you will obtain
Heads half (or very close to half) of the time. In fact, the probability of obtaining
exactly five Heads is only

(
10
5

)
/210 ≈ 25%.

You will note that the above statement of the law of large numbers is essentially
the same as the definition of probability presented at the beginning of Section 2.1.
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Things therefore seem a bit circular. Is the law of large numbers a theorem or a
definition? This problem can be (somewhat) remedied by stating the law as, “If you
repeat a random process a very large number of times, then the observed fraction of
times that a certain event occurs will approach a definite value.” Then, given that
a definite value is approached, we can define that value to be the probability. The
law of large numbers is therefore what allows probability to be well defined. (If this
procedure doesn’t allay your concerns about circularity, rest assured, it shouldn’t.
See the “On average” subsection in Appendix A for some discussion of this.)

We won’t give a formal proof of the law, but we’ll look at a coin-flipping setup
in detail. This should convince you of the truth of the law. We’ll basically do the
same type of analysis here that we did in Section 3.4, where we discussed the stan-
dard deviation of the mean. But now we’ll work with Gaussian distributions, in
particular the one in Eq. (5.13), where the number of flips is 2n. Comparing the
Gaussian expression PG(x) in Eq. (5.13) with the second of the Gaussian expres-
sions in Eq. (4.42), we see that the standard deviation when the number of flips is
2n equals σ =

√
n/2. This is consistent with the fact that the standard deviation

when the number of flips is n equals σ =
√

n/4.
Fig. 5.3 shows plots of PG(x) for n = 10, 100, and 1000. So the numbers of coin

flips are 20, 200, and 2000. As n gets larger, the curve’s height shrinks, because
Eq. (5.13) says that the height is proportional to 1/

√
n. And the width expands,

because σ is proportional to
√

n. Because these two factors are reciprocals of each
other, this combination of shrinking and expanding doesn’t change the area under
the curve. This is consistent with the fact that the area is always equal to 1.
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Figure 5.3: Illustration of how the Gaussian distribution in Eq. (5.13) depends on n. The
number of coin flips is 2n, and x is the deviation from the expected number of Heads (which
is n).

The critical fact about the
√

n expansion factor in the width is that although it
increases as n increases, it doesn’t increase as fast as n does. In fact, compared with
n, it actually decreases by a factor of 1/

√
n. This means that if we plot PG(x) with

the horizontal axis running from −n to n (instead of it being fixed as in Fig. 5.3),
then the width of the curve actually shrinks by a factor of 1/

√
n (relative to n).

Fig. 5.4 shows this effect. In this figure, both the width (relative to n) and the height
of the curves are proportional to 1/

√
n (the height behaves the same as in Fig. 5.3),

so all of the curves have the same shape. They just have different sizes; they differ
successively by a factor of 1/

√
10. The area under each curve is still equal to 1,

though, because of the different scales on the x axis.
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Figure 5.4: Repeat of the curves in Fig. 5.3, but now with the full range of possible values
on the x axis.

A slightly more informative curve to plot is the ratio of PG(x) to its maximum
height at x = 0. This modified plot makes it easier to see what’s happening with
the width. Since the maximum value of the Gaussian distribution in Eq. (5.13) is
1/
√
πn, we’re now just plotting e−x

2/n . So all of the curves have the same value
of 1 at x = 0. If we let the horizontal axis run from −n to n as in Fig. 5.4, we
obtain the plots shown in Fig. 5.5. These are simply the plots in Fig. 5.4, except that
they’re stretched in the vertical direction so that they all have the same height. We
see that the bump gets thinner and thinner (on the scale of n) as n increases. (Each
successive bump is thinner by a factor 1/

√
10.) This implies that the percentage

deviation from the average of n Heads gets smaller and smaller as n increases.
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Figure 5.5: Repeat of the curves in Fig. 5.4, measured relative to the maximum height.

We can now understand why the law of large numbers holds. Equivalently (for
the case of coin flips), we can now understand the reason behind the claim we made
at the end of Section 2.1, when we said that the observed fraction of Heads gets
closer and closer to the actual probability of 1/2, as the number of trials gets larger
and larger. We stated that if you flip a coin 100 times (which corresponds to n = 50
here), the probability of obtaining 49, 50, or 51 Heads is only about 24%. This is
roughly 3 times the 8% result in Eq. (2.67), because the probabilities for 49 and 51
are roughly the same as for 50.

This probability of 24% is consistent with the first plot in Fig. 5.6, where we’ve
indicated the 49% and 51% tick marks (which correspond to x = ±1) on the x axis.
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If we make a histogram of the probabilities (in order to interpret the probability as
an area), then the natural thing to do is to have the “bin” for 49 go from 48.5 to
49.5, etc. So if we’re looking at 49, 50, or 51 Heads, we’re actually concerned with
(approximately) the area between 48.5 and 51.5. This is the shaded area shown,
with a width of 3. (This shaded area might not look like it is 24% of the total area,
but it really is!) The distinction between the tick marks and the shaded area (which
extends 0.5 beyond the tick marks) matters in the present n = 50 case, but it is
inconsequential when n is large, because the distribution is effectively continuous.

40000 ---- 20000 0 20000 4000040 20 0 20 40

PG(x)/PG(0) PG(x)/PG(0)

x x

49% 51% 49% 51%

n = 50 n = 50,000

(Note differerent scales on x axis)

very thin
Gaussian curve

(100 flips) (100,000 flips)
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Figure 5.6: Illustration of the law of large numbers. If the number of coin flips is very large
(as it is in the second plot), then the percentage of Heads is nearly certain to be very close to
50%.

At the end of Section 2.1, we also stated that if you flip a coin 100,000 times
(which corresponds to n = 50,000), the probability of obtaining Heads between
49% and 51% of the time is 99.999999975%. This is consistent with the second
plot in Fig. 5.6, because essentially all of the area under the curve lies between the
49% and 51% marks (which correspond to x = ±1000). The standard deviation for
n = 50,000 is

√
n/2 =

√
25,000 = 158. So the 51% mark corresponds to about

six standard deviations from the mean. There is virtually no chance of obtaining a
result more than 6σ from the mean. In contrast, in the case with n = 50, the standard
deviation is

√
n/2 =

√
25 = 5. Most of the area under the curve lies outside the

49% and 51% marks (where x = ±1), or rather, the 48.5% and 51.5% marks.
The law of large numbers states that if pd is the probability that the observed

fraction differs from the theoretical probability by more than a specified small num-
ber δ, then pd goes to zero as the number of trials becomes large. The right plot
in Fig. 5.6 demonstrates this for δ = 1% = 0.01 and 100,000 flips. From the
99.999999975% probability mentioned above, there is only a pd = 0.000000025%
probability of ending up outside the 49%–51% range. Although we’ve demon-
strated the law of large numbers only in the case of coin flips (a binomial process
with p = 1/2), it holds for any random process that is performed a large number of
times.

The law of large numbers is an extremely important result, and it all comes down
to the fact that although the standard deviation of our Gaussian coin-flip distribution
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grows with n (it is σ =
√

n/2 for 2n flips), it grows only like the square root of n,
so it shrinks in comparison with the full spread of outcomes (which is 2n). Said
a different way, although the width of the distribution grows in an additive sense
(this is sometimes called an “absolute” sense), it decreases in a multiplicative sense
(compared with n). It is the latter of these effects that is relevant when calculating
percentages.

This is exactly the same observation that we made back in Section 3.4 when we
discussed the standard deviation of the mean. This makes sense, of course, because
the percentage of Heads we’ve been talking about here is exactly the same thing
as the average number of Heads per flip that we talked about in Section 3.4. So
technically everything in this section is just a repeat of what we did Section 3.4. But
it never hurts to see something twice!

The law of large numbers is what makes polls more accurate if more people are
interviewed, and why casinos nearly always come out ahead. It is what makes it
prohibitively unlikely for all of the air molecules in a room to end up on one side of
the room, and why a piece of paper on your desk doesn’t spontaneously combust.
The list of applications is essentially endless, and it would be an understatement to
say that the world would be a very different place without the law of large numbers.

5.3 Poisson and Gaussian
We showed in Section 5.1 that the binomial distribution in Eq. (5.3) becomes the
Gaussian distribution in Eq. (5.13) in the limit where the number of trials is large.
We will now show that the Poisson distribution in Eq. (4.40) becomes a Gaussian
distribution in the limit of large a, where a is the expected number of successes in a
given interval (of time, space, or whatever).

Note that it wouldn’t make sense to take the limit of a large number of trials
here, as we did in the binomial case, because the number of trials isn’t specified in
the Poisson distribution. The only parameter that appears is the expected number
of successes, a. However, in the binomial case, a large number n of trials implies
a large expected number of successes (because the expected number pn grows with
n). So the large-a limit in the Poisson case is analogous to the large-n limit in the
binomial case.

As in the binomial case, we will need to use the two approximations in Eqs. (5.1)
and (5.2). Applying Stirling’s formula to the k! in Eq. (4.40) gives (with the sub-
script P for Poisson)

PP(k) =
ak e−a

k!

≈ ak e−a

kk e−k
√

2πk
. (5.16)

The result in Problem 4.10 is that the maximum of PP(k) occurs at a (or tech-
nically between a − 1 and a, but for large a this distinction is inconsequential). So
let’s see how PP(k) behaves near k = a. To this end, we’ll define x by k ≡ a + x.
So x is the number of successes relative to the average, a. This is analogous to the
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k ≡ n + x definition we used in Section 5.1. As it did there, working with x here
will make our calculations much simpler. In terms of x, Eq. (5.16) becomes

PP(x) ≈ aa+xe−a

(a + x)a+xe−a−x
√

2π(a + x)
. (5.17)

We can cancel a factor of e−a . And we can divide both the numerator and denomi-
nator by aa+x . Furthermore, we can ignore the x in the square root, because we’ll
find below that the x’s we’re concerned with are small compared with a. The result
is

PP(x) ≈ 1(
1 + x

a

)a+x
e−x
√

2πa
. (5.18)

It’s now time to use the approximation in Eq. (5.2). With the a in Eq. (5.2) defined
to be x/a here, and with the m defined to be a + x, Eq. (5.2) gives(

1 +
x
a

)a+x
≈ exp

(
(a + x)

( x
a

)
− 1

2
(a + x)

( x
a

)2)
. (5.19)

Multiplying this out and ignoring the small −x3/2a2 term (because we’ll find below
that x ≪ a), we obtain (

1 +
x
a

)a+x
≈ exp

(
x +

x2

2a

)
. (5.20)

This is just Eq. (5.9) with n → a. Substituting Eq. (5.20) into Eq. (5.18) gives

PP(x) ≈ 1

exex2/2ae−x
√

2πa
, (5.21)

which simplifies to

PP(x) ≈ e−x
2/2a

√
2πa

≡ PG(x) (5.22)

This is the desired Gaussian. If you want to write this result in terms of the actual
number k of successes, instead of the number x of successes relative to the average,
then the definition k ≡ a + x gives x = k − a, so we have

PP(k) ≈ e−(k−a)2/2a
√

2πa
≡ PG(k) (5.23)

As we noted in the last remark in Section 4.8, the Poisson distribution (and hence
the Gaussian approximation to it) depends on only one parameter, a. And as with the
Gaussian approximation to the binomial distribution, the Gaussian approximation to
the Poisson distribution is symmetric around x = 0 (equivalently, k = a).

Fig. 5.7 shows a comparison between the exact PP(k) function in the first line of
Eq. (5.16), and the approximate PG(k) function in Eq. (5.23). The approximation
works quite well for a = 20 and extremely well for a = 100; the curve is barely
noticeable behind the dots.
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Figure 5.7: Comparison of the Poisson distribution in the first line of Eq. (5.16), and the
Gaussian approximation in Eq. (5.23), for different values of a.

If we compare the Gaussian distribution in Eq. (5.23) with the second expression
in Eq. (4.42), we see that the Gaussian is centered at µ = a (of course) and that the
standard deviation is σ =

√
a. Again, since the Poisson distribution depends on

only the one parameter a, we already knew that the standard deviation has to be a
function of a. But it takes some work to show that it equals

√
a. Of course, as in

the sixth remark in Section 5.1, we know that if the Poisson distribution reduces to
a Gaussian, then the a’s must appear exactly as they do in Eq. (5.22), because we
know that the standard deviation (which is the σ in Eq. (4.42)) must agree with the√

a value that we already found in Problem 4.13.
Note that although

√
a grows with a, it doesn’t grow as fast as a itself. So as a

grows, the width of the bump in a Poisson distribution becomes thinner compared
with the distance a from the origin to the center of the bump. This is indicated in
Fig. 5.8, where we show the Poisson distributions for a = 100 and a = 1000. Note
the different scales on the axes.
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Figure 5.8: As a grows, the Poisson bump’s width (which is proportional to
√

a ) becomes
thinner compared with the distance a from the origin to the center of the bump.

We claimed at a few points in the above derivation that if a is large (as we are
assuming), then any values of x that we are concerned with are much smaller than
a. The logic behind this statement is exactly the same as the logic in the first remark
in Section 5.1, because a appears in Eq. (5.22) in basically the same way that n
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appears in Eq. (5.13). In a nutshell, for large a, the only values of x for which the
PG(x) in Eq. (5.22) is nonnegligible are ones that are much smaller than a. Values
of x that are larger than this might lead to probabilities that don’t satisfy Eq. (5.22),
but we don’t care, because these probabilities are so small.

5.4 Binomial, Poisson, and Gaussian
We have seen how the binomial, Poisson, and Gaussian distributions are related to
each other in various limits. In Section 4.7.2 we showed how the binomial leads
to the Poisson in the small-p and large-n limit. In Section 5.1 we showed how the
binomial reduces to the Gaussian in the large-n limit. And in Section 5.3 we showed
how the Poisson reduces to the Gaussian in the large-a limit. The summary of these
relations is shown in Fig. 5.9.

Binomial

Gaussian

Poisson

       large-n limit
(technically large-pn 

   and (1-p)n limit)

large-a lim
it

 continuum limit

(small p, large n)

Figure 5.9: How the binomial, Poisson, and Gaussian distributions relate in various limits.

The detailed descriptions of the three relations are the following.

• (Section 4.7.2) The vertical arrow on the left side of Fig. 5.9 indicates that
the Poisson distribution is obtained from the binomial distribution by taking
the continuum limit. By this we mean the following. Consider a given time
(or space, etc.) interval t. Imagine that instead of having trials take place at a
rate of n0 per time t (each with probability p0 of success), we have them take
place at a rate of 10n0 per time t (each with probability p0/10 of success),
or at a rate of 100n0 per time t (each with probability p0/100 of success).
And so on, with larger rates n and smaller probabilities p, with the product
pn held fixed at p0n0. All of these scenarios have the same average of a =
p0n0 successes occurring per time t. And all of them are governed by the
binomial distribution. But the more that time is subdivided (that is, the more
continuously that the trials take place), the closer the probability distribution
(for the number of successes per time t) comes to the Poisson distribution
given in Eq. (4.40), with a = p0n0. We can imagine taking the n → ∞ and
p→ 0 limits, with the product pn held fixed at a.

• (Section 5.1) The upper-right diagonal arrow in Fig. 5.9 indicates that the
Gaussian distribution is obtained from the binomial distribution by taking the
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large-n limit, where n is the number of trials performed. In Eq. (5.14) we
derived this result for p = 1/2, and then in Eq. (5.15) we stated the result for
a general value of p.

However, for general p, the condition under which the binomial reduces to
the Gaussian turns out to be not just that n is large, but rather that both pn and
(1 − p)n are large. The need for this stricter condition becomes apparent if
you work through the (rather messy) derivation of the more general result in
Eq. (5.15).

Note that since p is at most 1, large pn (or (1− p)n) necessarily implies large
n. But the converse isn’t true. That is, large n doesn’t necessarily imply large
pn and (1 − p)n. If p is an “everyday” number (such as p = 1/2 for a coin
flip), then large n does in fact imply large pn and (1 − p)n. But if p is very
small, then n needs to be extremely large (“doubly” large, in a sense), in order
to make pn large. For example, if p = 10−3, then n = 103 doesn’t make pn
large. We need n to be much larger, say, 105 or 106. A similar statement holds
with p replaced with 1 − p.

Since pn and (1− p)n are the expected numbers of success and failures in the
binomial process involving n Bernoulli trials, we see that the condition under
which the binomial reduces to the Gaussian is that both of these expected
values are large. If neither p nor 1−p is exceedingly small, then this condition
reduces to the condition that n is large.

• (Section 5.3) The lower-right diagonal arrow in Fig. 5.9 indicates that the
Gaussian distribution is obtained from the Poisson distribution by taking the
large-a limit, where a is the expected number of events that happen during the
particular interval (of time, space, etc.) that you are considering. We derived
this result in Eq. (5.22). The large-a limit in the Poisson-to-Gaussian case is
consistent with the large-pn (and (1 − p)n) limit in the binomial-to-Gaussian
case, because both a and pn are the expected number of events/successes.

5.5 The central limit theorem
There are two paths in Fig. 5.9 that go from the binomial distribution to the Gaussian
distribution. One goes directly by taking the large-pn and (1− p)n limits (which are
simply the large-n limit if p isn’t extremely close to 0 or 1). The other goes via the
Poisson distribution by first taking the continuum limit, and then taking the large-a
limit. The fact that all of the arrows in Fig. 5.9 eventually end up at the Gaussian
(equivalently, that no arrows point away from the Gaussian) is consistent with the
central limit theorem. There are different forms of this theorem, but in the most
common form, it says that under a reasonable set of assumptions:

• Central limit theorem:

If you perform a large number of trials of a random process, then the proba-
bility distribution for the sum (or average) of the outcomes is approximately
a Gaussian (or “normal”) distribution. The greater the number of trials, the
better the Gaussian approximation.
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The formal proof of this theorem involves some heavy-duty math, so we won’t give
it here. We’ll instead just look at some examples that hopefully will convince you
of the theorem’s validity.

Let’s start with the coin-flipping scenarios in Fig. 5.1. The central limit theorem
requires that the trials have numerical values. So technically the outcomes of Heads
and Tails aren’t applicable. But if we assign the value 1 to Heads and 0 to Tails, then
we have a Bernoulli process with proper numerical values. The sum of the outcomes
of many of these Bernoulli trials is then simply the number of Heads, which is just
what appears on the x axis (relative to the expected number) in Fig. 5.1. For two
trials (flips), the probability distribution doesn’t match up too well with a Gaussian.
But for six flips, it matches up reasonably well. And for 20 flips, it matches up
extremely well.

So far, there is nothing new here. Coin flips are governed by the binomial distri-
bution (which arises from the sum of n Bernoulli trials), and we already know that a
binomial distribution reduces to a Gaussian distribution when n is large. The power
of the central limit theorem comes from the fact that we can start with any arbitrary
distribution (not just a Bernoulli one), and if we perform a large number of trials,
the sum will be approximately Gaussian distributed.

For example, imagine rolling a large number of dice and looking at the probabil-
ity distribution for their sum.1 The probability distribution for a single die consists
of six points on a horizontal line, because all six numbers have equal probabilities
of 1/6. But the central limit theorem says that if we roll 100 dice, the distribution
for the sum will be (essentially) a Gaussian centered around 350, since the average
for each roll is 3.5. We can therefore start with a flat-line distribution, and then if
we perform enough trials, we get a Gaussian distribution for the sum. If you want to
experimentally verify this, you will need to consider a large number of sets of trials,
with each set consisting of 100 trials (rolls). This is a task best left for a computer
and a random number generator!

Note that (as stated in the theorem) we need the number of trials (die rolls, coin
flips, etc.) to be large. If you roll only one die, then the plot of the probability
distribution for the sum (which is just the single number showing) simply consists
of six points on a horizontal line. This row of six points certainly does not look like
a Gaussian curve. If you instead roll two dice, then as an exercise you can show that
Table 1.5 implies that the distribution for the sum takes the shape of a triangle that
is peaked at 2 · 3.5 = 7. This triangle isn’t a Gaussian either. But it’s closer to a
Gaussian than a flat line. If you roll three dice, the distribution for the sum (which is
peaked at 3 · 3.5 = 10.5) takes a curved shape that starts to look like a Gaussian; see
Fig. 5.10.2 With 10 dice, the distribution takes a Gaussian shape, for all practical
purposes. The meaning of the word “large” in the first line of the statement of the
central limit theorem depends on the process at hand. But in most cases, 10 or 20

1We’re now doing something new. With the exception of a brief mention of the sum of two dice
on page 11, all of our previous encounters with dice in this book have involved the number of times a
particular face comes up. We generally haven’t dealt with the sum of the dice.

2These histograms were generated numerically. Each bin is associated with the value at its lower end.
Technically these histograms aren’t probability distributions, because we’re plotting the actual number
of times each sum occurs, instead of the probability that it occurs. But the probability that each sum
occurs is obtained by just dividing the number of times it occurs by the 106 sets of rolls.
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trials of the process (rolls here) are plenty sufficient to yield an essentially Gaussian
distribution.

S = roll of 1 die S = sum of 2 dice

S = sum of 3 dice S = sum of 10 dice
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Figure 5.10: Illustration of the central limit theorem. These histograms were generated nu-
merically with ns = 106 sets of nt dice rolls, for nt = 1, 2, 3, 10. Each bin in the histograms
is associated with the value at its lower end. If the number nt of trials in each set is reason-
ably large, then the probability distribution is essentially Gaussian, as illustrated by the last
histogram.

The above examples dealt with the sum of the values of the random variable.
But the central limit theorem holds for the average of the values too, of course,
because the average is obtained by dividing the sum by a particular number, namely
the number nt of trials (dice rolls, etc.). So if the histogram of the sum takes a
Gaussian form, then so does the histogram of the average. The numbers on the x
axis are simply reduced by a factor of nt. If we work with averages, the histograms
in Fig. 5.10 will all be centered around 3.5.

The numbers nt and ns

We should clarify the distinction between the two types of large numbers that arise
when talking about the central limit theorem:

• The first is the number nt of trials that generate each data point. (Each data
point is the sum or average of the results of the nt trials.) For example, nt
might be 10 dice rolls, or 50 coin flips. The distribution for the sum of the
random variables associated with these nt trials has an (approximately) Gaus-
sian shape if nt is large. Usually nt ≈ 20 is sufficiently large.

• The second is the number ns of sets, each consisting of nt trials, that you must
consider if you want to experimentally measure the distribution of the data
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points. Each set generates a data point (which is the sum of the results of
the nt trials in that particular set). If ns isn’t large, then you won’t get good
statistics; the measured distribution will be choppy. For all of the numerically
generated histograms in Fig. 5.10, we used ns = 106. This number was large
enough so that all of the histograms have essentially the same shape as the
actual theoretical probability distribution.

An important difference between nt and ns is the following. The true (theoreti-
cal) probability distribution for the sum of nt trials depends on nt, of course (along
with the specifics of what each trial involves – coins, dice, or whatever). However,
the true distribution has nothing to do with ns. This number is simply the number
of sets, each consisting of nt trials, that you are considering if you are trying to ex-
perimentally determine the true distribution for the sum of the nt trials. But the true
distribution (which depends on nt) exists whether or not you try to determine it by
considering an arbitrary number ns of sets.

As an example of why ns must be large (if you want to accurately determine the
true distribution), consider nt = 10 dice rolls. The probability distribution for the
sum of the 10 dice is essentially a Gaussian (even though 10 isn’t a terribly large
number) that is centered at 10 · 3.5 = 35, as we saw in the fourth plot in Fig. 5.10.
If you want to experimentally verify that this is indeed the distribution, it won’t do
much good to consider only ns = 100 sets of nt = 10 rolls. The distribution of the
100 observed data points (sums of 10 dice) might look like the first histogram in
Fig. 5.11. (As in Fig. 5.10, each bin in these histograms is associated with the value
at its lower end.) This isn’t much of a Gaussian. But if we increase the number
of sets to ns = 1000, 10,000, or 100,000, we obtain the three other histograms
shown, which progressively look more and more like a Gaussian. We see that a
nice Gaussian is obtained with nt = 10 (which isn’t that large) and ns = 100,000
(which is quite large). So perhaps the numbers nt and ns can be better described
with, respectively, the words “at least medium-ish” and “large.” Note that since the
ns = 105 plot in Fig. 5.11 is already quite smooth, nothing much was gained by
increasing ns to 106 in the fourth plot (with nt = 10) in Fig. 5.10. These two plots
are essentially the same (up to a factor of 10 on the vertical axis). See Problem 5.6
for the exact shape.

One more important point: Figs. 5.10 and 5.11 both show a progression of his-
tograms that become more and more Gaussian, so we should reiterate exactly what
each figure illustrates. In Fig. 5.10, the progression of histograms is the statement
of the central limit theorem: the probability distribution approaches a Gaussian as
the number of trials nt (whose sum or average we are taking) grows. Because the
ns = 106 value we used is so large, all of the histograms have essentially the same
shape as the actual probability distributions. In contrast, in Fig. 5.11 the progres-
sion of histograms is simply the statement that we need to consider a large number
ns of data points if we want to produce a good (not noisy) approximation to the
actual probability distribution, which in the present case happens to be essentially
Gaussian, due to (1) the central limit theorem and (2) the reasonably large number
nt = 10.
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S = sum of nt = 10 dice
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Figure 5.11: Illustration of why ns needs to be large. If ns isn’t large, then the observed dis-
tribution doesn’t look like the actual probability distribution. This figure is not an illustration
of the central limit theorem. It is an illustration of the fact that the data is “noisy” when ns is
small. Each bin in the histograms is associated with the value at its lower end.

Two more examples

The central limit theorem holds for any underlying probability distribution (subject
to some reasonable assumptions). We know from Fig. 5.10 that the theorem holds
for the sum (or average) of many dice rolls, where the underlying distribution is a flat
line of six points. And we also know from our binomial-to-Gaussian derivation in
Section 5.1 that the theorem holds for the sum (or average) of the number of Heads
that appear in many coin flips, where the underlying distribution is a Bernoulli one.
But the theorem also holds for other underlying probability distributions that don’t
look as nice. For example, consider the discrete distribution shown in Fig. 5.12.
The probabilities for the three possible outcomes are p(2) = 0.6, p(3.2) = 0.1, and
p(7) = 0.3.

You can quickly show that the expectation value of this distribution is 3.62. The
central limit theorem says that the probability distribution for the average of, say,
100 numbers chosen from the distribution is a Gaussian centered at 3.62. And in-
deed, Fig. 5.13 shows a Gaussian histogram of ns = 100,000 numerically generated
data points, each of which is the average of nt = 100 numbers chosen from the
distribution. The histogram is centered at about 3.6.

All of the examples so far in this section have involved discrete distributions.
But the central limit theorem holds for continuous distributions too. Fig. 5.14 shows
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Figure 5.12: An arbitrary probability distribution with three possible outcomes.
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Figure 5.13: A histogram of ns = 100,000 averages of nt = 100 numbers chosen from the
distribution in Fig. 5.12.

a Gaussian histogram of ns = 100,000 numerically generated data points, each of
which is the average of nt = 50 numbers taken from a uniform distribution ranging
from 0 to 1. The average of this distribution is simply 0.5, which is correctly where
the Gaussian is centered. The task of Problem 5.7 is to verify that the histograms in
Figs. 5.13 and 5.14 have the correct standard deviations.

We mentioned above right after the statement of the central limit theorem that
due to the math involved, we haven’t included a proof. But hopefully the above
examples have convinced you of the theorem’s validity.

5.6 Summary

• For a large number of trials, n, a binomial distribution reduces to a Gaussian
distribution. We showed this for coin flips, but it also holds for a binomial
distribution governed by a general probability p. The standard deviation of
the Gaussian is

√
np(1 − p).

• The law of large numbers states that the measured probability over a large
number of trials will be essentially equal to the theoretical probability. This
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Figure 5.14: A histogram of ns = 100,000 averages of nt = 50 numbers chosen from
a uniform distribution (from 0 to 1).

law is a consequence of the fact that a Gaussian distribution has the property
that the larger the number of trials, the thinner the distribution’s bump, relative
to the whole span of possible outcomes.

• In the limit of a large expected number of events, a, a Poisson distribution
reduces to a Gaussian distribution. The standard deviation of the Gaussian is√

a.

• The central limit theorem says (in its most common form) that if you perform
a large number of trials of a random process, the probability distribution for
the sum (or average) of the outcomes is approximately a Gaussian distribu-
tion.

5.7 Exercises
See www.people.fas.harvard.edu/ ˜djmorin/book.html for a supply of problems
without included solutions.

5.8 Problems
Section 5.1: Binomial and Gaussian

5.1. Equal percentages **
In the last paragraph of Section 2.1, the same percentage 99.999999975%,
appeared twice. Explain why you know that these two percentages must be
the same, even if you don’t know what the common value is.

5.2. Rolling sixes **
In the solution to Problem 2.13 (known as the Newton-Pepys problem), we
noted that the answer to the question, “If 6n dice are rolled, what is the prob-
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ability of obtaining at least n 6’s?,” approaches 1/2 in the n → ∞ limit.
Explain why this is the case.

5.3. Coin flips **

If you flip 104 coins, how surprised would you be if the observed percentage
of Heads differs from the expected value of 50% by more than 1%? Answer
the same question for 106 coins. (These numbers are large enough so that the
binomial distribution can be approximated by a Gaussian.)

