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Motivation

Model Predictive Control is attracting researchers in 
many field. 

Space X’s autonomous landing

Autonomous driving Car

Boston Dynamics’s robots



Let’s start with a simple optimal control problem

𝐴 =
1 1
0 1

, 𝐵 =
0
1

𝒙𝑘+1 = 𝐴𝒙𝑘 + 𝐵𝑢𝑘

A single dimensional car-like dynamics

A quadratic stage cost function 

𝑄 = diag 1, 1 , 𝑅 = 0.01
Σk=0
∞ (𝒙𝑘

𝑇𝑄𝒙𝑘 + 𝑅𝑢𝑘
2)

Finding a sequence of actions 𝑢𝑘 𝑘=0
∞ that will minimize Σk=0

∞ (𝒙𝑘
𝑇𝑄𝒙𝑘 + 𝑅𝑢𝑘

2)
subject to a set of constraints 𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 is called discrete LQR problem.

The optimal set of actions are solved as 𝑢𝑘
∗ = 𝐾𝒙𝑘

where 
𝐾 = − 𝑅 + 𝐵𝑇𝑃𝐵 −1𝐵𝑇𝑃𝐴

𝑃 = 𝐶𝑇𝑄𝐶 + 𝐴𝑇𝑃𝐴 − 𝐴𝑇𝑃𝐵 𝑅 + 𝐵𝑇𝑃𝐵 −1𝐵𝑇𝑃𝐴



The simple problem with some constraints

𝐴 =
1 1
0 1

, 𝐵 =
0
1

𝒙𝑘+1 = 𝐴𝒙𝑘 + 𝐵𝑢𝑘

A single dimensional car-like dynamics

−1 < 𝑥1<0.1
−0.5 < 𝑥2 < 0.5
−1 < 𝑢 < 1

with additional constraints

wall (𝑥1 = −1) wall (𝑥1 = 0.1)
velocity limit

acc. limit

Of course, the input that LQR gives will sometime violate the above constraints.  

Intuitively, an actions 𝑐𝑘 to the LQR policy as the following way would works well:

𝑢𝑘 = 𝐾𝑥𝑘 + 𝑐𝑘

because, although 𝐾𝑥𝑘 returns infeasible input regarding the constraints,
the 𝑐𝑘 forcibly make it feasible. 

A trick



In that case, the optimization problem is formulated as: 

Find 𝑐𝑘 𝑘=0
∞ that minimizes Σk=0

∞ 𝒙𝑘
𝑇𝑄𝒙𝑘 + 𝑅𝑢𝑘

2

subject to  
𝒙𝑘+1 = 𝐴𝒙𝑘 + 𝐵𝑢𝑘

𝑢𝑘 = 𝐾𝒙𝑘 + 𝑐𝑘
𝐹𝒙𝑘 + 𝐺𝑢𝑘 ≤ 𝟏 −1 < 𝑥1<0.1

−0.5 < 𝑥2 < 0.5
−1 < 𝑢 < 1

𝐹 =

−1 0
10 0
−2 0
0 −2
0 0
0 0

, G =

0
0
0
0
−1
1𝐹 + 𝐺𝐾 𝒙𝑘 + 𝐺𝑐𝑘 ≤ 𝟏

(example of 𝐹𝒙 + 𝐺𝑢 ≤ 𝟏)

𝒙𝑘+1 = 𝐴 + 𝐵𝐾 𝒙𝑘 + 𝐺𝑐𝑘

MPC using Dual mode-prediction paradigm

※ Note that 𝒙 𝐹𝒙 + 𝐺𝑢 ≤ 𝟏} is a convex set.



MPC using Dual mode-prediction paradigm

A. Dual mode-prediction paradigm

past future

𝑖 𝑖 + 1 𝑁 … ∞

Mode 1: 𝑢𝑖+1 = 𝐾𝒙𝑖 + 𝑐𝑖 Mode 2: 𝑢𝑖 = 𝐾𝒙𝑖

The number of optimization variables
is reduced.

𝑐𝑖 𝑖=0
∞ ➜ 𝑐𝑖 𝑖=0

𝑁−1

infinite N

Q. But how we can avoid that “infinite dimensional optimization” problem?

Model Predictive Control with Dual mode-prediction paradigm

1. Solve above-mentioned optimization problem at every time-step and obtain set of 𝑐𝑖|𝑘 𝑖=0

𝑁−1
.

