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INTRODUCTION 

The 19th century witnessed fundamental transformations of the major di¬ 

visions of mathematics—geometry, algebra, and mathematical analysis. Of 

these, the qualitative changes in geometry, especially the creation of non- 

Euclidean and multidimensional geometries, may well have had the pro- 

foundest effect on the mathematical imagination. As a result—as noted by 

Bourbaki—classical geometry became a universal language for the interpre¬ 

tation of mathematical facts and theories. One could talk of a geometric style 

of thinking (A. N. Kolmogorov, The Great Soviet Encyclopedia, 2nd ed., Vol. 

26 (Russian)). 

But at the end of the 20th century it became clear that one would be 

equally justified in calling the 19th century the age of new algebra, and 

in talking of the algebraization of mathematics and the elaboration of an 

algebraic style of thinking. Indeed, until the 19th century algebra was largely 

the science of (determinate and indeterminate) equations, whereas in the 19th 

century there appeared in it completely new concepts and objects, such as 

groups, rings, fields, ideals, matrices, algebras, and many others. Their study 

resulted in the development of new methods and conceptions, and this brought 

about a changed view of the subject matter of algebra. Specifically, the task 

of algebra was now seen to be the study of systems of arbitrary nature “for 

which there are defined operations with properties more or less similar to 

those of addition and multiplication of numbers” (A. G. Kurosh and O. Yu. 

Schmidt, The Great Soviet Encyclopedia, 2nd ed., Vol. 1 (Russian)). These 

operations were called composition laws and their basic properties were given 

by systems of axioms. 

The methods of this new, so-called “modern”, algebra quickly entered 

other areas of mathematics. The 19th century witnessed the construction of 

algebraic number theory, the development of the first stages of algebraic ge- 

xiii 



XIV The Beginnings and Evolution of Algebra 

ometry, and the rigorization of the theory of Riemann surfaces by algebraic 

means. But what was startling was the “victorious march” of group theory, 

which is today an indispensable ingredient of every area of mathematics. We 

will talk about this in detail in Chapter VII (5). 

We add that functional analysis, which came into being at the end of the 

19th century, was constructed as linear algebra of infinite-dimensional spaces. 

Finally, from the first quarter of the 20th century onward, algebraic meth¬ 

ods were intensively applied in physics and brought about its radical transfor¬ 

mation. There came into being matrix mechanics, the theory of spinors, and 

the subject of symmetry, which plays so important a role today. Already in the 

1890s E. S. Fedorov applied the theory of finite groups to crystallography, and 

in this way managed to solve the problem of classification of regular point 

systems in space (we recall that there are 230 Fedorov space groups and that 

their classification could not be carried out without the use of group theory). 

Similarly, more general groups and their representations are used to classify 

elementary particles and their motions. 

How did algebra arise? What are its subject matter and methods? How 

have they changed in the process of its evolution? These are the questions we 

will try to answer in the present essay. Before we do so we note that the view 

of algebra as the science of operations defined on sets of arbitrary objects 

came into being quite late, probably only in the 1930s. 

In its evolution algebra passed through different phases during which it 

was thought of differently. Views of its subject matter, methods, and aims 

changed. There is hardly a branch of mathematics whose evolution involved 

as many surprising metamorphoses as that of algebra. Nevertheless, if we cast 

a retrospective glance at its development, then we see that the characteristic 

feature of algebra from its very first steps and practically until the appearance 

(at the beginning of the 19th century) of noncommutative and nonassocia- 

tive systems was the study of laws of composition and of their fundamental 

properties: commutativity of addition and multiplication, distributivity of mul¬ 

tiplication over addition, rules for multiplication of binomials and for raising 

them to powers, rules for operating with equations, and so on. This being 

so, we will begin our study of the history of algebra from the time of the 

discovery and application of the simplest laws of composition. 

When characterizing each of the fundamental stages of the evolution 

of algebra we will focus our attention on the problems that faced it and 

stimulated its development as well as on the basic ideas and methods used in 

their investigation. 
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Modern history of mathematics seems to be dominated by the view that 

up to the 1830s the mainspring of the development of algebra was the inves¬ 

tigation and solution of determinate algebraic equations, and especially their 

solution by radicals. We will show that this viewpoint is one-sided and gives 

a distorted representation of its evolution. In short, we claim that the role of 

indeterminate equations in the development of algebra was no less important 

than that of determinate equations.1 

We note also that the rate and phases of the evolution of algebra do not 

always correspond to the rate and periods of evolution of mathematics as a 

whole. In our account the history of algebra is divided into the following basic 

stages. 

1. Numerical algebra of ancient Babylonia (a phase that coincides in 

time with the first period of the history of mathematics, i.e., the period of 

accumulation of mathematical knowledge). 

2. Geometric algebra of classical antiquity (a phase, lasting from the 5th 

to the 1st century BCE, which corresponds to the first half of the second period 

of the history of mathematics, the period of the transformation of mathematics 

into an abstract theoretical science). 

3. The rise of literal algebra (from its birth to the creation of literal 

calculus; this phase began in the 1st century CE and lasted until the end of 

the 16th century, i.e., it began in the second half of the second period of the 

history of mathematics and lasted until the end of its third period, the period 

of development of elementary mathematics). 

4. Creation of the theory of algebraic equations (a phase that comprises 

the development of algebra in the 17th and 18th centuries and ends in the 

1830s). 

5. Formation of the foundations of modern algebra (a phase lasting from 

the 1830s to the 1930s). 

We will provide detailed characterizations of these phases in parallel 

with the exposition of the relevant material. The last phase of the evolution 

of algebra, the one that began some fifty odd years ago, cannot as yet be 

classified as a component of history. 

Editor’s notes 

1 A system of polynomial equations is said to be indeterminate if it has fewer 

equations than variables, and to be determinate if the number of equations 
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equals or exceeds the number of variables. Thus 

x + y = a, a constant, 

xy = 1, 

is a determinate system, while 

2,2 2 x + y— z 

is indeterminate. Note that polynomial equations in one variable, such as 

quadratic or cubic equations, are determinate. 

The term “indeterminate” is most commonly applied to systems with 

fewer equations than variables for which integer or rational solutions are 

sought. Such systems, also called “Diophantine”, have been particularly in¬ 

fluential in the development of algebra (see Chapter VIII). 



CHAPTER 1 

Elements of algebra in ancient Babylonia 

1. Babylonian numerical algebra 

The elements of algebra were created in ancient Babylonia, two millennia BCE. 

Modern scholars have found out about this only in the 1930s. In the middle 

of the 19th century a large number (by now over 500,000) of clay tablets 

with cuneiform writing were found in Mesopotamia. Some of them were 

mathematical, but their contents were first deciphered only between 1929 and 

1930 and disclosed a new world of ancient Babylonian mathematics. Major 

credit for these discoveries goes to O. Neugebauer, whose work created the 

foundation for a multitude of subsequent investigations. The names of some 

of the important scholars in this area are: F. Thureau-Dangin, A. Sachs, M. 

Ya. Vygodskii, I. N. Veselovskii, A. A. Vaiman, and E. M. Bruins. 

It turned out that the mathematical tablets were either “table texts” or 

“problem texts”. The table texts contained multiplication tables, tables of 

squares, of cubes, and so on. The problem texts contained statements and 

solutions of problems. The tablets belong to two clearly delimited periods 

separated by a long intermediate period. Most of the tablets are “old Babylo¬ 

nian”, i.e., they date back to the Hammurapi dynasty (1800-1600 BCE). The 

rest were made during the Seleucid period (from the 3rd to the 2nd century 

BCE), i.e., in the Hellenistic period. During the intermediate period the lan¬ 

guage and the manner of writing the symbols changed, and these changes 

made possible the precise dating of the tablets. What did not change was the 

mathematical content of the texts. No significant development took place in 

all these centuries. 

The most surprising fact is that most of the problem texts contained 

problems of the same type that reduced to the solution of quadratic equations. 

Thus close to 2000 years BCE the Babylonians could solve quadratic equations 

1 



2 The Beginnings and Evolution of Algebra 
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and carry out algebraic transformations! This remarkable discovery pushed 

back the beginnings of algebra by 13 centuries—from the earlier estimate of 

the 5th century BCE to the 18th century BCE! 

Before considering the problems we will say a few words about the table 

texts. The Babylonians used just two symbols (two digits!), a horizontal wedge 

and a vertical wedge, for denoting all numbers (Figure 1). These symbols were 

impressed with a thin stick on clay tablets that were later baked. In spite of 

the fact that the Babylonian numeral system employed just two digits, its base 

was 60. The numbers from 1 to 59 were recorded using the additive principle, 

with a vertical wedge for 1 and a horizontal wedge for 10. The symbol for 

23 is shown in Figure 1. 

The number 60 was also denoted by a single vertical wedge. Thus^^ 

could be read as 83. We said “could” advisedly, because the same group 

of symbols could also be interpreted as l|~, or as 602 + 23, or as any of 

the numbers of the form 60fc + 23 • 60fcl, where k\ < k. Of course, this 

nonuniqueness was due to a lack of an analogue of our zero. It should be 

noted that during the Seleucid period a separating symbol, a prototype of our 

zero, was used to indicate a missing sexagesimal order, but this symbol was 

never used at the end of a number. 

Briefly, the Babylonian numeral system was positional, nonunique, and 

had a base of 60. 

What made up, to some extent, for the awkwardness due to the lack of 

zero was that the Babylonians could record integers as well as sexagesimal 

fractions in a uniform way, i.e., they had a positional notation as well as a 

systematic method for writing fractions. 

The large base of 60 called for a huge multiplication table that went up 

to 59 x 59. Luckily, children were not required to memorize it. The large 

number of dug up multiplication tables (they represent the largest fraction of 

all unearthed table texts) of this kind shows that they were, so to say, mass 

produced for the use of pupils. 
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Other tables dealt with division. To divide M by N the Babylonians mul¬ 

tiplied M by N' = 1/N. Hence the large number of tables of multiplicative 

inverses that were also used by pupils. 

Finally, there were tables of squares and cubes of natural numbers, tables 

of sums of squares and cubes, and tables of square roots (expressed in sexa¬ 

gesimal fractions). In connection with square roots we note the Babylonians’ 

use of a very convenient formula: if sja ~ aq, then they took as the next 

approximation . This (rapidly converging) process could be 

iterated. 

Traces of the Babylonian numeral system have survived to this day: we 

divide an hour into 60 minutes and a minute into 60 seconds. We do the same 

when dividing a degree into minutes and seconds. The source of this tradition 

is astronomy. The Babylonians were the first to carry out systematic obser¬ 

vations of the starry sky. They constructed a calendar, computed the periods 

of the moon and the planets, and could predict eclipses of the moon and the 

sun. Their astronomical knowledge was inherited by the Greeks, who adopted 

their astronomical tables together with their sexagesimal numeral system. The 

great astronomer and mathematician Claudius Ptolemy (2nd century CE) used 

the sexagesimal system in his fundamental work known under the Arabized 

name of Almagest. The Almagest was the basic astronomical work in the 

medieval East as well as in Europe, where it was still in use in the 16th and 

17th centuries. 

Next we turn to the problem texts. 

Using modern notation, we could state the problems in the cuneiform 

tablets as follows (a, b, and c are given and x and y are to be found): 

f x±y = a, 

1 xy = 
(1) 

j x±y = a, 

{ x2 + y2 = b- 
(2) 

ax2 ± bx = c. (3) 

The Babylonians denoted unknowns by special terms (for which they 

used single-mark Sumerian words, whereas the text itself was in Akkadian) 

rather than by symbols: “length” (for our x), “width” (y) (invariably x > 

y), and “area” (xy). Sometimes there was mention of “sides of squares”. If 

necessary, a third unknown, “depth” (z), was introduced, and the product 

xyz was called “volume”. While the terminology was explicitly geometric, 

all unknowns were regarded as numbers, so that the Babylonians freely added 
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areas to lengths or widths, and so on. There were also more abstract statements 

of problems: there is a series of problems that involve the computation of a 

“factor” and its “inverse”, i.e., of two numbers whose product is 1. 

We call problems (l)-(3) canonical. They were solved by an algorithm 

that fully corresponds to our formula for the solution of a quadratic equation. 

We state one such problem: “A factor and its inverse 2; 30.” In our notation, 

the problem can be stated as follows: 

f x + y = a, 

\xy = l 

Here x is the “factor”, y is the “inverse”, and a = 2; 30. In decimal notation 

2; 30 is 2.5 (2; 30 stands for 2j|j, i.e., for 2.5). 

What follows is a rhetorical solution of the problem accompanied by two 

“translations”, one decimal and the other literal. 

Solution 

“factor and inverse 2; 30” x + y — 2.5, 

xy = 1 

x + y = a, 

xy = b 

1. “by 0;30 multiply: 1; 15” 2.5 • | = 1.25 a 
2 

2. “ 1; 15 by 1;15 multiply: 1;33,45” 1.25 • 1.25 = 1.5625 a a (a\2 
2 ' 2 ~ \ 2 / 

3. “1 subtract from this: 0;33,45” 1.5625 - 1 = 0.5625 (!)*-& 

4. “what must one multiply by 

what to obtain 0;33,45? 0;45 ” 

V0.5625 = 0.75 7d)2-* 

5. “0;45 to 1;15 add: 2-factor” 1.25 + 0.75 = 2[= x) i + 7(f)2-6 
= X 

6. “0;45 from 1;15 

subtract: 0;30-inverse” 

1.25 - 0.75 = 2[= y] i-7(f)2-* 
= y 

We see that the solution recipe consists of the sequence of operations 

required for the solution of the quadratic equation z2 — az + b = 0, which is 

equivalent to the system (4). The text contains no explanations. The generality 

of the algorithm was illustrated by applying it to a large number of problems 

of the same type. The text is obviously of the textbook variety. 

How could this algorithm have been obtained? One probably used alge¬ 

braic transformations to reduce (4) to the form z2 — B = 0. If the solution 

x — y — a/2 failed to satisfy the conditions of the problem, then one put 

x = a/2 + t, y = a/2 — t, which meant that xy = (a/2)2 — t2 = b, i.e.. 
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t2 = (a/2)“ — b. What is striking is that in his Arithmetic (Book 1, Problem 

27) Diophantus solved this system in just this way. Apparently, the Babylonian 

method survived for more than two millennia! 

To carry out the transformation just described the Babylonian calculator 

had to know: 1) the substitution rule; and 2) the rule for removing parentheses, 

which relied on the distributivity of multiplication over addition, 

a(b + c) — ab + ac. (5) 

The latter was the basis for the formula 

(a + b) (a — b) = a2 — b2 (6) 

Can we credit the Babylonians of this distant era with such knowledge? 

We are about to show that we have very good reasons to do so. 

To this end we consider problems of “noncanonical” nature, i.e., prob¬ 

lems that do not directly reduce to the equations (1)—(3). We give two examples 

from O. Neugebauer’s work (O. Neugebauer, Mathematische Keilschrifttexte. 

Quellen und Studien zur Geschichte der Mathematik, Astronomie und Physik. 

Abt. A. Berlin, 1930-1937). 

A problem from text AO 8862 from Senkere (from the period of the 

Hammurapi dynasty) states: “Length, width. Length and width I multiplied 

and obtained area. Then I added the excess of length over width to the area: 

I got 3,3. Then I added length and width: 27. One asks: length, width, and 

area” (Vol. I, p. 133). 

Using modern notation we rewrite the problem as follows: 

xy + {x - y) = a, 

x + y = b, 
(7) 

where a = 183 and b — 27. The solution begins with the words: “You will 

do thus: 

27 + 3,3 = 3,30, 

2 + 27 = 29”. 

(Here 3,3 stands for 3-60 + 3 and 3,30 stands for 3 -60 + 30.) This is followed 

by the solution of the system 

uv = 3,30, 

u + v = 29. 
(8) 
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What is the connection between the systems (7) and (8)? The Babylonian 

calculator finds 

x = u = 15; y = v — 2 = 14 — 2 = 12. 

If we analyze this solution, then we arrive at the conclusion that the first step 

was the addition of the left sides of the given equations: 

xy + (x - y) + (x + y) = xy + 2x. 

Next the “length” x, the common factor on the right, was factored out: 

xy + 2x = x(y + 2). 

This was followed by the substitution 

v = y + 2. 

Now x + v — x + y + 2 = 29. We are down to the system (8). 

Thus it is safe to say that the Babylonians knew the substitution rule as 

well as the rule for common factors! 

The following is another noncanonical problem: 

“I added the area of my two squares: 25,25. (The side) of the second 

square equals 2/3 of the side of the first and another 5 GAR [=“add”]” 

(ibidem, Vol. Ill, p. 8, no. 14). It is equivalent to the system 

( x2 + y2 = a 

\ y — kx + b, 
(9) 

where a—25,25 (1525 in the decimal system), k = 2/3, and b = 5. 

The text begins with the computation of the following three coefficients: 

p = 1 + (2/3)2 = 1 + (0; 40)2 = 1; 26, 40, 

q = 5 • 0;40 = 3; 20, (10) 

r = 25,25 - 52 = 25,0. 

Then the solution is found by using the formula 

x = P~1 (yjpr + q2 - g) , y=^x + 5. 

This means that in order to find the length x one had to solve the quadratic 

equation 

px2 + 2 qx = r, 
(11) 
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where p, q, and r are determined in (10). In order to obtain equation (11) the 

Babylonian calculator had to: square y = 0; 40x + 5, i.e., use the formula 

(o + 6)2 = a2 + b2 + 2 ab, (12) 

make a substitution, and reduce similar terms. 

Thus two millennia BCE the Babylonians knew some laws of algebraic 

operations, made substitutions, and solved by algebraic methods quadratic 

equations and systems equivalent to quadratic equations. This justifies the 

claim that they knew the elements of algebra. 

This algebra can be characterized as numerical, for it made no use of 

symbols. Formulas (6) and (12) were used to solve problems but were not 

considered in general form. We know of no proofs of these formulas. Many 

insights were probably the result of working out many numerical examples and 

of the application of incomplete induction. In the sequel we will discuss the 

origin of problems (1)—(3). Now we turn to problems of a kind that required 

the development of algebraic methods. 

2. Indeterminate equations 

Indeterminate equations were already considered during the rule of the Ham- 

murapi dynasty. Many texts dealt with the problem of finding “Pythagorean 

triples”, i.e., rational triples x, y,z satisfying the equation 

x2+y2=z2. (13) 

While the Babylonians knew many solutions of equation (13)—such as the 

triples (3, 4, 5), (5,12,13), (8,15,17), and many others—it is not quite clear 

whether they knew the general formulas for its solutions. In this connection it 

should be mentioned that there is a text with a table of rational Pythagorean 

triples whose law of formation is controversial. Another equation considered 

side by side with equation (13) is the equation 

u2 + v2 — 2w2. (14) 

Both equations have a geometric origin. The first expresses the connec¬ 

tion between the hypotenuse and legs of a right triangle. The second arose in 

connection with the problem, frequently encountered in Babylonian texts, of 

bisecting a given trapezoid (Figure 2) by means of a straight line parallel to 

its base. If we denote the upper base of the trapezoid by u, the lower base 

by v, and the dividing line by w, then it is easy to see that u, v, and w are 
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D u C 

FIGURE 2 

connected by equation (14). (Indeed, denote the area of the trapezoid by S, 

and the areas of its upper and lower halves by Si and S2 respectively. Let 

hi be the altitude of the upper half and h2 of the lower half. The condi¬ 

tion Si = S2 implies the equality hi/h2 = (w + v)/(w + u), the condition 

S1+S2 — S, the equality hi/h2 = (u — w)/(w — v), and these two equalities 

imply equation (14).) 

The Babylonians knew that there was a connection between equations 

(13) and (14): if x, y, z is a solution of (13), then u = x — y,v = x + y,w = z 

is a solution of (14). Hence the table: 

y X z u V 

3 4 5 1 1 

5 12 13 7 17 

7 24 25 17 31 

The number triples u, v, w are called Babylonian triples. 

There are tables which indicate that the Babylonians could find infinitely 

many solutions of equation (14)! In fact, E. M. Bruins, who edited the Sousa 

texts, pointed out that the following procedure was used in the Sousa text no. 

20: starting with a solution of (14) such as u = 0; 15, v = 1; 45, w = 1; 15 

(obtained from the Babylonian triple (1,7,5) by multiplication by 0; 15, i.e., 

by 1/4), one obtained a new solution in this way: 

vi = 0; 48 • 1; 45 + 0; 36 • 0; 15 = 1; 33; 

ui = 0; 36 • 1; 45 - 0; 48 • 0; 15 = 0; 51. 

Similarly, one can obtain solutions (u2,v2,w), (u3,v3,w), and so on. 

What is behind this procedure? The numbers by which one multiplies 

u and v to obtain m and vi are 0;48 = 48/60 = 4/5 and 0; 36 = 3/5 

respectively. They are obtained from the right triangle (3,4, 5) by dividing its 
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sides by 5. Now (3/5)2 + (4/5)2 = 1. This suggests that the Babylonians 

used the formula for composition of forms: 

(u2 + v2)(a2 + p2) — (cm — pv)2 + (cm + Pu)2 
o (15) 

= (au + pv)2 + (av - Pu)2. 

Both of these ways of representing (u2 + v2)(a2 + /32) as a sum of two 

squares are found in Babylonian texts. This justifies the conclusion that two 

millennia BCE the Babylonians knew the highly nontrivial formula (15). As 

we will see, this formula played an essential role in the work of Diophantus, in 

the mathematics of the medieval East, and in European mathematics between 

the 13th and 17th centuries. 

In order to obtain successive solutions (Uk,Vk:w) of (14), the Babylo¬ 

nians used a and p such that a2 + P2 — 1. Such values could be obtained 

from Pythagorean triples x, y, z by dividing all entries by 2. 

To sum up. Already during the first stage of its evolution algebra was 

influenced by the problem of solution of determinate (quadratic) equations as 

well as by the investigation and solution of indeterminate equations, and the 

most sophisticated Babylonian formula was associated with the solution of 

equations of the latter type. 

3. The origin of the first algebraic problems 

We mentioned earlier that geometry was the origin of problems that reduced 

to indeterminate equations. The origin of problems that reduced to quadratic 

equations is less clear. Land measurement gave rise to the problem: Given 

the length x and width y of a plot of land, find its area xy, or its area and 

perimeter 2(x + y). But it is clear that the problem of finding the sides of a 

plot of land given its area and perimeter has no practical value. How then did 

this problem arise? One can venture a guess that having solved the “direct” 

problem of determination of the area of a plot of land given its sides, the 

Babylonians tried to check the correctness of the solution and in this way 

arrived at the “inverse” problem of determining the sides of a plot of land 

given its area and perimeter. 

The simplest direct problem is the following: Given the side a of a square 

find its area S. To solve it, we multiply the given number a by itself: 

S = aa — a2. 

The inverse problem is to determine the side of a square given its area 

S. If x is the required side, then the inverse problem reduces to the “pure” 
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quadratic equation 

x2 = S, 

which is solved by extracting a square root, x = VS, an operation more 

complex than multiplication. 

The next direct problem connected with land measurement is to find the 

area S' of a plot of land given its sides a and b. This problem is also solved 

by multiplication: S = ab. 

The inverse problem is to determine the sides x and y of a plot of land 

given its area S. This is an indeterminate problem. It can be made determinate 

in two ways: 

1) by giving one of the sides, say y = a, in which case we obtain the 

equation 

ax — S 

which is solved by division x = S/a; or 

2) by giving the sum (or difference) of the sides of the rectangle. In that 

case we obtain one of the canonical Babylonian systems: 

xy = S, x + y = a. 

The latter problem is basically more complex than the direct problem 

that gives rise to it. It was the analysis of this problem that led Babylonian 

scholars, close to four thousand years ago, to the discovery of the formula 

for the solution of quadratic equations. Gradually, such problems became an 

independent object of study and led to the rise and evolution of the elements 

of algebra. 

Inverse problems played, and continue to play, a very basic role in the 

evolution of mathematics. We mention inverse trigonometric functions, in¬ 

version of series, the general notion of the inverse of a function and the 

determination of conditions for its existence and, finally, the inverse Galois 

(1811-1832) problem. All of these examples led to the consideration of new 

functions or to the creation of new theories. The first inverse problems are 

found in Babylonian mathematics, at the very sources of the evolution of 

algebra. 



CHAPTER 2 

Ancient Greek “geometric algebra” 

1. Transformation of mathematics into an abstract deductive 
science. Discovery of incommensurability 

The second stage of the evolution of algebra coincides with the flourishing of 

classical Greek mathematics (from the 5th to the 2nd century BCE). At that 

time mathematical knowledge, accumulated through ages, was transformed 

into an abstract science based on a system of proofs—mathematics—and the 

first mathematical theories came into being. 

Neither in ancient Babylonia nor in other pre-Greek civilizations do we 

find a single written proof. While scholars must have used individual argu¬ 

ments in support of their conclusions, such arguments were not at the center 

of their interests. What mattered was finding an effective recipe for the so¬ 

lution of a class of problems. The result could be exact or approximate (for 

example, when extracting roots or when computing certain areas or volumes). 

On the other hand, in Greece between the 6th and 5th centuries BCE inter¬ 

est was focussed on justification of propositions by proofs. Also, there was 

clear recognition that mathematical propositions deal with abstract objects: 

dimensionless points, lines with length but without width, and so on. 

In the new, abstract, mathematics proofs performed a number of func¬ 

tions. The first of these functions was to establish the truth of a proposition. 

Proof came to be regarded as the only means of establishing truth. This is un¬ 

derstandable: after all, all propositions of mathematics refer to abstract objects 

which can be realized only approximately in practice (take as an example the 

construction of an equilateral triangle). Also, most mathematical propositions 

refer to classes containing infinitely many such objects (for example, the class 

of all right triangles, of all isosceles triangles, of all primes, and so on). It is 

impossible to establish the truth of such propositions without proof. 

11 
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Incidentally, it was realized early on that when constructing a theory 

one must start with a number of propositions—later known as axioms—that 

are accepted without proof. Aristotle pointed out that otherwise every proof 

would be infinite: proposition A would be proved on the basis of proposition 

B, proposition B on the basis of proposition C, and so on: 

A <= B <= C <= ■ • ■ 

The series of implications would extend to infinity and no proposition could 

ever be proved! Hence the need for selecting a finite number of propositions 

assumed to be true and for deducing all other propositions of the theory from 

them. Aristotle called a science constructed in this manner “demonstrative”. 

The second, no less important function of proof was to establish con¬ 

nections among propositions, to find out why certain propositions are true. 

Already Aristotle wrote in his Posterior Analytics: “To know what is and to 

know why it is are different types of knowledge” (Analyt. post. 78a), and in 

his Metaphysics he wrote: “Those who have experience know the ‘what’ but 

not the ‘why’, whereas those who have mastered an art know the ‘why’, i.e., 

the cause” (Meth. 981a). Faced with an unproved proposition we often do 

not know what theory it belongs to. Thus, in spite of their apparent resem¬ 

blance, the theorems: “the sum of the angles in a triangle is equal to two right 

angles”, and “an exterior angle of a triangle is greater than a nonadjacent 

interior angle” belong to different theories: the first to Euclidean geometry 

(its proof is fundamentally dependent on the parallel postulate) and the sec¬ 

ond to absolute geometry. It is only after the introduction of proofs that the 

propositions obtained from a single system of axioms begin to coalesce into 

a theory. In this way proofs determine a new mathematical structure. 

The third function of proofs consists in the discovery of new, previously 

unknown, propositions. A striking instance of such a discovery is the propo¬ 

sition about the incommensurabiliy of the side and the diagonal of a square. 

We note that not only could this proposition not have been found intuitively 

but that it contradicts all accumulated human experience which tells us that 

there is a common measure for all magnitudes, i.e., that all magnitudes are 

commensurable. One had to command highly developed abstract thinking to 

prefer a result obtained by proof to experience and intuition. 

We will not discuss the reasons for such a fundamental transformation of 

the system of mathematical knowledge; there are many papers and books de¬ 

voted to this topic. We will only say that this transformation was undoubtedly 

connected with general qualitative changes in the cultural and political life of 

Greece. The question we will try to answer is where and when mathematics 
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began to take the form of an abstract deductive science. This can be precisely 

determined as to time and place. In the first half of the 6th century BCE, the 

philosopher, astronomer, and merchant Thales of Miletus began to prove some 

propositions of geometry. Some of his proofs were “more general” and others 

“more empirical”. And in the second half of the 5th century BCE the mathe¬ 

matician Hippocrates of Chios, who lived in Athens, wrote the first Elements 

of geometry, i.e., the first system based on proofs. This work has not come 

down to us; in fact, Euclid s famous work supplanted all Elements written 

before 300 BCE. What has come down to us is excerpts from Hippocrates’ 

treatise on squarable lunes. These excerpts are written in what is still the 

standard style of mathematics. Hippocrates provides rigorous justifications of 

his assertions and never appeals to intuition by referring to a drawing. He 

knew not only Pythagoras’ theorem but also the theorem about the side of a 

triangle subtended by an acute or obtuse angle as well as other theorems of 

plane geometry. This means that the transformation of mathematics and the 

creation of plane geometry took place some time between the middle of the 

6th and the middle of the 5th centuries. But we know of the existence of just 

one school of mathematics at that time, namely the school of Pythagoras. 

We also have direct testimony that points to Pythagoras as the man who 

transformed mathematics. In his commentaries on Book I of Euclid’s Ele¬ 

ments, the famous Neoplatonist philosopher Proclus had this to say: “Pythago¬ 

ras ... transformed this science (iptXoao^pta) into a liberal form of education, 

examining its principles from the beginning and probing the theorems in an 

immmaterial and intellectual manner. He discovered the theory of proportion¬ 

als and the construction of the cosmic figures” (Thomas 1939, p. 149). 

We know that Pythagoras was born on the island of Samos, that in his 

youth he stayed in Egypt and studied with its priests, and that around 530 BCE 

he settled in Crotona, a Greek colony in Southern Italy (these colonies were 

known as Greater Greece), where he founded the brotherhood of Pythagoreans, 

which pursued scientific, religious-ethical, and political aims. Legends were 

told about Pythagoras already during his lifetime. By now it is difficult to 

separate truth from invention. The air of secrecy surrounding the brotherhood 

confused matters even more, so that we cannot tell which discoveries are due 

to Pythagoras and which to his students. This being so, we will talk about 

the mathematics of the early Pythagoreans. 

The system of knowledge (pad i) para) of the early Pythagoreans con¬ 

sisted of four parts: arithmetic, geometry, the teaching of harmony, and as¬ 

tronomy. The Pythagoreans regarded arithmetic, i.e., the science of numbers, 

as the foundation of mathematics. By a number (aptOpoq) they meant a col- 
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lection of units. They divided numbers into even and odd ones (much later, 

Plato described arithmetic as the study of even and odd) and proved the first 

theorem of divisibility theory: the product of two numbers is divisible by 2 if 

and only if at least one of them is divisible by 2. They also posed the problem 

of finding perfect numbers (i.e., numbers equal to the sum of their proper di¬ 

visors). The Pythagoreans developed a theory of (positive) rational numbers. 

Since unity E was regarded as indivisible, it made no sense to talk about 

its “parts”, i.e., fractions of the form ^E or ^E. Instead, they talked about 

ratios of whole numbers M : N, M = mE, N = nE. Today we would say 

that they constructed the rational numbers as a theory of number pairs. This 

theory has come down to us through Euclid’s Elements (Book VII). Euclid 

proves that the set of pairs of whole numbers with the same ratio, 

Aii • iV"i = M2 '■ N2 — Ms Ns — • • •, 

contains a least pair P, Q, such that P and Q are relatively prime (i.e., the 

least pair corresponds to our irreducible fraction), and that the numbers Ap., 

Nk of any pair are equimultiples of P and Q, i.e., Ap = rP, Nk = rQ. 

The early Pythagoreans assumed that the ratio of any two segments is 

expressible as a ratio of two numbers, i.e., that it is possible to construct a sim¬ 

ilarity theory based on rational numbers. Thus they tried to reduce geometry 

to arithmetic. 

Also, Pythagoras discovered that the ratios of consonant musical intervals 

reduce to simple numerical ratios: 1:2 (an octave), 2:3 (a fourth), 3:5 (a fifth), 

i.e., that the qualitative differences of the sounds of strings can be reduced to 

the ratios of their lengths, and thus to numbers. 

The Pythagoreans concluded that “all is number”, that the mathematical 

relations of magnitudes and the laws of nature are expressible in terms of 

whole numbers and their ratios. This was the first attempt at arithmetization 

of mathematics and of mathematical natural science. But this attempt soon 

collapsed. 

A discovery made in the Pythagorean school unsettled all their views. 

What was proved was that the ratio of the diagonal to the side of a square 

is not expressible as the ratio of whole numbers. This meant that the whole 

numbers and their ratios do not suffice for the construction of a similarity 

theory and of metric geometry. 

The only discoveries of comparable significance were the discovery of 

non-Euclidean geometry in the 19th century and two discoveries made in the 

first third of the 20th century, namely, the theory of relativity and Godel’s 

incompleteness theorem. Like these discoveries, the discovery of incommen- 
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surability soon became known to most educated people. Plato learned about 

incommensurability rather late and wrote that before becoming aware of it he 

resembled an unreasoning animal. Aristotle frequently turned to problems in¬ 

volving incommensurabiliy. He wrote in his Metaphysics: “People are at first 

amazed and ask if things are really that way. Their amazement is comparable 

to that elicited by toys that move by themselves, by the rotation of the sun, 

or by the incommensurability of the diagonal, for those who do not know 

the cause marvel that there is something that cannot be measured by however 

small a measure” (.Meth. 983a). 

The discovery of incommensurability proved the unsoundness of the first 

attempt at arithmetization of mathematics and became the starting point of 

deep and subtle theories (equivalent to our theory of real numbers, of the 

classification of irrationalities, and so on). Its immediate consequence was 

the reversal of the roles of arithmetic and geometry. First the Pythagoreans 

tried to reduce geometry to arithmetic. But having found out that the realm of 

geometric magnitudes is larger than that of the rationals they adopted geometry 

as the basis of mathematics. 

2. Geometric algebra 

Around the end of the 5th century BCE algebra also put on geometric “armor”. 

The Greeks translated all arithmetical operations into geometric language and 

began to operate with geometric objects such as segments, areas, and volumes 

without using numbers. Following H. G. Zeuthen, one usually refers to this 

period as the period of geometric algebra. 

The sources on which we base our evaluation of geometric algebra come 

from the Hellenistic period (from the 3rd to the 1st centuries BCE) which 

followed the conquests of Alexander the Great. At that time Hellenistic science 

resumed contacts with the mathematical and astronomical knowledge of the 

East. The center of science moved from Asia to Egyptian Alexandria. At the 

time Egypt was ruled by the Ptolemys, the first of whom—Ptolemy Soter— 

established in Alexandria the Museon (home of the Muses), a counterpart of 

an Academy of Science connected with a university, and next to it a splendid 

library which at one time housed more than 700,000 manuscripts. The greatest 

Hellenistic scholars were invited to this center. One of the first to come was 

Euclid. 

Between the 3d and 2nd centuries BCE the Alexandrian scientific school 

was peerless. Here resided geniuses such as Archimedes, Apollonius, Er¬ 

atosthenes, and the astronomer Hipparchus. True, after a period of training 
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Archimedes returned to his native Syracuse (in Sicily), but to the end of his 

life he corresponded with his friends, the Alexandrian mathematicians. Al¬ 

most all of his works that have come down to us are in the form of letters, 

each of which is a finished and beautifully written scientific memoir. 

In the sequel we will return on many occasions to the algebraic achieve¬ 

ments of the Hellenistic mathematicians. 

The foundations of geometric algebra are presented in Book II of Euclid’s 

Elements. Its propositions are also found in Books VI and XIII. Segments 

made up the first class of objects of algebra. One could add them (i.e., lay 

one off next to another) and subtract a smaller from a larger one. The product 

of two segments was the rectangle on these segments and the product of three 

segments was the rectangular parallelepiped on them. There was no definition 

of a product of more than three segments. It made no more sense to speak of 

a product of more than three segments than it did to speak of spaces of four 

or five dimensions. 

Using geometric algebra it was possible to prove properties of opera¬ 

tions and identities known already to the Babylonians. For example, Euclid’s 

Elements contains a proof of the distributive law of multiplication over ad¬ 

dition. Specifically, Proposition Ifi (i.e., Proposition I in Book II) states that: 

If there be two straight lines, and one of them be cut into any number of 

segments whatever, the rectangle contained by the two straight lines is equal 

to the rectangles contained by the uncut straight line and each of the seg¬ 

ments (note that by “straight line” Euclid always means a bounded straight 

line, i.e., a segment). In other words, consider a rectangle on segments a 

and b: if, say, segment a is divided into parts a = a\ + ■ ■ ■ + an, then 

(ai +-b an)b = aib H-+ anb (Figure 3). 

The transition to geometric language, more precisely to constructions 

realizable by ruler and compass, made it possible for the first time to give 

general proofs of certain algebraic identities. Thus in II4 one considered a 

suitable figure (Figure 4) and proved the identity 

(a + b)2 — a2 + b2 + 2 ab. (1) 

Here the lengths of the segments a and b are arbitrary, and they can be 

commensurable or not. 

The identity 
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FIGURE 4 

widely used by the ancients in connection with the solution of quadratic 

equations, was proved with the help of a “gnomon” (Figure 5): if we put 

AB = a, BD = b, AC = CD =^±1^ 
2 

BC= DF = BD, 
2 ’ 

then the area ABB1 A1 is equal to the gnomon CDD'HB'C' — CD2 — CB2, 

i.e., we obtain the identity (2). Note that the same geometric equality can be 

expressed differently: putting = u and = v we obtain 

(u + v)(u — v) = u2 — v2. 

Problems equivalent to quadratic equations were also given a geomet¬ 

ric formulation. Three types of such problems were considered in ancient 

mathematics. 

D 

F 

D' 

FIGURE 5 
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1. To transform a given rectangle into a square. This is equivalent to 

solving the equation x2 = ab. 

2. To “apply” to a given segment AB — a a rectangle of given area S 

so that the “deficiency” is a square (Figure 6).1 Putting BC = x we see that 

this is equivalent to solving the equation 

x(a — x) = S. (3) 

3. To “apply” to a given segment AB — a a rectangle of given area S 

so that the “excess” is a square (Figure 7).1 It is easy to see that this problem 

is equivalent to solving the equation 

x(a + x) = S. (4) 

In antiquity the second problem was called elliptic, from the word 

eWeiipos—falling short, and the third hyperbolic, from the word imep(5o\i)— 

excess. The ancients realized that the second problem was solvable (i.e., had 

a positive real root) for S < a2/4. It is clear that this condition was obtained 

by finding the maximum of x(a — x) for 0 < x < a. 

In Book II of the Elements Euclid solves the first of these problems 

and prepares the technical tools for the solution of the other two, which he 

solves in generalized form in Book VI. Specifically, instead of rectangles he 

applies to the given segments parallelograms of given area and requires the 

deficiency in one case and the excess in the other case to be similar to a given 

parallelogram. In modern terms, Euclid considers the equations 

7^(a — x) = S\ 

7 x(a + x) = S, 

where 7 is a positive real number. 



Ancient Greek “geometric algebra’’ 19 

A 

A B 

2 

FIGURE 8 

Problems 1-3 are solved by first transforming ab, (a-x)x, and (a + x)x 

into a difference of squares (in accordance with formula (2)) and then solving 

for the unknown by Pythagoras’ theorem. Thus in the case of problem 1 one 

takes a segment AB of length a + b, bisects it at O, draws a circle of radius 

AO, and erects a perpendicular to AB at the end T of the segment AT = a. 

If A is its point of intersection with the circle, then the segment TA yields 

the side x of the required square (Figure 8). 

What was the class of problems solvable by the methods of geometric 

algebra? 

We saw that ruler and compass constructions made possible the solution 

of various problems equivalent to quadratic equations with real positive roots. 

It is not difficult to see that they enable one to solve problems reducible to 

a sequence of quadratic equations in which the coefficients of each equa¬ 

tion depend on the roots of its predecessor. The Elements contain problems 

such as the determination of the sides of a regular polygon and of a regular 

polyhedron in terms of the diameter of its circumscribed circle and sphere re¬ 

spectively. Some of these problems are algebraically equivalent to the solution 

of a biquadratic equation that is reducible to a succession of two quadratic 

equations. Thus the expression for the side of a regular pentagon in terms of 

the diameter of its circumscribed circle is 

and is therefore reducible to the solution of the pair of quadratic equations 

y2 - 5R2y + 5R4 = 0; x2 = y. 
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In other words, at this stage, the problem of solution of determinate equations 

by radicals was limited to the solution of such equations in terms of square 

roots and their combinations. However, problems soon turned up that could 

not be solved by methods of classical geometric algebra. Before considering 

such problems we look at how the ancients classified the irrationalities arising 

in connection with the solution of a chain of quadratic equations. 