5.4. Identical distributions **

A thousand dice are rolled. Fig. 5.15 shows the probability distribution (given
by Eq. (5.15)) for the number of 6’s that appear, relative to the expected num-
ber (which is 167). How many coins should you flip if you want the probabil-
ity distribution for the number of Heads that appear (relative to the expected
number) to look exactly like the distribution in Fig. 5.15 (at least in the Gaus-
sian approximation)?

x
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Figure 5.15: The probability distribution for the number of 6’s in 1000 dice rolls,
relative to the expected number, 167.

Section 5.2: The law of large numbers

5.5. Gambler’s fallacy *

Assume that after 20 coin flips, you have obtained only five Heads. The
probability of this happening is small (about 1.5%, since

(
20
5

)
/220 = 0.0148),

but not negligible. Since the law of large numbers says that the fraction of
Heads approaches 50% as the number of flips gets large, should you expect
to see more Heads than Tails in future flips?

Section 5.5: The central limit theorem

5.6. Finding the Gaussian **

What is the explicit form of the Gaussian function f (x) that matches up with
the fourth histogram in Fig. 5.11? Assume that nt = 10 is large enough so
that the Gaussian approximation does indeed hold.
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5.7. Standard deviations **
Calculate the theoretically predicted standard deviations of the histograms in
Figs. 5.13 and 5.14, and check that your results are consistent with a visual
inspection of the histograms. You will need the result from Problem 4.3 for
Fig. 5.14.

5.9 Solutions
5.1. Equal percentages

Looking back at the given paragraph, our goal is to show that the probability of obtain-
ing Heads between 49% and 51% of the time in 105 coin flips equals the probability
of obtaining Heads between 49.99% and 50.01% of the time in 109 coin flips. In the
first case, the 1% deviation from average corresponds to 105/102 = 103 Heads. In the
second case, the 0.01% deviation from average corresponds to 109/104 = 105 Heads.
Eq. (3.48) gives the standard deviation of the number of Heads that show up in n
tosses of a fair coin as σ =

√
n/4. In the present two cases, this yields standard devi-

ations of
√

105/4 = 158 and
√

109/4 = 15,800. The numbers of standard deviations
corresponding to the above two spreads of 103 and 105 Heads are therefore

103

158
= 6.3 and

105

15,800
= 6.3. (5.24)

Since these numbers are equal, the probabilities of lying within the two specified
ranges must be equal. We have used the fact that the Gaussian approximation is valid
in both scenarios, which implies that the distribution relative to the mean is completely
determined by the standard deviation.
If you want to show that the common probability equals 99.999999975%, you can
numerically either add up the exact binomial probabilities in the given ranges, or
integrate the Gaussian approximations over the given ranges. A computer will be
necessary for either option, of course. (Performing the sums or integrals over the
complementary regions outside the given ranges works just as well, or even better.)

5.2. Rolling sixes
From Eq. (5.15) and the surrounding discussion, we know that for a large number
of rolls, the binomial distribution for the number of 6’s that appear is essentially a
Gaussian distribution centered at the mean (which is n, if there are 6n rolls). Since the
Gaussian distribution is symmetric around the mean, we conclude that there is a 1/2
chance that the number of 6’s is greater than or equal to the mean value, n, as desired.
Technically, the probability is slightly larger than 1/2. This is true because if we split
the Gaussian distribution exactly down the middle, then we’re including only half of
the probability of obtaining exactly n 6’s. We need to include all of this probability,
because we’re concerned with the probability of at least n 6’s. The probability of
obtaining at least n 6’s in 6n rolls therefore equals 1/2 plus half of the probability of
obtaining exactly n 6’s. But if n is large, the probability of obtaining exactly n 6’s is
small, so it doesn’t matter much if we ignore half of it.
If n is small, the above logic doesn’t hold. This is consistent with the fact that the
probability of obtaining at least n 6’s can be appreciably more than 1/2, as we saw in
Problem 2.13. For small n, the above logic breaks down partly because the probability
of obtaining exactly n 6’s is appreciable, and partly because the Gaussian approxima-
tion doesn’t hold for small n.
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5.3. Coin flips
Eq. (3.48) gives the standard deviation of the number of Heads that show up in n
tosses of a fair coin as σ =

√
n/4. For n = 104 and 106 this yields σ = 50 and 500.

And since 1% of 104 and 106 equals 102 and 104, these ±1% spreads are equal to
102/50 = 2 and 104/500 = 20 standard deviations.
As noted in Fig. 4.26, the probability of being within 2σ of the mean is 95%. So in
the case of 104 coins, there is a 5% probability that the percentage of Heads differs
from the expected value of 50% by more than 1%. 5% is small but not negligible, so
if you observe a deviation larger than 1%, you will probably be mildly surprised.
In contrast, the probability of being within 20σ of the mean is exactly 1, for all prac-
tical purposes. We mentioned near the end of Section 4.8 that the probability of being
within five standard deviations of the mean is about 0.9999994. Tables of these prob-
abilities don’t even bother going anywhere near 20σ, because the probability is so
close to 1. So in the case of 106 coins, there is a 0% probability that the percentage
of Heads differs from the expected value of 50% by more than 1%. Therefore, even if
you said that you would be “extremely, outrageously, massively surprised” if the de-
viation from the mean exceeded 1%, that still doesn’t do justice to the unlikelyhood.
You are simply not going to end up 20σ from the mean, period; see the remark below.
The law of large numbers is a powerful thing!
What about 105 coins, which is between the above two cases? From Problem 5.1, we
know that the probability that the percentage of Heads differs from 50% by more than
1% equals 0.000000025%. So if we increase the number of coins from 104 to 105, the
probability of being outside the ±1% marks drops from a reasonable 5% to essentially
zero. And then for 106 coins, the probability is exactly zero for all practical purposes.

Remark: Let’s produce a (very rough) upper bound on the probability of being outside
20σ. If x = 20σ, then the second expression in Eq. (4.42) gives a probability density
of

f (20σ) =
e−(20σ)2/2σ2

√
2πσ2

=
e−202/2

σ
√

2π
≈ 10−87

σ
√

2π
. (5.25)

If x = 21σ, you can show that the above 10−87 factor becomes 10−96. So f (21σ) is
completely negligible compared with f (20σ). We can therefore assume that f (21σ)
is exactly zero. To obtain an upper bound on the area of the distribution that lies
outside 20σ, we can assume that f (x) takes on the constant value of f (20σ) between
x = 20σ and x = 21σ, and then suddenly drops to zero. Of course, it doesn’t take
on this constant value; it decreases fairly quickly to nearly zero. But all we care about
here is obtaining an upper bound on the area; a significant overestimate is fine for our
purposes. So assuming a constant value of f (20σ) between x = 20σ and x = 21σ, the
area in this span of one standard deviation is σ · f (20σ), which from Eq. (5.25) equals
10−87/

√
2π. Doubling this (to account for the span between −20σ and −21σ) gives√

2/π · 10−87 as an upper bound on the area. We can therefore say that a (generous)
upper bound on the probability of being outside 20σ is 10−87. The actual probability
obtained numerically from the exact binomial distribution is 5.5·10−89, which is about
20 times smaller than 10−87.
To get an idea of how ridiculously small this probability is, imagine (quite hypotheti-
cally) gathering together as many people as there are protons and neutrons in the earth
(roughly 4 ·1051), and imagine each person running the given experiment (flipping 106

coins) once a second for the entire age of the universe (roughly 4 · 1017 seconds). And
then repeat this whole process a quintillion (1018) times. This will yield 1.6 ·1087 runs
of the experiment, in which case (working with our high 10−87 estimate) you might
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expect one or two runs to have percentages of Heads that differ from 50% by more
than 1%. But again, this is a high estimate, given the actual probability of 5.5 · 10−89.
Although most people might think that there is a nonnegligible probability of obtaining
more than 510,000 or fewer than 490,000 Heads in 106 coin flips, the probability is in
fact zero, for all practical purposes. (As another example, you can show that the same
20σ result applies when flipping a trillion coins and ending up outside the 49.999%
to 50.001% range.) The above probability of 10−87 isn’t just small; it is ridiculously
small. The moral of all this is that unless you think in terms of the standard deviation
(which is proportional to

√
n ), it’s hard to get any intuition for these types of setups.

People have a tendency to think linearly, that is, to assume that a reasonable deviation
from the mean might be, say, n/10 or n/100, independent of the size of n. This linear
thinking will lead you astray. ♣

5.4. Identical distributions
Fig. 5.15 is a plot of the P(x) in Eq. (5.15), with nd = 1000 and pd = 1/6. (The “d”
here is for dice.) P(x) is completely determined by the product np(1−p), because this
product appears in both the exponent and the denominator in Eq. (5.15). We therefore
want to find the value of nc (with “c” for coin) such that

ncpc(1 − pc) = ndpd(1 − pd). (5.26)

Since pc = 1/2, this gives

nc ·
1
2
· 1

2
= nd ·

1
6
· 5

6
=⇒ nc =

5
9

nd. (5.27)

In the given case with nd = 1000, this yields nc = 556. The exact binomial dis-
tributions for the two processes aren’t exactly identical, of course, but they are both
extremely close to the common Gaussian approximation in Eq. (5.15).
The common value of np(1 − p) is 139. The standard deviation is the square root
of this (by comparing Eq. (5.15) with Eq. (4.42)), so σ ≈ 12. This is consistent
with a visual inspection of Fig. 5.15. Note that the expected number of Heads is
556/2 = 278, but this number is irrelevant here, because we’re concerned only with
the distribution relative to the average. The means pdnd = 167 and pcnc = 278 are
necessarily different, because there is no way to simultaneously make the np(1 − p)
values equal and the pn values equal, since these quantities differ by the factor 1 − p.

Remark: At first glance, it might not be obvious that an nc should exist that yields
the same distribution relative to the mean. But it is clear once you realize that both
distributions are Gaussians, and that (ignoring the µ in Eq. (4.42) since we’re looking
at the distributions relative to the mean) the Gaussians depend on only one parameter,
σ. So if we can generate the same σ, then we can generate the same distribution. And
we can indeed generate the same σ, because σcoin =

√
n/4 from Eq. (3.48), so we

just need to pick the appropriate n. ♣
5.5. Gambler’s fallacy

No. Each coin flip is independent of the flips that have already taken place. There-
fore, there is no reason to expect more Heads than Tails in future flips. Past flips are
irrelevant.
This incorrect interpretation (that there will be more Heads than Tails in future flips) of
the law of large numbers arises from the confusion between additive and multiplicative
differences. If you obtain five Heads in 20 flips, then you are five Heads below average.
If you keep flipping more coins, then on average you will always be five Heads below
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average. However, if you are worried about remaining below average, these five Heads
are the least of your worries if you end up flipping a million coins. The standard
deviation for n = 106 coin flips is

√
n/4 = 500, so you are nearly certain to end up

much farther than five Heads from average (above or below).

The deficiency of five Heads will always be there (on average, if you have many clones
of this scenario), but it represents a smaller and smaller fraction of the number of
Heads, as the number of flips gets larger and larger. The numbers of Heads and Tails do
not somehow conspire to equalize in the long run. On the contrary, the numbers tend
to diverge, with their difference generally being on the order of the standard deviation
(proportional to

√
n ). However, this difference becomes a smaller and smaller fraction

of the number of flips (namely n), which means that the fractions of Heads and Tails
both approach 1/2. But there is certainly no conspiring going on. All future outcomes
are independent of all past outcomes.

The incorrect interpretation (that there will be more Heads than Tails in future flips)
of the law of large numbers is known as the gambler’s fallacy. Alternatively, it can
simply be called wishful thinking.

5.6. Finding the Gaussian
From the first example in Section 3.2, we know that the variance of a single die roll is
2.92. The standard deviation is therefore

√
2.92 = 1.71. Eq. (3.45) then tells us that

the standard deviation of the sum of the rolls of nt = 10 dice is σ =
√

10(1.71) = 5.4.
This is the σ that appears in the second Gaussian expression in Eq. (4.42). And the
mean µ of the sum of 10 dice rolls is 10 · 3.5 = 35. So the desired Gaussian function
is

f (x) = (100,000)

√
1

2π(5.4)2 e−(x−35)2/2(5.4)2
. (5.28)

The factor of 100,000 out front arises because the histograms in Fig. 5.11 deal with
the actual number of outcomes. So we need to multiply the probability distribution in
Eq. (4.42) by ns = 100,000 to obtain the histogram.

However, if we want to be picky, we must remember that each histogram bin in
Fig. 5.11 is associated with the value at its lower end. And since each bin has width
1, the histogram is shifted by 0.5 to the right from where it would be if each bin were
centered on the associated value of x. So we actually want the µ in Eq. (4.42) to be
35.5. (This correction has nothing to do with the probability concepts we’re covering
here. It’s just a figment of the way we plotted the histograms. The true mean is simply
µ = 35.) The function that matches up with the histogram is therefore

f (x) = (100,000)

√
1

2π(5.4)2 e−(x−35.5)2/2(5.4)2
. (5.29)

Fig. 5.16 shows a plot of this function superimposed on the histogram. The other
three histograms in Fig. 5.11 come from the same underlying probability distribution
(because they all involve 10 dice). But they’re less smooth because the smaller ns
values allow a few random fluctuations to strongly influence the histograms.

5.7. Standard deviations
Consider Fig. 5.13 first. The underlying distribution has probailities p(2) = 0.6,
p(3.2) = 0.1, and p(7) = 0.3. The mean is therefore

(0.6)(2) + (0.1)(3.2) + (0.3)(7) = 3.62. (5.30)



276 Chapter 5. Gaussian approximations

S

ns = 100,000

20 30 40 50

2000

4000

6000

8000

10000

0

Figure 5.16: The Gaussian approximation to the fourth histogram in Fig. 5.11.

The standard deviation is then√
(0.6)(2 − 3.62)2 + (0.1)(3.2 − 3.62)2 + (0.3)(7 − 3.62)2 = 2.24. (5.31)

From Eq. (3.53) the standard deviation of the average of 100 numbers taken from this
distribution is σavg = (2.24)/

√
100 = 0.224. This is consistent with Fig. 5.13 (the

spacing between tick marks on the x axis is 0.05). Remember from Fig. 4.25 that at
one standard deviation from the mean, the distribution is 1/

√
e = 0.61 as tall as the

peak.
Now consider Fig. 5.14. From Problem 4.3, the standard deviation of the uniform
distribution from 0 to 1 is σ = 1/

√
12 = 0.29. And then from Eq. (3.53) the stan-

dard deviation of the average of 50 numbers taken from this distribution is σavg =

(0.29)/
√

50 = 0.041. This is consistent with Fig. 5.14 (the spacing between tick
marks on the x axis is 0.01).



Chapter 6

Correlation and regression

In this chapter, we will consider how two different random variables may be re-
lated, or correlated. In Section 6.1 we give some examples of what it means for
two variables to be correlated or uncorrelated. In Section 6.2 we present a model
for how two variables can be correlated, based on the given underlying probability
distributions. We then get quantitative in Section 6.3 and derive expressions for the
correlation coefficient, r . One of these expressions involves the covariance of the
two variables. We show in Section 6.4 how we can take advantage of a correlation
to make an improved prediction for the Y value associated with a given X value.
In Section 6.5 we calculate the joint probability density ρ(x, y) in terms of σx , σy ,
and r , in the case where the underlying distributions are Gaussian. We find that the
curves of constant ρ(x, y) are ellipses. We analyze these ellipses in Section 6.6.

In Section 6.7 we discuss the all-important regression lines, which give the ex-
pected value of Y , given X (or the expected value of X , given Y ). We then present in
Section 6.8 two examples on the use of regression lines. A ubiquitous effect here is
regression toward the mean. Finally, in Section 6.9 we analyze the best-fit (or least-
squares) line. We find that this line is none other than the regression line. Indeed,
the regression line is often defined as the least-squares line. We have chosen to take
a different route in this chapter and introduce the regression line by considering the
underlying probability distributions that produce the random variable Y . This route
makes it easier to see what’s going on “under the hood.” But it’s good to see that
we end up with the same regression line, independent of what route we take.

6.1 The concept of correlation

Consider a pair of random variables X and Y . For example, X might be an object’s
mass measured in kilograms, and Y might be its mass measured in grams. Or X
might be a person’s height, and Y might be his/her shoe size. Or X might be the
alphabetical placement of the second letter in a person’s last name (A = 1, B = 2,
etc.), and Y might be his/her cholesterol level.

One of the main issues we will address in this chapter is the degree to which
knowledge of X helps predict Y (or vice versa). Equivalently, we will address the

277
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degree to which two variables are correlated. The larger the correlation, the more
that one variable helps predict the other. We’ll be precise about this in Section 6.3
when we define the correlation coefficient, usually denoted by the letter r . To get
a qualitative feel for what a correlation means, let’s consider the three examples
mentioned above, which range from perfect correlation to no correlation at all.

• Perfect correlation: An example of perfect correlation is the mass of an
object expressed in kilograms or grams. If we know the mass X in kilograms,
then we also know the mass Y in grams. We simply need to multiply by
1000. That is, Y = 1000X . One kilogram equals 1000 grams, 2.73 kilograms
equals 2730 grams, etc. Knowledge of the mass in kilograms allows us to
state exactly what the mass is in grams. (The converse is also true, of course.
Knowledge of the mass in grams allows us to state exactly what the mass
is in kilograms. Just divide by 1000.) If we take a group of objects and
determine their masses in kilograms and grams, and then plot the results, we
will obtain something like the plot shown in Fig. 6.1. (We’ll assume for the
present purpose that any measurement errors are negligible.) All of the points
lie on a straight line. This is a consequence of the perfect correlation.

mg
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Figure 6.1: The mass in grams is perfectly correlated with the mass in kilograms.

• Some correlation: An example of nonzero but imperfect correlation is the
second example mentioned above, involving height and shoe size. (Men’s
and women’s shoe sizes use different scales, so let’s just look at men’s sizes
here. Also, some manufacturer sizes run large or small, but we’ll ignore
that issue.) We certainly don’t expect perfect correlation between height and
shoe size, because that would mean we would be able to exactly predict a
person’s shoe size based on height (or vice versa). This isn’t possible, of
course, because all people who are six feet tall certainly don’t have the same
shoe size. Additionally, there can’t be perfect correlation because shoe sizes
use a discrete scale, whereas heights are continuous.

But is there at least some correlation? That is, does knowledge of a person’s
height allow us to make a better guess of his shoe size, compared with our
guess if we had no knowledge of the height? Well, 6-footers certainly have a
larger shoe size than 5-footers on average, so the answer should be yes. Of
course, we might well find a 5-footer whose feet are larger than a 6-footer’s.
But on average, a person’s shoe size increases with height. A scatter plot
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of some data is shown in Fig. 6.2. (I asked a sampling of students for their
height and shoe size. Height is measured to the nearest inch. Since men’s and
women’s sizes use different scales, I used only the data for 26 male students.)
From the data, the average shoe size of all 26 people is 10.4, whereas the
average shoe size of a 6-footer is 11.4. So if you want to make a guess for
the shoe size of a 6-footer, you’ll do better by guessing 11.4 than 10.4. After
we introduce the correlation coefficient in Section 6.3, we’ll be able to be
quantitative in Section 6.4 about how much better the guess is (at least for a
large number of data points).
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Figure 6.2: A scatter plot of shoe size versus height (in inches).

• Zero correlation: An example of zero correlation is the third example men-
tioned above, involving the alphabetical placement (A = 1, B = 2, etc.) of the
second letter in the last name, along with cholesterol level. It is highly doubt-
ful that there is much of a correlation here. Would knowing that the second
letter of a last name is “i” help you in predicting the cholesterol level? Negli-
gibly, at best. Of course, certain names (Murphy, Smith, Li, etc.) are common
in certain ethnicities, and it is undoubtedly the case that different ethnicities
have slightly different cholesterol levels (on average) due to differing genes
and diet. But let’s assume that this effect is small and is washed out by other
effects. So for the sake of argument, we’ll assume that there is no correlation
here. However, this example should convince you that small (or perhaps even
large) correlations might pop up in situations where at first glance it’s hard to
imagine any correlation!

The first two of the above examples involve a positive correlation; an increase
in X corresponds to an increase in Y (on average). The line (or general blob) of
points in the scatter plot has an upward slope. It is also possible to have a negative
correlation, where an increase in X corresponds to a decrease in Y (on average).
The line (or general blob) of points in the scatter plot will then have a downward
slope. An example of negative correlation is vitamin C intake and the incidence of
scurvy. The more vitamin C you take, the less likely you are to have scurvy – at
least on the low end of the intake scale; on the upper end it doesn’t matter how much
you take.
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Note that correlation does not necessarily imply causation. In the case of vita-
min C and scurvy, there does happen to be causation; taking more vitamin C helps
prevent you from getting scurvy. But in the case of height and shoe size, it isn’t
that being tall causes your feet to be larger, any more than having large feet causes
you to be taller. (The situation is symmetrical, so if you want to argue causation,
you’ll be hard pressed to say which is causing which.) Instead, what’s going on
is that there is a third thing, namely genetics (and diet too), that causes both your
height and foot size to be larger or smaller (on average). Another example along
these lines consists of the number of times that people in a given town on any given
day put on sunglasses, along with the number of times they apply sunscreen. There
is a positive correlation between these two things, but neither one causes the other.
Instead, they are both caused by a third thing – sunshine!

We’ll deal only with linear correlation in this chapter, although there are cer-
tainly examples of nonlinear correlation. A simple example is the relation between
the area of a square and its side length: area = (side length)2. This relation is
quadratic, not linear. Another example is the relation between job income and a
person’s age. Three-year-olds don’t earn much from working a job, and neither do
100-year-olds (usually). So the plot of average income vs. age must start at zero,
then increase to some maximum, and then decrease back to zero.

6.2 A model for correlation

Let’s now try to understand the general way in which two random variables can be
correlated. This understanding will lead us to the correlation coefficient r in Sec-
tion 6.3. For the purpose of making some pretty plots, we’ll assume in the present
discussion that our two random variables each have Gaussian (normal) distributions.
This assumption isn’t necessary; our mathematical results will hold for any distri-
butions. Indeed, when dealing with actual real-world data, it is often the case that
one or both of the variables are not normally distributed. The correlation coeffi-
cient is still defined perfectly well by Eq. (6.6) or Eq. (6.9) below. However, due
to the central limit theorem (see Section 5.5), many real-life random variables are
approximately normally distributed.

Consider a random variable X that is normally distributed with mean zero and
standard deviation σx :

X : µ = 0, σ = σx . (6.1)

We have chosen the mean to be zero just to make our calculations and figures
cleaner. All of the results below hold more generally for any mean.

Consider another random variable Y that is correlated (to some extent) with
X . By this we mean that Y is partially determined (in a linear manner) by X and
partially determined by another random variable Z (assumed to be normally dis-
tributed) that is independent of X . Z can in turn be the sum of many other random
variables, all independent of X . We’re lumping the effect of all these variables into
one variable Z . We can be quantitative about the dependence of Y on X and Z by
writing Y as

Y = mX + Z (6.2)
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where m is a numerical factor. To keep things simple, we will assume that the mean
of Z is also zero. So if the standard deviation of Z is σz , we have

Z : µ = 0, σ = σz . (6.3)

Note that if we take the mean (expectation value) of Eq. (6.2), we see that the various
means are related by

µy = mµx + µz , (6.4)

where we have used the fact that the expectation value of the sum equals the sum
of the expectation values; see Eq. (3.7). Since we are assuming µx = µz = 0 here,
Eq. (6.4) implies that µy is also equal to zero.

In Eq. (6.2), we are producing Y from two known (and independent) distribu-
tions X and Z . To be explicit, the meaning of Eq. (6.2) is the following. Pick an
x value of the random variable X and multiply the result by m to obtain mx. Then
pick a z value of the random variable Z and add it to mx to obtain y = mx + z. This
is the desired value of y. We can label this ordered pair of (X,Y ) values as (x1, y1).
We then repeat the process with new values of X and Z to obtain a second (X,Y )
pair (x2, y2). And so on, for as many pairs as we like.

As an example, Y could be the measured weight of an object, X could be the true
weight, and Z could be the error introduced by the measurement process (reading
the scale, behavior of the scale depending on a slightly lopsided placement of the
object on it, etc.). These variables might not have Gaussian distributions, but again,
that assumption isn’t critical in our discussion. In this example, m = 1.

We should mention that although Eq. (6.2) is the starting point for deriving most
of the correlation results in this chapter, rarely is it the starting point in practice.
That is, rarely are you given the underlying X and Z distributions. Instead, you are
invariably given some data, and you need to calculate the correlation coefficient r
via Eq. (6.9) below. But the key to deriving Eq. (6.9) is realizing that we can write Y
as mX + Z (at least in the case of linear correlation), even if we don’t know exactly
what X and Z are.

To see what sort of correlation Eq. (6.2) produces between X and Y , let’s con-
sider two special cases, in order to get a general idea of the effects of m and Z .

Perfect correlation (σz = 0)

If the standard deviation of Z is σz = 0, then Z always just takes on the value z = 0,
because we’re assuming that the mean of Z is zero. (More generally, Z takes on a
constant value z0.) So Eq. (6.2) reduces to Y = mX . That is, Y is a fixed number
m times X ; all values of x and y are related by y = mx. This means that all of the
(x, y) points in the scatter plot lie on the straight line y = mx, as shown in Fig. 6.3
for 100 random points generated numerically from a Gaussian distribution X . We
have arbitrarily chosen m = 0.5 and σx = 1. In the present case of a straight line,
we say that X and Y are perfectly (or completely) correlated. The value of Y is
completely determined by the value of X . There is no additional random variable Z
to mess up this complete determination.

In the case where σz is small but nonzero, we obtain a strong but not perfect cor-
relation. Fig. 6.4 shows a plot of 200 points in the case where σz equals (0.1)σx .
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Figure 6.3: Perfect correlation.

We have again chosen m = 0.5 and σx = 1 (and hence σz = 0.1). We have
generated the points by picking 200 random values from each of the Gaussian dis-
tributions X and Z , and then forming Y = mX + Z . In the present case of small
σz , knowledge of X is very helpful in predicting Y , although it doesn’t predict Y
exactly.
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Figure 6.4: Strong correlation.

Zero correlation (m = 0)

If m = 0, then Eq. (6.2) reduces to Y = Z . And since Z is independent of X , this
means that Y is also independent of X . Fig. 6.5 shows a plot of 2000 points in the
case where m = 0. We have arbitrarily chosen σx = 2 and σz = 1. We have
generated the points by picking 2000 random values from each of the Gaussian
distributions X and Z , and then setting Y equal to Z .

It is clear from Fig. 6.5 that X and Y are completely uncorrelated. The distribu-
tion for Y is independent of the value of X . That is, for any given value of X , the
Y values are normally distributed around Y = 0, with the same standard deviation
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Figure 6.5: Zero correlation.

(which equals σz ). In other words, the probability (or rather, the probability den-
sity) of obtaining a certain value of Y , given a particular value of X , is independent
of the X value. This probability is given by the Gaussian distribution for Z , since
Y = Z in the present case where m = 0.

If we imagine drawing vertical shaded strips at two different values of X , as
shown in Fig. 6.6 (which is the same as Fig. 6.5, except with 10,000 points), then
the distributions of Y values in these two strips are the same, except for an overall
scaling factor. This scaling factor is simply the probability (or rather, the probability
density) of obtaining each of the given values of X . Larger values of |X | are less
likely, due to the e−x

2/2σ2
x factor in the Gaussian distribution. So there are fewer

dots in the right strip. But given a value of X , the probability distribution for Y (in
this m = 0 case) is simply the probability distribution for Z , which is independent
of X .
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Figure 6.6: If m = 0, the distribution of Y values within a vertical strip is independent (aside
from an overall scaling factor) of the location of the strip.
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In the case were m is small but nonzero, we obtain a weak correlation. Fig. 6.7
shows a plot of 2000 points in the case where m = 0.2, again with σx = 2 and
σz = 1. In this case, knowledge of X helps a little bit in predicting the Y value. It
doesn’t help much in the region near the origin; the plot doesn’t display much of
a tilt there (it looks basically the same as Fig. 6.5 near the origin). But for larger
values of X , there is a clear bias in the values of Y . More points lie above the X axis
on the right side of the plot, and more points lie below the X axis on the left side.
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Figure 6.7: Weak correlation.

Remarks:

1. All of the above scatter plots are centered at the origin because we assumed that the
means of X and Z are zero, which implies that the mean of Y is zero, from Eq. (6.4).
If Z instead had a nonzero mean µz , then the blob of points would be shifted upward
by µz . If X had a nonzero mean µx , then the blob would be shifted rightward by µx
and also upward mµx .

2. In the above discussions, we treated X as the independent variable and Y as the de-
pendent variable, and we looked at the extent to which X determined Y . However, if
someone gives you one of the above scatter plots, you could quite reasonably tilt your
head sideways and consider X to be a “function” of Y , and then look at the extent to
which Y determines X . We will discuss this alternative way of relating the variables
in Sections 6.5 and 6.7.