2.   Use 𝑢0|k = 𝐾𝑥0|𝑘 + 𝑐0|𝑘 for single time step. 

0

*Hereinafter we refer to 𝑐𝑖, 𝑢𝑖 and 𝒙𝑖|𝑘 solved at time step 𝑘 as 𝑐𝑖|𝑘 , 𝑥𝑖|𝑘 and 𝑢𝑖|𝑘, respectively. 

By iterating the above process, we can deal with additive disturbance and modelling error.
Of course, without these error, the iteration does not make sense. 



Find 𝑐𝑖|𝑘 𝑖=0

𝑁−1
that minimizes Σi=0

𝑁−1 𝒙𝑖|𝑘
𝑇 𝑄𝒙𝑖|𝑘 + 𝑅𝑢𝑖|𝑘

2 + 𝒙𝑁|𝑘
𝑇 𝑃𝒙𝑁|𝑘

subject to  𝒙𝑖+1|𝑘 = 𝜙𝒙𝒊|𝑘 + 𝐺𝑐𝑖|𝑘
𝐹 + 𝐺𝐾 𝒙𝑖|𝑘 + 𝐺𝑐𝑖|𝑘 ≤ 𝟏

LQR cost at step 𝑁
which is analytically available 

Optimization problem can be written as follows.

Q. In this formulation, it is obvious that when 𝑖 ≤ 𝑁 − 1, 
constraint 𝐹𝒙𝑖|𝑘 + 𝐺𝑢𝑖|𝑘 ≤ 𝟏 holds. However, it is not always the case when 𝑘 > 𝑁.

How can we deal with this problem?

A. Add a terminal constraint

Suppose we can find a set 𝜒𝑡𝑒𝑟 in which any 𝒙 ∈ 𝜒𝑡𝑒𝑟 always will be drives into 
the set 𝜒 following the derived dynamics of LQR (i.e. 𝒙𝑖+1|𝑘 = 𝜙𝒙𝒊|𝑘) satisfying 

the constraint 𝐹𝒙𝑖|𝑘 + 𝐺𝑢𝑖|𝑘 ≤ 𝟏. 

If we add a constraint  𝒙𝑖|𝑘 ∈ 𝜒𝑡𝑒𝑟 to the above optimization problem, 

𝐹𝒙𝑖|𝑘 + 𝐺𝑢𝑖|𝑘 ≤ 𝟏will be always satisfied even when 𝑖 > 𝑁. 

Model Predictive Control
※ Hereinafter Let me refer to (A+BK) as  𝜙



The existence of set like 𝜒𝑡𝑒𝑟 is obvious if we think about a set 𝑆 ≔ {x: 𝒙 < 𝜖}. 
In that region, all 𝒙 → 𝟎 without violating the constraints.

Maximum Positive Invariant (MPI) Set

But if we take a smaller 𝜒𝑡𝑒𝑟, of course constraints becomes more strict, which requires
many prediction step and makes optimization computationally-heavy. 

So what we want to have is the “largest 𝜒𝑡𝑒𝑟”, 
which we call Maximum Positive Invariant (MPI) Set 𝜒𝑀𝑃𝐼.

𝜒𝑡𝑒𝑟

(N+10)-feasible region N-feasible region

𝑥1

𝑥2

time



Let’s find 𝜒𝑀𝑃𝐼 for the simple car case using Monte Carlo !!

Find MPI Set by Monte Carlo

Scatter    𝜒
(𝑖)

≔ 𝒙 𝐹 + 𝐺𝐾 𝜙𝑖𝒙 ≤ 𝟏}

𝑖 = 0 𝑖 = 1 𝑖 =2 𝑖 =3 𝑖 =4 𝑖=5

𝑖=6 𝑖=7 𝑖=8 𝑖=9 𝑖=10 𝑖=11

𝑖=12 𝑖=13 𝑖=14
Same!!



Same!!

Find MPI Set by Monte Carlo
When we calculate the intersection ∩𝑖=0

𝑛 𝜒𝑖…

𝑛 = 0 𝑛 = 1 n=2

n=3 n=4 n=5

We can say that 𝜒𝑀𝑃𝐼 =∩𝑖=0
3 𝜒𝑖

Same!! Same!!