3. Classification of quadratic irrationalities 

The incommensurability of the side and the diagonal of a square was proved 

in the school of Pythagoras not later than the middle of the 5th century 

BCE. In algebraic terms, what was proved was that the equation x2 = 2 

has neither integral nor rational solutions, or, in modem terms, that \/2 is 

an irrational number. One of the oldest proofs, mentioned by Aristotle in his 

Prior Analytics (41a21-41b2), is found in certain copies of Euclid’s Elements. 

The proof is by contradiction. Aristotle asserts that if the diagonal and side 

of a square were commensurable, then “the odd would be equal to the even”. 

O. Becker showed that the proof can be carried out using only the theory 

of even and odd numbers, which formed the core of Pythagorean arithmetic. 

(Here is a sketch of the proof. Suppose \/2 = m/n, where m and n are 

not both even. Then m2 = 2n2 m2 even =4> m even ==> n odd, 

m = 2t =>- n2 = 212 => n2 even => n even. Thus n is both even and odd. 

Contradiction.) In Plato’s Theaetetus it is told that the Pythagorean Theodorus 

of Cyrene (second half of the 5th century BCE) presented a lecture to Athenian 

youths in which he proved that the sides of squares with areas 3, 5, 6,..., 15 

are incommensurable with the side of a unit square. (It is not clear from the 

dialogue whether Theodorus included the square with area 17 or just went 

“up to” it. J. Itard showed that, in the latter case, he could have carried out the 

proof using only the theory of the odd and the even, without having recourse 

to general divisibility theorems.) In the same dialogue, the young Athenian 

mathematician Theaetetus stated a general theorem to the effect that the side 

of a square of area N, N a nonsquare integer, is incommensurable with the 

side of a unit square, i.e., that if TV ^ a2, then y/N is not expressible as a 

rational number. We note that the proof of this theorem requires the use of 

the general theory of divisibility. 

A scholium on Euclid shows that in addition to irrationalities of the 

form y/N Theaetetus considered three other classes of quadratic irrationalities, 

namely 

1) binomials: M + \/N; y/~M + y/N; 
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2) apotomes (differences): M - \/iV; \[M - y/N; 

3) medials (means): \/\fMy/N 

Euclid extended Theaetetus’ classification (his theory of irrationalities 

and their classification is found in Book X of the Elements). It seems that he 

wanted to construct a domain El of numbers closed under the four elemen¬ 

tary operations of arithmetic (with limited subtraction) and the operation of 

extraction of square roots of positive numbers, i.e., a domain in which it is 

possible to solve every equation of the form 

x2 = a2 + b2, a,b E El. 

Nowadays we call such a domain a Pythagorean field. All constructions 

in the Elements are carried out over this field (except that subtraction is 

limited to the cases in which the subtrahend is less than the minuend). 

In addition to the classes of irrationalities just listed, Euclid consid¬ 

ered the classes \JM + y/~N,y/\[M + y/N, VM — V~N, \JVM — a/ZV, 

VM • N. He proved that these classes are nonempty and disjoint. 

We note that Euclid’s classification has a considerable “reserve”, in the 

sense that there are more classes than needed for the solution of problems 

considered in the Elements. It follows that Euclid attached independent sig¬ 

nificance to his classification. 

According to Plato, Theaetetus defined cubic irrationalities s/~N as well. 

It is conceivable that their classification was contained in one of Apollonius’ 

works. Be that as it may, no such classification has come down to us. 

4. The first unsolvable problems 

In the 5th century BCE three problems were posed that immediately became 

very famous. These are the problems of duplication of a cube, of trisecting 

an angle, and of squaring a circle. All of them have a long history. The first 

two were solved only in the 1830s and the third only at the end of the 19th 

century. All three turned out to be unsolvable by classical geometric algebra. 

The nature of the first two of these problems is very different from that of 

the third. 

We will consider in detail only the first of these problems because of its 

special significance for the evolution of algebra. We can state it as follows: 

Construct a cube whose volume is twice the volume of a given cube. If a is 

the side of the given cube and x that of the required cube, then the problem 

is equivalent to solving the equation x3 = 2a3. 
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This problem was so popular that a legend was made up about it. It 

seems that Athens was afflicted by the plague, and the pronouncement of the 

oracle at Delos was that the plague would cease if the cubical altar to Apollo 

were doubled in size. Hence the name Delian problem. 

It was natural to try to solve the problem by ruler and compass con¬ 

structions. Translated into the language of algebra, this meant that one tried 

to represent \/2 as a finite combination of quadratic radicals. When these at¬ 

tempts ended in failure the problem was thoroughly investigated. Hippocrates 

of Chios, who lived and worked in Athens and was one of the best mathe¬ 

maticians of the second half of the 5th century BCE, generalized the problem: 

Given a rectangular parallelepiped with base a2 and height b find a cube of 

the same volume, i.e., solve the equation 

x a2b. (5) 

Hippocrates showed that the solution of this equation is equivalent to 

finding two mean proportionals between a and b, i.e., to solving the equations 

a 

x 

x 

V 

y 
b' 

(6) 

If b — 2a, then x is the side of the required cube. 

Archytas of Tarentum (5th century BCE) soon showed that the segment 

x can be found by considering the intersection of three surfaces of rotation: a 

cone, a cylinder, and the surface (a “degenerate torus") obtained by rotating 

a circle about one of its tangents. The ancients had no doubts about the ex¬ 

istence of surfaces obtained by rotating a right triangle about one of its legs, 

of a rectangle about one of its sides, and of a circle about one of its tangents. 

While Archytas’ solution proved the existence of a solution of Hippocrates’ 

problem, it provided no convenient method for the construction of two mean 

proportionals between two arbitrarily given segments. With a view to find¬ 

ing such a method scholars focussed their attention on equations (6) and on 

geometric loci, i.e., on curves obtained from Hippocrates’ proportion: 

ay = x2; xy = ab (or bx = y2). 

The construction of the point of intersection of these curves yielded the solu¬ 

tion of the problem. But the investigation of loci was far from simple. First 

one had to show that these loci were continuous curves, for it was only then 

that one could talk about the point of their intersection. In the second half 

of the 4th century BCE Menaechmus, a pupil of Eudoxus, managed to rep¬ 

resent these loci as plane sections of cones of rotation. He considered three 
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FIGURE 9 

cones of rotation, namely right-angled (i.e., having a right angle at the ver¬ 

tex), obtuse-angled, and acute-angled. Sections by planes perpendicular to a 

given ray lying on each of these three cones yielded three kinds of curves, 

now known as a parabola, an hyperbola, and an ellipse respectively. These 

names were introduced by Apollonius (3rd century BCE). Before him these 

curves were known as sections of right-angled, obtuse-angled, and acute- 

angled cones. Having given these three-dimensional definitions of the three 

curves, Menaechmus deduced their plane geometric properties (symptoms) 

and subsequently operated with these alone. As an example, we show how he 

obtained the “symptom” of a parabola. Let AOB be the section of a right- 

angled cone of rotation by a vertical plane passing through its axis OL and 

let PMK be the trace of a plane perpendicular to its ray OB (Figure 9). 

Since AMB is a semicircle, KM2 = AK ■ KB. But AK = PP' = y/2LP2 

and KB = V2KP2. Hence 

KM2 = 2LP ■ KP. 

Denote KM by y, KP by x, and LP by p. Then 

y2 = 2 px. (7) 

This is the equation (or “symptom”) of the curve in modern notation. The 

ancients expressed it in terms of geometric algebra: at each point of the curve 

the square on the semichord KM is equal to the rectangle PKSR constructed 

on the segment PK (from K to the vertex P of the curve) and on the constant 

segment (parameter) PR. (Figure 10). 
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The equations 

y2 p j y2 p 
—-- = — and —-- = —, 
x(2a — x) 2 a x(2a + x) 2 a 

of sections of an acute-angled and obtuse-angled cone respectively, were ob¬ 

tained in a similar manner and were also expressed in terms of geometric 

algebra. Since the first of these equations is of elliptic type and the sec¬ 

ond of hyperbolic type, Apollonius called the corresponding curves ellipse 

and hyperbola respectively. Similarly, the curve defined by equation (7) was 

called a parabola because this equation is of parabolic type. In other words, 

Apollonius’ classification was algebraic and was based on the application of 

geometric algebra to geometry. This is very much like our use of literal alge¬ 

bra in modern analytic geometry for the deduction of the equation of a curve 

and the study of its properties. 

We see that investigation of the problem of duplication of a cube resulted 

in the introduction into mathematics of conic sections, curves of fundamental 

importance. In antiquity their use was limited to the solution of cubic equa¬ 

tions, but two millennia later, in the 17th century, they turned up in Kepler’s 

astronomical laws and played a vital role in mechanics. 

We now turn to the second remarkable problem of antiquity. The ancients 

did not reduce the angle trisection problem to a cubic equation. They solved it 

either by a so-called neusis (verging or inclination) construction or by means 

of new curves. The first of these methods consists in fitting a line segment of 

given length between two curves so that it—or its extension—passes through 

a given point. For example, to trisect a given angle /.AOB one draws a circle 

of arbitrary radius R centered at the vertex O, extends OB to the left of O, 
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FIGURE 11 

and fits a segment CD of length R between the straight line OB and the 

circle so that its extension passes through A. It is not difficult to see that 

Z.CDO = 1/3ZAOB (Figure 11). But the solution of a problem by a neusis 

construction invites questions. Indeed, if one moves a segment of length a so 

that one of its endpoints stays on a given curve L and its extension passes 

through a given point A, then its second endpoint describes a certain curve 

T. A neusis construction is equivalent to finding the intersection of the curve 

r with the second given curve. But F can be a very complicated curve. Thus 

if L is a straight line then T is a conchoid (its equation in polar coordinates 

is p = a + b/ cos ip). This is an algebraic curve of 4th degree. (Incidentally, 

this curve was introduced in the 3rd century BCE.) Some neusis constructions 

can be realized by means of conic sections while others involve curves of 

higher degree. That is why it was not enough to solve a problem by means of 

a neusis construction. The additional requirement was to explain what curves 

the construction called for. 

The problem of squaring a circle, i.e., of constructing a square whose 

area is that of a given circle, is not an algebraic problem, but the nature of 

the first approach to its solution via squarable lunes was algebraic. 

A lune is a figure bounded by two arcs of two circles. Hippocrates of 

Chios found three squarable lunes. We will discuss one of them. 

Consider the semicircle AAiB\B (Figure 12) with the inscribed isosce¬ 

les triangle ATB and the circular segment S3 similar to the segments S\ = 

AAiT and S2 = TB±B. Hippocrates showed that the lune ATB has the same 

area as the triangle ATB. 

His first step was to show that the ratio of similar circular segments, 

i.e., segments whose central angles are both equal to (m/n) ■ 2n, is equal to 

the ratio of the squares of their chords. In the case under consideration the 

three central angles are equal to 7t/2. Since AB2 = 2AT2, it follows that 
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S3 : $1 = 2 : 1. Hence S3 = Si + S2, i.e., the lune AT BA = ^ — S3 = 

^-(S1 + S2) = AATB. 

Hippocrates wanted to use his lunes to effect the quadrature of a circle. 

The outer arc of the lune just considered is equal to a semicircle. One of 

the outer arcs of Hippocrates’ two other lunes was greater than a semicircle 

and the other, smaller than a semicircle. Hippocrates also obtained a lune 

which, while itself not squarable, was squarable together with a circle. This 

approximation to a solution of the basic problem was apparent rather than 

real, a rather frequent occurrence in mathematics. However, the discovery of 

“Hippocratic lunes” was of independent interest. 

In the 18th century the problem of squarable lunes was investigated by 

D. Bernoulli, G. Cramer, and Euler. They found two more squarable lunes. 

At the beginning of the 19th century Hippocratic lunes were studied by T. 

Clausen, a professor at Dorpat (now Tartu) university. He rediscovered the 

five squarable lunes and advanced the idea that there were no others. The 

problem was solved in the 20th century by the Bulgarian L. Chakolov and 

the Russian N. G. Chebotarev and his students. They used Galois theory to 

show that there are exactly five squarable lunes and none of them is squarable 

together with a circle. 

Another problem that attracted the attention of ancient mathematicians, 

and was settled only at the end of the 18th century, was the problem of 

construction of regular polygons. Already the early Pythagoreans knew how 

to use ruler and compass to inscribe in a circle regular n-gons for n = 3,4, 5 as 

well as all regular polygons obtained from the latter by doubling the number 

of their sides. In addition, Euclid’s Elements contains a construction of a 

regular polygon with 15 sides. In particular, the ancients were interested in 

the case n = 7. What has come down to us is an Arabic translation of a work 

of Archimedes in which he showed how to divide a circle into seven equal 
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parts. Archimedes used a neusis construction that could be realized by means 
of conic sections. 

The problem of construction of regular polygons by means of ruler and 

compass was settled at the end of the 18th century by the young Gauss, who 

reduced it to the solution of the cyclotomic equation xn — 1 = 0. We will 

discuss this matter in the sequel. The unsolvability of the first two famous 

problems of antiquity was proved in 1837 by P. L. Wantzel. But already in 

Euclid’s time mathematicians were inclined to think that all three famous 

problems were unsolvable by means of ruler and compass. At any rate, these 

problems were not included in Euclid’s Elements, in which the basic con¬ 

struction tools are ruler and compass. 

The first classification of problems dates back to Euclid’s time (or may 

have been carried out somewhat later). Problems belonged to one of three 

classes. The first class was the class of “plane” problems, solvable by ruler 

and compass. The second was the class of “solid” problems, solvable by conic 

sections. All remaining problems formed the class of “linear” problems. Pap¬ 

pus (3rd century CE) considered it a major error when a “plane” problem was 

solved by means of conic sections. In Archimedes’ hands the latter became 

the universal means of solution of cubic equations. 

5. Cubic equations 

A more systematic investigation of problems equivalent to cubic equations 

took place in the Hellenistic period (3rd-2nd centuries BCE). In On the 

Sphere and Cylinder (see The Works of Archimedes, ed. T. L. Heath, Dover.), 

Archimedes reduced the problem of dividing a sphere by a plane into two seg¬ 

ments with volumes Vi and V2 in a prescribed ratio, V\ : V2 = m : n (m > 

n), to finding the height x of the larger segment from the proportion 

777 
AR2 : x2 = (3R - x) : -—. (8) 

v ' m+n v 

where R is the radius of the sphere. 

Archimedes replaced this problem by the following generalized version: 

To divide a given segment a into two parts x and a — x such that 

(a — x) : c = S : x2, (9) 

where c and S are a given segment and a given area respectively. 

Archimedes realized that the generalized version of the initial problem 

was not always solvable (i.e., it did not always admit a positive solution). This, 
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he said, meant that one had to impose restrictions (“diorisms”) on the data, and 

promised to carry out an analysis and a synthesis. But the promised solution 

got lost. It was not mentioned in any of the lists of the works of Archimedes. 

The Greek geometers Diodes and Dionisidorus, who lived a century after 

Archimedes and provided rather involved solutions of the original problem 

rather than of its generalized version, seemed to be unaware of it. It was not 

until the 6th century CE that the Archimedes commentator Eutocius found the 

lost solution, now usually added as an appendix to the collected works of 

Archimedes. What follows is the solution in question. 

Archimedes puts S = pb and solves the problem by considering two 

conic sections: the parabola 

y - x2 tv (10) 

and the hyperbola 

y = cb/(a — x). (11) 

Both of these equations are easily obtained from the proportion (9). It is 

remarkable that Archimedes goes over from the proportion (9) to the cubic 

equation 

x2(a — x) = cS, (12) 

which he expresses in words as a relation between volumes. He needs this 

transition in order to be able to clarify the conditions for the existence of a 

solution. It is clear that the condition that assures the existence of positive 

roots of equation (12) is 

cS < maxx2(o — x), 0 < x < a. 

In other words, the problem reduces to finding the maximum of x2{a - x). 

Archimedes claims that the maximum in question is attained for x = |a 

and proves his claim. Without discussing his infinitesimal arguments we state 

his conclusion that if cS < maxx2(a-x) - ±a3, then equation (12) has two 

different positive real roots (Figure 13, case I) which can be obtained from 

the points of intersection of the curves (10) and (11). If cS = ^a3, then 

these curves have a common tangent (Figure 13, case II), i.e., the equation 

has a double root. Finally, if cS > ^o3, then the curves (10) and (11) do not 

intersect for x <E [0, a] (Figure 13, case III). 

It was not until the 19th century that one encountered an equally complete 

and profound analysis of a problem. 
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FIGURE 13 

At the end of his letter to Dosipheus, which is a kind of introduction to 

his On Conoids and Spheroids, Archimedes notes that the theorems proved 

in this work enable one to solve many problems, such as, for example, the 

following: “From a given spheroid (ellipsoid of rotation) or conoid (paraboloid 

or hyperboloid of rotation) to cut off, by means of a plane parallel to a given 

plane, a segment equal to a given cone, cylinder, or sphere.” These problems, 

as well as the problems of division of a sphere, reduce to cubic equations. In 

the case of an obtuse-angled conoid the equation is of the form 

a;2 (a ± x) — cS. 

Archimedes’ letter makes it clear that he analyzed and solved this equa¬ 

tion. Thus he may be said to have considered cubic equations of the form 

x3 Sax2 — b for different values of a and b and to have given methods for their 

solution. In antiquity the investigation and solution of cubic equations in gen¬ 

eral form presented difficulties that only Archimedes managed to overcome. 

Using the new geometric machinery of conic sections, Greek mathematicians 

solved particular problems equivalent to cubic equations. This method was 

subsequently adopted by mathematicians in Islamic countries who tried to 

analyze all cubic equations. 

In summary, we can say that the roots of cubic equations, including the 

roots of the equation of duplication of a cube, were determined by intersecting 

parabolas and hyperbolas. In antiquity no one posed the problem of solution of 

equations in terms of cubic radicals, leave alone in terms of radicals of higher 
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degree. At this stage the geometric solution of cubic equations had little effect 

on the evolution of algebra. Had geometric algebra continued to develop it 

would have, most likely, led to the investigation of curves of higher degree. 

However, as we will see in the sequel, the development of geometric algebra 

was interrupted in the early centuries CE and algebra followed a different path. 

6. Indeterminate equations 

In the theoretical works from the 5th-3rd centuries BCE we find just two types 

of indeterminate equations, namely the Pythagorean equation 

x2 + y2 — z2 (13) 

and the equation 

y2 — ax2 — ±1, a ^ a2, (14) 

which later came to be known as the Pell-Fermat equation. In both cases one 

looked for positive integral solutions. 

The theme of the Pythagorean equation runs through all of ancient math¬ 

ematics. The early Pythagoreans found a general solution in the form 

a2 - 1 a2 + 1 

’ y 2 2 

where a is an odd number. The simplest solution is the triple (3, 4, 5). Another 

general solution was given by Plato, who started with an even a and put 

For a = 4 we again get the triple (3,4, 5). 

Neither of these two general solutions of equation (13) is complete. This 

is clear from the fact that each of them involves a single parameter whereas 

the complete general solution must involve two parameters. 

A complete general solution of (13) is found in Book X of Euclid’s 

Elements (Proposition 29, Lemma 1). In modern terms, this solution can be 

written as follows: 

x=p2-q2, y = 2pq, z = p2 + q2. 

The early Pythagoreans also considered the special case of equation (14) 

with a — 2. Let us rewrite this equation as 

(15) 



Ancient Greek “geometric algebra” 31 

If we put for y and x values xn and yn obtained from the recursive formulas 

•En %n— 1 Dn— lj 

Vn 2 xn—\ T yn— 1, 
(16) 

n = 1,2,... and xo = y0 = 1, then we see that with increasing xn the ratios 

yn : xn come ever closer to s/2; they are ever better “rational diagonals” 

of the unit square. In the dialogue The State, Plato calls the number seven 

a “rational diagonal” of the square with side five. By way of an explanation 

Proclus writes that one took ones as the first values of the diagonal and the 

side (xq = 1, yo = 1 give the least solution of equation (14) for a = 2), and 

that the subsequent values were obtained from the formulas (16) for successive 

values of n. Then x\ = 2, yi = 3, x<i = 5, j/2 = 7, i.e., the second step yields 

Plato’s “rational diagonal”.2 

According to Proclus, Propositions Ilg and IIio of Euclid’s Elements 

prove that formulas (16) give the successive solutions of equation (14) for a — 

2. Indeed, Proposition Ilg (in which a segment AB is cut into equal segments 

at C and into unequal segments at D; see Figure 14) gives a geometric proof 

of the identity 

AD2 + BD2 = 2 AC2 + 2 CD2, 

where AC = CB, or, equivalently, AD2 — 2AC2 = —{BD2 — 2CD2). Thus 

if BD2 — 2CD2 = ±1, then AD2 — 2AC2 has that same value. But, as is 

clear from Figure 14 (we are putting CD = x and BD = y), 

AC = CD + BD = x + y, 

AD = 2 CD + BD = 2 x + y. 

Proposition II10 is dual to Proposition II9. It concerns the case when D lies 

on the extension of the segment AB. 

FIGURE 14 
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It is very likely that in Archimedes’ time mathematicians knew formulas 

for finding infinitely many solutions of equation (14), starting with the small¬ 

est one, for values of a other than 2. An argument in favor of this assumption 

is that in Measurement of a Circle Archimedes gives an approximation to y/3 

that can be obtained from the recursion formulas 

i — xn—\ T Uji—Xi yn — 3xn—i -f Un—i- 

Specifically, starting with xq = yo = 1, we get the following sequence of 

approximations.to y/3\ 

1 2 5 7 19 26 71 97 265 

I’ I’ 3’ 4’ IT’ 15’ 41’ 56’ 153’ 

Archimedes used the approximation ||| without explaining its origin. This 

indicates that the method he used to obtain it was widely known. 

We also know that Archimedes set for the Alexandrian mathematicians 

the so-called “problem about bulls”, which reduces to the solution of equation 

(14) for a = 4729494. It seems that what the great mathematician wanted to 

know was not a concrete solution of equation (14) for a given a but whether 

the Alexandrian mathematicians had a general method for getting the relevant 

least solution as well as the recursion relations for obtaining the remaining 

solutions. 

The subsequent history of indeterminate equations indicates that during 

the period under consideration many other such equations were solved, but 

their investigation was not part of the theoretical science of that time. 

Between the time when this essay was written and the present moment 

the authors’ views concerning the origin of geometric algebra have changed: 

geometric algebra seems to have been a universal language of mathematics 

in antiquity and during the Middle Ages. In this connection see their paper 

“A new view of the geometric algebra of the ancients” in the Appendix at the 

end of the book. 

Editor’s notes 

1 A less condensed version of this statement would begin as follows: To 

construct on a given segment a rectangle whose area equals that of a given 

area S so that... 
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2 The discussion in 2 of Chapter I describes how a composition formula was 

used in Babylonian mathematics. Here, a similar composition formula can be 

used to explain the recursive formulas (16). 

Equation (15) can be written as y2 — 2x2 = ±1, and solutions of this 

equation can be found using the composition formula 

(y2 — 2 x2)(s2 — 2 r2) = (2 rx + sy)2 — 2 (sx + ry)2 (*) 

as follows. Put y = yn-u x = xn-\, r = l,s = 1 in (*). Using (16), this 

gives -{y2n_x - 2x2n_x) =y\- 2x2n. Hence y2n_x - 2x2n_x = ±1 implies 

vl - 2xl = 





CHAPTER 3 

The birth of literal algebra 

1. Mathematics in the first centuries ce. Diophantus 

The third—very important—stage of the development of algebra began in the 

first centuries CE and came to an end at the turn of the 17th century. Its be¬ 

ginning was marked by the introduction of a literal symbolism by Diophantus 

of Alexandria, and its end by the creation of a literal calculus in the works 

of Viete and Descartes. It was then that algebra acquired its own distinctive 

language which we use today. 

The first century BCE was a period of Roman conquests and of Roman 

civil wars. Both were taking place in the territories of the Hellenistic states 

and the Roman provinces and were accompanied by physical and economic 

devastation. One after another these states lost their independence. The last 

to fall was Egypt (30 BCE). The horrors of war and the loss of faith in a 

secure tomorrow promoted the spread of religious and mystical teachings 

and undermined interest in the exact sciences and in abstract problems in 

mathematics and astronomy. In Cicero’s dialogue On the State one of the 

participants proposes a discussion of why two Suns were seen in the sky. 

But the topic is rejected, for “even if we acquired profound insight into this 

matter, we would not become better or happier.” 

In the second half of the first century BCE mathematical investigations 

came to a virtual halt and there was an interruption in the transmission of the 

scientific tradition. 

At the beginning of the new era economic conditions in the Hellenistic 

countries, now turned Roman provinces, gradually improved and there was a 

revival of literature, art, and science. In fact, the second century came to be 

known as the Greek Renaissance. It was the age of writers such as Plutarch 

and Lucian and of scholars such as Claudius Ptolemy. 

35 
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Alexandria continued its role as the cultural and scientific center of antiq¬ 

uity, and in this respect Rome was never its rival. Nor did Rome ever develop 

an interest in the depths of Hellenistic science. As noted by Cicero in his 

Tusculanae disputationes, the Romans, unlike the Greeks, did not appreciate 

geometry; just as in the case of arithmetic, they stopped at a narrow, practical 

knowledge of this subject. They had little regard for all of mathematics. Even 

accounting, surveying, and astronomical observations were left to the Greeks, 

the Syrians, and other conquered nations. According to Vergil, the destiny of 

the Romans was wise government of the world. 

The revival of the Alexandrian school was accompanied by a fundamen¬ 

tal change of orientation of its mathematical research. During the Hellenistic 

period geometry was the foundation of Greek mathematics; algebra had not, 

as yet, become an independent science but developed within the framework 

of geometry, and even the arithmetic of whole numbers was constructed ge¬ 

ometrically. Now number became the foundation. This resulted in the arith- 

metization of all mathematics, the elimination of geometric justifications, and 

the emergence and independent evolution of algebra. 

We encounter the return to numerical algebra already in the works of the 

outstanding mathematician, mechanician, and engineer Heron of Alexandria 

(1st century CE). In his books Metrica, Geometrica, and others, books that 

resemble in many respects our handbooks for engineers, one finds rules for the 

computation of areas and volumes, solutions of numerical quadratic equations, 

and a number of interesting problems that reduce to indeterminate equations. 

In particular, they contain the famous “Heron formula” for the computation 

of the area of a triangle given its sides a, 6, c: 

S = \/p(p — a)(p — b)(p — c), 

where p — (a + b + c)/2. Here the expression under the square root sign 

is a product of four segments, and thus an expression totally inadmissible 

in geometric algebra. It is clear that Heron thought of segments as numbers 

whose products are likewise numbers. 

In his famous book, known under its Arabized name Almagest, Claudius 

Ptolemy, when computing tables of chords, identified ratios of magnitudes 

with numbers and the operation of “composition” of ratios—defined in Eu¬ 

clid’s Elements—with ordinary multiplication. 

The new tendencies found their clearest expression in the works of Dio- 

phantus of Alexandria, who founded two disciplines: algebra and Diophantine 

analysis. 
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We know next to nothing about Diophantus himself. On the basis of 

certain indirect remarks, Paul Tannery, the eminent French historian of math¬ 

ematics, concluded that Diophantus lived in the middle of the 3rd century CE. 

On the other hand, Renaissance scholars who discovered Diophantus’ works 

supposed that he lived at the time of Antoninus Pius, i.e., approximately in 

the middle of the 2nd century. An epigram in The Greek Anthology provides 

the following information: “Here you see the tomb containing the remains of 

Diophantus, it is remarkable: artfully it tells the measures of his life. God 

granted him to be a boy for the sixth part of his life, and adding a twelfth 

part to this, He clothed his cheeks with down; He lit him the light of wedlock 

after a seventh part, and five years after his marriage He granted him a son. 

Alas! late-born wretched child; after attaining the measure of half his father’s 

life, chill Fate took him. After consoling his grief by this science of numbers 

for four years he ended his life. By this device of numbers tell us the extent 

of his life.” A simple computation shows that Diophantus died at the age of 

84 years. This is all we know about him. 

2. Diophantus’ Arithmetica. 

Its domain of numbers and symbolism 

Only two (incomplete) works of Diophantus have come down to us. One is his 

Arithmetica (six books out of thirteen; four more books in Arabic, attributed 

to Diophantus, were found in 1973. They will be discussed in the sequel). 

The other is a collection of excerpts from his treatise On Polygonal Numbers. 

We will only discuss the first of these works. 

Arithmetica is not a theoretical work resembling Euclid’s Elements or 

Apollonius’ Conic Sections but a collection of (189) problems, each of which 

is provided with one or more solutions and with relevant explanations. At 

the beginning of the first book there is a short algebraic introduction, which 

is basically the first account of the foundations of algebra. Here the author 

constructs the field of rational numbers, introduces literal symbolism, and 

rules for operating with polynomials and equations. 

Already Heron regarded positive rational numbers as legitimate numbers 

(in classical ancient mathematics “number” denoted a collection of units, i.e., 

a natural number). While Diophantus defined a number as a collection of 

units, throughout Arithmetica he called every positive rational solution of a 

problem “number” (apidpoq), i.e., he extended the notion of number to all 

of Q+. But this was not good enough for the purposes of algebra, and so 

Diophantus took the next decisive step of introducing negative numbers. It 
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was only then that he obtained a system closed under the four operations of 

algebra, i.e., a field. 

How did Diophantus introduce these new objects? Today we would say 

that he used the axiomatic method: he introduced a new object called “de¬ 

ficiency” (XeZ'tptq, from XeZnuj—to lack) and stated rules for operating with 

it. He writes: “deficiency multiplied by deficiency yields availability (i.e., a 

positive number); deficiency multiplied by availability yields deficiency; and 

the symbol for deficiency is rh, an inverted and shortened (letter) (Dio¬ 

phantus. Arithmetica. Definition IX). In other words, he formulated the rule 

of signs which we can write as follows: 

(-)x (-) = (+), 

(-) X (+) = (-). 

Diophantus did not formulate rules for addition and subtraction of the 

new numbers but used them extensively in his books. Thus, while solving 

problem III8 (i.e.. Problem 8 in Book III), he needs to subtract 2x + 7 from 

x2 + 4x -h 1. The result is x2 + 2x — 6, i.e., here he carries out the operation 

1 — 7 = —6. In problem VI14, 90 — I5x2 is subtracted from 54 and the 

result is 15x2 — 36. Thus here — 15x2 is subtracted from zero; in other words, 

Diophantus is using the rule —(—a) = a. 

We note that Diophantus used negative numbers only in intermediate 

computations and sought solutions only in the domain of positive rational 

numbers. A similar situation developed later in connection with the intro¬ 

duction of complex numbers. Initially they were regarded as just convenient 

symbols for obtaining results involving “genuine”, i.e., real, numbers. 

Diophantus also introduced literal signs for an unknown and its powers. 

He called an unknown a “number” (aptdpdq) and denoted it by the special 

symbol q. It is possible that this symbol was introduced before him. We find 

it in the Michigan papyrus (2nd century CE) as well as in a table appended to 

Heron’s Geometrica. But Diophantus boldly breaks with geometric algebra by 

introducing special symbols for the first six positive powers of the unknown, 

the first six negative powers, and for its zeroth power. While the square and 

cube of the unknown could be interpreted geometrically, its 4th, 5th, and 6th 

powers could not be so represented. Nor could the negative powers of the 

unknown. 

Diophantus denoted the positive powers of the unknown as follows: 

x—q; x2—Au; x]—IC; XA—AUA; x5—AKU; x6—KvK. 
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He defined negative powers as inverses of the corresponding positive powers 

and denoted them by adding to the exponents of the positive powers the 

symbol For example, he denoted x~2 = l/x2 by AUV 

He denoted the zeroth power of the unknown by the symbol M, that is, 

by the first two letters in Moi'dy, or unity. 

Then he set down a “multiplication table” for powers of the unknown 

that can be briefly written down as follows: 

xmxn = xm+n, —6 < to + n < 6. 

He singled out two rules that correspond to basic axioms which we use 
for defining a group: 

xm ■ 1 = xm (definition VII); (1) 

xrnx~m = 1 (definition VI). (2) 

In addition, Diophantus used the symbol l'a for equality and the symbol 

□ for an indeterminate square. All this enabled him to write equations in 

literal form. Since he did not use a symbol for addition, he first set down 

all positive terms, then the minus sign (i.e., rh), then the negative terms. For 

example, the equation 

x3 — 2x2 + lOx —1 = 5 

was written as 

Kvaql nh Au/3Ma’/crMe. 

Here a = 1, Z = 10, (3 = 2, e = 5 (we recall that the Greeks used the letters 

of the alphabet to denote numbers). 

In the “Introduction” Diophantus formulated two basic rules of transfor¬ 

mation of equations: 1) the rule for transfer of a term from one side of an 

equation to the other with changed sign and 2) reduction of like terms. Later, 

these two rules became well known under their Arabized names of al-jabr 

and al-muqabala. 

Diophantus also used the rule of substitution in a masterly way but never 

formulated it. 

We can say that in the introduction Diophantus defined the field Q of 

rational numbers, introduced symbols for an unknown and its powers, as well 

as symbols for equality and for negative numbers. 

Before discussing the contents of Arithmetica we consider the possibil¬ 

ities and limitations of Diophantus’ symbolism. Getting ahead of the story, 
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we can say that, basically, Diophantus considered in his work indeterminate 

equations. Such equations always involve two or more unknowns. But he in¬ 

troduced symbols for just one unknown and its powers. How did he proceed 

when solving problems? 

First he stated each problem in general form. For example: “To decom¬ 

pose a square into a sum of squares” (problem II8). Now we would write this 

problem as 

2,2 2 x + y = a . 

How could Diophantus write this equation with just one symbol for an un¬ 

known and without symbols for parameters (in this case a)? He proceeded 

as follows: After the general formulation he assigned concrete values to the 

parameters—in the present case he put a2 = 16. Then he denoted one un¬ 

known by his special symbol (we will use the letter t instead) and expressed 

the remaining unknowns as linear, quadratic, or more complex rational func¬ 

tions of that unknown and of the parameters. In the present example, one 

unknown is denoted by t and the other by kt — a or, as Diophantus puts it, “a 

certain number of t’s minus as many units as are contained in the side of 16”, 

i.e., instead of a he takes 4 and instead of the parameter k—the number 2. 

But by saying “a certain number of f’s” he indicates that the number 2 plays 

the role of an arbitrary parameter. Thus Diophantus’ version of our equation 

is 

f2 + (21 - 4)2 = 16, 

so that 

x — t = 16/5; y = 2t - 4 = 12/5. 

One might think that Diophantus was satisfied with finding a single 

solution. But this is not so. In the process of solving problem III19 he finds 

it necessary to decompose a square into two squares. In this connection he 

writes: “We know that a square can be decomposed into a sum of squares in 

infinitely many ways.” 

The use of a concrete number to denote an arbitrary parameter has the 

virtue of simplicity. Sometimes it turned out that the parameter could not be 

selected arbitrarily, that it had to satisfy additional conditions. In such cases 

Diophantus determined these conditions. Thus problem VI8 reduces to the 

system 

x\ + x2 = y3, xi+x2 = y. 
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Diophantus puts £2 — t, xi — (3t, where (3 = 2. Then from the second 

equation we obtain y = {(3 + l)t, and from the first, 

03+1)3-/33- 

Since (3 = 2, f2 = 1/19, i.e., f is not rational. In order to obtain a rational 

solution Diophantus looks at the way t2 is expressed in terms of the parameter 

(3. The expression in question is a fraction whose numerator, 1, is a square. 

But then the denominator must also be a square: 

{(3 + l)3 -p3 = □. 

Diophantus takes as the new unknown (3 = r (he denotes it by the same 

symbol as the original unknown x2) and obtains 

3r2 + 3r + 1 = □. 

Solving this equation by his method (which we will describe in detail in the 

next section) Diophantus obtains 

3 + 2A 

T ~ A2 - 3 ’ 

i.e., the parameter could only be chosen from the class of numbers {(3 + 

2A)/(A2 — 3)}. Diophantus takes A = 2 and obtains (3 = 7. Then he goes 

back to solving the original problem. 

Frequently Diophantus deliberately chooses for parameters numbers that 

do not lead to solutions. He does this in order to show how to analyze prob¬ 

lems. 

Thus concrete numbers play two roles in Arithmetica. One role is that 

of ordinary numbers and the other is that of symbols for arbitrary parameters. 

Numbers were destined to play the latter role almost to the end of the 16th 

century. 

Time to sum up. Diophantus was the first to reduce determinate and 

indeterminate problems to equations. We may say that he did for a large 

class of problems of arithmetic and algebra what Descartes was later to do 

for problems of geometry, namely he reduced them to setting up and solv¬ 

ing algebraic equations. Indeed, in order to solve problems—arithmetical in 

the case of Diophantus and geometric in the case of Descartes—both set up 

algebraic equations which they subsequently transformed and solved in accor¬ 

dance with the rules of algebra. Also, the transformations involved—such as 

elimination of unknowns, substitutions, and reduction of similar terms—had 
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no direct arithmetic or geometric significance and were not subject to exten¬ 

sive interpretations. In both cases such interpretations were reserved for the 

final results. We are used to associating this important step with Descartes’ 

creation of analytic geometry, but long before Descartes this step was taken 

by Diophantus in his Arithmetica. None of the scholars of the period between 

the 13th and 16th centuries unfamiliar with Arithmetica entertained the idea 

of applying algebra to the solution of number-theoretic problems. 

3. The contents of Arithmetica. Diophantus’ methods 

We have already mentioned that Arithmetica is a collection of problems with 

solutions. This may create the impression that it is not a theoretical work. But 

a careful reading makes it clear that the purpose of the painstaking choice and 

deliberate placement of problems was to illustrate the application of specific 

general methods. It is a characteristic of ancient mathematics that methods 

were not formulated apart from problems but were disclosed in the process 

of their solution. We recall that the famous “method of exhaustion”—the first 

variant of the theory of limits—was not set down in pure form either by its 

author Eudoxus of Cnidus or by Archimedes. It was mathematicians of the 

16th and 17th centuries who isolated it by analyzing Euclid’s Elements and 

Archimedes’ quadratures and formulated it in general terms. The same applies 

to Diophantus’ Arithmetica. As we show in the sequel, his methods were 

isolated in the 16th and 17th centuries by Italian and French mathematicians. 

Following them, we will try to isolate some of these methods and state them 

in general form. 

In Book I Diophantus solves particular determinate linear and quadratic 

equations. The remaining books deal with the solution of indeterminate equa¬ 

tions, i.e., equations of the form 

F{xi, = 0, n > 2, 

F{xi,... ,xn) a polynomial, or of systems of such equations: 

Diophantus looks for positive rational solutions , £n> £ Q+, of 

such equations or of such systems. 

It is clear that to solve his determinate equations Diophantus needed 

only symbols for x and x2 and not for all xn, -6 < n < 6. In other words, 
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he extended his domain of numbers and introduced most of his symbols to 

investigate and solve indeterminate equations, where he really needed higher 

powers of the unknown as well as its negative powers. 

Thus the birth of literal algebra was connected not with determinate but 

with indeterminate equations. 

Here we will present just one of Diophantus’ methods, namely his method 

for finding rational solutions of a quadratic equation in two unknowns: 

F2{x,y) = 0, (3) 

where F2(x,y) is a quadratic polynomial with rational coefficients. 

Basically, Diophantus proves the following theorem: If equation (3) has 

a rational solution (xo,yo) then it has infinitely many such solutions (x,y), 

and x and y are both rational functions (with rational coefficients) of a single 

parameter:1 

x = <p{k), y = ip(k). (4) 

When presenting his methods we will use modern algebraic symbolism. 

This is by now a standard procedure in historico-mathematical literature. 

Diophantus began by considering quadratic equations of the form 

y2 = ax2 + bx + c, a,b,ce Q, (5) 

and put c = m2 (in other words, he assumed that the equation had two rational 

solutions (0, to) and (0, -m)). To find solutions he made the substitution2 

y = kx ± to (6) 

and obtained 

b =F 2 km 

k2 — a 

, b =F 2 km 
y = fc-ji-±m- kz — a 

By assigning to k all possible rational values (Diophantus took only values 

that yielded positive x and y) we obtain infinitely many solutions of equation 

(5). 
We mentioned earlier problem II8, which reduces to the equation 

x2 + y2 = a2, 

and recall that Diophantus solved it by making the substitution 

(7) 

x = t: y = kt — a, (8) 
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and obtained (we are replacing his numerical values by appropriate letters) 

2k k2 - 1 

, = , = tIT?; y = aWTi- 
To see the sense of this solution and to appreciate its generality we must 

look at its geometric interpretation. Equation (7) determines a circle of radius 

a centered at the origin, and the substitution (8) is the equation of a straight 

line with slope k passing through the point y4(0, —a) on that circle (Figure 

15). It is clear that the straight line (8) intersects the circle (7) in another point 

B with rational coordinates. Conversely, if there is a point B\ with rational 

coordinates on the circle (7) then ABi is a straight line of the pencil 

(8) with rational slope k. Thus to every rational k there corresponds a rational 

point on the circle (7), and to every rational point on the circle (7) different 

from (0, a) there corresponds a rational value of k. Hence Diophantus’ method 

yields all rational solutions of equation (7). 