3. We noted in Fig. 6.6 that the relative distribution of Y values within a vertical strip
is independent of the location of the strip. This fact holds not only in Fig. 6.6 where
there is zero correlation, but also (in a slightly modified sense) in the case of nonzero
correlation, even when there is strong correlation as in Fig. 6.4. Although it might
seem like the spread (the standard deviation) of Y values gets smaller out in the tails of
the plot in Fig. 6.4, the spread is in fact the same for all values of X . The Y = mX + Z
expression tells us that for any given value of X , the Y values are centered at mX
(instead of zero; this is the aforementioned slight modification) and have the same
standard deviation of σz around this value. The spread seems to be larger in the
middle of the plot, but only because there are more points there. ♣
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6.3 The correlation coefficient, r
We will now show how to produce the correlation coefficient r from quantities as-
sociated with the righthand side of Eq. (6.2), namely m, σx , and σz . To do this, we
will need to determine the standard deviation of Y = mX + Z . We know that mX
has a standard deviation mσx and Z has a standard deviation of σz . And we know
from Eq. (3.42) that the standard deviation of the sum of two independent variables
(as X and Z are) is obtained by adding the two standard deviations in quadrature.
(The variables need not be Gaussian for this to be true.) Therefore, Y is described
by:

Y : µ = 0, σy =

√
m2σ2

x + σ
2
z . (6.5)

The µ = 0 value follows from Eq. (6.4), since we are assuming µx = µz = 0.
Let’s check some limiting cases of Eq. (6.5). In one extreme where σz = 0

(complete correlation between X and Y ), we have σy = mσx . All of the standard
deviation of Y comes from X ; none of it comes from Z . In the other extreme where
m = 0 (no correlation between X and Y ), we have σy = σz . All of the standard
deviation of Y comes from Z; none of it comes from X .

For general values of m and σz , we define the correlation coefficient r to be the
fraction of σy that can be attributed to X (assuming a linear model). Since the part
of σy that can be attributed to X is mσx , this fraction is

r ≡ mσx

σy
=

mσx√
m2σ2

x + σ
2
z

(correlation coefficient) (6.6)

Equivalently, r2 equals the fraction of the variance of Y that can be attributed to X .
The use of the expression for r in Eq. (6.6) requires knowledge of m, along with

σx and either σy or σz . If we are given m and the underlying X and Z distributions
that make up Y , then we can use Eq. (6.6) to find r . But as mentioned earlier, we are
usually just given a collection of data points in the x-y plane, without being given
m or the exact X and Z distributions. How do we find r in that case?

Covariance

To find r if we are given a collection of data points, we need to define the covariance
of two random variables. The covariance of X and Y is denoted by Cov(X,Y ) and
is defined to be

Cov(X,Y ) ≡ E
[
(X − µx )(Y − µy )

]
(6.7)

Note that if we set Y equal to X , then the covariance of X and Y (= X ) simplifies
to E

[
(X− µx )2] , which from Eq. (3.19) is simply the variance of X . The covariance

can therefore be thought of as a generalization of the variance. Like the correlation,
the covariance gives a measure of how much two variables linearly depend on each
other. In one extreme where Y = X , we have Cov(X,Y ) = σ2

x . In the other extreme
where X and Y are independent variables, we have Cov(X,Y ) = 0. This is true
because for independent variables, Eq. (3.16) tells us that the expectation value in
Eq. (6.7) equals the product of the expectation values E(X−µx ) and E(Y−µy ). And
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these are equal to E(X ) − µx and E(Y ) − µy , which are both zero by the definition
of the µ’s. There is actually yet a further extreme, namely Y = −X . In this case we
have Cov(X,Y ) = −σ2

x .
In the situations we’ll be dealing with, we’ll usually take the means µx and µy

to be zero, in which case Eq. (6.7) reduces to

Cov(X,Y ) ≡ E(XY ) (if µx = µy = 0). (6.8)

Having defined the covariance, we now claim that the definition of r in Eq. (6.6)
is equivalent to

r ≡ Cov(X,Y )
σxσy

(6.9)

To demonstrate this equivalence, we just need to replace Y with mX+Z in Eq. (6.9).
We’ll assume that µx and µy (and hence µz , from Eq. (6.4)) are zero; the general
case proceeds similarly. We obtain

r =
Cov(X,Y )
σxσy

=
Cov(X,mX + Z )

σxσy
=

E
[
X (mX + Z )

]
σxσy

=
mE(X2) + E(X Z )

σxσy
=

mσ2
x + 0
σxσy

=
mσx

σy
, (6.10)

which is the expression for r in Eq. (6.6). We have used the fact that since X and
Z are independent, Eq. (3.16) allows us to write E(X Z ) = E(X )E(Z ) = 0 · 0 = 0.
We have also used Eq. (3.50) to say that E(X2) = σ2

x , since µx = 0. The upshot
here is that Eq. (6.9) reduces to Eq. (6.6) because Cov(X,Y ) picks out the part of Y
that comes from X and gets rid of the part that comes from Z . This leaves us with
mσ2

x , so dividing by σxσy gives the desired ratio of standard deviations in Eq. (6.6).
Note that neither Eq. (6.6) nor Eq. (6.9) requires that the underlying distributions be
Gaussian.

Compared with Eq. (6.6), the advantage of Eq. (6.9) is that it doesn’t involve
m. Eq. (6.9) is therefore the one you want to use if you are simply given a set of
data points (xi , yi ) instead of the underlying distributions in Eq. (6.2). Although
we defined Cov(X,Y ) in Eqs. (6.7) and (6.8) for known distributions, Cov(x, y)
can also be defined for a set of data points. It’s just that instead of talking about
the expectation value of XY (assuming that the means are zero), we talk about the
average value of the xi yi products, where the average is taken over all of the given
(xi , yi ) data points. If we have n points (xi , yi ), then the covariance in the general
case of nonzero means is

Cov(x, y) ≡ 1
n

∑
(xi − x)(yi − y) (for data points) (6.11)

If the averages x and y are zero, then the covariance is just the average of the prod-
ucts xi yi , that is, Cov(x, y) = (1/n)

∑
xi yi .

In defining r for a set of data points, the σx and σy standard deviations in
Eq. (6.9) are replaced with the s̃x and s̃y standard deviations from Eq. (3.60), calcu-
lated for the specific sets of points, xi and yi . So the correlation coefficient is given
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by

r ≡ Cov(x, y)
s̃x s̃y

=

∑
(xi − x)(yi − y)√∑

(xi − x)2
√∑

(yi − y)2
(for data points) (6.12)

Note that no factors of n remain in this expression, because the factor of n in
Cov(x, y) (see Eq. (6.11)) cancels with the factors of

√
n in each of s̃x and s̃y

(see Eq. (3.60)).
If you are considering the n data points to be a subset of a larger population,

then it is more appropriate to use the sample standard deviations sx and sy instead
of s̃x and s̃y . The sample standard deviations are defined via the sample variance
s2 in Eq. (3.73) with an n − 1 in the denominator. Likewise, it is more appropriate
to use the sample covariance, defined analogously with an n − 1 instead of an n
in the denominator of Eq. (6.11). However, using these “sample” quantities (with
n − 1 instead of n) doesn’t affect the final result in Eq. (6.12), because the n − 1
factors cancel, just as the n factors did. The expression for r on the righthand side
of Eq. (6.12) is therefore valid in any case. We’ll do an example involving r and
Cov(x, y) below on page 290.

Remarks:

1. We chose to initially define r by Eq. (6.6) instead of by Eq. (6.9) (which is more
common in a practice), because Eq. (6.6) makes it clear what the meaning of r is. It is
the fraction of σy that can be attributed to X . If most of σy comes from X and not Z ,
then X and Y have a high correlation. If most of σy comes from Z and not X , then X
and Y have a low correlation.

2. The correlation coefficient r is independent of the means of X , Y , and Z . This follows
from the fact that none of the quantities in Eq. (6.6) or Eq. (6.9) (m, σx , σy , σz , or
Cov(X,Y )) depend on the means. Changing the means simply shifts the whole blob
of points around in the X-Y plane.

3. The correlation coefficient r doesn’t depend on a uniform scaling of X or Y . That is, r
doesn’t depend on a uniform stretching of the X or Y axes. This is true because if we
define new variables X ′ ≡ aX and Y ′ ≡ bY (which imply µx′ = aµx and µy′ = bµy ),
then you can quickly use Eq. (6.7) to show that Cov(X ′,Y ′) is larger than Cov(X,Y )
by the factor ab. Likewise, σx′σy′ is larger than σxσy by the same factor ab, from
two applications of Eq. (3.41). The r in Eq. (6.9) therefore doesn’t change. Basically,
stretching each of the axes in a scatter plot by arbitrary amounts doesn’t change how
well the value of X helps predict the value of Y .

4. Eq. (6.9) is symmetric in X and Y . This means that if we switch the independent
and dependent variables in a scatter plot and imagine X being partially dependent on
Y (instead of Y being partially dependent on X), then the correlation coefficient is
the same. This isn’t terribly obvious, given the lack of symmetry in the relation in
Eq. (6.2), where Z is independent of X , not Y . We’ll have more to say about this
symmetry in Sections 6.5 and 6.7 below.

5. From Eq. (6.6) we see that m can be written as m = rσy/σx . In terms of the covari-
ance, m is therefore

m = r
σy

σx
=

Cov(X,Y )
σxσy

·
σy

σx
=

Cov(X,Y )

σ2
x

. (6.13)
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6. An alternative expression for the covariance in Eq. (6.7) can be derived by expanding
the product (X − µx )(Y − µy ). Using E(X ) ≡ µx and E(Y ) ≡ µy , we have

Cov(X,Y ) ≡ E
[
(X − µx )(Y − µy )

]
= E

[
XY − µy X − µxY + µx µy

]
= E(XY ) − µyE(X ) − µxE(Y ) + µx µy
= E(XY ) − µy µx − µx µy + µx µy
= E(XY ) − µx µy . (6.14)

This reduces to Eq. (3.34) when X = Y . ♣

Examples with various r values

Fig. 6.8 shows examples of scatter plots for six different values of r . All of the
(numerically generated) plots have σx = 2 and σy = 1, and there are 1000 points in
each. Note that it takes a sizeable r to obtain a scatter plot that looks significantly
different from the r = 0 case; the r = 0.3 plot looks roughly the same. The plots in
this figure give you a visual sense of what a particular r means, so you should keep
them in mind whenever you’re given an r value. If someone says, “The r value is
0.7, and that seems pretty high, so I can be fairly certain of what Y will be, given
X ,” then you will know that this person is mistaken. When r = 0.7, there is still a
sizeable spread in the Y values for a given X .

What is considered to be a “good” or “high” value of r? Well, that depends on
what data you’re dealing with. If you’re a social scientist and you find an r = 0.7
correlation between a certain characteristic and say, the number of months that a per-
son has been unemployed, then that is a very significant result. You have just found
a characteristic that helps substantially in predicting the length of unemployment.
(But keep in mind that correlation does not necessarily imply causation. Although
you have found something that helps in predicting, it might not help in explaining.)
However, if you’re a physicist and you find a r = 0.7 correlation between the dis-
tance d an object falls (in vacuum, dropped from rest) and the square of the falling
time t, then that is a terrible result. Something has gone severely wrong, because
the data points should (at least up to small experimental errors) lie on the straight
line given by d = (g/2)t2, where g is the acceleration due to gravity.

All of the plots in Fig. 6.8 have positive values of r . The plots for negative values
look the same except that the blobs of points have downward slopes. For example, a
scatter plot with r = −0.7 is shown in Fig. 6.9. Since r is negative, Eq. (6.6) implies
that m is also, so Eq. (6.2) tells us that an increase in X yields a decrease in Y (on
average). Hence the negative slope.

In Figs. 6.3 though 6.7, the three specified parameters that were used to numer-
ically generate the plots were

σx , σz , m, (6.15)

whereas in Figs. 6.8 and 6.9 the three specified parameters were

σx , σy , r. (6.16)
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Figure 6.8: Scatter plots for various values of the correlation coefficient r .
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Figure 6.9: A scatter plot with negative correlation.

Both sets of parameters contain the same information, expressed in different ways
(although both sets contain σx ). It is easy to go from one set to the other. Given the
set in Eq. (6.15), the σy and r values in Eq. (6.16) can be found via Eq. (6.6):

σy =

√
m2σ2

x + σ
2
z and r =

mσx√
m2σ2

x + σ
2
z

(6.17)
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For example, Fig. 6.7 was generated from the parameters m = 0.2, σx = 2, and
σz = 1. So you can quickly show that Eq. (6.17) gives σy = 1.08 and r = 0.37.

To go the other way, the above expression for σy can be rewritten as σ2
z =

σ2
y − m2σ2

x . But Eq. (6.6) tells us that m2σ2
x = r2σ2

y , so we obtain σ2
z = (1 −

r2)σ2
y . Therefore, given the set of parameters in Eq. (6.16), the σz and m values in

Eq. (6.15) can be found via

σz = σy

√
1 − r2 and m =

rσy

σx
(6.18)

For example, the r = 0.3 plot in Fig. 6.8 was generated from the parameters r = 0.3,
σx = 2 and σy = 1. So Eq. (6.18) gives σz = 0.95 and m = 0.15.

From here on, we will usually describe scatter plots in terms of r (and σx and
σy ) instead of m (and σx and σz ). But you can always switch back and forth
between r and m by using Eqs. (6.17) and (6.18). However, we are by no means
finished with m. This quantity is extremely important, in that it is the slope of the
regression line, which is the topic of Section 6.7.

As mentioned above, it is more common to be given a scatter plot, or equiva-
lently a list of (xi , yi ) pairs, than it is to be given Eq. (6.2) along with the underlying
distributions X and Z . So let’s explicitly list out the procedure for finding all of the
parameters you might want to know, given a scatter plot of points. We’ll be general
here and not assume that the means of X and Y are zero. Here are the steps:

1. Calculate the means x and y of the xi and yi data points.

2. Calculate the standard deviations s̃x and s̃y via Eq. (3.60).

3. Calculate the covariance via Eq. (6.11).

4. Calculate r via Eq. (6.12).

5. Calculate m from Eq. (6.18), with the σ’s replaced with s̃’s.

Example: Consider the 20 points (X,Y ) listed in Table 6.1 and plotted in Fig. 6.10.
(These points don’t have any significance; I just made them up.) What is the correla-
tion coefficient between X and Y?

X 12 7 10 3 18 13 17 6 9 12
Y 10 13 6 4 25 14 20 7 14 15

X 13 14 5 7 16 11 8 13 15 9
Y 18 9 7 15 26 16 12 12 17 10

Table 6.1: 20 points (X,Y ).
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Figure 6.10: The scatter plot of the points in Table 6.1.

Solution: The quickest way to analyze the data is to use Excel or something similar,
by making a column for the X values and another column for the Y values. Now,
technically if we’re concerned only with the correlation coefficient r , then one Excel
function, CORREL, gets the job done. But let’s pretend we don’t know that. Then to
calculate r , we need to find the standard deviations s̃x and s̃y by using the STDEV.P
function (they turn out to be 4.02 and 5.72), and also the covariance by using the
COVARIANCE.P function (it turns out to be 17.45). The correlation coefficient r is
then found via Eq. (6.12) to be r = 0.76. Eq. (6.18) then gives m = 1.08. The “.P” in
these functions stands for “population.”
Alternatively, you can use the STDEV.S and COVARIANCE.S functions, which have
factors of n − 1 instead of n in the denominator. (The “.S” stands for “sample.”) You
will obtain the same result for r , because all the (n− 1)’s cancel out in Eq. (6.12), just
as the n’s do when using the “.P” functions.
If you have access to only pencil/paper or a basic calculator, then the process will of
course take longer. You will need to work through the whole list of steps preceding
this example. The means x and y happen to be 10.9 and 13.5.

6.4 Improving the prediction for Y
As we have seen in a number of plots, the larger the correlation coefficient r is,
the more the knowledge of a particular X value helps in predicting the associated Y
value. In this section we will be quantitative about this. We will determine exactly
how much the prediction is improved, given r . In the following discussion, we will
assume that the X , Y , and Z distributions in the Y = mX + Z relation are all known.

If we want to predict the value of Y without taking into account the associated
value of X , then intuitively the most reasonable prediction is the mean value µy of
the entire Y distribution. We’ll justify this choice below in Eq. (6.22). However,
if we do take into account the associated value of X , and if there is a nonzero
correlation between X and Y , then we can make a prediction for Y that is better
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than the above µy prediction. What is the value of this better prediction, and how
much better is it than µy? In answering this, we’ll need to define what we mean by
how “good” a prediction is. We’ll do this by instead defining how “bad” a prediction
is.

Considering the entire Y distribution

Consider first the case where we are looking at the entire Y distribution. That is,
we are not looking at a specific value of X . Imagine that we state our prediction
for Y (call it yp) and then pick a large number n of actual Y values yi . We then
calculate the variance of these values, measured relative to our prediction. That is,
we calculate

s̃2
p ≡

1
n

n∑
i=1

(
yi − yp

)2. (6.19)

In the limit where we pick an infinite number of yi values, the preceding expression
becomes an expectation value,

σ2
p ≡ E

[
(Y − yp

)2
]

(badness of prediction) (6.20)

We will take this variance as a measure of how bad our prediction is. The larger the
variance, the worse the prediction. If yp isn’t anywhere near the various yi values,
then our prediction is clearly a poor one. And consistent with this, the variance σ2

p
is large. We could, of course, choose a different definition of badness, but the one
involving the variance in Eq. (6.20) is the standard definition. See the remark in the
solution to Problem 6.10 for some discussion of this.

Given the above definition of badness, the best yp prediction is the one that
minimizes σ2

p . To find this yp value, we’ll need to do a little calculus and take the
derivative of σ2

p with respect to yp, and then set the result equal to zero. If we
expand the square in Eq. (6.20), we obtain

σ2
p = E

[
Y 2] − 2E

[
Y
]
yp + y2

p . (6.21)

Setting the derivative with respect to yp equal to zero then gives

−2E
[
Y
]
+ 2yp = 0 =⇒ yp = E

[
Y
] ≡ µy . (6.22)

We see that σ2
p is minimized when yp equals the expectation value E[Y ], that is, the

mean µy . We therefore want to choose the mean µy as our prediction. As mentioned
above, this is probably what your intuition would have told you to do anyway!

Best prediction =Mean (6.23)

In the case of the yp = µy best prediction, the variance σ2
p in Eq. (6.20) is simply

the actual variance σ2
y of the Y distribution. So σ2

y is a measure of how “bad” our
best prediction is if we don’t take into account any information about the X value:

σ2
y = badness of best guess µy , with no knowledge of X . (6.24)
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Considering a specific value of X

Now consider the case where we do take into account a specific value of X ; call it x0.
Given x0, the only possible Y values yi that we can possibly pick when forming the
variance in Eq. (6.19) are the ones in the shaded strip in Fig. 6.11. (In principle, the
strip should be very thin.) In drawing a scatter plot that is centered at the origin like
this, we are tacitly assuming that the means of X and Y are zero. This can always
be accomplished by measuring X and Y relative to their means, if they happen to be
nonzero. Eq. (6.4) then implies that Z also has a mean of zero.

X
x0

naive prediction, y = 0

Y

3 2 1 1 2 3

3

2

1

1

2

3

Y = mX

- - -

-

-

-

improved prediction, y = mx0

Figure 6.11: Given that X equals x0, the best prediction for Y is mx0 (the upper-right white
dot). This is a better prediction than the naive Y = 0 prediction (the lower-left white dot)
relevant to the entire distribution.

The mean of the Y values in the shaded strip is mx0, because Y = mX + Z ,
and because µz = 0. The best yp prediction is therefore mx0. This true because
the general result in Eq. (6.23) still applies. The logic leading up to that equation
remains valid; it’s just that we’re now taking the expectation value of only the part of
the Y distribution that lies in the shaded strip, instead of the complete Y distribution
(the entire blob of points). In the present case where we are incorporating our
knowledge of x0, the Y in Eq. (6.20) should technically be replaced with Yx0 , or
some similar notation, to indicate that we are concerned only with Y values that are
associated with (or nearly with) x0.

In the shaded strip in Fig. 6.11, the variance σ2
p in Eq. (6.20) (measured relative

to our yp prediction of mx0) equals E
[
(Y − mx0)2] . But Y − mx0 equals Z in the

shaded strip, because Y = mX + Z . The variance σ2
p is therefore simply E

[
Z2] ≡

σ2
z . So σ2

z is a measure of how “bad” our best prediction is if we do take into
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account the particular value of X :

σ2
z = badness of best guess mx0, knowing that X = x0. (6.25)

mx0 is the Y value associated with the upper-right white dot in Fig. 6.11. Our earlier
prediction of 0 (or more generally µy ) is the Y value associated with the lower-left
white dot.

Given our definition of badness in terms of the variance σ2
p in Eq. (6.20), the

ratio of the variances associated with the above two predictions in Eqs. (6.24) and
(6.25) is a measure of how much better one prediction is than another. That is, the
ratio

Var(Z )
Var(Y )

=
σ2
z

σ2
y

(6.26)

is the desired measure of how much better our prediction is if we take into account
the particular value of X . From Eq. (6.18) we know that σz = σy

√
1 − r2, so the

ratio in Eq. (6.26) equals

σ2
z

σ2
y

= 1 − r2 (improvement of prediction) (6.27)

This ratio is the factor by which the variance of a large number of data points (mea-
sured relative to our prediction) is reduced if we use our knowledge of X . For
example, if r = 1, then the factor is 0. This makes sense. With perfect correlation,
our prediction is perfect, so the variance is reduced to nothing. In the other extreme
where r = 0, the factor is 1. This also makes sense. With no correlation, knowledge
of the X value doesn’t help in predicting the Y value, so the variance isn’t reduced
at all. If, say, r = 0.5, then 1 − r2 = 0.75, which means that our prediction is
only slightly improved (that is, the variance is only slightly reduced) if we use our
knowledge of X .

Note that since Eq. (6.27) involves the square of r , the sign of r doesn’t matter.
The improvement factor 1 − r2 is the same for, say, r = −0.5 and r = 0.5. This is
clear from looking at a scatter plot. The only difference is that a positive-r blob of
points tilts upward while a negative-r blob tilts downward.

6.5 Calculating ρ(x, y)
The scatter plots in Fig. 6.8, along with most of the other scatter plots in this chapter,
were generated numerically by using Gaussian distributions for X and Z . (From
Problem 6.4, it follows that Y is also Gaussian.) A quick glance at the plots in
Fig. 6.8 indicates that all of the blobs of points have ellipse-like shapes. And indeed,
if X and Z are Gaussians, then the probability distributions in the plane are in fact
exactly elliptical. By this we mean that if we look at all points in the x-y plane
that have the same probability density ρ(x, y), then these points all lie on an ellipse.
Since we’re dealing with a 2-D plane, ρ(x, y) is a probability density per unit area.
That is, if we multiply ρ(x, y) by a small area in the plane, we obtain the probability
of lying in that small region.
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Let’s rigorously demonstrate the above ellipse claim. In this section, unlike in
previous sections, the Gaussian assumption for X and Z will be necessary. We’ll
start with the Y = mX + Z relation. Imagine picking a random value from the X
distribution, along with a random value from the Z distribution. If we end up with a
particular point (x, y) in the plane, then we must have picked an X value of x and a
Z value of y−mx. Since X and Z are independent variables, the joint probability of
these two outcomes is simply the product of the individual probabilities. Of course,
the probability of obtaining exactly a specific value of X or Z is zero, because we’re
dealing with continuous distributions. We should therefore really be talking about
probability densities and tiny areas in the plane. So to be formal, we can say that
the probability of obtaining X and Y values that lie in a tiny area dx dy around the
point (x, y) is

ρ(x, y) dx dy =
(
ρ(X = x) dx

)
·
(
ρ(Z = y − mx) dz

)
, (6.28)

where dz is the interval of z that corresponds to the dy interval of y. But since the
coefficients of Y and Z in the relation Y = mX + Z are equal, dz is simply equal to
dy (for a given x). Using the second Gaussian expression in Eq. (4.42) for ρ(x) and
ρ(z), and assuming µx = µy = 0, Eq. (6.28) becomes

ρ(x, y) dx dy =
1

√
2πσx

e−x
2/2σ2

x dx · 1
√

2πσz

e−(y−mx)2/2σ2
z dy. (6.29)

Our goal is to produce an expression for ρ(x, y) that involves only x and y,
without any reference to z. So we must get rid of the two σz ’s in Eq. (6.29). Ad-
ditionally, let’s get rid of m in favor of the correlation coefficient r . We can rewrite
Eq. (6.29) as

ρ(x, y) =
1

2πσxσz
exp

(
− x2

2σ2
x

− (y − mx)2

2σ2
z

)
. (6.30)

From Eq. (6.18) we know that σz = σy

√
1 − r2 and m = rσy/σx . So

ρ(x, y) =
1

2πσxσy

√
1 − r2

exp *,− x2

2σ2
x

−
(
y − (rσy/σx )x

)2

2(1 − r2)σ2
y

+- . (6.31)

Let’s simplify the exponent here. We can rewrite it as

− 1
2(1 − r2)

*, (1 − r2)x2

σ2
x

+
y2 − 2r xyσy/σx + r2x2σ2

y/σ
2
x

σ2
y

+- . (6.32)

The r2x2/σ2
x terms cancel, yielding

− 1
2(1 − r2)

*, x2

σ2
x

+
y2

σ2
y

− 2r xy
σxσy

+- . (6.33)

Our final result for the joint probability density ρ(x, y) is therefore

ρ(x, y) =
1

2πσxσy

√
1 − r2

exp *,− 1
2(1 − r2)

*, x2

σ2
x

+
y2

σ2
y

− 2r xy
σxσy

+-+- (6.34)
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If we multiply this ρ(x, y) by a small area in the plane, we obtain the probability
that a randomly chosen (X,Y ) point lies in that area. The double integral of ρ(x, y)
over the entire x-y plane must be 1, because the total probability is 1. If you want
to explicitly verify this, you can “complete the square” of the quadratic function
of y (or x) in the exponent of ρ(x, y). Of course, when you do this, you’ll just be
working backward through the above steps, which means that you’ll end up with
the ρ(x, y) in Eq. (6.29). But the double integral of that ρ(x, y) over the entire x-y
plane is certainly 1, because it involves a Gaussian dx integral and a Gaussian dy
integral, each of which we know is 1. (With the form in Eq. (6.29), the dy integral
should be done first.)

The result for ρ(x, y) in Eq. (6.34) contains the complete information of our
setup. Everything we might want to figure out can be determined from ρ(x, y). It
contains exactly the same (complete) information as our original description of the
setup, namely that Y is given by mX + Z , where X and Z are Gaussian distributions
with means of zero and standard deviations of σx and σz .

Eq. (6.34) tells us that the curves of constant probability density are ellipses.
This is true because the exponent in ρ(x, y) (which contains all of the x and y

dependence; there is none in the prefactor) takes the form of Ax2+ By2+Cxy. And
we’ll just accept here the well-known fact that a curve described by the equation
Ax2+By2+Cxy = D is an ellipse. If C = 0, then the axes of the ellipse are parallel
to the coordinate axes. But if C is nonzero, then the ellipse is tilted. Since C ∝ r ,
we see that the ellipse is tilted whenever there is a nonzero correlation between X
and Y .

If the distributions for X and Z aren’t Gaussian, then the constant-ρ(x, y) curves
aren’t ellipses. So whenever we talk about ellipses in the following sections, we are
assuming that the underlying distributions are Gaussian.

We now come to a very important point, which is so important that we’ll put it
in a box:

The probability density ρ(x, y) in Eq. (6.34) is symmetric in x and y.

More precisely, if x and σx are switched with y and σy , then ρ(x, y) is unchanged.
(We have used the fact that the expression for r in terms of the covariance, given in
Eq. (6.9), is symmetric in x and y.) This symmetry of ρ(x, y) is by no means obvi-
ous from looking at our original Y = mX + Z expression, because Z is independent
of X and not Y , which makes things appear asymmetric.

But given that we now know that ρ(x, y) is symmetric, let’s switch x and y in
the Y = mX + Z relation and see what we get. The point here is that whatever
relation we get, it must have the same probability distribution ρ(x, y) (that is, the
same shape of the blob of points in the x-y plane), because ρ(x, y) is symmetric in
x and y. To switch x and y in the relation Y = mX + Z , we must first make the x
and y dependences explicit by writing m as rσy/σx , and σz as σy

√
1 − r2, from

Eq. (6.18). The relation Y = mX + Z can then be written in the more explicit form,

Y =
(

rσy

σx

)
X + Zσy

√
1−r2

X−ind (6.35)
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where we have indicated the standard deviation of the (X-independent) distribution
Z . Switching the x’s and y’s gives (again using the fact that r is symmetric in x and
y)

X =
(

rσx

σy

)
Y + Zσx

√
1−r2

Y−ind (6.36)

The (new and different) Z here is independent of Y and has a standard deviation of
σx

√
1 − r2. The above Z notation might seem a bit awkward, but it is important

to indicate the two ways in which the two Z’s differ (standard deviation, and which
other variable they are independent of).

So what did we just show? All three of the equations Eq. (6.34), Eq. (6.35), and
Eq. (6.36) have equivalent information. Eq. (6.34) puts X and Y on equal footing,

whereas Eq. (6.35) treats Y as being dependent on X and Zσy

√
1−r2

X−ind , and Eq. (6.36)

treats X as being dependent on Y and Zσx

√
1−r2

Y−ind . But they all say the same thing,
and they all produce the same probability density ρ(x, y) and hence the same shape
of the blob of points in the x-y plane.

If you don’t trust the above symmetry reasoning, you can show that Eq. (6.34)
follows from Eq. (6.36) by starting with Eq. (6.36) and then working through the
same steps as in Eq. (6.29) through Eq. (6.34). Of course, you will quickly discover
that redoing the algebra is unnecessary, because all you’re doing is switching x and
y. Since the final result for ρ(x, y) is symmetric in x and y, the switch doesn’t affect
ρ(x, y). The expressions in Eqs. (6.35) and (6.36) will be critical when we discuss
the regression lines in Section 6.7.

