
Comprehensive Rust 🦀

1 / 232

Welcome to Comprehensive Rust 🦀
This is a four day Rust course developed by the Android team. The course covers the full spectrum
of Rust, from basic syntax to advanced topics like generics and error handling. It also includes
Android-specific content on the last day.

The goal of the course is to teach you Rust. We assume you don’t know anything about Rust and
hope to:

Give you a comprehensive understanding of the Rust syntax and language.
Enable you to modify existing programs and write new programs in Rust.
Show you common Rust idioms.

On Day 4, we will cover Android-specific things such as:

Building Android components in Rust.
AIDL servers and clients.
Interoperability with C, C++, and Java.

It is important to note that this course does not cover Android application development in Rust, and
that the Android-specific parts are specifically about writing code for Android itself, the operating
system.

Non-Goals

Rust is a large language and we won’t be able to cover all of it in a few days. Some non-goals of this
course are:

Learn how to use async Rust — we’ll only mention async Rust when covering traditional
concurrency primitives. Please see Asynchronous Programming in Rust instead for details on
this topic.
Learn how to develop macros, please see Chapter 19.5 in the Rust Book and Rust by Example
instead.

Assumptions

The course assumes that you already know how to program. Rust is a statically typed language and
we will sometimes make comparisons with C and C++ to better explain or contrast the Rust
approach.

If you know how to program in a dynamically typed language such as Python or JavaScript, then you
will be able to follow along just fine too.

Speaker Notes

This is an example of a speaker note. We will use these to add additional information to the slides.
This could be key points which the instructor should cover as well as answers to typical questions
which come up in class.

https://rust-lang.github.io/async-book/
https://doc.rust-lang.org/book/ch19-06-macros.html
https://doc.rust-lang.org/rust-by-example/macros.html

Comprehensive Rust 🦀

2 / 232

Running the Course

This page is for the course instructor.

Here is a bit of background information about how we’ve been running the course internally at
Google.

To run the course, you need to:

1. Make yourself familiar with the course material. We’ve included speaker notes on some of the
pages to help highlight the key points (please help us by contributing more speaker notes!).
You should make sure to open the speaker notes in a popup (click the link with a little arrow
next to “Speaker Notes”). This way you have a clean screen to present to the class.

2. Decide on the dates. Since the course is large, we recommend that you schedule the four days
over two weeks. Course participants have said that they find it helpful to have a gap in the
course since it helps them process all the information we give them.

3. Find a room large enough for your in-person participants. We recommend a class size of 15-20
people. That’s small enough that people are comfortable asking questions — it’s also small
enough that one instructor will have time to answer the questions.

4. On the day of your course, show up to the room a little early to set things up. We recommend
presenting directly using mdbook serve running on your laptop (see the installation
instructions). This ensures optimal performance with no lag as you change pages. Using your
laptop will also allow you to fix typos as you or the course participants spot them.

5. Let people solve the exercises by themselves or in small groups. Make sure to ask people if
they’re stuck or if there is anything you can help with. When you see that several people have
the same problem, call it out to the class and offer a solution, e.g., by showing people where to
find the relevant information in the standard library.

6. If you don’t skip the Android specific parts on Day 4, you will need an AOSP checkout. Make a
checkout of the course repository on the same machine and move the src/android/ directory
into the root of your AOSP checkout. This will ensure that the Android build system sees the
Android.bp files in src/android/ .

Ensure that adb sync works with your emulator or real device and pre-build all Android
examples using src/android/build_all.sh . Read the script to see the commands it runs and
make sure they work when you run them by hand.

That is all, good luck running the course! We hope it will be as much fun for you as it has been for us!

Please provide feedback afterwards so that we can keep improving the course. We would love to
hear what worked well for you and what can be made better. Your students are also very welcome
to send us feedback!

https://github.com/google/comprehensive-rust#building
https://source.android.com/docs/setup/download/downloading
https://github.com/google/comprehensive-rust
https://github.com/google/comprehensive-rust/discussions/86
https://github.com/google/comprehensive-rust/discussions/100

Comprehensive Rust 🦀

3 / 232

Course Structure

This page is for the course instructor.

The course is fast paced and covers a lot of ground:

Day 1: Basic Rust, ownership and the borrow checker.
Day 2: Compound data types, pattern matching, the standard library.
Day 3: Traits and generics, error handling, testing, unsafe Rust.
Day 4: Concurrency in Rust and interoperability with other languages

Exercise for Day 4: Do you interface with some C/C++ code in your project which we could
attempt to move to Rust? The fewer dependencies the better. Parsing code would be ideal.

Format

The course is meant to be very interactive and we recommend letting the questions drive the
exploration of Rust!

Comprehensive Rust 🦀

4 / 232

Keyboard Shortcuts
There are several useful keyboard shortcuts in mdBook:

Arrow-Left : Navigate to the previous page.
Arrow-Right : Navigate to the next page.
Ctrl + Enter : Execute the code sample that has focus.
s : Activate the search bar.

Comprehensive Rust 🦀

5 / 232

Using Cargo
When you start reading about Rust, you will soon meet Cargo, the standard tool used in the Rust
ecosystem to build and run Rust applications. Here we want to give a brief overview of what Cargo is
and how it fits into the wider ecosystem and how it fits into this training.

Installation

Rustup (Recommended)

You can follow the instructions to install cargo and rust compiler, among other standard ecosystem
tools with the rustup tool, which is maintained by the Rust Foundation.

Along with cargo and rustc, Rustup will install itself as a command line utility that you can use to
install/switch toolchains, setup cross compilation, etc.

Package Managers

Debian

On Debian/Ubuntu, you can install Cargo, the Rust source and the Rust formatter with

This will allow rust-analyzer to jump to the definitions. We suggest using VS Code to edit the code
(but any LSP compatible editor works).

Some folks also like to use the JetBrains family of IDEs, which do their own analysis but have their
own tradeoffs. If you prefer them, you can install the Rust Plugin. Please take note that as of January
2023 debugging only works on the CLion version of the JetBrains IDEA suite.

$ sudo apt install cargo rust-src rustfmt

https://doc.rust-lang.org/cargo/
https://rustup.rs/
https://github.com/rust-lang/rustfmt
https://rust-analyzer.github.io/
https://code.visualstudio.com/
https://www.jetbrains.com/clion/
https://www.jetbrains.com/rust/

Comprehensive Rust 🦀

6 / 232

The Rust Ecosystem
The Rust ecosystem consists of a number of tools, of which the main ones are:

rustc : the Rust compiler which turns .rs files into binaries and other intermediate formats.

cargo : the Rust dependency manager and build tool. Cargo knows how to download
dependencies hosted on https://crates.io and it will pass them to rustc when building your
project. Cargo also comes with a built-in test runner which is used to execute unit tests.

rustup : the Rust toolchain installer and updater. This tool is used to install and update rustc
and cargo when new versions of Rust is released. In addition, rustup can also download
documentation for the standard library. You can have multiple versions of Rust installed at
once and rustup will let you switch between them as needed.

Details

Key points:

Rust has a rapid release schedule with a new release coming out every six weeks. New
releases maintain backwards compatibility with old releases — plus they enable new
functionality.

There are three release channels: “stable”, “beta”, and “nightly”.

New features are being tested on “nightly”, “beta” is what becomes “stable” every six weeks.

Rust also has editions: the current edition is Rust 2021. Previous editions were Rust 2015 and
Rust 2018.

The editions are allowed to make backwards incompatible changes to the language.

To prevent breaking code, editions are opt-in: you select the edition for your crate via the
Cargo.toml file.

To avoid splitting the ecosystem, Rust compilers can mix code written for different
editions.

Mention that it is quite rare to ever use the compiler directly not through cargo (most
users never do).

It might be worth alluding that Cargo itself is an extremely powerful and comprehensive
tool. It is capable of many advanced features including but not limited to:

Project/package structure
workspaces
Dev Dependencies and Runtime Dependency management/caching
build scripting
global installation
It is also extensible with sub command plugins as well (such as cargo clippy).

Read more from the official Cargo Book

https://crates.io/
https://doc.rust-lang.org/edition-guide/
https://doc.rust-lang.org/cargo/reference/workspaces.html
https://doc.rust-lang.org/cargo/reference/build-scripts.html
https://doc.rust-lang.org/cargo/commands/cargo-install.html
https://github.com/rust-lang/rust-clippy
https://doc.rust-lang.org/cargo/

Comprehensive Rust 🦀

7 / 232

Code Samples in This Training
For this training, we will mostly explore the Rust language through examples which can be executed
through your browser. This makes the setup much easier and ensures a consistent experience for
everyone.

Installing Cargo is still encouraged: it will make it easier for you to do the exercises. On the last day,
we will do a larger exercise which shows you how to work with dependencies and for that you need
Cargo.

The code blocks in this course are fully interactive:

You can use Ctrl + Enter to execute the code when focus is in the text box.

Details

Most code samples are editable like shown above. A few code samples are not editable for various
reasons:

The embedded playgrounds cannot execute unit tests. Copy-paste the code and open it in the
real Playground to demonstrate unit tests.

The embedded playgrounds lose their state the moment you navigate away from the page!
This is the reason that the students should solve the exercises using a local Rust installation or
via the Playground.

fn main() {
 println!("Edit me!");
}

Comprehensive Rust 🦀

8 / 232

Running Code Locally with Cargo
If you want to experiment with the code on your own system, then you will need to first install Rust.
Do this by following the instructions in the Rust Book. This should give you a working rustc and
cargo . At the time of writing, the latest stable Rust release has these version numbers:

With this is in place, then follow these steps to build a Rust binary from one of the examples in this
training:

1. Click the “Copy to clipboard” button on the example you want to copy.

2. Use cargo new exercise to create a new exercise/ directory for your code:

3. Navigate into exercise/ and use cargo run to build and run your binary:

4. Replace the boiler-plate code in src/main.rs with your own code. For example, using the
example on the previous page, make src/main.rs look like

5. Use cargo run to build and run your updated binary:

6. Use cargo check to quickly check your project for errors, use cargo build to compile it
without running it. You will find the output in target/debug/ for a normal debug build. Use
cargo build --release to produce an optimized release build in target/release/ .

7. You can add dependencies for your project by editing Cargo.toml . When you run cargo
commands, it will automatically download and compile missing dependencies for you.

Details

% rustc --version
rustc 1.61.0 (fe5b13d68 2022-05-18)
% cargo --version
cargo 1.61.0 (a028ae4 2022-04-29)

$ cargo new exercise
 Created binary (application) `exercise` package

$ cd exercise
$ cargo run
 Compiling exercise v0.1.0 (/home/mgeisler/tmp/exercise)
 Finished dev [unoptimized + debuginfo] target(s) in 0.75s

 Running `target/debug/exercise`
Hello, world!

fn main() {
 println!("Edit me!");

}

$ cargo run
 Compiling exercise v0.1.0 (/home/mgeisler/tmp/exercise)
 Finished dev [unoptimized + debuginfo] target(s) in 0.24s

 Running `target/debug/exercise`
Edit me!

https://doc.rust-lang.org/book/ch01-01-installation.html

Comprehensive Rust 🦀

9 / 232

Try to encourage the class participants to install Cargo and use a local editor. It will make their life
easier since they will have a normal development environment.

Comprehensive Rust 🦀

10 / 232

Welcome to Day 1
This is the first day of Comprehensive Rust. We will cover a lot of ground today:

Basic Rust syntax: variables, scalar and compound types, enums, structs, references, functions,
and methods.

Memory management: stack vs heap, manual memory management, scope-based memory
management, and garbage collection.

Ownership: move semantics, copying and cloning, borrowing, and lifetimes.

Details

Please remind the students that:

They should ask questions when they get them, don’t save them to the end.
The class is meant to be interactive and discussions are very much encouraged!

As an instructor, you should try to keep the discussions relevant, i.e., keep the related to
how Rust does things vs some other language. It can be hard to find the right balance,
but err on the side of allowing discussions since they engage people much more than
one-way communication.

The questions will likely mean that we talk about things ahead of the slides.
This is perfectly okay! Repetition is an important part of learning. Remember that the
slides are just a support and you are free to skip them as you like.

The idea for the first day is to show just enough of Rust to be able to speak about the famous
borrow checker. The way Rust handles memory is a major feature and we should show students
this right away.

If you’re teaching this in a classroom, this is a good place to go over the schedule. We suggest
splitting the day into two parts (following the slides):

Morning: 9:00 to 12:00,
Afternoon: 13:00 to 16:00.

You can of course adjust this as necessary. Please make sure to include breaks, we recommend a
break every hour!

Comprehensive Rust 🦀

11 / 232

What is Rust?
Rust is a new programming language which had its 1.0 release in 2015:

Rust is a statically compiled language in a similar role as C++
rustc uses LLVM as its backend.

Rust supports many platforms and architectures:
x86, ARM, WebAssembly, …
Linux, Mac, Windows, …

Rust is used for a wide range of devices:
firmware and boot loaders,
smart displays,
mobile phones,
desktops,
servers.

Details

Rust fits in the same area as C++:

High flexibility.
High level of control.
Can be scaled down to very constrained devices like mobile phones.
Has no runtime or garbage collection.
Focuses on reliability and safety without sacrificing performance.

https://blog.rust-lang.org/2015/05/15/Rust-1.0.html
https://doc.rust-lang.org/nightly/rustc/platform-support.html

Comprehensive Rust 🦀

12 / 232

Hello World!
Let us jump into the simplest possible Rust program, a classic Hello World program:

What you see:

Functions are introduced with fn .
Blocks are delimited by curly braces like in C and C++.
The main function is the entry point of the program.
Rust has hygienic macros, println! is an example of this.
Rust strings are UTF-8 encoded and can contain any Unicode character.

Details

This slide tries to make the students comfortable with Rust code. They will see a ton of it over the
next four days so we start small with something familiar.

Key points:

Rust is very much like other languages in the C/C++/Java tradition. It is imperative (not
functional) and it doesn’t try to reinvent things unless absolutely necessary.

Rust is modern with full support for things like Unicode.

Rust uses macros for situations where you want to have a variable number of arguments (no
function overloading).

fn main() {
 println!("Hello 🌍!");
}

Comprehensive Rust 🦀

13 / 232

Small Example
Here is a small example program in Rust:

Details

The code implements the Collatz conjecture: it is believed that the loop will always end, but this is
not yet proved. Edit the code and play with different inputs.

Key points:

Explain that all variables are statically typed. Try removing i32 to trigger type inference. Try
with i8 instead and trigger a runtime integer overflow.

Change let mut x to let x , discuss the compiler error.

Show how print! gives a compilation error if the arguments don’t match the format string.

Show how you need to use {} as a placeholder if you want to print an expression which is
more complex than just a single variable.

Show the students the standard library, show them how to search for std::fmt which has
the rules of the formatting mini-language. It’s important that the students become familiar
with searching in the standard library.

fn main() { // Program entry point
 let mut x: i32 = 6; // Mutable variable binding
 print!("{x}"); // Macro for printing, like printf
 while x != 1 { // No parenthesis around expression
 if x % 2 == 0 { // Math like in other languages
 x = x / 2;
 } else {
 x = 3 * x + 1;
 }
 print!(" -> {x}");
 }
 println!();
}

Comprehensive Rust 🦀

14 / 232

Why Rust?
Some unique selling points of Rust:

Compile time memory safety.
Lack of undefined runtime behavior.
Modern language features.

Details

Make sure to ask the class which languages they have experience with. Depending on the answer
you can highlight different features of Rust:

Experience with C or C++: Rust eliminates a whole class of runtime errors via the borrow
checker. You get performance like in C and C++, but you don’t have the memory unsafety
issues. In addition, you get a modern language with constructs like pattern matching and
built-in dependency management.

Experience with Java, Go, Python, JavaScript…: You get the same memory safety as in those
languages, plus a similar high-level language feeling. In addition you get fast and predictable
performance like C and C++ (no garbage collector) as well as access to low-level hardware
(should you need it)

Comprehensive Rust 🦀

15 / 232

Compile Time Guarantees
Static memory management at compile time:

No uninitialized variables.
No memory leaks (mostly, see notes).
No double-frees.
No use-after-free.
No NULL pointers.
No forgotten locked mutexes.
No data races between threads.
No iterator invalidation.

Details

It is possible to produce memory leaks in (safe) Rust. Some examples are:

You can for use Box::leak to leak a pointer. A use of this could be to get runtime-initialized
and runtime-sized static variables
You can use std::mem::forget to make the compiler “forget” about a value (meaning the
destructor is never run).
You can also accidentally create a reference cycle with Rc or Arc .
In fact, some will consider infinitely populating a collection a memory leak and Rust does not
protect from those.