This argument shows that a conic with a rational point is birationally 

equivalent to a rational straight line. 

Next Diophantus considered the more general case when equation (5) 

has a rational point but the coefficient c is not a square. He first considered 

FIGURE 15 
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this case in problem II9, which reduces to the equation 

x2 + y2= a2 + b2 (9) 

(Diophantus put a = 2,6 = 3). It is clear that equation (9) has the fol¬ 

lowing tour solutions: (a, 6), (—a, b), (a,—6), and (—a,—6). He makes the 
substitution 

x = t + a, y = kt - b (10) 

and obtains t = 2[(bk — a)/{l + k2)]. Applying a geometric interpretation 

analogous to the one just used we see that, essentially, he is constructing a 

straight line with slope k through (a, -b) on the circle (9). 

Diophantus considered a more general case in lemma 2, proposition VI12, 

and in the lemma for proposition VI15: assuming that equation (5) has a 

rational solution (xo, Vo) he made the substitution x = t + xo and obtained 

y2 = at2 + (2 ax0 + b)t + y%, 

i.e., he reduced the problem to the case c = m2. 

Finally, he considered equation (5) in the case when a = a2. He made 

the substitution2 

y = ax + k (11) 

and obtained 

c — k2 

2 ak — b 

This case calls for a separate discussion. To understand why the straight 

line (11) intersects the conic section (5) in just one point we introduce projec¬ 

tive coordinates (U, V, W) by putting x — U/W, y — V/W, i.e., we consider 

our conic in the projective plane P2. Then equation (5) takes the form 

V2 = o?U2 + bUW + cW2. (12) 

The curve L so defined intersects the line at infinity W = 0 in two rational 

points: (1, ck, 0) and (1,—a, 0). The straight line (11), whose equation in 

projective coordinates is 

V — aU + kW, 

passes through the first of these points. 

In summary, we can say that Diophantus earned out a complete inves¬ 

tigation of a quadratic indeterminate equation in two unknowns. Later, his 
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analysis served as a model for the investigation of the issue of rational points 

on curves of genus 0. 

Diophantus used more complex and more sophisticated methods to solve 

equations of the form 

y2 = ax3 bx2 + cx + d, 

y3 = ax3 + bx2 + cx + d, 

y2 = ax4 + for3 + cx2 + dx + /, 

and systems of the form 

which he called “double equalities”. Readers interested in getting a deeper 

understanding of Diophantus’ methods should consult the books [1] and [2] 

(the latter in Russian) which contain further references to the literature. The 

history of Diophantus’ methods extends all the way to the papers of Poincare 

that appeared at the beginning of the 20th century. It was on the basis of these 

methods that Poincare constructed an arithmetic of algebraic curves—an area 

of mathematics that is being intensively developed at the present time. 

We conclude our survey by considering Diophantus' problem III19. This 

problem reduces to a system of 8 equations in 12 unknowns: 

(xi + x2 + x3 + X4)2 + Xi = yf, 

(xi + x2 + x3 + x4)2 - Xi = z2; i = l,2, 3.4. 

Diophantus notes that “in every right triangle the square of the hy¬ 

potenuse remains a square if we add to it, or subtract from it, twice the 

product of its legs.” This observation enables him to find a solution using 

four right triangles with the same hypotenuse. Indeed, let the sides of the four 

triangles be oq, 6j, c, 2 = 1, 2, 3, 4. Then it suffices to put Xi +x2 + x3 -fx4 = 

ct, Xi = 2aibit2, i = 1,...,4, where t is determined by the equation 

2aib\t2 -\-b 2o4b4t2 = ct. Thus the problem reduces to finding a number 

c that can be written as a sum of two squares in four different ways. Diophan¬ 

tus solves this essentially number-theoretic problem as follows: he takes two 

right triangles with respective sides 3,4,5 and 5,12,13 and multiplies the 

sides of each of them by the hypotenuse of the other. As a result he obtains 

two right triangles with the same hypotenuse: 39,42,65 and 25,60,65. Now 

5 = l2 + 21 and 13 = 22 + 32. Using the rule for composition of forms 

u2 + v2, known already to the Babylonians (see Ch. 1, (15)), he obtains 

65 = 5 • 13 = (l2 + 22)(22 + 32) = 42 + 72 = 82 + l2. 
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Using Euclid’s formulas for the general solution of x2 + y2 = z2 (i.e., z = 

p2 + q2\ x = p2 — q2\ y = 2pq) we obtain two more right triangles with 

hypotenuse 65: 33,56,65 and 63,16,65. This completes the solution of the 

problem. 

In connection with this problem Fermat stated that a prime of the form 

4n + 1 could be written as a sum of squares in just one way. Then he gave a 

formula for the determination of the number of ways in which a given number 

can be written as a sum of squares. Thus problems involving indeterminate 

equations led to number-theoretic insights. 

Did Diophantus know the theorems formulated by Fermat? It is possible 

that he did. Jacobi offered a reconstruction of Diophantus’ conjectured proofs, 

but the answer to this question remains hypothetical. 

One can hardly overestimate the significance of Diophantus’ Arithmetica 

for the subsequent history of algebra. It is no exaggeration to say that its role 

was comparable to the role of Archimedes’ treatises in the history of the 

differential and integral calculus. We will see that it was the starting point 

for all mathematicians up to Bombelli and Viete, and that its importance for 

number theory and for indeterminate equations can be traced up to the present. 

4. Algebra after Diophantus 

The period from the 4th to the 6th centuries CE was marked by the precipitous 

decline of ancient society and learning. But eminent commentators, such as 

Theon of Alexandria (second half of the 4th century) and his daughter Hypatia 

(murdered in 418 by a fanatical Christian mob), were still active. In the 5th 

century there was an exodus of scholars from Alexandria to Athens. Finally, in 

the 6th century, Eutocius and Simplicius, the last of the great commentators, 

were expelled from Athens and settled in Persia. 

We can turn to the question of the Arabic translations of four books 

attributed to Diophantus. An analysis of these books, translated at the end 

of the 9th century from Greek to Arabic by Costa ibn Fuca (i.e., the Greek 

Constantin, son of Fuca) shows that it is a reworked version of Diophantus’ 

Arithmetica. It contains problems, possibly due to Diophantus, as well as ex¬ 

tensive additions and commentaries to them. According to Suidas’ Byzantine 

dictionary, Hypatia wrote commentaries on Arithmetica. It is therefore very 

likely that the four books translated into Arabic are books edited and provided 

with commentaries by Hypatia. These books contain no new methods, but the 

material is presented in a complete and systematic manner. Their author went 

beyond Diophantus by introducing the 8th and 9th powers of the unknown. 
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The subsequent development of mathematics, including that of algebra, 

was connected with the Arabic East. Scholars from Syria, Egypt, Persia, and 

other regions conquered by the Arabs wrote scientific treatises in Arabic. We 

will deal with their work in the next chapter. 

Editor’s notes 

1 For an extensive discussion of whether Diophantus realized that some of 

his problems had infinitely many solutions see pp. 28-29 in [1]. 

2 In connection with the substitutions (6) and (11) the authors point out that 

Euler used such substitutions to rationalize the integrand in 

Actually, Euler rationalized the integrand in 

where R(x, y) is a rational function. Specifically, he used the substitution 

y = 'fax + t in the case a > 0 (cf. Diophantus’ substitution (11)), the 

substitution y = tx + fc, in the case c > 0 (cf. Diophantus’ substitution (6)), 

and a third substitution in the case when ax2 + bx + c had two different real 

roots. 



CHAPTER 4 

Algebra in the Middle Ages in the Arabic 
East and in Europe 

1. The emergence of algebra as an independent discipline 

The fall of ancient society was accompanied by the decline of its science 

and culture. Science was destined to flourish again primarily in the Near and 

Middle East, in countries with a very old culture, and later in Western Europe. 

In the 7th century CE a new religion—Islam—arose in Arabia, and the 

Arabs embarked on a series of conquests. In a short time they overran Persia, 

the states of Central Asia, Egypt, Western Africa, and a part of Spain. Soon 

a huge empire came into being which in its heyday extended from India to 

Spain. Many of its subject nations were culturally superior to the conquerors. 

These were the inhabitants of ancient Khorezm (a state in central Asia), as 

well as Persians, Syrians, Egyptians, and many others. 

In the 8th century caliph Haroun al-Rashid (of Arabian Nights fame) 

established in the capital Baghdad of the new empire a “House of Wisdom”, 

a variant of the Alexandrian Museon, which flourished between 819 and 833 

under caliph al-Mamun. It had an extensive library. Here worked numerous 

scholars and translators. Arabic became the language of science throughout 

the lands of Islam. The Greek works translated into Arabic in the 9th century 

included Euclid’s Elements, Ptolemy’s Almagest, a number of works of Plato 

and Aristotle (referred to as the Great Philosopher), and (at the end of the 9th 

century) some of the books of Diophantus’ Arithmetica. 

Works of Indian scholars, so-called Siddhantas, were also translated into 

Arabic. These works were mainly devoted to astronomy but sometimes in¬ 

cluded chapters on arithmetic and algebra. 

The first discipline to flourish was astronomy and, in connection with as¬ 

tronomy, plane and spherical trigonometry and computational methods. These 
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interests were pursued by scholars of the medieval East for five to six centuries 

and they promoted the development of algebra. 

The first eminent 9th-century scholar associated with the House of Wis¬ 

dom was Mohammed ibn-Musa al-Khwarizmi. He was an encyclopedist, and 

his works dealt with mathematics, astronomy, cartography, and history. 

Al-Khwarizmi was the author of two outstanding treatises devoted to 

arithmetic and algebra respectively. In the first of these he presented the dec¬ 

imal system of numeration, which came to the Arabic East from India, and 

its rules of operation. This work has come down to us in a Latin version that 

opens with the words “Dixit Algorithmi”. Algorithmi is the Latinized form 

of al-Khwarizmi’s name. The scholars of medieval Europe who adopted the 

decimal positional system of numeration referred to themselves as “algorith- 

mists”. This distorted version of al-Khwarizmi’s name came to denote the 

computational rules associated with the new system of numeration. Later, the 

same word also referred to a method for solving each of a class of problems 

in a finite number of steps. This is how the name of this great Central Asian 

scholar was perpetuated. 

The preserved version of the treatise on algebra is in Arabic. It is titled 

A short book on the calculus al-jabr and al-muqdbalah. Al-jabr means “com¬ 

pletion”, i.e., the operation of adding a term to both sides of an equation, and 

al-muqdbalah means “contrapositive”, i.e., reduction of similar terms. These 

are the two operations referred to much earlier by Diophantus. 

Al-Khwarizmi did not use algebraic symbolism but employed consis¬ 

tently three words for three powers of the unknown: 1) “dirhem” for number 

(i.e., for x°); 2) “jizr” (root) or “shai” (thing) for an unknown x; and 3) “mal” 

(property, sum of money, also square) for x2. 

The treatise can be said to deal mainly with the solution of quadratic 

equations. What is remarkable is that Al-Khwarizmi classifies them; in other 

words, the equations are not regarded as a means for the solution of problems 

but as an independent object of study. He singles out the following six classes 

of quadratic equations: 

1. “Squares equal roots”, i.e., ax2 = bx. 

2. “Squares equal numbers”, i.e., ax2 = c. 

3. “Roots equal numbers”, i.e., bx = c. 

4. “Squares and roots equal numbers”, i.e., ax2 + bx = c. 

5. “Squares and numbers equal roots”, i.e., ax2 + c — bx. 

6. “Roots and numbers equal squares”, i.e., bx + c = ax2, a, 6, c > 0. 
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The solution involved three steps. The first was completion to a square. 

Thus in case of the equation 

x2 + 10* = 39 

Al-Khwarizmi added to both sides 25 and obtained 

(x + 5)2 = 64. 

The next step was extraction of roots; in the present case it yielded 

x + 5 = 8, x = 3. 

The last step was a geometric justification of the solution which consisted 

in showing that the method was applicable to every equation of the form 

x2 -f ax = b a,b > 0. 

The justification was very different from the one in Euclid’s Elements. The 

details follow: the unknown x was represented by a segment, x2 by the square 

on this segment, and KTr by two rectangles with sides x and 5 (Figure 16). 

The resulting gnomon was completed to a square by the addition of a square 

of side 5. Then the side of the resulting square was * + 5 as well as 8 (for 

the area of the large square was equal to 39 + 25 = 64), whence x = 3. 

Al-Khwarizmi’s construction is an exact geometric copy of our algebraic 

procedure of “completing the square”. In other words, the sole reason why 

Al-Khwarizmi resorted to a geometric interpretation for proving the generality 

of his method was that he had no algebraic symbolism for doing it in a non¬ 

geometric manner. 

FIGURE 16 
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In the subsequent works of mathematicians of the medieval East we find 

a growing tendency to adopt the mathematical tradition of antiquity. 

Four books attributed to Diophantus were translated into Arabic at the 

end of the 9th century (see Ch. 3). It is very likely that (possibly) edited 

versions of the first three books of Arithmetica were translated even earlier. 

Diophantus’ methods had a decisive effect on the scientific activities of Arab 

mathematicians of the 10th and 11th centuries. 

We have splendid treatises on algebra by Abu Kamil (ca. 850-ca. 930) 

and al-Karaji (d. 1016). Abu Kamil was also known under the name of al- 

Hasib al Misri, i.e., the Egyptian calculator. He came from Egypt and was 

evidently well acquainted with the tradition that went back to Diophantus. In 

his Book of Algebra and Almucabala he writes that the reader must know the 

three types of magnitudes mentioned by al-Khwarizmi (i.e., x0,xl,x2) and 

adds to these five more powers: cube (kab)— x3 , square-square (mal al-mal)— 

x4, square-cube (more correctly, square-square-thing, or mal mal shai)—x5, 

cubo-cube (kab al kab)— x6, and square-square-square-square (mal mal mal 

al-mal)— x8. We see that his powers, like those of Diophantus, are subject to 

the additive principle and that he introduces a new power, namely x8. 

Part III of his treatise is devoted to the study of indeterminate equations. 

The study is marked by great depth and clarity (see [2]). We mention just his 

criterion for the solvability of the equation 

y2 = — x2 + ax + b (1) 

over the rationals. By rewriting it as 

y2 + (x - a/2)2 — b+ (a/2)2, 

Abu Kamil arrives at the conclusion that the equation is solvable if and only 

if 6+(a/2)2, or equivalently 46+a2, is representable as a sum of two squares. 

The famous Persian mathematician al-Karaji brought to completion a 

phase of the development of indeterminate analysis and of the algebraic is¬ 

sues connected with it. In his treatise Al-Fakhri he transformed Diophantus’ 

short algebraic introduction to his Arithmetica into a large treatise on algebra 

in which he introduced infinitely many positive and infinitely many nega¬ 

tive powers of the unknown. He did this by means of what could be called 

two continued proportions. Using modern symbolism we could write them as 

follows: 

2 9 *3 
rp • rp ^   rP£i * O*   . . . • 

i it/ it/ • it/ - ^ 

l/x : l/x2 = l/x2 : l/x3 = • • •. 
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Al-Kaiaji employed words rather than symbols. For example, he described 

the second of his continued proportions in these words: “Know that the ratio 

of part of a thing (1/a:) to part of a square (1/x2), is like the ratio of part of 

a square (1/a: ) to part of a cube (1/a:3), is like the ratio of part of a cube to 

part of a square-square (1/a:4), is like the ratio of part of a square-square to 

part of a square-cube (1/a:5), and therefore the proportion of parts continues 

to infinity in accordance with this rule.” 

In this connection Al-Karaji formulated the following general rules: 

1 1 xn 1 1 1 l 
- ; - = -;-= -• -Xn — Tn~m n m 
xm xn xm xm xn xm+n) xm ’ 1 ^ L' 

Then he introduced negative numbers and, like Diophantus, formulated 

for them the following multiplication rule: “Multiplying excess (zand) by 

excess we obtain excess, multiplying shortage (nakis) by shortage we obtain 

excess. In other cases we obtain shortage.” In our notation this translates into 

the rules: 

(+) ■ (+) = (+); (+) ■ (-) = (-); 

(-)' (-) = (+); (—) • (+) = (-)• 

When explaining operations with polynomials he introduced rules which 

we would write as follows: 

axm - bxm — (a - b)xm, if a > 6; 

axm - bxm = — (b — a)xm, if a < b; 

axm - (-bxm) = (a + b)xm. 

It is interesting to note that al-Karaji offered two justifications of the rule 

for the solution of quadratic equations, one geometric and the other according 

to “the method of Diophantus”. The latter is purely algebraic. It involves the 

formation of a complete square followed by the extraction of a square root. 

Obviously, what counts is that al-Karaji realized that one can justify the rule 

of solution of quadratic equations algebraically, without recourse to geometry. 

We mentioned that in his treatise abu-Kamil devoted a great deal of space 

to problems reducible to indeterminate equations. The same can be said of 

al-Karaji. The latter described algebra as the art of solving determinate and 

indeterminate equations. Almost all of the indeterminate equations handled 

by al-Karaji are taken from Diophantus’ Arithmetica and are solved by his 

methods. Thus Al-Fakhri contains almost all of the problems in Books II and 

III of Arithmetica and all of the problems in Book IV of the Arabic version 
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of this treatise. Many of al-Karaji’s problems are borrowed from the work of 

abu-Kamil. 

When dealing with equations of the form 

y2 — ax2 + bx + c 

al-Karaji notes that they are solvable if a = of or c = (32. He also adduces 

abu-Kamil’s criterion for the solvability of equations of the form 

,2 x2 + bx + c. y 

In summary, we can say that in his treatise al-Karaji extended the domain 

of numbers and introduced arbitrary—positive and negative—integral powers 

of the unknown. Also, both he and abu-Kamil were profoundly influenced by 

Diophantus and his school. 

We note that already abu-Kamil made extensive use in his treatise of 

algebraic irrationalities and applied to them transformations such as the fol¬ 

lowing: 

Also, he regarded them as arithmetical objects. This approach was continued 

by other mathematicians of the Arab East, who translated many of the geo¬ 

metrically defined irrational expressions in Book X of Euclid’s Elements into 

the language of arithmetic. Thus in a work of al-Baghdadi (11th century) we 

find the following examples: 

Between the 11th and 15th centuries algebraists gradually abandoned the 

Diophantine tradition. For example, in his treatise On Proofs of Problems of 

Algebra and. Almucabala (Historico-Mathematical Investigations, Moscow, 

Gostekhteoretizdat, 1958, Issue 6. (Russian)), the eminent 11th-century poet 

and fine mathematician Omar Khayam used the geometric algebra of the 

ancients, and thus returned to the tradition of Euclid, Archimedes, and Apol¬ 

lonius. Following the classification principle applied by al-Khwarizmi to 

quadratic equations, Omar Khayam proposed a division of cubic equations 

into 27 classes, and instead of trying to express their roots in terms of radi¬ 

cals he tried, like Archimedes, to express them by using conic sections. But 

his analysis is nowhere near the sophisticated analysis of Archimedes; in fact, 

his treatise contains errors. 
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By the time of Khayam the mathematicians of the Arab East realized 

that the solution ol (determinate and indeterminate) equations is a distinct 

discipline. Omar Khayam wrote: “The art of algebra and almucabala is a 

scientific art whose subject is absolute number and measurable magnitudes 

that are unknown but refer to some known thing that makes it possible to 

determine them.... The aim of this art is to find relations connecting this 

subject with the specified data. The perfection of this art consists in knowing 

methods of investigation that enable one to perceive a way of determining the 

mentioned unknowns, numerical as well as geometric” (ibidem, p. 17). 

Later, mathematicians of the East who worked in algebra in connec¬ 

tion with astronomical investigations were primarily interested in numerical 

methods of solution of equations. This direction reached its highest level of 

development in the works of al-Kashi, who worked in the 15th century in 

Samarkand in the observatory of Ulugh Beg. In his encyclopedic treatise Key 

to Arithmetic al-Kashi used not only sexagesimal but also decimal fractions. 

In his treatise On the Circumference he inscribed in and circumscribed about 

a circle regular polygons with 3 • 2n, n = 1,2,..., 28, sides and in this way 

computed 7r to 16 decimal places. Of course, in so doing he was applying the 

method first introduced by Archimedes. Finally, in the treatise On the Chord 

and the Sine he considered the problem of trisection of an angle, which re¬ 

duces to the equation sin 3^ = 3 sin ip — 4 sin3 <p, or x3 + q — px. He solved 

the latter by a brilliant iteration method. We note also that, beginning with al- 

Karaji, Arab mathematicians took an interest in the binomial formula (a + h)n, 

n 6 Z+. They used it to compute roots of arbitrary positive degree n. 

In summary, in the Arab East algebra became an independent subject 

that dealt with the solution of determinate and indeterminate equations. In 

particular, arbitrary integral powers of the unknown and rules for operating 

with them were introduced. 

Compared with the period of Diophantus, the one backward step was the 

failure to use literal symbolism. The unknown and its powers (and sometimes 

even numbers) were written down in words and this made algebra clumsy 

and hard to operate with. 

2. The first advances in algebra in Europe 

The first European achievements in algebra date back to the 13th century, the 

period known as the “early Renaissance”. The algebraic tradition was trans¬ 

mitted by three routes: from the Arab East, from the Arabs who conquered 

Spain and established there the first advanced schools, and from Byzantium, 
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which preserved the traditions of antiquity. The first major European mathe¬ 

matician was Leonardo of Pisa, or Fibonacci (ca. 1180-1240). He was born in 

Pisa, a commercial city state with large colonies in northern Africa stretching 

from Bugia (now in Algeria) to Sfaks (now in Tunisia). 

Leonardo’s father was a notary of the republic of Pisa. Shortly after 

Leonardo’s birth his father was sent to Bugia on official business. His func¬ 

tion there was similar to that of today’s consul. When the boy was 12 his 

father sent for him. He was to learn about commerce and about arithmetical 

procedures. All this information is found in Leonardo’s introduction to his 

fundamental Book of the Abacus (Liber abaci, Scritti di Leonardo Pisano, 

Roma, 1862). He traveled to Egypt, Syria, and Provence and familiarized 

himself with different methods of calculation as well as with the rudiments of 

algebra. He concluded that for purposes of calculation the decimal positional 

system (which he referred to as Indian) was far superior to all other systems. 

Upon his return to Pisa he began to study mathematics in earnest. In partic¬ 

ular, he studied Euclid’s Elements. By combining this knowledge with what 

he learned from the Arabs, Leonardo wrote his famous Book of the Abacus, 

unequaled for 300 years. It contained information about arithmetic, algebra, 

and geometry. It was not just an anthology. Many of its problems were dealt 

with in an entirely original way. For example, in connection with his “rabbit 

problem” (How many pairs of rabbits will be produced in a year, beginning 

with a single pair, if in every month each pair bears a new pair which becomes 

productive from the second month on?) he introduced the famous Fibonacci 

series 

1T1 + 2 + 3 +5 + 8 + 13 T • • •, (2) 

now used extensively in biology for the description of a large variety of 

processes as well as in computational mathematics (there is a number system 

for computers based on the entries in this series). The Fibonacci series is 

recursive (a series is recursive if each of its entries is a linear combination of 

some of its predecessors), for 

^n+1 tin T tln-1- 

In addition to the Book of the Abacus Leonardo wrote two extremely 

interesting books. They are Flower (Flos, 1225) and Book of Squares (Liber 

quadratorum, 1225). In these books he investigated problems he was chal¬ 

lenged with by magister Johann of Palermo, court philosopher of Frederic II, 
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king of Sicily. The first problem was to solve the cubic equation 

x3 + 2x2 + 10® = 20, 

and the second was to find a rational solution of the system 

f x2 + 5 = u2, 

\ x2 — 5 = v2, 

which is a special case of the system 

f x2 + a — u2, 

\ x2 — a = v2. 

(3) 

(3') 

To solve the first problem Leonardo analyzed it in great detail. He rewrote it 

as 
T 9 

X X 
- + -+* = 2 

and showed that 1 < x < 2, i.e., that the positive root cannot be an integer. 

Then he showed that it cannot be a fraction. His proof is entirely general. It 

can be used to show that if the equation 

x T ci\xn T • ■ • T ctn—\x T CLn — 0, 

a, G Z, has no integral root then it has no rational root. This is an important 

theorem of algebraic number theory first proved in the 19th century. 

We reproduce Leonardo’s argument. Suppose the equation had a rational 

root x = p/q, (p, q) = 1. Then 

p3 + 2 p2q + 10 pq2 — 20 q3. 

Since all terms of this equation except the first are divisible by q, p must also 

be divisible by q. Contradiction. 

Leonardo went on to show that the root cannot be of the form y/p, p ^ 

a2. Indeed, the root x can be written as 

10 — x2 

^ = 2 10 + x2 

If x = y/p, then we would have y/p = 2^|, i.e., yjp would be rational. 

But this contradicts the previous insight. 

Finally, he showed that the root cannot be represented by any of the 

irrationalities in Book X of Euclid’s Elements and gave its approximate sex¬ 

agesimal value as 

x = 1°22' 1" 43'" 33IV4V40VI. 
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No analysis of comparable depth of this problem can be found until the 

end of the 18th century. 

Leonardo considered the second problem in his Book of Squares. First 

he solved the following two problems in Book II of Diophantus’ Arithmetica: 

(4) 

(5) 

Leonardo used a different method to solve each of these problems. Ap¬ 

parently, by that time some of the statements of Diophantus’ problems had 

reached Europe but not his methods of their solution. 

To solve problem (4) Leonardo takes a right triangle ABC with rational 

sides (p, q, r) (Figure 17) and lays off on its hypotenuse r (or on its extension) 

a segment AM of length a. From M he drops the perpendicular MN to the 

side AC. Then x = AN = p(a/r) and y = MN = q(a/r) are solutions. 

Before solving problem (5) he proves the formula for composition of 

forms 

(a2 + b2)(p2 +q2) = (ap-bq)2 + (aq+pb)2 = (ap + bq)2 + (aq-pb)2. (6) 

We recall that this formula was known to the Babylonians and was used 

by Diophantus in his Arithmetica. Leonardo notes that if a/p 7^ b/q, then 

formula (6) yields two different representations for the product of forms; if 

B 

M 

A N C 

FIGURE 17 
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a/p = b/q, then we obtain just one representation: 

k2(a2 + b2)2 = k2(a2 - b2)2 + k2(2ab)2. (6') 

To solve problem (5) he takes a right triangle with rational sides (p, q, r) and 

carries out the composition of forms (6). Then he takes a right triangle with 

legs \ap — bq\ and aq + bp and hypotenuse r\Ja2 + b2 and a similar triangle 

with legs \ap — bq\/r and (aq + bp)/r and hypotenuse \/a2 + b2. In this way 

he obtains the following solution of equation (5): 

lap — bq\ aq + bp 
x= -; y= - 

r r 

(a2 = 16, b2 = 25, p = 3, q = 4, r = 5, x = 8/5, y = 31/5). 

A second solution of this equation is 

ap + bq 321 \aq - bp| ll 

r T 
; y i - 

r “ 5 

Later Viete used this unusual solution (see Ch. 5). 

Now Leonardo turns to the solution of the system (3), or, equivalently, 

of (3') for a — 5, and finds that x = 41/12. He notes, furthermore, that for 

(3') to be solvable over the integers, with x, u, v a triple of pairwise coprime 

integers, a must be of the form 4 kl(k + l)(k — l). He calls this expression a 

congruum. It is easy to see that the congruum is four times the area of the right 

triangle with legs k2 — l2 and 2kl. Leonardo claims that a congruum cannot 

be a square. This is equivalent to the assertion that the area of a right triangle 

with rational sides cannot be a square. The latter claim implies Fermat’s Last 

Theorem for n — 4, i.e., the unsolvability of the equation 

x4 + yA = zA 

over the (positive) integers. Thus Leonardo formulated Fermat’s Last Theorem 

for the case n = 4 four hundred years before Fermat. His proposed proof 

contains an error. 

3. Algebraic symbolism in Europe. The German cossists and 
the development of algebra in Italy 

For almost 300 years there was neither a European scholar of Leonardo’s 

rank nor a European scholar capable of understanding and appreciating the 

riches contained in his works. It was not until the second half of the 15th 

century, the century of the Renaissance, that we witness a revival of algebraic 
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investigations. This revival was aided by two world-scale events: 1) the fall 

of Constantinople (Byzantium) in 1453 and the migration of Greek scholars 

to Europe and 2) the invention of the printing press. 

It was in Byzantium that ancient Greek manuscripts were for a long time 

preserved, copied, and commented on. The famous French historian of science 

Paul Tannery found a letter by the 11th-century Byzantine mathematician 

Michael Psellus (included in his critical edition of the works of Diophantus 

published in 1893) which showed that Byzantine mathematicians of that time 

knew three ways of denoting an unknown and its powers. 

1. Notation based on the additive principle, of the kind used by Diophan¬ 

tus. There are three special symbols for the first three powers of the unknown 

and the remaining powers are composed from these three using the principle 

of addition of exponents: x4 = A^A; x5 = AKU; x6 = KUK (see Ch. 3, 2). 

2. Notation based on the multiplicative principle. This system goes back 

to Anatolius of Laodicea, author of an Introduction to Arithmetic and a con¬ 

temporary of Diophantus. The names of the first three powers and the symbols 

for them were the same as in the case of Diophantus: 

X a pcd/ioq or nXevpa (side) 

X2 8v uaptiq (square) 

X3 sev (3oq (cube) 

The names of higher powers were based on the multiplicative principle: 

X4 6v vapoSvvotpLq (square-square) 

X5 q/Ao7oC nputroq (first inexpressible) 

X6 8vvapo&vfdoq (square-cube) 

X7 a A070C bevrepoq (second inexpressible), and so on. 

Note that the second inexpressible. i.e., x1, is the product of the first inex- 

pressible by x2. In this notational system aezz/3oaezz/3o<^ (cube-cube) stands for 

x9 and not, as in Diophantus' case, for x&. 

3. A notational system attributed to Michael Psellus. He named the pow- 

ers of the unknown simply in terms of their order: 

X a ptOpoq npCuToq (first number) 

X2 a Sevrepoq (second number) 

X3 a rpLToq (third number) 

X4 a reraproq (fourth number) 

X5 a nepnroq (fifth number), and so on. 
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It is interesting that the notational system that became popular in Europe 

in the 15th century was a system based on the multiplicative principle. We 

regard such a system as rather inconvenient. 

We saw that the Arab algebraists did not use symbols for the unknown 

and its powers, so that the idea of literal notation could not come to Europe 

from the Arab East. Leonardo Pisano used segments (like Euclid) or special 

terms, such as radix (root), res (thing), and census (square, property) for 

denoting an unknown. These words were translations of the corresponding 

Arab terms. He also used the term censo di censo (square-square) for the 

fourth power of the unknown. 

The mathematician Jordanus Nemorarius is important in the present con¬ 

text. He was a contemporary of Leonardo but definitely not of his professional 

stature. In his Arithmetic Presented in Ten Books he systematically used letters 

for concrete numbers. He used neither segments nor rectangles for expressing 

magnitudes, so that with him literal notations are pure symbols for arbitrary 

numbers. He invariably expressed a magnitude by a single letter. Since he did 

not use symbols for equality and for algebraic operations, he was forced to 

introduce new literal notations for every new result. It is this that prevented 

him from developing a literal calculus. 

In the 16th century Maurolico (Francesco de Messina) proceeded in the 

same way, and so his notational system was marred by the same flaw. 

Beginning in the 12th century Arab mathematicians in the West began 

to use for the unknown and its powers the first letters of words rather than 

whole words. The Latin translations of the Arab words were cosa, censo, and 

cubus. This forced Italian mathematicians to use the first two letters of each 

of these words. Thus in his Questions of Algebra (Questioni d’Algebra, 1384) 

Maestro Gilio used co. (from cosa) for x, ce. (from censo) for x2, cu. (from 

cubo) for x3, and ce.ce. (from Leonardo’s censo di censo, square-square) for 

x4. Gilio used R, the first letter of radice, to denote a square root and circled 

it if another square root appeared under the radical sign (another tradition 

derived from Leonardo). For addition and subtraction he used the words piu 

(plus) and meno (minus). Thus Gilio would write 5 - ^25 — \/l0) as 5 meno 

® di 25 meno R di 10. 

In 1494 Luca Pacioli published his Summary of the Knowledge of Arith¬ 

metic, Geometry, Proportions and Proportionalities (Summa de arithmetica, 

geometria, proportioni et proportionalita). This was one of the first printed 

books. It contains a table (see Table 1 below) that can safely be called the 

fulfillment of efforts undertaken in Italy in the 14th and 15th centuries to 
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perfect a system of notation for the unknown and its powers. Pacioli was the 

first to introduce symbols for the first 29 powers of the unknown. 

Pacioli uses the symbol n° (short for numero) for the constant term in an 

equation. The word relato is a translation of the Greek aXcryoC, (inexpressible) 

probably misread as 0A070C (relation). We see that the table is based on the 

multiplicative principle and the first 29 powers of the unknown include 9 

“inexpressibles”! 

Pacioli's book also contains symbols for a second unknown y, called 

quantita (quantity) and denoted by q. p°, as well as for its square y2, denoted 

by ce. di q. p°. 

Table 1 

NOTATIONS FOR THE UNKNOWN AND ITS POWERS 

1. Diophantus of Alexandria (3rd century CE) 

O 

1° M yovac. unity 

xl a piOfid^ number 

x2 Av Svvafus power, degree 

X3 Kv kv/3o<; cube 

X4 AVA 6v vaiiofivva/uq square-square 

X5 A Kv 5vVOtpOKVpOC, square-cube 

X6 Kv K kv (3okv(3o<; cube-cube 

2. . Adam Ries (.1489-1559) 

x° 0 Dragma, Numeros number 

X1 r Radix, Coss root, thing 

X2 3 Zensus square 

X3 c Cubus cube 

X4 33 Zensus de Zensu square-square 

X5 (3 Sursolidum deaf solid 

X6 3C Zensuicubus square-cube 

X7 bif3 Bissursolidum second deaf solid 

X8 333 Zensus Zensui de Zensu square-square-square 

X9 cc Cubus de Cubo cube-cube 

3. Luca Pacioli (ca. 1445-ca. 1515) 

x° n° numero number 

x1 co. cosa thing 

x~ ce. censo square 
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X3 cu. cubo cube 

x4 ce.ce. censo di censo square-square 
X5 p°.r°. primo relato first inexpressible 
X6 ce.cu. censo di cubo square-cube 

X7 2°.r°. secundo relato second inexpressible 

X8 ce.ce.ce. censo de censo de censo square-square-square 

X9 cu.cu. cubo de cubo cube-cube 

x10 ce.p°.r°. censo de primo relato square of first inexpressible 

x11 O ►-i 0
 

terco relato third inexpressible 

x29 kO
 

0
 

h
 0
 

• 

nono relato ninth inexpressible 

4. Rafael Bombelli (ca. 1526-1573) 

Bombelli used0for the unknown and©,0,.. .for its powers. 

5. Simon Stevin (1548-1620) 

Stevin used the symbols 0, @, 0, ... for one unknown, the symbols 

sec.0, sec.©, sec.©, ... for a second unknown, the symbols ter.0, ter.©, 

ter.©, ... for a third unknown, and so on. 

Stevin also used symbols for various arithmetic operations: p for addition 

(the tilde over p indicates the use of an abbreviation for the word piu), 1T1 

for subtraction (the abbreviated word is rneno), R. for a square root (the 

abbreviated word is radice), R.3. for a cube root, and R.4. (or R. R.) 

for a fourth root. These were the traditonal notations of the Italian school of 

abacists at the time. 

Luca Pacioli introduced negative numbers in the manner of Diophantus 

(who was imitated earlier by al-Karaji), i.e., by an axiomatic definition of the 

rules of operation with the new numbers: 

Piu via piu sempre fa piu. 

Meno via meno sempre fa piu. 

Piu via meno sempre fa meno. 

Meno via piu sempre fa meno. 

Here piu stands for a positive number and meno for a negative one. 

In order to justify the reasonableness of his definition Pacioli gives ex¬ 

amples which show that it leads to results which agree with the usual rules 

of arithmetic (we would say today that the results agree with the distributive 

laws), for example: (using modern notations) 8-8 = 64 = (10 — 2)(10 — 2) = 
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100 - 20 - 20 + 4 = 64, i.e., for the outcomes to agree we must put 

rft.p.=fn., 

ifi.m.=p., 

as was done in the definition of the rules of operation cited above. 

It is thought that the notational system of powers of the unknown, in¬ 

troduced by Diophantus and based on the additive principle, displaced the 

corresponding system based on the multiplicative principle only after Euro¬ 

pean mathematicians became familiar with Diophantus’ Arithmetica in the 

16th century. Apparently this process began earlier. A relevant example is the 

following table of symbols from Dionisius Gori’s Book of Practical Algebra 

(Libro et trattato della praticha d’alcibra), published in 1544, which is free 

of inexpressibles: 

1. co. 

2. ce. 

3. cu. 

4. ce.ce. 

5. ce.ce. R 

6. ce.cu. 

7. ce.cu. R 

8. ce.ce.ce. 

9. cu.cu. 

10. cu.cu. R 

11. cu.cu. R. R 

12. cu.ce.ce. 

13. cu.ce.ce. R 

14. ce.ce.cu. R 

15. cu.ce.ce. R 

16. ce.ce.ce.ce. 

17. ce.ce.ce.ce. R 

18. ce.cu.cu. 

19. ce.cu.cu. R 

20. ce.ce.ce.ce. R 

It is not difficult to see that Gori uses in his notational system of powers 

of the unknown an additive-multiplicative principle: x5 = x2'2+1, x7 — 

x2'3+1, x14 = x2'(2'3+1), x15 = x3'(2'2+1), x20 = x2'2'(2'2+1). He seems 

unaware that his principle is nonunique: the symbols for x13 and xl0 are the 

same, and so are the symbols for x17 and x20. 

We must also note the contribution of German mathematicians to the 

development of symbolism. We mentioned the 16th-century Italian schools of 

abacists. A similar school came into being in Germany. Its name was Coss. 

The word derives from the Latin cosa. 

The first to lecture on algebra in Germany was lohannes Widman (ca. 

1462-d. after 1498). He was Bohemian by birth. Our + and — signs appeared 

for the first time in his book A Quick and Beautiful Method of Calculation for 

all Merchants (Behend und hiipsch Rechnung uff alien Kauffmanschafften), 

published in 1489. Widman wrote: is the same as shortage and + is the 

same as excess.” And in Christoff Rudolff’s textbook of 1525, the first to be 

written in German, these symbols are widely used. 

The most famous cossist was Adam Ries (1492-1559), who published 

many influential textbooks on arithmetic. In 1525, he wrote a Coss manuscript 

(not printed until 1892) which accurately reflected the state of algebra in his 

day. 
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The first cossist algebras employed an additive principle for powers of 

the unknown. A relevant example is a manuscript of ca. 1480 used by Wid- 

man. But a manuscript of 1550, used by Rudolff, employed a multiplicative 

principle. The same principle was used by Ries (see Table 1). 

Just a number” is denoted by 0, a defective way of writing the letter d 

(with a flourish), the first letter in Dragma, derived from the word drikhem. 

The latter was used by Arab mathematicians to denote the constant term in 

a quadratic equation. The symbols r, 3 and c are Gothic versions of the first 

letters in res, zensus, and cubus respectively. Of sursolidum Ries said that it 

was a “deaf number" (eine taube Zahl). In the manuscript of the Founder of 

Algebra, x5 is called surdum solidum (deaf solid). The German taub and the 

Latin surdum are translations of the Arabic asam, used by the Arabs for the 

Greek a Acryotj (inexpressible). The use of the word solidum indicates that 

the cossists regarded certain powers as generalized cubes. 

We note that a characteristic feature of German algebra was the ten¬ 

dency to reduce the number of cossist symbols and the clear realization of 

the need for uniform symbolic notations. In this connection we must mention 

Michael Stifel’s (1487-1567) Complete Arithmetic (Arithmetica integra) of 

1544 which, in a sense, brought to a close the evolution of algebraic symbol¬ 

ism. Here Stifel introduced our present symbol for a square root and denoted 

unknowns by capital Latin letters A, B,C,..., repeated as many times as 

indicated by the degree of the unknown. Stifel’s approach was more suitable 

for the creation of a literal calculus than were the approaches of, say, Jor- 

danus Nemorarius or of Maurolico. Many of Stifel’s notations were adopted 

not only in Germany but also in Italy. 

An important contribution to the development of algebraic symbolism 

was made by Nicolas Chuquet, holder of the baccalaureate in medicine (d. 

ca. 1500). Chuquet wrote the exponent of the power of an unknown after the 

numerical coefficient; for example, he wrote 12x3 as 123. He also introduced 

into his symbolism the zeroth power of the unknown (for the constant term 

in an equation) as well as its negative powers. Thus he would write 8a:3 ■ 
7a;-1 = 56a:2 as “83 multiplied by 71™ yields 562.” Later Rafael Bombelli 

and Simon Stevin introduced similar notation for the unknown and its powers. 

This emphasized the homogeneity of the sequence of powers (see Table 1). 