Find MPI Set Semi-analytically
What we did actually using Monte Carlo is obtaining the intersection set

𝜒𝑀𝑃𝐼 =∩𝑛=0
𝜈 , 𝜒(𝑛) ≔ 𝒙| 𝐹 + 𝐺𝐾 𝜙𝑖𝒙 ≤ 𝟏 .

where 𝜈 is smallest positive integer such that 𝐹 + 𝐺𝐾 𝜙𝜈+1𝒙 ≤ 𝟏. (*)

(* Please see Ref. 2, pp. 22—23 for the exact proof)

The terminal constraint 𝒙𝑖|𝑘 ∈ 𝜒𝑡𝑒𝑟 for the optimization can be expressed as

The following inequality: 

𝑉𝑇𝒙𝑖|𝑘 ≤ 𝟏, 𝑉𝑇 =

𝐹 + 𝐺𝐾
𝐹 + 𝐺𝐾 𝜙

⋮
𝐹 + 𝐺𝐾 𝜙𝜈

Find 𝑐𝑘 𝑖=0
𝑁−1 that minimizes Σi=0

𝑁−1 𝒙𝑖|𝑘
𝑇 𝑄𝒙𝑖|𝑘 + 𝑅𝑢𝑖|𝑘

2 + 𝒙𝑁|𝑘
𝑇 𝑃𝒙𝑁|𝑘

subject to  𝒙𝑖+1|𝑘 = 𝜙𝒙𝑖|𝑘 + 𝐺𝑐𝑖
𝐹 + 𝐺𝐾 𝒙𝑖|𝑘 + 𝐺𝑐𝑘 ≤ 𝟏

𝑉𝑇𝒙𝑖|𝑘 ≤ 𝟏

Model Predictive Control using the Dual-Mode Prediction

Now that we can have the following.



Find MPI Set Semi-analytically

where 𝑛𝑐 is the number of constraints (i.e. number of rows of 𝐹 + 𝐺𝐾) and
𝐹 + 𝐺𝐾 𝑗 is the 𝑗-th row vector of 𝐹 + 𝐺𝐾 .

※Don’ t worry. This procedure is performed offline.

𝑣 can be found by iteration of the solve-and-check procedure of the following 
linear programming (LP):

While(m ≠ 𝜈){
For j=0 : 𝑛𝑐

𝒙𝑗
max← argmax𝒙 𝐹 + 𝐺𝐾 𝑗𝜙

𝑚+1𝒙

subject to 𝐹 + 𝐺𝐾 𝜙𝜈+1𝒙 ≤ 𝟏, 𝑖 = 0…𝑚
end for
if 𝐹 + 𝐺𝐾 𝜙𝑛+1𝒙𝑗

𝐦𝐚𝐱 ≤ 1 then m = 𝜈 is proven

end while
Return m

linear programming



Model Predictive Control with Uncertainty

𝒙𝑘+1 = 𝐴𝒙𝑘 + 𝐵𝑢𝑘 +𝒘𝑘

Consider a dynamics with additive disturbance (can be caused by modelling-error)

where 𝑤𝑘 ∈ 𝑊 and 𝑊 is a convex set. 

For this problem, disturbance invariant set 𝑍 plays a key role.

Def. (disturbance invariant set)
A set 𝑍 is a disturbance invariant set if 𝐴 + 𝐵𝐾 𝒙 + 𝒘 ∈ 𝑍 is satisfied
for all 𝒙 ∈ 𝑍 , and for all 𝒘 ∈ 𝑊.

The following contents may be explained on the white board:  

1. Minkovski sum
2. Minimum disturbance invariant set (1dim)
3. Minimum disturbance invariant set (n-dim)
4. Robust Model Predictive Control



Reference

[1] Kouvaritakis, Basil, and Mark Cannon. Model predictive control. 
Springer, Switzerland, 2016. (*pdf is freely available online)

[2] Langson, W., Chryssochoos, I., Raković, S. V., & Mayne, D. Q. (2004). 
Robust model predictive control using tubes. Automatica, 40(1), 125-133.