For the purpose of this course, “No memory leaks” should be understood as “Pretty much no
accidental memory leaks”.

https://doc.rust-lang.org/std/boxed/struct.Box.html#method.leak
https://doc.rust-lang.org/std/mem/fn.forget.html
https://doc.rust-lang.org/book/ch15-06-reference-cycles.html

Comprehensive Rust 🦀

16 / 232

Runtime Guarantees
No undefined behavior at runtime:

Array access is bounds checked.
Integer overflow is defined.

Details

Key points:

Integer overflow is defined via a compile-time flag. The options are either a panic (a controlled
crash of the program) or wrap-around semantics. By default, you get panics in debug mode
(cargo build) and wrap-around in release mode (cargo build --release).

Bounds checking cannot be disabled with a compiler flag. It can also not be disabled directly
with the unsafe keyword. However, unsafe allows you to call functions such as
slice::get_unchecked which does not do bounds checking.

Comprehensive Rust 🦀

17 / 232

Modern Features
Rust is built with all the experience gained in the last 40 years.

Language Features

Enums and pattern matching.
Generics.
No overhead FFI.
Zero-cost abstractions.

Tooling

Great compiler errors.
Built-in dependency manager.
Built-in support for testing.
Excellent Language Server Protocol support.

Details

Key points:

Zero-cost abstractions, similar to C++, means that you don’t have to ‘pay’ for higher-level
programming constructs with memory or CPU. For example, writing a loop using for should
result in roughly the same low level instructions as using the .iter().fold() construct.

It may be worth mentioning that Rust enums are ‘Algebraic Data Types’, also known as ‘sum
types’, which allow the type system to express things like Option<T> and Result<T, E> .

Remind people to read the errors — many developers have gotten used to ignore lengthy
compiler output. The Rust compiler is significantly more talkative than other compilers. It will
often provide you with actionable feedback, ready to copy-paste into your code.

The Rust standard library is small compared to languages like Java, Python, and Go. Rust does
not come with several things you might consider standard and essential:

a random number generator, but see rand.
support for SSL or TLS, but see rusttls.
support for JSON, but see serde_json. The reasoning behind this is that functionality in
the standard library cannot go away, so it has to be very stable. For the examples above,
the Rust community is still working on finding the best solution — and perhaps there
isn’t a single “best solution” for some of these things.

Rust comes with a built-in package manager in the form of Cargo and this makes it trivial to
download and compile third-party crates. A consequence of this is that the standard library
can be smaller.

Discovering good third-party crates can be a problem. Sites like https://lib.rs/ help with this by
letting you compare health metrics for crates to find a good and trusted one.

rust-analyzer is a well supported LSP implementation used in major IDEs and text editors.

https://docs.rs/rand/
https://docs.rs/rustls/
https://docs.rs/serde_json/
https://lib.rs/
https://rust-analyzer.github.io/

Comprehensive Rust 🦀

18 / 232

Basic Syntax
Much of the Rust syntax will be familiar to you from C, C++ or Java:

Blocks and scopes are delimited by curly braces.
Line comments are started with // , block comments are delimited by /* ... */ .
Keywords like if and while work the same.
Variable assignment is done with = , comparison is done with == .

Comprehensive Rust 🦀

19 / 232

Scalar Types
Types Literals

Signed integers i8 , i16 , i32 , i64 , i128 , isize -10 , 0 , 1_000 , 123i64

Unsigned integers u8 , u16 , u32 , u64 , u128 , usize 0 , 123 , 10u16

Floating point numbers f32 , f64 3.14 , -10.0e20 , 2f32

Strings &str "foo" , r#"\\"#

Unicode scalar values char 'a' , 'α' , '∞'

Byte strings &[u8] b"abc" , br#" " "#

Booleans bool true , false

The types have widths as follows:

iN , uN , and fN are N bits wide,
isize and usize are the width of a pointer,
char is 32 bit wide,
bool is 8 bit wide.

Comprehensive Rust 🦀

20 / 232

Compound Types
Types Literals

Arrays [T; N] [20, 30, 40] , [0; 3]

Tuples () , (T,) , (T1, T2) , … () , ('x',) , ('x', 1.2) , …

Array assignment and access:

Tuple assignment and access:

Details

Key points:

Arrays:

Arrays have elements of the same type, T , and length, N , which is a compile-time constant.
Note that the length of the array is part of its type, which means that [u8; 3] and [u8; 4]
are considered two different types.

We can use literals to assign values to arrays.

In the main function, the print statement asks for the debug implementation with the ?
format parameter: {} gives the default output, {:?} gives the debug output. We could also
have used {a} and {a:?} without specifying the value after the format string.

Adding # , eg {a:#?} , invokes a “pretty printing” format, which can be easier to read.

Tuples:

Like arrays, tuples have a fixed length.

Tuples group together values of different types into a compound type.

Fields of a tuple can be accessed by the period and the index of the value, e.g. t.0 , t.1 .

The empty tuple () is also known as the “unit type”. It is both a type, and the only valid value
of that type - that is to say both the type and its value are expressed as () . It is used to
indicate, for example, that a function or expression has no return value, as we’ll see in a future
slide.

You can think of it as void that can be familiar to you from other programming
languages.

fn main() {
 let mut a: [i8; 10] = [42; 10];
 a[5] = 0;
 println!("a: {:?}", a);
}

fn main() {
 let t: (i8, bool) = (7, true);
 println!("1st index: {}", t.0);
 println!("2nd index: {}", t.1);
}

Comprehensive Rust 🦀

21 / 232

References
Like C++, Rust has references:

Some notes:

We must dereference ref_x when assigning to it, similar to C and C++ pointers.
Rust will auto-dereference in some cases, in particular when invoking methods (try
ref_x.count_ones()).

References that are declared as mut can be bound to different values over their lifetime.

Details
Key points:

Be sure to note the difference between let mut ref_x: &i32 and let ref_x: &mut i32 .
The first one represents a mutable reference which can be bound to different values, while
the second represents a reference to a mutable value.

fn main() {
 let mut x: i32 = 10;
 let ref_x: &mut i32 = &mut x;
 *ref_x = 20;
 println!("x: {x}");
}

Comprehensive Rust 🦀

22 / 232

Dangling References
Rust will statically forbid dangling references:

A reference is said to “borrow” the value it refers to.
Rust is tracking the lifetimes of all references to ensure they live long enough.
We will talk more about borrowing when we get to ownership.

fn main() {
 let ref_x: &i32;
 {
 let x: i32 = 10;
 ref_x = &x;
 }
 println!("ref_x: {ref_x}");
}

Comprehensive Rust 🦀

23 / 232

Slices
A slice gives you a view into a larger collection:

Slices borrow data from the sliced type.
Question: What happens if you modify a[3] ?

Details

We create a slice by borrowing a and specifying the starting and ending indexes in brackets.

If the slice starts at index 0, Rust’s range syntax allows us to drop the starting index, meaning
that &a[0..a.len()] and &a[..a.len()] are identical.

The same is true for the last index, so &a[2..a.len()] and &a[2..] are identical.

To easily create a slice of the full array, we can therefore use &a[..] .

s is a reference to a slice of i32 s. Notice that the type of s (&[i32]) no longer mentions
the array length. This allows us to perform computation on slices of different sizes.

Slices always borrow from another object. In this example, a has to remain ‘alive’ (in scope)
for at least as long as our slice.

The question about modifying a[3] can spark an interesting discussion, but the answer is
that for memory safety reasons you cannot do it through a after you created a slice, but you
can read the data from both a and s safely. More details will be explained in the borrow
checker section.

fn main() {
 let a: [i32; 6] = [10, 20, 30, 40, 50, 60];
 println!("a: {a:?}");

 let s: &[i32] = &a[2..4];
 println!("s: {s:?}");
}

Comprehensive Rust 🦀

24 / 232

String vs str
We can now understand the two string types in Rust:

Rust terminology:

&str an immutable reference to a string slice.
String a mutable string buffer.

Details

&str introduces a string slice, which is an immutable reference to UTF-8 encoded string data
stored in a block of memory. String literals (”Hello”), are stored in the program’s binary.

Rust’s String type is a wrapper around a vector of bytes. As with a Vec<T> , it is owned.

As with many other types String::from() creates a string from a string literal;
String::new() creates a new empty string, to which string data can be added using the
push() and push_str() methods.

The format!() macro is a convenient way to generate an owned string from dynamic values.
It accepts the same format specification as println!() .

You can borrow &str slices from String via & and optionally range selection.

For C++ programmers: think of &str as const char* from C++, but the one that always
points to a valid string in memory. Rust String is a rough equivalent of std::string from
C++ (main difference: it can only contain UTF-8 encoded bytes and will never use a small-string
optimization).

fn main() {
 let s1: &str = "World";
 println!("s1: {s1}");

 let mut s2: String = String::from("Hello ");
 println!("s2: {s2}");
 s2.push_str(s1);
 println!("s2: {s2}");

 let s3: &str = &s2[6..];
 println!("s3: {s3}");
}

Comprehensive Rust 🦀

25 / 232

Functions
A Rust version of the famous FizzBuzz interview question:

Details

We refer in main to a function written below. Neither forward declarations nor headers are
necessary.

Declaration parameters are followed by a type (the reverse of some programming languages),
then a return type.

The last expression in a function body (or any block) becomes the return value. Simply omit
the ; at the end of the expression.

Some functions have no return value, and return the ‘unit type’, () . The compiler will infer
this if the -> () return type is omitted.

The range expression in the for loop in fizzbuzz_to() contains =n , which causes it to
include the upper bound.

The match expression in fizzbuzz() is doing a lot of work. It is expanded below to show
what is happening.

(Type annotations added for clarity, but they can be elided.)

fn main() {
 fizzbuzz_to(20); // Defined below, no forward declaration needed
}

fn is_divisible_by(lhs: u32, rhs: u32) -> bool {
 if rhs == 0 {
 return false; // Corner case, early return
 }
 lhs % rhs == 0 // The last expression in a block is the return value
}

fn fizzbuzz(n: u32) -> () { // No return value means returning the unit type `()`
 match (is_divisible_by(n, 3), is_divisible_by(n, 5)) {
 (true, true) => println!("fizzbuzz"),
 (true, false) => println!("fizz"),
 (false, true) => println!("buzz"),
 (false, false) => println!("{n}"),
 }
}

fn fizzbuzz_to(n: u32) { // `-> ()` is normally omitted
 for i in 1..=n {
 fizzbuzz(i);
 }
}

let by_3: bool = is_divisible_by(n, 3);
let by_5: bool = is_divisible_by(n, 5);
let by_35: (bool, bool) = (by_3, by_5);
match by_35 {
 // ...

https://en.wikipedia.org/wiki/Fizz_buzz

Comprehensive Rust 🦀

26 / 232

Methods
Rust has methods, they are simply functions that are associated with a particular type. The first
argument of a method is an instance of the type it is associated with:

We will look much more at methods in today’s exercise and in tomorrow’s class.

struct Rectangle {
 width: u32,
 height: u32,
}

impl Rectangle {
 fn area(&self) -> u32 {
 self.width * self.height
 }

 fn inc_width(&mut self, delta: u32) {
 self.width += delta;
 }
}

fn main() {
 let mut rect = Rectangle { width: 10, height: 5 };
 println!("old area: {}", rect.area());
 rect.inc_width(5);
 println!("new area: {}", rect.area());
}

Comprehensive Rust 🦀

27 / 232

Function Overloading
Overloading is not supported:

Each function has a single implementation:
Always takes a fixed number of parameters.
Always takes a single set of parameter types.

Default values are not supported:
All call sites have the same number of arguments.
Macros are sometimes used as an alternative.

However, function parameters can be generic:

Details

When using generics, the standard library’s Into<T> can provide a kind of limited
polymorphism on argument types. We will see more details in a later section.

fn pick_one<T>(a: T, b: T) -> T {
 if std::process::id() % 2 == 0 { a } else { b }
}

fn main() {
 println!("coin toss: {}", pick_one("heads", "tails"));
 println!("cash prize: {}", pick_one(500, 1000));
}

Comprehensive Rust 🦀

28 / 232

Day 1: Morning Exercises
In these exercises, we will explore two parts of Rust:

Implicit conversions between types.

Arrays and for loops.

Details

A few things to consider while solving the exercises:

Use a local Rust installation, if possible. This way you can get auto-completion in your editor.
See the page about Using Cargo for details on installing Rust.

Alternatively, use the Rust Playground.

The code snippets are not editable on purpose: the inline code snippets lose their state if you
navigate away from the page.

After looking at the exercises, you can look at the solutions provided.

Comprehensive Rust 🦀

29 / 232

Implicit Conversions
Rust will not automatically apply implicit conversions between types (unlike C++). You can see this in
a program like this:

The Rust integer types all implement the From<T> and Into<T> traits to let us convert between
them. The From<T> trait has a single from() method and similarly, the Into<T> trait has a single
into() method. Implementing these traits is how a type expresses that it can be converted into

another type.

The standard library has an implementation of From<i8> for i16 , which means that we can
convert a variable x of type i8 to an i16 by calling i16::from(x) . Or, simpler, with x.into() ,
because From<i8> for i16 implementation automatically create an implementation of Into<i16>
for i8 .

The same applies for your own From implementations for your own types, so it is sufficient to only
implement From to get a respective Into implementation automatically.

1. Execute the above program and look at the compiler error.

2. Update the code above to use into() to do the conversion.

3. Change the types of x and y to other things (such as f32 , bool , i128) to see which types
you can convert to which other types. Try converting small types to big types and the other
way around. Check the standard library documentation to see if From<T> is implemented for
the pairs you check.

fn multiply(x: i16, y: i16) -> i16 {
 x * y
}

fn main() {
 let x: i8 = 15;
 let y: i16 = 1000;

 println!("{x} * {y} = {}", multiply(x, y));
}

https://en.cppreference.com/w/cpp/language/implicit_conversion
https://doc.rust-lang.org/std/convert/trait.From.html
https://doc.rust-lang.org/std/convert/trait.Into.html
https://doc.rust-lang.org/std/convert/trait.From.html

Comprehensive Rust 🦀

30 / 232

Arrays and for Loops
We saw that an array can be declared like this:

You can print such an array by asking for its debug representation with {:?} :

Rust lets you iterate over things like arrays and ranges using the for keyword:

Use the above to write a function pretty_print which pretty-print a matrix and a function
transpose which will transpose a matrix (turn rows into columns):

2 4 7⎤⎛⎡ 1 3⎤ ⎞ ⎡ 1

"transpose"⎜⎢4 5 6⎥⎟ "=="⎢2 5 8⎥ ⎝⎣7 8 9⎦⎠ ⎣3 6 9⎦

Hard-code both functions to operate on 3 × 3 matrices.

Copy the code below to https://play.rust-lang.org/ and implement the functions:

let array = [10, 20, 30];

fn main() {
 let array = [10, 20, 30];
 println!("array: {array:?}");
}

fn main() {
 let array = [10, 20, 30];
 print!("Iterating over array:");
 for n in array {
 print!(" {n}");
 }
 println!();

 print!("Iterating over range:");
 for i in 0..3 {
 print!(" {}", array[i]);
 }
 println!();
}

https://play.rust-lang.org/

Comprehensive Rust 🦀

31 / 232

Bonus Question

Could you use &[i32] slices instead of hard-coded 3 × 3 matrices for your argument and return
types? Something like &[&[i32]] for a two-dimensional slice-of-slices. Why or why not?

See the ndarray crate for a production quality implementation.

Details

The solution and the answer to the bonus section are available in the Solution section.

// TODO: remove this when you're done with your implementation.
#![allow(unused_variables, dead_code)]

fn transpose(matrix: [[i32; 3]; 3]) -> [[i32; 3]; 3] {
 unimplemented!()
}

fn pretty_print(matrix: &[[i32; 3]; 3]) {
 unimplemented!()
}

fn main() {
 let matrix = [
 [101, 102, 103], // <-- the comment makes rustfmt add a newline
 [201, 202, 203],
 [301, 302, 303],
];

 println!("matrix:");
 pretty_print(&matrix);

 let transposed = transpose(matrix);
 println!("transposed:");
 pretty_print(&transposed);
}

https://docs.rs/ndarray/

Comprehensive Rust 🦀

32 / 232

Variables
Rust provides type safety via static typing. Variable bindings are immutable by default:

Details

Due to type inference the i32 is optional. We will gradually show the types less and less as
the course progresses.
Note that since println! is a macro, x is not moved, even using the function like syntax of
println!("x: {}", x)

fn main() {
 let x: i32 = 10;
 println!("x: {x}");
 // x = 20;
 // println!("x: {x}");
}

Comprehensive Rust 🦀

33 / 232

Type Inference
Rust will look at how the variable is used to determine the type:

Details

This slide demonstrates how the Rust compiler infers types based on constraints given by variable
declarations and usages.