The algebraic part of Luca Pacioli’s famous Summa..., in which he con¬ 

sidered the solution of indeterminate equations (following Leonardo Pisano) 

and the solution of determinate equations of degrees one and two, ended with 

the statement that just as there is no method for effecting the quadrature of a 

circle so, too, there is no general method for the solution of cubic equations 
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of the form x3 = ax + b and x3 + ax = b. Pacioli wrote this the day before 

such a method was found. 

The first great advances in mathematics in Europe were connected with 

the solution of algebraic equations of degrees three and four. There is no 

doubt that the introduction of literal symbolism played an important role in 

this development. From then on the evolution of algebra was given a new 

direction which led at the end of the 16th century to the creation of the first 

literal calculus and to a new extension of the domain of numbers. 



CHAPTER 5 

The first achievements of algebra in Europe 

1. The solution of cubic and quartic equations 

The Renaissance—the 15th and 16th centuries—was a period of flourishing 

of art, science, and literature in Italy, Spain, France, and England, as well 

as a period of familiarization with the heritage of antiquity. At the time this 

period also seemed to be one of renaissance of the high culture of Greece 

and Rome. Actually, the acquired knowledge of antiquity made possible the 

building of foundations for a new science and culture in many respects very 

different from the science and culture of antiquity. The obvious leader in 

this movement was Italy, which then boasted brilliant painters (Botticelli, da 

Vinci, Raphael), sculptors (Michelangelo, Cellini), and (somewhat earlier, in 

the 14th century) writers and poets (Boccaccio, Petrarch). 

This was also the time of great geographical discoveries and achieve¬ 

ments, such as Columbus’ discovery of America (1492) and Magellan’s cir¬ 

cumnavigation of the globe (1521). Girolamo Cardano (1501-1576), a striking 

representative of the Renaissance, a medical doctor, a mathematician, and a 

philosopher, described the new discoveries in these words: “I was born in this 

century in which the whole world became known; whereas the ancients were 

familiar with but little more than a third part of it— For what is more amaz¬ 

ing than pyrotechnics? Or the fiery bolts man has invented, so much more 

destructive than the lightning of the gods? Nor of thee, O Great Compass, will 

I be silent, for thou dost guide us over boundless seas, through gloomy nights, 

through the wild storms seafarers dread, and through the pathless wilderness. 

The fourth marvel is the invention of the typographic art, a work of man’s 

hands, and a discovery of his wit—a rival, forsooth, of the wonders wrought 

by divine intelligence. What lack we yet unless it be the taking of Heaven by 

storm!” (G. Cardano, The Book of my Life, tr. J. Stoner, Dover, 1962.) 

67 
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When it comes to mathematics, the 16th century was the age of algebra. 

It began with the solution of cubic and quartic equations by radicals, the first 

great achievement beyond those of antiquity, and ended with the construction 

of a literal calculus and the introduction of complex numbers. 

The history of the solution of cubic equations resembles a detective story. 

It began when Scipione del Ferro (1456-1526), a professor at the very old 

university of Bologna (founded at the beginning of the 12th century), solved 

by radicals the equation 

• x3 +px = q, p,q > 0, (1) 

but kept his method and results secret. Keeping a method secret was then 

just as common as today’s tendency to publish one’s discoveries as quickly 

as possible. The owner of a method could challenge his rival to a scientific 

duel and set him problems solvable by the method the rival was ignorant of. 

Victory in such a “tournament” brought one fame and placed one at advan¬ 

tage when it came to filling a desirable position. Before his death del Ferro 

disclosed his method to his student Fiore. In 1535 this student, not very gifted 

mathematically, challenged to a duel the well known Italian mathematician 

Niccolo Tartaglia. 

Niccolo Tartaglia (ca. 1499-1557) was born into a poor family in the 

town of Brescia. FTis father, who brought the mail to his home town, died 

when the boy was six. When the French sacked Brescia in 1512 the boy was 

seriously wounded in the jaw and larynx. His mother was too poor to consult a 

doctor and treated him with home remedies. He stammered for years. Actually 

Tartaglia is a nickname rather than a name and stands for “stammerer”. 

In spite of all these difficulties Niccolo managed to acquire on his own 

a great deal of knowledge of mathematics and mechanics. He subsequently 

wrote an impressive—for his time—treatise, titled The New Science, in which 

he considered a variety of mechanical issues, including the computation of 

trajectories of projectiles. He lectured for a long time in his home town as 

well as in Verona and in Venice. He was also invited as a consultant for 

drawing up commercial contracts. 

Tartaglia tells us that he was aware that Fiore was in possession of the 

late del Ferro’s rule for the solution of equation (1) and made strenuous efforts 

to discover it himself. He succeeded the night before the duel. The duel took 

place on February 12, 1535. All of the 30 problems set by Fiore were special 

cases of equation (1) and Tartaglia solved them without difficulty. On the 

other hand, Tartaglia picked problems from different areas of mathematics 

and mechanics and Fiore was unable to solve any of them. 
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In solving equation (1) Tartaglia assumed that one of its roots is of the 
form 

X = u — V. 

Then the equation can be reduced to the form 

u3 — v3 + (u — v)(p — 3 uv) = q. 

If one imposes on u and v the additional condition 3uv = p, then u and v 

can be determined from the system 

f u3 — v3 = q, 

\ uv = p/3. 

Putting z = u3 we see that this system is equivalent to the quadratic equation 

z1 -qz- (p/3)3 = 0, 

which means that 

A few days after the duel Tartaglia was able to solve the equation 

x3 = px + q, p,q > 0, (2) 

by using the substitution x — u + v. The corresponding formula was 

and it involved fundamental difficulties. Indeed, if (q/2)2 < (p/3)3, then 

under the square root in formula (3) there is a negative number, i.e., the 

whole formula becomes meaningless. On the other hand, examples showed 

that in this case equation (2) could have real roots (in fact, this is precisely 

the case when all three roots are real!); for example, the equation 

x3 = I5x + 4 

has the root x = 4 in spite of the fact that (4/2)2 < (15/3)3. Thus one could 

not stipulate that (q/2)2 > (p/3)3. No such difficulty arises in the case of 

quadratic equations. In other words, one was led to investigate square roots of 

negative numbers in connection with the formula for a root of a cubic rather 

than of a quadratic equation! 
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The case when (q/2)2 < (p/3)3 was called “irreducible”, for in this 

case the expression (3) did not yield a real root. It seems that the “irreducible" 

case troubled Tartaglia a great deal. He delayed the publication of his results 

because he was trying to resolve the difficulty. But it was at that very time that 

fate brought him together with the mathematician Girolamo Cardano, a man 

of impetuous character who would stop at nothing to achieve an objective. 

Cardano was a true Renaissance figure and embodied the good and bad 

characteristics of that period. He was born into a family of a notary and spent 

his childhood in Milan. Already as a youth he had an obsessive need for fame. 

He wrote: “The aim I pursued was not riches or idleness, not honors, not high 

positions, not power but, insofar as I could achieve it, the immortalization of 

my name....” 

Cardano studied medicine and became famous as a skillful surgeon. 

In addition he studied mathematics, mechanics, astrology, philosophy, and 

questions of education. He was an excellent fencer and bragged that “in my 

youth I was anxious to contend with stronger ones” and that “I could, unarmed, 

knock out a bared dagger from the hand of my opponent.” He traveled to 

Scotland and attended members of the English and Scottish aristocracy and 

was for some time the court physician of the young Edward VI. He cast the 

king’s horoscope and predicted for him a long life. But Edward died a few 

months later and Cardano returned home. He was shattered with grief when 

his beloved older son was sentenced to death for poisoning his wife. For some 

time he was a professor at the university of Bologna. Following a charge of 

involvement with black magic, he was pursued by the inquisition, chased out 

of Bologna, and deprived of the right to lecture. He spent the last years of 

his life in Rome where he was invited as a famous physician by Pope Pius V. 

Here he resumed his medical practice and in the last year of his life wrote his 

famous autobiography The Book of my Life, which has been translated into 

all European languages. 

There is a story to the effect that Cardano cast his own horoscope and 

predicted that he would die on September 21, 1576. To boost his fame as an 

astrologer he presumably starved himself so as to die at the predicted time. 

True or not, the story is an excellent reflection of the essence of Cardano’s 

character. 

Cardano was in the process of writing a book on algebra when he found 

out that Tartaglia knew the secret of the solution of the cubic equation. There¬ 

upon he made every effort to ferret out the secret. He sent Tartaglia an invi¬ 

tation to Milan in the name of a famous signor who “happened” to be out of 

town when Tartaglia arrived there. Tartaglia accepted Cardano’s hospitality 
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and told him the secret of the solution when Cardano swore not to disclose it. 

This happened in 1539. But in 1545 Cardano published his Great Art, or The 

Rules of Algebra (Ars magna sive de Regulis algebraicis) which included the 

tules for the solution of equations (1) and (2) as well as the solution of the 

quartic equation, discovered by Cardano’s student Luigi Ferrari (1526-1565). 

And while it is true that Cardano referred in the first chapter of his book to 

del Ferro and to Tartaglia as the discoverers of the solution formula, the fame 

has remained his; to this day the formulas for the solution of equations (1) 

and (2) bear his name. 

Rather than pursue the dramatic story of the relations between Tartaglia 

and Cardano, in which Cardano’s students also played a significant role, we 

will return to cubic equations. 

Cardano, like Tartaglia, was baffled by the “irreducible case”. When 

solving the problem of finding two numbers x and y such that 

x + y = 10, xy = 40, 

he noted that the expressions 5 + ^-15 and 5 - ^-15 satisfied the two 

conditions provided that one put ^-15 ■ 15 = -15. Flowever, he did 

not try to use expressions of the form sjm, m < 0, for dealing with the 

irreducible case. 

2. The Algebra of Rafael Bombelli. 

Introduction of complex numbers 

We know as little about Rafael Bombelli (ca. 1526-1573) as we do about 

Diophantus, except that the dates of his birth and death are more certain. 

We do know that he lived in Bologna and was an accomplished hydraulic 

engineer. His Algebra shows that he was one of the most eminent algebraists 

of the modern era. Three parts of his book were published in 1572, but the 

remaining two, which contain methods in many ways superior to those of 

Descartes, were published only in 1929. 

An early version of the manuscript, very different from the final one, was 

ready in 1550 but Bombelli kept on modifying it. Then the Roman mathe¬ 

matician Pacci informed him that he had found in the Vatican library the man¬ 

uscript of a “certain Diophantus”, a Greek author, devoted to arithmetic and 

algebra. Bombelli familiarized himself with the manuscript and was tremen¬ 

dously impressed by its contents. He decided to translate it “in order to enrich 

the world with such a remarkable work”. He did not manage to complete the 
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translation of the work but was so influenced by it that he reworked his own 

manuscript in a fundamental way. 

The changes were especially marked when it came to: the domain of 

numbers, the manner of introducing complex numbers, the manner of intro¬ 

ducing powers of the unknown, and the more abstract style of presentation. 

Whereas in the earlier version of the manuscript problems were stated in the 

traditional “amusing” or “pseudopractical” form, in the new version they were 

stated abstractly using abstract numbers. 

A change of a very special nature was the inclusion, in Part III of the 

reworked version, of 143 problems with solutions taken from Diophantus’ 

Arithmetica. It was from Bombelli’s Algebra that European mathematicians 

first found out about these problems and the methods of their solution. 

We now give a more detailed description of the contents of the Algebra 

(L’Algebra) of 1572. The first part is devoted to the construction of the domain 

of numbers needed for the development of algebra and to the introduction of 

powers of the unknown. First Bombelli introduces successive integral powers 

of rational numbers. He uses the multiplicative principle, which is why he 

calls the 5th power primo relato (“first inexpressible”) and the 6th power 

square-cube. This is a concession on his part to a tradition that developed in 

European mathematics between the 14th and 16th centuries. There are very 

few traces of this tradition in Bombelli’s book. As a rule, he names powers 

according to their exponents: “fifth”, “sixth”, and so on. 

Next Bombelli introduces irrational magnitudes—square roots denoted 

in the manner of Pacioli as R.q., cube roots denoted as R.c., square-square 

roots denoted as R.R.q. and so on, as well as binomials and trinomials com¬ 

posed of these irrationalities. He considers arithmetical operations on all these 

magnitudes and sometimes resorts to geometric proofs. 

Then Bombelli introduces meno, a negative number, in exactly the same 

way as Diophantus, i.e., by defining a “rule of signs” under multiplication. It 

takes the form of a table in which piu stands for plus and meno for minus: 

piu via piu fa piu 

meno via piu fa meno 

piu via meno fa meno 

meno via meno fa piu 

(R. Bombelli, L’Algebra, Milano, 1966, p. 62). 

Like Pacioli before him, Bombelli adds explanations to his axiomatic defini¬ 

tion. Specifically, he shows that if we want to preserve the distributive property 

of multiplication over addition, then we must stipulate that ( — )•( — ) = (+). 
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Bombelli notes that the same law of signs holds for division. He also 

formulates rules for addition and subtraction of negative numbers. 

When introducing complex numbers—which he regards as rather 

sophistic Bombelli proceeds in much the same way as in the case of his 

definition of negative numbers: he introduces them formally by a “multipli¬ 

cation table . He calls +\/—1, which can be “neither positive nor negative”, 

piu di meno (plus from minus), and calls — y/— 1 meno di meno (minus from 

minus). Then he sets down the following table: 

piu di meno via piu di meno fa meno 

piu di meno via meno di meno fa piu 

meno di meno via piu di meno fa piu 

meno di meno via meno di meno fa meno 

(Ibidem, pp. 133-134). 

Next Bombelli considers arithmetic operations on the new numbers. Thus he 

multiplies y/2 + %/—^ v/2 — \f?> (which he writes as: Moltiplichisi, R.c. [2 

piu di meno R.q.3j per R.c. [2 meno di meno R.q.3j; here [ and J play the 

role of our parentheses ( and ) ), adds a\f-i ± byf^A., raises a + 6\/-l to 

the second and third powers, and so on. 

Bourbaki notes that Bombelli regards it as an axiom that piu and piu di 

meno cannot be added (in the sense of reduction of similar terms), and that 

this is one of the first occurrences of the notion of linear independence. 

The second part of Algebra deals with the solution in terms of radicals of 

linear, quadratic, cubic, and quartic equations. Here Bombelli introduces his 

symbols 1 ,2^,3^,... for powers of the unknown and, like Diophantus, intro¬ 

duces by means of tables rules for their multiplication: mn^= m + n. Then 

he considers rules of operation on monomials A™, A, n concrete numbers, 

and polynomials. The exposition is clear and consistent. All he needs in order 

to obtain the supply of required formulas—such as (a ± b)2, (a + 6)(a — b), 

and so on—is literal notations for arbitrary parameters. 

Bombelli’s account of the solution of algebraic equations of the first four 

degrees is also consistent and systematic. When dealing with cubic equations 

he first explains the “irreducible” case. To this end he considers the cubic 

radicals in Cardano’s formula. Until recently it has been thought (see, for ex- 

ample, [10]) that Bombelli found the value of radicals of the form y7a ± iVb 

accidentally. But this is not so. He proposed an original method for finding 

the value f + i^rj of \Aa ± iVb or for finding bounds on f and 77 (see G. 

S. Smirnova’s 1989 dissertation From the History of Algebra in the 16th 

Century). 
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Specifically, Bombelli puts \Ja + i\/b = £ + iyfrj. Then a + iy/b — 

£3 - 3^77 + i(3^2y/rj — rjy/rj). Hence a = £3 - 3£77. 

On the other hand, \Ja — i\/b = £ — i\fb- Hence + 77 = /a2 + b. 

Since £ and 77 are positive, Bombelli obtains for their determination two 

inequalities: 

£3 > a and £2 < {/a2 + 6. (4) 

If £ and 77 are integers, then their values can be determined in a finite 

number of trials. For example, in case of the equation x3 = 15x + 4 Cardano's 

formula yields \/2 + i\/121 + \J2 — i\J 121. If we put y/2 + z\/l21 = ^ + 

iy/rj, then ^ must satisfy the inequalities £3 > 2 and £2 < v^a2 + b = 5. It 

follows that the only possible integral value of £ is 2. Hence 

a: = (2 + i) + (2 — i) = 4. 

If £ and 77 are not integers, then the inequalities (4) provide bounds for 

them. 

Of course Bombelli’s method could not be used to find £ and 77 in the 

general case because, in general, there is no algebraic procedure for obtaining 

a cube root of a complex number. Nevertheless, Bombelli managed to explain 

the mechanism for obtaining a solution in the “irreducible” case. 

Finally, Part III of Algebra contains 272 problems with solutions of 

which, as mentioned earlier, 143 are taken from the first five books of Dio- 

phantus’ Arithmetica. Diophantus’ problems are interspersed with other prob¬ 

lems that sometimes complement them and sometimes are unrelated to them. 

Bombelli provided detailed solutions of some of Diophantus’ problems whose 

solutions were barely sketched by the latter. When Bombelli had a perfectly 

clear understanding of the method of solution of one of Diophantus’ problems 

he changed Diophantus’ data. He was the first to solve the following problem 

of Diophantus: To represent the difference of two cubes as a sum of two 

cubes: 

x3 + y3 = a3 - b3, a> b. 

Diophantus claimed that the problem was always solvable and wrote 

down a [rational] solution for a — 4 and b = 3 without explaining how he 

obtained the values of x and y. Bombelli provided a solution for the very 

same values of the parameters but did not consider the general case. 

In summary, we can say that Bombelli was the first European mathe¬ 

matician who appraised and creatively utilized Diophantus’ algebraic methods 
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and appreciated their obvious superiority over the tradition that went back to 

Leonardo Pisano. Following in the footsteps of Diophantus who introduced 

negative numbers, Bombelli introduced complex numbers and used them to 

solve algebraic equations. 

3. Francois Viete 

In a eulogy of Viete, de Thou, a well-known French historian and statesman, 

wrote: “Francois Viete, a native of Fontenay in Poitou, was a man of such 

immense genius and of such profundity of thought that he managed to reveal 

the innermost secrets of the most arcane sciences and easily managed to do 

all that human perspicacity is capable of. But of all the different studies 

that forever occupied his great and unwearied mind, the one he primarily 

applied his proficiency to was mathematics. So great was his mathematical 

distinction that all that the ancients had invented in this discipline, all that 

we missed as a result of the ravages of time that annihilated their creations, 

all these he reinvented, reintroduced, and enriched with much that was new. 

He thought so persistently that he would often spend three successive days 

in his study without food or sleep, except that from time to time he would 

rest his head on his arm for a brief spell of sleep to keep up his strength” 

(De Thou, Historiarum sui temporis continuatio, Frankfourti, 1625, Vol. 3, 

pp. 1003-1005). 

We interrupt de Thou’s colorful narrative and rely on dry prose for an 

account of the main events in Viete’s life. 

Francois Viete was born in Fontenay-le-Comte, some 60 kilometers from 

the famous Huguenot fortress La Rochelle. He was the son of an attorney. He 

studied law at the University of Poitiers and worked as a lawyer in his home 

town. But four years later he became secretary to the distinguished Huguenot 

courtier de Parthenay and tutor of his 12-year-old daughter Catherine. He 

studied cosmogony with his young student and was fascinated by the study 

of astronomy and trigonometry. It seems that already at that time he managed 

to express sin mo; and cos mx as polynomials in since and cosx. After the 

death of de Parthenay and the marriage of Catherine he followed his pupil to 

Paris. In 1571 he was appointed counselor to the parlement (court). Then he 

served as privy counselor to kings Henry III and Henry IV. 

When Henry IV was at war with Spain, Viete rendered a very important 

service. To maintain the secrecy of their communications with the colonies 

and with the Netherlands the Spaniards used codes that contained more than 

500 symbols. While the French managed to intercept their letters they were 
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unable to decipher them. The king turned for help to Viete, who deciphered the 

letters without difficulty and continued to do so for two years. The Spaniards 

were stunned and publicly stated in Rome that the French king had used 

magic. 

Viete lived in a period of bloody religious wars. His closeness to dis¬ 

tinguished Huguenot families aroused the suspicion of fervid and powerful 

Catholics and at the end of 1584 he was banished from the court. He was 

recalled only at the beginning of 1589. These four years were a remarkably 

creative period for Viete. During this time he devoted his efforts to a major 

work, his The Art of Analysis, or New Algebra. In spite of his great diligence, 

so vividly described by de Thou, this work was not completed. 

Before discussing Viete’s fundamental works on algebra we mention a 

triumph that came to him very late in life. In 1593 the Netherlandish mathe¬ 

matician Adriaen van Roomen (1561-1615), or Romanus, published a treatise 

in which he computed tx to 17 decimal places and challenged mathematicians 

to solve the equation 

x45 - 45a:43 + 945x41 - 3795a:3 + 45a: = A, 

where 

He also included, without any explanations, three values of x correspond- 

The Netherlandish ambassador told Henry IV about the challenge and re¬ 

marked that France had no mathematician capable of solving the problem. 

The king summoned Viete and informed him of the challenge. Viete imme¬ 

diately produced one solution and 22 more a day later (the remaining 22 

solutions are negative). We will come back to Viete’s method of solution in 

the sequel. At this point we add that he sent his solution to van Roomen to¬ 

gether with a copy of his work Apollonius Gallus, or The Restored Geometry 

of “Tangencies ” by Apollonius of Perga. This work was published in Paris 

in 1600. According to de Thou, the two works so impressed van Roomen that 

he traveled to France to meet Viete and to seek his friendship. 
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Viete died on 23 February 1603. 

Viete had two prominent students. One was Marino Gethaldi (1566- 

1627) from Dubrovnik. The other was the Scotsman Alexander Anderson 

(1582—1619), who introduced a number of supplements into Viete’s works 

and provided proofs of some of his theorems. Viete’s collected works were 

published by Frans van Schooten in Leiden in 1646. 

4. Creation of a literal calculus 

Viete tried to create a new science (he called it ars analytica, or analytic 

art) that would combine the rigor of the geometry of the ancients with the 

operativeness of algebra. This analytic art was to be powerful enough to leave 

no problem unsolved: nullum non problema solvere. 

Viete set down the foundations of this new science in his An Introduction 

to the Art of Analysis (In artem analyticem isagoge) of 1591. 

In this treatise he created a literal calculus, i.e., he introduced the lan¬ 

guage of formulas into mathematics. Before him literal notations were re¬ 

stricted to the unknown and its powers. Such notations were first introduced 

by Diophantus and were somewhat improved by mathematicians of the 15th 

and 16th centuries (see Tables 1 and 2). 

The first fundamentally new step after Diophantus was taken by Viete, 

who used literal notations for parameters as well as for the unknown. This 

enabled him to write equations and identities in general form. It is difficult to 

overestimate the importance of this step. Mathematical formulas are not just 

a compact language for recording theorems. After all, theorems can also be 

stated in words; for example, the formula 

(a + h)2 = a2 + 2 ah + b2 (1) 

can be expressed by means of the phrase “the square of the sum of two 

quantities is equal to the square of the first quantity, plus the square of the 

second quantity, plus twice their product.” After all, shorthand also has the 

virtue of brevity. What counts is that we can carry out operations on formulas 

in a purely mechanical manner and obtain in this way new formulas and 

relations. To do this we must observe three rules: 1) the rule of substitution; 

2) the rule for removing parentheses; and 3) the rule for reduction of similar 

terms. For example, from formula (1) one can obtain in a purely mechanical 

manner, without reasoning, formulas for (a + b + c)2, for (a 4- 6)3, and so 

on. In other words, literal calculus replaces some reasoning by mechanical 

computations. In Leibniz’ words, literal calculus “relieves the imagination”. 
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Table 2 

RECORDS OF EQUATIONS 

1. Diophantus of Alexandria (3rd century CE) 

x3 = 2 — x Kva ter M/5 fh qa 

8x3 - 16z2 = x3 Kvfj rh Avtq icrKva 

2. Luca Pacioli (ca. 1445-ca. 1559) 

x2 + x = 12 l.ce.p.l.co.e q le a 12. 

3. Nicolas Chuquet (d. 1500) 

R<2. 34.m.24 est egale a 8 V3x4 - 24 = 8 

4. Michael Stifel (1486-1567) 

116 + y/^41472 - 18t - y^648t aequantur 0 
116 +V41472 

—18x — \/648x = 0 

5. Girolamo Cardano (1501-1576) 

x3 = 15x + 4 \.cu.aequalis\5.rebus p.4. 

6. Rafael Bombelli [ca. 1526-1573) 

x6 — 10x3 + 16 = 0 E6^ m. 10 3 p.16 eguale a 0 

7. Francois Viete (1540-1603) 

x3 — 8x2 + 16x = 40 IQ — 8Q + 16N aequ. 40 

x3 + 3bx — 2c Acubus + BplanoZinA aequari Zsolido2 

8. Thomas Harriot (1560-1621) 

a3 — 3ab2 = 2c3 aaa — 3 bba = 2 ccc 

9. Albert Girard (1595-1632) 

x3 = 13:c + 12 I® x 13®+ 12 

10. Rene Descartes (1596-1650) 

px -\- q — 0 x3 + px + qx 0 

We can hardly imagine mathematics without formulas, without a calcu¬ 

lus. But it was such up until Viete’s time. The importance of the step taken 

by Viete is so fundamental that we consider his reasoning in detail. 

Viete adopted the basic principle of Greek geometry according to which 

only homogeneous magnitudes can be added, subtracted, and can be in a 

ratio to one another. As he put it: “Homogena homogenei comparare.” As a 

result of this principle he divides magnitudes into “species”: the 1st species 

consists of “lengths”, i.e., of one-dimensional magnitudes. The product of two 

magnitudes of the 1st species belongs to the 2nd species, which consists of 

“plane magnitudes” or “squares”, and so on. 
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In modern terms the domain V of magnitudes considered by Viete can 

be described as follows: 

1/ = U R|2) U ... U R(+k) U ..., 

(k) 
where R+ is the domain of A>dimensional magnitudes, k G N+. In each 

of the domains Rl+ ' we can carry out the operations of addition and of 

subtraction of a smaller magnitude from a larger one, and can form ratios of 

magnitudes. If a G R+' and (3 G R^, then there is a magnitude 7 = ct/3 

and 7 G R++^. If k > l, then there exists a magnitude 6 = a : ft, and 

6 G rJ“°. 

After constructing this “ladder” of magnitudes Viete proposes to denote 

unknown magnitudes by vowels A, E, 1,0 ... and known ones by consonants 

B, C, D,.... Furthermore, to the right of the letter denoting a magnitude he 

places a symbol denoting its species. Thus if B is in R+\ then he writes B 

plan, (i.e., planum—plane), and if an unknown A is in R^, then he writes 

A quad, (square). Similarly, magnitudes in R^ are indexed solid or cub, and 

those in R^11 are indexed plano-planum or quadrato-quadratum, and so on. 

For addition and subtraction Viete adopts the cossist symbols + and —, 

and introduces the symbol = for the absolute value of the difference of two 

numbers; thus B = D is the same as \B — D\. For multiplication he uses the 

word “in”, A in B, and for division the word “applicare”. 

Next he introduces the rules 

B - (C ± D) = B - C =f D; B in (C ± D) = B in C ± B in D, 

as well as operations on fractions written by means of letters, e.g., 

BrA Rpl + ZinD 
-A- -f Z = —-. 
D D 

Viete’s next treatise was Ad logisticam speciosam notae priores, which 

appeared only in 1646 as part of his collected works. In it he set down some 

of the most important algebraic formulas, such as: 

(A + B)n = An±nAn~1B + ---±Bn, n = 2, 3,4, 5; 

An + Bn = (A+ B)(An~1 - An~2B + • • • ± Bn~l), n = 3, 5; 

An - Bn = (A - B){An~l + An~2B + ■ ■ ■ + Bn~l), n = 2, 3,4,5. 

Viete’s literal calculus was perfected by Rene Descartes (1596-1650). 

He dispensed with the principle of homogeneity and gave the literal calculus 

its modern form. At the end of the 17th century a calculus was created for 
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the analysis of infinitesimals (it was called for a long time the “algebra of 

the infinite”). One of its forms was Newton’s method of fluxions and infinite 

series (a generalization of polynomials!) and the other was the differential 

and integral calculus of Leibniz. Variational calculi and a calculus of partial 

differentials and derivatives were developed in the 18th century. A calculus 

of logic was created in the 19th century. Today, almost every mathematical 

theory has its own calculus (vector calculus, tensor calculus, and so on); 

furthermore, special calculi are created for individual problems, both theoret¬ 

ical and practical. The apparatus of formulas has become an indispensable 

language of mathematics. And its originators were Diophantus and Viete. 

5. Genesis triangulorum 

Genesis triangulorum is the title of the last part of Ad logisticam speciosam 

notae priores. It contains 12 propositions (XLV-LVI). In the first nine of these 

propositions Viete constructs a calculus of triangles based on the formula for 

composition of forms 

(x2 + y2)(u2-\-v2) = (xu — yv)2+ (xv+yu)2 = (xu+yv)2 + (xv — yu)2 (5) 

(see Ch. 4). Viete associates with the form x2 + y2 a right triangle with base 

x, height y, and hypotenuse \Jx2 + y2 (we will denote it by (x, y, z)) and 

interprets (5) as the formula for the “composition” of triangles (x, y, z) and 

(u, v, w). Then he poses the problem: “To construct (effingere) from two right 

triangles a third right triangle.” 

He explains that the hypotenuse of the third triangle must be equal to 

the product of the hypotenuses of the given triangles. 

According to formula (5), there are two ways of constructing the required 

third triangle from the given triangles (x,y,z) and (u,v,w): 

(x,y,z) <g> (u,v,w) 
1) (|xu — yv\, xv + yu, zw), 

2) (xu + yv, \xv — yu\, zw) 

(Figure 18). 

Viete calls the triangle obtained from the first of these operations synaere- 

seos (from the Greek ovucupew, to combine) and the triangle obtained from 

the second of these operations diareseos (from the Greek Siaipew, to section). 

He does not explain the reason for these names but writes that he will give 

it “at the appropriate place.” We can infer from his other works and from 

remarks of his student Anderson that Viete named the resulting triangles the 

way he did because he realized that the acute base angle of the first triangle 
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v 

zw / xv + yu 

f\(p + ip 

X u 

|xu —yv | 

zw 
\xv ~yu\ 

xu +yv 

FIGURE 18 

was equal to the sum of the acute base angles of the composed triangles, and 

that of the second triangle, to their difference. 

Thus the operation of composition of triangles splits into two, to be 

denoted by <gq and g>2 respectively. We will try to explain their significance 

from the viewpoint of modern mathematics. 

We establish the connection between the operations of composition and 

multiplication of complex numbers. To this end we associate with the right 

triangle (x, y, z) the complex number a — x + iy with norm N(a) = x2 +y2 

and argument ip = arctan ^. Conversely, with every complex number a — 

x+iy, x > 0, y > 0, we can associate the Viete right triangle (x, y, y/N(oc)Sj. 

If we apply the operation <gq to two right triangles (x, y, z) and (u, v, w) 

with respective acute base angles if and -0 such that ip + 0 < 7r/2, then, 

indeed, to this operation there corresponds the operation of multiplication of 

the complex numbers a = x + iy and (3 = u + iv. 

If 7t/2 < ip + 'ip < 7r, then Viete obtains by composition of forms xu — 

yv < 0, i.e., from our viewpoint, a complex number in the second quadrant. 

But he associates with it the triangle with sides (\xu — yv\, xv + yu, zw), i.e., 

he goes over from the number -a + bi (a > 0, b > 0) to the number a + hi. 

It is easy to see that the result of the first operation can be written as follows: 

a/3, if 0 < if + ip < -k/2, 

—a/3, if 7t/2 < if + ip < 7r. 

Viete makes very clever use of the operation gq to multiply more than 

two factors. Specifically, to apply <gq to triangles (x,y,z), (u,v,w), and 
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(p, g, r) he composes successively the forms x2 + y2, u2 + v2, and p2 + q2. 

Let the resulting form be a2 + b2. These compositions correspond to the 

multiplication (x + iy)(u + iv)(p + iq) = a + bi; N(a + bi) — a2 + b2, where, 

of course, a and b can be positive or negative. Viete interprets the final result 

as the triangle (|a|, \b\, \/a2 + b2). This triangle represents the four complex 

numbers a + bi, -a + bi, a - bi, and -a - bi. This awkward aspect of 

Viete’s calculus is due to his unwillingness to use negative numbers. No 

misunderstandings arise, however, because the triangle (|a|, |b|, Va2 + b2) — 

call it “reduced”—usually turns up only in connection with the interpretation 

of final results. 

Similarly, the second operation of composition of triangles can be defined 

by the relations 

a (3, if <p — -0 > 0, 

a(3, if p — ip < 0, 

i.e., this operation corresponds to the multiplication of a complex number by 

(3 = u — iv and the subsequent interpretation in terms of a “reduced triangle”. 

This operation is neither associative nor commutative. 

We note that every right triangle (x, y, z) is uniquely determined by its 

hypotenuse z and its acute base angle p. Thus one can associate with a Viete 

triangle not only the algebraic form x + iy of a complex number but also its 

polar form 2 (cos p + i sin p). 

In propositions XLVIII-LI the first composition operation is applied to 

two equal triangles (a, 6, c), then to the resulting triangle (ai,6i,ci) and the 

initial triangle (a, b, c), and so on. We could say that he is raising the triangle 

(a, b, c) to a positive integral power n, which is equivalent to raising a + bi 

or c(cos (p + i sin <p) to the power in question. We consider these propositions 

in greater detail. 

In proposition XLVIII Viete finds (a,b,c)®i(a,b,c) = (a2-b2, 2ab, c2). 

He notes that the acute base angle of the resulting triangle is <p 1 = 

and therefore calls it a double-angle triangle. (We interpolate a remark. If 

2ip < 7r/2 then a2 — b>2 > 0, and Viete’s assertion needs no supplementary 

arguments. But if n/2 < 2p < n, then a2 - b2 < 0. If we take the reduced 

triangle (|a2 — b2\,2ab, c2), then its acute base angle is n — 2<p. This kind of 

reduction will have to be done in the sequel.) In proposition XLIX he applies 

the composition (gq to the initial triangle and to the double-angle triangle and 

obtains the triangle (|(o3 -3a62|, |3a26-63|, c3), which he calls a triple-angle 

triangle. It is not difficult to see that this third triangle is the result of the 
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composition of forms: 

[(a2 - b2)2 + (2a6)2](a2 + b2). 

Similarly, in proposition L he composes the initial triangle and the triple-angle 

triangle and obtains the triangle 

{\a4 - 6a2b2 + b4\, \Aa3b~Aab3\, c4). 

Finally, in proposition LI, he obtains in the same way a triangle with base 

angle and sides 

(|a5 — 10a362 + 5a64|, \5a4b + I0a2b3 - b5\, c5). 

Now Viete formulates a general rule of “separation” (diductio) of right 

triangles: 

"From this one obtains a general consequence on separation of right 

triangles. 

If one forms an arbitrary power of a binomial and the resulting individual 

homogeneous terms are successively separated into two parts and in both are 

taken first positive and then negative, then the base of a certain right triangle 

will be similar to the first part and its height to the second. And the hypotenuse 

will be similar to the power itself. 

That same triangle, whose base is similar or equal to one of the roots of 

the composed (binomial) and height to another, is named after its angle, sub¬ 

tended by the height. Indeed, it is convenient to name the triangles, obtained 

by separation of these very roots by raising to an arbitrary power, accord¬ 

ing to the multiplicity of that very angle. Namely: double if the power is a 

square, triple if the power is a cube, quadruple if the power is a square- 

square, quintuple if the power is a square-cube, and in that same sequence 

to infinity.” 

Thus Viete’s rule is equivalent to the formula for raising a + bi to an 

arbitrary positive integral power (a + bi)n. 

Indeed, Viete is telling us to raise the binomial a + b to the nth power, 

(a + b)n = an+ nan lb+—y—^a" 2b2 
w(ra- l)(n —2) 3 3 

1-2-3 

and to separate the resulting homogeneous terms into two series whose terms 

are given alternating signs: 

1) an — n(?7~ 1)an~252 + ---, 
JL ‘ £ 

, „ i n(n — l)(n — 2) „ ,o 
2) na lb — V -~an 3b3 + • • • 
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Then the first series will correspond to the base of the resulting triangle and 

the second to its height. In other words, 

Re(o + bi)n = a 

Im(a + bi)n 

Viete does not say that one must take | Re(a + bi)n\ and | Im(a + bi)n\ 

for the resulting reduced triangle. Clearly, his method makes this necessary. 

In the second half of his conclusion Viete notes that the hypotenuse of 

the resulting triangle is zn and the base angle is wp. In other words, 

[z(cos p + i sin p)]n = zn(cos rup 4- i sin mp). 

Thus this theorem includes the so-called de Moivre formula. We note that 

knowing this formula Viete could immediately solve van Roomen’s problem 

(see 3). Indeed, using the de Moivre formula he could express sin rup and 

cos rup as polynomials in sin p and cos p. 

Viete noticed that the given value of A is an expression for the side of a 

regular 15-gon inscribed in a unit circle (i.e., for the chord of an arc of 24°). 

The coefficients of the equation showed that it expresses sin p in terms of 

sin(<£>/45), i.e., x must be the chord of 1/45 of this arc or, equivalently, it 

must subtend an arc of (8/15)°. But then x = 2sin(4/15)°. Since what was 

required was a geometric solution, the problem was solved. But Viete gave 

22 more solutions: 

(the remaining 22 solutions are negative, so Viete ignored them). 

It is safe to say that Viete constructed an impeccably rigorous and original 

calculus of triangles equivalent to the multiplication of complex numbers, and 

that he derived a formula for raising a complex number—in its usual form 

(a + bi) or in its polar form (r(cos<p + i sirup))—to an arbitrary positive 

integral power. He did this without introducing new “objects” or “symbols” 

such as T. 

We compare Bombelli’s complex-number symbols with Viete’s calculus 

of triangles. Each ot the two systems has its advantages and disadvantages. 

Bombelli’s complex-number symbols were convenient for carrying out the 

four arithmetical operations; in modern terms, they formed a field, i.e., they 

"behaved as well" under the two composition laws defined for them as did 

the rational numbers under addition and multiplication. However, there was 
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no analog of the polar form of a complex number for these symbols, i.e., no 

notions of modulus and of argument. Hence they were not convenient when 

it came to extraction of roots or to trigonometric applications. 

Viete’s calculus of triangles admitted an algebraic as well as a trigono¬ 

metric interpretation and it was therefore immediately utilized to obtain key 

trigonometric formulas. Viete also used it for solving indeterminate equations. 

But this calculus was not very operative. Also, the only operation defined for 

triangles was composition, the analog of multiplication, whereas, as already 

noted, Bombelli’s number symbols could be added and multiplied and formed 

a field under these operations. That is why, during the further development 

of mathematics in the modem era, the more operative number-symbols of 

Bombelli won the day. 

But there were mathematicians in the 17th century who used Viete’s 

triangle-numbers and preferred them to Bombelli’s number-symbols intro¬ 

duced without any justification. Thus Fermat used exclusively Viete triangles, 

e.g., in connection with the problem of finding a number that would be the 

hypotenuse of a right triangle a given number of times (see Fermat’s letter to 

Frenicle dated 15 June 1641 (P. Fermat, Oeuvres, ed. P. Tannery et Charles 

Henry, Paris, Gauthier-Villars, 1891-1912, letter No. XLVIII)). 

In the 18th century mathematicians began to write Bombelli’s number- 

symbols in polar form, and in the 19th century these number-symbols entered 

analysis. Their adoption was promoted by Gauss’ construction of the arith¬ 

metic of complex numbers—a development that made them into “genuine 

numbers”. 

6. Indeterminate equations in the work of Viete 

In his work Zetetica, Viete used literal calculus and the calculus of triangles to 

solve indeterminate equations, and in subsequent works—to solve determinate 

equations. 

The first five problems in Book IV of Zetetica (with the exception of 

theorem 4) reduce to the equations 

(6) 

(7) 

We saw that these equations were first solved by Diophantus (see Ch. 3) 

and then—in a different way—by Leonardo Pisano (see Ch. 4). Essentially, 

Viete reproduces both of these solutions. What is new in his treatment of 
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equations (6) and (7) is that he was the first to write them as equalities 

involving literal expressions, and this enabled him to solve them “in general 

form". We give his solution of problem (7). 

Without mentioning Leonardo he first gives a solution based on the 

latter’s method. He takes a right triangle (B,D,Z), where Z — \J B2 + D2 

can be irrational, and another right triangle (p, q, r) with rational sides. Then 

(B, D, Z) 0, q, r) = (|Bp - Dq\,Bq + Dp, rZ); 

(■B, D, Z) 02 Op, 7, r) = (Bp + Dq,\Bq - Dp|, rZ). 

Both operations are carried out according to the rules stated in Genesis 

triangulorum and yield two right triangles with the same hypotenuses rZ. 