6.6 The standard-deviation box
Assuming that all of our variables are Gaussians with means of zero, consider the
constant-ρ(x, y) ellipse shown in Fig. 6.12. If we are given nothing but the tilted
ellipse in the figure, can we determine the value of m in the Y = mX + Z relation
that produces this ellipse? Indeed we can, in the following manner.

X

Y

d1

d2 d3

d3

d1

Y = mX

d2

Figure 6.12: For a given value of X , the Y values on a constant-ρ ellipse are symmetrically
located above and below the Y = mX point.
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Recall that for a given value of X , the Y values are symmetrically distributed
above and below the Y = mX point, because Y = mX + Z , and because Z is a
Gaussian with mean zero. Since this holds for all values of X , the Y = mX line
must be the line that bisects the vertical span between any two vertically-aligned
points on the ellipse, as indicated in Fig. 6.12.1 The Y = mX line must therefore
intersect the ellipse at the ellipse’s leftmost and rightmost points, where the slope
is vertical. This is true because if the slope weren’t vertical at an intersection point,
then the distance d either above or below the intersection point would be zero, while
the other distance below or above the point would be nonzero.

We can check that the numbers work out in Fig. 6.12. We generated this ellipse
by arbitrarily choosing σx = (1.5)σy and r = 0.56. If you plug these values
into Eq. (6.34) and then set the exponent in ρ(x, y) equal to an arbitrary (negative)
constant, you will produce an ellipse with the shape shown. (The common value
of ρ(x, y) associated with the ellipse doesn’t matter, because that just determines
the overall size of the ellipse, and not the shape.) From Eq. (6.18) we know that
m = rσy/σx , which gives m = 0.37 here. And this is indeed the slope of the tilted
line in Fig. 6.12.

Let’s now consider an ellipse with a particular value of ρ(x, y), namely ρ(x, y) =
e−1/2ρ(0,0). We are now interested in the actual size of the ellipse. From Eq. (6.34)
we know that ρ(0,0) = 1/

(
2πσxσy

√
1 − r2) , although this exact value won’t con-

cern us. Only the relative factor of e−1/2 will matter here. For all points on the
ρ(x, y) = e−1/2ρ(0,0) ellipse (we’ll call this the “e−1/2 ellipse”), ρ(x, y) is smaller
than its value at the origin by a factor of e−1/2. The exponent in Eq. (6.30) or
Eq. (6.34) therefore equals −1/2. Any other factor would serve the purpose here
just as well, but we’re picking e−1/2 because it parallels the one-standard-deviation
probability density for the single-variable Gaussian distribution, e−x

2/2σ2
/
√

2πσ.
If x = σ then ρ(x) = e−1/2ρ(0).

What is the value of x at the rightmost point on the e−1/2 ellipse? Since we
know from above that the line y = mx passes through this point, the second term
in the exponent in Eq. (6.30) equals zero. The first term must therefore equal −1/2,
which means that x is simply σx . The same reasoning holds for the leftmost point,
so the e−1/2 ellipse ranges from x = −σx to x = σx . We will now take advantage
of the fact that Eq. (6.34) is symmetric in x and y. This means that any statement
we can make about x, we can also make about y. Therefore, by the same reasoning
with x and y switched, the highest point on the ellipse has a y value of σy , and
the lowest point has a y value of −σy . So the “bounding box” around the e−1/2

ellipse is described by the lines x = ±σx and y = ±σy . This box is called the
“standard-deviation box” and is shown in Fig. 6.13.2

1It isn’t so obvious that given an arbitrary tilted ellipse, the locus of points with this property is
in fact a line. But the derivation of ρ(x, y) in Section 6.5 basically proves it. Just work backwards
starting with the elliptical distribution in Eq. (6.34), and you will find in Eq. (6.30) that ρ(x, y) decreases
symmetrically above and below the y = mx line.

2Alternatively, you can find the bounding box by using calculus and taking the differential of the
exponent in Eq. (6.34). Setting the result equal to zero gives a relation between nearby points on a given
ellipse. Setting dx = 0 then gives a relation between x and y at the leftmost and rightmost points, where
the slope is infinite. You can plug this relation back into the expression for the e−1/2 ellipse to find the
x values at the leftmost and rightmost points. Similar reasoning with dy = 0 gives the y values at the
highest and lowest points.
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X

Y

ρ(x,y)=e -1/2 ρ(0,0)

σy

σx

Figure 6.13: The standard-deviation box.

Note that nowhere in the preceding paragraph did we make use of any specific
value of the correlation coefficient r (or equivalently, of m). This means that for
given values of σx and σy , the e−1/2 ellipse is always bounded by the same box,
for any value of r . Different values of r simply determine the shape of the ellipse
inside the box. Two examples are shown in Fig. 6.14. They both have the same σx

and σy values (where σx = (1.5)σy ), but the r for the thin ellipse is about 0.93,
while the r for the wide ellipse is about 0.19. We will discuss in the next section
how to determine r from an ellipse and its standard-deviation box. Note that the
two ellipses in Fig. 6.14 have different values of σz ; they have the same σy , so the
different values of r lead to different values of σz = σy

√
1 − r2, from Eq. (6.18).

The thin ellipse, which has a larger r , has a smaller σz .

r = 0.93

r = 0.19

X

Y

σy

σx

Figure 6.14: The standard-deviation box for an ellipse depends only on σx and σy , and not
on r . Different values of r yield different shapes of ellipses inside the box.
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6.7 The regression lines
Given a ρ(x, y) = e−1/2ρ(0,0) ellipse, there are a number of lines that we might
reasonably want to draw, as shown in Fig. 6.15.

• We can draw the y = mx line passing through the leftmost and rightmost
points on the ellipse, along with the analogous line passing through the high-
est and lowest points. These are the solid lines shown, and they are called re-
gression lines. The reason for this name will become apparent in Section 6.8.
These lines are very important.

• We can draw the standard-deviation line passing through the corners of the
standard-deviation box. This is the long-dashed line, with slope σy/σx . This
line is somewhat important.

• We can draw the line along the major axis of the ellipse. This is the short-
dashed line. It might seem like this line should have some importance, being
a symmetry axis of the ellipse. However, it actually doesn’t have much to do
with anything in probability, so we won’t be concerned with it.

Y =        X (Y = mX )

Y

X

rσy

σx

___

Y =      X
σy

σx

__
Y =        X

rσx

σy___
X =        Y

rσx

σy

___

Figure 6.15: The two regression lines (solid), the standard-deviation line (long-dashed), and
the unimportant symmetry axis of the ellipse (short-dashed).

How do the slopes of the two regression lines relate to the slope σy/σx of the
standard-deviation line? The slope of the lower3 regression line is simply m, which
equals rσy/σx from Eq. (6.18). Equivalently, the slope is the rσy/σx coefficient
of X in Eq. (6.35). This slope is just r times the σy/σx slope of the standard-
deviation line, which is about as simple a result as we could hope for. Similarly,
Eq. (6.36) tells us that if we tilt our head sideways (so that the X axis is now vertical
and the Y axis is horizontal), then the slope of the upper regression line is rσx/σy

3By “lower” we mean the line that is lower in the first quadrant. Likewise for the “upper” regression
line. Of course, these adjectives are reversed in the third quadrant. So perhaps we should be labeling the
lines as “shallower” and “steeper.” But we’ll go with lower and upper, and you’ll know what we mean.
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(ignoring the sign), because this is the coefficient of Y in Eq. (6.36). This slope
(with our head tilted) is simply r times the σx/σy slope (with our head tilted) of the
standard-deviation line, ignoring the sign.

The two regression lines pass through the points of tangency between the ellipse
and the standard-deviation box. So from the previous paragraph, we see that the
tangency points are the same fraction r of the way from each of the coordinate axes
to the upper-right corner of the box. This is shown in Fig. 6.16. Determining either
of these (identical) fractions therefore gives us the correlation coefficient r . This
conclusion checks in the extreme cases of r = 1 (perfect correlation, thin ellipse)
and r = 0 (zero correlation, wide ellipse with axes parallel to the coordinate axes).

σy

rσy

rσx

σx

X

Y

Figure 6.16: The points of tangency between the ellipse and the standard-deviation box are
the same fraction r of the way from each of the coordinate axes to the upper-right corner of
the box.

Note that the slope of the standard-deviation line is the geometric mean of the
slopes of the two regression lines as they appear on the paper (with no head tilting).
This is true because the slope of the upper regression line (with no head tilting) is
the reciprocal of the slope with a tilted head, so it equals σy/rσx ; this is indicated
above in Fig. 6.15. The geometric mean of the two slopes as they appear on the
paper is then √(

rσy

σx

) (
σy

rσx

)
=
σy

σx
, (6.37)

which is the slope of the standard-deviation line, as desired.
Another way to determine r is the following. What is the y-intercept of the

ρ(x, y) = e−1/2ρ(0,0) ellipse in Fig. 6.16? To answer this, we can use the fact
that x equals zero on the y axis. So if we want the exponent in Eq. (6.34) to equal
−1/2, as it does for all points on the ellipse, then since x = 0 we see that we
need y = σy

√
1 − r2. This makes sense, because this is simply σz for our original

random variable Z , which we labeled as Zσy

√
1−r2

X−ind in Eq. (6.35). Said in another
way, when x = 0 the exponent in Eq. (6.30) equals −1/2 when y = σz .



302 Chapter 6. Correlation and regression

By the same reasoning, the x-intercept of the e−1/2 ellipse is x = σx

√
1 − r2,

which is the σz for the random variable Zσx

√
1−r2

Y−ind in Eq. (6.36). The intercepts
are indicated in Fig. 6.17. Measuring either of these intercepts and dividing by the
standard deviation along the corresponding axis gives

√
1 − r2, which gives r . This

conclusion checks in the extreme cases of r = 1 and r = 0.

σy

σx

σx 1-r
2

σy 1-r
2

X

Y

Figure 6.17: The intersection points between the ellipse and the coordinate axes are the same
fraction

√
1 − r2 of the way from the origin to the sides of the standard-deviation box.

The critical property of the regression lines is that they are the “lines of aver-
ages.” We saw in Fig. 6.12 that the lower regression line bisects the vertical span
between any two vertically aligned points on a constant-ρ ellipse. This follows from

the fact that the Zσy

√
1−r2

X−ind distribution in Eq. (6.35) is a (symmetric) Gaussian with
zero mean. Similarly, the upper regression line bisects the horizontal span between
any two horizontally aligned points on a constant-ρ ellipse. This follows from the

fact that the Zσx

√
1−r2

Y−ind distribution in Eq. (6.36) is a (symmetric) Gaussian with
zero mean. Two vertical and two horizontal pairs of equal distances are shown in
Fig. 6.18.

We’ve been drawing constant-ρ(x, y) ellipses for a while now, so let’s return
to a scatter plot (generated numerically from Gaussian distributions). Fig. 6.19
illustrates the same idea that Fig. 6.18 does. If we look at an arbitrary vertical strip
of points, the distribution within the strip is symmetric around the intersection of the
strip with the lower regression line (at least in the limit of a large number of points).
And if we look at an arbitrary horizontal strip of points, the distribution within the
strip is symmetric around the intersection of the strip with the upper regression line
(for a large number of points). The intersections are indicated by the large white
dots in the figure.

When dealing with, say, vertical strips, remember that it is the same Zσy

√
1−r2

X−ind
distribution that holds for all strips. This follows from Eq. (6.35). The only reason
why the spread of points (relative to the regression line) appears to be smaller in the
extremes of the plot is that there are fewer points with values of X out there. But
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X

Y

Figure 6.18: The regression lines bisect the horizontal or vertical spans between any two
horizontally or vertically aligned points on the ellipse.

X

Y

Figure 6.19: The distribution of points within a vertical strip is symmetric around the in-
tersection of the strip and the lower regression line. Likewise for a horizontal strip and the
upper regression line.
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given a value of X , the value of Y has the same distribution Zσy

√
1−r2

X−ind relative to
the Y = mX point on the lower regression line. That is, the probability of obtaining

a certain value of Zσy

√
1−r2

X−ind is independent of X , because this Z is assumed to be
independent of X .

Let’s reiterate where each of the two regression lines is relevant:

• The lower regression line is relevant if you are considering X as the inde-
pendent variable, with Y being dependent on X ; see Eq. (6.35). The lower
regression line gives the average value of Y associated with each value of X .

• Conversely, the upper regression line is relevant if you are considering Y as
the independent variable, with X being dependent on Y ; see Eq. (6.36). The
upper regression line gives the average value of X associated with each value
of Y .

Remarks:

1. You might think it odd that the line that cuts through the middle of the vertical strips
in Fig. 6.19 is different from the line that cuts through the middle of the horizontal
strips. It might seem like a single line (perhaps the short-dashed symmetry axis in
Fig. 6.15) should do the trick for both types of strips. And indeed, when there is a
high correlation (r ≈ 1), the two regression lines are nearly the same, so one line
essentially does the trick. But in the small-correlation limit (r ≈ 0), it is clear that
two lines are needed. In the r = 0 case in Fig. 6.5, the lower regression line is the
x axis (which cuts through the middle of any vertical strip), and the upper regression
line is the y axis (which cuts through the middle of any horizontal strip). These are as
different as two lines can be, being perpendicular. There is no way that a single line
can cut through the middle of both the vertical and horizontal strips. This fact is true
for all r except r = ±1, although it is most obvious for small r .

2. Consider the lower regression line in Fig. 6.18 or Fig. 6.19. (The upper line would
serve just as well.) At first glance, this line might look incorrect, because it doesn’t
look “balanced” properly, in the sense that the symmetry axis of the ellipse is balanced,
and this line is different from the symmetry axis. But that is fine. The important thing
is that any vertical strip of points is cut in half by the line. This is not the case with the
symmetry axis of the elliptical blob of points, which is (irrelevantly) balanced within
the ellipse.

3. If you are presented with some real data of (xi , yi ) points in a scatter plot (as opposed
to the above numerically-generated plots), you can draw the regression lines by cal-
culating the various quantities in the steps enumerated on page 290. The slopes of the
regression lines are given in Fig. 6.15 as rσy/σx and σy/rσx , except with the σ’s
replaced with the s̃’s from Eq. (3.60).

4. If all of the above figures, we have been assuming that the means µx and µy are zero.
In the more general case where the means are nonzero, the regression lines intersect
at the point (µx , µy ), that is, at the middle of the blob of points. Equivalently, you can
define new variables by X ′ ≡ X − µx and Y ′ ≡ Y − µy . The (µx , µy ) point in the X-Y
plane becomes the origin in the X ′-Y ′ plane. ♣
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6.8 Two regression examples

To get some practice with regression lines, let’s do two examples. In both exam-
ples, we’ve chosen the X and Y variables to be IQ (Intelligence Quotient) scores.
We’ve done this partly because IQ scores are easy and standard things to talk about,
and partly because we want to draw some analogies between the two examples.
However, in dwelling on IQs, we certainly don’t mean to imply that they’re terribly
important. If you want to think of IQ as standing for something else like “Interesting
Qualities” or “Illuminati Qualifications,” then by all means do!

6.8.1 Example 1: Retaking a test

A specific example

Imagine that a large number of people have just taken an IQ test. Assume that the
average score is 100, which is how an IQ test is designed. Consider all of the people
who scored 130. The standard deviation of an IQ test is designed to be 15, so 130
is two standard deviations above the mean. If this group of people takes another IQ
test (or the same test, if we somehow arrange for them to have amnesia), is their
average score expected to be higher than, lower than, or equal to 130?

In answering this question, let’s make a model and specify the (reasonable) as-
sumptions of the model. We’ll assume that each person’s score is partially deter-
mined by his/her innate ability and partially determined by random effects (mis-
reading a question, lucky guess, bad day, etc.). Although it’s hard to define “innate
ability,” let’s just take it to be a person’s average score on a large number of tests.
Our model therefore gives a person’s actual score Y on the test as their innate score
X , plus a random contribution Z which we’ll assume is independent of X . So the
distribution Z is the same for everyone. A person’s score is then given by Y = X+Z .
This is just our old friend Eq. (6.2), with m = 1. For the sake of making some nice
scatter plots, we’ll assume that X and Z (and hence Y , from Problem 6.4) are Gaus-
sian.

If we take the average of the equation Y = X + Z over a large number of tests
taken by a given person whose innate ability has the value X = x0, we obtain
µy = x0 + µz , where the µy here stands for the average of the given person. But the
person’s innate ability x0 is defined simply as their average score µy over a large
number of tests. We therefore conclude (basically by definition) that the mean of
Z is µz = 0. And we might as well measure X and Y relative to their population
means (which are both 100). So all of X , Y , and Z now have zero means.

Given all of these (quite reasonable) assumptions, what is the answer to the
question we posed above? Will the people who scored 130 on their first test score
(on average) higher, lower, or the same on their second test? To answer this, let’s
look at a scatter plot of some numerically-generated X and Y values for the first test,
shown in Fig. 6.20. We have plotted 5000 points, relative to the µx = µy = 100
averages. Since we’ve assumed continuous Gaussian distributions for X and Z , our
(X,Y ) points in the plane don’t have integer values, as they would on an actual test.
But this won’t change our general results.
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Figure 6.20: The average X value of the people in the shaded strip corresponds to the vertical
black line (defined by the intersection of the shaded strip and the upper regression line). The
average score of these people on a second test is given by the Y value of the white dot shown
on the lower regression line.

To generate the plot in Fig. 6.20, we have arbitrarily assumed σz = σx . (This is
probably too large a value for σz . In real life, the standard deviation of the random
contribution Z is likely a fair bit smaller than the standard deviation of the innate
ability X . But using a large value for σz makes things clearer in the plot.) From
Eq. (6.5) with m = 1 and σz = σx , we obtain σy =

√
2σx . Since IQ tests are

designed to have a standard deviation of 15, we have set σy = 15. This then implies
that σx and σz are both equal to 15/

√
2 ≈ 10.6. These values, along with m = 1,

were used to generate the plot. From Eq. (6.6), the correlation coefficient is

r =
mσx

σy
=

1 · σx√
2σx

=
1
√

2
≈ 0.71. (6.38)

The two regression lines are drawn. The slope of the lower line is just m = 1.
And from Fig. 6.15 the slope of the upper line is σy/rσx =

√
2/(1/

√
2 ) = 2. As a

double check, the geometric mean of these two slopes is
√

1 · 2, which is correctly
the slope of the standard-deviation line, σy/σx =

√
2, as we noted in Eq. (6.37).

Now consider all of the people who scored 130 on the first test. Since we’ve
subtracted off the mean score of 100 from the Y values, a score of 130 corresponds
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to y1 = 30, or equivalently y1 = 2σy . (The subscript “1” refers to the first test.)
Since the Y values in our model take on a continuum of values, no one will have
a score of exactly 30, so let’s look at a small interval of scores around 30. This
interval is indicated by the shaded strip in Fig. 6.20. There are about 70 points in
this strip. So our goal is to predict the average score of the 70 people associated
with these points when they take a second test.

What is the average X value (innate ability) of these 70 points? Answering
this question is exactly what the upper regression line is good for. As we noted in
Fig. 6.19, the upper regression line passes through the mean of any horizontal strip
of data points (on average). We are therefore concerned with the X value of the
intersection of the horizontal strip and the upper regression line. The slope of the
upper regression line is 2, so the intersection point (xavg, y1) satisfies y1/xavg = 2.
Since y1 = 30, this gives xavg = 15. Therefore, 15 (or really 115) is the average
innate ability X of the 70 people who scored 130 on the first test.

We now claim that when these 70 people take a second test, their average score
will simply be their average innate ability, 115. This is true because if we take the
average of the Y = X + Z relation over the 70 people in the group, the Z values
average out to zero (or rather, the expectation value is zero). So we are left with
yavg = xavg. (We should probably be using the notation y 2,avg, to make it clear that
we’re talking about the second test, but we won’t bother writing the 2.)

In the more general case where Y = mX + Z , taking the average of this relation
yields

yavg = mxavg. (6.39)

But mxavg is the height of the point on the lower regression line with an X value
of xavg. To obtain this result graphically, just draw a vertical line through (xavg, y1)
and look at the intersection of this line with the lower regression line, indicated by
the white dot in Fig. 6.20. The Y value of this dot is the desired average score on
the second test. (Having determined the average second score of the 70 people, we
might also want to determine the distribution of their scores. This is the task of
Problem 6.6.)

The answer to the question posed at the beginning of this section is therefore
“lower than 130.” Additionally, given the various parameters we arbitrarily chose,
we can be quantitative about how much lower the new average score of 115 is.
Additively, it is 15 points lower. Multiplicatively, it is 1/2 as high above the mean,
100, as the original common score, 130, was. Note that since Eq. (6.38) gave r =
1/
√

2 in our setup, we have r2 = 1/2. The agreement of these factors of 1/2 is no
coincidence, as we will show below.

General discussion

Looking at Fig. 6.20, it is clear why the 70 people in the shaded horizontal strip
have an average on the second test that is lower than 130. The upper regression line
lies to the left of the lower regression line (in the upper righthand quadrant), so the
intersection of the horizontal strip with the upper regression line lies to the left of its
intersection with the lower regression line. Translation: the average innate ability
X of the 70 people (which is given by the intersection of the horizontal strip with
the upper line) is smaller than the innate ability that would correspond to a score
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of 130 if there were no random Z effect (which is given by the intersection of the
horizontal strip with the lower line).

In fact, in Fig. 6.20 it happens to be the case that all 70 points in the strip lie
to the left of, and hence above, the lower regression line. That is, they all involve
positive contributions from Z . Of course, if we were to generate the plot again,
there might be some points in the strip that lie to the right of the lower line (with
negative contributions from Z). Or if we had 50,000 points instead of 5000, we
would undoubtedly have some such points. But for any (large) total number of
points, there will be more of them in the shaded strip that have positive Z values
than negative Z values.

The preceding observation provides an intuitive way of understanding why the
average on the second test is lower than 130. Since Y = X + Z , there are two basic
possibilities that lead to a score of Y = 130 on the first test: A person can have an
innate ability X that is less than 130 and get lucky with a positive value of Z , or they
can have an innate ability that is greater than 130 and get unlucky with a negative
value of Z . The first of these possibilities is more likely, on average, because 130
is greater than the mean of 100, which implies that there are more people with an
innate ability of 130 − a than 130 + a (for any positive a), as shown in Fig. 6.21
for a = 10. So more of the 130 scorers have an innate ability that is less than
130, than greater than 130, consistent with what we observed in Fig. 6.20. In the
end, therefore, the decrease in average score on the second test comes down to the
obvious fact that a Gaussian has its peak in the middle and falls off on either side.

115100857055 130 145

130-a 130+a

X

(a = 10)

ρ(x)

8

Figure 6.21: There are more people with an innate ability of 130−a than 130+a. A score of
130 is therefore more likely to come from a person with a lower innate ability who got lucky,
than from a person with a higher innate ability who got unlucky.

Everything we’ve been saying is relevant to a score that lies above the mean of
100. If we start with a score that is smaller than 100, say Y = 70, then all of the
above conclusions are reversed. (Note that the number 70 here has nothing to do
with the 70 people in the Y = 130 shaded strip in Fig. 6.20!) The average on the
second test will now increase toward the mean. It will be 85 on average, by all the
same reasoning. All of the action in Fig. 6.20 will now be in the lower-left quadrant
instead of the upper-right quadrant. In this new scenario, there are more people in
the Y = 70 group who have an innate ability X that is greater than 70 but who got
unlucky, than the other way around. The general conclusion is that for any score on
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the first test, the average score on the second test will be closer to the mean. This
effect is called regression toward the mean.

Let’s now prove a handy little theorem, which we alluded to above. This theo-
rem allows us to be quantitative about the degree to which averages regress toward
the mean.

Theorem 6.1 Consider the group of people who score y1 points above the mean on
a test. If they take the test (or an equivalent one) again, then their average score on
the second test will be yavg = r2y1 points above the mean (on average), where r is
the correlation coefficient between the actual score and innate ability.

This theorem is consistent with the above example, because the correlation coeffi-
cient was r = 1/

√
2, and the initial score of y1 = 30 points above the mean was

reduced (on average) on the second test to yavg = r2 · 30 = 15 points above the
mean.

Proof: The proof is quick. We simply need to reapply the reasoning associated
with Fig. 6.20, but now with general parameters instead of given numbers. If the
shaded strip in Fig. 6.20 has a height y1, then from Fig. 6.15 the intersection of the
strip with the upper regression line has an X value of xavg = (rσx/σy )y1. This
is the average X value of the people who score y1 on the first test. On the second
test, the Z values will average out to zero, so the lower regression line gives the
desired average second-test score of the “y1 group” of people, via Eq. (6.39). With
m = rσy/σx from Fig. 6.15 (we’ll work with a general m, instead of m = 1),
Eq. (6.39) gives

yavg = mxavg =

(
rσy

σx

)
xavg =

(
rσy

σx

) (
rσx

σy

)
y1 =⇒ yavg = r2y1 (6.40)

We stated the theorem in terms of a test-retaking setup with Y = X + Z , where m
equals 1. But as we just showed, the theorem holds more generally with Y = mX+Z ,
where m is arbitrary. In such cases, the theorem can be stated (in a less catchy
manner) as, “Given a large set of data points, consider all of the points whose Y
value is y1. Let the average X value of these points be xavg. Then the average
Y value associated with xavg is r2y1.” Or more succinctly, “The average Y value
associated with the average X value of the points with Y = y1 equals r2y1.”

The theorem checks in two extremes. If r = 1, then all scores lie on the Y = X
line, or more generally the Y = mX line. The random Z value is always zero, so
all scores are exactly equal to the innate ability, or more generally exactly equal to
mX . A given person always scores the same every time they take the test. Everyone
who scored a 130 on the first test will therefore score a 130 on the second test
(and all future tests). So yavg = (1)2y1, consistent with Eq. (6.40). In the other
extreme where r = 0, Eq. (6.6) tells us that either m = 0 or σx = 0. So σy = σz .
Basically, everyone’s score is completely determined by the random contribution Z ,
which means that the scores of any given group of people on the second test will be
random and will therefore average out to zero. So yavg = (0)2y1, again consistent
with Eq. (6.40).
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The above theorem provides a nice way of determining the correlation coeffi-
cient r between the actual score and innate ability, without doing any heavy calcu-
lations. Just take a group of people who score y1 points above the mean on the test,
and then have them take the test (or an equivalent one) again. If their new average
is yavg, then r is given by

yavg = r2y1 =⇒ r =
√

yavg

y1
. (6.41)

It’s rather interesting that r can be determined by simply giving a second test, with-
out knowing anything about σx , σy , σz , or m!

The new property of r in Eq. (6.41) is one of many properties/interpretations of
r that we’ve encountered in this chapter. Let’s collect them all together here.

1. Eq. (6.6) tells us that r is (by definition) the fraction of σy that can be at-
tributed to X .

2. Eq. (6.18) tells us that the slope m of the lower regression line is m = rσy/σx .
This means that r is the ratio of the slope of the regression line to the slope
of the standard-deviation line. This interpretation of r is evident in Figs. 6.15
and 6.16.

The preceding fact can be restated as: If we consider an X value that is n
times σx above the mean, then the expected associated Y value is rn times
σy above the mean.

3. Eq. (6.27) tells us that 1− r2 is the factor by which the “badness” of a predic-
tion of Y is reduced if we take into account the particular value of X . This is
the same 1−r2 term that appears in the σy

√
1 − r2 (= σz ) length in Fig. 6.17.

4. Eq. (6.40) tells us that if we consider the people who score y1 points above
the mean on a test, their average score on a second equivalent test will be
yavg = r2y1 points above the mean (on average).

6.8.2 Example 2: Comparing IQ’s
Consider the following setup. A particular school has an equal number of girls
and boys. On a given day, the students form self-selecting girl/boy pairs. Assume
that there is a nonzero correlation between the IQ scores within each pair. That is,
students with a high (or low) IQ tend to pair up with other students with a high (or
low) IQ, on average.4 This is plausible, because students who are friends with each
other (and thus apt to pick each other as partners) might have similar priorities and
study habits (or lack thereof).

The question we will pose here is the following. Consider all of the girls who
have a particular IQ score, say 130. Will their boy partners have (on average) an IQ
score that is higher than, lower than, or equal to 130?

4By “IQ” or “IQ score” here, we mean a student’s innate ability, or equivalently their average score
on a large number of IQ tests. In this example, we aren’t concerned with the random fluctuations on each
test, as we were in the above test-retaking example.
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To answer this, let’s pick some parameters and make a scatter plot of the IQ
scores. We’ll assume that both girls and boys have an average IQ of 100 and that the
standard deviation for both is 15. And as usual, we’ll assume that the underlying
distributions are Gaussian.5 In order to numerically generate a scatter plot, we’ll
need to pick a value of the correlation coefficient r . Let’s pick 0.6. The qualitative
answer to the above question won’t depend on the exact value. The resulting scatter
plot of 5000 points (it’s a big school!) is shown in Fig. 6.22. Each point is associated
with a girl/boy pair. The x coordinate is the boy’s IQ, and the y coordinate is the
girl’s IQ (relative to the average of 100).
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Figure 6.22: IQ scores of girl/boy pairs.

The analysis in the present setup is essentially the same as in the above test-
retaking example. The horizontal shaded strip in Fig. 6.22 indicates all pairs in
which the girl has an IQ within a small range around 130. (The vertical shaded strip
isn’t relevant yet; we’ll use it below.) To determine the average IQ score (that is,
the average x coordinate) of the boys in this group, we simply need to look at the
intersection (indicated by the upper large solid dot) of the horizontal shaded strip
with the upper regression line. As we know well by now, this is exactly what the

5We should emphasize that in real life, despite the central limit theorem (see Section 5.5), things are
often not as clean as we might lead you to believe by always picking nice Gaussian distributions. But the
qualitative results we obtain will generally still hold for messier distributions.
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upper regression line is good for. This line passes through (on average) the middle
of the distribution of points in any horizontal strip.