It is very important to emphasize that variables declared like this are not of some sort of dynamic
“any type” that can hold any data. The machine code generated by such declaration is identical to
the explicit declaration of a type. The compiler does the job for us and helps us to write a more
concise code.

The following code tells the compiler to copy into a certain generic container without the code
ever explicitly specifying the contained type, using _ as a placeholder:

collect relies on FromIterator , which HashSet implements.

fn takes_u32(x: u32) {
 println!("u32: {x}");
}

fn takes_i8(y: i8) {
 println!("i8: {y}");
}

fn main() {
 let x = 10;
 let y = 20;

 takes_u32(x);
 takes_i8(y);
 // takes_u32(y);
}

fn main() {
 let mut v = Vec::new();
 v.push((10, false));
 v.push((20, true));
 println!("v: {v:?}");

 let vv = v.iter().collect::<std::collections::HashSet<_>>();
 println!("vv: {vv:?}");
}

https://doc.rust-lang.org/stable/std/iter/trait.Iterator.html#method.collect
https://doc.rust-lang.org/std/iter/trait.FromIterator.html

Comprehensive Rust 🦀

34 / 232

Static and Constant Variables
Global state is managed with static and constant variables.

const

You can declare compile-time constants:

According the the Rust RFC Book these are inlined upon use.

static

You can also declare static variables:

As noted in the Rust RFC Book, these are not inlined upon use and have an actual associated
memory location. This is useful for unsafe and embedded code, and the variable lives through the
entirety of the program execution.

We will look at mutating static data in the chapter on Unsafe Rust.

Details

Mention that const behaves semantically similar to C++’s constexpr .
static , on the other hand, is much more similar to a const or mutable global variable in

C++.
It isn’t super common that one would need a runtime evaluated constant, but it is helpful
and safer than using a static.

const DIGEST_SIZE: usize = 3;
const ZERO: Option<u8> = Some(42);

fn compute_digest(text: &str) -> [u8; DIGEST_SIZE] {
 let mut digest = [ZERO.unwrap_or(0); DIGEST_SIZE];
 for (idx, &b) in text.as_bytes().iter().enumerate() {
 digest[idx % DIGEST_SIZE] = digest[idx % DIGEST_SIZE].wrapping_add(b);
 }
 digest
}

fn main() {
 let digest = compute_digest("Hello");
 println!("Digest: {digest:?}");
}

static BANNER: &str = "Welcome to RustOS 3.14";

fn main() {
 println!("{BANNER}");
}

https://rust-lang.github.io/rfcs/0246-const-vs-static.html
https://rust-lang.github.io/rfcs/0246-const-vs-static.html

Comprehensive Rust 🦀

35 / 232

Scopes and Shadowing
You can shadow variables, both those from outer scopes and variables from the same scope:

Details

Definition: Shadowing is different from mutation, because after shadowing both variable’s
memory locations exist at the same time. Both are available under the same name,
depending where you use it in the code.
A shadowing variable can have a different type.
Shadowing looks obscure at first, but is convenient for holding on to values after .unwrap() .
The following code demonstrates why the compiler can’t simply reuse memory locations
when shadowing an immutable variable in a scope, even if the type does not change.

fn main() {
 let a = 10;
 println!("before: {a}");

 {
 let a = "hello";
 println!("inner scope: {a}");

 let a = true;
 println!("shadowed in inner scope: {a}");
 }

 println!("after: {a}");
}

fn main() {
 let a = 1;
 let b = &a;
 let a = a + 1;
 println!("{a} {b}");
}

Comprehensive Rust 🦀

36 / 232

Memory Management
Traditionally, languages have fallen into two broad categories:

Full control via manual memory management: C, C++, Pascal, …
Full safety via automatic memory management at runtime: Java, Python, Go, Haskell, …

Rust offers a new mix:

Full control and safety via compile time enforcement of correct memory management.

It does this with an explicit ownership concept.

First, let’s refresh how memory management works.

Comprehensive Rust 🦀

37 / 232

The Stack vs The Heap
Stack: Continuous area of memory for local variables.

Values have fixed sizes known at compile time.
Extremely fast: just move a stack pointer.
Easy to manage: follows function calls.
Great memory locality.

Heap: Storage of values outside of function calls.

Values have dynamic sizes determined at runtime.
Slightly slower than the stack: some book-keeping needed.
No guarantee of memory locality.

Comprehensive Rust 🦀

38 / 232

Stack Memory
Creating a String puts fixed-sized data on the stack and dynamically sized data on the heap:

Stack Heap

.- - - - - - - - - - - - - -. .- - - - - - - - - - - - - - - -. : : : : : s1 : : : : +-----------+-------+ : : +----+----+----+----+----+ : : |
ptr | o---+---+-----+-->| H | e | l | l | o | : : | len | 5 | : : +----+----+----+----+----+ : : | capacity | 5 | : : : :
+-----------+-------+ : : : : : `- - - - - - - - - - - - - - - -' `- - - - - - - - - - - - - -'

Details

Mention that a String is backed by a Vec , so it has a capacity and length and can grow if
mutable via reallocation on the heap.

If students ask about it, you can mention that the underlying memory is heap allocated using
the System Allocator and custom allocators can be implemented using the Allocator API

We can inspect the memory layout with unsafe code. However, you should point out that
this is rightfully unsafe!

fn main() {
 let s1 = String::from("Hello");
}

fn main() {
 let mut s1 = String::from("Hello");
 s1.push(' ');
 s1.push_str("world");
 // DON'T DO THIS AT HOME! For educational purposes only.
 // String provides no guarantees about its layout, so this could lead to
 // undefined behavior.
 unsafe {
 let (capacity, ptr, len): (usize, usize, usize) = std::mem::transmute(s1);
 println!("ptr = {ptr:#x}, len = {len}, capacity = {capacity}");
 }
}

https://doc.rust-lang.org/std/alloc/struct.System.html
https://doc.rust-lang.org/std/alloc/index.html

Comprehensive Rust 🦀

39 / 232

Manual Memory Management
You allocate and deallocate heap memory yourself.

If not done with care, this can lead to crashes, bugs, security vulnerabilities, and memory leaks.

C Example

You must call free on every pointer you allocate with malloc :

Memory is leaked if the function returns early between malloc and free : the pointer is lost and
we cannot deallocate the memory.

void foo(size_t n) {
 int* int_array = (int*)malloc(n * sizeof(int));
 //
 // ... lots of code
 //
 free(int_array);
}

Comprehensive Rust 🦀

40 / 232

Scope-Based Memory Management
Constructors and destructors let you hook into the lifetime of an object.

By wrapping a pointer in an object, you can free memory when the object is destroyed. The
compiler guarantees that this happens, even if an exception is raised.

This is often called resource acquisition is initialization (RAII) and gives you smart pointers.

C++ Example

The std::unique_ptr object is allocated on the stack, and points to memory allocated on the
heap.
At the end of say_hello , the std::unique_ptr destructor will run.
The destructor frees the Person object it points to.

Special move constructors are used when passing ownership to a function:

void say_hello(std::unique_ptr<Person> person) {
 std::cout << "Hello " << person->name << std::endl;
}

std::unique_ptr<Person> person = find_person("Carla");
say_hello(std::move(person));

Comprehensive Rust 🦀

41 / 232

Automatic Memory Management
An alternative to manual and scope-based memory management is automatic memory
management:

The programmer never allocates or deallocates memory explicitly.
A garbage collector finds unused memory and deallocates it for the programmer.

Java Example

The person object is not deallocated after sayHello returns:

void sayHello(Person person) {
 System.out.println("Hello " + person.getName());
}

Comprehensive Rust 🦀

42 / 232

Memory Management in Rust
Memory management in Rust is a mix:

Safe and correct like Java, but without a garbage collector.
Depending on which abstraction (or combination of abstractions) you choose, can be a single
unique pointer, reference counted, or atomically reference counted.
Scope-based like C++, but the compiler enforces full adherence.
A Rust user can choose the right abstraction for the situation, some even have no cost at
runtime like C.

It achieves this by modeling ownership explicitly.

Details

If asked how at this point, you can mention that in Rust this is usually handled by RAII
wrapper types such as Box, Vec, Rc, or Arc. These encapsulate ownership and memory
allocation via various means, and prevent the potential errors in C.

You may be asked about destructors here, the Drop trait is the Rust equivalent.

https://doc.rust-lang.org/std/boxed/struct.Box.html
https://doc.rust-lang.org/std/vec/struct.Vec.html
https://doc.rust-lang.org/std/rc/struct.Rc.html
https://doc.rust-lang.org/std/sync/struct.Arc.html
https://doc.rust-lang.org/std/ops/trait.Drop.html

Comprehensive Rust 🦀

43 / 232

Comparison
Here is a rough comparison of the memory management techniques.

Pros of Different Memory Management Techniques

Manual like C:
No runtime overhead.

Automatic like Java:
Fully automatic.
Safe and correct.

Scope-based like C++:
Partially automatic.
No runtime overhead.

Compiler-enforced scope-based like Rust:
Enforced by compiler.
No runtime overhead.
Safe and correct.

Cons of Different Memory Management Techniques

Manual like C:
Use-after-free.
Double-frees.
Memory leaks.

Automatic like Java:
Garbage collection pauses.
Destructor delays.

Scope-based like C++:
Complex, opt-in by programmer.
Potential for use-after-free.

Compiler-enforced and scope-based like Rust:
Some upfront complexity.
Can reject valid programs.

Comprehensive Rust 🦀

44 / 232

Ownership
All variable bindings have a scope where they are valid and it is an error to use a variable outside its
scope:

At the end of the scope, the variable is dropped and the data is freed.
A destructor can run here to free up resources.
We say that the variable owns the value.

struct Point(i32, i32);

fn main() {
 {
 let p = Point(3, 4);
 println!("x: {}", p.0);
 }
 println!("y: {}", p.1);
}

Comprehensive Rust 🦀

45 / 232

Move Semantics
An assignment will transfer ownership between variables:

The assignment of s1 to s2 transfers ownership.
The data was moved from s1 and s1 is no longer accessible.
When s1 goes out of scope, nothing happens: it has no ownership.
When s2 goes out of scope, the string data is freed.
There is always exactly one variable binding which owns a value.

Details

Mention that this is the opposite of the defaults in C++, which copies by value unless you use
std::move (and the move constructor is defined!).

In Rust, you clones are explicit (by using clone).

fn main() {
 let s1: String = String::from("Hello!");
 let s2: String = s1;
 println!("s2: {s2}");
 // println!("s1: {s1}");
}

Comprehensive Rust 🦀

46 / 232

Moved Strings in Rust

The heap data from s1 is reused for s2 .
When s1 goes out of scope, nothing happens (it has been moved from).

Before move to s2 :

Stack Heap

.- - - - - - - - - - - - - -. .- - - - - - - - - - - - - -. : : : : : s1 : : : : +-----------+-------+ : : +----+----+----+----+ : : | ptr | o---
+---+-----+-->| R | u | s | t | : : | len | 4 | : : +----+----+----+----+ : : | capacity | 4 | : : : : +-----------+-------+
: : : : : `- - - - - - - - - - - - - -' : : `- - - - - - - - - - - - - -'

After move to s2 :

Stack Heap

.- - - - - - - - - - - - - -. .- - - - - - - - - - - - - -. : : : : : s1 "(inaccessible)" : : : : +-----------+-------+ : : +----+----+----+--
--+ : : | ptr | o---+---+--+--+-->| R | u | s | t | : : | len | 4 | : | : +----+----+----+----+ : : | capacity | 4 | : | :
: : +-----------+-------+ : | : : : : | `- - - - - - - - - - - - - -' : s2 : | : +-----------+-------+ : | : | ptr | o---+---+--' : | len
| 4 | : : | capacity | 4 | : : +-----------+-------+ : : : `- - - - - - - - - - - - - -'

fn main() {
 let s1: String = String::from("Rust");
 let s2: String = s1;
}

Comprehensive Rust 🦀

47 / 232

Double Frees in Modern C++
Modern C++ solves this differently:

The heap data from s1 is duplicated and s2 gets its own independent copy.
When s1 and s2 go out of scope, they each free their own memory.

Before copy-assignment:

Stack Heap

.- - - - - - - - - - - - - -. .- - - - - - - - - - - -. : : : : : s1 : : : : +-----------+-------+ : : +----+----+----+ : : | ptr | o---+---+--
+--+-->| C | p | p | : : | len | 3 | : : +----+----+----+ : : | capacity | 3 | : : : : +-----------+-------+ : : : : : `- - - -
- - - - - - - -' `- - - - - - - - - - - - - -'

After copy-assignment:

Stack Heap

.- - - - - - - - - - - - - -. .- - - - - - - - - - - -. : : : : : s1 : : : : +-----------+-------+ : : +----+----+----+ : : | ptr | o---+---+--
+--+-->| C | p | p | : : | len | 3 | : : +----+----+----+ : : | capacity | 3 | : : : : +-----------+-------+ : : : : : : : : s2 :
: : : +-----------+-------+ : : +----+----+----+ : : | ptr | o---+---+-----+-->| C | p | p | : : | len | 3 | : : +----+----+---
-+ : : | capacity | 3 | : : : : +-----------+-------+ : : : : : `- - - - - - - - - - - -' `- - - - - - - - - - - - - -'

std::string s1 = "Cpp";
std::string s2 = s1; // Duplicate the data in s1.

Comprehensive Rust 🦀

48 / 232

Moves in Function Calls
When you pass a value to a function, the value is assigned to the function parameter. This transfers
ownership:

Details

With the first call to say_hello , main gives up ownership of name . Afterwards, name cannot
be used anymore within main .
The heap memory allocated for name will be freed at the end of the say_hello function.
main can retain ownership if it passes name as a reference (&name) and if say_hello

accepts a reference as a parameter.
Alternatively, main can pass a clone of name in the first call (name.clone()).
Rust makes it harder than C++ to inadvertently create copies by making move semantics the
default, and by forcing programmers to make clones explicit.

fn say_hello(name: String) {
 println!("Hello {name}")
}

fn main() {
 let name = String::from("Alice");
 say_hello(name);
 // say_hello(name);
}

Comprehensive Rust 🦀

49 / 232

Copying and Cloning
While move semantics are the default, certain types are copied by default:

These types implement the Copy trait.

You can opt-in your own types to use copy semantics:

After the assignment, both p1 and p2 own their own data.
We can also use p1.clone() to explicitly copy the data.

Details

Copying and cloning are not the same thing:

Copying refers to bitwise copies of memory regions and does not work on arbitrary objects.
Copying does not allow for custom logic (unlike copy constructors in C++).
Cloning is a more general operation and also allows for custom behavior by implementing
the Clone trait.
Copying does not work on types that implement the Drop trait.

In the above example, try the following:

Add a String field to struct Point . It will not compile because String is not a Copy type.
Remove Copy from the derive attribute. The compiler error is now in the println! for p1 .
Show that it works if you clone p1 instead.

If students ask about derive , it is sufficient to say that this is a way to generate code in Rust at
compile time. In this case the default implementations of Copy and Clone traits are generated.

fn main() {
 let x = 42;
 let y = x;
 println!("x: {x}");
 println!("y: {y}");
}

#[derive(Copy, Clone, Debug)]
struct Point(i32, i32);

fn main() {
 let p1 = Point(3, 4);
 let p2 = p1;
 println!("p1: {p1:?}");
 println!("p2: {p2:?}");
}

Comprehensive Rust 🦀

50 / 232

Borrowing
Instead of transferring ownership when calling a function, you can let a function borrow the value:

The add function borrows two points and returns a new point.
The caller retains ownership of the inputs.

Details

Notes on stack returns:

Demonstrate that the return from add is cheap because the compiler can eliminate the copy
operation. Change the above code to print stack addresses and run it on the Playground. In
the “DEBUG” optimization level, the addresses should change, while the stay the same when
changing to the “RELEASE” setting:

The Rust compiler can do return value optimization (RVO).

In C++, copy elision has to be defined in the language specification because constructors can
have side effects. In Rust, this is not an issue at all. If RVO did not happen, Rust will always
performs a simple and efficient memcpy copy.