Then Viete takes triangles similar to these two: 

^ / |Bp - Dq\ Bq + Dp \ 

\ r r ' J 
fBq+Dp^ \Bq-Dp\ A 

V r r J 

and these yield directly two new solutions of equation (7): 

_ \Bp- Dq\ 
X\ i 

r 

Bq + Dp 
Vi = ; r 

(8) 

Bq + Dp 
X2 = ; 

r 

1 Bq - Dp\ 
2/2 = 

r 
(9) 

In terms of complex numbers, the first of these solutions is obtained by 

multiplying a = B + Di by (5 — & + where ^ an(j 2 are rational and 

N(/3) = 1, and the second, by multiplying a = B — Di by /3. 

Viete takes the second solution method from Diophantus but first alge- 

braicizes it. He puts the first of the required unknowns equal to A + B, the 

second to (S/R)A — D, substitutes these expressions in (7), and obtains 

x = A + B 
2 RSD + B(S2 

S2 + R2 

\(S2 - R2)D -2RSB\ 

S2 + R2 

(10) 

Then he notes that the expressions (10) and (9) coincide if one supposes 

that p = S2 - R2, q = 2RS, and r = S2 + R2. 

In problems 18-20 of Book IV of Zetetica, Viete turns to the problem 

of four cubes. He successively solves the indeterminate equations: 

x3+ y3 = B3 - D3, B > D; (IVi8) 
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x3 — y3 = B3 + D3\ (IV19) 

x3 - y3 = B3 - D3, B > D. (IV20) 

Problem IVig was formulated by Diophantus in connection with his 

solution of problem Vjg in his Arithmetica. He claimed that it is always 

solvable. We saw (in §2, Ch. 5) that Bombelli solved it for B = 4, D = 3. 

But he too was unable to prove its solvability for arbitrary B > D. This was 

first done by Fermat. Readers interested in the “Problem of four cubes” are 

referred to The History of Diophantine Analysis from Diophantus to Fermat 

[2] (Russian). 

7. Beginning of the theory of determinate equations 

In his treatise On Perfecting Equations Viete embarked on a systematic inves¬ 

tigation of equations with literal coefficients. His first step was to transform 

equations by means of substitutions. He noted that given the equation 

xn + aixn~l + • • • + an_\x + an = 0 (11) 

(we are using modern symbolism), it is possible to remove its second term by 

means of the substitution 

x = y — a\/n. (12) 

Next, using the substitution x = a/y, it is possible to permute the terms of the 

equation in a manner Viete called “last—first”. Finally, using the substitution 

x = ky, it is possible to obtain an equation all of whose rational roots are 

integers. 

Viete formulated the theorem on the connection between the coefficients 

of an equation and its roots. He limited himself to equations of degrees n = 

2,..., 5. This theorem is named after him. It asserts that 

X\ T X2 T ■ ■ ■ T xn — —a\ 

X\X2 + X1X3 + ' ' ' + Xn — \Xn = 02) ^ 

X\X2 ■■■xn = (—1 )nan. 

In his book New Discoveries in Algebra, published in 1629, Albert Gi¬ 

rard formulated Viete’s theorem for an equation of arbitrary degree. 

Viete’s ideas launched two very important types of investigations in the 

theory of equations. One was related to the substitution (12) and could be 
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formulated as the question: Is it possible to eliminate the second and third 

terms by means of a substitution x = y2 -f- Ay + B1 More generally, is it 

possible to choose the coefficients of the substitution x = yn~x + A\yn~2 + 

• • • + An-1 so as to eliminate all intermediate terms, i.e., so as to reduce the 

equation to the form 

yn ± c = o, 

and thus express its roots by radicals? The first to follow this approach was 

Leibniz’ friend Tschirnhaus, whose work we will discuss in the sequel. 

The other Jcind of investigation involved the study of symmetric functions 

of the roots of an equation. The functions of the roots in (13) that give 

the coefficients of the equation are called elementary symmetric functions. 

Already Girard, and then Newton, considered symmetric functions of the 

form Sm = ]T"=1 XT- F°r m = 1> 2, 3,4 Girard expressed them in his book 

in terms of the coefficients of the original equation: 

Si = —Oi, S2 — o-i - 2a2, S3 = —a3 + 3aia2 — 3d3, 

S4 = a\ — Aa\a2 + 4aia3 + 2a% — 4a4, 

and Newton, in his Arithmetica universalis of 1707, gave recursion formulas 

for finding sums of powers of the roots: 

Srn T ^lBrn — 1 T ^2—2 T * ’ ' T m.0.^ — 0. 

By means of these formulas it is possible to express the sums Sm as 

polynomials with integral coefficients in terms of the coefficients of the equa¬ 

tion (and thus in terms of the elementary symmetric functions). This (Girard- 

Newton) theorem about sums of powers of the roots of an equation was the 

first step leading to one of the fundamental results of the theory of equations 

which asserts that every rational symmetric function of the roots of an equa¬ 

tion is a rational function of the elementary symmetric functions and thus of 

the coefficients of the equation. 

We conclude this section with a discussion of Viete’s work on cubic 

equations. 

Viete gave the following elegant solution of the cubic equation 

x3 + 3 ax = 2b (14) 

(of course, he used different symbols for the unknowns and the parameters). 

He put 

a = t2 + xt = t (t + x), (15) 
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probably with a view to reducing equation (14) to the form 

(x + t)3 - t3 = 2b. 

However, elimination of x from (14) and (15) yields immediately a quadratic 
equation in t3: 

(t3)2 + 2bt3 = a3. 

In his Supplement to Geometry Viete showed that the “irreducible case” 

of a cubic equation reduces to angle trisection and thus admits of a trigono¬ 
metric solution. 

Indeed, consider the equation 

x3-px = q, with (!) <(f)3' (16) 

We rewrite it as 

x3 — 3 r2x = ar2. (17) 

Since (ar2/2)2 < (r2)3, i.e., a < 2r, we can put a = 2rsinu and write 

equation (17) as 

(x/r)3 — 3(x/r) + 2sinu. (17') 

Putting x/r = —y, Viete obtains the equation 

3y - y3 = 2sinu. (18) 

In view of the well-known relation 

3 sin p — 4 sin3 ip = sin 3p, 

he obtains the equation 

3(2 sin p) — (2 sin p)3 = 2 sin 3p. (19) 

From this he obtains y\ = 2sin(u/3). The second positive root is y2 = 

2sin (v+^n)- The third root is negative. Viete obtained all expressions for 

the roots geometrically. 

Essentially, this argument showed that in the “irreducible” case a cubic 

equation has three different real roots. Since Viete admitted only positive roots 

he could not formulate this conclusion explicitly. This was done by Girard in 

his New Discoveries in Algebra. 

In summary, we can say that the end of the 16th century marked a 

crucial turning point in the evolution of algebra, for at that time it found its 
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own language, namely the literal calculus. This made it possible to conduct 

general investigations of determinate and indeterminate equations. At that time 

the domain of numbers was extended to the field C of complex numbers. 

While not yet entirely “legitimate”, these numbers were used to advantage in 

algebraic investigations. This was the basis for the subsequent development 

of algebra, which flourished in the second half of the 18th century and in the 

19th century. 



CHAPTER 6 

Algebra in the 17th and 18th centuries 

1. The arithmetization of algebra 

The 16th century was marked by remarkable achievements in algebra and was 

followed by a period of relative calm in this area. The attention of 17th-century 

mathematicians was primarily directed towards infinitesimal analysis, which 

was created at that time. Nevertheless, while inconspicuous at first sight, 

profound changes were taking place in algebra that can be characterized by 

one word—arithmetization. 

The first steps in this direction were taken by the famous philosopher and 

mathematician Rene Descartes (1596-1650). In his Geometry (the fourth part 

of his 1637 Discourse on Method), whose essential content was the reduction 

of geometry to algebra, or, in other words, the creation of analytic geometry, 

he first of all transformed Viete’s calculus of magnitudes (logistica speciosa). 

Descartes represented all magnitudes by segments and constructed a calculus 

of segments that differed essentially from the one that was used in antiquity 

and that formed the basis of Viete’s construction. Descartes’ idea was that 

the operations on segments should be a faithful replica of the operations on 

rational numbers. Whereas the ancients and Viete regarded the product of two 

segment magnitudes as an area, i.e., as a magnitude of dimension 2, Descartes 

stipulated that it was to be a segment. To this end, he introduced a unit 

segment—which we will denote by e—and defined the product of segments 

a and b as the segment c that was the fourth proportional to the segments e, a, 

and b. Specifically (see Figure 19), he constructed an arbitrary angle ABC and 

laid off the segments AB = e, BD = b, and BC = a. Then he joined A to C, 

drew DF || AC, and obtained the segment BF = c — ab. This meant that the 

product belonged to the same domain of magnitudes (segments) as the factors. 

Division was defined analogously: to divide BF = c by BD — b we lay off 

91 
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FIGURE 19 

from the vertex B of the angle the segment BA = e, join F to D, and draw 

AC parallel to DF. The segment BC is the required quotient. In this way 

Descartes made the domain of segments into a replica of the semifield R+. 

Later he also introduced negative segments (with directions opposite to those 

of the positive segments) but did not go into the details of operations with 

negative numbers. Finally, Descartes showed that the operation of extraction 

of square roots (of positive magnitudes) does not take us outside the domain 

of segments. (We interpolate a comment. Already Bombelli introduced similar 

rules of operation with segments. Until recently it was thought that he did 

this in the fourth part of his manuscript published only in the 20th century. 

However, G. S. Smirnova showed recently (see the comment on p. 73) that 

such operations with segments occur also in the parts of Bombelli’s Algebra 

published in 1572, i.e., during his lifetime.) To extract the square root of 

c = BF, Descartes extended this segment, laid off FA = e on the extension, 

drew a semicircle with diameter BA, and erected at F the perpendicular to 

BA. If / is its intersection with the semicircle, then FI — sjc. 

Descartes’ calculus was of tremendous significance for the subsequent 

development of algebra. It not only brought segments closer to numbers but 

also lent algebra the simplicity and operativeness which we take advantage of 

to this day. Another convention introduced by Descartes and used to this day 

is the denoting of unknowns by the last letters of the alphabet: x, y, z, and 

of knowns by the first letters: a, b, c. The only difference between Descartes’ 

symbolism and modern symbolism is his equality sign: 30. 

Essentially it was Descartes who established the isomorphism between 

the domain of segments and the semifield R+ of real numbers. However, 

he gave no general definition of number. This was done by Newton in his 

Universal Arithmetic in which the construction of algebra on the basis of 

arithmetic reached its completion. He wrote: “Computation is conducted either 



Algebra in the 17th and 18th centuries 93 

by means of numbers, as in ordinary arithmetic, or through general variables, 

as is the habit of analytical mathematicians.” And further: “Yet arithmetic 

is so instrumental to algebra in all its operations that they seem jointly to 

constitute but a single, complete computing science, and for that reason I 

shall explain both together.” 

Newton immediately gives a general definition of number. We recall that 

in antiquity number denoted a collection of units (i.e., natural numbers), and 

that ratios of numbers (rational numbers) and ratios of like quantities (real 

numbers) were not regarded as numbers. Claudius Ptolemy (2nd century CE) 

and Arab mathematicians did identify ratios with numbers, but in 16th- and 

17th-century Europe the Euclidean tradition was still very strong. Newton was 

the first to break with it openly. He wrote: “By a ‘number’ we understand not 

so much a multitude of units as the abstract ratio of any quantity to another 

quantity which is considered to be unity. It is threefold: integral, fractional, 

and surd. An integer is measured by unity, a fraction by a submultiple part of 

unity, while a surd is incommensurable with unity.” 

With characteristic brevity, Newton goes on to define negative numbers: 

“Quantities are either positive, that is, greater than zero, or negative, that is, 

less than zero. .. .in geometry, if a line drawn with advancing motion in some 

direction be considered as positive, then its negative is one drawn retreating 

in the opposite direction. 

To denote a negative quantity ... the sign — is usually prefixed, to a 

positive one the sign +.” 

Then Newton formulates rules of operation with relative numbers. We 

quote his multiplication rule: “A product is positive if both factors are positive 

or both negative and it is negative otherwise.” 

He provides no “justifications” for these rules. 

Thus Viete’s elaborate domain of magnitudes was replaced in the 17th 

century by the field of real numbers and arithmetic formed the foundation of 

algebra. 

2. Descartes’ treatment of determinate equations 

In the last part of his Geometry Descartes presents his treatment of equations. 

He consistently writes them with zero on the right “for this is often the 

best form to consider”. This enables him to find the following properties of 

equations: 
1) if a is a root of an equation then its left side is algebraically divisible 

by x — a; 
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2) an equation can have as many positive roots as it contains changes of 

sign from + to — ; and as many false (i.e., negative) roots as the number of 

times two + signs or two — signs are found in succession; 

3) in every equation one can eliminate the second term by a substitution; 

4) the number of roots of an equation can be equal to its degree. 

For cubic and quartic equations Descartes formulated without proof a 

number of nontrivial assertions. 

Consider a cubic equation 

x3 + ax + b = 0, a,b E Q. (1) 

Assuming that all its roots are real. Descartes investigates their constructibility 

by ruler and compass. He claims that for this it is necessary and sufficient that 

equation (1) be reducible over Q, i.e., that it have a rational root a. Descartes 

proved the sufficiency of this condition as follows: upon division of the left 

side of the equation by x — a we obtain a quadratic equation whose roots are 

constructible by ruler and compass. The necessity of this condition is much 

harder to prove and Descartes says nothing about this matter. 

Descartes considers the same question for a quartic. He claims that its 

roots are constructible by ruler and compass if and only if the auxiliary cubic 

(called the cubic resolvent; for more on this term see 5 below) used in Ferrari’s 

solution of the quartic is reducible. Finally, Descartes discovered the method of 

undetermined coefficients, a method which has played a major role in algebra 

as well as in analysis (especially in the theory of series). Using this method 

he found a new way of solving a quartic equation (see the next section). 

3. The fundamental theorem of algebra 

This theorem, which became one of the central problems of 18th-century alge¬ 

bra, was formulated in the 17th century by Descartes and Girard. Since he did 

not take into account complex roots, Descartes formulated it cautiously: “Ev¬ 

ery equation can have as many distinct roots (values of the unknown quantity) 

as the number of dimensions of the unknown quantity in the equation.’’ Gi¬ 

rard overcame this psychological difficulty and stated in his New Discoveries 

in Algebra of 1629 that the number of solutions of an algebraic equation is 

equal to its degree. Girard operated freely with negative and complex roots. 

In addition to Girard’s formulation, 18th-century mathematicians used 

the following, equivalent, version of the fundamental theorem: every polyno- 
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mial 

fn(x') — X T d\X + • • • + Gn_iX -|- CLn (2) 

with real coefticients can be written as a product of linear and quadratic 

factors with real coefficients. 

The first proof of this theorem was given in 1746 by d’Alembert (1717— 

1783). It was purely analytic and its standards of rigor were low even for the 

18th century. In the same year Euler (1707-1783), the greatest mathematician 

of the 18th century and a brilliant exponent of its ideas, presented his proof 

of the theorem to the Berlin Academy. It was subsequently included in the 

memoir Investigations of Complex Roots of Equations (Recherches sur les 

racines imaginaires des equations, 1751). 

Unlike d’Alembert, Euler looked for an algebraic proof of the funda¬ 

mental theorem. Today we know that the theorem cannot be proved without 

the use of certain continuity assumptions. It appears that Euler was aware of 

this. In his proof he reduced the nonalgebraic assumptions to a minimum. He 

used the following two: 

I. Every equation of odd degree with real coefficients has at least one 

real root. 

II. Every equation of even degree with real coefficients and negative 

constant term has at least two real roots. 

Euler’s idea for the rest of his proof was to use a process that would 

reduce the solution of an equation of degree 2k m, m odd, to an equation of 

degree 2fc_1 mi, mi odd. 

Euler notes that it suffices to consider an equation Pn(x) = 0 for n = 2k, 

for these equations are the source of the difficulty (if n ^ 2k, then we can 

find a value of k such that 2fc_1 < n < 2k and multiply the polynomial 

fn(x) by 2k - n factors, say by x2 ~n, thus ending up with a polynomial of 

degree 2k). He proves the theorem for n = 4, 8, and 16 and then goes over to 

the general case n = 2k. To explain Euler’s methods we consider the cases 

n = 4 and n = 2k. 

Suppose we are given the equation 

x4 + Bx2 + Cx + D — 0 (3) 

(we always assume that the equation has been reduced to the form that does 

not contain x3). First Euler writes the left side of the equation as the product 

(x2 + ux + X)(x2 ux T p), (4) 
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and using Descartes’ method of undetermined coefficients arrives at the equa¬ 

tion 

u6 + 2Bu4 + (B2 - 4D)u2 - C2 = 0. (5) 

According to assumption II, this equation has at least two roots, one of which 

we take as the value of u. Euler shows that the coefficients A and ^ in the 

product (4) are rationally expressible in terms of u and the coefficients of the 

initial equation (3). 

Next Euler obtains the same results from general arguments without 

reliance on computations. He does this in order to extend his assertion to an 

arbitrary equation of degree 2k. He makes use of the following (unproved) 

theorems that later played key roles in the theories of Lagrange and Galois. 

A. Every rational symmetric function of the roots of an equation is a 

rational function of its coefficients (fundamental theorem on symmetric func¬ 

tions). 

B. If a rational function <p(xi,..., xn) of the roots of an equation takes 

on k different values under all possible permutations of the roots, then those 

k values satisfy an equation of degree k whose coefficients are rationally 

expressible in terms of the coefficients of the initial equation. 

Euler argued as follows: to any equation of degree n we can “attribute” 

n roots and write 

fn(x) = xn+aixn~1-\-ban_ix+an = (x+ai)(x+a2) ■ ■ ■ (x+an), (6) 

where ai, Q2, • ■ ■, an are certain symbols with which we can operate as if 

they were ordinary numbers. Thus the a, in (6) are the negatives of the roots 

of fn and we can write 

cti T Oi2 + • • • T olu — <X\ 

ol\ol2 + 070:3 + • • • + an_ian = a2, 

(7) 

0^10^2 * * * • 

The fundamental theorem of algebra asserts that ai, «2, • • •, an are real or 

complex numbers. 

Euler proceeds in the same way in the case of n = 4. He assumes that 

equation (3) has roots a,/3,7, and 8. Then u must be the sum of some two 

of these four roots, i.e., it can take on (2) = 6 values under all possible 

permutations of the roots. From this Euler concludes that u must satisfy an 



Algebra in the 17th and 18th centuries 97 

equation of degree 6. He notes that since qi + /3 + 7 + <5 = 0, the values of u 
are 

ui = a + (3 = p u4 = 7 + <5 = —p, 

u2 = a + 7 = q u5 = (3 + 8 = -q, 

u3 = a + 8 = r u6 = /3 + 7= —r, 

i.e., the required equation for u will be of the form 

(u2 - p2){u2 - q2){u2 - r2) = 0. (8) 

This equation is of even degree and its constant term is —p2q2r2. To be 

certain that —p2q2r2 < 0 we must verify that the product pqr is real. To this 

end Euler shows that 

pqr = (a + (3) (a + 7) (ct + 8) 

remains unchanged under all permutations of the roots; this means that it 

is rationally expressible in terms of the coefficients of equation (3). These 

general considerations show that u can be chosen as real.1 

Euler only sketched the proof for the case n — 2k (theorem 7). He 

represents the polynomial 

fn(x) — X2 + Bx2 2+Cx* + (9) 

as a product of two factors of degree 2k 1 with indeterminate coefficients 

(xA + ux* 1+Xx2k-1-2 + ■ ■-){x2 —uxi ■ fix —2 

The number of these coefficients is 2fc - 1 and is thus equal to the number 

of determining relations. 

Since u is the sum of 2fc_1 of the 2k roots, the number of different values 

it can take on is (2Li) = 27V, where, as Euler shows, N is odd. From this 

he concludes that u satisfies an equation of degree 2N with real coefficients. 

It is easy to see that this equation must have the same structure as equation 

(8), i.e., 

(u2-pl)(u2-p2)---(u2-p2N) = 0. 

Euler considers its constant term -p\ ■ ■ ■ p2N and asserts that it is negative 

(which is not difficult to prove). From this he concludes that u can be chosen 

to be real. As for the remaining coefficients A, fi,... he claims that they can 

be expressed rationally in terms of u and the coefficients B, C, D,... of the 

polynomial (9). 
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It is difficult to tell with certainty on what considerations Euler based this 

conclusion. Lagrange’s memoir On the Form of Imaginary Roots of Equa¬ 

tions (Sur la forme des racines imaginaires des equations, 1772) is a rigorous 

account of Euler’s reduction procedure which fills the gaps in Euler’s proofs. 

In particular, Lagrange used his theory of similar functions (see §5), de¬ 

veloped in his famous memoir Reflections on Algebraic Solutions of Equations 

(Reflexions sur la resolution algebrique des equations, 1771) to prove Euler’s 

assertion about the possibility of expressing A, /j,, ... rationally in terms of u 

and the coefficients of the polynomial (9). 

In his pro'of Lagrange fully accepts Euler’s viewpoint: he assumes that 

one can “attribute” n root symbols to an arbitrary equation of degree n and 

operate with them according to the usual rules of arithmetic. In particular, 

one can set down relation (7). 

Other 18th-century mathematicians, such as de Foncenex (1759) and 

Laplace (1795), adopted the same viewpoint in their proofs of the fundamen¬ 

tal theorem. They significantly simplified Euler’s reduction procedure but 

regarded his formulation of the issue as completely legitimate. 

4. Gauss’ criticism 

The first to reject Euler’s formulation was the young Gauss (1777-1855). 

His doctoral dissertation (1799) was devoted to the proof of the fundamental 

theorem. In it Gauss wrote: “Since we cannot imagine forms of magnitudes 

other than real and imaginary magnitudes a + b\I— 1, it is not entirely clear 

how what is to be proved differs from what is assumed as a fundamental 

proposition; but granted one could think of other forms of magnitudes, say 

F, FF",..., even then one could not assume without proof that every equa¬ 

tion is satisfied either by a real value of x, or by a value of the form a+b\F-l, 

or by a value of the form F, or of the form F', and so on. Therefore the fun¬ 

damental theorem can have only the following sense: every equation can be 

satisfied either by a real value of the unknown, or by an imaginary of the 

form a + I, or, possibly, by a value of some as yet unknown form, or by 

a value not representable in any form. How these magnitudes, of which we 

can form no representation whatever—these shadows of shadows—are to be 

added or multiplied, this cannot be stated with the kind of clarity required in 

mathematics” (C. F. Gauss, Werke. Gottingen, 1866, Vol. Ill, pp. 1-2). 

In 1815 Gauss returned to the fundamental theorem and this time gave 

a largely algebraic proof without initially assuming the existence of roots of 

any form. In Gauss’ view such an assumption, “at least at the point when 
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what is involved is a general proof of such a decomposition (of a polynomial 

into linear and quadratic factors), is simply petitio principii” (ibidem, p. 31). 

However, the charge that Euler’s proof involved a vicious circle was 

unfair. And this is best seen by analyzing Gauss’ second proof: to avoid the 

assumption of the existence of root symbols he operates with congruences 

modulo a certain polynomial, that is, basically, he constructs the splitting 

field of the initial polynomial. 

This method of Gauss was isolated in pure form by Kronecker who 

gave his famous construction of the splitting field of a polynomial without 

assuming the existence of the field of complex numbers (1880-1881). 

We consider this construction—which Hermann Weyl regarded as one 

of the first examples of the abstract conception of algebra—in greater detail. 

The classical treatment of the fundamental theorem was the following: we 

are given the field Q of rational numbers (or the field R of real numbers) 

and the field C of complex numbers. One asserts that every polynomial f(x) 

with coefficients in Q (or in R) has a root 9 in the field C. By adjoining 9 

to Q we obtain the simple extension Q(0) in which f(x) — (x — 9)g(x). 

Kronecker gave a new method of construction of the splitting field of a 

polynomial: Let f(x) be a polynomial of degree n irreducible over a certain 

field k. We consider the ring of all polynomials g(x) over k and split them 

into congruence classes mod f(x). We associate with each class a polyno¬ 

mial of degree < n — 1 as its representative and denote it as a polynomial 

in 9. If h(x) = p(x) (mod f(x)), then we write h{9) = p{9). In view 

of the irreducibility of f{x), the classes of polynomials mod f(x) (or the 

polynomials in 9) form not only a ring but a field L = k{9) with basis 

1, 9,..., 9n~l. Since f(x) = 0 (mod f(x)), it follows that in this field 

f(9) = 0 or f(x) = (x - 9)g(x). 

By iterating this construction we arrive at a field K in which f(x) splits 

into linear factors. Then the fundamental theorem of algebra is the assertion 

that K is isomorphic to a subfield of the field C (or that K can be embedded 

in C). 

But this was Euler’s approach, except that he thought that one should 

postulate the existence of the field K rather than prove it! This reminds one of 

his view that it is not necessary to prove that a curve y = f2n-i{x) intersects 

the x-axis (what counts is not the particular value, 2n — 1, of the degree of the 

polynomial that determines the curve but the fact that it is odd). Of course, 

from a modern viewpoint both assertions require proof but are not instances 

of a vicious circle! 
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We conclude by showing how Cauchy (1789-1857), independently of 

Gauss and Kronecker, used the same approach to construct the field of com¬ 

plex numbers (1847). To this end he singled out the polynomial x2 + 1, which 

is irreducible over Q (as well as over R). Then every polynomial is congruent 

(mod (x2 + 1)) to a linear polynomial ax + b and each class is represented 

by aO + b. These classes form a field with the following multiplication rule: 

(ad + b)(cO + d) — (ad + bc)6 + bd + ac 92. 

But x2 = — l(mod (x2 + 1)), so that 62 = —1. In other words, this 

multiplication rule is the same as the one for complex numbers. 

It is remarkable that Euler adopted an algebraic viewpoint that was to 

be rejected at the beginning of the 19th century and that was to be adopted 

between the 1870s and 1880s. 

Thus it was Euler’s viewpoint that triumphed in algebra rather than the 

viewpoint that presupposed the construction of the field of complex numbers 

followed by a proof of the existence of a root in that field. 

We note that, basically, the fundamental theorem of algebra in Euler’s 

formulation coincides with the Weierstrass-Frobenius theorem to the effect 

that the field of real numbers and the field of complex numbers are the only 

linear associative and commutative algebras (without zero divisors) over the 

field of real numbers.2 

5. The problem of solution of equations by radicals 

In addition to the fundamental theorem of algebra, what attracted the atten¬ 

tion of 18th-century mathematicians was the problem of solution of equations 

by radicals. Encouraged by the success of Italian mathematicians in solving 

cubic and quartic equations they now tried hard to solve the quintic equation. 

The problem attracted many eminent mathematicians, including Tschirnhaus 

(1651-1708), Euler, Bezout (1730-1783), Lagrange (1736-1813), and Van¬ 

dermonde (1735-1796). 

In 1683 Tschirnhaus published a paper in Acta Eruditorum in which he 

described a transformation (later named after him) of an equation of degree n 

xn + a1xn~1 -\-b an_ix 4- an — 0 

by means of a substitution 

y = b0 + hx -l-b bn_ixn 1 
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into an equation of degree n 

yn + ciyn~l + • • • + cn = 0, 

whose coefficients Ci, C2,..., cn_i would vanish for a suitable choice of the 

undetermined coefficients bo, b\,..., bn-\. He managed to achieve this for 

n = 3, and thereby obtained a new method for solving a cubic equation. 

From this he concluded that this can be done for all values of n. 

Tschimhaus had first expounded his method in a letter to Leibniz as 

early as 1677. Leibniz replied that he thought he could prove that for n > 4 

the computations required for the determination of the 6; could not be carried 

out. 

While a quintic equation cannot be reduced to a two-term equation by a 

Tschimhaus transformation, it can be reduced to an equation of the form 

x5 + Ax + B = 0, (10) 

and the coefficients bo,... ,b^ are determined by an equation of degree at 

most three. This was shown in 1786 by the Swedish lover of mathematics 

E. Bring. In 1858 Hermite used the form (10) and proved that the solution of 

the quintic can be expressed in terms of elliptic modular functions. 

Euler tackled the problem of solution of the quintic twice: the first time 

in 1732-1733, in his memoir Conjecture on the Form of Roots of Equations 

of Arbitrary Degree (Comment. Acad. Petropolitanae, 1738, Vol. 6), and the 

second time in 1762-1763, in his memoir On the Solution of Equations of 

Arbitrary Degree (Novi Comment. Acad. Petropolitanae, 1762/63, 1764, Vol. 

9). 
In the first of these papers Euler notes that the solution of equations 

of degree n = 2,3,4 reduces to the solution of equations of degree n = 

1,2,3 respectively, and refers to the latter equations as resolvent equations. 

He assumes that an arbitrary equation 

xn = axn~2 + bxn~3 + • • • + q (11) 

has a resolvent of the form 

z"-1 = azn~2 + pzn~3 + • • • (12) 

If the roots of the latter are Ai, A2, ■ ■ ■, An_i then, according to Euler, 

the roots of the original equation are 

x = y/Ai + VM + • • ■ + \J An~ i- (13) 
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Of course, Euler could not have obtained the roots of the quintic in this way. 

We note also that formula (13) is flawed in that each of its summands can 

take on n values independently of the values of the remaining summands, so 

that one can obtain from it nn~1 values for x. 

In the same paper Euler considers reciprocal equations (i.e., equations 

a0xn + aixn_1 -4-b an_xx + an = 0 such that o, = an_*) and proposes 

for their solution his famous substitution 

y = x + 1/x. 

We discuss triis in the next chapter. 

In the second paper Euler replaces formula (13) by a new formula: 

x = w + A y/v + B 'fx? + ■ • • + Q Vvn~1, (14) 

where w is real and v satisfies an equation of degree < n — 1. 

This expression, unlike the previous one, takes on exactly n different 

values, provided the value of \/v* is given by (y/v)2, and similarly for the 

other roots. Since it too failed to yield a solution of the general quintic, Euler 

decided to investigate three special classes of quintic equations, all of which 

are solvable by radicals. In modern terms, it turns out that the (Galois) groups 

of the first two classes are cyclic while the (Galois) groups of equations in 

the third class are dihedral.3 

What makes the second paper especially important is the generality of 

the form (14): if equation (11) is solvable by radicals, then a root takes the 

form (14). This was proved by Abel in his famous proof of the unsolvability 

of the general quintic by radicals. The form (14) was the starting point of 

Abel’s proof. 

After Euler, one of the mathematicians who investigated equations of 

degree n > 5 was Bezout. His starting point was that a two-term equation is 

solvable by radicals. (At the time, this was not an established fact because 

the roots of unity had not yet been expressed in terms of radicals.) He looked 

for substitutions that would transform an arbitrary nth degree equation into 

a two-term equation. Like his predecessors, he found new ways of solving 

cubic and quartic equations, but for a quintic he obtained “frightful formulas” 

that led nowhere. 

A turning point in the history of the solution of equations by radicals was 

the appearance in 1770-1771 of Lagrange’s famous memoir Reflections on the 

Algebraic Solution of Equations (Reflexions sur la resolution algebrique des 

equations). It is partly a historico-critical essay. In the first two parts Lagrange 

analyzes all methods of solution of cubic and quartic equations invented up to 
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his time and shows why none of them is applicable to the general quintic. In 

the third part he analyzes some classes of solvable equations of higher degree 

(which we would now characterize as equations with cyclic groups). Finally, 

in the fourth part, Lagrange makes theoretical deductions based on the whole 

of the investigated material and concludes that all existing methods reduce to 

the construction of lower-degree auxiliary equations (resolvents) whose roots 

are rational functions of the roots of the initial equation. These generalities 

call for clarification. 

Consider the equation 

f(x) — xn + aixn~l H-+ an_ix + an = 0 (15) 

with literal coefficients a\,...,an and roots x\, X2, ■ ■ ■, xn. Let y = 

<p(xi,... ,xn) be a rational function of the roots. If this function is invari¬ 

ant under all permutations of the roots (equivalently, under the action of the 

symmetric group Sn) then, as Lagrange shows, it is rationally expressible in 

terms of the coefficients of equation (15); this is Euler’s theorem A. Now 

suppose that under all permutations of the roots y = <p(xi,... ,xn) takes on 

k different values 2/i, J/2, • - -, 2/fc- Lagrange shows that in that case y satis¬ 

fies an equation of degree k whose coefficients are rationally expressible in 

terms of the coefficients of the initial equation (Euler’s theorem B.). Indeed, 

consider the expression 

{y-yi) ■ ■ ■ (y~Vk) = yk - (yi h-\-yk)yk~x h-h(-i)kyi • ■ -yk = o. 

Since, as is easy to see, its coefficients are symmetric functions of the roots of 

equation (15), they are rationally expressible in terms of ai,..., an. In general, 

k = n!, but sometimes one can find functions y = ip(x\,... ,xn) that take 

on k < n values under the action of Sn. Thus, for example, regardless of the 

value of n, the function 

n 

. n (xi- xj) 

i<j 

takes on just two values. 

Our argument shows that the degree k of the auxiliary equation depends 

not on the form of the function y = <p{x\,... ,xn) but only on the number 

of values it takes on under the action of Sn. If H is the set of elements of 

Sn that leave </? invariant, then H is a subgroup of Sn (the identity of Sn 

is in H; if h, cr e H then ha G H; finally, if h G H, then h-1 G H) and 

the number of different values taken on by ip is equal to the index of H in 
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Sn. The latter follows from the coset decomposition of Sn with respect to the 

subgroup H: 

Sn — H (JiH (Jk—iH, (7i H, i — 1,..., k 1. 

Lagrange obtained this theorem in a similar way. It implies that the order 

of a subgroup is a divisor of the order of the group, a result later named after 

Lagrange. 

Lagrange calls two functions ip(xi,... ,xn) and ip(xi,... ,xn) of the 

roots of an equation similar if all permutations of the roots that leave <p 

invariant also leave ip invariant and conversely. Of course, this set H of 

“joint symmetries” of p and ip is a subgroup of Sn (we say that the two 

functions belong to the same subgroup H of Sn). He shows that similar 

functions are rationally expressible in terms of one another and of the coef¬ 

ficients of the equation. In the language of field theory this means that two 

functions that belong to the same subgroup lie in the same field. Later, this 

correspondence between the subgroups of the group of permutations of the 

roots of an equation and the subfields of the splitting field of a polynomial 

f(x) : K = k(xi,... ,xn) occupied a key position in the investigations of 

Gauss and in the theory of Galois. 

Lagrange’s analysis led him to the following conclusion: “These ob¬ 

servations give, if I am not mistaken, the true principles of the solution of 

equations.. .all is reduced, as we see, to a kind of calculus of combinations, 

by which one finds a priori the results that one might expect” (J. L. Lagrange, 

Oeuvres: Vol. 1-14, Paris, 1867-1892. Vol. 4, p. 403). 

Thus Lagrange must be given credit for the idea that the solution of an 

equation by radicals depends on the group of permutations of its roots and on 

the subgroups of that group. The idea of “similar” functions brought Lagrange 

to the consideration of the simplest functions of the roots, for example, 

t = xi + ax2 + a2x3 -I--1- an~1xn, 

where x\,... ,xn are the roots of the initial equation and an = l,a / 1. 

The function t is called the Lagrange resolvent. It is easy to see that 6 — tn 

is invariant under the action of a subgroup H of cyclic permutations. If the 

group of an equation is a cyclic subgroup of permutations (as in the case of 

xn — 1 = 0, or of xn — A = 0), then the equation can be solved by means of 

this resolvent. But if the order of the group of an equation is nl, then 9 will 

take on n\/n = (n — 1)! different values. For n = 3 the number of different 

values is two, which is why a cubic equation is solvable by radicals. But if 
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n — 5, then 0 will take on 5!/5 = 4! = 24 different values, i.e., it will satisfy 

an equation of degree 24. 

Next Lagrange considered a more extensive group of permutations of the 

roots of an equation, namely permutations of the form Xk —► xak+b, where 

b is an arbitrary integer, a is an integer relatively prime to n, and ak + b is 

taken mod n. The order of this group is n(n — 1) if n is a prime and rup{n) 

otherwise; here </?(n) is the Euler function (it denotes the number of positive 

integers less than n and relatively prime to n). When n is a prime, this is 

the one-dimensional linear affine group modulo n, which generalizes the case 

n = 5 mentioned earlier. Under the action of this group, 6 takes on n — 1 

different values. This means that any symmetric function of 0i, 62,..., 0n_1 

is invariant under the permutations of this group. Let ip be such a function. 

Under the action of Sn, ip will take on n\/n(n — 1) = (n — 2)! different 

values, i.e., it will satisfy an equation of degree (n — 2)!. 

This means that a cubic can be reduced to a linear equation and a quintic 

to an equation of degree six, i.e., in the general case of a quintic we are not 

led to a solution by radicals. 

Lagrange arrived at the conclusion that “It is very doubtful that the 

methods just discussed can give a complete solution of the quintic equation, 

and, all the more so, of equations of higher degrees” (ibidem, Vol. 5, p. 355). 

We now use the Lagrange resolvent to give a solution of the cubic equa¬ 

tion 

y3 +py + q- 

Let yi,y2, V3 be the roots of this equation (jq + 2/2 + 2/3 = 0). Let 

t = yi+ay2 + a2y3, where a3 = 1, «/l, 

and let 

9 = t3 = (yi + ay2 + a2y3)3. 

Under the cyclic permutation y^ —> yk+i, t is multiplied by a2, so that 9 

remains unchanged. The cyclic subgroup H of S3, generated by yk —»• 2/fc+i, 

has index 2. Hence 9 takes on two different values: 

0i = (t/i + ay2 + Oi2y3)3\ 92 = (y\ + ay3 + a2y2)3. 

Now 0i02 = — 27p3 and 9\ + 02 = 27<?. This means that 0i and 02 can be 

determined from a quadratic equation with rational coefficients. Since 

2/i + ay2 + c?y3 = u 
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V\ + oty3 + oi2y2 = \f02, 

V\ + V2 + V3 = 0, 

it follows that 

3t/i = \/0i + 3j/2 = 0,2 x/^i" + a 3j/3 — a {/^i” + ar \/02- 

In his Memoir on the Solution of Equations Vandermonde arrived at 

analogous (though less general) conclusions at almost the same time as La¬ 

grange. In this paper he also tried to express the roots of xn — 1 = 0 by 

radicals but was unable to go beyond the value n = 11. His very interesting 

findings had no effect on the evolution of algebra. His paper was “noticed" 

and commented on only in the 20th century. 

6. Proof of the unsolvability of the 

general quintic by radicals 

Thus, according to Lagrange, the problem of solving an equation by radicals 

requires knowledge of the subgroups of the group G of permutations of its 

roots. If the degree of the equation is n and G contains a subgroup of index 

k <n, then the solution of the equation can be reduced to the solution of an 

equation of degree k. 

Lagrange could not claim that the general quintic is definitely not solv¬ 

able by radicals because 1) he did not know that the symmetric group S5 

has no subgroups of index between 2 and 5, and because 2) he had no proof 

of the fact that every intermediate radical in the solution of an equation is a 

rational function of its roots. 

After Lagrange, investigations of the problem of solvability of an equa¬ 

tion by radicals followed one of two routes: 

1. Investigation of equations with arbitrary literal coefficients whose (Ga¬ 

lois) group is the symmetric group Sn. 

2. Investigation of equations with numerical coefficients, finding classes 

of equations of arbitrary degree that are solvable by radicals, and finding 

equations with prescribed coefficients that are solvable by radicals. 

Paolo Ruffini (1765-1822) and Niels Henrik Abel (1802-1829) followed 

the first of these routes. In 1799 Ruffini published a proof of unsolvability 

by radicals of the general quintic. He used permutations 
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as well as products of permutations. In his proof Ruffini assumed that all 

intermediate radicals in an expression for a root of an equation are rational 

functions of the roots of the initial equation. This was a gap he was unable 

to fill. 

When he was still a student, Abel produced a “proof’ of the solvability 

by radicals of the general quintic. He spotted the error himself. In 1824 

he published a short proof of the unsolvability by radicals of the general 

quintic and in 1824 a complete proof. This proof appeared in the first issue 

of Crelle’s Journal (Journal fur die reine und angewandte Mathematik). Abel 

proved that if a quintic equation is solvable by radicals, then its roots have 

the form found by Euler (see §5, Chapter V, formula (14)). He also showed 

that all intermediate radicals are rational functions of the roots of the initial 

equation.4 In his proof Abel used Cauchy’s theorem that for n > 5, Sn 

has no subgroups of index > 2 and < p, where p is the largest prime not 

exceeding n. The group Sn always has a subgroup of index 2, namely the 

alternating subgroup An of even permutations. That is why one can always 

find a function of the roots that takes on just two values: 

n 

n (xi-xj). 

i<j 

In the next chapter we discuss the second route, far more complex than 

the first and rich in new ideas. 

Editor’s notes 

1 There is some awkwardness here because the meaning of x1,..., xn in 

Theorems A and B above is not clear. As stated, these theorems are valid 

when aq,..., xn are independent variables. Yet in Euler’s argument for n = 4, 

a, /3,7 and 6 are roots of an equation with real coefficients. To see how this 

causes problems, note that if we regard a, (3, 7 and 6 as variables, then the 

product pqr = (a + (3) (a + 7) (a + 6) is not invariant under all permutations, 

yet it is invariant if a, /3, 7 and <5 are regarded as roots of equation (3). Gauss 

was careful to distinguish between these two cases in his second proof of 

the fundamental theorem of algebra, though the complete resolution of this 

confusion came only after the emergence of Galois theory. 