From Fig. 6.15, we know that if we tilt our head sideways, the slope of the
upper regression line is r times the slope of the standard-deviation line, which is 1
here, because we are assuming σx = σy (= 15). So the (tilted-head) slope of the
upper regression line is 0.6. Its intersection point (the upper large solid dot) with the
horizontal strip at y = 30 therefore has an x value of (0.6)(30) = 18. Geometrically,
in the horizontal strip, the solid dot is r as far to the right as the hollow dot. So 18
(or rather 118) is the desired average IQ of boys who are in pairs where the girl has
an IQ of 130. The answer to the question posed above is therefore “lower than 130.”

What do we conclude from this? That girls are smarter than boys? Or that
girls actively pick boys with a lower IQ? No, neither of these conclusions logically
follow from our result. One way of seeing why is to note that we can apply all of
the above reasoning to pairs where the girl has an IQ that is lower than the overall
mean of 100. Let’s say 70 instead of 130. The relevant action will then take place
in the lower-left quadrant, and we will find that the average IQ of boys in this group
is higher than 70. It is 100 − 18 = 82.

The fact of the matter is that there isn’t much we can conclude. The lower/higher
results that we have found are simply consequences of randomness. There isn’t
anything deep going on here. The reason why girls with an IQ of 130 are paired
with boys with lesser IQs (on average) is the same as the reason why, in the above
test-retaking example, people who scored 130 had (on average) an innate ability less
than 130. A high number such as 130 is more likely to be the result of a low number
(innate ability or boy’s IQ) paired with a positive random effect, than a high number
paired with a negative random effect. And as we noted in Fig. 6.21, this is due to
the simple fact that a Gaussian has its peak in the middle and falls off on either side.

The above “lower than 130” answer when r = 0.6 is consistent with the answer
in the extreme case where r = 0. In this case, if we look at all of the pairs with girls
who have an IQ of 130 (or any other number, for that matter), the boys in these pairs
will have an average IQ of 100. This is true because if there is no correlation, then
knowledge of the girl’s IQ is of no help in predicting the boy’s IQ; it is completely
random. In the other extreme where r = 1 (perfect correlation), all of the boys in the
“130-girls” pairs will have an IQ of exactly 130, so their average will also be 130.
The answer to the question is then “equal to 130.” But any degree of non-perfect
correlation will change the answer to “lower than 130.”

Let’s take our setup one step further. We found that girls with an IQ of 130
are paired with boys who have an average IQ of 118. What if we now look at all
boys with an IQ of 118? Can we use some sort of symmetry reasoning to say that
these boys will be paired with girls whose IQ is 130, on average? No, because when
we look at all boys with an IQ of 118 (plus or minus a little), this corresponds to
looking at the vertical shaded strip in Fig. 6.22. This strip represents a different set
of pairs from the ones in the horizontal shaded strip, which means that any attempt
at a symmetry argument is invalid. We’re talking about a different group of pairs,
so it’s apples vs. oranges.

The average IQ of the girls in the pairs lying in the x = 18 (or really 118)
vertical shaded strip is given by the intersection (indicated by the lower large solid
dot) of the vertical shaded strip with the lower regression line. Again, this is exactly
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what the lower regression line is good for. This line passes through (on average) the
middle of the distribution of points in any vertical strip.

From Fig. 6.15, we know that the slope of the lower regression line is r times
the slope of the standard-deviation line, which is 1 here. So the slope of the lower
regression line is 0.6. Its intersection point (the lower large solid dot) with the
vertical strip at x = 18 therefore has a y value of (0.6)(18) = 10.8. (Note that 10.8
equals r2 · 30 = (0.6)2 · 30. This is the same factor of r2 that we found above in the
test-retaking example.) Geometrically, in the vertical strip, the lower solid dot has r
times the height of the hollow dot. So 10.8 (or rather 110.8) is the desired average
IQ of girls who are in pairs where the boy has an IQ of 118. But as above, we
can’t logically conclude that boys are smarter than girls or that boys actively pick
girls with a lower IQ. The smaller average is simply a consequence of the partially
random nature of girl/boy pairings.

As mentioned above, the calculations in this example are essentially the same
as in the above test-retaking example. This is evidenced by the fact that Fig. 6.22
has exactly the same structure as Fig. 6.20, although we didn’t draw the standard-
deviation line (with a slope of

√
2 ) in Fig. 6.20.

6.9 Least-squares fitting
In Section 6.4 we saw that the lower regression line yields the best prediction for Y ,
given X . We’ll now present a different (but very much related) interpretation of the
lower regression line.

Assume that we are given a collection of n points (xi , yi ) in the plane, for exam-
ple, the 20 points we encountered in Fig. 6.10. How do we determine the “best-fit”
line that passes through the points? That is, how do we pick the line that best de-
scribes the collection of points? Well, the first thing we need to do is define what
we mean by “best.” Depending on what definition we use, we might end up with
any of a variety of lines, for example, any of the four lines in Fig. 6.15.

We’ll go with the following definition: The best-fit line is the line that minimizes
the sum of the squares of the vertical distances from the given points to the line. For
example, in Fig. 6.23 the best-fit line of the given 10 points is the line that minimizes
the squares of the 10 vertical distances shown. Other definitions of the best-fit line
are possible, but this one has many nice properties. The seemingly simpler definition
involving just the sum of the distances (not squared) has drawbacks; see the remark
in the solution to Problem 6.11.

How do we mathematically determine this “least-squares” line, given a set of
n points (xi , yi ) in the plane? If the line takes the form of y = Ax + B, then the
vertical distances are |yi − (Axi + B) |. So our goal is to determine the parameters
A and B that minimize the sum,

S ≡
n∑
1

[
yi − (Axi + B)

]2. (6.42)

This minimization task involves some straightforward but tedious partial differen-
tiation. If you don’t know calculus yet, you can just skip to Eq. (6.46) below; the
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X

Y

Figure 6.23: The best-fit line is the line that minimizes the sum of the squares of the vertical
distances from the given points to the line.

math here isn’t terribly important. But the end result in Eq. (6.47) is very important.
And it is also rather pleasing; we will find that the “least-squares” line is none other
than the regression line! More precisely, it is the lower regression line, with slope
m = rσy/σx . See Fig. 6.15.

Let’s now do the math. If we expand the square in Eq. (6.42), we can write S as

S =
∑

y2
i − 2

∑
yi (Axi + B) +

∑
(Axi + B)2

=
∑

y2
i − 2A

∑
xi yi − 2B

∑
yi + A2

∑
x2
i + 2AB

∑
xi + nB2. (6.43)

All of the sums go from 1 to n. Since the (xi , yi ) points are given, these sums are
all known quantities. S is therefore a function of only A and B. To minimize this
function, we must set the partial derivatives of S with respect to A and B equal to
zero. This yields the following two equations:

∂S
∂A
= 0 =⇒ 0 = −

∑
xi yi + A

∑
x2
i + B

∑
xi ,

∂S
∂B
= 0 =⇒ 0 = −

∑
yi + A

∑
xi + nB. (6.44)

Solving for B in the second equation and plugging the result into the first gives

0 = −
∑

xi yi + A
∑

x2
i +

(∑
yi − A

∑
xi

n

) ∑
xi . (6.45)

Solving for A (which is the slope of the y = Ax + B line) gives

A =
n
∑

xi yi −
∑

xi
∑

yi

n
∑

x2
i −

( ∑
xi

)2 . (6.46)

We can make this expression look a little nicer by multiplying both the numerator
and denominator by 1/n2. We’ll use brackets ⟨ ⟩ here to denote an average, so
(
∑

xi )/n ≡ ⟨x⟩, (
∑

xi yi )/n ≡ ⟨xy⟩, etc. (We’re changing notation from our usual x,
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xy, etc. notation for an average, because that would make the following expression
for A look rather messy and confusing.) The factors of n all work out nicely, and
we obtain the clean result,

A =
⟨xy⟩ − ⟨x⟩⟨y⟩
⟨x2⟩ − ⟨x⟩2

=
Cov(x, y)

s̃2
x

=
r s̃y
s̃x

(6.47)

The second expression here follows from the results of Problem 6.1, and the third
expression follows from Eq. (6.12), which yields Cov(x, y) = r s̃x s̃y . Our result for
A is about as simple as we could have hoped for, given the messiness of the original
expression for S in Eq. (6.43).

The slope A in Eq. (6.47) takes the same form as the slope m in Eq. (6.13),
with the distribution covariance Cov(X,Y ) replaced with the data-point covariance
Cov(x, y), and with the distribution standard deviations σx and σy replaced with
the data-point standard deviations s̃x and s̃y . The difference between these two
results is that the slope m in Eq. (6.13) was based on given distributions for X and Y
(equivalently, it was based on an infinite number of data points), whereas the slope
A in Eq. (6.47) is based on a finite number of data points. But when the number of
points is large, the distributions of x and y values mimic the underlying X and Y
distributions, so Cov(x, y) approaches Cov(X,Y ), and the s̃’s approach the σ’s. The
slope A of the least-squares line therefore approaches the slope m of the regression
line for the complete distribution, as we promised above.

A→ m (large number of data points) (6.48)

This is a splendid result, although not so surprising. Both the least-squares line
in the present section and the (lower) regression line in Section 6.4 minimize the
sum of the squared vertical distances from the line. The latter is true because (as we
saw in Section 6.4) it is true for any vertical strip.

To solve for B (the y-intercept of the y = Ax + B line), we can plug the A from
Eq. (6.46) into either of the equations in Eq. (6.44). The second one makes things
a little easier. After simplifying and rearranging the factors of n as we did when
producing the A in Eq. (6.47), we obtain

B =
⟨y⟩⟨x2⟩ − ⟨x⟩⟨xy⟩
⟨x2⟩ − ⟨x⟩2

= ⟨y⟩ − A⟨x⟩ (6.49)

The second expression here is derived in Problem 6.8. Note that B is zero if the
averages ⟨x⟩ and ⟨y⟩ are zero. Because of this, we usually aren’t too concerned with
B, since we can always arrange for it to be zero by measuring xi and yi relative
to their means (as we have generally been doing with the X and Y distributions
throughout this chapter). In this case, the best-fit line passes through the origin, and
the only parameter needed to describe the line is the slope A. This line is the same
as the lower regression line with slope m (assuming a large number of data points).

In the above derivations of A and B, we treated y as being dependent on x. But
what if we’re just given a blob of points in the plane, with x and y treated on equal
footing? There is then no reason why vertical distances should be given preference
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over horizontal distances. It is therefore just as reasonable to define the best-fit line
as the line that minimizes the sum of the squares of the horizontal distances from
the given points to the line. Due to all the symmetry we’ve seen earlier in this
chapter, it’s a good bet that this line will turn out to be the upper regression line.
And indeed, if we describe the best-fit line by the equation x = Cy + D, then the
sum of the squares of the horizontal distances is

S ≡
n∑
1

[
xi − (Cyi + D)

]2. (6.50)

To find the value of C that minimizes this sum, there is no need to go through all
of the above mathematical steps again, because all we’ve done is modify Eq. (6.42)
by interchanging x and y, replacing A with C, and replacing B with D. C is there-
fore obtained by simply letting x ↔ y in Eq. (6.47), which gives (using the fact that
Cov(y, x) = Cov(x, y))

C =
Cov(x, y)

s̃2
y

=
r s̃x
s̃y
. (6.51)

D is found similarly by switching x and y in Eq. (6.49). But if we assume that
the means ⟨x⟩ and ⟨y⟩ are zero, then D equals zero, just as B does. The x = Cy + D
line therefore takes the form of x = (r s̃x/s̃y )y, which has the same form as the
upper regression line in Figure 6.15, namely X = (rσx/σy )Y .

So which of the two least-squares lines is the actual best-fit line? Is it the one
involving vertical distances, or the one involving horizontal distances? Well, if
you’re considering y to be dependent on x, then the lower regression line is the
best-fit line. It minimizes the variance of the yi values measured relative to the
Axi + B values on the line. Conversely, if you’re considering x to be dependent
on y, then the upper regression line is the best-fit line. It minimizes the variance
of the xi values measured relative to the Cyi + D values on the line. Note that if
you’re given an elliptical blob of points in the x-y plane, you might subconsciously
think that the best-fit line that serves both of the preceding purposes is the symmetry
axis of the ellipse (the short-dashed line in Figure 6.15). But this line in fact serves
neither of the purposes.

Remark: Continuing the discussion following Eq. (6.49), let’s talk a little more about mea-
suring xi and yi relative to their means. Since the second expression for B in Eq. (6.49) tells
us that the y = Ax + B line takes the form of y = Ax + (⟨y⟩ − A⟨x⟩), it immediately follows
that the point (⟨x⟩,⟨y⟩) satisfies this equation. That is, the point (⟨x⟩,⟨y⟩) lies on the line.
(This is no surprise, and you might have just assumed it was true anyway.) Therefore, if we
shift the origin to the point (⟨x⟩,⟨y⟩), then the least-squares line is the line passing through
the origin with a slope given by the A in Eq. (6.47).

Note that measuring xi and yi relative to their means doesn’t affect A, because A is
independent of the averages ⟨x⟩ and ⟨y⟩. This is intuitively clear; shifting the blob of points
and the best-fit line around in the plane doesn’t affect the distances to the line, so it doesn’t
affect our derivation of A. Mathematically, this independence follows from the fact that both
Cov(x, y) and s̃2

x in Eq. (6.47) are independent of ⟨x⟩ and ⟨y⟩. This is true because the
expressions in Eq. (6.11) and Eq. (3.60) involve only the differences between xi values and
their mean x (likewise for y). And shifting all of the xi values by a fixed amount changes x
by this same amount, so the differences xi − x are unaffected. ♣
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6.10 Summary
• Let Y be given by Y = mX + Z , where X and Z are independent variables.

Then the correlation coefficient r between X and Y is defined as the fraction
of the standard deviation of Y that comes from X . It is given by

r ≡ mσx

σy
=

mσx√
m2σ2

x + σ
2
z

. (6.52)

It can also be written as
r ≡ Cov(X,Y )

σxσy
, (6.53)

where the covariance is defined as

Cov(X,Y ) ≡ E
[
(X − µx )(Y − µy )

]
. (6.54)

• If you are instead just given a collection of data points in the x-y plane, with-
out knowing the underlying distributions, then Eq. (6.53) turns into

r =
Cov(x, y)

s̃x s̃y
=

∑
(xi − x)(yi − y)√∑

(xi − x)2
√∑

(yi − y)2
. (6.55)

• The higher the correlation, the greater the degree to which knowledge of X
helps predict Y . A measure of how much better the prediction is (compared
with the naive guess of the mean of Y ) is

σ2
z

σ2
y

= 1 − r2. (6.56)

• Given r , along with σx and σy , the probability density in the x-y plane is

ρ(x, y) =
1

2πσxσy

√
1 − r2

exp *,− 1
2(1 − r2)

*, x2

σ2
x

+
y2

σ2
y

− 2r xy
σxσy

+-+- .
(6.57)

This density is symmetric in x and y (and σx and σy ).

• There are two regression lines. If Y is considered to be dependent on X , then
the lower regression line is relevant. This line gives the average value of Y
for any given X . Its slope is m = rσy/σx . If instead X is considered to be
dependent on Y , then the upper regression line is relevant. This line gives the
average value of X for any given Y . Its slope is σy/rσx .

• If a group of people score y1 points above the mean on a test, and if they take
the test (or an equivalent one) again, then their average score on the second
test will be yavg = r2y1 points above the mean (for a large number of data
points), where r is the correlation coefficient between the actual score and
innate ability. Since r ≤ 1, the average new score is closer to the mean than
the old score was (except in the r = 1 case of perfect correlation, where it is
the same). This effect is known as regression toward the mean.



318 Chapter 6. Correlation and regression

• Given a set of data points in the x-y plane, the best-fit line is customarily
defined as the least-squares line. This line has slope

A =
Cov(x, y)

s̃2
x

=
r s̃y
s̃x
, (6.58)

which takes the same form as the slope m given in Eq. (6.13) for the lower
regression line.

6.11 Exercises

See www.people.fas.harvard.edu/ ˜djmorin/book.html for a supply of problems
without included solutions.

6.12 Problems

Section 6.3: The correlation coefficient r

6.1. Alternative forms of Cov(x,y) and s̃ *

(a) Show that the Cov(x, y) defined in Eq. (6.11) can be written as ⟨xy⟩ −
⟨x⟩⟨y⟩. (⟨x⟩ means the same thing as x.

)
(b) Show that the s̃2 defined in Eq. (3.60) can be written as ⟨x2⟩ − ⟨x⟩2.

6.2. Rescaling X **
Using Eq. (6.9), we showed in the third remark on page 287 that the correla-
tion coefficient r doesn’t change with a uniform scaling of X or Y . Demon-
strate this again here by using the expression for r in Eq. (6.6).

6.3. Uncorrelated vs. independent **
If two random variables X and Y are independent, are they necessarily also
uncorrelated? If they are uncorrelated, are they necessarily also independent?

Section 6.5: Calculating ρ(x, y)

6.4. Sum of two Gaussians *** (calculus)

Given two independent Gaussian distributions X and Y with standard devia-
tions σx and σy , show that the sum Z ≡ X +Y is a Gaussian distribution with

standard deviation
√
σ2

x + σ
2
y . You may assume without loss of generality

that the means are zero.

6.5. Maximum ρ(x, y) * (calculus)

For a given y0, what value of x maximizes the probability density ρ(x, y0) in
Eq. (6.34)?
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Section 6.8: Two regression examples

6.6. Distribution on a second test **
Consider the 70 people who scored (roughly) 130 on the IQ test in the exam-
ple in Section 6.8.1. If these people take a second test, describe the distribu-
tion of the results. You can do this by finding the σx , σy , σz , m, r , µx , and
µy values associated with the scatter plot of the (X,Y ) values.

6.7. One standard deviation above the mean **
Assume that for a particular test, the correlation coefficient between the score
Y and innate ability X is r . Consider a person with an X value that is one
standard deviationσx above the mean. What is the probability that this person
scores at least one standard deviation σy above the mean? Assume that all
distributions are Gaussian. (To give a numerical answer to this problem, you
would need to be given r . And you would need to use a table or a computer.
It suffices here to state the value of the standard deviation multiple that you
would plug into the table or computer.)

Section 6.9: Least-squares fitting

6.8. Alternate form of B *
Show that the second expression for B in Eq. (6.49) equals the first.

6.9. Finding all the quantities **
Given five (X,Y ) points with values (2,1), (3,1), (3,3), (5,4), (7,6), calcu-
late (with a calculator) all of the quantities referred to in the five steps listed
on page 290. Also calculate the B in Eq. (6.49), and make a rough plot of the
five given points along with the regression (least-squares) line.

6.10. Equal distances ** (calculus)

In Section 6.9 we defined the best-fit line as the line that minimizes the sum
of the squares of the vertical distances from the given points to the line. Let’s
kick things down a dimension and look at the 1-D case where we have n
values xi lying on the x axis. We’ll define the “best-fit” point as the value of
x (call it xb) that minimizes the sum of the squares of the distances from the
n given xi points to the xb point.

(a) Show that xb is the mean of the xi values.

(b) Show that the sum of all the distances from xb to the points with xi > xb
equals the sum of all the distances from xb to the points with xi < xb.

6.11. Equal distances again ** (calculus)

Returning to 2-D, show that the sum of all the vertical distances from the
least-squares line to the points above it equals the sum of all the vertical dis-
tances from the line to the points below it. Hint: Consider an appropriate
partial derivative of the sum S in Eq. (6.42).



320 Chapter 6. Correlation and regression

6.13 Solutions
6.1. Alternative forms of Cov(x,y) and s̃

(a) Starting with the definition in Eq. (6.11), we have

Cov(x, y) =
1
n

∑ (
xi − ⟨x⟩

) (
yi − ⟨y⟩

)
=

1
n

(∑
xi yi −

∑
xi ⟨y⟩ −

∑
yi ⟨x⟩ + n⟨x⟩⟨y⟩

)
=

∑
xi yi
n
−

∑
xi

n
⟨y⟩ −

∑
yi

n
⟨x⟩ + ⟨x⟩⟨y⟩

= ⟨xy⟩ − ⟨x⟩⟨y⟩ − ⟨y⟩⟨x⟩ + ⟨x⟩⟨y⟩
= ⟨xy⟩ − ⟨x⟩⟨y⟩. (6.59)

as desired. In the limit of a very large number of data points, the above aver-
ages reduce to the expectation values for the underlying distributions. That is,
⟨xy⟩ → E(XY ), ⟨x⟩ → E(X ) ≡ µx , and ⟨y⟩ → E(Y ) ≡ µy . The above result
therefore reduces to Eq. (6.14).

(b) Starting with the definition in Eq. (3.60), we have

s̃2 =
1
n

∑ (
xi − ⟨x⟩

)2

=
1
n

(∑
x2
i − 2

∑
xi ⟨x⟩ + n⟨x⟩2

)
=

∑
x2
i

n
− 2

∑
xi

n
⟨x⟩ + ⟨x⟩2

= ⟨x2⟩ − 2⟨x⟩2 + ⟨x⟩2

= ⟨x2⟩ − ⟨x⟩2, (6.60)

as desired. As in part (a), in the limit of a very large number of data points, the
above averages reduce to the expectation values for the underlying distributions.
The above result therefore reduces to σ2

x = E(X2) − µ2
x , which is equivalent

to Eq. (3.50). Eq. (6.60) is a special case of Eq. (6.59), when x = y. More
precisely, when each yi equals the corresponding xi , the covariance reduces to
the variance.

6.2. Rescaling X

If we let X ′ ≡ aX and Y ′ ≡ bY , what form does the Y = mX + Z relation in Eq. (6.2)
take when written in terms of X ′ and Y ′? We need to generate some X ′ and Y ′ (that
is, some aX and bY ) terms, so let’s multiply Y = mX + Z through by b, and let’s also
multiply the mX term by 1 in the form of a/a. This gives

bY = b
m
a

aX + bZ =⇒ Y ′ =
bm
a

X ′ + bZ =⇒ Y ′ = m′X ′ + bZ, (6.61)

where m′ ≡ bm/a. Note that Eq. (3.41) tells us that σx′ = aσx and σy′ = bσy .
Using the expression for r in Eq. (6.6), the correlation coefficient r ′ between X ′ and
Y ′ is then

r ′ =
m′σx′
σy′

=
(bm/a)(aσx )

bσy
=

mσx
σy

= r, (6.62)

as desired. Fig. 6.24 shows a scenario with a = 2 and b = 1. In the first plot, we have
chosen σx = 1, σy = 1, with r = 0.8. So the second plot has σx = 2, σy = 1, with r
again equaling 0.8.
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Figure 6.24: The second plot is obtained by stretching the first plot by a factor of 2
in the X direction.The correlation coefficients for the two plots are the same.

6.3. Uncorrelated vs. independent
Assume that the two variables are independent. Then we know from Eq. (3.16) that
the expectation value of the product equals the product of the expectation values. The
covariance in Eq. (6.14) (the expression in Eq. (6.7) would work just as well) therefore
becomes

Cov(X,Y ) = E(XY ) − µx µy = E(X )E(Y ) − µx µy = 0, (6.63)

because µx ≡ E(X ) and µy ≡ E(Y ). The correlation coefficient r in Eq. (6.9) is
then zero. The answer to the first question posed in this problem is therefore “yes.”
That is, if two random variables X and Y are independent, then they are necessarily
also uncorrelated. In short, the logic comes down to the fact that P(x, y) = P(x)P(y)
(which is the condition for independence; see Eq. (3.10)) implies via Theorem 3.2 that
E(XY ) = E(X )E(Y ) (which is the condition for Cov(X,Y ) = 0; see Eq. (6.14)).
Now assume that the two variables are uncorrelated. It turns out that they are not
necessarily independent. That is, E(XY ) = E(X )E(Y ) does not imply P(x, y) =
P(x)P(y). The quickest way to see why this is the case is to generate a counterex-
ample. Let X be a discrete random variable taking on the three values of −1, 0, and
1 with equal probabilities of 1/3. And let Y = |X |. Then the three points in the X-Y
plane shown in Fig. 6.25 all occur with equal probabilities of 1/3.

X

Y

1

1

-1

Figure 6.25: If the three points shown have equal probabilities of 1/3, then X and Y
are uncorrelated and dependent.

You can quickly show that E(XY ) and E(X ) ≡ µx are both equal to zero, which means
that the Cov(X,Y ) in Eq. (6.63) is zero. (Consistent with this, we have E(XY ) =
E(X )E(Y ), with the common value being zero.) Therefore r = 0. However, the
P(x, y) = P(x)P(y) condition for independence is not satisfied, because, for exam-
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ple, P(0,0) = 1/3 whereas P(0)P(0) = (1/3)(1/3) = 1/9. Intuitively, the variables
are clearly dependent, because if X = 0 then Y is guaranteed to be 0; so Y certainly
depends on X . The variables X and Y are therefore (linearly) uncorrelated but depen-
dent.
For a counterexample involving continuous variables, let X be uniformly distributed
from −1 to 1, and let Y = X2. Then you can quickly show that E(XY ) and E(X ) are
both equal to zero, which implies that r = 0. But X and Y certainly depend on each
other.
To sum up: If two random variables are independent, then they are uncorrelated. The
contrapositive of this statement is also true: If two random variables are correlated,
then they are dependent. However, the converses of the preceding two statements
are not valid. That is, if two random variables are uncorrelated, then they are not
necessarily independent. And if two random variables are dependent, then they are
not necessarily correlated. These results are summarized in Table 6.2, which in-
dicates which combinations are possible. The only impossible combination is cor-
related/independent. Remember that throughout this chapter, we are always talking
about linear correlation.

Independent Dependent

Uncorrelated

Correlated

YES

YES

YES

NO

Table 6.2: Relations between (un)correlation and (in)dependence.

6.4. Sum of two Gaussians
There is some overlap between this calculation and the one we did in Section 6.5
when we derived ρ(x, y). We could actually make use of that result to save us some
time here, but let’s work things out from scratch to get some practice. The solution
we’ll give here is a standard one involving integration. We’ll be a bit pedantic. Many
treatments skip the initial material here and effectively just start with Eq. (6.68); see
the fourth remark below. If you don’t like the following (somewhat involved) solution,
we’ll present a slick geometric solution in the fifth remark below.
Since X and Y are independent variables, the joint probability of picking an X value
that lies in a little span dx around x and a Y value that lies in a little span dy around y

equals the product of the probabilities, that is,
(
ρx (x) dx

) (
ρy (y) dy

)
. In other words,

the probability ρ(x, y) dx dy
(
by the definition of ρ(x, y)

)
of picking X and Y values

that lie in a little area dx dy around the point (x, y) equals

ρ(x, y) dx dy = ρx (x)ρy (y) dx dy. (6.64)

Now, a line described by the equation x + y = C, where C is a constant, has a slope
of −1. Therefore, the shaded strip in Fig. 6.26(a) shows the values of X and Y that
yield values of Z = X +Y that lie within a range ∆z around a given value of z. (We’ll
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assume that z corresponds to the value at the middle of the strip, although it doesn’t
matter exactly how z is defined if ∆z is small.) The total probability of obtaining a
point (x, y) that lies in the shaded strip is found by integrating the above expression
for ρ(x, y) over the strip:

P(lie in strip) =
∫

strip
ρ(x, y) dx dy =

∫
strip
ρx (x)ρy (y) dx dy. (6.65)

dx

X

Y

z

z

(a) (b)

∆z

∆z

Figure 6.26: (a) The shaded strip indicates the values of X and Y that yield values of
Z = X + Y that lie within a range ∆z around z. (b) A zoomed-in view of the shaded
area, divided into thin rectangles with width dx and height ∆z.

Since the probability of obtaining an (x, y) point that lies in the strip is the same as the
probability of obtaining a Z value that lies within a range ∆z around z, and since the
latter probability is ρz (z) ∆z by definition (assuming ∆z is small), we have

P(lie in strip) = ρz (z) ∆z. (6.66)

Our goal is therefore to calculate the integral in Eq. (6.65) and then equate it with
ρz (z) ∆z. This will give us the distribution ρz (z), which we will find has the desired
Gaussian form.

In Fig. 6.26(b) we have divided the shaded strip into thin rectangles, each with width
dx and height ∆z. We will assume here that dx is much smaller than ∆z, so in the
dx → 0 limit the thin rectangles exactly cover the strip. Since Z = X + Y , the y

value in a given rectangle is y = z − x. The y value actually varies by ∆z within each
rectangle, but since ∆z is small, we can say that y is essentially equal to z − x over
the whole (tiny) rectangle. The integral of ρ(x, y) over each tiny rectangle is therefore
equal to the (essentially) uniform value of ρx (x)ρy (z − x) times the area dx ∆z:∫

rectangle
ρ(x, y) dx dy = ρx (x)ρy (z − x) dx ∆z. (6.67)

In other words, the integration over y is simply a multiplication by ∆z, at least for the
way we sliced up the strip into thin vertical rectangles.