#[derive(Debug)]
struct Point(i32, i32);

fn add(p1: &Point, p2: &Point) -> Point {
 Point(p1.0 + p2.0, p1.1 + p2.1)
}

fn main() {
 let p1 = Point(3, 4);
 let p2 = Point(10, 20);
 let p3 = add(&p1, &p2);
 println!("{p1:?} + {p2:?} = {p3:?}");
}

#[derive(Debug)]
struct Point(i32, i32);

fn add(p1: &Point, p2: &Point) -> Point {
 let p = Point(p1.0 + p2.0, p1.1 + p2.1);
 println!("&p.0: {:p}", &p.0);
 p
}

fn main() {
 let p1 = Point(3, 4);
 let p2 = Point(10, 20);
 let p3 = add(&p1, &p2);
 println!("&p3.0: {:p}", &p3.0);
 println!("{p1:?} + {p2:?} = {p3:?}");
}

https://play.rust-lang.org/

Comprehensive Rust 🦀

51 / 232

Shared and Unique Borrows
Rust puts constraints on the ways you can borrow values:

You can have one or more &T values at any given time, or
You can have exactly one &mut T value.

Details

The above code does not compile because a is borrowed as mutable (through c) and as
immutable (through b) at the same time.
Move the println! statement for b before the scope that introduces c to make the code
compile.
After that change, the compiler realizes that b is only ever used before the new mutable
borrow of a through c . This is a feature of the borrow checker called “non-lexical lifetimes”.

fn main() {
 let mut a: i32 = 10;
 let b: &i32 = &a;

 {
 let c: &mut i32 = &mut a;
 *c = 20;
 }

 println!("a: {a}");
 println!("b: {b}");
}

Comprehensive Rust 🦀

52 / 232

Lifetimes
A borrowed value has a lifetime:

The lifetime can be elided: add(p1: &Point, p2: &Point) -> Point .
Lifetimes can also be explicit: &'a Point , &'document str .
Read &'a Point as “a borrowed Point which is valid for at least the lifetime a ”.
Lifetimes are always inferred by the compiler: you cannot assign a lifetime yourself.

Lifetime annotations create constraints; the compiler verifies that there is a valid
solution.

Comprehensive Rust 🦀

53 / 232

Lifetimes in Function Calls
In addition to borrowing its arguments, a function can return a borrowed value:

'a is a generic parameter, it is inferred by the compiler.
Lifetimes start with ' and 'a is a typical default name.
Read &'a Point as “a borrowed Point which is valid for at least the lifetime a ”.

The at least part is important when parameters are in different scopes.

Details

In the above example, try the following:

Move the declaration of p2 and p3 into a a new scope ({ ... }), resulting in the following
code:

Note how this does not compile since p3 outlives p2 .

Reset the workspace and change the function signature to fn left_most<'a, 'b>(p1: &'a
Point, p2: &'a Point) -> &'b Point . This will not compile because the relationship
between the lifetimes 'a and 'b is unclear.

Another way to explain it:

Two references to two values are borrowed by a function and the function returns
another reference.
It must have come from one of those two inputs (or from a global variable).

#[derive(Debug)]
struct Point(i32, i32);

fn left_most<'a>(p1: &'a Point, p2: &'a Point) -> &'a Point {
 if p1.0 < p2.0 { p1 } else { p2 }
}

fn main() {
 let p1: Point = Point(10, 10);
 let p2: Point = Point(20, 20);
 let p3: &Point = left_most(&p1, &p2);
 println!("left-most point: {:?}", p3);
}

#[derive(Debug)]

struct Point(i32, i32);

fn left_most<'a>(p1: &'a Point, p2: &'a Point) -> &'a Point {
 if p1.0 < p2.0 { p1 } else { p2 }
}

fn main() {
 let p1: Point = Point(10, 10);
 let p3: &Point;
 {
 let p2: Point = Point(20, 20);

 p3 = left_most(&p1, &p2);
 }
 println!("left-most point: {:?}", p3);
}

Comprehensive Rust 🦀

54 / 232

Which one is it? The compiler needs to to know, so at the call site the returned
reference is not used for longer than a variable from where the reference came from.

Comprehensive Rust 🦀

55 / 232

Lifetimes in Data Structures
If a data type stores borrowed data, it must be annotated with a lifetime:

Details

In the above example, the annotation on Highlight enforces that the data underlying the
contained &str lives at least as long as any instance of Highlight that uses that data.
If text is consumed before the end of the lifetime of fox (or dog), the borrow checker
throws an error.
Types with borrowed data force users to hold on to the original data. This can be useful for
creating lightweight views, but it generally makes them somewhat harder to use.
When possible, make data structures own their data directly.
Some structs with multiple references inside can have more than one lifetime annotation.
This can be necessary if there is a need to describe lifetime relationships between the
references themselves, in addition to the lifetime of the struct itself. Those are very advanced
use cases.

#[derive(Debug)]
struct Highlight<'doc>(&'doc str);

fn erase(text: String) {
 println!("Bye {text}!");
}

fn main() {
 let text = String::from("The quick brown fox jumps over the lazy dog.");
 let fox = Highlight(&text[4..19]);
 let dog = Highlight(&text[35..43]);
 // erase(text);
 println!("{fox:?}");
 println!("{dog:?}");
}

Comprehensive Rust 🦀

56 / 232

Day 1: Afternoon Exercises
We will look at two things:

A small book library,

Iterators and ownership (hard).

Details

After looking at the exercises, you can look at the solutions provided.

Comprehensive Rust 🦀

57 / 232

Designing a Library
We will learn much more about structs and the Vec<T> type tomorrow. For now, you just need to
know part of its API:

Use this to create a library application. Copy the code below to https://play.rust-lang.org/ and
update the types to make it compile:

fn main() {
 let mut vec = vec![10, 20];
 vec.push(30);
 println!("middle value: {}", vec[vec.len() / 2]);
 for item in vec.iter() {
 println!("item: {item}");
 }
}

https://play.rust-lang.org/

Comprehensive Rust 🦀

58 / 232

// TODO: remove this when you're done with your implementation.
#![allow(unused_variables, dead_code)]

struct Library {
 books: Vec<Book>,
}

struct Book {
 title: String,
 year: u16,
}

impl Book {
 // This is a constructor, used below.
 fn new(title: &str, year: u16) -> Book {
 Book {
 title: String::from(title),
 year,
 }
 }
}

// This makes it possible to print Book values with {}.
impl std::fmt::Display for Book {
 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
 write!(f, "{} ({})", self.title, self.year)
 }
}

impl Library {
 fn new() -> Library {
 unimplemented!()
 }

 //fn len(self) -> usize {
 // unimplemented!()
 //}

 //fn is_empty(self) -> bool {
 // unimplemented!()
 //}

 //fn add_book(self, book: Book) {
 // unimplemented!()
 //}

 //fn print_books(self) {
 // unimplemented!()
 //}

 //fn oldest_book(self) -> Option<&Book> {
 // unimplemented!()
 //}
}

// This shows the desired behavior. Uncomment the code below and
// implement the missing methods. You will need to update the
// method signatures, including the "self" parameter! You may
// also need to update the variable bindings within main.
fn main() {
 let library = Library::new();

 //println!("Our library is empty: {}", library.is_empty());
 //
 //library.add_book(Book::new("Lord of the Rings", 1954));
 //library.add_book(Book::new("Alice's Adventures in Wonderland", 1865));
 //
 //library.print_books();
 //
 //match library.oldest_book() {
 // Some(book) => println!("My oldest book is {book}"),

Comprehensive Rust 🦀

59 / 232

Details

Solution

 // None => println!("My library is empty!"),
 //}
 //
 //println!("Our library has {} books", library.len());
}

Comprehensive Rust 🦀

60 / 232

Iterators and Ownership
The ownership model of Rust affects many APIs. An example of this is the Iterator and
IntoIterator traits.

Iterator

Traits are like interfaces: they describe behavior (methods) for a type. The Iterator trait simply
says that you can call next until you get None back:

You use this trait like this:

What is the type returned by the iterator? Test your answer here:

Why is this type used?

IntoIterator

The Iterator trait tells you how to iterate once you have created an iterator. The related trait
IntoIterator tells you how to create the iterator:

The syntax here means that every implementation of IntoIterator must declare two types:

Item : the type we iterate over, such as i8 ,
IntoIter : the Iterator type returned by the into_iter method.

pub trait Iterator {
 type Item;
 fn next(&mut self) -> Option<Self::Item>;
}

fn main() {
 let v: Vec<i8> = vec![10, 20, 30];
 let mut iter = v.iter();

 println!("v[0]: {:?}", iter.next());
 println!("v[1]: {:?}", iter.next());
 println!("v[2]: {:?}", iter.next());
 println!("No more items: {:?}", iter.next());
}

fn main() {
 let v: Vec<i8> = vec![10, 20, 30];
 let mut iter = v.iter();

 let v0: Option<..> = iter.next();
 println!("v0: {v0:?}");
}

pub trait IntoIterator {
 type Item;
 type IntoIter: Iterator<Item = Self::Item>;

 fn into_iter(self) -> Self::IntoIter;
}

https://doc.rust-lang.org/std/iter/trait.Iterator.html
https://doc.rust-lang.org/std/iter/trait.IntoIterator.html

Comprehensive Rust 🦀

61 / 232

Note that IntoIter and Item are linked: the iterator must have the same Item type, which
means that it returns Option<Item>

Like before, what is the type returned by the iterator?

for Loops

Now that we know both Iterator and IntoIterator , we can build for loops. They call
into_iter() on an expression and iterates over the resulting iterator:

What is the type of word in each loop?

Experiment with the code above and then consult the documentation for impl IntoIterator for
&Vec<T> and impl IntoIterator for Vec<T> to check your answers.

fn main() {
 let v: Vec<String> = vec![String::from("foo"), String::from("bar")];
 let mut iter = v.into_iter();

 let v0: Option<..> = iter.next();
 println!("v0: {v0:?}");
}

fn main() {
 let v: Vec<String> = vec![String::from("foo"), String::from("bar")];

 for word in &v {
 println!("word: {word}");
 }

 for word in v {
 println!("word: {word}");
 }
}

https://doc.rust-lang.org/std/vec/struct.Vec.html#impl-IntoIterator-for-%26%27a%20Vec%3CT%2C%20A%3E
https://doc.rust-lang.org/std/vec/struct.Vec.html#impl-IntoIterator-for-Vec%3CT%2C%20A%3E

Comprehensive Rust 🦀

62 / 232

Welcome to Day 2
Now that we have seen a fair amount of Rust, we will continue with:

Structs, enums, methods.

Pattern matching: destructuring enums, structs, and arrays.

Control flow constructs: if , if let , while , while let , break , and continue .

The Standard Library: String , Option and Result , Vec , HashMap , Rc and Arc .

Modules: visibility, paths, and filesystem hierarchy.

Comprehensive Rust 🦀

63 / 232

Structs
Like C and C++, Rust has support for custom structs:

Details
Key Points:

Structs work like in C or C++.
Like in C++, and unlike in C, no typedef is needed to define a type.
Unlike in C++, there is no inheritance between structs.

Methods are defined in an impl block, which we will see in following slides.
This may be a good time to let people know there are different types of structs.

Zero-sized structs e.g., struct Foo; might be used when implementing a trait on
some type but don’t have any data that you want to store in the value itself.
The next slide will introduce Tuple structs.

struct Person {
 name: String,
 age: u8,
}

fn main() {
 let mut peter = Person {
 name: String::from("Peter"),
 age: 27,
 };
 println!("{} is {} years old", peter.name, peter.age);

 peter.age = 28;
 println!("{} is {} years old", peter.name, peter.age);

 let jackie = Person {
 name: String::from("Jackie"),
 ..peter
 };
 println!("{} is {} years old", jackie.name, jackie.age);
}

Comprehensive Rust 🦀

64 / 232

Tuple Structs
If the field names are unimportant, you can use a tuple struct:

This is often used for single-field wrappers (called newtypes):

Details

Newtypes are a great way to encode additional information about the value in a primitive type, for
example:

The number is measured in some units: Newtons in the example above.
The value passed some validation when it was created, so you no longer have to validate it
again at every use: ’PhoneNumber(String) or OddNumber(u32)`.

struct Point(i32, i32);

fn main() {
 let p = Point(17, 23);
 println!("({}, {})", p.0, p.1);
}

struct PoundOfForce(f64);
struct Newtons(f64);

fn compute_thruster_force() -> PoundOfForce {
 todo!("Ask a rocket scientist at NASA")
}

fn set_thruster_force(force: Newtons) {
 // ...
}

fn main() {
 let force = compute_thruster_force();
 set_thruster_force(force);
}

Comprehensive Rust 🦀

65 / 232

Field Shorthand Syntax
If you already have variables with the right names, then you can create the struct using a
shorthand:

Details

The new function could be written using Self as a type, as it is interchangeable with the struct
type name

#[derive(Debug)]
struct Person {
 name: String,
 age: u8,
}

impl Person {
 fn new(name: String, age: u8) -> Person {
 Person { name, age }
 }
}

fn main() {
 let peter = Person::new(String::from("Peter"), 27);
 println!("{peter:?}");
}

impl Person {
 fn new(name: String, age: u8) -> Self {
 Self { name, age }
 }
}

Comprehensive Rust 🦀

66 / 232

Enums
The enum keyword allows the creation of a type which has a few different variants:

Details

Key Points:

Enumerations allow you to collect a set of values under one type
This page offers an enum type CoinFlip with two variants Heads and Tail . You might note
the namespace when using variants.
This might be a good time to compare Structs and Enums:

In both, you can have a simple version without fields (unit struct) or one with different
types of fields (variant payloads).
In both, associated functions are defined within an impl block.
You could even implement the different variants of an enum with separate structs but
then they wouldn’t be the same type as they would if they were all defined in an enum.

fn generate_random_number() -> i32 {
 4 // Chosen by fair dice roll. Guaranteed to be random.
}

#[derive(Debug)]
enum CoinFlip {
 Heads,
 Tails,
}

fn flip_coin() -> CoinFlip {
 let random_number = generate_random_number();
 if random_number % 2 == 0 {
 return CoinFlip::Heads;
 } else {
 return CoinFlip::Tails;
 }
}

fn main() {
 println!("You got: {:?}", flip_coin());
}

Comprehensive Rust 🦀

67 / 232

Variant Payloads
You can define richer enums where the variants carry data. You can then use the match statement
to extract the data from each variant:

Details

In the above example, accessing the char in KeyPress , or x and y in Click only works
within a match statement.
match inspects a hidden discriminant field in the enum .
WebEvent::Click { ... } is not exactly the same as WebEvent::Click(Click) with a top

level struct Click { ... } . The inlined version cannot implement traits, for example.

enum WebEvent {
 PageLoad, // Variant without payload
 KeyPress(char), // Tuple struct variant
 Click { x: i64, y: i64 }, // Full struct variant
}

#[rustfmt::skip]
fn inspect(event: WebEvent) {
 match event {
 WebEvent::PageLoad => println!("page loaded"),
 WebEvent::KeyPress(c) => println!("pressed '{c}'"),
 WebEvent::Click { x, y } => println!("clicked at x={x}, y={y}"),
 }
}

fn main() {
 let load = WebEvent::PageLoad;
 let press = WebEvent::KeyPress('x');
 let click = WebEvent::Click { x: 20, y: 80 };

 inspect(load);
 inspect(press);
 inspect(click);
}

Comprehensive Rust 🦀

68 / 232

Enum Sizes
Rust enums are packed tightly, taking constraints due to alignment into account:

See the Rust Reference.

Details

Key Points:

Internally Rust is using a field (discriminant) to keep track of the enum variant.
Bar enum demonstrates that there is a way to control the discriminant value and type. If
repr is removed, the discriminant type takes 2 bytes, becuase 10001 fits 2 bytes.

As a niche optimization an enum discriminant is merged with the pointer so that
Option<&Foo> is the same size as &Foo .
Option<bool> is another example of tight packing.

For some types, Rust guarantees that size_of::<T>() equals size_of::<Option<T>>() .
Zero-sized types allow for efficient implementation of HashSet using HashMap with () as
the value.