2 The following may be of use. In Gauss’ second proof (late 1815) of the Fun¬ 

damental Theorem of Algebra, the congruences modulo polynomials are only 

implicit in the argument. In 1818 such congruences appear more explicitly 

in Gauss’ sixth proof of Quadratic Reciprocity. This proof is a modification 
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of an earlier proof which uses Gauss sums similar to the periods defined 

in 1 of Chapter VII. In the sixth proof, he replaces Gauss sums with the 
n — 2 

polynomial x — x9 + ■■■ — x9 ", where n is an odd prime and g is a primi¬ 

tive root modulo n — 1. Gauss considers this and other polynomials modulo 

X = xn_1 + •■■-)- x 4- 1, which in effect means that x plays the role of a 

primitive n-th root of unity. As explained above, Cauchy used this idea in 

1847 when he represented a + bi as a + bx modulo x2 +1, and the culmination 

of this line of thought came with Kronecker’s work in 1880-1881. Kronecker 

mentions Gauss’ 1815 proof as a source of inspiration. 

3 By Galois theory, the (Galois) group of an irreducible quintic is one of five 

groups: S5, A5, the cyclic group of order 5, the dihedral group of order 10, or 

the group of order 20 given by the transformations k —>■ ak + b, where a, b, 

k are integers, a is relatively prime to 5, and k and ak + b are taken modulo 

5. This is the one-dimensional affine linear group modulo 5. The last three 

groups are solvable. 

4 Abel’s proof of this assertion is not complete. The article ”On the nonsolv¬ 

ability of the general polynomial” by R. Ayoub (Amer. Math. Monthly, vol. 

89, 1982, 397^101) gives a modern version of Abel’s argument and explains 

(on p. 399) where the gap occurs. 



CHAPTER 7 

The theory of algebraic equations 
in the 19th century 

1. Cyclotomic equations 

In the 19th century, algebra, like other areas of mathematics (such as geom¬ 

etry and analysis), underwent a radical transformation. One type of algebraic 

thinking was replaced by another. A turning point in the evolution of algebra 

was Galois theory whose prototype was Gauss’ theory of cyclotomic equa¬ 

tions. This theory served as a model for the investigations of Abel, Galois, 

and other 19th-century algebraists. 

While still a student in Gottingen young Gauss began to study the prob¬ 

lem of ruler and compass construction of regular polygons. The problem had 

a long history. The geometers of antiquity had constructed regular n-gons for 

n — 3, 3 ■ 2k, 4, 4 • 2fc, 5, and 5 • 2fc. What remained an open problem was the 

possibility of ruler and compass construction of a regular 7-gon or a regular 

11-gon. 

Gauss reduced the problem of ruler and compass construction of regular 

n-gons to the problem of solution of the equation 

=xn-l+xn-2 + ... + a; + 1 = 0j (1) 
x — 1 

whose roots Xk = e^k = cos ^ + isin ^ are located at the vertices of 

a regular n-gon. Equation (1) came to be known as the cyclotomic equation. 

By investigating this equation Gauss discovered that for n = 17 its 

roots can be expressed in terms of quadratic radicals and can therefore be 

constructed by ruler and compass. As a result of this discovery Gauss, who 

until then was torn between philology and mathematics, decided to study 

mathematics. From then on he kept a “Mathematical diary”. The first entry in 

this diary, dated 30 March, 1796, was: “The principles underlying the division 

of a circle, namely its geometric division into seventeen parts.” 

109 
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Gauss’ diary contains 146 entries. The dates of 102 entries fall between 

1796 and 1800. Thus, as in the case of most mathematicians, his fundamental 

ideas came to him in his youth. 

Gauss presented a complete account of the theory of cyclotomic equations 

in the last (the seventh) chapter of his famous Arithmetical Investigations 

(Disquisitiones arithmeticae) of 1801. This work immediately elevated him to 

the level of a leading mathematician of his time. He was soon to be referred 

to as “princeps mathematicorum”. 

Although Gauss had results for other types of of transcendental functions 

(such as the lemniscatic functions), he limited his discussion in Disquisitiones 

to the case of circular functions “both for the sake of brevity and in order 

that the new principles of this theory may be more easily understood” (Gauss, 

Disquisitiones, Art. 335, p. 407 of A. A. Clarke’s translation, Springer, 1986). 

This implies that Gauss knew the solution of the general case as well. We 

will return to this matter later. 

In his study of the equation X = 0 Gauss assumes that n is prime. He 

shows that for such n equation (1) is irreducible, i.e., cannot be written as 

a product of two factors with rational integral coefficients. He describes his 

subsequent objective as follows: “We will show that if the number n — 1 is 

resolved in any way into integral factors a, (3, 7, etc. (we can assume each 

of them is prime), X can be resolved into a factors of degree (n — l)/a 

with coefficients determined by an equation of degree a; each of these will 

be resolved into (3 others of degree (n - l)/af3 with the aid of an equation 

of degree (3, etc.” (ibidem. Art. 342, p. 414). Thus if n - 1 = a/3 ■ ■ ■ v, then 

the solution of the equation A" = 0 is reducible to the successive solution 

of equations of degree a, (3,... ,v. It follows that a regular n-gon can be 

constructed by ruler and compass if n — 1 = 2k, or n = 2k + 1. But 2k + 1 

can be a prime only if k = 2s. This implies that if a prime p is of the 

form 22 +1, then the corresponding p-gon can be constructed by ruler and 

compass. For S' = 0 and 1 we get p = 3 and 5, i.e., the regular polygons 

constructed by the Pythagoreans. For S' = 2 and 3 we get p = 17 and 257, i.e., 

the next two regular polygons (with a prime number of angles) constructible 

by ruler and compass. 

Numbers of the form 22 +1 are called Fermat numbers. Fermat thought 

that all such numbers are primes but Euler showed that for S' = 5 we get a 

composite number. The question of whether the number of Fermat primes is 

finite or infinite remains open. 

What were Gauss’ “completely novel principles”? To answer this ques¬ 

tion we must look at the way cyclotomic equations were solved before Gauss. 
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We consider Euler’s method of solution of equation (1) for n = 7: 

(x7 - l)/(x - 1) = X6 + x5 H-b 1 = 0. (2) 

If we divide this equation by x3 and make the substitution 

y = x + l/x, (3) 

then we obtain the equation 

y3 + y2 - 2y - 1 = 0. (4) 

This equation has three roots 61,62, and 63. Substituting them successively 

in (3) we obtain three quadratic equations: 

x2 — &iX + 1, i — 1,2,3. (3') 

By solving these equations we obtain the roots of equation (3). In his memoir 

of 1771 (referred to in the previous chapter) Vandermonde used this method 

to solve equation (1) for the value n = 11 but was unable to go beyond it. To 

go further one had to devise a method of constructing functions of the roots 

of equation (1) that would, as a result of all permutations of these roots, take 

on just a different values for each a that divides n — 1. 

We will now try to obtain Euler’s results from general considerations. 

The roots of x‘ — 1 = 0 can be written as r,r2,... ,r6,r' = 1. We have 

n — 1 = 6 = 2-3. The substitution (3) can be written as 

y = r + l/r = r + r6. 

The function y is invariant under the permutations of the subgroup H = 

{r —> r,r —► r6} and takes on the three values 

6*i = r + r6,62 = r2 + r5,63 = r3 + r4 

under the permutations of the group G = {r —> rk, k = 1,..., 6}. By a 

Galois-theory generalization of Lagrange’s theorem, 61,62, and d3 are roots 

of a cubic equation with rational coefficients. The group of permutations of 

this equation is G/H. To the chain of groups G D H D E there corresponds 

the chain of fields 

QcLcK, 

where L has degree 3 over Q, and K, the splitting field of equation (2), has 

degree 2 over L. 
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We see that the problem reduces to finding a rational function of the 

roots of equation (2) that takes on just three values under all permutations of 

these roots. 

But how is one to proceed in the general case? How is one to construct 

rational functions of the roots of equation (1) that would take on just a 

different values for any divisor a of n — 1? 

Here is what Gauss did. His first step was to rewrite the set Q = 

{r, r2,..., rn~1} of roots of equation (1). Specifically, he picked a primitive 

root g mod n (i.e., gn~1 = 1 (mod n) but gx ^ 1 (mod n) if A < n — 1; 

the existence of a primitive root mod any prime was first proved by Gauss) 

and wrote f? as 

rXg, rXg\..., rXgn~\ (5) 

where A is any integer not divisible by n. Indeed, as Gauss notes, rXgM and 

rXgV “will be identical or different according as fi and u are congruent or 

noncongruent modulo n — 1” (ibidem, Art. 343, p. 415). Thus, apart from 

order, the sequence (5) represents the set Q. 

The representation (5) shows that the group G of permutations of the 

roots of equation (1) (or the Galois group of this equation) is cyclic of order 

n — l and its generating permutation is r r9. Furthermore, this representa¬ 

tion establishes an isomorphism between G and the group of residue classes 

mod {n — 1). 

If n — 1 = ef, then Gauss constructs the function 

(/, A) = rx + rXgB + rXg2e H-b rXg‘U (A,n) = l, (6) 

of the roots that takes on exactly e different values under the action of G. 

This function, which Gauss called an /-term period, is invariant under the 

action of the subgroup H of order / generated by the permutation r —> rg£. 

Essentially, this shows that for every divisor / of n — 1, the order of the cyclic 

group G, there is a cyclic subgroup of order /. Under the action of G the 

period (6) takes on exactly e different values: 

(/,i), (/.a). (/.s2), — {/,i/'-1), 

where (/, gM) = + • • ■ + r9^+ U ). By Lagrange’s theorem, the 

/-term periods are roots of an equation of degree e with rational coefficients: 

<Pe{v) = 0- (7) 

It is easy to see that the Galois group of this equation is the cyclic group 

G/H. To find the roots of equation (1) one must solve e equations of de- 
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gree / whose coefficients are rationally expressible in terms of the roots of 

equation (7). 

Gauss shows that the product of two /-term periods is expressible as 

the sum of /-term periods, and that if p = (/, A) is an /-term period with 

(A,n) = 1, then all remaining /-term periods can be represented in the form 

a + bp + cp2 + • • • + mpe~1, 

where a, b, c,..., m are rational; in other words, the /-term period p generates 

a field L which is normal (this term is explained in the penultimate paragraph 

of the next section; of course, Gauss did not use these terms). It is easy to 

see that 

Q C L C K, 

where K is the splitting field of equation (1). The degree of L over Q is e 

and the degree of K over L is /. 

Gauss takes for e the smallest prime divisor of n — 1, call it a, and 

obtains periods of maximal length / = (n — l)/a. Then he factors /. If (3 

is the least prime divisor of /, then every /-term period can be written as a 

sum of (3 periods of length f//3, and so on. We reproduce Gauss’ table of 

periods for n — 19:1 

(2,1)-. [1], [13] 

(6,1) (2,8).. •[8], [11] 

1(2,7).. [7], [12] 

(2,2).. •[2], [17] 

(6,2) (2,16). . • [3], [16] 

1(2,14). • • [5], [14] 

(2,4).. .[4], [16] 

(6,3) (2,13). ..[6], [13] 

(2,9).. .[9], [10] 

This procedure yields a sequence 

G D Hx D H2 D ■ ■ • D Hu D E 

of subgroups of G. Their orders are (n - l)/a,(n - l)/(«/?),..., r re¬ 

spectively, and the orders of the factor groups G/Hi, H\/H2,. ■ ■, Hu are 

a, (3,..., r respectively. The field K can be obtained from Q by a sequence 

of extensions 

Q C Lx C C L„ = K, 
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where the degree of Lq over Q is a, that of L2 over Li is (3, and so on. 

Gauss shows that all intermediate equations (pa = 0, (fp = 0-- ipu = 0 are 

solvable by radicals. Their (Galois) groups are cyclic of prime order. Gauss 

obtains the solutions of these equations by means of Lagrange resolvents. 

Later, the kind of correspondence in which the subgroups of a group G 

are associated with the subfields of a field K became fundamental in Galois 

theory, a theory in which the study of the structure of an infinite field K, the 

splitting field of a polynomial fn(x), is reduced to the study of the structure 

of a finite group G, the group of permutations of the roots of the equation. 

As pointed out earlier. Gauss’ theory implies that a sufficient condition 

for a polygon with a prime number n of sides to be constructible with ruler 

and compass is that n - 1 = 2k. At the end of his book Gauss claims that this 

condition is also necessary and that he proved its necessity. But, as he puts 

it, “The limits of the present work exclude this demonstration here” (ibidem, 

Art. 365, p. 459). 

Thus for an equation with a cyclic group of permutations of the roots 

Gauss constructed a theory that later became a model for the investigations 

of Abel and Galois. 

2. Equations with an Abelian group 

Two remarks made by Gauss in his Arithmetical Investigations justify the 

conclusion that he could solve equations not only with a cyclic (Galois) group 

but with an arbitrary commutative group. At the beginning of the Vllth part of 

this book (discussed in the previous section) Gauss writes: "The principles of 

the theory which we are about to present extend far beyond the point to which 

they are developed here. Indeed, they are applicable not only to cyclotomic but 

also to many transcendental functions, for example, to functions that depend 

on the integral f dx/y/l — a:4.” Here Gauss has in mind the division of a 

lemniscate into n equal parts. This problem reduces to an equation of degree 

n2, the permutations of whose roots form a commutative group. Gauss says 

that he intends to investigate this problem in a special essay he is working 

on. This essay was never published, and what has been preserved is Gauss’ 

rough notes. 

Further, Gauss writes that cyclotomic functions can also be “considered 

in full generality”, but as mentioned in §1 he limits his account to the case of 

division of a circle into a prime number of equal parts. In case of a composite 

n the group of the equation is commutative but not necessarily cyclic. Thus 

we can be certain that Gauss extended his methods to the case of equations 
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with a commutative but not necessarily cyclic group. This is confirmed by 

many entries in his diary recently analyzed by O. Neumann. 

Since Gauss never published these insights, it is Abel who must be given 

credit for the discovery of a large group of equations solvable by radicals. 

In 1829 Crelle’s Journal published his Memoir on a Certain Class of Alge¬ 

braically Solvable Equations (Memoire sur une classe particuliere d’equations 

resolubles algebriquement). It is possible that the problem which motivated 

the investigations of both Gauss and Abel was the problem of division of a 

lemniscate into n equal parts.2 

In his paper Abel explicitly introduced the concept of a domain of ra¬ 

tionality (i.e., of the ground field). He defined the domain of rationality with 

respect to quantities ci\,... ,an to be the set of all quantities obtained from 

di-, ■ ■ -, an and from the real (or rational) numbers by applying to them the 

four arithmetical operations. The introduction of this concept was essential 

for all general investigations in the theory of equations. 

Abel’s second important step was his proof of the solvability by radicals 

of a remarkable class of algebraic equations defined by him by the following 

two conditions. 

1. All roots of an equation in this class are rational functions of one of 

them: Xk = 9k(x\). (We now call an equation with this property normal). 

2. If 9k{xi) and 9fxi) are any two roots, then 9k(9i(xi))= 9i(9k(xi)). 

The class of equations singled out by Abel is now called the class of 

normal equations with Abelian Galois group.3 

His manuscript shows that in the last year of his life Abel tried to find 

a general criterion for the solvability by radicals of an arbitrary (polynomial) 

equation with prescribed numerical coefficients. Already in 1826, in a letter 

to his teacher Holmboe dated 16 January, he wrote: “I am trying to solve the 

following problem: find all algebraically solvable equations. I have not yet 

reached this aim, but I gather that things will go well: in the case of equations 

of prime degree there are no major difficulties, but if this number is composite 

then there is hell to pay. I made an application to the quintic and succeeded 

in solving the problem in that case.” Later Abel obtained many important 

theorems which showed that he was on the right track, but his premature 

death prevented him from completing the work. 

3. Galois theory 

The problem of algebraic solution of equations was solved completely by the 

brilliant French mathematician Evariste Galois (1811-1832). His ideas were 
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not appreciated during his short life. Initially the memoirs he submitted to 

the Academy of Sciences were mislaid in the papers of Cauchy and Fourier. 

Finally, they were read by Lacroix and Poisson, neither of whom understood 

them. 

Galois was killed in a duel on 30 May 1832, a few days after his release 

from prison where he ended up as one of the organizers of the Bastille Day 

demonstration that took place on 14 July 1831. The night before the duel 

he wrote a letter to his friend Auguste Chevalier in which he set down his 

fundamental results. In addition to the theory of equations (discussed below) 

they dealt with the general theory of algebraic functions. In this area too Galois 

went far beyond his contemporaries. The well-known French mathematician 

Emile Picard wrote at the end of the 19th century: “There arises the conviction 

that he [Galois] knew the most essential results of the theory of Abelian 

integrals obtained by Riemann 25 years later. We are astounded to see that 

Galois speaks of periods of Abelian integrals.... The theorems are correct” 

(Oeuvres mathematiqu.es d’Evariste Galois, ed. J. Picard, Paris, 1897). 

Toward the end of his letter to Chevalier Galois wrote: “I have often in 

my life dared to advance propositions that I was not sure of; but everything 

I have written here has been in my head for over a year, and it is too much 

in my interest not to deceive myself so that someone could suspect me of 

stating theorems of which I did not have a complete proof.” (What makes 

these words all the more remarkable is that the proofs of the theorems in 

question use the theory of functions of a complex variable in the form given 

to it by Riemann and Weierstrass.) 

The letter concludes with a plea to his friend: “You will publicly beg 

Jacobi or Gauss to give their opinion not of the truth but of the importance 

of the theorems.” (Galois, “Letter to Auguste Chevalier”, in H. Wussing, The 

Genesis of the Abstract Group Concept, MIT Press, 1984, p. 116) 

Galois’ fundamental results on the theory of equations are contained in 

his Memoir on the Conditions for the Solvability of Equations by Radicals 

(completed in January 1831 and published in 1846). This paper was the 

basis of a new style of thinking in algebra. In the words of Kolmogorov, the 

algorithm of formulas was replaced in the 19th century by the algorithm of 

concepts. Galois’ memoir is a perfect illustration of this thought. 

It is not our intention to give an account of Galois theory. What we will 

try to do is give the reader an appreciation of its fundamental ideas. We will 

often use the language of modern mathematics. 
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The problem is to decide whether an equation 

f(x) = xn + axxn~l 4-1- an-Xx + an = 0, (7) 

with given numerical coefficients ai, a2,..., an, is solvable by radicals. 

Galois begins his paper with the introduction of the new concepts of field 

and group. His name for field is domain of rationality. He stresses its major 

importance. He emphasizes that the notions of reducibility and irreducibility 

of an equation make sense only relative to a given domain of rationality. His 

definition follows: 

“One can agree to regard as rational all rational functions of a certain 

number of determined quantities, supposed to be known a priori. For example, 

one can choose a particular root of a whole number and regard as rational all 

rational functions of this radical.... 

With these conventions, we shall call rational any quantity which can 

be expressed as a rational function of the coefficients of the equation and 

of a certain number of adjoined quantities arbitrarily agreed upon.” (Galois, 

Memoir..., in H. M. Edwards, Galois Theory, Springer, 1984, p. 101). 

The adjoint quantities influence the properties of an equation and the 

difficulties associated with it. Thus the equation X = — 0, p prime, 

is irreducible over the field Q of rational numbers, but if one adjoins to Q 

“a root of one of Gauss’ auxiliary equations, this equation decomposes into 

factors” (ibidem, p. 102). 

Then Galois introduces the notion of a group of substitutions (the term 

“group” is due to Galois): “Substitutions are the passage from one permutation 

to another” (ibidem, p. 102). 

He notes that a substitution is independent of the disposition of the letters 

in the initial permutation, and states the fundamental fact that if substitutions 

S and T are in G then so is ST. Then Galois begins to develop his theory. 

As the domain of rationality he takes Q(ai,..., an) = Qo, where Q is the 

field of rational numbers. 

Galois usually adjoins to Qo all necessary roots of unity. Thus the equa¬ 

tion 

xp — a = 0 

becomes solvable by radicals if we adjoin to the domain of rationality one 

radical f/a. 

All equations considered up to the time of Galois were normal (see 

condition 1 above) and most had a solvable Galois group. 
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To obtain a normal equation Galois goes over from equation (7) to a 

certain new equation Fg(y) = 0. Specifically, he considers a rational function 

9 = ciXi + c2x2 H-+ cnxn (8) 

of the roots of equation (7) that takes on nl different values under all possible 

permutations of these roots. The function 9 satisfies an equation Fm(y) = 

0, m = n\, whose coefficients are rationally expressible in terms of the 

coefficients of the initial equation (7). If the polynomial Fm(y) is reducible, 

then one takes its irreducible factor of which 6 is a root. Denote this factor 

by Fg(y). The equation 

Fg(y) = y9 + b\y9~1 4-f bg = 0 (9) 

is called a Galois resolvent. 

Galois shows that equation (9) is normal—i.e., its roots 9k satisfy equa¬ 

tions of the form 9k = rk(9), where 9 stands for 9\ and rk{9) is some rational 

function—and that all roots of equation (7) are rationally expressible in terms 

of 9: xk = ipk{9). 

In other words, the splitting field K = Q0(tci,..., xn) of equation (7) 

can be obtained by the adjunction of a single element 9: K = Qo(0). The 

element 9 is called a primitive element of the field K. 

The question of solvability of equation (7) reduces to the study of the 

structure of the field K. Can this field be obtained by successive adjunction 

of radicals to Q0? Can we construct a chain of fields Li,..., Ls such that 

Li C Q0 ( Py/c), c E Qo, 

L2 Q Lx ( V^), ci E Li, 

K C L5 — Lg-i ( Py/Cs-i), Cs-i E L5_!? 

Galois reduced the problem to the study of the structure of a finite group, 

the group G of automorphisms of the field K that leave the elements of the 

groundfield Q0 fixed. (We are using modern terminology. Galois defined G 

as the set of permutations of the roots of equation (1) that leave unaltered the 

rational relations between the roots.) Since equation (9) is normal, this group 

has order g and consists of the permutations 

9i -0i, 0r 0t -0ff. 

In general, this group is noncommutative (if there are no nontrivial re¬ 

lations between the roots then G = Sn). It is known as the Galois group. If 
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H is a subgroup of G, then, clearly, the elements of K invariant under the 

permutations in H form a subfield L. In general, this subfield is not normal 

(i.e., it is not determined by a normal equation). Galois realized that in order 

to obtain normal equations (and normal subfields associated with them) one 

must take only subgroups H such that the cosets H, gx H,..., gs-iH form 

a group, now known as the factor group G/H. In other words, H must be a 

normal subgroup of G. In his memoir Galois defined a normal subgroup by 

this property but in the letter to Chevalier he defined it by the coincidence of 

the two coset decompositions of G with respect to H\ 

G — H + Hs + Hs' H-; 

G = H + tH + t'H H-. 

He wrote: “Usually these two kinds of decomposition do not coincide. When 

they do, then we say that the decomposition is proper. ... It is easy to see that 

if a group of an equation does not admit any proper decomposition then one 

can transform it all one wants; the groups of the transformed equations will 

always have the same number of permutations” (Galois, “Letter to Auguste 

Chevalier”, in H. Wussing, The Genesis of the Abstract Group Concept, MIT 

Press, 1984, p. 115) 

Thus Galois introduced into group theory two new extremely important 

concepts, namely those of a normal subgroup and of a factor group. 

If H is a normal subgroup of order h and index p and L is the subfield 

of K whose elements are invariant under H, then K D L D Qo and, as 

Galois shows, the degree of L over Q0 is p (the order of the factor group 

G/H) and the degree of K over L is h (the order of H). This is a direct 

generalization of Gauss’ theory of the cyclotomic equation. 

Suppose we can find in G a nested sequence of normal subgroups 

GdHiDH2D---DHsT)E (10) 

such that the factor groups G/Hx, H1/H2,..., Hs have prime orders px, 

p2,... ,ps respectively. This turns out to be a necessary and sufficient con¬ 

dition for K to be obtainable from Q0 by a finite number of extensions 

Qo C Li C L2 C • • • C Ls = K. 

Furthermore, all these extensions are radical extensions: Iq is obtained from 

Qo by adjunction of a root of the equation xVl - a = 0, a G Qo, L2 is 

obtained from Li by adjunction of a root of the equation xP2 - ax = 0, 

ai e Li, and so on. Each of these equations has a cyclic Galois group of 
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prime order and is therefore solvable by radicals (we are assuming that the 

necessary roots of unity have already been adjoined to Qo). 

A group G is called solvable if it has a chain of normal subgroups (10) 

with the specified property. Thus a necessary and sufficient condition for the 

solvability of an equation by radicals is the solvability of its Galois group. 

In this way the investigation of the structure of an infinite field K has been 

reduced to the investigation of the structure of a finite group G. 

Galois concluded with the investigation of equations of prime degree. For 

such equations he proved the following result: For an irreducible equation of 

prime degree p to be solvable by radicals it is necessary and sufficient that 

its group consist of permutations of the form 

Xk ¥ Xak-\-l>i 

where a takes on the values 1, 2,... ,p— 1 and b takes on the values 1, 2,... ,p, 

i.e., the group has order p(p — 1) (of course, the values of ak + b are taken 

mod p). This is the one-dimensional affine linear group modulo p considered 

earlier.4 

We see that in order to obtain a criterion for the solvability of equations 

by radicals Galois constructed a complex chain of interrelated concepts (an 

“algorithm of concepts”): from the given equation it was necessary to go over 

to a normal equation by constructing a primitive element; to make precise the 

concept of a group of permutations; to define the Galois group of the equation; 

to introduce the concepts of a normal subgroup, of a factor group (Galois 

had no name for the last object), and of a solvable group. The fundamental 

question was settled not by transformations and computations but by the 

complex conceptual algorithm just described. 

It is remarkable that in Galois theory groups turn up in the same con¬ 

text in which they turned up later in other theories. The context we have in 

mind is that of the set of invariants of a group. In the case of Galois theory 

the set of invariants of a group forms a field. The idea of a group and its 

invariants permeates all of 19th-century mathematics. Klein’s classification 

of geometries was based on this idea and so was the theory of modular and 

automorphic functions (developed by Klein, Poincare, Fuchs, and others). 

4. The evolution of group theory in the 19th century 

Galois’ letter to Chevalier was published in September 1832 but went un¬ 

noticed. It was only in 1846, i.e., 14 years after his death, that the noted 

French mathematician Liouville collected all of Galois’ papers, including his 
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Memoir on the Solvability of Equations by Radicals, provided them with 

commentaries, and published them in his Journal des mathematiques pures 

et appliquees. This was the beginning of a new phase in the life of Galois the¬ 

ory. As early as 1856, a complete account of the theory was presented in the 

third edition of Serret’s Course of Higher Algebra (the account in the second 

edition of 1854 was incomplete), i.e., it became part of the textbook litera¬ 

ture. By that time, German and English mathematicians, such as Kummer, 

Kronecker, and Cayley, were familiar with the theory. 

When Galois’ papers were first published many theorems of group theory 

were already known. We already mentioned Lagrange’s theorem. We also note 

the group-theoretic character of many of Euler’s proofs in number theory, such 

as Fermat's little theorem and its generalizations. 

In his Arithmetical Investigations Gauss introduced an operation of com¬ 

position of binary quadratic forms and thereby extended composition to ob¬ 

jects very different from numbers. 

We recall that a binary quadratic form is an expression of the form 

f(x,y) = ax2 + 2bxy + cy2, (11) 

where a,b,c € Z. Gauss called the number D = b2 —ac the determinant of the 

form. The fundamental question considered by Fermat, Euler, and Lagrange 

was the determination of the range of the form (11), i.e., of the set M of 

integers N with the property that for every N E M there are integers x0, y0 

such that 

N = axl + 2&x0?/o + cyl- 

Some early relevant results were obtained by Fermat. Thus Fermat 

claimed that the range of x2 + y2 includes all primes of the form An + 1 

and no integer of the form 4n + 3, and that the range of x2 + 2y2 includes 

all primes of the form 8n + 1 and 8n + 3 and none of the form 8n + 5 and 

8n + 7. He also obtained analogous criteria for the representability of primes 

by the forms x2 — 2y2 and x2 + 3y2. 

Lagrange noted that if N is representable by a form (11) then it is also 

representable by the form f, obtained from (11) by a substitution invertible 

over the integers, i.e., a substitution 

x = ax' + By', 
(12) 

V = ix + by , 

where a,P,y,b are integers and ab — ft7 = ±1. In that case, there exists a 

substitution, inverse to (12), that transforms f into /. Gauss called forms / 
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and g related by a unimodular substitution (12) (i.e., one with a8 - /?7 — 1) 

strictly equivalent, / ~ g. 
As Gauss showed, the determinant D is invariant under a unimodu¬ 

lar transformation. Forms with a given determinant belong to finitely many 

classes, a result first shown by Lagrange. 

Gauss introduced a composition that associated with two given forms f\ 

and f‘2 with given determinant a third form fo with the same determinant 

/3 = /i © h (13) 

and extended this operation to classes of forms. In other words, he showed 

that if /i ~ gi, fi ~ 92, and g3 = gi © 92, then <73 ~ f3. This meant that 

one could speak of composition of classes of strictly equivalent forms: 

K © L = M. 

This was the first example of extension of operations defined for a set of 

objects to a quotient set. Gauss regarded a class of forms as a single object. 

He called the class E containing the form x2 — Dy2 principal and showed 

that it played the role of a unit: 

K®E = E@K = K, 

where K is an arbitrary class. He also showed that the composition of classes 

is associative and commutative and that the equation 

K ®X = L 

has a unique solution.5 

Gauss remarked that the operation of composition of classes could be 

denoted by the + symbol, i.e., he regarded it as analogous to an arithmetical 

operation. It would have been more natural to regard it as an analogue of 

multiplication rather than addition. According to Dieudonne, Gauss regarded 

the choice of a symbol as insignificant, and what he viewed as important was 

the idea of a law of composition. 

Gauss’ proofs are completely general. At no point does he make use of 

a special property of a class of forms. This being so, his argument could be 

applied without modification to a law of composition of objects of an arbitrary 

nature. He notes that the group of classes need not be cyclic: “we observe 

that, since in this case [the case discussed earlier] one base is insufficient, we 

must take two or more classes and from their multiplication and composition 

produce all the rest" [Art. 306, IX of Disquisitiones], From a subsequent part 
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of the Disquisitiones it becomes clear that (in modern terms) Gauss claims 

that the commutative group of classes of forms is a direct sum of two (or 

more) cyclic groups.6 

Another research stream was connected with the study of groups of 

permutations. Already Lagrange showed that the order of a subgroup H of 

the symmetric group Sn divides n!. In 1815 there appeared Cauchy’s “Memoir 

sur le nombres de valeurs qu’une fonction peut acquerir lorsqu’on y permute 

de toutes les manieres possible les quantites qu’elle renferme” (/. Ec. Polyt. 

1815) in which he investigated the number of values taken on by a rational 

function f(x±,x2,..., xn) under all permutations of its arguments. To answer 

this question he embarked on a systematic construction of a theory of groups 

of permutations. This was the first time such groups became an independent 

object of study. He wrote a permutation as ^ ^ ^ c "' M, or briefly 

of permutations 

^. This paper marked the beginning 

of the evolution of the theory of groups (a term not used by Cauchy) of 

permutations. 

Cauchy’s papers contain the first general theorems on groups of permuta¬ 

tions. In particular, he proved that if a nonsymmetric function of n quantities 

takes on fewer different values than the largest prime not exceeding n then it 

takes on exactly two different values. In 1845 Bertrand showed that for n > 4 

the group Sn has no subgroup of index > 2 and < n. 

Between 1844 and 1846 Cauchy returned to the study of groups of per¬ 

mutations and proved the following deep result: If the order of a group of 

permutations is divisible by a prime p then the group contains a subgroup of 

order p. 

In 1872 Sylow (1832-1918) generalized Cauchy’s result by showing that 

if the order of a group is divisible by pk then the group contains a subgroup 

of order pk. 

As mentioned earlier, a turning point in the evolution of group theory was 

the publication of Galois’ papers (1846). Thus Camille Jordan (1838-1922) 

began his investigations by providing commentaries on Galois’ frequently 

very fragmentary papers. His famous Traite des substitutions et des equations 

algebriques (Paris, 1870) was, in a sense, a summary. It contained the first 

as , and introduced a composition 

as well as the identity permutation 
A 

A 
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complete and systematic account of the theory of groups of substitutions as 

well as applications to geometry, the theory of elliptic functions, and algebra. 

Jordan did not give a general definition of a group. He wrote: “We will 

say that a system of permutations forms a group or a sheaf (faisceau) if the 

product of any two permutations in the system belongs to the system”, i.e., 

he defined a semigroup. But using the example of a group of permutations 

he essentially developed the general theory of finite groups. He explicitly 

introduced the notions of a normal subgroup, (which he called a “singular 

subgroup”), of a simple group, and of a homomorphism (a “meriedric iso¬ 

morphism”) and isomorphism (a “holoedric isomorphism”) of groups. Jordan 

showed that the cosets with respect to a normal subgroup form a group, which 

he called in his Treatise a group “modulo a singular subgroup” and later (in 

1873) a factor group. Finally, he introduced the notion of a composition series 

G D Gi D ■ ■ ■ D Gm D e, 

where Gl+1 is normal in G, and the factor groups Gx/Gl+\ are of prime order. 

The concept of a composition series is of great importance in Galois theory. 

Jordan showed that two composition series of the same group always have 

the same number of terms and that (apart from order) the groups Gi/Gi+i 

in the two series have the same number of elements. In 1889 Holder showed 

that (apart from order) the groups Gj/Gj+i in the two series are isomorphic. 

It was Jordan who called commutative groups Abelian. 

In a special chapter of his Treatise Jordan began to consider the repre¬ 

sentation of groups of permutations by matrices, more specifically, by linear 

subgroups of invertible square n x n matrices with elements in the fields 

F9,R, or C. The evolution of this theory took place at the end of the 19th 

and in the 20th centuries. 

Already in 1854, also stimulated by Galois’ papers, Arthur Cayley (1821- 

1895) arrived at the thought that the nature of the group elements is irrelevant 

to the study of the properties of groups. He was the first to introduce the 

notion of an abstract group. He did this in the two-part paper “On the Theory 

of Groups, as Depending on the Symbolic Equation ©n = 1” {The Collected 

Mathematical Papers, 1854, Vol. 2, pp. 123-132). He did not require the 

group operation to be commutative but assumed that it was associative 

(ap)'y = a(P 7). 

He also stipulated that multiplication of all group elements by a group element 

must always yield all group elements. This implies the unique solvability of 

the equations ax = (5 and ya = (3 for each pair of group elements a, (3. 
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Cayley clarified his definition by means of the group multiplication table 

1 a (3 7 

1 1 a (3 7 

a a a2 Pa 7 a 

P (3 a/3 P2 iP 

7 7 Of) Pi 72 

Here each row and column contains all group elements 1, a, /3,... 

Cayley introduced the term group in honor of Galois. 

The groups given by Cayley as examples in his early papers were always 

finite. He prescribed them by multiplication tables and by generators and 

defining relations. He showed that there are two different (we would say 

non isomorphic) groups of order 4, two of order 6, and 5 of order 8. He also 

showed that the only group of prime order p is the cyclic group 

{1, a, a2,..., ap_1}. 

Cayley’s abstract formulation of the group concept was a reflection of the 

influence of the English school of “symbolical algebra” that came into being 

in the 1830s. It included such mathematicians as Boole and Hamilton. We 

will discuss the work of this school in Chapter IX. 

Cayley’s ideas did not meet with an enthusiastic reception. We saw that 

even in 1870 Jordan invariably operated with groups of permutations. What 

seems to have helped Cayley’s approach was his paper on groups published 

in 1878. A few years later (in 1882) there appeared Walter von Dyck’s paper 

“Investigations on the Theory of Groups”, in which he introduced the notion 

of a free group, whose elements are “words” ArBkCl... in a number of 

symbols A, B,C,.... 

The generally accepted axiomatics of group theory were introduced by 

Heinrich Weber in the first volume (1894) of his three-volume Course of 

Algebra. For a long time this work served as the standard reference for all 

mathematicians interested in algebra. 

5. The victorious “march” of group theory 

We have seen how the group concept, one of the most important concepts 

of modern mathematics, emerged gradually from investigations in algebra 
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and number theory. The extraordinary progress of algebra, analysis, geometry, 

mechanics, and theoretical physics is due to the idea of a group and its 

associated set of invariants. In what follows, we note some of the stages of 

the victorious “march” of group theory. Needless to say, we limit ourselves 

to listing facts. 

1. In 1870 Jordan classified all finite rotation groups in three-dimensional 

space. He constructed for linear differential equations a theory analogous to 

Galois theory, in which the role of the Galois group of an algebraic equation is 

played by the monodromy group of the differential equation (1871 and later). 

This theory was completed by Emile Picard. 

2. In his Erlanger Programm of 1872 Felix Klein applied groups to the 

classification of geometries. 

3. In the 1880s Poincare introduced into topology the notion of a funda¬ 

mental group. Then Poincare, P. S. Aleksandrov, and Kolmogorov introduced 

homology groups. 

4. In the 1880s Poincare introduced groups into analysis for the study of 

one of the most important classes of functions, namely automorphic functions. 

Similar investigations were carried out by F. Klein and Hermann A. Schwarz. 

5. Lie and Klein began to develop the theory of continuous groups, whose 

role in the theory of partial differential equations is analogous to that of groups 

of permutations in Galois theory. 

6. Already Jordan began to consider the theory of representations of 

groups by matrices. This idea turned out to be particularly fruitful for the 

further evolution of algebra. A general theory of group representations was 

constructed in the 1890s by Fedor E. Molin (better known in the West as 

Theodor Molien) and Georg Frobenius. 

7. Harmonic analysis, i.e., differential and integral calculus on topolog¬ 

ical groups, was first developed by Hermann Weyl, but its principal results 

are due to L. S. Pontryagin. 

Soon groups entered physics. Here the first step was due to the crystal- 

lographers E. S. Fedorov (1853-1919) and A. M. Schoenflies (1853-1928). 

In 1890 Fedorov used groups to solve the problem of classification of regular 

systems of points in space (crystals). Schoenflies solved the same problem 

independently of Fedorov at roughly the same time. It turned out that there 

are 17 Fedorov groups in the plane and 230 Fedorov groups in space. Their 

detailed classification would have been impossible without the use of group 

theory. 

Group theory plays a crucial role in quantum physics. Wolfgang Pauli, 

one of the creators of quantum physics, wrote that the ideas of group theory 
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belong to “the most powerful instruments of modern physics”, and that, in 

his view, their fruitfulness is “far from having been exhausted” (W. Pauli, 

Collected Scientific Papers, ed. R. Kronig and V. F. Weisskopf, 2 vols., Inter¬ 

science, 1964). The subsequent evolution of physics brought with it a splendid 

confirmation of Pauli’s words. 

Editor’s notes 

1 In this table Gauss uses [A] to denote rA, and the entry (2,1)... [1], [18] 

means that [1] and [18] are roots of the quadratic equation a;2 —(2, l)x+l = 0. 

2 A strong case can be made that Abel was motivated by the lemniscate. 

In his 1829 Memoir cited in the text, Abel explains that his theory applies 

to the cyclotomic equation, and then goes on to say: “The same property 

pertains to a certain class of equations which I obtained by the theory of 

elliptic functions.” This refers to the equations satisfied by division points of 

an elliptic curve, which in the case of a curve with complex multiplication 

give an Abelian extension. It was Abel who discovered this in his great paper 

“Recherches sur les fonctions elliptiques” (Crelle, 1827-1828). One of the 

high points of this paper is his treatment of the question of when one can 

divide the lemniscate into n equal arcs using ruler and compass. He shows 

that one can do this for the same n’s as for the circle. Also, in his 1829 

Memoir, he says: “After having developed this theory in general, I will apply 

it to circular and elliptic functions.” So it is clear that elliptic functions played 

a crucial role in Abel’s 1829 Memoir. 

3 In 1853, Kronecker gave the name “Abelian equation” to the types of 

equations Abel introduced here, and then, in 1870, Jordan used the term 

“Abelian group” for the Galois group of an Abelian equation. Thus we use 

the term “Abelian” for commutative groups because of Galois theory and (see 

the previous comment) elliptic functions! 

4 To understand the structure of this group, note that the permutations Xk —> 

Xk+b form a cyclic normal subgroup, and the quotient is cyclic in view of the 

existence of a primitive root. In general, a group is called metacyclic if it has 

a cyclic normal subgroup with a cyclic quotient, and every metacyclic group 

is clearly solvable. Thus the one-dimensional affine linear group modulo p is 

metacyclic and hence solvable. 

5 The last four paragraphs call for comments. 

Ad equivalence: According to Gauss, two forms related by (12) are “equiva¬ 

lent” when afi — (37 = ±1 and (as already noted) “strictly equivalent” when 
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it is 1. He called the classes of forms associated with these two cases “equiv¬ 

alence classes” and “strict equivalence classes”. This example gave rise to 

the general notion of equivalence class. 