We now need to perform the integration over x. That is, we need to integrate the result
in Eq. (6.67) over all the little rectangles. This will give us the integral over the entire
shaded strip, that is, it will give us ρz (z) ∆z. Using the explicit Gaussian form of the
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ρ’s from Eq. (4.42), with the means equal to zero, we obtain

ρz (z) ∆z =
∫ ∞

−∞
ρx (x)ρy (z − x) dx ∆z

=⇒ ρz (z) =
1

√
2πσx

1
√

2πσy

∫ ∞

−∞
e−x

2/2σ2
x e−(z−x)2/2σ2

y dx. (6.68)

To evaluate this integral, we will complete the square in the exponent. This will require
some algebraic manipulation. With S ≡ σ2

x + σ
2
y , the exponent equals

−1
2
*, x2

σ2
x

+
(z − x)2

σ2
y

+- = − 1

2σ2
xσ

2
y

(
(σ2

x + σ
2
y )x2 − 2σ2

x zx + σ2
x z2

)
= − S

2σ2
xσ

2
y

*,x2 − 2σ2
x z

S
x +
σ2
x z2

S
+-

= − S

2σ2
xσ

2
y

*,x − σ
2
x z
S

+-
2

− *,σ
2
x z
S

+-
2

+
σ2
x z2

S


= − S

2σ2
xσ

2
y

*,x − σ
2
x z
S

+-
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− S

2σ2
xσ

2
y

*,−σ
4
x + Sσ2

x

S2
+- z2

= − S

2σ2
xσ

2
y

*,x − σ
2
x z
S

+-
2

− z2

2S
, (6.69)

as you can verify. When we plug this expression for the exponent back into Eq. (6.68),
the z2/2S term is a constant, as far as the x integration is concerned, so we can take
it outside the integral. The remaining x integral is a standard Gaussian integral given
by Eq. (4.118) in Problem 4.22, with b ≡ S/(2σ2

xσ
2
y ). (The integral is centered at

σ2
x z/S instead of zero, but that doesn’t matter, because the limits are ±∞.) Eq. (6.68)

therefore becomes

ρz (z) =
1

√
2πσx

1
√

2πσy
e−z

2/2S ·
√

π

S/(2σ2
xσ

2
y )

=
1

√
2π

√
σ2
x + σ

2
y

e−z
2/2(σ2

x+σ
2
y ) . (6.70)

This is a Gaussian distribution with standard deviation
√
σ2
x + σ

2
y , as desired.

Remarks:

1. If the means µx and µy aren’t zero, we can define new variables X ′ ≡ X − µx
and Y ′ ≡ Y − µy . These have zero means, so by the above reasoning, the sum
Z ′ = X ′ + Y ′ is a Gaussian with zero mean. The sum

Z = X + Y = (X ′ + µx ) + (Y ′ + µy ) = Z ′ + (µx + µy ) (6.71)

is therefore a Gaussian with mean µx + µy .

2. Without doing any work, we already knew from Eq. (3.42) that the standard de-
viation of Z is given by σ2

z = σ
2
x +σ

2
y . (Standard deviations add in quadrature,

for independent variables.) But it took the above calculation to show that the
shape of the Z distribution is actually a Gaussian.
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3. The result of this problem also holds for the difference of two Gaussians. That is,
if X and Y are independent Gaussians with standard deviations σx and σy , then

Z ≡ X−Y is a Gaussian with standard deviation
√
σ2
x + σ

2
y . This follows from

writing Z as X + (−Y ) and noting that −Y has the same standard deviation as Y ,

namely σy . Note that the standard deviation of Z ≡ X − Y is not
√
σ2
x − σ2

y .

Consider the special case where Z is the difference between two independent
and identically distributed variables X1 and X2, each with standard deviation
σx . Then the preceding paragraph tells us that Z is a Gaussian with standard

deviation
√

2σx . The incorrect
√
σ2
x − σ2

y answer mentioned above would
yield σz = 0, which certainly can’t be correct, because it would mean that Z is
guaranteed to take on one specific value.

4. A quicker and less rigorous solution to this problem is to say that if the sum
X + Y takes on the particular value z, and if we are given x, then y must equal
z − x. Integrating over x (to account for all of the different ways to obtain z)
yields the second line in Eq. (6.68). So we can basically just start the solution
with that equation. However, we chose to include all of the reasoning leading up
to Eq. (6.68), because things can get confusing if you don’t clearly distinguish
between probability densities, such as ρx (x) and ρ(x, y), and actual probabili-
ties, such as ρx (x) dx and ρ(x, y) dx dy. It can also get confusing if you don’t
distinguish between the different roles of dx and ∆z. The former is an infinitesi-
mal integration variable, while the latter is the vertical width of the shaded strip
in Fig. 6.26. Although technically the definition of the probability density ρz (z)
in Eq. (4.2) requires that ∆z be infinitesimal, we often think of it as simply being
small.

5. There is a slick alternative geometric argument that shows why the sum Z of
two independent Gaussian distributions X and Y is again a Gaussian. We’ll just
sketch the idea here; you can fill in the gaps. Consider first the case where X
and Y have the same standard deviation σ. Then

ρ(x, y) = ρx (x)ρy (y) ∝ e−(x2+y2)/2σ2
= e−r

2/2σ2
, (6.72)

where r is the radius in the x-y plane. Since ρ(x, y) depends only on r (and not
on the angle θ in the plane), we see that ρ(x, y) has circular symmetry.
As in our original solution, the values of ρz (z) for different values of z are
proportional to the integrals of ρ(x, y) over the various thin strips tilted at a 45◦

angle shown in Fig. 6.27(a). We now note that due to the circular symmetry
of ρ(x, y), the integrals over the strips are unchanged if we rotate the figure
around the origin so that we end up with the vertical strips shown in Fig. 6.27(b).
But we know that the integrals over these vertical strips are proportional to the
original ρx (x) values, because integrating over all the y values in a strip just
leaves us with ρx (x) dx, by definition. Therefore, since ρx (x) is a Gaussian,
ρz (z) must be also. To determine σz , you can simply invoke Eq. (3.42), or you
can use the following reasoning. If the circle shown in Fig. 6.27 has x and y

intercepts of ±σ, then the rightmost strip in the right figure corresponds to one
standard deviation σz of the Z distribution, because this strip corresponds to one
standard deviation σx of the X distribution. But from the left figure, this strip is
associated with the z value of

√
2σ, because the point (x, y) =

(
σ/
√

2,σ/
√

2
)

lies in the strip, which means that the corresponding z value is z = x+y =
√

2σ.
Hence σz =

√
2σ.
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X

(a) (b)

X

Y
Y

Figure 6.27: (a) Each value of z corresponds to a particular shaded strip. (b)
Due to the circular symmetry of ρ(x, y), the integrals of ρ(x, y) over the strips
aren’t affected by a rotation in the plane. Therefore, since the vertical strips
in the right figure yield the Gaussian ρx (x) distribution, the diagonal strips
associated with ρz (z) in the left figure must also yield a Gaussian distribution.

More generally, if X and Y have different standard deviations, then we have
elliptical instead of circular symmetry in the plane. But if we stretch/squash one
of the axes by the appropriate factor, we obtain circular symmetry, whereupon
the above argument holds. It takes a little work to show geometrically that
σ2
z = σ

2
x + σ

2
y . But again, you can find σz by simply invoking Eq. (3.42). ♣

6.5. Maximum ρ(x, y)
First solution: Given y, we can maximize ρ(x, y) by taking the partial derivative
with respect to x. The exponent in Eq. (6.34) contains all of the dependence on x and
y. Taking the partial derivative of the exponent with respect to x, and setting the result
equal to zero, gives

0 =
2x

σ2
x

− 2ry
σxσy

=⇒ x =
rσx
σy

y. (6.73)

In the case at hand where y = y0, we see that ρ(x, y) is maximized when x =
(rσx/σy )y0.

Second solution: We claim that the desired value of x is given by the intersection
of the horizontal y = y0 line with the upper regression line. Since we know from
Fig. 6.15 that the equation for this line is y = (σy/rσx )x, we obtain

y0 =
σy

rσx
x =⇒ x =

rσx
σy

y0, (6.74)

in agreement with the first solution.
The above claim can be justified as follows. As we saw in Section 6.5, the curves of
constant ρ(x, y) are ellipses. Two are shown in Fig. 6.28. The larger the ellipse, the
smaller the value of ρ(x, y). The smallest ellipse that contains a point with a y value of
y0 is the inner ellipse shown in the figure. This ellipse is tangent to the horizontal line
y = y0. The value of ρ(x, y) at the point B shown is larger than the value at points A
and C, because these points lie on a larger ellipse. The point B therefore has the largest
value of ρ(x, y) among all points on the horizontal line y = y0; all other points lie on
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ellipses that are larger than the “B” ellipse. Our goal is therefore to find the x value
of the point B. But point B, being the highest point on the ellipse on which it lies, is
located on the upper regression line, because this line passes through the highest and
lowest points of every ellipse. That is how we defined the upper regression line at the
beginning of Section 6.7. This proves the above claim.

Y =        X

Y

X

A B C

rσy

σx

___

Y =        X
rσx

σy___

y0

Figure 6.28: The value of ρ(x, y) at B is larger than at A and C, because B lies on a
smaller ellipse. B therefore has the largest ρ(x, y) among all points on the line y = y0.

Since we know from Section 6.7 that the upper regression line gives the average value
of x associated with a given y, we can phrase the result of this problem as: For a given
y0, the value of x that maximizes ρ(x, y0) is the average value of x associated with y0.

6.6. Distribution on a second test
Fig. 6.29 shows what the scores on a second test might look like. We have increased
the number of points from 70 to 700, just to smooth out the scatter plot. (You can
pretend that there were 50,000 points in Fig. 6.20.) Although the 700 people all scored
the same on the first test, they certainly won’t all score the same on the second test.
However, if these 700 people were to take a third test (or any number of additional
tests), their scores would look the same (on average) as they do in Fig. 6.29. We found
in Section 6.8.1 that both the average innate ability and the average score of this group
of people on the second test is 115. So if we measure X and Y relative to 100, the blob
of points is centered at (µx , µy ) = (15,15).
What standard deviations did we use in numerically generating Fig. 6.29? σz still
has a value of 15/

√
2 = 10.6 (from the paragraph preceding Eq. (6.38)). That never

changes, since Z is independent of X . But σnew
x now equals σold

x

√
1 − r2, because

our 70 (or 700) points all came from a horizontal strip in Fig. 6.20, and the superscript
on the Z in Eq. (6.36) tells us that σold

x

√
1 − r2 is the standard deviation of the spread

of points in any horizontal strip. Since we know from Section 6.8.1 that r = 1/
√

2
and σold

x = 15/
√

2, we have

σnew
x = σold

x

√
1 − r2 =

15
√

2

√
1 − 1

2
=

15
2
= 7.5. (6.75)

So the values we used in generating Fig. 6.29 were σnew
x = 7.5 and σz = 10.6. And
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Y, 2nd-test score

45 4515 15- -30 30-

15

15

-

30

30

-

45

45

-

X, innate ability

Figure 6.29: The second-test scores of 700 people with the same distribution of innate
abilities as the 70 people in the shaded strip in Fig. 6.20.

m still equals 1, because the relation Y = X + Z still holds; the change in the spread
of the X values of the people we happen to be looking at doesn’t affect this relation.
What is the standard deviation of the Y values in Fig. 6.29? From Eq. (6.5) we have

σnew
y =

√
m2(σnew

x )2 + σ2
z =

√
(1)2(7.5)2 + (10.6)2 = 13. (6.76)

This is smaller that the σy = 15 value in Fig. 6.20, because the smaller spread in the X
values affects Eq. (6.5) via σx . From Eq. (6.6) the correlation coefficient for Fig. 6.29
is

rnew =
mσnew

x

σnew
y

=
(1)(7.5)

13
= 0.58. (6.77)

If you work out the numbers exactly, r turns out to be 1/
√

3. This is smaller than the
r = 1/

√
2 value in Eq. (6.38) for Fig. 6.20, because a smaller fraction of σy comes

from σx (since σx is smaller). A larger fraction of σy comes from σz (which is
unchanged). To summarize, in addition to (µx , µy ) = (15,15), the values associated
with Fig. 6.29 are

σnew
x = 7.5, σnew

y = 13, σz = 10.6, m = 1, rnew = 0.58. (6.78)

Remark: The regression line shown in Fig. 6.29 passes through the origin. Although
this isn’t the case in general when the blob of points isn’t centered at the origin, it is
the case here for the following reason. We know that the center of the blob lies on the
lower regression line in Fig. 6.20; that’s how we found the center, after all. And the
regression line in Fig. 6.29 has the same slope (namely m = 1) as the lower regression
line in Fig. 6.20, because both plots are governed by the same relation, Y = X + Z . So
the line must pass through the origin in Fig. 6.29. Another way to see why this is true
is to recall that the regression line gives the average score for each value of X . And
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the average score of an X = 0 person is still Y = 0 (where 0 really means 100 here),
because the Z values average out to zero; this doesn’t depend on which figure we’re
looking at. ♣

6.7. One standard deviation above the mean
The expected score of a person with any particular value of X is given by the associated
point on the lower regression line. This line takes the form of Y = mX , where m =
rσy/σx from Fig. 6.15. (We’ll work with a general m here, even though m = 1 in our
test-taking setups with Y = X + Z .) The expected score (relative to the mean score) of
someone with an X value of σx (relative to the mean innate ability) is therefore

Y =
rσy
σx
· σx = rσy . (6.79)

This is just the rσy vertical distance shown in Fig. 6.16. To find the probability that
the person achieves a score of at least σy , note that σy exceeds the expected test score
of rσy by

σy − rσy = σy (1 − r). (6.80)

This is indicated in Fig. 6.30. We have drawn the standard-deviation box for clarity.

X

Y

rσy

(1-r)σy

Y =        X
rσy

σx

___

σy

σx

Figure 6.30: The expected Y value associated with an X value of σx is Y = rσy , and
σy exceeds this expected Y value by (1 − r)σy .

Now, since Y = mX + Z , the probability distribution of anyone’s score is centered on
the associated point on the lower regression line and has a standard deviation of σz .
But σz = σy

√
1 − r2 from Eq. (6.18). So for our given person with X = σx , a score

of σy exceeds the expected score of rσy by

σy (1 − r)

σy
√

1 − r2
=

√
1 − r
1 + r

(6.81)

of the σz standard deviations.
To produce a numerical answer to this problem, we must be given a numerical value
for r . For example, if r = 0.5, then

√
(1 − r)/(1 + r) = 0.58. From a table or

computer, it can be shown that the probability of lying outside of 0.58 standard de-
viations from the mean is 0.56 (assuming a Gaussian distribution). But we must di-
vide by 2 because we’re concerned only with the upper tail of the Gaussian. So the
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desired probability is 0.28. The situation is shown in Fig. 6.31. If r = 0.5 then
σz = σy

√
1 − (0.5)2 = (0.87)σy . We have arbitrarily chosen σy = σx in the figure

(and we have set them both equal to 1; the standard-deviation box is shown), but this
doesn’t affect our results. If r = 0.5, then σz = (0.87)σy , no matter how σx and
σy are related. The σz = 0.87 standard deviation is indicated by the heavy arrows,
centered on the expected value given by the lower regression line. A visual inspection
of the figure is consistent with the fact that 28% of the dots in the vertical shaded strip
are expected to lie above the white dot with height Y = σy . In the present example
with r = 0.5, both of the rσy and (1 − r)σy vertical distances in Fig. 6.30 are equal
to (0.5)σy . The upper of these (identical) distances is therefore (0.5)/(0.87) = 0.58
times σz , as we found above by plugging r = 0.5 into Eq. (6.81).

X, innate ability

Y, score

- - -3 2 1 2 3

-

-

-3

2

1

1

2

3

Figure 6.31: If r = 0.5, then σz = (0.87)σy . This standard deviation is indicated by
the heavy arrows, centered on the lower regression line. A person with X = σx has a
28% chance of scoring above Y = σy , indicated by the white dot. The square is the
standard-deviation box, with σx and σy arbitrarily chosen to be 1.

Remark: We can check some limits of the
√

(1 − r)/(1 + r) result in Eq. (6.81). If
r = 0 (no correlation), then Eq. (6.81) reduces to 1 of the σz standard deviations. This
makes sense, because the Y = mX + Z relation reduces to Y = Z when the correlation
coefficient r is zero (which comes about by having m → 0 or σz ≫ σx in Eq. (6.6)).
In this case, the lower regression line has slope zero, which means that it is simply
the X axis. So a score of σy (= σz ) above the overall mean of Y (which is zero)
is the same as a score of one σz standard deviation above the regression line (the X
axis). The desired probability is then 0.16, because this is half of the 1 − 0.68 = 0.32
probability of lying outside of one standard deviation.
If r = 1 (perfect correlation), then Eq. (6.81) reduces to 0 of the σz standard de-
viations. The desired probability is therefore 1/2, because that is the probability of
exceeding the mean of a Gaussian distribution (which is equivalent to lying outside
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of zero standard deviations from the mean). This result isn’t so obvious, because the
two relevant quantities in Eq. (6.81)

(
namely, the distance σy (1 − r) in Fig. 6.30, and

the standard deviation σz = σy
√

1 − r2 )
both go to zero as r approaches 1. But in

the r → 1 limit, the distance σy (1 − r) goes to zero faster than the standard deviation
σz = σy

√
1 − r2. So in Fig. 6.30, σy exceeds rσy by essentially zero of the σz

standard deviations. ♣
6.8. Alternate form of B

If we plug the first expression for A from Eq. (6.47) into the second expression for B
in Eq. (6.49), we obtain

B = ⟨y⟩ − A⟨x⟩

= ⟨y⟩ −
(
⟨xy⟩ − ⟨x⟩⟨y⟩
⟨x2⟩ − ⟨x⟩2

)
⟨x⟩

=

(⟨y⟩⟨x2⟩ −���⟨y⟩⟨x⟩2) − (⟨xy⟩⟨x⟩ −���⟨x⟩2⟨y⟩)
⟨x2⟩ − ⟨x⟩2

=
⟨y⟩⟨x2⟩ − ⟨x⟩⟨xy⟩
⟨x2⟩ − ⟨x⟩2

, (6.82)

which is correctly the first expression for B in Eq. (6.49).

6.9. Finding all the quantities
The means are

x =
2 + 3 + 3 + 5 + 7

5
= 4 and y =

1 + 1 + 3 + 4 + 6
5

= 3. (6.83)

The standard deviations are then

s̃x =

√
(2 − 4)2 + (3 − 4)2 + (3 − 4)2 + (5 − 4)2 + (7 − 4)2

5
= 1.79,

s̃y =

√
(1 − 3)2 + (1 − 3)2 + (3 − 3)2 + (4 − 3)2 + (6 − 3)2

5
= 1.90. (6.84)

The covariance is

Cov(x, y) = (2−4)(1−3)+(3−4)(1−3)+(3−4)(3−3)+(5−4)(4−3)+(7−4)(6−3)
5 = 3.2. (6.85)

The correlation coefficient r is then

r =
Cov(x, y)

s̃x s̃y
=

3.2
(1.79)(1.90)

= 0.94. (6.86)

The slope m of the lower regression line is

m =
r s̃y
s̃x
=

(0.94)(1.9)
1.79

= 1.0. (6.87)

Equivalently, Eq. (6.47) gives the slope A (which equals m) as

A =
Cov(x, y)

s̃2
x

=
3.2

(1.79)2 = 1.0. (6.88)
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It turns out that the A = m slope of the regression (least-squares) line is exactly equal
to 1, as we will see below.

If we want to use the first expression for B in Eq. (6.49), we must calculate ⟨x2⟩ and
⟨xy⟩. You can quickly show that these values are 19.2 and 15.2, respectively. So B
equals

B =
⟨y⟩⟨x2⟩ − ⟨x⟩⟨xy⟩
⟨x2⟩ − ⟨x⟩2

=
(3)(19.2) − (4)(15.2)

19.2 − 42 = −1. (6.89)

This result is exact. Alternatively and more quickly, the second expression for B
in Eq. (6.49) gives B = ⟨y⟩ − A⟨x⟩ = 3 − (1)(4) = −1. Fig. 6.32 shows the line
y = Ax + B =⇒ y = x − 1 superimposed on the plot of the five given points. We see
that the line passes through three of the points. In retrospect, it is clear that we can’t
do any better than this line when minimizing the sum of the squares of the vertical
distances from the points to the line. This is true because for the three points on the
line, we can’t do any better than zero distance. And for the two points (3,1) and (3,3)
off the line, we can’t do any better than having the line pass through the point (3,2)
midway between them. (As an exercise, you can prove this.) In most setups, however,
the location of the least-squares line isn’t so obvious. The small number of points in
this problem just happened to be located very nicely with respect to each other.

x

y

1

1

-1

2

3

4 

5

6

7

2 3 4 5 6 7 8

y = Ax + B

 = x -1

Figure 6.32: The five given points, along with the regression (least-squares) line.

6.10. Equal distances

(a) Given the xi values, we want to find the value of xb that minimizes the sum,

S ≡
n∑
1

(xi − xb)2. (6.90)
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To do this, we just need to set the derivative dS/dxb equal to zero. This gives

0 =
dS
dxb
= −

∑
2(xi − xb)

=⇒ 0 = −
(∑

xi
)
+ nxb

=⇒ xb =

∑
xi

n
≡ x. (6.91)

(b) The first line in Eq. (6.91) tells us that
∑

(xi − xb) = 0. In words, it tells us that
the sum of the signed differences from xb to all of the xi points equals zero. The
points with xi > xb yield positive differences, while the points with xi < xb
yield negative differences. If the sum of the former set of differences is d, then
the sum of the latter must be −d, so that the sum of all the differences is zero.
If we now convert the previous sentence to a statement about distances (which
are the absolute values of the signed differences, and hence always positive), we
see that d is the sum of the distances from xb to the points with xi > xb, and d
is also the sum of the distances from xb to the points with xi < xb. These two
sums are therefore equal, as desired.
Combining the results in parts (a) and (b), we see that the mean x has two
important properties: (1) the sum of the squares of the distances from x to the
n given points is smaller for x than for any other value, and (2) the sum of the
distances from x to the points above it equals the sum of the distances from x to
the points below it.
Note that our definition of the “best-fit” point in terms of the minimum sum of
the squared distances is essentially the same as the definition we used in Sec-
tion 6.4 for the “badness” of a prediction. Both definitions involve the variance.
But they differ in that the badness definition involves an expectation value over
points that you will pick in the future, whereas the best-fit point involves an av-
erage over points that you have already picked; there is no expecting going on
in this case. However, if you pick a very large number of points from a given
distribution, then the best-fit point x will be very close to the mean µ of the
distribution (which is the point with the least badness).

Remark: Why did we define the best-fit point to be the point that minimizes
the sum of the squares of the distances? Why not define it to be the point that
just minimizes the sum of the distances (not squared)? There are two reasons
why this latter definition isn’t ideal. First, distances involve absolute values like
|xi − xb |, and absolute values are somewhat messy to deal with mathematically.
They involve two cases: If z is positive then |z | = z, but if z is negative then
|z | = −z. Squares, on the other hand, are automatically positive (or zero).
Second, the point that minimizes the sum of the distances is simply not the point
that most people would consider to be the best-fit point, because this point turns
out not to be the mean, but rather the median (see below). The median is defined
to be the point for which half of the xi lie above it and half lie below it, with
no regard for how far the various points are above or below. For example, if
we have five xi values, 2, 3, 5, 90, 100, then the median is 5 and the mean is
40. Most people would probably say that the mean 40 is more indicative of
these five numbers than the median 5. The median doesn’t take into account the
spacing between the numbers.
To show that the above minimum-distance-sum (not squared) definition of the
best-fit point leads to the median, we can give a quick proof by contradiction.
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Assume that the best-fit point xb is not the median. Then there are n1 points
below xb and n2 points above xb, where n1 , n2. If n1 > n2 (the n1 < n2 case
proceeds similarly), we can decrease the sum of all the distances by decreasing
xb slightly by, say, d. This will decrease n1 distances by d and increase n2 dis-
tances by d. And since n1 > n2, the overall sum of the distances will decrease.
This contradicts the fact that xb was assumed to yield the minimum sum. The
only way to escape this contradiction is for n1 to equal n2. That is, xb is the
median. If the number of points is odd, then xb equals the middle point. If the
number is even, then xb can lie anywhere between the middle two points. ♣

6.11. Equal distances again
If we take the partial derivative of the sum in Eq. (6.42) with respect to B, we obtain

0 =
∂S
∂B
= −2

n∑
1

[
yi − (Axi + B)

]
. (6.92)

The yi − (Axi + B) terms here are the signed vertical differences between the given
points and the line. The above equation therefore says that the sum of these signed
distances is zero. This is exactly analogous to the fact that the sum

∑
(xi − xb) equaled

zero in part (b) of Problem 6.10. So by the same reasoning we used there, we see that
the sum of the vertical distances above the line equals the sum of the vertical distances
below the line.
Note that the partial derivative of S with respect to A is −2

∑
xi

[
yi − (Axi + B)

]
. We

can’t conclude much from this, due to the xi factor, which makes the terms in the sum
not be the signed vertical differences.

Remark: As in the remark in the solution to Problem 6.10, minimizing the sum of the
distances (instead of their squares) is generally an inferior way to define the best-fit
line. By the same reasoning we used in the 1-D case, this definition leads to a line that
has half of the given points above it, and half below it, with no regard for how far the
various points are above or below. Most people wouldn’t consider such a line to be
the line that best describes the given set of points. ♣



Chapter 7

Appendices

7.1 Appendix A: Subtleties about probability
In this appendix we will discuss a number of subtle issues with probability. This
material isn’t necessary for the content in this book, so it can be skipped on a first
reading.

Determining probabilities

How do you determine the probability that a given event will occur? There are two
ways: You can calculate it theoretically, or you can estimate it experimentally by
performing a large number of trials of the process.

We can use a theoretical argument to determine, for example, the probability of
obtaining Heads on a coin toss. There is no need to actually perform a coin toss,
because it suffices to just think about it and note that the two possibilities of Heads
and Tails are equally likely (assuming a fair coin). Each possibility must therefore
occur half the time, which means that the probability of each is 1/2. Similar reason-
ing gives probabilities of 1/6 for each of the six possible rolls of a die (assuming a
fair die).

However, there are certainly many situations where we don’t have enough infor-
mation to calculate the probability by theoretical means. In these cases we have no
choice but to perform a large number of trials and then assume that the true prob-
ability is roughly equal to the fraction of events that occurred. For example, let’s
say that you take a bus to school or work, and that sometimes the bus is early and
sometimes it’s late. What is the probability that it is early? There are countless
things that influence the bus’s timing: traffic, weather, engine issues, delays caused
by other passengers, slow service at a restaurant the night before which caused the
driver to see a later movie than planned which caused him to go to bed later than
usual and hence get up later than usual which caused him to start the route two min-
utes late, and so on and so forth. It is clearly hopeless to try to incorporate all of
these effects into some sort of theoretical reasoning that produces a result that can
be trusted. The only option is to observe what happens during a reasonably large
number of days, and to assume that the fraction of early arrivals that you observe is

335
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roughly the desired probability. If the bus is early on 20 out of 50 days, then we can
say that the probability of being early is most likely somewhere around 40%.

Of course, having generated this result of 40%, it just might happen that a con-
struction project on the route starts the next day, which makes the bus late every day
for the next three months. So probabilities based on observation should be taken
with a grain of salt!

A similar situation arises with, say, basketball free-throw percentages. There
is absolutely no hope of theoretically calculating the probability of a certain player
hitting a free throw, because it would require knowing everything that’s going on
from the thoughts in her head to the muscles in her fingers to the air currents on the
way to the basket. All we can say is that if the player has hit a certain fraction of the
free throws she’s already attempted, then that’s our best guess for the probability of
hitting free throws in the future.

True randomness

We stated above that the probability of a coin toss resulting in Heads is 1/2. The
reasoning was that Heads and Tails should have equal probabilities if everything is
random, which means that they must each be 1/2. But is the toss truly random?
What if we know the exact torque and force that you apply to the coin? We can then
know exactly how fast it spins and how long it stays in the air (assuming that we
know the density and viscosity of the air, etc.). And if we know the makeups of the
ground and the coin, we can figure out exactly how the coin bounces, which will
allow us to determine which side will land facing up. And even if we don’t know all
these things, they all have definite values, independent of our knowledge of them.
So once the coin leaves our hand, the side that will land facing up is completely
determined. The “random” nature of the toss is therefore nothing more than a result
of our ignorance of the properties of the coin and its surroundings.

The question then arises: How do we create a process that is truly random? It’s
a good bet that if you try to create a random process, you’ll discover that it actually
isn’t random. Instead, it just appears to be random due to your lack of knowledge of
various inputs at the start of the process. You might try to make a coin toss random
by having a machine flip the coin, where the force and torque that it applies to the
coin take on random values. But how do we make these things random? All we’ve
done is shift the burden of proof back a step, so we haven’t really accomplished
anything.

This state of affairs is particularly relevant when computers are used to generate
random numbers. By various processes, computers can produce numbers that seem
to be random. However, there is no way that they can be truly random, because the
output is completely determined by the input. If the input isn’t random (we’re as-
suming it isn’t, because otherwise we wouldn’t need a random number generator!),
then the output isn’t random either.

In the above coin-toss scenarios, the issue at hand is that our definition of prob-
ability in Section 2.1 involved the phrase, “a very large number of identical trials.”
In none of the coin-toss scenarios are the trials identical. They all have (slightly)
different inputs. So it’s no surprise that things aren’t truly random.