Example code if you want to show how the bitwise representation may look like in practice. It’s
important to note that the compiler provides no guarantees regarding this representation,
therefore this is totally unsafe.

use std::mem::{align_of, size_of};

macro_rules! dbg_size {
 ($t:ty) => {
 println!("{}: size {} bytes, align: {} bytes",
 stringify!($t), size_of::<$t>(), align_of::<$t>());
 };
}

enum Foo {
 A,
 B,
}

#[repr(u32)]
enum Bar {
 A, // 0
 B = 10000,
 C, // 10001
}

fn main() {
 dbg_size!(Foo);
 dbg_size!(Bar);
 dbg_size!(bool);
 dbg_size!(Option<bool>);
 dbg_size!(&i32);
 dbg_size!(Option<&i32>);
}

https://doc.rust-lang.org/reference/type-layout.html
https://doc.rust-lang.org/std/option/#representation

Comprehensive Rust 🦀

69 / 232

More complex example if you want to discuss what happens when we chain more than 256
Option s together.

use std::mem::transmute;

macro_rules! dbg_bits {
 ($e:expr, $bit_type:ty) => {
 println!("- {}: {:#x}", stringify!($e), transmute::<_, $bit_type>($e));
 };
}

fn main() {
 // TOTALLY UNSAFE. Rust provides no guarantees about the bitwise
 // representation of types.
 unsafe {
 println!("Bitwise representation of bool");
 dbg_bits!(false, u8);
 dbg_bits!(true, u8);

 println!("Bitwise representation of Option<bool>");
 dbg_bits!(None::<bool>, u8);
 dbg_bits!(Some(false), u8);
 dbg_bits!(Some(true), u8);

 println!("Bitwise representation of Option<Option<bool>>");
 dbg_bits!(Some(Some(false)), u8);
 dbg_bits!(Some(Some(true)), u8);
 dbg_bits!(Some(None::<bool>), u8);
 dbg_bits!(None::<Option<bool>>, u8);

 println!("Bitwise representation of Option<&i32>");
 dbg_bits!(None::<&i32>, usize);
 dbg_bits!(Some(&0i32), usize);
 }
}

Comprehensive Rust 🦀

70 / 232

#![recursion_limit = "1000"]

use std::mem::transmute;

macro_rules! dbg_bits {
 ($e:expr, $bit_type:ty) => {
 println!("- {}: {:#x}", stringify!($e), transmute::<_, $bit_type>($e));
 };
}

// Macro to wrap a value in 2^n Some() where n is the number of "@" signs.
// Increasing the recursion limit is required to evaluate this macro.
macro_rules! many_options {
 ($value:expr) => { Some($value) };
 ($value:expr, @) => {
 Some(Some($value))
 };
 ($value:expr, @ $($more:tt)+) => {
 many_options!(many_options!($value, $($more)+), $($more)+)
 };
}

fn main() {
 // TOTALLY UNSAFE. Rust provides no guarantees about the bitwise
 // representation of types.
 unsafe {
 assert_eq!(many_options!(false), Some(false));
 assert_eq!(many_options!(false, @), Some(Some(false)));
 assert_eq!(many_options!(false, @@), Some(Some(Some(Some(false)))));

 println!("Bitwise representation of a chain of 128 Option's.");
 dbg_bits!(many_options!(false, @@@@@@@), u8);
 dbg_bits!(many_options!(true, @@@@@@@), u8);

 println!("Bitwise representation of a chain of 256 Option's.");
 dbg_bits!(many_options!(false, @@@@@@@@), u16);
 dbg_bits!(many_options!(true, @@@@@@@@), u16);

 println!("Bitwise representation of a chain of 257 Option's.");
 dbg_bits!(many_options!(Some(false), @@@@@@@@), u16);
 dbg_bits!(many_options!(Some(true), @@@@@@@@), u16);
 dbg_bits!(many_options!(None::<bool>, @@@@@@@@), u16);
 }
}

Comprehensive Rust 🦀

71 / 232

Methods
Rust allows you to associate functions with your new types. You do this with an impl block:

Details

Key Points:

It can be helpful to introduce methods by comparing them to functions.
Methods are called on an instance of a type (such as a struct or enum), the first
parameter represents the instance as self .
Developers may choose to use methods to take advantage of method receiver syntax
and to help keep them more organized. By using methods we can keep all the
implementation code in one predictable place.

Point out the use of the keyword self , a method receiver.
Show that it is an abbreviated term for self:&Self and perhaps show how the struct
name could also be used.
Explain that Self is a type alias for the type the impl block is in and can be used
elsewhere in the block.
Note how self is used like other structs and dot notation can be used to refer to
individual fields.
This might be a good time to demonstrate how the &self differs from self by
modifying the code and trying to run say_hello twice.

We describe the distinction between method receivers next.

#[derive(Debug)]
struct Person {
 name: String,
 age: u8,
}

impl Person {
 fn say_hello(&self) {
 println!("Hello, my name is {}", self.name);
 }
}

fn main() {
 let peter = Person {
 name: String::from("Peter"),
 age: 27,
 };
 peter.say_hello();
}

Comprehensive Rust 🦀

72 / 232

Method Receiver
The &self above indicates that the method borrows the object immutably. There are other
possible receivers for a method:

&self : borrows the object from the caller using a shared and immutable reference. The
object can be used again afterwards.
&mut self : borrows the object from the caller using a unique and mutable reference. The

object can be used again afterwards.
self : takes ownership of the object and moves it away from the caller. The method becomes

the owner of the object. The object will be dropped (deallocated) when the method returns,
unless its ownership is explicitly transmitted.
mut self : same as above, but while the method owns the object, it can mutate it too.

Complete ownership does not automatically mean mutability.
No receiver: this becomes a static method on the struct. Typically used to create constructors
which are called new by convention.

Beyond variants on self , there are also special wrapper types allowed to be receiver types, such
as Box<Self> .

Details

Consider emphasizing on “shared and immutable” and “unique and mutable”. These constraints
always come together in Rust due to borrow checker rules, and self is no exception. It won’t be
possible to reference a struct from multiple locations and call a mutating (&mut self) method on
it.

https://doc.rust-lang.org/reference/special-types-and-traits.html

Comprehensive Rust 🦀

73 / 232

Example

Details

Key Points:

All four methods here use a different method receiver.
You can point out how that changes what the function can do with the variable values
and if/how it can be used again in main .
You can showcase the error that appears when trying to call finish twice.

Note, that although the method receivers are different, the non-static functions are called
the same way in the main body. Rust enables automatic referencing and dereferencing when
calling methods. Rust automatically adds in the & , * , muts so that that object matches the
method signature.
You might point out that print_laps is using a vector that is iterated over. We describe
vectors in more detail in the afternoon.

#[derive(Debug)]
struct Race {
 name: String,
 laps: Vec<i32>,
}

impl Race {
 fn new(name: &str) -> Race { // No receiver, a static method
 Race { name: String::from(name), laps: Vec::new() }
 }

 fn add_lap(&mut self, lap: i32) { // Exclusive borrowed read-write access to self
 self.laps.push(lap);
 }

 fn print_laps(&self) { // Shared and read-only borrowed access to self
 println!("Recorded {} laps for {}:", self.laps.len(), self.name);
 for (idx, lap) in self.laps.iter().enumerate() {
 println!("Lap {idx}: {lap} sec");
 }
 }

 fn finish(self) { // Exclusive ownership of self
 let total = self.laps.iter().sum::<i32>();
 println!("Race {} is finished, total lap time: {}", self.name, total);
 }
}

fn main() {
 let mut race = Race::new("Monaco Grand Prix");
 race.add_lap(70);
 race.add_lap(68);
 race.print_laps();
 race.add_lap(71);
 race.print_laps();
 race.finish();
 // race.add_lap(42);
}

Comprehensive Rust 🦀

74 / 232

Pattern Matching
The match keyword let you match a value against one or more patterns. The comparisons are done
from top to bottom and the first match wins.

The patterns can be simple values, similarly to switch in C and C++:

The _ pattern is a wildcard pattern which matches any value.

Details

Key Points:

You might point out how some specific characters are being used when in a patten
| as an or
.. can expand as much as it needs to be
1..=5 represents an inclusive range
_ is a wild card

It can be useful to show how binding works, by for instance replacing a wildcard character
with a variable, or removing the quotes around q .
You can demonstrate matching on a reference.
This might be a good time to bring up the concept of irrefutable patterns, as the term can
show up in error messages.

fn main() {
 let input = 'x';

 match input {
 'q' => println!("Quitting"),
 'a' | 's' | 'w' | 'd' => println!("Moving around"),
 '0'..='9' => println!("Number input"),
 _ => println!("Something else"),
 }
}

Comprehensive Rust 🦀

75 / 232

Destructuring Enums
Patterns can also be used to bind variables to parts of your values. This is how you inspect the
structure of your types. Let us start with a simple enum type:

Here we have used the arms to destructure the Result value. In the first arm, half is bound to the
value inside the Ok variant. In the second arm, msg is bound to the error message.

Details

Key points:

The if / else expression is returning an enum that is later unpacked with a match .
You can try adding a third variant to the enum definition and displaying the errors when
running the code. Point out the places where your code is now inexhaustive and how the
compiler tries to give you hints.

enum Result {
 Ok(i32),
 Err(String),
}

fn divide_in_two(n: i32) -> Result {
 if n % 2 == 0 {
 Result::Ok(n / 2)
 } else {
 Result::Err(format!("cannot divide {n} into two equal parts"))
 }
}

fn main() {
 let n = 100;
 match divide_in_two(n) {
 Result::Ok(half) => println!("{n} divided in two is {half}"),
 Result::Err(msg) => println!("sorry, an error happened: {msg}"),
 }
}

Comprehensive Rust 🦀

76 / 232

Destructuring Structs
You can also destructure structs :

Details

Change the literal values in foo to match with the other patterns.
Add a new field to Foo and make changes to the pattern as needed.

struct Foo {
 x: (u32, u32),
 y: u32,
}

#[rustfmt::skip]
fn main() {
 let foo = Foo { x: (1, 2), y: 3 };
 match foo {
 Foo { x: (1, b), y } => println!("x.0 = 1, b = {b}, y = {y}"),
 Foo { y: 2, x: i } => println!("y = 2, i = {i:?}"),
 Foo { y, .. } => println!("y = {y}, other fields were ignored"),
 }
}

Comprehensive Rust 🦀

77 / 232

Destructuring Arrays
You can destructure arrays, tuples, and slices by matching on their elements:

Details

Destructuring of slices of unknown length also works with patterns of fixed length.

#[rustfmt::skip]
fn main() {
 let triple = [0, -2, 3];
 println!("Tell me about {triple:?}");
 match triple {
 [0, y, z] => println!("First is 0, y = {y}, and z = {z}"),
 [1, ..] => println!("First is 1 and the rest were ignored"),
 _ => println!("All elements were ignored"),
 }
}

fn main() {
 inspect(&[0, -2, 3]);
 inspect(&[0, -2, 3, 4]);
}

#[rustfmt::skip]
fn inspect(slice: &[i32]) {
 println!("Tell me about {slice:?}");
 match slice {
 &[0, y, z] => println!("First is 0, y = {y}, and z = {z}"),
 &[1, ..] => println!("First is 1 and the rest were ignored"),
 _ => println!("All elements were ignored"),
 }
}

Comprehensive Rust 🦀

78 / 232

Match Guards
When matching, you can add a guard to a pattern. This is an arbitrary Boolean expression which will
be executed if the pattern matches:

Details

Key Points:

Match guards as a separate syntax feature are important and necessary.
They are not the same as separate if expression inside of the match arm. An if
expression inside of the branch block (after =>) happens after the match arm is selected.
Failing the if condition inside of that block won’t result in other arms of the original match
expression being considered.
You can use the variables defined in the pattern in your if expression.
The condition defined in the guard applies to every expression in a pattern with an | .

#[rustfmt::skip]
fn main() {
 let pair = (2, -2);
 println!("Tell me about {pair:?}");
 match pair {
 (x, y) if x == y => println!("These are twins"),
 (x, y) if x + y == 0 => println!("Antimatter, kaboom!"),
 (x, _) if x % 2 == 1 => println!("The first one is odd"),
 _ => println!("No correlation..."),
 }
}

Comprehensive Rust 🦀

79 / 232

Day 2: Morning Exercises
We will look at implementing methods in two contexts:

Simple struct which tracks health statistics.

Multiple structs and enums for a drawing library.

Details

After looking at the exercises, you can look at the solutions provided.

Comprehensive Rust 🦀

80 / 232

Health Statistics
You’re working on implementing a health-monitoring system. As part of that, you need to keep
track of users’ health statistics.

You’ll start with some stubbed functions in an impl block as well as a User struct definition. Your
goal is to implement the stubbed out methods on the User struct defined in the impl block.

Copy the code below to https://play.rust-lang.org/ and fill in the missing methods:

// TODO: remove this when you're done with your implementation.
#![allow(unused_variables, dead_code)]

struct User {
 name: String,
 age: u32,
 weight: f32,
}

impl User {
 pub fn new(name: String, age: u32, weight: f32) -> Self {
 unimplemented!()
 }

 pub fn name(&self) -> &str {
 unimplemented!()
 }

 pub fn age(&self) -> u32 {
 unimplemented!()
 }

 pub fn weight(&self) -> f32 {
 unimplemented!()
 }

 pub fn set_age(&mut self, new_age: u32) {
 unimplemented!()
 }

 pub fn set_weight(&mut self, new_weight: f32) {
 unimplemented!()
 }
}

fn main() {
 let bob = User::new(String::from("Bob"), 32, 155.2);
 println!("I'm {} and my age is {}", bob.name(), bob.age());
}

#[test]
fn test_weight() {
 let bob = User::new(String::from("Bob"), 32, 155.2);
 assert_eq!(bob.weight(), 155.2);
}

#[test]
fn test_set_age() {
 let mut bob = User::new(String::from("Bob"), 32, 155.2);
 assert_eq!(bob.age(), 32);
 bob.set_age(33);
 assert_eq!(bob.age(), 33);
}

https://play.rust-lang.org/

Comprehensive Rust 🦀

81 / 232

Polygon Struct
We will create a Polygon struct which contain some points. Copy the code below to
https://play.rust-lang.org/ and fill in the missing methods to make the tests pass:

https://play.rust-lang.org/

Comprehensive Rust 🦀

82 / 232

// TODO: remove this when you're done with your implementation.
#![allow(unused_variables, dead_code)]

pub struct Point {
 // add fields
}

impl Point {
 // add methods
}

pub struct Polygon {
 // add fields
}

impl Polygon {
 // add methods
}

pub struct Circle {
 // add fields
}

impl Circle {
 // add methods
}

pub enum Shape {
 Polygon(Polygon),
 Circle(Circle),
}

#[cfg(test)]
mod tests {
 use super::*;

 fn round_two_digits(x: f64) -> f64 {
 (x * 100.0).round() / 100.0
 }

 #[test]
 fn test_point_magnitude() {
 let p1 = Point::new(12, 13);
 assert_eq!(round_two_digits(p1.magnitude()), 17.69);
 }

 #[test]
 fn test_point_dist() {
 let p1 = Point::new(10, 10);
 let p2 = Point::new(14, 13);
 assert_eq!(round_two_digits(p1.dist(p2)), 5.00);
 }

 #[test]
 fn test_point_add() {
 let p1 = Point::new(16, 16);
 let p2 = p1 + Point::new(-4, 3);
 assert_eq!(p2, Point::new(12, 19));
 }

 #[test]
 fn test_polygon_left_most_point() {
 let p1 = Point::new(12, 13);
 let p2 = Point::new(16, 16);

 let mut poly = Polygon::new();
 poly.add_point(p1);
 poly.add_point(p2);
 assert_eq!(poly.left_most_point(), Some(p1));
 }

Comprehensive Rust 🦀

83 / 232

Details

Since the method signatures are missing from the problem statements, the key part of the
exercise is to specify those correctly.

Other interesting parts of the exercise:

Derive a Copy trait for some structs, as in tests the methods sometimes don’t borrow their
arguments.
Discover that Add trait must be implemented for two objects to be addable via “+”.

 #[test]
 fn test_polygon_iter() {
 let p1 = Point::new(12, 13);
 let p2 = Point::new(16, 16);

 let mut poly = Polygon::new();
 poly.add_point(p1);
 poly.add_point(p2);

 let points = poly.iter().cloned().collect::<Vec<_>>();
 assert_eq!(points, vec![Point::new(12, 13), Point::new(16, 16)]);
 }

 #[test]
 fn test_shape_perimeters() {
 let mut poly = Polygon::new();
 poly.add_point(Point::new(12, 13));
 poly.add_point(Point::new(17, 11));
 poly.add_point(Point::new(16, 16));
 let shapes = vec![
 Shape::from(poly),
 Shape::from(Circle::new(Point::new(10, 20), 5)),
];
 let perimeters = shapes
 .iter()
 .map(Shape::perimeter)
 .map(round_two_digits)
 .collect::<Vec<_>>();
 assert_eq!(perimeters, vec![15.48, 31.42]);
 }
}

#[allow(dead_code)]
fn main() {}

Comprehensive Rust 🦀

84 / 232

Control Flow
As we have seen, if is an expression in Rust. It is used to conditionally evaluate one of two blocks,
but the blocks can have a value which then becomes the value of the if expression. Other control
flow expressions work similarly in Rust.