Ad composition: Gauss defined both “composition” and “direct composition”. 

The former is a generalization of formulas such as (15) on p. 9 and (*) 

on p. 33. The latter is a refinement of composition which is needed for 

the group structure on strict equivalence classes. Thus equation (13) uses 

direct composition. In contrast, Legendre considered the binary operation on 

equivalence classes given by composition. This led to a multivalued group 

operation since he was not using direct composition and strict equivalence. 

6 Ad “multiplied and composed”: Given classes A, B,C,..., the group oper¬ 

ation is written additively, so that these classes generate nA + mB + kC-]-, 

where n,m,k,... are integers. Thus one “multiplies” to get nA, mB, kC,..., 

and then “composes” to get nA + m,B + kC -. 



CHAPTER 8 

Problems of number theory 

and the birth of commutative algebra 

1. Diophantine equations and the 
introduction of algebraic numbers 

We saw that many of the investigations in algebra were connected with the 

problem of solution of equations by radicals. These investigations stimulated 

the creation and evolution of the theories of groups and fields. Other algebraic 

investigations are rooted in Diophantine analysis and in number theory; more 

specifically, in Fermat’s last theorem and in the reciprocity laws. 

Euler proved Fermat’s last theorem for n = 4 in 1738 but it took another 

30 years for him to prove it for n = 3. His letters to Goldbach show that the 

proof cost him a great deal of effort because it called for the introduction of 

new methods. 

As early as the 1760s Euler and Lagrange began to apply irrational as 

well as imaginary expressions of the form a + b^/c, a,b,c £ Z, to problems in 

number theory. In this connection Euler wrote to Lagrange: “I was delighted 

by your method of using irrational as well as imaginary numbers in the pail 

of analysis devoted to rational numbers alone. Similar ideas occurred to me 

a few years ago ... in connection with the publication of a complete algebra 

in Russian, I presented this method in detail and showed that to solve the 

equation 

x2 + ny2 = (p2 + nq2)x 

it suffices to solve the equation 

x + y\f—n = (p + q\f^n)x ” 

(Lagrange, Oeuvres, Vol. 14, p. 215). 

129 
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It seems that at that time it occurred to Euler to use expressions of the 

form a + bsfc to solve Fermat’s last theorem. However, to do this one had to 

take another decisive step, namely, to regard these expressions as integers. 

What does this mean? In what way do the integers differ from, say, the 

rational numbers? Primarily by having a rich arithmetic. For example, there 

are prime and composite integers, and every composite integer can be written 

in an essentially unique way as a product of primes. (When it comes to the 

natural numbers, this law was known (in a somewhat restricted form) as far 

back as Euclid.) One consequence of this law is that if the product of two 

relatively prime positive integers is equal to a certain power of an integer then 

so are those integers: if (a, b) = 1, a,b > 0, and ab = lk then a — tk and 

b = £3- Euler carried over all these properties, without proof, to numbers of 

the form p + q\f^3, p, q £ Z, and used them to prove Fermat’s last theorem 

for n = 3. We give his proof. 

Suppose that there are three integers x, y, z such that 

x3 + y3 = z3. 

We can assume that they are pairwise relatively prime. Then two of them must 

be odd and the third even (otherwise they would have a nontrivial common 

factor). Suppose that x and y are odd and 2: is even (otherwise we would 

prove the impossibility of x3 = y3 - z3). Putting x = p + q and y = p - q, 

where p and q have different parities and (p, q) = 1, we have 

x3 + y3 = 2 p(p2 + 3 q2) = z3. 

Since z3 is even, it is divisible by at least 8. Also, p is even, q is odd, and 

^(p2 + 3q2) = z\. 

Euler considered two cases: 1) p is not divisible by 3; 2) p is divisible by 

3. To understand Euler’s guiding idea it suffices to consider the first of these 

two cases. If p is not divisible by 3, then p/4 and p2 -P3q2 are relatively prime 

and thus are both cubes. Now—and this is the crucial step in the proof—Euler 

factors p2 + 3q2: 

P2 + 3 q2 = (p + qsf—3)(p — qV^3) = r3. 

From this he concludes that each of the imaginary factors is a cube, 

p ± q\/^3 = (u ± w\/^3)3. 
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Hence 
p = u(u — 3 v)(u + 3v); 

q = 3v(u + v)(u — v). 

Since q is odd, so is v. Hence u is even. Since p/4 is a cube, so is 2p, i.e., 

2u(u — 3v)(u + 3v) = t3. Since 2u, u — 3v, and u + 3v are relatively prime, 

2 u = t3, 
u — 3v — /3 

u + 3v = g3 

2 u = f3 + g3 = t\. 

It is easy to see that /, g, t\ are smaller than x, y, z respectively. This implies 

that if our initial equation had a (positive) integral solution x, y, z then it 

would have a smaller solution /, g, t\. But then we could find a solution /i, 

gi, t2 smaller than the solution /, g, t\, and so on. This is impossible, for 

there are only finitely many whole numbers smaller than a given one. This is 

an application of Fermat’s method of descent. What is new in this argument 

is that Euler carried over the divisibility laws from the whole numbers to 

expressions of the form p + q\J—3. 

We note that Euler’s reasoning was not rigorous. Furthermore, it involved 

a false assumption. Indeed, the example 

4 = 2 ■ 2 = (1 + v/Z3)(l - V^3) 

shows that the ring of integers of the form m + ni/-3, m, n G Z, is not a 

unique factorization domain. Unique factorization holds in the maximal ring of 

integers of the field Q{y/—3) whose elements are of the form (m+n\/^3)/2, 

m = n (mod 2). The reason Euler managed to avoid mistakes was that he 

worked with numbers of the form p + q\f—3, p ^ q (mod 2). 

Euler’s proof contained two important ideas that were subsequently 

adopted by mathematicians. The first of these ideas was that when prov¬ 

ing Fermat’s last theorem one must write the form xx + yx (A prime) as a 

product of linear factors: 

xx + yx = (x + y)(x + (y) ... (x + (x~1y), 

where = 1, £ 7^ 1. 

The second, more important, idea was that in order to investigate the 

properties of ordinary integers it was necessary to extend the notion of an 

integer. In the 19th century the development of this idea gave rise to the 

creation of the theory of algebraic numbers and to the construction of their 

arithmetic. 
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Euler did not justify the application of rules of ordinary arithmetic to 

expressions of the form m + n\[~^3, to, n G Z. 

The first rigorous introduction of algebraic integers is due to Gauss. He 

did this between 1828 and 1832 in his famous paper “The Theory of Bi¬ 

quadratic Residues” (Gauss, Untersuchungen iiber hohere Arithmetik, Berlin, 

1889. Repr. by Chelsea, 1965, pp. 511-586). Gauss realized that extension of 

the law of quadratic reciprocity (for which he gave eight proofs, at a time 

when none existed) to a law of biquadratic reciprocity required an extension 

of the very notion of an integer. For more than 2000 years this notion seemed 

to be inseparable from the domain Z of rational integers; it seemed to be its 

intrinsic property. Gauss separated the notion of an integer from its natural 

carrier and transferred it to the ring of numbers of the form 

a + bi, (1) 

where a, b € Z and i is a root of the equation 

x2 + 1 = 0, (2) 

which is irreducible over Q. He showed that the domain O of the numbers in 

(1), now known as Gaussian integers, is closed under addition, subtraction, 

and multiplication, and that it is possible to set up in it a structure analogous 

to ordinary arithmetic. He defined for the new numbers the notion of a unit 

(there are four of them, namely, 1, —1, i, —i), called numbers obtainable from 

one another by multiplication by a unit associates, and stated that one should 

not distinguish factorizations which differ by associates. He called a number 

in O a prime if it could not be written as a product of two factors neither of 

which is a unit, and called the rational integer a2 + b2 = (a + bi)(a — bi) the 

norm Na of a = a + bi in (1). It follows from the definition that 

Nap = NaNp. 

It is clear that a composite rational integer is a composite Gaussian 

integer but that a prime rational integer may be a composite Gaussian integer. 

Thus 2 = (l + i)(l — i) and 5 = (2 + i)(2 — i). More generally, every rational 

prime of the form An + 1 (such primes can be written as sums of squares) is 

a composite Gaussian integer: 

p = to2 + n2 = (to + ni)(m — ni). 

On the other hand, as Gauss shows, primes in Z+ of the form An + 3 remain 

prime in O and the norm of a number q of this kind is q2. 
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Gauss showed that a Gaussian integer a + bi, ab ^ 0, is prime or 

composite according as its norm is a prime or composite rational integer. 

This implies that the Gaussian primes are the associates of the following: 1) 

the (associated) divisors 1 + i and 1 - i of 2; 2) the rational primes of the 

form 4n + 3; and 3) the (conjugate) divisors a + bi and a — bi, b ^ 0, of the 

rational primes of the form An + 1. 

Next Gauss proved that the Gaussian integers were a unique factorization 

domain. 

After this, he easily developed in O an arithmetic analogous to that in 

Z (he proved Fermat’s (“little”) theorem, introduced congruences, primitive 

roots, and so on) and applied it to state, and partially prove, the law of 

biquadratic reciprocity. In this way he showed the mathematical world that 

complex integers were just as “respectable” objects of higher arithmetic as 

rational integers. 

The impact of Gauss’ paper was tremendous. One indication of this 

impact was that up to the 1860s algebraic integers were referred to as complex 

integers even if they were of the form a + b\[D, D > 0, i.e., even if they 

were real. 

We note that Gauss’ paper played a decisive role in getting mathemati¬ 

cians to regard expressions of the form a -I- bi as numbers. Indeed, it became 

clear that they could be objects of (an extended) arithmetic, and that, more¬ 

over, this extended arithmetic could be used to obtain results about rational 

integers that could not be obtained without it. 

Gauss was well aware that his paper opened before mathematicians a 

boundless world of problems. He wrote that “In some sense of the word, this 

theory (i.e., the law of quadratic reciprocity {the authors)) is bound to extend 

infinitely the domain of higher arithmetic” (Gauss, ibidem, p. 511), and that 

“The natural source of the general theory must be sought in the extension of 

the domain of arithmetic” (Gauss, ibidem, p. 540). 

He noted that the theory of cubic residues (and the law of cubic reci¬ 

procity) must be based on the investigation of numbers of the form a + bp, 

where p3 — 1 = 0 and p / 1 and added that “The theory of residues of 

higher degree requires the introduction of other imaginary quantities” (Gauss, 

ibidem, p. 541). 

In the 1840s Eisenstein, Dirichlet, and Hermite independently defined 

algebraic integers as roots of algebraic equations of the form 

F(x) = xn + a1xn~1 +-b an = 0, ax,... ,an e Z. (3) 
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Eisenstein showed that the sum and product of algebraic integers were again 

algebraic integers. Finally, in 1848, Dirichlet was able to determine the group 

of units in an arbitrary field of algebraic numbers. {Note. A field of algebraic 

numbers is a set K = Q($) of expressions of the form 

oi. = &o + b\d + • • • + bn—\6n 1, (*) 

where 6 is a root of an irreducible equation of degree n and the bi e Q. It is 

easy to see that the sum, product, and quotient (with nonzero denominator) 

of numbers of the form (*) are again numbers of the form (*).) 

In 1847 a remarkable event occurred in the Paris Academy of Science. 

During the meeting that took place on 1 March, the French mathematician 

Fame presented a memoir ostensibly containing a complete proof of Fermat’s 

last theorem. Fike his predecessors (Euler for n = 3, Fagrange, Gauss, and 

Fegendre for n = 5, 7), Fame wrote the equation xx — zx — yx as the product 

zx -yx = (z- y)(z - Cy)-'-(z- (A_1t/), (4) 

where A is a prime (it is clear that it is enough to prove Fermat’s last theorem 

for prime exponents), (x = 1, and ( ^ 1. The proof involved operating with 

numbers of the form 

bo + &iC + • • ■ + ^a-2CA 2i bi e Z. (5) 

under the assumption that these numbers obey the laws of ordinary arithmetic, 

including the law of unique factorization. 

This assumption attracted the attention of Fiouville who made the fol¬ 

lowing comment: “The idea of introducing C. N. (i.e., complex numbers (the 

authors)) into the theory of the equations xn - yn = zn is not new; quite 

naturally, it is bound to occur to geometers owing to the binary form xn — yn. 

But I have not been able to deduce from this a satisfactory proof. At any 

rate, the attempts I made showed me that, as a first step, it was necessary to 

establish for C. N. a theorem analogous to the elementary theorem for whole 

numbers which asserts that a product can be decomposed into prime factors 

in just one way. Fame’s analysis only confirms me in this conviction. Is there 

no gap here that must be filled?” (quoted after R. Nogues, Fermat’s Theo¬ 

rem. Paris, 1966, p. 38). As a result of Fiouville’s remark, the arithmetic of 

fields of algebraic numbers was, for an admittedly short time, at the very cen¬ 

ter of attention of French mathematicians. It was studied by Fame, Wantzel, 

and even Cauchy. During the meeting of the Academy that took place on 

22 March 1847 Cauchy presented a memoir in which he tried to deduce the 

Euclidean algorithm for numbers of the form (5). The memoir was printed in 
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installments in the Comptes rendus for 1847. In the last installment Cauchy 

arrived at the conclusion that this could not be done. 

2. Rummer’s ideal factors 

A few years earlier, numbers of the form (5) were studied by the eminent 

German mathematician Ernst Kummer (1810-1893). Kummer came across 

these numbers when he tried to generalize and prove the law of reciprocity 

for residues of arbitrary prime degree and to prove Fermat’s last theorem, 

which he studied from 1837 on. 

In 1846 Kummer noticed the amazing fact that in the ring D of integers 

of the field Q(C) it is possible for a product of two irreducible numbers a and 

/3 of the form (5) to be divisible, in a nontrivial way, by a third irreducible 

number 7 of this form. 

We explain the sense of this discovery in greater detail. It is well known 

that a prime p in the ring Z has the following two properties: 

A. p cannot be written as a product of two factors none of which is a 

unit. 

B. If a product ab is divisible by p, then at least one of the factors a and 

b is divisible by p. 

Usually one takes the first of these properties as the definition of a 

prime and proves the second. But one can reverse this order, i.e., in the ring 

Z properties A and B are equivalent. Kummmer discovered that this is false 

for numbers of the form (5): they can have the first of these properties without 

the second. This put in doubt the possibility of constructing an arithmetic of 

the integers of the field Q(£). 

We give an example of nonunique factorization of algebraic integers.1 

In fields Q(C) the nonuniqueness first shows up for A = 23. This being so, 

we will take an example from the quadratic field Q(v/—5). Here 

6 = 2 • 3 = (1 + v/r5)(l - v/—5) 

and none of the numbers 2,3,1 + ■/—5, and 1 — -\/^5 is representable as a 

(nontrivial) product of two factors of the form a + b\f^5. 

Kummer managed to save the situation, i.e., he made possible the con¬ 

struction of an arithmetic of the integers of the fields Q(C) by the introduction 

of new objects, which he called ideal factors. In the spring of 1847 he wrote 

about his discovery to Liouville and presented the complete theory in two 

papers: “On the Theory of Complex Numbers” (“Zur Theorie der complexen 

Zahlen,” J. fiir Math., 1847) and “On the Decomposition of Complex Numbers 
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Formed from Roots of Unity into Prime Factors” (“Uber die Zerlegung der 

aus Wurzeln der Einheit gebildeten complexen Zahlen in ihre Primfactoren”, 

ibidem). 

Kummer’s idea was that integers of the field Q(C) that have property A 

but not property B are not genuine primes; they are products of factors not 

found in Q(C) in “pure form”. Thus in our example 

2 = Pip2> 3 = q i c|2 ? 1 + \/~5 = pi q i, 1 + V~5 = p2 <12 - 

Here we could put 

pi = l + i, p2 = l-i, qi 
1+ 7^5 

1 + i 
q2 = 

1 - \/—5 

1 — i 

All of these factors are algebraic integers (true, they do not belong to 

the field Q(i/^5); this is obvious for p! and p2 and easy to show for qx and 

q2 by constructing equations of the form (3) with rational coefficients which 

they satisfy). 

Kummer’s methods for the introduction of ideal factors were later called 

local because they yielded ideal factors not for the whole ring of integers of 

the field Q(C) at once but individually, for one prime p at a time. We cannot 

give here a detailed description of these methods and so limit ourselves to the 

remark that they were based on the parallelism between the factorization of 

the polynomial 

$(z) 
xx — 1 

x — 1 
= xA_1 + xA~2 H-hi 

mod p and the factorization of the number p itself into (real or ideal) prime 

factors in Z(£). 

We illustrate our remark by considering the simplest case in which p is 

of the form mX + 1. Kummer showed that in this case $(x) is factorable 

mod p into linear factors. 

A —1 

$(z)=n (x -Uk) (m°d 
k= 1 

and p is either factorable into A — 1 primes in Z[£] or else we associate with 

it A — 1 ideal factors: 

P = PiP2 ■ ••Pa-i• 

Also, a(Q = b0 + bi( + • • • + b\-2(x~2 is divisible by pi if 

a{ui) - 0 (mod p). 
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The construction of ideal factors for other types of primes is somewhat more 

complicated. 

The development of local methods was advanced by E. I. Zolotarev 

(1847-1878) and by Kurt Hensel (1861-1941), a member of the Kummer 

school who introduced the p-adic numbers. 

Kummer showed that the introduction of ideal factors into the ring Q[£] 

restored uniqueness of factorization of its integers and constructed for these 

“supplemented” rings arithmetics analogous to the usual arithmetic. He also 

proved Fermat’s last theorem for all prime exponents A that do not enter into 

the numerators of the first (A — 3)/2 Bernoulli numbers, and formulated and 

proved the reciprocity law for power residues with prime exponents (he did 

the latter in papers which appeared during 1858-1887). 

Fermat’s last theorem was proved in 1995 by A. Wiles and R. Taylor 

who made use of its deep connections with algebraic geometry. 

3. Arithmetic in arbitrary fields of algebraic numbers. 
Ideal theory 

Kummer’s papers showed the fruitfulness of constructing arithmetics of the 

integers in cyclotomic fields. This influenced mathematicians to try to con¬ 

struct an arithmetic of the integers in an arbitrary field Q(0), where 6 is a 

root of an equation of the form (3). 

This turned out to be a very difficult task. The first difficulty was that 

of providing a description of the integers of a field Q(6), where the term 

“integer” was interpreted in the sense of Eisenstein, Hermite, and Dirichlet as 

a root of an equation of the form (3) with integer coefficients. The integers 

of fields Q (6), encountered hitherto by Dirichlet, Eisenstein, Cauchy, and 

Kummer, were all of the form 

bo + b\0 + • • • + bn—\9n 1, fij £ Z. 

But it turned out that these fields contained other integers as well. For exam¬ 

ple, (l + \/—3)/2 is an integer because it satisfies the equation x2 — x + 1 = 0. 

The first exhaustive solution of this problem was given by Richard Dedekind 

(1831-1916) in his famous Xth Supplement to the second edition of Dirich- 

let’s Lectures on Number Theory (1871). (Authors’ note. We wish to point 

out that already Newton essentially settled this question for the case of real 

quadratic fields in his Universal Arithmetic. Specifically, Newton showed that 

if 
D = 2 or 3 (mod 4), 
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then in Q(\/D) the integers are of the form 

m + nVD, m, neZ, 

and if 

D = 1 (mod 4), 

then the integers are of the form 

(m + n\/D)/2, m = n (mod 2), m, n E Z. 

However, these investigations of Newton were overlooked in the 19th cen¬ 

tury.) Dirichlet showed that numbers of the form bo + b\9 + ■ • • + 6n_id7'-1 

can be integers if the bi are rational numbers such that the primes in their 

denominators divide the field discriminant. He showed further that it is al¬ 

ways possible to construct a basis (later called minimal) uji,u>2, ■ ■ ■, u;n, u>i 

integers in Q(6>), such that every integer of Q(0) is a linear combination of 

the u>i with rational integral coefficients. Zolotarev also ran into this problem 

and gave a different, local, solution (1877). 

Another, far more serious, difficulty encountered in the transition from 

cyclotomic fields to general fields of algebraic numbers was that the intro¬ 

duction of ideal factors, based on the parallelism between the factorization of 

the defining equation F(x) = 0 mod p and the factorization of p itself in the 

ring of integers of the field Q(£?), could not be carried over to arbitrary fields 

of algebraic numbers without new and essential modifications. The difficulty 

involved was explained by Dedekind as well as by Zolotarev. 

Zolotarev developed a general theory of divisibility by modifying Kum- 

mer’s methods (1878; published in 1880). Another approach to this theory 

was proposed by Hummer’s student Leopold Kronecker (1823-1891), whose 

memoir was published in 1882. Dedekind abandoned congruences altogether 

and solved the problem in a very different way. While the methods of Zolotarev 

and Kronecker turned out to be extremely effective in the study and solution 

of problems of number theory and algebraic geometry. Dedekind’s method 

turned out to be of fundamental importance in general algebra and marked 

the beginning of a fundamental transformation of this branch of mathematics. 

That is why we will present Dedekind’s construction of arithmetic in a field 

of algebraic numbers. 

Dedekind’s approach can be characterized as set-theoretic and axiomatic. 

His basic idea was to replace each of Hummer’s ideal factors by the set J 

of integers of Q(0) that are divisible by this factor. The set J was defined 

in a manner independent of the notion of an ideal factor. Also, the number- 

theoretic notions (divisor, multiple, etc.) were replaced by set-theoretic notions 
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(subset, inclusion, intersection, etc.). All this was done by Dedekind in the 

Xth Supplement to the second edition of Dirichlet’s Lectures on Number 

Theory. This was the first work in which basic objects of algebra were intro¬ 

duced axiomatically. According to Bourbaki, the Supplement was written in 

a “general manner and in a completely new style.” 

Given the tremendous importance for algebra of Dedekind’s new con¬ 

ception, we will try to describe the Xth Supplement in some detail. Dedekind 

begins by introducing the concept of a field (Korper): 

“A field is a system of infinitely many real or complex numbers so closed 

and complete that the addition, subtraction, multiplication, or division of two 

of its numbers always yields a number of this system” (R. Dedekind, Gesam- 

melte mathematische Werke. Braunschweig, 1930-1932, Vol. 3, p. 224). 

We see that this definition differs from a modern one by designating the 

field elements as real or complex numbers. However, most of the consequences 

deduced by Dedekind are of a completely general character. He notes that the 

rationals are the smallest field, and all complex numbers, the largest. Then he 

introduces the notions of a subfield, of a basis, and of the degreee of a field. 

Going over to the construction of arithmetic in the ring (Dedekind calls 

it order (Ordnung)) D of integers of a field of algebraic numbers, Dedekind 

defines the notion of a module, destined to play a crucial role in algebraic 

number theory and in modem algebra. Finally he introduces the notion of 

an ideal, which he defines axiomatically: “A system 21 of infinitely many 

numbers of O is an ideal if it satisfies two conditions. 

1. The sum and difference of any two numbers in 21 is again a number 

in 21. 

2. The product of a number in 21 by a number in D is again a number 

in 21” (ibidem, p. 251).2 

We note that if 7 is a nonzero number in D, then the set of all numbers 

J(7) in O divisible by 7 satisfies these two conditions and so is an ideal. 

Dedekind calls it a principal ideal. He defines divisibility of numbers and 

ideals in set-theoretic terms. Specifically, he says that a number a is divisible 

by an ideal 21 if a £ 21, and that a = (5 (mod 21) if a — f3 £ 21. 

If 21 and 23 are ideals and 21 C 23, then Dedekind says that 21 is divisible 

by 23, or that 23 is a divisor of 21. He calls the intersection of two ideals their 

least common multiple, and the system of numbers of the form a + (3, a £ 21, 

(3 e 23, their greatest common divisor. Finally, he calls an ideal p prime if it 

has no divisors other than O and p. 
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Then Dedekind proves the fundamental theorem of divisibility theory: if 

a/3 = 0 (mod p), where p is prime, then at least one of the numbers a, (3 is 

divisible by p. 

Briefly, the axiomatic method was introduced into algebra through 

Dedekind's papers. Initially, the new concepts were defined by this method 

only for one class of objects, namely, for fields of algebraic numbers. 

4. Ideal theory in fields of algebraic functions 

The introduction of such vital concepts as field, module, and ideal was just 

the first step on the road of formation of commutative algebra. 

The second, equally important step, was the transfer of the whole theory 

to fields of algebraic functions. This was done by Dedekind and Heinrich 

Weber (1843-1913) in their joint work “The Theory of Algebraic Functions 

of a Single Variable” (“Theorie der algebraischen Functionen einer Verander- 

lichen”, J. fur Math., 1882). 

In the 19th century, the investigation of fields of algebraic numbers, 

stimulated by the discovery of nonuniqueness of factorization in such fields, 

was paralleled by the development of the theory of algebraic functions. Here 

the key problem was dealing with multivalued functions of a complex variable. 

The problem was treated by Abel and Jacobi (1804-1851) but its definitive 

solution was due to Bernhard Riemann (1826-1866). To make a multivalued 

function singlevalued Riemann considered it on a multisheeted surface to each 

of whose points there corresponded a single value of the multivalued function. 

Such surfaces are now known as Riemann surfaces. But the construction of 

a Riemann surface involved continuity considerations based on geometric 

intuition. This could not satisfy Dedekind and Weber. In their memoir they 

said that their aim was “to justify the theory of algebraic functions of a single 

variable, which is one of the main achievements of Riemann's creative work, 

from a simple as well as rigorous and completely general viewpoint.” Their 

construction is remarkable in that it is applicable to an arbitrary algebraically 

closed base field of characteristic 0 (i.e., they have no need of continuity!). 

They wrote: “For example, no gap would arise anywhere if one wished to 

restrict the domain of employed numbers to the system of algebraic numbers” 

(R. Dedekind, Gesammelte mathematische Werke, Vol. 1, p. 242). 

In their theory Dedekind and Weber used the analogy between algebraic 

numbers and algebraic functions noted centuries earlier. As far back as the 

16th century, Simon Stevin (1548-1620) observed that polynomials in one 

variable behave like integers, and irreducible polynomials like primes. He 
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introduced the Euclidean algorithm for polynomials, which can be used to 

prove that they are a unique factorization domain. Gauss carried over to poly¬ 

nomials the theory of congruences. But it was the Dedekind-Weber memoir 

that demonstrated the full depth of the analogy between the two systems. 

The memoir is divided into two parts. The first part is devoted to a 

formal theory of algebraic functions. Consider an irreducible equation 

F(w, z) = aown + aiwn_1 + • • • + an = 0, (6) 

where the a* are polynomials in z. 

This equation determines a (usually multivalued) function w that 

Dedekind and Weber call an algebraic function. They use the “Kronecker 

construction” to form the field of algebraic functions ft with elements 

( = b0 + bxw -\-b 6n_iwn~li 

where the bi are rational functions in 2: with coefficients in the base field. 

The degree of ft over the field C (z) is n. 

Then the authors carry over almost literally Dedekind’s theory to fields 

of algebraic functions: they introduce the notion of an integral function of the 

field and study the ring of such functions, define a module (Funktionenmodul), 

introduce congruences with respect to a module, and, finally, define the notion 

of an ideal and prove the fundamental theorem of divisibility theory.3 [Note 

3 explains some of the terms used in the subsequent text. (Ed.)] 

As an example, we state their definition of a module: “A system of 

functions (of ft) is called a module if it is closed under addition, subtraction, 

and multiplication by every function integral with respect to 2” (ibidem, pp. 

251-252). 

Of greatest interest is their definition of a point of the Riemann sur¬ 

face corresponding to the field of functions ft. This issue is dealt with at 

the beginning of the second part of the memoir. The sequence of arguments 

involved is typical of Dedekind’s approach. Suppose we had a point P of the 

surface in question. By evaluating the field functions at that point we would 

obtain a mapping of ft into the field C of constants: 

F F(P) = F0 € C. 

If F —► F0 and G —» G0, then it is clear that 

F ± G —> Fq ± Go; FG —> FqGq] F/G —»■ Fq/Gq. 

The authors note that for the sake of generality it is reasonable to sup¬ 

plement C by 00, for which one defines the usual operations of arithmetic 
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except that no meaning is assigned to the symbols oo ± oo, 0 • oo, jj, and 

—. Now consider all homomorphisms of fi into the extended domain C. 

With each of these homomorphisms we can associate a point P. This moti¬ 

vated the definition employed by Dedekind and Weber: “Suppose that to all 

elements a, (3,7,... of the field there correspond definite numerical values 

ao,A),7o, • • • such that (I) ocq = a \f a \s & constant and, in general, (II) 

{a + (5)0 = cco + An (HI) (« — P)o = O-o — A), (rV) (cAOo = aoAn (V) 
(a/(3)o = cto/An Then we associate with the set of these values a point 

P.... We say: a — oiq at P if a has at P the value a0. Two points are said 

to be different if and only if there is a function in fi that takes on different 

values at these points” (ibidem, p. 294). 

The authors note that this definition is an invariant of the field f2, for 

it is independent of the choice of independent variable used to represent a 

function of the field. 

Before constructing a Riemann surface out of the points the authors prove 

the following theorems. 

1. If 2 G fi is nonconstant and 2 takes on a finite value at P, then the 

functions in fi integral with respect to 2, that vanish at P, form a prime ideal 

in the ring of functions of fi integral with respect to 2. 

The authors say that the point P generates a prime ideal p. If u> is a 

function integral with respect to 2, then u takes on at P a finite value u>o and 

they say that 

uj = ujq (mod p). 

2. Two different points cannot generate the same prime ideal. 

3. If 2 e fi and p is a [nonzero] prime ideal (relative to 2), then there is 

one (and according to the preceding result) only one point P that generates 

this ideal; it is called a null point of the ideal p.4 

These theorems imply the following construction of a Riemann surface 

T: Take any function 2 e fi, form the ring of functions in fi integral with 

respect to 2, and consider all of its prime ideals p and their corresponding 

null points P. In this way we obtain the points of the Riemann surface T) at 

which the function 2 is finite. To obtain the remaining points Pi (at which 

2 = 00) take the function z' = I/2, which vanishes at these points, form 

the ring of functions integral with respect to z' and construct its prime ideals 

containing 2. By adding the new points T\' corresponding to the ideals p' to 

the points T we obtain all points of the Riemann surface T = T) U T\'. 

The Dedekind-Weber construction has been extensively used in our own 

time in algebraic geometry, namely in the theory of schemes. Suppose that 
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we are given an arbitrary commutative ring A with identity and we want to 

associate with it a natural geometric construct. In the theory of schemes we 

consider all prime ideals of A and call this set its spectrum (Spec(A)). [If A 

is an integral domain then Spec(A) includes the zero ideal.] Each of the prime 

ideals is called a point of the spectrum. For details see I. R. Shafarevich, Basic 

Algebraic Geometry, Springer, 1974. 

It is well known that the axiomatic method in geometry was an achieve¬ 

ment of antiquity and was the basis of Euclid’s Elements of the third century 

BCE. The axiomatic method was introduced into algebra more than 2000 years 

later. We saw that this was connected with profound transformations of al¬ 

gebra, with the shift of its focus from the study of equations and elementary 

transformations to the study of algebraic structures defined on sets of objects 

of arbitrary nature. 

We note that the context for Dedekind’s study of “dual groups”, later 

known as lattices, was his program of creation of abstract algebra. In the 

papers “On the Decomposition of Numbers through Their Greatest Common 

Divisors” (Uber Zerlegungen von Zahlen durch ihre groBten gemeinsamen 

Teiler”. R. Dedekind, Gesammelte mathematische Werke, Vol. IE, pp. 103— 

147) and “On Dual Groups Generated by Three Modules” (Uber die von drei 

Moduln erzeugte Dualgruppen”, ibidem, pp. 236-271), he defined a “dual 

group” for objects of arbitrary nature and studied its properties on the basis of 

explicitly formulated axioms. In the second of these papers Dedekind observes 

first that if we denote the greatest common divisor of modules 21 and 93 by 

21 + 23 and their least common multiple by 21 — 93, then these two operations 

satisfy the conditions 

(1) 21 + 93 = 93 + 21, 21 — 93 = 93 — 21; 

(2) (21 + 93) + € = 21+ (93 + £); (21 - 93) - <£ = 21 - (93 - £); 

(3) 21 + (21 - 93) = 21, 21 - (21 + 93) = 21, 

which imply that 

21 + 21 = 21, 21-21 = 21. 

Then Dedekind introduces the following definition: 

“If two operations on any two elements 21 and 93 of some (finite or 

infinite) system G always generate two elements 21 + 93 such that conditions 

(1), (2), and (3) hold, then, regardless of the nature of these elements, the 

system G is called a dual group with respect to the operations ±” (ibidem).5 

As an example of a dual group Dedekind gives the system of modules 

that he investigated.6 In another example he notes, in particular, that in a 
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logical system one can interpret 21 + 03 as a logical sum and 21 — 23 as a 

logical product, and refers to Schroder’s Algebra of Logic. Then he deduces 

properties of an arbitrary dual group. 

We note that the most general definitions of a division ring and of a 

field were formulated as early as the end of the 19th century, and that a 

general abstract definition of a ring was given somewhat later (1910-1914) 

by Fraenkel and Steinitz. The final formulation of “modem algebra” was due 

to Emmy Noether (1882-1935) and her school. Generations of 20th-century 

mathematicians learned this subject from van der Waerden’s famous Modem 

Algebra. 

We have discused one series of investigations that have led to the creation 

of commutative algebra. Another series of investigations went on from the lo¬ 

cal methods initiated by Kummer and subsequently developed by Zolotarev 

and, especially, by Hensel. While Dedekind and Weber carried over the meth¬ 

ods of study of fields of algebraic numbers to fields of algebraic functions, 

Hensel carried over series, the basic instrument for the representation and 

study of functions, to number theory. In 1897 he introduced p-adic and p-adic 

numbers.7 

The ideas, methods, and concepts of commutative algebra evolved in the 

19th century as a result of the parallel development and mutual influence of 

the theories of algebraic numbers and algebraic functions. These two areas 

were for mathematicians two models for the study of general laws. Progress 

in one area was carried over to the other area and stimulated its further 

development. The interaction of different areas of mathematics seems to be 

the mechanism of its development. At least, this is suggested by the example 

of the creation of commutative algebra, the basis and foundation of modem 

algebraic geometry. 

We add a few words about the further investigations of fields of algebraic 

numbers. Here special attention was given to two issues. One was the question 

of unramified extensions K(i9) of fields K of algebraic numbers, and the other 

was a proof of the most general reciprocity law in an arbitrary number field 

(Hilbert’s ninth problem). The first of these issues was settled for extensions 

by Hilbert’s class field theory (1899-1902), and the final solution of the 

second issue is due to Shafarevich (1948).8 

Editor’s notes 

One such example was given on p. 131. l 
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2 It should be pointed out that by requiring the system to contain infinitely 

many numbers Dedekind’s definition excludes the ideal consisting of 0 alone, 

which is admissible under the modern definition. 

3 In this context, “integral function” means a function of fi that satisfies 

a monic polynomial with coefficients in C[z], Such functions are said to be 

integral with respect to z. In a number field K, the elements of K integral over 

the integers are the algebraic integers of K. By analogy, functions integral 

with respect to z can be thought of as the “algebraic integers” of fi. Thus 

“an ideal” refers to an ideal in the ring of functions of fi integral with respect 

to z. Finally, note that this construction can be applied to any nonconstant 

z e fi. 

4 One needs to assume that p is a nonzero prime ideal. For Dedekind and 

Weber this was always true, but under the modern definition of ideal, {0} is 

also prime in the rings considered here. For an example of the role played 

by the zero ideal, consider the dimension of a ring that is one less than 

the maximal length of a chain of prime ideals. The ring of functions of fi 

integral with respect to z has dimension 1 because, if p is a nonzero prime, it 

is maximal, and {0} C p is a maximal chain. Similarly, the algebraic integers 

in a number field form a ring of dimension 1. 

5 Dual groups are closely related to Boolean algebras. In 1854 Boole wrote 

down for his (Boolean) algebras rules similar to Dedekind’s rules (1), (2), 

(3). 

6 If 21 and 03 are ideals in the ring of algebraic integers in a number field, 

then their gcd is the sum 21 + 03 and their 1cm is the intersection 21 fl 03. It 

is easy to see that conditions (1), (2), and (3) hold in this case. 

7 This paragraph mentions a second series of investigations leading to com¬ 

mutative algebra, namely those stemming from local methods. It turns out that 

there is a third, equally important, series of investigations that contributed to 

commutative algebra, namely algebraic geometry, invariant theory, and the 

work of Kronecker and Hilbert. The rings considered by Dedekind and We¬ 

ber (as discussed in the text) are all Dedekind domains, which means that 

all ideals are products of powers of distinct prime ideals (this is how unique 

factorization is recovered). But for other rings, such as C[x,y\, this is no 

longer true—the ideal theory is much richer. 

To see where such ideals might arise, first note that curves in the plane 

or surfaces in three dimensions have a single equation F(x, y) = 0 or 

G(x, y, z) = 0, so that ideals are not necessary. But what about the curve 

formed by the intersection of two surfaces Gi(+ y, z) = 0 and G2(x, y, z) = 
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0? The polynomials Gx and G2 are not intrinsic to the curve, since other 

pairs of surfaces might intersect in the same curve. But the ideal generated by 

Gi and G2 is intrinsic. A similar example occurs in the plane. Suppose two 

given curves F\(x, y) = 0 and F2(x, y) — 0 intersect in a finite set of points. 

What can we say about a third curve F(x, y) = 0 that goes through the same 

points? In the simplest case, when the given curves intersect in smooth points 

with distinct tangents, the answer is that F must be of the form AF\ + BF2 

for some polynomials A and B. In other words, F is in the ideal generated by 

F\ and F2. The general case, which involves certain multiplicity conditions, 

was proved by Max Noether in 1873 and was widely used in 19th-century 

algebraic geometry. 

A more formal notion of this sort of ideal in a polynomial ring was given 

by Kronecker in 1882, where he used the term “Modulsystem”. He wrote 

G(x 1,x2,...,xn) = 0 (mod. Fi, F2,..., Fn) 

to say that G is in the ideal generated by ..., Fn, and he also explained 

what it meant for two sets of polynomials to generate the same ideal. Kro¬ 

necker was especially interested in prime ideals, which generalize the ir¬ 

reducible polynomials so important in Galois theory. However, in contrast 

to Dedekind who considered an ideal as an infinite set (as we do today), 

Kronecker worked with finitely many elements at a time. Furthermore, Kro¬ 

necker’s main interest was divisors, which are a generalization (different from 

ideals) of Kummer’s ideal numbers (see Harold M. Edwards, Divisor Theory, 

Birkhauser, Boston, 1990). 

In his great 1890 paper Ueber die Theorie der algebraischen Fonnen, 

Hilbert mentions explicitly both Noether and Kronecker and uses Kronecker’s 

terminology for ideals, although his way of thinking of ideals was closer to 

Dedekind’s than to Kronecker’s. The theorems proved by Hilbert in this pa¬ 

per (Hilbert Basis Theorem and Hilbert Syzygy Theorem) are cornerstones of 

commutative algebra and algebraic geometry. He also introduced free resolu¬ 

tions, Hilbert functions, and Hilbert polynomials, which are important tools in 

modern commutative algebra. Another important discovery is Hilbert’s Null- 

stellensatz from 1893, which describes the relation between the solutions of 

a system of equations F\ = • • • = Fm = 0 over the complex numbers and 

the ideal generated by Fi,..., Fm. Hilbert proved all of these results in the 

course of his work on invariant theory. 

But the question remained of the structure of ideals in a polynomial 

ring. This was solved by Lasker in 1905 with his discovery of primary de¬ 

composition for such ideals, which replaces the unique factorization of ideals 
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in Dedekind domains. Trying to generalize Lasker’s proofs is part of what 

led Emmy Noether to the discovery of Noetherian rings. These are rings in 

which every ideal has a finite generating set. She proved that every ideal in a 

Noetherian ring has a primary decomposition. Her drive to find the simplest 

conceptual basis for Lasker’s theorems is part of what led to abstract algebra 

as we know it today. 

8 The last sentence of the chapter calls for two comments. 

(a) Hilbert did not quite prove everything about what we now call the 

Hilbert class field. In particular, it was only in 1907 that his student Furtwan- 

gler clarified the role of the primes at infinity, and it was only in 1930 that 

Furtwangler (using the full power of class field theory) was able to prove the 

final piece, namely that all ideals of K become principal in the Hilbert class 

field. 

(b) Many other people contributed to the solution of Hilbert’s ninth 

problem. In particular, in 1920 Takagi was able to characterize all Abelian 

extensions of a number field, and somewhat later Artin proved the Artin 

reciprocity law, which provides an explicit link between Galois groups of 

Abelian extensions and generalized ideal class groups. (Artin proved his result 

for special cases in 1923, and more generally, using some important work of 

Chebotarev, in 1927.) Then Artin and Hasse worked out general reciprocity 

laws for Zth powers (Z prime) in 1925 and Znth powers in 1928. This was 

completed by Shafarevich in 1950 with a general reciprocity law. 