This then brings up the question: If we have truly identical processes, then
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shouldn’t they give exactly identical results? If we flip a coin in exactly the same
manner each time, then we should get exactly the same outcome each time. So our
definition of probability seems to preclude true randomness! This makes us wonder
if there are actually any processes that can be truly identical and at the same time
yield different results.

Indeed there are. It turns out that in quantum mechanics, this is exactly what
happens. It is possible to have two exactly identical process that yield different re-
sults. Things are truly random; you can’t trace the different outcomes to different
inputs. A great deal of effort has gone into investigating this randomness, and unless
our view of the universe is way off-base, there are processes in quantum mechan-
ics that involve true randomness.1 If you think about this hard enough, it should
make your head hurt. Our experiences in everyday life tell us that things happen be-
cause other things happened. But not so in quantum mechanics. There is no causal
structure in certain settings. Some things just happen. Period.

But even without quantum mechanics, there are plenty of physical processes in
the world that are essentially random, for all practical purposes. The ingredient that
makes these processes essentially random is generally either (1) the sheer largeness
of the numbers (of molecules, for example) involved, or (2) the phenomenon of
“chaos,” which turns small uncertainties into huge ones. Using these ingredients, it
is possible to create methods for generating nearly random numbers. For example,
the noise in the radio frequency range in the atmosphere generates randomness due
to the absurdly large number of input bits of data (see www.random.org). And the
pingpong balls bouncing around in a box used for picking lottery numbers generate
randomness due to the chaotic nature of the ball collisions.

Different information

Let’s say that I flip a coin and then look at the result and see a Heads, but I don’t
show you. Then for you, the probability of the coin being Heads is 1/2. But for
me, the probability is 1. So if someone asks for the probability of the coin showing
Heads, which number is it, 1/2 or 1? Well, there isn’t a unique answer to this
question, because the question is an incomplete one. The correct question to ask is,
“What is the probability of the coin showing Heads, as measured by such-and-such
a person?” You have to state who is calculating the probability, because different
people have different information, and this affects the probability.

However, you might argue that it’s the same process, so it should have a uniquely-
defined probability, independent of who is measuring it. But it actually isn’t the
same process for the two of us. The process for me involves looking at the coin,
whereas the process for you doesn’t. Said in another way, our definition of proba-
bility involved the phrase, “a very large number of identical trials.” As far as you’re
concerned, if we do 1000 trials of this process, they’re all identical to you. But
they certainly aren’t identical to me, because for some of them I observe Heads, and
for some I observe Tails. This is about as nonidentical as they can be. Said in yet
another way, we are talking about two fundamentally different probabilities. One

1Of course, based on induction over the millennia, our view of the universe probably is way off-base.
But let’s not get into that here.
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is the probability that the coin shows Heads, given no other information; this prob-
ability is 1/2. The other is the conditional probability that the coin shows Heads,
given that it is observed to be Heads; this probability is 1.

“On average”

We now come to the most troublesome issue with probability. At the beginning of
Section 2.1, we stated our definition of probability: “Consider a very large number
N of identical trials of a certain process. If the probability of a particular event
occurring is p, then the event will occur in a fraction p of the trials, on average.”
There are two related issues here: What do we mean by a “very large” number N
of trials, and what do we mean by “on average”? Is N = 109 (one billion) large?
It seems large when talking about coin flips, but it isn’t large when talking about
an event with p = 1/109. It turns out that the largeness of N actually isn’t a huge
issue, due to the words “on average.” We can simply consider a very large number
N ′ of sets, each consisting of N trials. (Of course, we’re using the words “very
large” again here.) However, the words “on average” introduce the following more
problematic issue.

First, note that the definition of probability wouldn’t make any sense without the
words “on average,” because there is no guarantee that an event will occur in exactly
a fraction p of the trials. (Relaxing the condition to involve a small interval around
p doesn’t help, because there is still no guarantee of ending up in that interval.)
Second, given that the words “on average” must appear, we see that we must take an
average over a large number N ′ of sets, each consisting of N trials. (This averaging
must be done, independent of the size of N .) In each of the N ′ sets, the event
will occur in a certain fraction of the N trials. If we take the average of these
N ′ fractions, we will obtain p, on average. But since we just said the words “on
average” again, we now need to consider a large number N ′′ of sets, each consisting
of N ′ sets, each consisting of N trials of the process. If we take the average of N ′′

numbers, each of which is the average of N ′ fractions (the fractions for the different
groups of N trials), then we should obtain p . . . on average!

You can see where we’re going here. There is no way to end the process. We
can never be certain that we will end up with an average of p. Or more precisely, we
can never be certain that we will end up with an average that is within, say, 0.0001
(or some other small number of our choosing) of p. Every statement we can make
will always end with the words “on average.” So we must always tack on one more
iteration. Every time we say “on average,” we shift the burden of proof to the next
step. Our definition of probability is therefore circular. Or perhaps “a never-ending
linear chain” would be a more accurate description.

Note that when considering N ′′ sets of N ′ sets of N trials, we’re simply per-
forming N ′′N ′N trials. So instead of thinking in terms of sets of sets of trials, etc.,
we can consider one extremely large set of N ′′N ′N trials. It’s the same overall set
of trials, so we will observe the same fraction of trials in which an events occurs.
However, any statement we make about this set will still end with the words “on av-
erage.” So we’re still going to need to consider N ′′′ sets of the number of preceding
trials, regardless of how we feel like subdividing that number. At any stage, we will
always need to consider a large number of sets of the number of trials we’ve already
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done.
Now, you might think that this is all a bit silly, because everyone knows that

the probability of a fair coin showing Heads is 1/2. You can produce evidence
for this statement by flipping a million coins and checking that the percentage of
Heads lies between, say, 49% and 51%. Or you can flip a trillion coins and check
that the percentage of Heads lies between, say, 49.999% and 50.001%. Or you
can flip a larger number of coins and specify a narrower range. In the two cases just
mentioned, the calculated probabilities of lying in the given range are the same, with
the common value being essentially equal to 1. More precisely, the probability of
lying outside the range is the ridiculously small number 5 · 10−89. See Problem 5.3
to get an idea of how small this number really is.

However, even with such a small probability, you might get Heads more than
50.001% of the time in a trillion flips. It’s certainly unlikely, and to show that it
is indeed unlikely, you could consider a large number of sets, each consisting of a
trillion coin flips. You will likely find that an extremely small fraction of these sets
have Heads occurring more than 50.001% of the time. But since we just said the
word “likely,” it is understood that we need to consider a large number of sets, each
consisting of a large number of sets, each consisting of a trillion trials. And so on.
The point is that no matter how many trials you do, you can never be absolutely sure
that you haven’t simply had bad (or good) luck. And, unfortunately, the preceding
sentence is one thing you can be sure about. There will never be a magical large
number for which things abruptly turn from probable to definite. So in that sense,
an extremely large number like 101000 is no better than an everyday number like 10.
They are fundamentally the same. Any differences are theoretically just a matter of
degree.

Having said all this, it would be a monumental mistake to discard the entire
theory of probability, just because there are some philosophical issues with its un-
derpinnings (which we have certainly not resolved here; our goal in this section
was only to make you aware of them). The fact of the matter is that, in practice,
probability works. Day after day, it proves invaluable in everything from finance
to sports to politics to the fact that we don’t all spontaneously combust. Therefore,
in this book we will take a practical approach, where we intuitively know that the
probability of getting Heads on a coin flip is 1/2, the probability of rolling a 5 on a
die is 1/6, and so on. Feel free to ponder the philosophy of probability, but don’t let
that stop you from using probability!

7.2 Appendix B: Euler’s number, e

7.2.1 Definition of e

Consider the expression, (
1 +

1
n

)n
. (7.1)

Admittedly, this comes a bit out of the blue, but let’s not worry about the motivation
for now. After we derive a number of interesting results below, you’ll see why we
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chose to consider this particular expression. Table 7.1 gives the values of (1+1/n)n

for various integer values of n. (Non-integers are fine to consider, too.)

n 1 2 5 10 102 103 104 105 106

(1 + 1/n)n 2 2.25 2.49 2.59 2.705 2.717 2.71815 2.71827 2.7182805

Table 7.1: The values of (1 + 1/n)n approach a definite number, approximately 2.71828,
which we call e.

Apparently, the values converge to a number somewhere around 2.71828. This can
also be seen in Fig. 7.1, which shows a plot of (1 + 1/n)n vs. log(n). The log(n)
here means that the “0” on the x axis corresponds n = 100 = 1, the “1” corresponds
n = 101 = 10, the “2” corresponds n = 102 = 100, and so on.
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(1+1/n) n

e

Figure 7.1: The plot of (1 + 1/n)n approaches e.

It is clear that even before we reach the “6” (that is, n = 106 = 1,000,000),
the curve has essentially leveled off to a constant value. This value happens to be
2.7182818284 . . .. It turns out that the digits in this number go on forever, with no
overall pattern. However, the fortuitous double appearance of the “1828” makes it
fairly easy to remember to 10 digits, although you’ll rarely ever need more accuracy
than 2.718. The exact number is known as Euler’s number, and it is denoted by the
letter e. The precise definition of e in terms of the expression in Eq. (7.1) is

e ≡ lim
n→∞

(
1 +

1
n

)n
≈ 2.71828 (7.2)

The “lim” notation simply means that we’re taking the limit of this expression as n
approaches infinity. If you don’t like dealing with limits or infinity, just set n equal
to a very large number like 1010, and then you pretty much have the value of e.

Remember that Eq. (7.2) is a definition. There’s no actual content in it. All
we did was take the quantity (1 + 1/n)n and look at what value it approaches as n
becomes very large, and then we decided to call the result “e.” We will, however,
derive some actual results below, which aren’t just definitions.
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Remark: If we didn’t use a log plot in Fig. 7.1 and instead just graphed (1+ 1/n)n vs. n, the
plot would stretch far out to the right if we wanted to go up to a large number like n = 106.
Of course, we could shrink the plot in the horizontal direction, but then the region of small
values of n would be squeezed down to essentially nothing. For example, the region up to
n = 100 would take up only 0.01% of the plot. We would therefore be left with basically just
a horizontal line. Even if we go up to only n = 104, we end up with the essentially horizontal
straight line shown in Fig. 7.2, preceded by an essentially vertical jump from 2.0 to 2.718.

0 2000 4000 6000 8000 10000
2.0

2.2

2.4

2.6

2.8

n

(1+1/n) n

Figure 7.2: The plot of (1 + 1/n)n vs. n, with n measured on a linear scale.

The features in the left part of the plot in Fig. 7.1 aren’t so visible in Fig. 7.2. You can barely
see the bend in the curve. Log plots are used to prevent the larger numbers from dominating
the plot, as they do in Fig. 7.2. This issue isn’t so critical here, since we’re concerned only
with what (1 + 1/n)n looks like for large n, but nevertheless it’s often more informative to
use a log plot in certain settings. ♣

It is quite interesting that (1 + 1/n)n approaches a definite finite value as n
gets larger and larger. On one hand, you might think that because the 1/n term
gets smaller and smaller (which means that (1 + 1/n) gets closer and closer to 1),
the whole expression should get closer and closer to 1, because 1 raised to any
power is 1. On the other hand, you might think that because the exponent n gets
larger and larger, the whole expression should get larger and larger and approach
infinity, because we’re raising something to an ever-increasing power. It turns out
that (1 + 1/n)n does neither of these things. Instead, these two effects cancel, and
the result ends up somewhere between 1 and ∞, at the particular value of about
2.71828.

As mentioned above, we introduced (1 + 1/n)n a bit out of the blue. But we’ve
already found one interesting feature of it, namely that it approaches a definite fi-
nite number (which we labeled as “e”) as n goes to ∞. And there are many other
features; so many, in fact, that e ends up being arguably the most important number
in mathematics, with the possible exception of π. (But my vote is for e!) From
the nearly endless list of interesting facts about e, we include three in the following
three subsections.

7.2.2 Raising e to a power
What do we get when we raise e to a power? That is, what is the value of ex? There
are (at least) two ways to answer this. The simple way is to just use your calculator
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to raise e = 2.71828 to the power x. A number will pop out, and that’s that.
However, there is another way which turns out to be immensely useful in the

study of probability. If we relabel the n in Eq. (7.2) as m (for convenience), and if
we then define n ≡ mx in the fourth line below, we obtain

ex = lim
m→∞

((
1 +

1
m

)m) x
(using m instead of n in Eq. (7.2))

= lim
m→∞

(
1 +

1
m

)mx

(multiplying exponents)

= lim
m→∞

(
1 +

x
mx

)mx

(multiplying by 1 in the form of x/x)

= lim
n→∞

(
1 +

x
n

)n
(defining n ≡ mx) (7.3)

In the case where n is large but not infinite, we can replace the “=” sign with a “≈”
sign:

ex ≈
(
1 +

x
n

)n
(for large n) (7.4)

The bigger the n, the better the approximation. The condition under which the
approximation is a good one is

x ≪
√

n. (7.5)

This will usually hold in the situations we’ll be dealing with (although there are
a few exceptions in Chapter 5). We’ll just accept this condition here, but see the
second bullet-point case (the na2 ≪ 1 one) in Appendix C if you want to know
where it comes from.

Eq. (7.4) is a rather nice result. The x that appears in the numerator of the
fraction is simply the exponent of e. It almost seems like too simple a generalization
of Eq. (7.2) to be correct. (Eq. (7.2) is a special case of Eq. (7.4), with x = 1.) Let’s
check that Eq. (7.4) does indeed hold for, say, x = 2. If we pick n = 106 (which
certainly satisfies the x ≪

√
n condition), we obtain (1+ x/n)n = (1+ 2/106)106

=

7.389041. This is very close to the true value of e2, which is about 7.389056. Larger
values of n will make it even closer.

Example 1 (Compound interest): Assume that you have a bank account for which
the interest rate is 5% per year. If this 5% is simply applied as a one-time addition at
the end of the year, then after one year you will have 1.05 times the amount of money
you started with. However, another way for the interest to be applied is for it to be
compounded (applied) daily, with (5%)/365 being the daily rate (which happens to
be about 0.014%). That is, your money at the end of each day equals 1 + (0.05)/365
times what you had at the beginning of that day. In this scenario, by what factor does
your money increase after one year?

Solution: Your money gets multiplied by a factor of 1 + (0.05)/365 each day, so at
the end of one year (365 days), it has increased by the factor,(

1 +
0.05
365

)365
. (7.6)
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But this has exactly the same form as the expression in Eq. (7.4), with x = 0.05 and
n = 365 (which certainly satisfies the x ≪

√
n condition). So Eq. (7.4) tells us that

after one year, your money increases by the factor e0.05 ≈ 1.051. (Of course, you
can also just plug the original expression (1 + 0.05/365)365 into your calculator. The
result is essentially the same.) Since your money increases by a factor of 1.051, the
effective yearly interest rate is 5.1%. That is, someone who has a 5.1% interest rate
that is applied as a one-time addition at the end of the year will end up with the same
amount of money as you (assuming that the starting amounts were the same).
This effective interest rate of 5.1% is called the yield. So an annual rate of 5% has a
yield of 5.1%. This yield is larger than 5% because the interest rate each day is being
applied not only to your initial amount, but also to all the interest you’ve received in
the preceding days. In short, you’re earning interest on your interest.
The increase by 0.1% isn’t so much. But if the annual interest rate is instead 10%, and
if it is compounded daily, then the above reasoning implies that you will end up with
a yearly factor of e0.10 = 1.105, which means that the yield is 10.5%. And an annual
rate of 20% (admittedly rather unrealistic) produces a yearly factor of e0.20 = 1.22,
which means that the yield is 22%.

Example 2 (Doubling your money): In the 5% scenario in the above example, the ef-
fect of compound interest (that is, earning interest on the interest) over one year could
pretty much be ignored, because it was only 0.1%. However, the effect of compound
interest cannot be ignored in the following question: If the annual interest rate is 5%,
and if it is compounded daily, how many years will it take to double your money?

Solution: First, note the following incorrect line of reasoning: If you start with N
dollars, then doubling your money means that you eventually need to increase it by
another N dollars. Since it increases by about (0.05)N each year, you need about 20
of these increases (because 20 · (0.05) = 1) to obtain the desired increase of N . So it
takes 20 years. However, this is incorrect, because it ignores the fact that you have
more money in each successive year and are hence earning interest on a larger and
larger amount of money. The “since it increases by about (0.05)N each year” clause
above is therefore incorrect. Even the slightly more correct figure of (0.051)N is still
plenty wrong. The correct line of reasoning is the following.
We saw in the previous example that at the end of each year, your money increases
by a factor of e0.05 compared with what it was at the beginning of the year. So after
n years it increases by n of these factors, that is, by

(
e0.05)n which equals e(0.05)n .

We want to find the value of n for which this overall factor equals 2. A little trial
and error in your calculator shows that e0.7 ≈ 2. (In the language of logs, this is the
statement that loge 2 ≈ 0.7, or equivalently ln 2 = 0.7. But this terminology isn’t
important here.) So we need the (0.05)n exponent to equal 0.7, which in turn implies
that n = (0.7)/(0.05) = 14. It therefore takes 14 years to double your money.
You can think of this result for n as 70 divided by 5. For a general yearly interest rate
of r%, the same reasoning we used above shows that the number of years required to
double your money is 70 divided by r . For example, with a 10% rate, your money will
double in 7 years. In remembering this general rule, you just need to remember one
number: 70. Equivalently, the time it takes to double your money is 70% of the naive
answer that ignores the effect of compound interest. From the first paragraph above,
this naive answer is 100 divided by r .
Unlike the previous example where the interest earned was small (because we were
considering only one year), the interest earned in this example is large; it equals N
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dollars by the end. So the effect of earning interest on your interest (that is, the effect
of compound interest) cannot be ignored.
Note that even if you don’t compound the interest daily (that is, even if you simply
apply the 5% at the end of each year), it will still take essentially 14 years to double
your money, because (1.05)14 = 1.98 ≈ 2. The extra 0.1% earned each year when the
interest is compounded daily doesn’t make much of a difference here. ♣

7.2.3 The infinite series for ex

Eq. (7.3), or equivalently Eq. (7.4), gives an expression for ex . Another rather
interesting expression for ex that we can derive is

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · · (7.7)

The first two terms here can be written as x0/0! and x1/1!, so all of the terms take
the form of xn/n!, where n runs from zero to infinity. In calculus language, Eq. (7.7)
is known as the Taylor series for ex . But that’s just a name, so ignore it if you’ve
never heard of it. We’ll give a derivation of Eq. (7.7) below, but let’s first look at a
few of its consequences.

A special case of Eq. (7.7) occurs when x = 1, which yields

e = 1 + 1 +
1
2!
+

1
3!
+

1
4!
+ · · · . (7.8)

These terms get very small very quickly, so you don’t need to include many of
them to get a good approximation to e. Even just going out to the 10! term gives
e ≈ 2.71828180, which is accurate to the seventh digit beyond the decimal point.

A quick corollary to Eq. (7.7) is that if x is small, we can write

ex ≈ 1 + x. (7.9)

This is true because if x is small then the x2/2! term, along with all the higher
powers of x in Eq. (7.7), are small compared with x. We can therefore ignore them.
You should verify with a calculator that Eq. (7.9) is a good approximation for small
x. You can let x be 0.01 or 0.001, etc. The number e is the one special number for
which Eq. (7.9) holds. It is not the case that 2x ≈ 1 + x or 10x ≈ 1 + x, as you can
verify.

Of course, we can also say (by using the exact same reasoning we just used)
that if x is small then the x term in Eq. (7.7), along with all the higher powers of x,
are small compared with 1. If we ignore all these terms, we obtain the very coarse
approximation: ex ≈ 1. This is indeed an approximation to ex for small x, but the
question is whether it is good enough for whatever purpose you have in mind. If it
isn’t, then you need to use the ex ≈ 1 + x expression. And similarly, if that isn’t
good enough for your purposes, then you need to keep the next term in Eq. (7.7) and
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write ex ≈ 1+ x+ x2/2. And so on. But in many cases the ex ≈ 1+ x approximation
gets the job done.

We will now derive Eq. (7.7) by using Eq. (7.3) along with our good old friend,
the binomial expansion; see Eq. (1.21). We’ll assume that n is an integer here.
Letting a = 1 and b = x/n in Eq. (1.21), the binomial expansion of Eq. (7.3) gives
(expanding the binomial coefficients and rearranging to obtain the third line)

ex = lim
n→∞

(
1 +

x
n

)n
(7.10)

= lim
n→∞

[
(1)n+

(
n
1

)
(1)n−1

( x
n

)1
+

(
n
2

)
(1)n−2

( x
n

)2
+

(
n
3

)
(1)n−3

( x
n

)3
+ · · ·

]
= lim

n→∞

[
1 + x

( n
n

)
+

x2

2!

(
n(n − 1)

n2

)
+

x3

3!

(
n(n − 1)(n − 2)

n3

)
+ · · ·

]
.

This looks roughly like what we’re trying to show in Eq. (7.7), if only we could
make the terms in parentheses go away. And indeed we can, because in the n → ∞
limit, all of these terms equal 1. This is true because if n → ∞, then both n − 1 and
n− 2 are essentially equal to n (in a multiplicative sense). More precisely, the ratios
(n − 1)/n and (n − 2)/n are both equal to 1 if n = ∞. So we have

lim
n→∞

(
n(n − 1)

n2

)
= 1 and lim

n→∞

(
n(n − 1)(n − 2)

n3

)
= 1, (7.11)

and likewise for the terms associated with higher powers of x. Eq. (7.10) therefore
becomes Eq. (7.7) in the n → ∞ limit.2 If you have any doubts that Eq. (7.7) holds,
you should verify with a calculator that it works for, say, x = 2. Going out to the
10! term should convince you.

Remark: Another way to convince yourself that Eq. (7.7) is correct is the following. Consider
what ex looks like if x is a small number, say, x = 0.0001. We have

e0.0001 = 1.0001000050001667 . . . (7.12)

This can be written more informatively as

e0.0001 = 1.0

+ 0.0001

+ 0.000000005

+ 0.0000000000001667 . . .

= 1 + (0.0001) +
(0.0001)2

2!
+

(0.0001)3

3!
+ · · · , (7.13)

in agreement with Eq. (7.7). If you make x even smaller (say, 0.000001), then the same
pattern will form, but with more zeros between the numbers than in Eq. (7.12).

2For any large but finite n, the terms in parentheses far out in the series in Eq. (7.10) will eventually
differ from 1, but by that point the factorials in the denominators will make the terms negligible, so we
can ignore them. Even if x is large, so that the powers of x in the numerators become large, the factorials
in the denominators will dominate after a certain point in the series, making the terms negligible. But
we’re assuming n → ∞ anyway, so these issues related to finite n are irrelevant.
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Eq. (7.13) shows that if ex can be expressed as a sum of powers of x (that is, in the form
of a + bx + cx2 + dx3 + · · · ), then a and b must equal 1, c must equal 1/2, and d must equal
1/6. If you kept more digits in Eq. (7.12), you could verify the x4/4! and x5/5!, etc., terms
in Eq. (7.7) too. But things aren’t quite as obvious for these, because we don’t have all the
nice zeros that we have among the first 12 digits of Eq. (7.12). ♣

7.2.4 The slope of ex

Another interesting and important property of e is that if we plot the function f (x) =
ex , then the slope of the curve3 at any point equals the value of the function at that
point, namely ex . For example, in Fig. 7.3 the slope at x = 0 is e0 = 1, and the slope
at x = 2 is e2 ≈ 7.39. (Note the different scales on the x and y axes, which make the
slopes appear smaller than 1 and 7.39.) The number e is the one special number for
which this is true. The same thing is not true for, say, 2x or 10x . The derivation of
this property is by no means necessary for an understanding of the material in this
book, but we’ll present it in Appendix D, just for the fun of it.

1.0 0.5 0.5 1.0 1.5 2.0

2

4

6

8

x

e x

slope = e

slope = e2

slope = 1
slope = 1/e

(Different scales 

       on axes)

- -

Figure 7.3: For any value of x, the slope of the ex curve equals ex . Note the different scales
on the axes.

More generally, any function of the form Aex (where A is a constant) has the
property that the slope at any point equals the value of the function at that point.
This is true because both the value and the slope differ by the same factor of A from
the corresponding quantities in the ex case. (You can think about why this is true
for the slope.) So if the property holds for ex (which it does), then it also holds for
Aex .

7.3 Appendix C: Approximations to (1 + a)n

Expressions of the form (1+ a)n come up often in mathematics, especially in prob-
ability. It turns out that if a is small enough (which is invariably the case in the

3By “slope” we mean the slope of the line that is tangent to the curve at the given point. You can
imagine the curve being made out of an actual piece of wire, and if you press a straight stick up against
it, the stick will form the tangent to the curve at the point of contact.
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situations we’ll be dealing with), then the following approximate formula holds:

(1 + a)n ≈ ena (7.14)

This relation is equivalent to Eq. (7.4) if we let a = x/n.
Eq. (7.14) was critical in our discussion of the exponential and Poisson distribu-

tions in Sections 4.6.3 and 4.7.2. However, when we derived the Gaussian approx-
imations to the binomial and Poisson distributions in Sections 5.1 and 5.3, we saw
that a more accurate approximation was needed, namely

(1 + a)n ≈ enae−na
2/2 (7.15)

In the event that a is sufficiently small, the extra factor of e−na
2/2 is irrelevant,

because it is essentially equal to e−0 = 1. So Eq. (7.15) reduces to Eq. (7.14). But
if a isn’t sufficiently small, then the extra factor of e−na

2/2 is necessary if we want
to have a good approximation. Of course, if a is too large, then even the inclusion
of the e−na

2/2 factor isn’t enough to yield a good approximation. We must tack on
another factor, or perhaps many factors, as we’ll see in Eq. (7.21) below.

For an example where the e−na
2/2 term in Eq. (7.15) is necessary, let’s say we

have n = 100 and a = 1/10. Then

(1 + a)n = (1 + 1/10)100 ≈ 13,781 and ena = e10 ≈ 22,026. (7.16)

So the (1 + a)n ≈ ena approximation in Eq. (7.14) is a very bad one. However, the
e−na

2/2 factor in this case equals e−1/2 ≈ 0.60653, which yields

enae−na
2/2 ≈ (22,026)(0.60653) ≈ 13,360. (7.17)

The (1 + a)n ≈ enae−na
2/2 approximation in Eq. (7.15) is therefore quite good;

13,360 differs from the actual value of 13,781 by only about 3%.4 As an exercise,
you can show that if we had picked more extreme numbers, say, n = 10,000 and a =
1/100, then Eq. (7.14) would be a similarly poor approximation, whereas Eq. (7.15)
would be an excellent one, off by only 0.3%.

There are various ways to derive Eq. (7.15). The easiest way is to use a little
calculus. If you want to avoid using calculus, you can still do the derivation, but it is
rather laborious. Furthermore, if you want to generate better approximations by in-
corporating additional terms, the non-calculus method soon becomes intractable. In
contrast, the calculus method gives, in one fell swoop, approximations to whatever
accuracy you desire. We’ll therefore take that route.

We’ll start with the expression for the sum of a geometric series,

1 − a + a2 − a3 + a4 − · · · = 1
1 + a

. (7.18)

4Whenever we use a “≈” sign, we use it in a multiplicative (equivalently, a ratio) sense, and not an
additive sense. The numbers 13,360 and 13,781 differ by 421, which you might consider to be a large
number, but that doesn’t matter. The ratio of the numbers is close to 1 (it equals 0.97), so they are
“approximately equal” in that sense.
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This is valid for |a | < 1. (If you plug in, say, a = 2, you will get an obviously
incorrect statement.) For |a | < 1, if you keep enough terms on the left, the sum
will essentially be equal to 1/(1 + a). If you hypothetically keep an infinite number
of terms, the sum will be exactly equal to 1/(1 + a). You can verify Eq. (7.18)
by multiplying both sides by 1 + a. On the lefthand side, the infinite number of
cross terms cancel in pairs, so only the “1” survives. Or, as always, you can just
plug a small number like a = 0.01 or 0.001 into your calculator if you want some
reassurance.

Now is where the calculus comes in. If we integrate both sides of Eq. (7.18)
with respect to a, we obtain

a − a2

2
+

a3

3
− a4

4
+

a5

5
− · · · = ln(1 + a), (7.19)

where ln is the natural log, that is, the log base e. We have used the facts that the
integral of xk equals xk+1/(k + 1) and the integral of 1/x equals ln(x). Technically
there could be a constant of integration in Eq. (7.19), but it is zero. Eq. (7.19) is the
Taylor series for ln(1+a), just as Eq. (7.7) is the Taylor series for ex . Eq. (7.19) can
also be derived (as one learns in a calculus class) via the standard way of producing
a Taylor series, which involves taking a bunch of derivatives. But the above method
involving the geometric series is simpler. As with Eq. (7.18), Eq. (7.19) is valid for
|a | < 1.

If we now exponentiate both sides of Eq. (7.19), then since eln(1+a) = 1 + a by
the definition of ln, we obtain (reversing the sides of the equation)

1 + a = eae−a
2/2ea

3/3e−a
4/4ea

5/5 · · · , (7.20)

which again is valid for |a | < 1. We have used the fact that the exponential of a sum
is the product of the exponentials. Finally, if we raise both sides of Eq. (7.20) to the
nth power, we arrive at

(1 + a)n = enae−na
2/2ena

3/3e−na
4/4ena

5/5 · · · (7.21)

This relation is valid for |a | < 1. It is exact if we include an infinite number of the
exponential factors on the righthand side. However, the question we are concerned
with here is how many terms we need to keep in order to obtain a good approxima-
tion. (We’ll leave “good” undefined for the moment.) Under what conditions do we
obtain Eq. (7.14) or Eq. (7.15)? The number of terms we need to keep depends on
both a and n. In the following cases, we will always assume that a is small (more
precisely, much smaller than 1).