Comprehensive Rust 🦀

85 / 232

Blocks
A block in Rust has a value and a type: the value is the last expression of the block:

The same rule is used for functions: the value of the function body is the return value:

However if the last expression ends with ; , then the resulting value and type is () .

Details

Key Points:

The point of this slide is to show that blocks have a type and value in Rust.
You can show how the value of the block changes by changing the last line in the block. For
instance, adding/removing a semicolon or using a return .

fn main() {
 let x = {
 let y = 10;
 println!("y: {y}");
 let z = {
 let w = {
 3 + 4
 };
 println!("w: {w}");
 y * w
 };
 println!("z: {z}");
 z - y
 };
 println!("x: {x}");
}

fn double(x: i32) -> i32 {
 x + x
}

fn main() {
 println!("doubled: {}", double(7));
}

Comprehensive Rust 🦀

86 / 232

if expressions
You use if very similarly to how you would in other languages:

In addition, you can use it as an expression. This does the same as above:

Details

Because if is an expression and must have a particular type, both of its branch blocks must have
the same type. Consider showing what happens if you add ; after x / 2 in the second example.

fn main() {
 let mut x = 10;
 if x % 2 == 0 {
 x = x / 2;
 } else {
 x = 3 * x + 1;
 }
}

fn main() {
 let mut x = 10;
 x = if x % 2 == 0 {
 x / 2
 } else {
 3 * x + 1
 };
}

Comprehensive Rust 🦀

87 / 232

if let expressions
If you want to match a value against a pattern, you can use if let :

See pattern matching for more details on patterns in Rust.

Details

if let can be more concise than match , e.g., when only one case is interesting. In contrast,
match requires all branches to be covered.

For the similar use case consider demonstrating a newly stabilized let else feature.
A common usage is handling Some values when working with Option .
Unlike match , if let does not support guard clauses for pattern matching.

fn main() {
 let arg = std::env::args().next();
 if let Some(value) = arg {
 println!("Program name: {value}");
 } else {
 println!("Missing name?");
 }
}

https://github.com/rust-lang/rust/pull/93628

Comprehensive Rust 🦀

88 / 232

while expressions
The while keyword works very similar to other languages:

fn main() {
 let mut x = 10;
 while x != 1 {
 x = if x % 2 == 0 {
 x / 2
 } else {
 3 * x + 1
 };
 }
 println!("Final x: {x}");
}

Comprehensive Rust 🦀

89 / 232

while let expressions
Like with if , there is a while let variant which repeatedly tests a value against a pattern:

Here the iterator returned by v.iter() will return a Option<i32> on every call to next() . It
returns Some(x) until it is done, after which it will return None . The while let lets us keep
iterating through all items.

See pattern matching for more details on patterns in Rust.

Details

Point out that the while let loop will keep going as long as the value matches the pattern.
You could rewrite the while let loop as an infinite loop with an if statement that breaks
when there is no value to unwrap for iter.next() . The while let provides syntactic sugar
for the above scenario.

fn main() {
 let v = vec![10, 20, 30];
 let mut iter = v.into_iter();

 while let Some(x) = iter.next() {
 println!("x: {x}");
 }
}

Comprehensive Rust 🦀

90 / 232

for expressions
The for expression is closely related to the while let expression. It will automatically call
into_iter() on the expression and then iterate over it:

You can use break and continue here as usual.

Details

Index iteration is not a special syntax in Rust for just that case.
(0..10) is a range that implements an Iterator trait.
step_by is a method that returns another Iterator that skips every other element.

fn main() {
 let v = vec![10, 20, 30];

 for x in v {
 println!("x: {x}");
 }

 for i in (0..10).step_by(2) {
 println!("i: {i}");
 }
}

Comprehensive Rust 🦀

91 / 232

loop expressions
Finally, there is a loop keyword which creates an endless loop. Here you must either break or
return to stop the loop:

fn main() {
 let mut x = 10;
 loop {
 x = if x % 2 == 0 {
 x / 2
 } else {
 3 * x + 1
 };
 if x == 1 {
 break;
 }
 }
 println!("Final x: {x}");
}

Comprehensive Rust 🦀

92 / 232

match expressions
The match keyword is used to match a value against one or more patterns. In that sense, it works
like a series of if let expressions:

Like if let , each match arm must have the same type. The type is the last expression of the block,
if any. In the example above, the type is () .

See pattern matching for more details on patterns in Rust.

fn main() {
 match std::env::args().next().as_deref() {
 Some("cat") => println!("Will do cat things"),
 Some("ls") => println!("Will ls some files"),
 Some("mv") => println!("Let's move some files"),
 Some("rm") => println!("Uh, dangerous!"),
 None => println!("Hmm, no program name?"),
 _ => println!("Unknown program name!"),
 }
}

Comprehensive Rust 🦀

93 / 232

break and continue
If you want to exit a loop early, use break , if you want to immediately start the next iteration use
continue . Both continue and break can optionally take a label argument which is used to break

out of nested loops:

In this case we break the outer loop after 3 iterations of the inner loop.

fn main() {
 let v = vec![10, 20, 30];
 let mut iter = v.into_iter();
 'outer: while let Some(x) = iter.next() {
 println!("x: {x}");
 let mut i = 0;
 while i < x {
 println!("x: {x}, i: {i}");
 i += 1;
 if i == 3 {
 break 'outer;
 }
 }
 }
}

Comprehensive Rust 🦀

94 / 232

Standard Library
Rust comes with a standard library which helps establish a set of common types used by Rust
library and programs. This way, two libraries can work together smoothly because they both use
the same String type.

The common vocabulary types include:

Option and Result types: used for optional values and error handling.

String : the default string type used for owned data.

Vec : a standard extensible vector.

HashMap : a hash map type with a configurable hashing algorithm.

Box : an owned pointer for heap-allocated data.

Rc : a shared reference-counted pointer for heap-allocated data.

Details

In fact, Rust contains several layers of the Standard Library: core , alloc and std .
core includes the most basic types and functions that don’t depend on libc , allocator or

even the presence of an operating system.
alloc includes types which require a global heap allocator, such as Vec , Box and Arc .

Embedded Rust applications often only use core , and sometimes alloc .

Comprehensive Rust 🦀

95 / 232

Option and Result
The types represent optional data:

Details

Option and Result are widely used not just in the standard library.
Option<&T> has zero space overhead compared to &T .
Result is the standard type to implement error handling as we will see on Day 3.
binary_search returns Result<usize, usize> .

If found, Result::Ok holds the index where the element is found.
Otherwise, Result::Err contains the index where such an element should be inserted.

fn main() {
 let numbers = vec![10, 20, 30];
 let first: Option<&i8> = numbers.first();
 println!("first: {first:?}");

 let idx: Result<usize, usize> = numbers.binary_search(&10);
 println!("idx: {idx:?}");
}

Comprehensive Rust 🦀

96 / 232

String
String is the standard heap-allocated growable UTF-8 string buffer:

String implements Deref<Target = str> , which means that you can call all str methods on a
String .

Details

len returns the size of the String in bytes, not its length in characters.
chars returns an iterator over the actual characters.
String implements Deref<Target = str> which transparently gives it access to str ’s

methods.

fn main() {
 let mut s1 = String::new();
 s1.push_str("Hello");
 println!("s1: len = {}, capacity = {}", s1.len(), s1.capacity());

 let mut s2 = String::with_capacity(s1.len() + 1);
 s2.push_str(&s1);
 s2.push('!');
 println!("s2: len = {}, capacity = {}", s2.len(), s2.capacity());

 let s3 = String::from(" 🇨 🇭 ");
 println!("s3: len = {}, number of chars = {}", s3.len(),
 s3.chars().count());
}

https://doc.rust-lang.org/std/string/struct.String.html
https://doc.rust-lang.org/std/string/struct.String.html#deref-methods-str

Comprehensive Rust 🦀

97 / 232

Vec
Vec is the standard resizable heap-allocated buffer:

Vec implements Deref<Target = [T]> , which means that you can call slice methods on a Vec .

Details

Vec is a type of collection, along with String and HashMap . The data it contains is stored on
the heap. This means the amount of data doesn’t need to be known at compile time. It can
grow or shrink at runtime.
Notice how Vec<T> is a generic type too, but you don’t have to specify T explicitly. As always
with Rust type inference, the T was established during the first push call.
vec![...] is a canonical macro to use instead of Vec::new() and it supports adding initial

elements to the vector.
To index the vector you use [] , but they will panic if out of bounds. Alternatively, using
get will return an Option . The pop function will remove the last element.

Show iterating over a vector and mutating the value: for e in &mut v { *e += 50; }

fn main() {
 let mut v1 = Vec::new();
 v1.push(42);
 println!("v1: len = {}, capacity = {}", v1.len(), v1.capacity());

 let mut v2 = Vec::with_capacity(v1.len() + 1);
 v2.extend(v1.iter());
 v2.push(9999);
 println!("v2: len = {}, capacity = {}", v2.len(), v2.capacity());
}

https://doc.rust-lang.org/std/vec/struct.Vec.html
https://doc.rust-lang.org/std/vec/struct.Vec.html#deref-methods-%5BT%5D

Comprehensive Rust 🦀

98 / 232

HashMap
Standard hash map with protection against HashDoS attacks:

use std::collections::HashMap;

fn main() {
 let mut page_counts = HashMap::new();
 page_counts.insert("Adventures of Huckleberry Finn".to_string(), 207);
 page_counts.insert("Grimms' Fairy Tales".to_string(), 751);
 page_counts.insert("Pride and Prejudice".to_string(), 303);

 if !page_counts.contains_key("Les Misérables") {
 println!("We've know about {} books, but not Les Misérables.",
 page_counts.len());
 }

 for book in ["Pride and Prejudice", "Alice's Adventure in Wonderland"] {
 match page_counts.get(book) {
 Some(count) => println!("{book}: {count} pages"),
 None => println!("{book} is unknown.")
 }
 }
}

Comprehensive Rust 🦀

99 / 232

Box
Box is an owned pointer to data on the heap:

Stack Heap

.- - - - - - -. .- - - - - - -. : : : : : five : : : : +-----+ : : +-----+ : : | o---|---+-----+-->| 5 | : : +-----+ : : +-----+ : : : : : : : :
: `- - - - - - -' `- - - - - - -'

Box<T> implements Deref<Target = T> , which means that you can call methods from T directly
on a Box<T> .

Details

Box is like std::unique_ptr in C++.
In the above example, you can even leave out the * in the println! statement thanks to
Deref .

fn main() {
 let five = Box::new(5);
 println!("five: {}", *five);
}

https://doc.rust-lang.org/std/boxed/struct.Box.html
https://doc.rust-lang.org/std/ops/trait.Deref.html#more-on-deref-coercion

Comprehensive Rust 🦀

100 / 232

Box with Recursive Data Structures
Recursive data types or data types with dynamic sizes need to use a Box :

Stack Heap

.- - - - - - - - - - - - -. .- -. : : : : : list : : : : +--------+-------+ : : +--------+--------+ +-----
---+------+ : : | Tag | Cons | : : .->| Tag | Cons | .->| Tag | Nil | : : | 0 | 1 | : : | | 0 | 2 | | | ////// | ////
| : : | 1 | o-----+----+-----+-' | 1 | o------+-' | ////// | //// | : : +--------+-------+ : : +--------+--------+ +--------+-----
-+ : : : : : : : : : `- - - - - - - - - - - - -' '- -'

Details

If the Box was not used here and we attempted to embed a List directly into the List , the
compiler would not compute a fixed size of the struct in memory, it would look infinite.

Box solves this problem as it has the same size as a regular pointer and just points at the next
element of the List in the heap.

#[derive(Debug)]
enum List<T> {
 Cons(T, Box<List<T>>),
 Nil,
}

fn main() {
 let list: List<i32> = List::Cons(1, Box::new(List::Cons(2, Box::new(List::Nil))));
 println!("{list:?}");
}

Comprehensive Rust 🦀

101 / 232

Niche Optimization

A Box cannot be empty, so the pointer is always valid and non- null . This allows the compiler to
optimize the memory layout:

Stack Heap

.- - - - - - - - - - - - -. .- -. : : : : : list : : : : +--------+-------+ : : +--------+--------+ +-----
---+------+ : : | 0 | 1 | : : .->| 0 | 2 | .->| ////// | //// | : : | "1/Tag"| o-----+----+-----+-' | "1/Tag"| o-----+-'
| "1/Tag"| null | : : +--------+-------+ : : +--------+--------+ +--------+------+ : : : : : : : : : `- - - - - - - - - - - - -' '- - - - -
- - - - - - - - - - - - - - - - - - -'

#[derive(Debug)]
enum List<T> {
 Cons(T, Box<List<T>>),
 Nil,
}

fn main() {
 let list: List<i32> = List::Cons(1, Box::new(List::Cons(2, Box::new(List::Nil))));
 println!("{list:?}");
}

Comprehensive Rust 🦀

102 / 232

Rc
Rc is a reference-counted shared pointer. Use this when you need to refer to the same data from

multiple places:

If you need to mutate the data inside an Rc , you will need to wrap the data in a type such as Cell
or RefCell . See Arc if you are in a multi-threaded context.

Details

Like C++’s std::shared_ptr .
clone is cheap: creates a pointer to the same allocation and increases the reference count.
make_mut actually clones the inner value if necessary (“clone-on-write”) and returns a

mutable reference.

use std::rc::Rc;

fn main() {
 let mut a = Rc::new(10);
 let mut b = a.clone();

 println!("a: {a}");
 println!("b: {b}");
}

https://doc.rust-lang.org/std/rc/struct.Rc.html
https://doc.rust-lang.org/std/cell/index.html

Comprehensive Rust 🦀

103 / 232

Modules
We have seen how impl blocks let us namespace functions to a type.

Similarly, mod lets us namespace types and functions:

mod foo {
 pub fn do_something() {
 println!("In the foo module");
 }
}

mod bar {
 pub fn do_something() {
 println!("In the bar module");
 }
}

fn main() {
 foo::do_something();
 bar::do_something();
}

Comprehensive Rust 🦀

104 / 232

Visibility
Modules are a privacy boundary:

Module items are private by default (hides implementation details).
Parent and sibling items are always visible.

mod outer {
 fn private() {
 println!("outer::private");
 }

 pub fn public() {
 println!("outer::public");
 }

 mod inner {
 fn private() {
 println!("outer::inner::private");
 }

 pub fn public() {
 println!("outer::inner::public");
 super::private();
 }
 }
}

fn main() {
 outer::public();
}

Comprehensive Rust 🦀

105 / 232

Paths
Paths are resolved as follows:

1. As a relative path:

foo or self::foo refers to foo in the current module,
super::foo refers to foo in the parent module.

2. As an absolute path:

crate::foo refers to foo in the root of the current crate,
bar::foo refers to foo in the bar crate.

Comprehensive Rust 🦀

106 / 232

Filesystem Hierarchy
The module content can be omitted:

The garden module content is found at:

src/garden.rs (modern Rust 2018 style)
src/garden/mod.rs (older Rust 2015 style)

Similarly, a garden::vegetables module can be found at:

src/garden/vegetables.rs (modern Rust 2018 style)
src/garden/vegetables/mod.rs (older Rust 2015 style)

The crate root is in:

src/lib.rs (for a library crate)
src/main.rs (for a binary crate)

mod garden;

Comprehensive Rust 🦀

107 / 232

Day 2: Afternoon Exercises
The exercises for this afternoon will focus on strings and iterators.

Details

After looking at the exercises, you can look at the solutions provided.

Comprehensive Rust 🦀

108 / 232

Luhn Algorithm
The Luhn algorithm is used to validate credit card numbers. The algorithm takes a string as input
and does the following to validate the credit card number:

Ignore all spaces. Reject number with less than two digits.

Moving from right to left, double every second digit: for the number 1234 , we double 3 and
1 .

After doubling a digit, sum the digits. So doubling 7 becomes 14 which becomes 5 .

Sum all the undoubled and doubled digits.