CHAPTER 9 

Linear and noncommutative algebra 

1. Introduction of determinants 

Thus far we have investigated two areas of the development of algebra in 

the 19th century. One of them—the theory of groups and fields—was con¬ 

nected with the algebraic solution of equations, and the other—commutative 

algebra—with number-theoretic investigations. These areas were very impor¬ 

tant but they were not the only ones. Determinants, matrices, quaternions, and 

algebras are some of the many concepts outside these areas that entered alge¬ 

bra in the 19th century. Their study gave rise to other concepts and methods. 

We consider first the evolution of linear algebra. We are used to men¬ 

tioning two of its key objects, determinants and matrices, in the same breath, 

but their historical origins are different, and they were far apart for a long 

time. 

From the very beginning determinants were connected with the solution 

of systems of linear equations. In one of his letters to L’Hospital, Leibniz, 

who attached great importance to symbolism, wrote that he sometimes used 

numbers instead of letters. When L’Hospital expressed his puzzlement, Leib¬ 

niz explained his method in a letter dated 28 April 1693. To solve the problem 

of elimination of the unknowns in the system 

{a + bx + cy = 0, 

d + ex + fy = 0, 

g + hx + ky = 0, 

he wrote it in the form 

( 10 + 11®+ 12 y = 0, 

\ 20 + 21a; + 22y = 0, (1) 

[ 30 + 31® + 32y = 0. 

149 
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Here the first entry in each coefficient denotes the number of the equation, 

and the second, the number of the constant term or of the unknown. This 

notation of Leibniz dates from 1684 and is the first instance of the double 

indexing of coefficients to which we are so used today. 

The new notation enabled Leibniz to obtain certain general theorems and 

to express them in compact form. For example, a necessary condition for the 

solvability of the system (1) is the equality1 

10 • 21 • 32 10 • 22 ■ 31 

+ 11-22-30 = +11-20-32 

+ 12 -20-31 +12 -21-30 

This notation shows clearly that the second indices of the coefficients 

change cyclically. 

Leibniz notes that: 1) the factors in each product come from different 

equations and different columns; and 2) the products have opposite signs 

if they have just one term in common (of course, this takes place only for 

third-order determinants).2 

These investigations of Leibniz remained unknown. More than half a cen¬ 

tury later Gabriel Cramer (1704-1752) obtained results similar to but more 

general than those of Leibniz. In his “Introduction into the Analysis of Al¬ 

gebraic Curves” (“Introduction a T Analyse des lignes courbes algebriques,” 

1750) he considered a system of n linear equations in n unknowns which he 

wrote as 

A1 = Zxz + Yly + Xlx + Vlv + • • •, 

A2 = Z2z + Y2y + + V2v + - - •, 

Cramer expressed all unknowns as fractions with the same denominator 

—the sum of products of the form ±ZY XV_The letters Z, Y,X,V,... 

are taken with indices obtained from the n\ permutations of the numbers 

1,2,n. To determine the sign of a product Cramer introduced the notion 

of a “disorder” (derangement) in the position of indices: a “disorder” (i.e., 

an inversion) occurs if a larger number precedes a smaller one. The product 

is taken with a plus or minus sign depending on whether the number of 

“disorders” in a permutation is even or odd. In modern terms, the denominator 
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is equal to the determinant 

Z1 Y1 X1 V1 ... 

Z2 Y2 X2 V2 ... 

The numerators in the expressions for the unknowns are obtained from 

the denominators by replacing the coefficients of an unknown by the constant 

terms with the same indices. 

Cramer’s rule rapidly gained wide currency. This was due in part to its 

use by Bezout for the elimination of one of the unknowns from a pair of 

equations fi(x,y) — 0 and f2{x,y) = 0, where f\ and /2 are polynomials. 

Gradually determinants themselves became an object of study. In par¬ 

ticular, they were investigated by A. T. Vandermonde (1735-1796) and by 

Laplace. An exhaustive theory of determinants was developed by Cauchy in 

a memoir of 1815. He introduced the term “determinant”, used hitherto by 

Gauss to denote the discriminant of a quadratic form in two or three unknowns 

(1801). 

Further progress in the study of systems of linear equations, in particular 

the determination of conditions for their consistency and for the uniqueness 

of their solutions, was achieved much later, namely when the study of deter¬ 

minants was combined with the study of matrices. 

2. Linear transformations and matrices 

The origin of matrices was very different from that of determinants. From 

the very beginning they were introduced as an abbreviated description of 

a linear transformation. The first instance of such a description of a linear 

transformation by a table of coefficients is found in Gauss’ Disquisitiones. In 

Chapter V he considers a ternary quadratic form 

/ = ax2 + a'y2 + a" z2 + 2 bxy + 2b'xz + 2b" yz 

with integral coefficients. As in the case of a binary quadratic form, he makes 

a substitution S 

x = ax' + j3y' + 7 z', 

y = ax' + /3'y' + 7 V, 

2 = a"x' + f3"y' + 7V, 

with integral coefficients. This substitution takes the form / into a form g. 
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Then, writes Gauss, we will, for brevity, ignore the variables and say that / 

goes over into g under the substitution 

a (3 

a' (3' 

a" P" 

(Gauss, Disquisitiones, Section 268, p. 

Continuing, Gauss states that if 

7 

i 

7" 

294 of the English translation). 

/ goes over into f f goes over into f" 

under the substitution under the substitution 

a P 7 8 e C 

a' p' i S' e' £' 

a" p" 7" b" e" £" 

then / goes over into f" under the substitution 

ab + (3fi' + 7<5" ae + pe' + 7c" aC, + (3£' + ry(" 

a'b + p’b' + i6" a’e + p'e' + 7V' a'C + P'C + i C" 

a" 6 + P"b' + i'8" a" e + /3 V + 7"e" a;/C + /3"(' + l" C" 

Thus he gave the rule for multiplication of 3 x 3 matrices. 

Gauss also introduced the concept of the transpose 

a a1 a" 

P & (3" (S") 

7 7' 7" 

of a substitution. He wrote: “We will say that the substitution (S") is obtained 

from the substitution (S) by transposition.” 

We note that in his memoir of 1815 Cauchy gave a rule for the multipli¬ 

cation of determinants based on Gauss’ rule for the multiplication of matrices. 

The introduction of the notion of n-dimensional space in the 1840s 

marked a turning point in the evolution of linear algebra. The term itself 

first appeared in the title of Cayley’s paper “Chapters of Analytic Geometry 

of n-Dimensions” (1843). Everything in this paper was done in a purely al¬ 

gebraic way but towards the end Cayley applied his results to “the case of 

four variables.” The application shows that he treated the variables x1,...,xn 

as projective coordinates of a point in (n - l)-dimensional projective space. 

He stressed that the geometric terminology was just a convenient language 
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and that a vector in n-dimensional space was merely an ordered n-tuple 

(x\,..., xn) of real numbers. 

Hermann Grassmann's famous Doctrine of Linear Extension (Lineare 

Ausdehnungslehre) appeared in 1844. This work was far more profound than 

Cayley’s. According to Grassmann, it was necessary to introduce into geom¬ 

etry “oriented magnitudes” of arbitrary dimension. Vectors that were differ¬ 

ences of two points (beginning and end) represented first-level magnitudes 

(erste Stufe). The product of two such vectors was to be an oriented two- 

dimensional magnitude, and so on. But in his book Grassmann failed to give 

sharp definitions and tended to resort to philosophical arguments. As a re¬ 

sult, in spite of the book’s rich content, contemporary mathematicians failed 

to understand his ideas. In 1862 Grassmann published a more “mathemat¬ 

ical” version of his book, titled Doctrine of Extension (Ausdehnungslehre), 

in which he considered various types of multiplication of vectors (scalar, 

vector, and others), defined linear independence, and introduced “extensive 

magnitudes” (now called nth order Grassmann numbers) and their outer prod¬ 

ucts. Nonetheless, Cayley’s viewpoint remained dominant practically until the 

1930s. 

Ludwig Schlafli’s (1814-1895) book on multidimensional geometry ap¬ 

peared in 1851, and in 1854 Berhard Riemann, one of the greatest mathe¬ 

maticians of the 19th century, introduced in his famous habilitation lecture 

“On the Hypotheses that Lie at the Foundation of Geometry” the concept 

of an n-dimensional manifold and used Gauss’ method of constructing the 

geometry of a surface to construct ?2-dimensional geometries. 

According to Klein,“around 1870 the concept of a space of n dimensions 

became the general property of the advancing young generation”. But even 

earlier this concept played a significant role in linear algebra. Cayley’s famous 

“A Memoir on the Theory of Matrices” (Philosophical Transactions, 1858) 

appeared in 1853. In this memoir Cayley introduced “matrices”, mxn arrays 

of the coefficients of a transformation, which served as compact descriptions 

of linear transformations. For square matrices (m = n) Cayley developed a 

calculus that involved the operations of addition and multiplication (the latter 

for annxm and an m x k matrix). The product of two matrices was the 

matrix of the transformation that was the result of the successive application of 

the linear transformations corresponding to the two matrices. Cayley verified 

the associativity and noncommutativity of matrix multiplication, introduced a 

unit matrix and a zero matrix, and explained the connection between a square 

matrix and its determinant. For the latter he introduced the modem notation 
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\a,ij\. Finally, he showed that the determinant of a product of two matrices is 

the product of the determinants of the factors. 

Generalizing one of Hamilton’s theorems on quaternions, Cayley stated 

the theorem that every square matrix satisfies its characteristic polynomial (the 

Cayley-Hamilton theorem) and proved it for matrices of order two and three. 

The important point here is that Cayley was considering matrix equations, and 

in so doing he was extending the realm of algebra from numbers to objects 

very different from numbers (in modern terms, square matrices of a given 

order form an algebra but not a field). 

In the same memoir Cayley determined the first linear representation of 

an algebra. Specifically, he showed that the algebra of quaternions is isomor¬ 

phic to the algebra of second-order matrices 

f a + di b + ci 

\—b + ci a — di 

in the sense that both have the same multiplication tables. 

What was missing in Cayley’s memoir was the notion of rank of a matrix. 

This concept, and its application to the study of the solvability of a system of 

linear equations (the so called Kronecker-Capelli theorem), were discovered 

independently by a number of authors. The first to publish this theorem was 

Charles L. Dodgson (known under the pseudonym of Lewis Carroll) (1832— 

1898). 

The problem of reduction of a matrix to canonical form was solved inde¬ 

pendently by Karl Weierstrass (1815-1897) and by Jordan. Weierstrass used 

elementary divisors to give a necessary and sufficient condition for similarity 

of matrices. In his Treatise on Substitutions Jordan proved the possibility and 

uniqueness of the reduction of a matrix to normal form. 

Already Euler considered the problem of reduction of a symmetric qua¬ 

dratic form YlaijxiXj, ctij = aji, to a sum of squares. He posed it in con¬ 

nection with the problem of classification of quadratic curves and surfaces 

by reducing them to canonical form. Around 1850, Jacobi and Sylvester in¬ 

dependently solved the problem by establishing the so-called law of inertia 

of quadratic forms. 

We see that all the fundamental theorems of linear algebra were proved 

by the 1870s. By that time the notion of an n-dimensional space entered 

mathematical practice. It is well known that the methods of linear algebra 

were immediately and extensively used in all areas of mathematics, both pure 

and applied. The range of application of these methods continues to grow. 
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3. The English school of symbolic algebra. 

Hamilton’s quaternions 

In the 18th century English mathematicians adhered dogmatically to the New¬ 

tonian tradition (to the point of rejecting the convenient differential notation 

of Leibniz) and ended up in the margin of evolving continental mathematics. 

At the beginning of the 19th century a group of young Cambridge mathemati¬ 

cians, who called themselves the Analytical Society, decided to abandon this 

tradition. They adopted the Leibniz notation in analysis and joined mainstream 

European mathematics. They paid special attention to the role of symbolism 

and created a new conception of algebra. George Peacock, one of the founders 

of the Analytical Society, divided algebra into two parts: the numerical and the 

symbolic. The first operates with letters that always stand for numbers and the 

second with pure symbols that need no interpretation. Lor these symbols one 

can introduce algebraic operations with properties prescribed a priori, i.e., 

axiomatically. But the laws governing these operations must coincide with 

the rules of numerical algebra in the special case when the symbols stand for 

ordinary numbers (principle of permanence). 

What Peacock and others were unaware of was that some choices of 

axioms or rules of operation are inconsistent and therefore cannot be realized 

for actual mathematical objects. Lor example, it was initially assumed that it is 

possible to introduce numbers depending on three or more linearly independent 

units, 

a — cl\Ii + • • • + anln, ti > 3, 

and define for them operations of addition, subtraction, multiplication, and 

division satisfying the same properties as in the case of real numbers. This 

eventually proved to be impossible. Already Augustus De Morgan and Duncan 

F. Gregory, representatives of the school of symbolic algebra, tried in vain 

to introduce such numbers for n = 3, but it took time to understand the 

insurmountable limitations in the conceptions of symbolic algebra. 

In the meantime a number of English mathematicians who adopted the 

basic tenets of symbolic algebra obtained new and important results. Some of 

the results, namely Cayley’s axiomatic definition of a group and his matrix 

calculus, were discussed earlier (see Chapter VII). At this point we mention 

George Boole’s (1815-1864) algebra of logic with the following rules of 

operation (or axioms): 

x(l — x) = 0, 

xy — yx 
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XX = X, X + X = X, 

X + y = y + x, 

x(u + v) = XU + XV. 

Here x and y are to be thought of as classes of objects, 1 as the universal 

class, multiplication as intersection of two classes, and addition as their union. 

The law of the excluded middle can be written as 

x + (1 — x) = 1. 

One of the people influenced by ideas of symbolic algebra was the fa¬ 

mous Irish mathematician William Rowan Hamilton (1805-1865). He began 

with Gauss’ complex numbers. 

As early as 1835 Hamilton gave a purely arithmetical interpretation of 

complex numbers. He considered ordered pairs (a, b) of real numbers and 

identified the pair (a, 0) with the real number a. He called (1,0) the first unit 

and (0,1) the second unit. He regarded two pairs (a, b) and (c, d) as equal if 

and only if a = c and b = d. His definitions of addition and subtraction were 

the obvious ones: 

(a, b) ± (c, d) = (a ± c, b ± d). 

As a first step towards a definition of multiplication Hamilton put 

(0, a) (0,6) = (71 ab, 72 ab). 

He noted that it is convenient to choose 71 = — 1 and 72 = 0 (but that these 

constants can also be chosen differently). These choices, and the distributive 

law of multiplication over addition, imply that 

(a, b) (c, d) = [(a, 0) + (0, b)} [(c, 0) + (0, d)] = (ac - bd, ad + be). 

In particular, 

(0,1)2 = (0,1) (0,1) = (—1,0), 

so that 

V(-i,o) = </=!= (0,1). 

In the same year, i.e., in 1835, Hamilton tried to generalize complex 

numbers by introducing three units (1,0,0), (1,0,0), and (0,0,1). We note 

that this approach was essentially different from the one adopted in conti¬ 

nental Europe which led to the introduction of algebraic numbers. Hamilton 
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adopted three new linearly independent units and considered ordered triples 

(a, 6, c), briefly triplets, of real numbers. He defined addition and subtraction 

coordinatewise. He wanted to define multiplication so that the product of two 

triplets was again a triplet, 

(°i) ^1 > Ci) (<22, 62, C2) = (a3, 63, C3), 

and so that the following two conditions were satisfied: 

1. Multiplication of triplets is to be distributive over addition (i.e., triplets 

can be multiplied like polynomials). 

2. Define the modulus of (a, 6, c) to be a2 + 62 + c2 (i.e., the square of the 

length of the corresponding vector). Then the modulus of the product of two 

triplets is to be equal to the product of the moduli of the factors. Hamilton 

called this condition the law of moduli. 

Now we know that for these requirements to be satisfied the number of 

basic units must be 1, 2, 4, 8, or 16 (a result discovered by Adolf Hurwitz 

in 1898). In other words, Hamilton’s attempt was doomed to failure. We can 

reconstruct his reasoning from his notebooks and from his letters to John 

Graves and to his son. (Such a reconstruction is found in [8]. Hamilton 

described his 1835 investigation of triplets in the introduction to his Lectures 

on Quaternions of 1853.) Putting i2 = j2 = — 1 and ij = ji, he set down 

the following rule of multiplication of triplets 

(a+bi+cj) (x+yi+zj) = (ax—by—cz)+i(ay+bx)+j (az+cx)+ij(bz+cy). 

The problem was how to define the product ij. Hamilton assumed that ij = 

a + (3i + 7j, i.e., that ij is again a triplet. But all his attempts to determine 

the values of a, (3, and 7 so as to satisfy conditions 1 and 2 ended in failure. 

He tried and rejected the possibilities ij = 1, ij = — 1, ij = 0, and ij = ji. 

Finally, as he puts it himself, on Monday, October 16, 1843, a flash of insight 

befell him. He realized that it was necessary to put ij = k, where k is a new 

imaginary unit not expressible in terms of i, j, 1. As van der Waerden puts 

it, Hamilton made “a leap into the fourth dimension” and began to consider 

quaternions 

a + bi + cj + dk, 

briefly (a, b, c, d), for which he established the following rules of multipli¬ 

cation: 

ik = iij = -j; kj = ijj = —i; ki = j; jk = i. 

And, finally, k2 = ijij = —iijj = — 1. 
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In a letter to his son, written shortly before his death, Hamilton says that 

the flash of insight occurred as he was walking to attend and preside over a 

meeting of the Royal Irish Academy: . .your mother was walking with me 

along the Royal Canal...; and although she talked with me now and then, yet 

an undercurrent of thought was going on in my mind, which gave at last a 

result...” Hamilton immediately set down his discovery in his notebook and 

cut the laws of multiplication of quaternions with a knife on a stone of a 

bridge. On the next day he wrote about his discovery to John Graves. 

Hamilton’s rule of multiplication of quaternions is designed so that every 

nonzero quaternion has an inverse. Indeed, let q = a + bi+cj+dk. By analogy 

with the complex numbers we introduce its “conjugate” q = a — bi — cj — dk. 

It is easy to see that qq = a2 + b2 + c2 + d2 = N(q) (the “norm” of q). It 

follows that q-1 = q/N(q). 

This is the story of the introduction into mathematics of the first non- 

commutative division algebra. 

Hamilton and his students were so enthralled by the theory of quaternions 

that they tried to base on it all of analysis and classical mechanics. In time 

mathematicians abandoned this idea. But today quaternions turn out to be 

extremely useful in quantum mechanics.3 

We conclude by noting that Gauss had discovered the law of multiplica¬ 

tion of quaternions before 1820. Like so many of his other discoveries, this 

one was not published in his lifetime. 

4. Algebras 

Hamilton’s ideas, contained in a letter to John Graves dated October 17, 1843, 

fell on fertile soil. Already in December of that year Graves constructed an 

algebra with eight basis elements. In 1845, independently of Graves, Cayley 

also constructed such an algebra. Numbers in these systems came to be known 

as Cayley numbers or octonions. Here multiplication is not only noncommu- 

tative but also nonassociative. 

Another generalization is due to Hamilton who tried to introduce quater¬ 

nions over the field C of complex numbers. But here he was in for a surprise: it 

turned out that this system contains divisors of zero. Indeed, over the field C 

x2 + 1 = (a: 4- i) (x — i). 

Substituting the unit j for x we obtain 

(j + i) {j ~ i) = j2 + 1 = 0. 
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Subsequently, algebras of finite dimension were investigated by Ben¬ 

jamin Peirce (1809-1880), Georg Frobenius (1849-1917), and Fedor E. Molin 

(1869-1951). 

The field of complex numbers, the skew field of quaternions, and matrix 

algebras are instances of associative algebras. A general definition of an asso¬ 

ciative algebra was given by Peirce in his Linear Associative Algebras (1872). 

Peirce defined such an algebra as an n-dimensional vector space on which 

there is defined an associative multiplication that is distributive over (the 

vector space) addition. If ei, e2,..., en are the basic units (or basis vectors), 

then the multiplication is determined as soon as we are given the multiplica¬ 

tion table e^ej = Y2cijek of the basis vectors (the structural formulas of the 

algebra), with the structural constants chosen so that eiiejek) = (eiej)ek- 

Peirce introduced the notions of a nilpotent element e such that er = 0 

and of an idempotent element e such that e2 = e. 

The special position of the field of complex numbers and of the skew 

field of quaternions in the class of associative algebras is apparent from the 

Weierstrass-Frobenius theorem, which asserts that the only associative divi¬ 

sion algebras of finite dimension over the field R of reals are the skew field 

of quaternions, the field of complex numbers, and the field R itself. 

This theorem was proved by Frobenius in 1878 and two years later, 

independently of Frobenius, by Charles Peirce (1839-1914). The reason for 

attaching Weierstrass’ name to the theorem is that he proved earlier an impor¬ 

tant special case, namely, that the only commutative algebras satisfying the 

conditions of the theorem are C and R. This showed that, far from being an 

exception, the occurrence of divisors of zero is rather the rule. 

Weierstrass began to investigate the structure of commutative algebras 

in 1861 and presented his results in his lectures (his results were published 

in 1884 in the paper “On the Theory of Complex Quantities Formed from 

n Principal Units” (Gott. Nachr. 1884)). He gave a general definition of an 

algebra of finite dimension and introduced the important concept of the direct 

sum of algebras {J2aiei} and {J2 bjfj} as the algebra 

C = A © B = (net} © bjfj}, eifj = fjei = 0. 

He also defined the notion of a nilpotent element and showed that every 

commutative algebra without nilpotent elements (over C or R) is the direct 

sum of a number of fields isomorphic to C or R. A generalization of this 

result is known as the Wedderburn theorem. 

Some important results in the theory of algebras were obtained at the turn 

of the 20th century by the eminent Russian mathematician Fedor E. Molin. 
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A graduate of Dorpat (now Tartu) University, Molin worked first at Dorpat 

and then at Tomsk. He was the first to give (in 1903) a precise definition of 

the concept of a radical (the term “radical” is due to Frobenius). Also, he 

introduced the notion of a factor algebra of an algebra (which corresponds to 

the notion of a two-sided ideal), and, by analogy with simple groups, defined 

a simple algebra (of finite dimension) as an algebra without nontrivial two- 

sided ideals. His fundamental result is that every simple algebra (other than 

C) is a full matrix ring of order n whose elements are either real numbers 

(an algebra of dimension n2), or complex numbers (an algebra of dimension 

2n2), or quaternions (an algebra of dimension 4n2).4 

Further fundamental investigations of Molin, as well as of Frobenius, 

supplemented later by Elie Cartan, pertain to the structure of semisimple 

algebras (i.e., algebras without a radical).5 

We cannot here go into the history of algebras in the 20th century other 

than say that this branch of mathematics continues to flourish today. There is 

no doubt that what stimulated its rise was Hamilton’s introduction of quater¬ 

nions. 

Editor’s notes 

1 If we homogenize (1) by attaching a third variable to the constant terms, 

then this equality is a necessary and sufficient condition for the homogenized 

system to have a nontrivial solution. 

2 In addition to Leibniz, Maclaurin (1748) also used determinants (in poor 

notation) to solve systems of linear equations in two, three, and four variables. 

3 Modern quantum mechanics uses Clifford algebras to discuss spin. In the 

simplest case, the Pauli spin matrices lead naturally to a subalgebra of a 

certain Clifford algebra which consists of the matrices in (2), and hence via 

(2) to the quaternions. 

4 Molin did some extremely influential work on algebras and introduced some 

important concepts, but the most important results belong to Wedderburn. For 

example, the result just quoted is a special case of the Wedderburn Structure 

Theorem, which is proved in standard books on associative algebras. 

5 These results are also contained in the Wedderburn Structure Theorem 

mentioned above. More details on the work of Molin, Frobenius, Cartan, and 

Wedderburn can be found in [9], 



CONCLUSION 

We have studied the evolution of some, but certainly not all, branches of 

algebra. (An example of an omitted theory is the theory of invariants.) We 

hope that our incomplete survey has given the reader some idea of how this 

discipline, which began some four thousand years ago with observations on 

the laws of arithmetical operations and their first applications, became ever 

more abstract, developed its proper language in the form of a literal calculus, 

and eventually ended up with an extraordinary trove of ideas, methods, and 

theories with which it can now investigate the most general systems of objects 

(far removed from numbers) on which there are defined binary operations with 

extremely varied properties. 

At first algebra developed very slowly. Some literal notation appeared 

only in the the third century CE (Diophantus) and was limited to a single 

variable and some of its powers. The introduction of literal parameters, that 

is, the use of letters for denoting coefficients, came only in the 16th century, 

and thus more than 13 centuries later. In Diophantus’ Arithmetic we see the 

first records of algebraic equations and the first extension of the number 

system (from whole numbers to the field of all positive and negative rational 

numbers). Complex numbers too appeared only in the 16th century, and the 

rigorous introduction of the real numbers took place only in the 1870s, that 

is, some 300 years later. 

An explosive development of algebra occurred in the 19th century as a 

result of the introduction of a multiplicity of new and very abstract objects, 

such as groups, rings, fields, ideals, matrices, algebras, and so on, and of the 

development of new methods for their study. At first glance it might seem 

that algebra migrated to a domain of very high abstractions far removed from 

the real world and from its science. But this is a deceptive impression. It was 

abstractions of a higher order, and the construction of new abstract theories 
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by new methods, that enabled the algebra of the last two centuries to penetrate 

so deeply into the quantitative regularities of the real world that it could be 

extensively applied not only in all areas of mathematics but also in physics 

(and especially in quantum mechanics). 



Appendix 

A new view of the geometric algebra 
of the ancients* 

In the last twenty years a discussion of the “geometric algebra” of the an¬ 

cient Greeks has taken place in the history of mathematics. The key question 

which has attracted the attention of students of the mathematics of ancient 

civilizations has been whether “geometric algebra” was just a speculative 

construct of H. G. Zeuthen [8] and P. Tannery [16], who introduced mod¬ 

ern notions into ancient mathematics, or whether these scholars managed to 

retrieve the true essence of the creations of the great Greeks. 

The participants in this discussion included B. L. van der Waerden [ 18], 

H. Freudenthal [12], S. Unguru [17], and other historians of science. In spite 

of van der Waerden’s penetrating analysis, persuasive logic, and numerous 

examples in favor of the argument of the existence of geometric algebra, each 

of the participants in the discussion stuck to his own views. Convinced of 

the futility of this approach, we have decided to look at the problem from the 

position of the opponents of modernization in the history of science, i.e., to 

consider the problem in the context of the science of the ancient world. 

We propose to show that geometric language was adopted for the presen¬ 

tation and justification of the elements of algebra not only in ancient Greece 

but also in the ancient civilizations of China, India, and very likely, Babylon. 

Moreover, geometry was the only possible universal language of antiquity. 

This same language continued to serve the science of the Middle Ages in 

the Arab East and in Europe. It was only at the end of the 16th century that 

this language was replaced by the new language of the literal calculus, and. 

* Translator’s note. The following paper by the authors of this book is an account of their 

new view of the rise and evolution of Greek geometric algebra. It differs from the “standard” 

account reflected in the last paragraph of § 1 in Chapter II and is included here at their request. 
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to a large extent, this development determined the structure and character of 

post-Renaissance mathematics. 

Before we can answer the question about the existence of geometric alge¬ 

bra we must decide what this term is to mean. This brings us in a natural way 

to a second, more difficult, question, namely, what do we mean by algebra, 

and when is it legitimate to talk about the presence of algebraic elements. 

If we say that algebra began when literal calculus was created and it 

became possible to operate with formulas, then the family tree of algebra 

goes back to the works of Viete, i.e., to the end of the 16th century. This was 

the view of the famous Soviet mathematician B. N. Delone (1890-1980). One 

can relax this requirement somewhat and say that the elements of algebra came 

into being with the first use of symbolism. Then the creator of this science 

will have been Diophantus of Alexandria, and the time of its birth, the 3rd 

century CE. One could also adopt the opposite view and say that algebra 

came into being only when mathematicians began to investigate algebraic 

structures such as groups, rings, fields, ideals, and so on. Then the birth of 

algebra would have to be moved up to the 19th century, for up to that time 

algebra was just “the art of solving equations”. 

But one may also regard as the elements of algebra the investigation 

and solution of the class of problems associated with algebra today using 

methods that are likewise so associated; i.e., the establishing of basic algebraic 

identities and the formulation and solution of problems equivalent to quadratic 

and cubic equations. In that case, the beginnings of algebra would have to 

be moved back to the 2nd millennium BCE. We propose to adopt the latter 

point of view. It now remains to agree to the meaning of the term “geometric 

algebra”. 

Whenever the solution of an algebraic problem is carried out by means of 

geometric diagrams and geometric constructions we will say that the problem 

has been solved by methods of geometric algebra, i.e., that elements of algebra 

have been dealt with using the language of geometry. 

Having thus defined geometric algebra, we can expect that the first step 

on the road of translation of algebraic concepts into the language of geometry 

will be the identification of magnitude (a given—a number or an unknown) 

with some geometric image. 

In the ancient Indian Sulvasutras (7-5 centuries BCE), as well as in clas¬ 

sical Greek geometric algebra, every magnitude is represented by a segment. 

The product xy of two magnitudes is a rectangle on the corresponding seg¬ 

ments, or an “area”; and x2 and y2 are squares with sides x and y respectively. 

In ancient China identity transformations were always applied to magnitudes 
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associated with some geometric images. While it is true that the ancient Baby¬ 

lonians do not seem to have used geometric diagrams to justify identities and 

to solve equations, the use of terms such as “length”, “width”, and “area” 

for the designation of unknowns suggests that geometric interpretations were 

used to some extent in ancient Babylon as well. 

We give examples which substantiate our claims. The algebraic identity 

(a + b)2 = a2 + b2 + 2 ab, (1) 

which was known in all ancient civilizations, becomes obvious when trans¬ 

lated into the language of geometry 

FIGURE 1 FIGURE 2 

Figure 1 represents the ancient Greek and Indian versions of such a 

translation. 

The ancient Chinese variant of the proof of the identity (1) can be eas¬ 

ily obtained from the well-known “hypotenuse drawing” in the Mathematical 

Treatise on zhou be (Figure 2), one of the oldest sources of Chinese mathe¬ 

matics that has come down to us. Most scholars are of the opinion that Chao 

Chun-Ch’ing’s (3rd century CE) extensive commentary on this work contains 

one of the earliest proofs of Pythagoras’ theorem. We will show below that 

this proof was carried out using geometric algebra. 

Both drawings not only prove (1) but also have an intuitive appeal. This 

is undoubtedly one of the distinctions of this method of establishing truths. We 

now present the ancient Chinese proof of Pythagoras’ theorem as presented 

in the Mathematical Treatise on zhou be (Figure 3). 



166 The Beginnings and Evolution of Algebra 

FIGURE 3 FIGURE 3' 

It is easy to see that the large square on side a + b is made up of the 

square on side c and of the four right triangles with sides a and b, so that 

(a + b)2 = c2 + 2 ab. 

In view of (1), we find that c2 = a2 + b2. 

This variant of the reconstruction of the proof is due to van der Waerden 

[19]. B. Gillon suggests another method of proof. If in Figure 3 we denote 

points by letters as in Figure 3', then we have 

(a — b)2 + 2ab = ALKB+EFGK+CBDE = ACHL+DHFG = a2 +b2. 

Since Chao Chun Ch’ing’s commentary contains a proof of the fact that 

c2 = (a — b)2 + 2ab, Pythagoras' theorem follows. 

According to the author of the treatise, Pythagoras’ theorem was known 

to the ancient Chinese as early as the 6th century BCE, and they knew about 

the 3, 4, 5 right triangle as early as the 12th century BCE. Here is the relevant 

ancient text: 

“If in an angle bar the width is 3—side hou—and the length is 4—side 

hu—then the transversal | which connects the ends of the angle) is 5” [9, p. 

14]. 

As indicated by the treatise, Chougun Dan’ heard this ancient formulation 

from the high official Shan Gao who, in turn, refers to an even earlier time 

when the legendary Fusi (3rd millennium BCE) ruled “the Skies by means of 

numbers” [ibidem]. 

The Indian Sulvasutras contain a diagram similar to that in Figure 3. It 

is easy to see that if we accept van der Waerden’s reconstruction of the proof 
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of Pythagoras’ theorem in ancient China, then this diagram can also be used 

to obtain the algebraic identity 

(a — b)2 = a2 + b2 — 2ab. 

Indeed, the square on side c is made up of the square on side a 

of four right triangles with sides a and b. Hence 

(a — b)2 = c2 — 2 cib. 

Since c2 — a2 +b2, (2) follows. 

Thus the same diagram could be used to prove Pythagoras’ theorem, to 

establish the algebraic identities (a = b)2 = a2 + b2 + 2ab and a2 — b2 — 

(a — b)(a + b) and, as we will show below, to solve quadratic equations. 

As mentioned earlier, one of the basic classes of problems studied by 

ancient mathematicians was the solution of problems equivalent to quadratic 

equations (that is why Renaissance mathematicians, following Arab mathe¬ 

maticians headed by al-Khwarizmi, called algebra “the art of simplification 

and solution of equations”). We will see how such problems were solved in 

the ancient sources. 

In the ancient Indian Sulvasutras the quadratic equation x2 = ab is 

formulated as the problem: “Transform a rectangle into a square”, and its 

solution is given by the construction represented in Figure 4. 

Let AB = a, AD = b. Construct the segment AE equal to b. Halve 

BE : BC — CE = (a — b)/2. Apply the rectangle FDML — CEFH = 

BCHG to the segment FD. This transforms the rectangle ABCD into the 

(2) 

— b and 
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gnomon ACHFLM. Hence 

Now the side x of the required square can be found by means of the 

construction represented in Figure 5. 

Here AC = (a+ b)/2 = AM, CE = (a — b)/2. Construct the segment 

NE = LE = AC. Since CN2 = NE2 - CE2, the segment CN = x. Thus 

to solve a pure quadratic equation one must have the identity (3). Figure 4 

can be viewed as its geometric proof. 

Euclid formulates this problem as follows: “Construct a square equal to 

a given rectangle’’. To within a rotation, Figure 4 is found in proposition 6 

of Book II of his Elements (we will refer to it in the sequel as Ilg). A similar 

construction, given by Euclid in II5, can also be used to justify the identity 

(3). Specifically, put AB = a, BD — b. In Figure 6, 

AC = CD — (a + b)/2, BC= (a- b)/2, AB ■ BD = CD2 - CB2. (4) 

In Figure 7, 

AC = CD = (a - b)/2, BC=(a + b)/2, AB ■ BD = CB2 - CD2. (5) 

However, as was shown by Zeuthen [8], the main reason for the appearance 

of propositions 5 and 6 in Euclid is not the proof of the identity (3) but the 

solution of two types of quadratic equations: 

the elliptic type x(a — x) = S, (6) 

the hyperbolic type x(a + x) = S. (7) 

A C B D 

FIGURE 6 
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FIGURE 7 

The ancient mathematicians formulated the corresponding problems geomet¬ 

rically in terms of “application of areas”. The problem corresponding to equa¬ 

tion (6) is stated as follows: “apply” the area S to the segment a so that the 

“deficiency” is a square. Then in Figure 6, AD — a, ABB'A' = S, and the 

“deficiency” BDD'B' is the required square. 

Similarly, in the problem corresponding to equation (7) one had to “ap¬ 

ply” the area S to the segment a so that the “excess” was a square (Figure 

7). Then equations (6) and (7) can be rewritten, respectively, as 

S = x{a — x) = {a/2)2 — (a/2 — x)2, 

and 

S = x(a + x) = (a/2 + x)2 — {a/2)2. 

In both cases the rectilinear area S is represented as the difference of 

squares. Thus in order to solve an equation of type (6) or (7) one must first 

transform S' into a square and then use Pythagoras’ theorem to find a — x in 

case of (6) and a + x in case of (7). 

The very same two types of quadratic equations with their respective 

geometric solutions can also be found in the Mathematical Treatise on zhou 

be or, more accurately, in Chao Chun-Ch’ing’s commentary on this treatise. 

He first gives a geometric justification (Figures 8 and 9 below) of the two 

symmetric identities 

c2 - b2 = (c - b){c + b) and c2 - a2 = {c - a){c + a), 

where a, b, and c are linked by Pythagoras’ theorem (here, and throughout 

the treatise, a, b, and c are the sides and hypotenuse of a right triangle, i.e., 

c2 = a2 + b2): 
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c 

FIGURE 8 

The area of the gnomon-like strip in Figure 8, referred to in the text as 

the “angle bar from the dividend for hou’\ is a2 and consists of two rectangles 

with respective areas cx and bx, where x = c — b. Hence cx + bx = x(c+b) = 

a2, or 

o2 = (c - b)(c + b), 

so that 

c2 — b2 = (c — b)(c + 6). 

Similar computations applied to Figure 9 yield 

c2 — a2 = b2 = (c — a)(c + a). 

c 

FIGURE 9 
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As pointed out by the Chinese historian of science Tsian’ Bao-tsum [9], 

we have here a geometric solution of a pair of quadratic equations 

x2 + 2 bx = a2 and x2 + 2 ax = b2, 

whose respective roots are c — b and c — a. 

We see that in all known works of ancient mathematicians one very 

frequently comes across geometric terminology in connection with the for¬ 

mulation of algebraic problems and that solutions are sought by means of 

corresponding geometric constructions. This tradition has been maintained 

until very late. We find geometric constructions meant to illustrate the so¬ 

lutions of algebraic equations in the works of Arabic mathematicians in the 

Middle Ages. In the works of the great Renaissance mathematicians Cardano, 

Bombelli, and others, every analytic argument bearing on the determination 

of the roots of linear, quadratic, and cubic equations is accompanied by cor¬ 

responding geometric constructions. And, even long after the creation of the 

literal calculus, post-Renaissance mathematicians continued to apply geomet¬ 

ric interpretations to propositions obtained by analytic means. 

In our view, this confirms the conclusion that for a long time only geom¬ 

etry could be the language of mathematics, for only geometry has the intuitive 

appeal and simplicity which make it possible to easily obtain and establish 

the necessary algebraic formulas. As for literal symbolism, its use called for 

a level of abstraction higher than the one reached at that time. 

Following Zeuthen and Neugebauer, historians of mathematics have 

tended to assume that geometric algebra came into being in ancient Greece, 

and that its rise was connected with the discovery of the problem of incom¬ 

mensurability. But we think that this is not so. After all, the ancient Indian 

Sulvasutras contain no reference to incommensurable segments but do contain 

constructions which we have every right to classify as belonging to geometric 

algebra. Similarly, the ancient Chinese did not consider the irrationality of 

various numbers but did use geometric constructions for the solution of alge¬ 

braic problems and did use geometric terminology. It seems that the use of the 

language of geometry was so natural that it required no special justification. 

This being so, it is doubtful whether the discovery of geometric algebra was 

connected with the discovery of incommensurable segments and whether it 

should be credited exclusively to the Greeks. 

S. Unguru and his followers are of the opinion that Book II of the 

Elements is a purely geometric work. We regard as obvious van der Waerden’s 

assertion that it is almost impossible to think of geometric problems that would 

correspond to some of its propositions. As shown earlier, the propositions in 
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Book II were known in ancient India and in ancient China, where at the time 

geometry did not exist as a theoretical science. These propositions served only 

as proofs of indispensable algebraic identities. 

To sum up: 

1. In the mathematics of all ancient civilizations magnitudes were rep¬ 

resented by segments, and the product of two magnitudes a and b was repre¬ 

sented by a rectangle with sides a and b. 

2. In ancient Greece, India, and China there were geometric justifications 

of the identities 

(a ± b)2 — a2 + b2 ± 2ab and a2 — b2 = (a — b)(a + b), 

and in India and Greece also of the identity 

3. There were geometric solutions of the quadratic equations 

x2 = ab, x{a — x) = S, x(a + x) = S. 

4. There was no developed theoretical geometry based on a system of 

axioms either in China or in India. Thus the diagrams given earlier cannot 

be regarded as statements of geometric theorems (no such theorems existed 

there at the time) and must be viewed as records of corresponding algebraic 

identities or as solutions of algebraic equations. 

5. It was only in ancient Greece that geometry was constructed as a the¬ 

oretical science based on a system of axioms and where geometric algebra 

was further developed. For example, Greek mathematicians proved that multi¬ 

plication is distributive over addition; investigated under what conditions the 

equation x(a — x) = S had positive roots; provided a geometric justification 

for the solution of the Pell equation x2 — 2y2 — ±1; and so on. 

Thus we regard it as obvious that geometric algebra came into being as 

the most convenient, natural, intuitive, and as the only possible—on a certain 

level of abstraction of mathematical knowledge—system for general reasoning 

and for the justification of known facts. In the course of their respective 

evolutions, all ancient systems of mathematics went through a phase like 

geometric algebra. And in ancient Greece geometric algebra was theoretically 

interpreted and acquired a completed form after the discovery of the problem 

of incommensurability and after geometry became a rigorous mathematical 

theory. 
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