• na ≪ 1

If na ≪ 1, then all of the exponents on the righthand side of Eq. (7.21) are
much smaller than 1. The first one (namely na) is small, by assumption. The
second one (namely na2/2; we’ll ignore the sign) is also small, because it
is smaller than na by a factor a (and also by a factor 1/2), which we are
assuming is small. Likewise, all of the other exponents in subsequent terms
have additional factors of a and hence are even smaller. Therefore, since all
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of the exponents in Eq. (7.21) are much smaller than 1, they are, to a good
approximation, all equal to zero. The exponential factors are therefore all
approximately equal to e0 = 1, so we obtain

(1 + a)n ≈ 1 (valid if na ≪ 1) (7.22)

An example of a pair of numbers that satisfies na ≪ 1 is n = 1 and a = 1/100.
In this case it is a good approximation to say that (1 + a)n ≈ 1. And indeed,
the exact value of (1+ a)n is (1.01)1 = 1.01, so the approximation is smaller
by only 1%.

• na2 ≪ 1

What if a isn’t small enough to satisfy na ≪ 1, but is still small enough to
satisfy na2 ≪ 1? In this case we need to keep the ena term in Eq. (7.21), but
we can ignore the e−na

2/2 term, because it is approximately equal to e−0 =

1. The exponents in subsequent terms are all also essentially equal to zero,
because they are suppressed by higher powers of a. So Eq. (7.21) becomes

(1 + a)n ≈ ena (valid if na2 ≪ 1) (7.23)

We have therefore derived Eq. (7.14), which we now see is valid when na2 ≪
1. A pair of numbers that doesn’t satisfy na ≪ 1 but does satisfy na2 ≪ 1
is n = 100 and a = 1/100. In this case it is a good approximation to say that
(1 + a)n ≈ ena = e1 = 2.718. And indeed, the exact value of (1 + a)n is
(1.01)100 ≈ 2.705, so the approximation is larger by only about 0.5%. The
(1 + a)n ≈ 1 approximation in Eq. (7.22) is not a good one, being smaller
than the approximation in Eq. (7.23) by a factor of e in the present scenario.

A special case of Eq. (7.23) occurs when n = 1, which yields 1 + a ≈ ea .
So we have rederived the ex ≈ 1 + x approximation in Eq. (7.9), which we
obtained from Eq. (7.7).

As mentioned right after Eq. (7.14), the relation in Eq. (7.4) is equivalent to
Eq. (7.14)/Eq. (7.23) when a takes on the value x/n. In this case the na2 ≪ 1
condition becomes n(x/n)2 ≪ 1 =⇒ x2 ≪ n =⇒ x ≪

√
n, which is the

condition stated in Eq. (7.5). But now we know where that condition comes
from.

• na3 ≪ 1

What if a isn’t small enough to satisfy na2 ≪ 1, but is still small enough to
satisfy na3 ≪ 1? In this case we need to keep the e−na

2/2 term in Eq. (7.21),
but we can ignore the ena

3/3 term, because it is approximately equal to e0 =

1. The exponents in subsequent terms are all also essentially equal to zero,
because they are suppressed by higher powers of a. So Eq. (7.21) becomes

(1 + a)n ≈ enae−na
2/2 (valid if na3 ≪ 1) (7.24)

We have therefore derived Eq. (7.15), which we now see is valid when na3 ≪
1. A pair of numbers that doesn’t satisfy na2 ≪ 1 but does satisfy na3 ≪ 1
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is n = 10,000 and a = 1/100. In this case it is a good approximation to say
that (1 + a)n ≈ enae−na

2/2 = e100e−1/2 = 1.6304 · 1043. And indeed, the
exact value of (1+a)n is (1.01)10,000 ≈ 1.6358 ·1043, so the approximation is
smaller by only about 0.3%. The (1+ a)n ≈ ena approximation in Eq. (7.23)
is not a good one, being larger than the approximation in Eq. (7.24) by a factor
of e1/2 in the present scenario.

We can continue in this manner. If a isn’t small enough to satisfy na3 ≪ 1,
but is still small enough to satisfy na4 ≪ 1, then we need to keep the ena

3/3 term
in Eq. (7.21), but we can set the e−na

4/4 term (and all subsequent terms) equal to
1. And so on and so forth. However, in this book we’ll never need to go beyond
the two terms in Eq. (7.15)/Eq. (7.24). Theoretically though, if, say, n = 1012 and
a = 1/100, then we need to keep the terms in Eq. (7.21) out to the e−na

6/6 term, but
we can ignore the ena

7/7 terms and beyond, to a good approximation.
In any case, the rough size of the (multiplicative) error is the first term in

Eq. (7.21) that is dropped. This is true because however close the first-dropped
term is to e0 = 1, all of the subsequent exponential factors are even closer to e0 = 1.
In the n = 10,000 and a = 1/100 case in the third bullet point above, the multiplica-
tive error is roughly equal to the ena

3/3 factor that we dropped, which in this case
equals e1/300 ≈ 1.0033. This is approximately the factor by which the true answer
is larger than the approximate one.5 This agrees with the results we found above,
because (1.6358)/(1.6304) ≈ (1.0033). The true answer is larger by about 0.3%
(so the approximation is smaller by about 0.3%).

If this factor of 1.0033 is close enough to 1 for whatever purpose we have in
mind, then the approximation is a good one. If it isn’t close enough to 1, then we
need to keep additional terms until it is. In the present example with n = 10,000 and
a = 1/100, if we keep the ena

3/3 factor, then the multiplicative error is essentially
equal to the next term in Eq. (7.21), which is e−na

4/4 = e−1/40,000 = 0.999975. This
is approximately the factor by which the true answer is smaller than the approximate
one. The difference is only 0.0025%.

7.4 Appendix D: The slope of ex

(Note: This Appendix is for your entertainment only. The results here won’t be
needed anywhere in this book. But the derivation of the slope of the ex function
gives us an excuse to play around with some of the properties of e, and also to
present some of the foundational concepts of calculus.)

7.4.1 First derivation
We stated in Section 7.2.4 that the slope of the f (x) = ex function at any point
equals the value of the function at that point, namely ex . In the language of calculus,

5The exponent here is positive, which means that the factor is slightly larger than 1. But note that half
of the terms in Eq. (7.21) have negative exponents. If one of those terms is the first one that is dropped,
then the factor is slightly smaller than 1. This is approximately the factor by which the true answer is
smaller than the approximate one.
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this is the statement that the derivative (the slope) of ex equals itself, ex . We will
now show why this is true.

There are two main ingredients in the derivation. The first is Eq. (7.9). To
remind ourselves that the x in that equation is assumed to be small, let’s relabel it as
δ, which is a standard letter that mathematicians use for a small quantity. We then
have

eδ ≈ 1 + δ (for small δ) (7.25)

The second main ingredient is the strategy of finding the slope of the function
f (x) = ex (or any function, for that matter) at a given point, by first finding an
approximate slope, and by then making the approximation better and better. This
proceeds as follows.

An easy way to make an approximation to the slope of a function at a particular
value of x, say x = 2, is to find the average slope between x = 2 and a nearby point,
say, x = 2.1. The average slope of the function f (x) = ex between these two points
is

slope =
rise
run
=

e2.1 − e2

0.1
≈ 7.77. (7.26)

From Fig. 7.4, however, we see that this approximate slope is larger than the true
slope.6 To produce a better approximation, we can use a closer point, say x = 2.01.
And then an even better approximation can be generated with x = 2.001. These two
particular values of x yields slopes of

slope =
rise
run
=

e2.01 − e2

0.01
≈ 7.43 and

e2.001 − e2

0.001
≈ 7.393. (7.27)

true slope

approximate slope

better approximation

even better approximation

x

Figure 7.4: Better and better approximations to the true slope of a curve at a given point.

If we kept going with smaller and smaller differences from 2, we would find
that the slopes converge to a certain value, which happens to be about 7.389, as you
can verify. It is clear from Fig. 7.4 (which, again, is just a picture of a generic-
looking curve) that the approximate slopes swing down and get closer and closer to

6The curve in this figure is an arbitrary curve and not the specific ex function, but the general features
are the same. The curve in the figure is concave upward like the ex function (although the procedure
we’re discussing is independent of this property). The reason we’re not using the actual ex function here
is that x = 2.1 is so close to x = 2 that we wouldn’t be able to see the important features.
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the actual tangent-line slope. This number of 7.389 must therefore be the slope of
the ex curve at x = 2.

Now, our goal here is to show that the slope of ex equals ex . We just found that
the slope at x = 2 equals 7.389, so it had better be true that e2 also equals 7.389.
And indeed it does. So at least in the case of x = 2, we have demonstrated that the
slope of ex equals ex .

Having learned how to determine the slope at the specific value of x = 2, we can
now address the case of general x. To find the slope, we can imagine taking a small
number δ and calculating the average slope between x and x + δ (as we did with 2
and 2.1), and then letting δ become smaller and smaller. Written out explicitly, the
formal definition of the slope of a general function f (x) at the value x is

slope =
rise
run
= lim

δ→0

(
f (x + δ) − f (x)

δ

)
(7.28)

This might look a little scary, but it’s simply saying with an equation what Fig. 7.4
says with a picture: you can get a better and better approximation to the slope by
looking at the average slope between two points and having the points get closer
and closer together.

For the case at hand where our function f (x) is ex , we have (with the under-
standing that we’re concerned with the δ → 0 limit in all of these steps)

slope =
rise
run
=

ex+δ − ex

δ

= ex
(

eδ − 1
δ

)
(factoring out ex )

≈ ex
(

(1 + δ) − 1
δ

)
(using Eq. (7.25))

= ex
(
δ

δ

)
= ex , (7.29)

as we wanted to show. Since we’re concerned with the δ → 0 limit (that’s how the
true slope is obtained), the “≈” sign in the third line becomes an “=” sign. So we
are correct in saying that the slope of the ex curve is exactly equal to ex .

Note that Eq. (7.25) was critical in this derivation. Eq. (7.29) holds only for
the special number e, because the eδ ≈ 1 + δ result from Eq. (7.25) that we used
in the third line holds only for e. The slope of, say, 2x is not equal to 2x , because
Eq. (7.25) doesn’t hold if e is replaced by 2 (or any other number).

Given that we’re concerned with the δ → 0 limit, you might be worried about
having a δ in the denominator in Eq. (7.29), since division by zero isn’t allowed.
But there is also a δ in the numerator, so you can cancel them first, and then take
the δ → 0 limit, which is trivial because no δ’s remain.



7.4. Appendix D: The slope of ex 353

7.4.2 Second derivation
In the above derivation, we introduced the strategy of finding the slope by calculat-
ing approximate slopes involving x values that differ by a small number δ. Let’s use
this strategy to find the slope of a general power-law function, f (x) = xn , where n
is a nonnegative integer. (Note that x is now the number being raised to a power, as
opposed to the power itself, as was the case with ex .) We’ll then use this result to
give an alternative derivation of the fact that the slope of ex equals itself, ex .

We claim that for any value of x, the slope of the function xn is given by:

slope of xn equals nxn−1 (7.30)

(In the language of calculus, this is the statement that the derivative of xn equals
nxn−1.) You can quickly verify Eq. (7.30) for the cases of n = 0 and n = 1, where
the slopes are 0 and 1. To demonstrate Eq. (7.30) for a general nonnegative integer
n (although it actually holds for any n), we can (as we did in the first derivation
above) find the average slope between x and x + δ, where δ is small. We can then
find the true slope by taking the δ → 0 limit; see Eq. (7.28). To get a feel for what’s
going on, let’s start with a specific value of n, say, n = 2. In the same manner as
in the first derivation, we have (using Eq. (7.28) along with our trusty friend, the
binomial expansion)

slope =
rise
run
=

(x + δ)2 − x2

δ

=
(x2 + 2xδ + δ2) − x2

δ

=
2xδ + δ2

δ

= 2x + δ. (7.31)

If we now take the δ → 0 limit, the δ term goes away, leaving us with only the
2x term. So we have shown that the slope of the x2 function equals 2x, which is
consistent with the nxn−1 expression in Eq. (7.30).

Let’s try the same thing with n = 3. Again using the binomial expansion, we
have

slope =
rise
run
=

(x + δ)3 − x3

δ

=
(x3 + 3x2δ + 3xδ2 + δ3) − x3

δ

=
3x2δ + 3xδ2 + δ3

δ

= 3x2 + 3xδ + δ2. (7.32)

When we take the δ → 0 limit, both of the 3xδ and δ2 terms go away, leaving us
with only the 3x2 term. Basically, anything with a δ in it goes away when we take
the δ → 0 limit. So we have shown that the slope of the x3 function equals 3x2,
which is again consistent with the nxn−1 expression in Eq. (7.30).
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You can see how this works for the case of general n. The goal is to calculate

slope =
rise
run
=

(x + δ)n − xn

δ
. (7.33)

Using the binomial expansion, the expressions for (x + δ)n for the first few values
of n are (you’ll see below why we’ve added the parentheses in the second terms on
the righthand side):

(x + δ)0 = x0,

(x + δ)1 = x1 + (1)δ,

(x + δ)2 = x2 + (2x)δ + δ2,

(x + δ)3 = x3 + (3x2)δ + 3xδ2 + δ3,

(x + δ)4 = x4 + (4x3)δ + 6x2δ2 + 4xδ3 + δ4,

(x + δ)5 = x5 + (5x4)δ + 10x3δ2 + 10x2δ3 + 5xδ4 + δ5. (7.34)

When we substitute these expressions into Eq. (7.33), the first term disappears when
we subtract off the xn . Then when we perform the division by δ, we reduce the
power of δ by 1 in every term. So at this stage, for each of the expansions in
Eq. (7.34), the first term has disappeared, the second term involves no δ’s, and the
third and higher terms involve at least one power of δ. Therefore, when we take
the δ → 0 limit, the third and higher terms all go to zero, so we’re left with only
the second term (without the δ). In other words, in each line of Eq. (7.34) we’re
left with only the term in the parentheses. And this term has the form of nxn−1, as
desired. We have therefore proved Eq. (7.30). The multiplicative factor of n here is
simply the

(
n
1

)
binomial coefficient, because the general form of all of the (x + δ)n

expansions in Eq. (7.34) is

(x + δ)n = xn +
(
n
1

)
xn−1δ +

(
n
2

)
xn−2δ2 + · · · . (7.35)

We can now provide a second derivation of the fact that the slope of ex equals
itself, ex . This derivation involves writing ex in the form given in Eq. (7.7), which
we’ll copy here,

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · · . (7.36)

We’ll find the slope of ex by applying Eq. (7.30) to each of these xn/n! terms.

Remark: In order to make use of Eq. (7.36) in our derivation, we’ll need to demonstrate that
the slope of the sum of two functions equals the sum of the slopes of the two functions. And
also that the “two” here can be replaced by any number. This might seem perfectly believable
and not necessary to prove, but let’s prove it anyway. We’re setting off this proof in a remark,
in case you want to ignore it.

Consider a function F (x) that equals the sum of two other functions: F (x) = f1(x) +
f2(x). We claim that the slope of F (x) at a particular value of x is the sum of the slopes
of f1(x) and f2(x) at that value of x. This follows from the expression for the slope in
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Eq. (7.28). We have

slope of F (x) =
rise
run
= lim

δ→0

(
F (x + δ) − F (x)

δ

)
= lim

δ→0

( (
f1(x + δ) + f2(x + δ)

) − (
f1(x) + f2(x)

)
δ

)
= lim

δ→0

(
f1(x + δ) − f1(x)

δ

)
+ lim

δ→0

(
f2(x + δ) − f2(x)

δ

)
=

(
slope of f1(x)

)
+

(
slope of f2(x)

)
. (7.37)

The main point here is that in the third line we grouped the f1 terms together, and likewise
the f2 terms. We can do this with any number of functions, of course, so that’s why the above
“two” can be replaced with any number. We can even have an infinite number of terms, as is
the case in Eq. (7.36). ♣

We now know that the slope of ex equals the sum of the slopes of all the terms
in Eq. (7.36), of which there are an infinite number. And Eq. (7.30) tells us how to
find the slope of each term. Let’s look at the first few.

The slope of the first term in Eq. (7.36) (the 1) is zero. The slope of the second
term (the x) is 1. The slope of the third term (the x2/2!) is (2x)/2! = x. The
slope of the fourth term (the x3/3!) is (3x2)/3! = x2/2!. For the third and fourth
terms, we have used the fact that if A is a numerical constant, then the slope of Axn

equals Anxn−1. This quickly follows from Eq. (7.28), because the A can be factored
outside the parentheses.

We see that when finding the slope, each term in Eq. (7.36) turns into the pre-
ceding one; this is due to the factorials in the denominators. So the infinite series
that arises after finding the slope is the same as the original infinite series. In other
words, the derivative of ex equals itself, ex . Written out explicitly, we have

Slope of ex = Slope of
(
1 + x +

x2

2!
+

x3

3!
+

x4

4!
+ · · ·

)
= 0 + 1 +

2x
2!
+

3x2

3!
+

4x3

4!
+

5x4

5!
+ · · ·

= 0 + 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · ·

= ex , (7.38)

as we wanted to show.
The slope (the derivative) of a function f (x) is commonly written as df /dx or

df (x)/dx, where the d’s indicate infinitesimal (that is, extremely small) changes.
The reason for this notation is the following. The numerator in Eq. (7.28) is the
change in the function f between two x values (namely x and x + δ). The denomi-
nator is the change in the x value. The Greek letter ∆ is generally used to denote the
change in a quantity, so we can write the quotient in Eq. (7.28) as ∆ f /∆x, where ∆x
is simply the δ that we have been using. To find the slope as prescribed by Eq. (7.28),
we still need to take the δ → 0 (or equivalently, the ∆x → 0) limit. Mathematicians
reserve the letter d for this purpose. While a ∆ can stand for a change of any size, a
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d is used when it is understood that the change is infinitesimally small. So we have

slope = lim
∆x→0

∆ f
∆x
≡ df

dx
. (7.39)

This is just the rise over run, where df is the infinitesimal rise, and dx is the cor-
responding infinitesimal run. Both of these quantities are essentially zero, but their
ratio (which is the slope) is generally nonzero. In the derivative notation, our above
results are

d(ex )
dx

= ex and
d(xn )

dx
= nxn−1 (7.40)

7.5 Appendix E: Important results
This appendix includes all of the main results in the book. More commentary can
be found in the Summary section in each chapter.

Chapter 1

Permutations: PN = N!
Ordered sets, with repetition: Nn

Ordered sets, without repetition: N Pn =
N!

(N − n)!

Unordered sets, without repetition: NCn =
N!

n!(N − n)!

Unordered sets, with repetition: NUn =

(
n + (N − 1)

N − 1

)
Chapter 2

Equally likely outcomes: p =
number of desired outcomes

total number of possible outcomes
Dependent events: P(A and B) = P(A) · P(B |A)

Independent events: P(A and B) = P(A) · P(B)
Nonexclusive events: P(A or B) = P(A) + P(B) − P(A and B)

Exclusive events: P(A or B) = P(A) + P(B)
Independence: P(B |A) = P(B) or P(A|B) = P(A) or

P(A and B) = P(A) · P(B)

Bayes’ theorem (general form): P(Ak |Z ) =
P(Z |Ak ) ·P(Ak )∑
i P(Z |Ai ) ·P(Ai )

Stirling’s formula: n! ≈ nne−n
√

2πn
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Chapter 3

Expectation value: E(X ) = p1x1 + p2x2 + · · · + pm xm
For arbitrary variables: E(X + Y ) = E(X ) + E(Y )

For independent variables: E(XY ) = E(X ) · E(Y )

Standard deviation: σX ≡
√

E
[
(X − µ)2] = √

E
(
X2) − µ2

For independent variables: σ2
X+Y = σ

2
X + σ

2
Y

Biased coin: σHeads =
√

np(1 − p) ≡ √npq

Standard deviation of the mean: σX =
σ
√

n

Variance: Var(X ) ≡ E
[
(X − µ)2] = E

(
X2) − µ2

For independent variables: Var(X + Y ) = Var(X ) + Var(Y )
Biased coin: Var(Heads) = npq

Variance of a set of numbers: s̃2 ≡ Var(S) ≡ 1
n

n∑
1

(
xi − x

)2

Sample variance: s2 ≡ 1
n − 1

n∑
1

(
xi − x

)2

Chapter 4

Binomial distribution: P(k) =
(
n
k

)
pk (1 − p)n−k

Exponential distribution: ρ(t) =
e−t/τ

τ
or λe−λt

Poisson distribution: P(k) =
ak e−a

k!

Gaussian distribution: f (x) =

√
b
π

e−b(x−µ)2

=

√
1

2πσ2 e−(x−µ)2/2σ2

Chapter 5

Gaussian approx to binomial:
e−x

2/[2np(1−p)]√
2πnp(1 − p)

Gaussian approx to Poisson:
e−x

2/2a
√

2πa



358 Chapter 7. Appendices

Chapter 6

Linear relation: Y = mX + Z

Covariance: Cov(X,Y ) ≡ E
[
(X − µx )(Y − µy )

]
For data points: Cov(x, y) ≡ 1

n

∑
(xi − x)(yi − y)

Correlation coefficient: r ≡ mσx

σy
=

mσx√
m2σ2

x + σ
2
z

=
Cov(X,Y )
σxσy

For data points: r ≡ Cov(x, y)
s̃x s̃y

=

∑
(xi − x)(yi − y)√∑

(xi − x)2
√∑

(yi − y)2

Improvement of prediction:
σ2
z

σ2
y

= 1 − r2

Probability density ρ(x, y): 1
2πσxσy

√
1−r2

exp
(
− 1

2(1−r2)

(
x2

σ2
x
+

y2

σ2
y
− 2r xy

σxσy

))
Lower regression line slope:

rσy

σx

Upper regression line slope:
σy

rσx

Average retest score: yavg = r2y1

Slope of least-squares line: A =
Cov(x, y)

s̃2
x

=
r s̃y
s̃x

Chapter 7

Euler’s number: e ≡ lim
n→∞

(
1 +

1
n

)n
≈ 2.71828

Taylor series for ex : ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · ·

For small x: ex ≈ 1 + x

An approximation: (1 + a)n ≈ ena

A better approximation: (1 + a)n ≈ enae−na
2/2

Two derivatives:
d(ex )

dx
= ex ,

d(xn )
dx

= nxn−1



7.6. Appendix F: Glossary of notation 359

7.6 Appendix F: Glossary of notation

Chapter 1

Factorial: N! = 1 · 2 · 3 · (N − 1) · N
Permutations: PN = N!

Ordered subgroups: N Pn =
N!

(N − n)!

Unordered subgroups: NCn =
N!

n!(N − n)!

Binomial coefficient:
(
N
n

)
=

N!
n!(N − n)!

Unordered sets with repetitions: NUn =

(
n + (N − 1)

N − 1

)

Chapter 2

Probability: p

Probability of event A: P(A)
Intersection (joint) probability: P(A and B), P(A ∩ B)

Conditional probability: P(B |A)
Union probability: P(A or B), P(A ∪ B)

Not A: ∼A

Chapter 3

Random variable: X (uppercase)
Value of random variable: x (lowercase)

Expectation value: E(X ), µX , µx , µ
Standard deviation: σX , σx , σ

Standard deviation of the mean: σX , σx , σavg

Variance: Var(X ), σ2
X , σ

2
x , σ

2

Set of numbers: S

Mean of set S: x, ⟨x⟩ ≡ 1
n

n∑
1

xi

Variance of set S: Var(S), s̃2 ≡ 1
n

n∑
1

(
xi − x

)2

Sample variance of set S: s2 ≡ 1
n − 1

n∑
1

(
xi − x

)2
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Chapter 4

Probability: P(x) (uppercase)
Probability density: ρ(x), f (x), etc. (lowercase)

Much greater than (multiplicatively): ≫
Much less than (multiplicatively): ≪

Approximately equal (multiplicatively): ≈

Chapter 5

Number of trials in an experiment: nt

Number of sets of nt trials: ns

Chapter 6

Slope of (lower) regression line: m

Correlation coefficient: r

Covariance of distribution: Cov(X,Y )
Covariance of data points: Cov(x, y)
Joint probability density: ρ(x, y)

Slope of least-squares line: A

y-intercept of least-squares line: B

Chapter 7

Euler’s number: e ≈ 2.71828

Derivative (slope) of f (x):
df (x)

dx
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k-permutation, 14
68–95–99.7 rule, 153, 220

AND rule, 61, 63
for three events, 110

area equals probability, 61, 189–191
art of “not”, 75
assigning seats, strategy of, 5–7
average, 134

badness of prediction, 292, 333
balls in boxes, 208, 213
Bayes’ theorem, 97–106
Bayesian reasoning, 98
Bernoulli distribution, 192–193
best-fit line, 313–316
best-fit point, 319
biased estimator, 160
binomial coefficient, 16, 29–34
binomial distribution, 193–196

expectation value of, 223
reduction to Gaussian, 250–256
variance of, 223

binomial expansion, 34
binomial theorem, 34
birthday problem, 85–87
boy/girl problem, 93–97, 113
branching tree, 6, 9

cards, 19, 38, 83–85
causation, 280
central limit theorem, 264–269
coin flips, 11, 29, 82, 107, 136, 142, 183,

251, 253, 336
combinatorics, 1
committees, 12, 15, 18, 34, 37
compound interest, 342

conditional probability, 63, 73–75, 91,
98

continuous distribution, 184–191
continuous random variable, 184–191
correlation

a model for, 280–284
the concept of, 277–280

correlation coefficient, 285–291
expressions for, 285–287
interpretations of, 310
plots for different r’s, 289

covariance, 285–288
cumulative distribution function, 191

density, 186–189
dependent events, 62–67, 71–73
depleting trials, 29
derivative, 350–356
dice rolls, 10, 38, 39, 76, 81–82, 112,

153, 255, 266
discrete distribution, 182–184, 187
discrete random variable, 182–184, 187
distribution, 134, 182
double counting, 15, 115, 116, 243

Euler’s number, e, 106, 339–346
event, 60
exclusive events, 68–69, 71–73
expectation value, 133–140

of binomial distribution, 223
of continuous distribution, 223
of exponential distribution, 224
of geometric distribution, 223
of Poisson distribution, 224

expected value, 133–140
exponential distribution, 196–207

expectation value of, 224
form of, 203
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properties of, 224

factorial, 2
fair game, 140
false positive, 99
frequentist reasoning, 98
full house, 19, 38

gambler’s fallacy, 271
game-show problem, 87–90
Gaussian distribution, 215–221

area under curve, 226
sum of two, 318
variance of, 227

geometric distribution, 197
expectation value of, 223

hypergeometric distribution, 223

identical trials, 8, 28
identically distributed variables, 138
inclusion–exclusion principle, 117, 244
inclusive “or”, 69
independent and identically distributed

(i.i.d.) variables, 144
independent events, 60–62, 71–73
independent random variables, 137
induction, 37, 43
intersection probability, 60, 62
IQ score, 305–313, 319

joint probability, 60
joint probability density, 295

law of large numbers, 256–260
least-squares line, 313–316

mathematical induction, 37, 43
mean, 134
median, 224
money partitions, 27
multinomial coefficient, 37

natural logarithm, 106, 348
nonexclusive events, 69–73
normal distribution, see Gaussian distri-

bution
not, the art of, 75

odds, 109
OR rule, 68, 69

for four events, 110
for three events, 110

ordered sets, 7, 12
outcome, 60
overlap, 69–71, 115, 116

partial permutation, 14
Pascal’s triangle, 29–34
permutation, 3–7
Poisson distribution, 207–215

accuracy of, 224
expectation value of, 224
maximum of, 224
variance of, 224

poker, 19, 38, 83–85
polar coordinates, 248
population variance, 161
probability density, 186–189
probability distribution, 134, 182
probability tree, 100
probability, definition of, 57
proofreading, 111
prosecutor’s fallacy, 90–93

random variable, 133
continuous, 184–191
discrete, 182–184, 187
independent, 137

random walk, 166
randomness, 336
rate, 199–201
regression, 300–313
regression line, 300–304, 314
regression toward the mean, 309
repetitions allowed, 7, 8, 21
repetitions not allowed, 12, 14
replacement, 8

sample space, 60
sample standard deviation, 287
sample variance, 155–163
Simpson’s paradox, 166
slope, 350–356
standard deviation, 146–150

adding in quadrature, 147
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of biased coin flips, 147
of the mean, 150–155
sample, 287

standard-deviation box, 297–299
standard-deviation line, 300
stars and bars, 25
statistics, 155
Stirling’s formula, 106–108
subtracting repeats, 36
sum from 1 to N , 36

Taylor series, 344, 348

unbiased estimator, 160
unfair game, 165
uniform distribution, 191–192

variance of, 223
union probability, 68, 69, 71
unordered sets, 14, 21

variance, 141–146
of biased coin flips, 144
of binomial distribution, 223
of exponential distribution, 224
of Gaussian distribution, 227
of Poisson distribution, 224
of uniform distribution, 223
sample, 155–163

variance of the sample variance, 167

waiting time, 196–199, 202–207
weighted average, 135
width of Gaussian distribution, 217–219
with replacement, 8, 28
without replacement, 29

Yahtzee, 39
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