The credit card number is valid if the sum ends with 0 .

Copy the following code to https://play.rust-lang.org/ and implement the function:

// TODO: remove this when you're done with your implementation.
#![allow(unused_variables, dead_code)]

pub fn luhn(cc_number: &str) -> bool {
 unimplemented!()
}

#[test]
fn test_non_digit_cc_number() {
 assert!(!luhn("foo"));
}

#[test]
fn test_empty_cc_number() {
 assert!(!luhn(""));
 assert!(!luhn(" "));
 assert!(!luhn(" "));
 assert!(!luhn(" "));
}

#[test]
fn test_single_digit_cc_number() {
 assert!(!luhn("0"));
}

#[test]
fn test_two_digit_cc_number() {
 assert!(luhn(" 0 0 "));
}

#[test]
fn test_valid_cc_number() {
 assert!(luhn("4263 9826 4026 9299"));
 assert!(luhn("4539 3195 0343 6467"));
 assert!(luhn("7992 7398 713"));
}

#[test]
fn test_invalid_cc_number() {
 assert!(!luhn("4223 9826 4026 9299"));
 assert!(!luhn("4539 3195 0343 6476"));
 assert!(!luhn("8273 1232 7352 0569"));
}

#[allow(dead_code)]
fn main() {}

https://en.wikipedia.org/wiki/Luhn_algorithm
https://play.rust-lang.org/

Comprehensive Rust 🦀

109 / 232

Strings and Iterators
In this exercise, you are implementing a routing component of a web server. The server is
configured with a number of path prefixes which are matched against request paths. The path
prefixes can contain a wildcard character which matches a full segment. See the unit tests below.

Copy the following code to https://play.rust-lang.org/ and make the tests pass. Try avoiding
allocating a Vec for your intermediate results:

// TODO: remove this when you're done with your implementation.
#![allow(unused_variables, dead_code)]

pub fn prefix_matches(prefix: &str, request_path: &str) -> bool {
 unimplemented!()
}

#[test]
fn test_matches_without_wildcard() {
 assert!(prefix_matches("/v1/publishers", "/v1/publishers"));
 assert!(prefix_matches("/v1/publishers", "/v1/publishers/abc-123"));
 assert!(prefix_matches("/v1/publishers", "/v1/publishers/abc/books"));

 assert!(!prefix_matches("/v1/publishers", "/v1"));
 assert!(!prefix_matches("/v1/publishers", "/v1/publishersBooks"));
 assert!(!prefix_matches("/v1/publishers", "/v1/parent/publishers"));
}

#[test]
fn test_matches_with_wildcard() {
 assert!(prefix_matches(
 "/v1/publishers/*/books",
 "/v1/publishers/foo/books"
));
 assert!(prefix_matches(
 "/v1/publishers/*/books",
 "/v1/publishers/bar/books"
));
 assert!(prefix_matches(
 "/v1/publishers/*/books",
 "/v1/publishers/foo/books/book1"
));

 assert!(!prefix_matches("/v1/publishers/*/books", "/v1/publishers"));
 assert!(!prefix_matches(
 "/v1/publishers/*/books",
 "/v1/publishers/foo/booksByAuthor"
));
}

https://play.rust-lang.org/

Comprehensive Rust 🦀

110 / 232

Welcome to Day 3
Today, we will cover some more advanced topics of Rust:

Traits: deriving traits, default methods, and important standard library traits.

Generics: generic data types, generic methods, monomorphization, and trait objects.

Error handling: panics, Result , and the try operator ? .

Testing: unit tests, documentation tests, and integration tests.

Unsafe Rust: raw pointers, static variables, unsafe functions, and extern functions.

Comprehensive Rust 🦀

111 / 232

Traits
Rust lets you abstract over types with traits. They’re similar to interfaces:

Details

Traits may specify pre-implemented (default) methods and methods that users are required
to implement themselves. Methods with default implementations can rely on required
methods.
Types that implement a given trait may be of different sizes. This makes it impossible to have
things like Vec<Greet> in the example above.
dyn Greet is a way to tell the compiler about a dynamically sized type that implements
Greet .

In the example, pets holds Fat Pointers to objects that implement Greet . The Fat Pointer
consists of two components, a pointer to the actual object and a pointer to the virtual
method table for the Greet implementation of that particular object.

Compare these outputs in the above example:

trait Greet {
 fn say_hello(&self);
}

struct Dog {
 name: String,
}

struct Cat; // No name, cats won't respond to it anyway.

impl Greet for Dog {
 fn say_hello(&self) {
 println!("Wuf, my name is {}!", self.name);
 }
}

impl Greet for Cat {
 fn say_hello(&self) {
 println!("Miau!");
 }
}

fn main() {
 let pets: Vec<Box<dyn Greet>> = vec![
 Box::new(Dog { name: String::from("Fido") }),
 Box::new(Cat),
];
 for pet in pets {
 pet.say_hello();
 }
}

 println!("{} {}", std::mem::size_of::<Dog>(), std::mem::size_of::<Cat>());
 println!("{} {}", std::mem::size_of::<&Dog>(), std::mem::size_of::<&Cat>());
 println!("{}", std::mem::size_of::<&dyn Greet>());
 println!("{}", std::mem::size_of::<Box<dyn Greet>>());

Comprehensive Rust 🦀

112 / 232

Deriving Traits
You can let the compiler derive a number of traits:

#[derive(Debug, Clone, PartialEq, Eq, Default)]
struct Player {
 name: String,
 strength: u8,
 hit_points: u8,
}

fn main() {
 let p1 = Player::default();
 let p2 = p1.clone();
 println!("Is {:?}\nequal to {:?}?\nThe answer is {}!", &p1, &p2,
 if p1 == p2 { "yes" } else { "no" });
}

Comprehensive Rust 🦀

113 / 232

Default Methods
Traits can implement behavior in terms of other trait methods:

trait Equals {
 fn equal(&self, other: &Self) -> bool;
 fn not_equal(&self, other: &Self) -> bool {
 !self.equal(other)
 }
}

#[derive(Debug)]
struct Centimeter(i16);

impl Equals for Centimeter {
 fn equal(&self, other: &Centimeter) -> bool {
 self.0 == other.0
 }
}

fn main() {
 let a = Centimeter(10);
 let b = Centimeter(20);
 println!("{a:?} equals {b:?}: {}", a.equal(&b));
 println!("{a:?} not_equals {b:?}: {}", a.not_equal(&b));
}

Comprehensive Rust 🦀

114 / 232

Important Traits
We will now look at some of the most common traits of the Rust standard library:

Iterator and IntoIterator used in for loops,
From and Into used to convert values,
Read and Write used for IO,
Add , Mul , … used for operator overloading, and
Drop used for defining destructors.
Default used to construct a default instance of a type.

Comprehensive Rust 🦀

115 / 232

Iterators
You can implement the Iterator trait on your own types:

Details

IntoIterator is the trait that makes for loops work. It is implemented by collection types
such as Vec<T> and references to them such as &Vec<T> and &[T] . Ranges also implement
it.
The Iterator trait implements many common functional programming operations over
collections (e.g. map , filter , reduce , etc). This is the trait where you can find all the
documentation about them. In Rust these functions should produce the code as efficient as
equivalent imperative implementations.

struct Fibonacci {
 curr: u32,
 next: u32,
}

impl Iterator for Fibonacci {
 type Item = u32;

 fn next(&mut self) -> Option<Self::Item> {
 let new_next = self.curr + self.next;
 self.curr = self.next;
 self.next = new_next;
 Some(self.curr)
 }
}

fn main() {
 let fib = Fibonacci { curr: 0, next: 1 };
 for (i, n) in fib.enumerate().take(5) {
 println!("fib({i}): {n}");
 }
}

Comprehensive Rust 🦀

116 / 232

FromIterator
FromIterator lets you build a collection from an Iterator .

Details

Iterator implements fn collect(self) -> B where B: FromIterator<Self::Item>, Self:
Sized

There are also implementations which let you do cool things like convert an Iterator<Item =
Result<V, E>> into a Result<Vec<V>, E> .

fn main() {
 let primes = vec![2, 3, 5, 7];
 let prime_squares = primes
 .into_iter()
 .map(|prime| prime * prime)
 .collect::<Vec<_>>();
}

Comprehensive Rust 🦀

117 / 232

From and Into
Types implement From and Into to facilitate type conversions:

Into is automatically implemented when From is implemented:

Details

That’s why it is common to only implement From , as your type will get Into implementation
too.
When declaring a function argument input type like “anything that can be converted into a
String ”, the rule is opposite, you should use Into . Your function will accept types that

implement From and those that only implement Into .

fn main() {
 let s = String::from("hello");
 let addr = std::net::Ipv4Addr::from([127, 0, 0, 1]);
 let one = i16::from(true);
 let bigger = i32::from(123i16);
 println!("{s}, {addr}, {one}, {bigger}");
}

fn main() {
 let s: String = "hello".into();
 let addr: std::net::Ipv4Addr = [127, 0, 0, 1].into();
 let one: i16 = true.into();
 let bigger: i32 = 123i16.into();
 println!("{s}, {addr}, {one}, {bigger}");
}

Comprehensive Rust 🦀

118 / 232

Read and Write
Using Read and BufRead , you can abstract over u8 sources:

Similarly, Write lets you abstract over u8 sinks:

use std::io::{BufRead, BufReader, Read, Result};

fn count_lines<R: Read>(reader: R) -> usize {
 let buf_reader = BufReader::new(reader);
 buf_reader.lines().count()
}

fn main() -> Result<()> {
 let slice: &[u8] = b"foo\nbar\nbaz\n";
 println!("lines in slice: {}", count_lines(slice));

 let file = std::fs::File::open(std::env::current_exe()?)?;
 println!("lines in file: {}", count_lines(file));
 Ok(())
}

use std::io::{Result, Write};

fn log<W: Write>(writer: &mut W, msg: &str) -> Result<()> {
 writer.write_all(msg.as_bytes())?;
 writer.write_all("\n".as_bytes())
}

fn main() -> Result<()> {
 let mut buffer = Vec::new();
 log(&mut buffer, "Hello")?;
 log(&mut buffer, "World")?;
 println!("Logged: {:?}", buffer);
 Ok(())
}

Comprehensive Rust 🦀

119 / 232

Add, Mul, …
Operator overloading is implemented via traits in std::ops :

Details

Discussion points:

You could implement Add for &Point . In which situations is that useful?
Answer: Add:add consumes self . If type T for which you are overloading the
operator is not Copy , you should consider overloading the operator for &T as well.
This avoids unnecessary cloning on the call site.

Why is Output an associated type? Could it be made a type parameter?
Short answer: Type parameters are controlled by the caller, but associated types (like
Output) are controlled by the implementor of a trait.

#[derive(Debug, Copy, Clone)]
struct Point { x: i32, y: i32 }

impl std::ops::Add for Point {
 type Output = Self;

 fn add(self, other: Self) -> Self {
 Self {x: self.x + other.x, y: self.y + other.y}
 }
}

fn main() {
 let p1 = Point { x: 10, y: 20 };
 let p2 = Point { x: 100, y: 200 };
 println!("{:?} + {:?} = {:?}", p1, p2, p1 + p2);
}

Comprehensive Rust 🦀

120 / 232

The Drop Trait
Values which implement Drop can specify code to run when they go out of scope:

Details

Discussion points:

Why does not Drop::drop take self ?
Short-answer: If it did, std::mem::drop would be called at the end of the block,
resulting in another call to Drop::drop , and a stack overflow!

Try replacing drop(a) with a.drop() .

struct Droppable {
 name: &'static str,
}

impl Drop for Droppable {
 fn drop(&mut self) {
 println!("Dropping {}", self.name);
 }
}

fn main() {
 let a = Droppable { name: "a" };
 {
 let b = Droppable { name: "b" };
 {
 let c = Droppable { name: "c" };
 let d = Droppable { name: "d" };
 println!("Exiting block B");
 }
 println!("Exiting block A");
 }
 drop(a);
 println!("Exiting main");
}

Comprehensive Rust 🦀

121 / 232

The Default Trait
Default trait provides a default implementation of a trait.

Details

It can be implemented directly or it can be derived via #[derive(Default)] .
Derived implementation will produce an instance where all fields are set to their default
values.

This means all types in the struct must implement Default too.
Standard Rust types often implement Default with reasonable values (e.g. 0 , "" , etc).
The partial struct copy works nicely with default.
Rust standard library is aware that types can implement Default and provides convenience
methods that use it.

#[derive(Debug, Default)]
struct Derived {
 x: u32,
 y: String,
 z: Implemented,
}

#[derive(Debug)]
struct Implemented(String);

impl Default for Implemented {
 fn default() -> Self {
 Self("John Smith".into())
 }
}

fn main() {
 let default_struct: Derived = Default::default();
 println!("{default_struct:#?}");

 let almost_default_struct = Derived {
 y: "Y is set!".into(),
 ..Default::default()
 };
 println!("{almost_default_struct:#?}");

 let nothing: Option<Derived> = None;
 println!("{:#?}", nothing.unwrap_or_default());
}

Comprehensive Rust 🦀

122 / 232

Generics
Rust support generics, which lets you abstract an algorithm (such as sorting) over the types used in
the algorithm.

Comprehensive Rust 🦀

123 / 232

Generic Data Types
You can use generics to abstract over the concrete field type:

#[derive(Debug)]
struct Point<T> {
 x: T,
 y: T,
}

fn main() {
 let integer = Point { x: 5, y: 10 };
 let float = Point { x: 1.0, y: 4.0 };
 println!("{integer:?} and {float:?}");
}

Comprehensive Rust 🦀

124 / 232

Generic Methods
You can declare a generic type on your impl block:

Details

Q: Why T is specified twice in impl<T> Point<T> {} ? Isn’t that redundant?
This is because it is a generic implementation section for generic type. They are
independently generic.
It means these methods are defined for any T .
It is possible to write impl Point<u32> { .. } .

Point is still generic and you can use Point<f64> , but methods in this block will
only be available for Point<u32> .

#[derive(Debug)]
struct Point<T>(T, T);

impl<T> Point<T> {
 fn x(&self) -> &T {
 &self.0 // + 10
 }

 // fn set_x(&mut self, x: T)
}

fn main() {
 let p = Point(5, 10);
 println!("p.x = {}", p.x());
}

Comprehensive Rust 🦀

125 / 232

Trait Bounds
When working with generics, you often want to limit the types. You can do this with T: Trait or
impl Trait :

Details

Show a where clause, students will encounter it when reading code.

It declutters the function signature if you have many parameters.
It has additional features making it more powerful.

If someone asks, the extra feature is that the type on the left of “:” can be arbitrary, like
Option<T> .

fn duplicate<T: Clone>(a: T) -> (T, T) {
 (a.clone(), a.clone())
}

// struct NotClonable;

fn main() {
 let foo = String::from("foo");
 let pair = duplicate(foo);
 println!("{pair:?}");
}

fn duplicate<T>(a: T) -> (T, T)
where
 T: Clone,
{
 (a.clone(), a.clone())
}

Comprehensive Rust 🦀

126 / 232

impl Trait
Similar to trait bounds, an impl Trait syntax can be used in function arguments and return
values:

impl Trait cannot be used with the ::<> turbo fish syntax.
impl Trait allows you to work with types which you cannot name.

Details

The meaning of impl Trait is a bit different in the different positions.

For a parameter, impl Trait is like an anonymous generic parameter with a trait bound.
For a return type, it means that the return type is some concrete type that implements the
trait, without naming the type. This can be useful when you don’t want to expose the
concrete type in a public API.

This example is great, because it uses impl Display twice. It helps to explain that nothing here
enforces that it is the same impl Display type. If we used a single T: Display , it would enforce
the constraint that input T and return T type are the same type. It would not work for this
particular function, as the type we expect as input is likely not what format! returns. If we wanted
to do the same via : Display syntax, we’d need two independent generic parameters.

use std::fmt::Display;

fn get_x(name: impl Display) -> impl Display {
 format!("Hello {name}")
}

fn main() {
 let x = get_x("foo");
 println!("{x}");
}

Comprehensive Rust 🦀

127 / 232

Closures
Closures or lambda expressions have types which cannot be named. However, they implement
special Fn , FnMut , and FnOnce traits:

Details

If you have an FnOnce , you may only call it once. It might consume captured values.

An FnMut might mutate captured values, so you can call it multiple times but not concurrently.

An Fn neither consumes nor mutates captured values, or perhaps captures nothing at all, so it
can be called multiple times concurrently.

FnMut is a subtype of FnOnce . Fn is a subtype of FnMut and FnOnce . I.e. you can use an FnMut
wherever an FnOnce is called for, and you can use an Fn wherever an FnMut or FnOnce is called
for.

move closures only implement FnOnce .

fn apply_with_log(func: impl FnOnce(i32) -> i32, input: i32) -> i32 {
 println!("Calling function on {input}");
 func(input)
}

fn main() {
 let add_3 = |x| x + 3;
 let mul_5 = |x| x * 5;

 println!("add_3: {}", apply_with_log(add_3, 10));
 println!("mul_5: {}", apply_with_log(mul_5, 20));
}

https://doc.rust-lang.org/std/ops/trait.Fn.html
https://doc.rust-lang.org/std/ops/trait.FnMut.html
https://doc.rust-lang.org/std/ops/trait.FnOnce.html

Comprehensive Rust 🦀

128 / 232

Monomorphization
Generic code is turned into non-generic code based on the call sites:

behaves as if you wrote

This is a zero-cost abstraction: you get exactly the same result as if you had hand-coded the data
structures without the abstraction.

fn main() {
 let integer = Some(5);
 let float = Some(5.0);
}

enum Option_i32 {
 Some(i32),
 None,
}

enum Option_f64 {
 Some(f64),
 None,
}

fn main() {
 let integer = Option_i32::Some(5);
 let float = Option_f64::Some(5.0);
}

Comprehensive Rust 🦀

129 / 232

Trait Objects
We’ve seen how a function can take arguments which implement a trait:

However, how can we store a collection of mixed types which implement Display ?

For this, we need trait objects:

Memory layout after allocating xs :

Stack Heap

.- - - - - - - - - - - - - -. .- -. : : : : : xs : : : : +-----------+-------+ : : +-----+-----+ : : |
ptr | o---+---+-----+-->| o o | o o | : : | len | 2 | : : +-|-|-+-|-|-+ : : | capacity | 2 | : : | | | | +----+----+--
--+----+----+ : : +-----------+-------+ : : | | | '-->| H | e | l | l | o | : : : : | | | +----+----+----+----+----+ : `- - - - -
- - - - - - - - -' : | | | : : | | | +-------------------------+ : : | | '---->| "::fmt" | : : | | +-------------------------+ : : | | :
: | | +----+----+----+----+ : : | '-->| 7b | 00 | 00 | 00 | : : | +----+----+----+----+ : : | : : | +-------------------------
+ : : '---->| "::fmt" | : : +-------------------------+ : : : : : '- -'

Similarly, you need a trait object if you want to return different values implementing a trait:

use std::fmt::Display;

fn print<T: Display>(x: T) {
 println!("Your value: {x}");
}

fn main() {
 print(123);
 print("Hello");
}

fn main() {
 let xs = vec![123, "Hello"];
}

use std::fmt::Display;

fn main() {
 let xs: Vec<Box<dyn Display>> = vec![Box::new(123), Box::new("Hello")];
 for x in xs {
 println!("x: {x}");
 }
}

fn numbers(n: i32) -> Box<dyn Iterator<Item=i32>> {
 if n > 0 {
 Box::new(0..n)
 } else {
 Box::new((n..0).rev())
 }
}

fn main() {
 println!("{:?}", numbers(-5).collect::<Vec<_>>());
 println!("{:?}", numbers(5).collect::<Vec<_>>());
}

Comprehensive Rust 🦀

130 / 232

Day 3: Morning Exercises
We will design a classical GUI library traits and trait objects.

Details

After looking at the exercises, you can look at the solutions provided.

Comprehensive Rust 🦀

131 / 232

A Simple GUI Library
Let us design a classical GUI library using our new knowledge of traits and trait objects.

We will have a number of widgets in our library:

Window : has a title and contains other widgets.
Button : has a label and a callback function which is invoked when the button is pressed.
Label : has a label .

The widgets will implement a Widget trait, see below.

Copy the code below to https://play.rust-lang.org/, fill in the missing draw_into methods so that
you implement the Widget trait:

https://play.rust-lang.org/

Comprehensive Rust 🦀

132 / 232

// TODO: remove this when you're done with your implementation.
#![allow(unused_imports, unused_variables, dead_code)]

pub trait Widget {
 /// Natural width of `self`.
 fn width(&self) -> usize;

 /// Draw the widget into a buffer.
 fn draw_into(&self, buffer: &mut dyn std::fmt::Write);

 /// Draw the widget on standard output.
 fn draw(&self) {
 let mut buffer = String::new();
 self.draw_into(&mut buffer);
 println!("{buffer}");
 }
}

pub struct Label {
 label: String,
}

impl Label {
 fn new(label: &str) -> Label {
 Label {
 label: label.to_owned(),
 }
 }
}

pub struct Button {
 label: Label,
 callback: Box<dyn FnMut()>,
}

impl Button {
 fn new(label: &str, callback: Box<dyn FnMut()>) -> Button {
 Button {
 label: Label::new(label),
 callback,
 }
 }
}

pub struct Window {
 title: String,
 widgets: Vec<Box<dyn Widget>>,
}

impl Window {
 fn new(title: &str) -> Window {
 Window {
 title: title.to_owned(),
 widgets: Vec::new(),
 }
 }

 fn add_widget(&mut self, widget: Box<dyn Widget>) {
 self.widgets.push(widget);
 }
}

impl Widget for Label {
 fn width(&self) -> usize {
 unimplemented!()
 }

 fn draw_into(&self, buffer: &mut dyn std::fmt::Write) {
 unimplemented!()
 }

Comprehensive Rust 🦀

133 / 232

The output of the above program can be something simple like this:

If you want to draw aligned text, you can use the fill/alignment formatting operators. In particular,
notice how you can pad with different characters (here a '/') and how you can control alignment:

Using such alignment tricks, you can for example produce output like this:

}

impl Widget for Button {
 fn width(&self) -> usize {
 unimplemented!()
 }

 fn draw_into(&self, buffer: &mut dyn std::fmt::Write) {
 unimplemented!()
 }
}

impl Widget for Window {
 fn width(&self) -> usize {
 unimplemented!()
 }

 fn draw_into(&self, buffer: &mut dyn std::fmt::Write) {
 unimplemented!()
 }
}

fn main() {
 let mut window = Window::new("Rust GUI Demo 1.23");
 window.add_widget(Box::new(Label::new("This is a small text GUI demo.")));
 window.add_widget(Box::new(Button::new(
 "Click me!",
 Box::new(|| println!("You clicked the button!")),
)));
 window.draw();
}

========
Rust GUI Demo 1.23
========

This is a small text GUI demo.

| Click me! |

fn main() {
 let width = 10;
 println!("left aligned: |{:/<width$}|", "foo");
 println!("centered: |{:/^width$}|", "foo");
 println!("right aligned: |{:/>width$}|", "foo");
}

+--------------------------------+
| Rust GUI Demo 1.23 |
+================================+
| This is a small text GUI demo. |
| +-----------+ |
| | Click me! | |
| +-----------+ |
+--------------------------------+

https://doc.rust-lang.org/std/fmt/index.html#fillalignment

Comprehensive Rust 🦀

134 / 232

Error Handling
Error handling in Rust is done using explicit control flow:

Functions that can have errors list this in their return type,
There are no exceptions.

Comprehensive Rust 🦀

135 / 232

Panics
Rust will trigger a panic if a fatal error happens at runtime:

Panics are for unrecoverable and unexpected errors.
Panics are symptoms of bugs in the program.

Use non-panicking APIs (such as Vec::get) if crashing is not acceptable.

fn main() {
 let v = vec![10, 20, 30];
 println!("v[100]: {}", v[100]);
}

Comprehensive Rust 🦀

136 / 232

Catching the Stack Unwinding
By default, a panic will cause the stack to unwind. The unwinding can be caught:

This can be useful in servers which should keep running even if a single request crashes.
This does not work if panic = 'abort' is set in your Cargo.toml .

use std::panic;

let result = panic::catch_unwind(|| {
 println!("hello!");
});
assert!(result.is_ok());

let result = panic::catch_unwind(|| {
 panic!("oh no!");
});
assert!(result.is_err());

Comprehensive Rust 🦀

137 / 232

Structured Error Handling with Result
We have already seen the Result enum. This is used pervasively when errors are expected as part
of normal operation:

Details

As with Option , the successful value sits inside of Result , forcing the developer to explicitly
extract it. This encourages error checking. In the case where an error should never happen,
unwrap() or expect() can be called, and this is a signal of the developer intent too.
Result documentation is a recommended read. Not during the course, but it is worth

mentioning. It contains a lot of convenience methods and functions that help functional-style
programming.

use std::fs::File;
use std::io::Read;

fn main() {
 let file = File::open("diary.txt");
 match file {
 Ok(mut file) => {
 let mut contents = String::new();
 file.read_to_string(&mut contents);
 println!("Dear diary: {contents}");
 },
 Err(err) => {
 println!("The diary could not be opened: {err}");
 }
 }
}

Comprehensive Rust 🦀

138 / 232

Propagating Errors with ?
The try-operator ? is used to return errors to the caller. It lets you turn the common

into the much simpler

We can use this to simplify our error handing code:

Details

Key points:

The username variable can be either Ok(string) or Err(error) .
Use the fs::write call to test out the different scenarios: no file, empty file, file with
username.

match some_expression {
 Ok(value) => value,
 Err(err) => return Err(err),
}

some_expression?

use std::fs;
use std::io::{self, Read};

fn read_username(path: &str) -> Result<String, io::Error> {
 let username_file_result = fs::File::open(path);

 let mut username_file = match username_file_result {
 Ok(file) => file,
 Err(e) => return Err(e),
 };

 let mut username = String::new();

 match username_file.read_to_string(&mut username) {
 Ok(_) => Ok(username),
 Err(e) => Err(e),
 }
}

fn main() {
 //fs::write("config.dat", "alice").unwrap();
 let username = read_username("config.dat");
 println!("username or error: {username:?}");
}

Comprehensive Rust 🦀

139 / 232

Converting Error Types
The effective expansion of ? is a little more complicated than previously indicated:

works the same as

The From::from call here means we attempt to convert the error type to the type returned by the
function:

expression?

match expression {
 Ok(value) => value,
 Err(err) => return Err(From::from(err)),
}

Comprehensive Rust 🦀

140 / 232

Converting Error Types

Details

Key points:

The username variable can be either Ok(string) or Err(error) .
Use the fs::write call to test out the different scenarios: no file, empty file, file with
username.

It is good practice for all error types to implement std::error::Error , which requires Debug and
Display . It’s generally helpful for them to implement Clone and Eq too where possible, to make

life easier for tests and consumers of your library. In this case we can’t easily do so, because
io::Error doesn’t implement them.

use std::error::Error;
use std::fmt::{self, Display, Formatter};
use std::fs::{self, File};
use std::io::{self, Read};

#[derive(Debug)]
enum ReadUsernameError {
 IoError(io::Error),
 EmptyUsername(String),
}

impl Error for ReadUsernameError {}

impl Display for ReadUsernameError {
 fn fmt(&self, f: &mut Formatter) -> fmt::Result {
 match self {
 Self::IoError(e) => write!(f, "IO error: {}", e),
 Self::EmptyUsername(filename) => write!(f, "Found no username in {}", filena
 }
 }
}

impl From<io::Error> for ReadUsernameError {
 fn from(err: io::Error) -> ReadUsernameError {
 ReadUsernameError::IoError(err)
 }
}

fn read_username(path: &str) -> Result<String, ReadUsernameError> {
 let mut username = String::with_capacity(100);
 File::open(path)?.read_to_string(&mut username)?;
 if username.is_empty() {
 return Err(ReadUsernameError::EmptyUsername(String::from(path)));
 }
 Ok(username)
}

fn main() {
 //fs::write("config.dat", "").unwrap();
 let username = read_username("config.dat");
 println!("username or error: {username:?}");
}

Comprehensive Rust 🦀

141 / 232

Deriving Error Enums
The thiserror crate is a popular way to create an error enum like we did on the previous page:

Details

thiserror ’s derive macro automatically implements std::error::Error , and optionally
Display (if the #[error(...)] attributes are provided) and From (if the #[from] attribute is

added). It also works for structs.

It doesn’t affect your public API, which makes it good for libraries.

use std::{fs, io};
use std::io::Read;
use thiserror::Error;

#[derive(Debug, Error)]
enum ReadUsernameError {
 #[error("Could not read: {0}")]
 IoError(#[from] io::Error),
 #[error("Found no username in {0}")]
 EmptyUsername(String),
}

fn read_username(path: &str) -> Result<String, ReadUsernameError> {
 let mut username = String::with_capacity(100);
 fs::File::open(path)?.read_to_string(&mut username)?;
 if username.is_empty() {
 return Err(ReadUsernameError::EmptyUsername(String::from(path)));
 }
 Ok(username)
}

fn main() {
 //fs::write("config.dat", "").unwrap();
 match read_username("config.dat") {
 Ok(username) => println!("Username: {username}"),
 Err(err) => println!("Error: {err}"),
 }
}

https://docs.rs/thiserror/

Comprehensive Rust 🦀

142 / 232

Dynamic Error Types
Sometimes we want to allow any type of error to be returned without writing our own enum
covering all the different possibilities. std::error::Error makes this easy.

Details

This saves on code, but gives up the ability to cleanly handle different error cases differently in the
program. As such it’s generally not a good idea to use Box<dyn Error> in the public API of a
library, but it can be a good option in a program where you just want to display the error message
somewhere.

use std::fs::{self, File};
use std::io::Read;
use thiserror::Error;
use std::error::Error;

#[derive(Clone, Debug, Eq, Error, PartialEq)]
#[error("Found no username in {0}")]
struct EmptyUsernameError(String);

fn read_username(path: &str) -> Result<String, Box<dyn Error>> {
 let mut username = String::with_capacity(100);
 File::open(path)?.read_to_string(&mut username)?;
 if username.is_empty() {
 return Err(EmptyUsernameError(String::from(path)).into());
 }
 Ok(username)
}

fn main() {
 //fs::write("config.dat", "").unwrap();
 match read_username("config.dat") {
 Ok(username) => println!("Username: {username}"),
 Err(err) => println!("Error: {err}"),
 }
}

Comprehensive Rust 🦀

143 / 232

Adding Context to Errors
The widely used anyhow crate can help you add contextual information to your errors and allows
you to have fewer custom error types:

Details

anyhow::Result<V> is a type alias for Result<V, anyhow::Error> .
anyhow::Error is essentially a wrapper around Box<dyn Error> . As such it’s again generally

not a good choice for the public API of a library, but is widely used in applications.
Actual error type inside of it can be extracted for examination if necessary.
Functionality provided by anyhow::Result<T> may be familiar to Go developers, as it
provides similar usage patterns and ergonomics to (T, error) from Go.

use std::{fs, io};
use std::io::Read;
use anyhow::{Context, Result, bail};

fn read_username(path: &str) -> Result<String> {
 let mut username = String::with_capacity(100);
 fs::File::open(path)
 .context(format!("Failed to open {path}"))?
 .read_to_string(&mut username)
 .context("Failed to read")?;
 if username.is_empty() {
 bail!("Found no username in {path}");
 }
 Ok(username)
}

fn main() {
 //fs::write("config.dat", "").unwrap();
 match read_username("config.dat") {
 Ok(username) => println!("Username: {username}"),
 Err(err) => println!("Error: {err:?}"),
 }
}

https://docs.rs/anyhow/

Comprehensive Rust 🦀

144 / 232

Testing
Rust and Cargo come with a simple unit test framework:

Unit tests are supported throughout your code.

Integration tests are supported via the tests/ directory.

Comprehensive Rust 🦀

145 / 232

Unit Tests
Mark unit tests with #[test] :

Use cargo test to find and run the unit tests.

fn first_word(text: &str) -> &str {
 match text.find(' ') {
 Some(idx) => &text[..idx],
 None => &text,
 }
}

#[test]
fn test_empty() {
 assert_eq!(first_word(""), "");
}

#[test]
fn test_single_word() {
 assert_eq!(first_word("Hello"), "Hello");
}

#[test]
fn test_multiple_words() {
 assert_eq!(first_word("Hello World"), "Hello");
}

Comprehensive Rust 🦀

146 / 232

Test Modules
Unit tests are often put in a nested module (run tests on the Playground):

This lets you unit test private helpers.
The #[cfg(test)] attribute is only active when you run cargo test .

fn helper(a: &str, b: &str) -> String {
 format!("{a} {b}")
}

pub fn main() {
 println!("{}", helper("Hello", "World"));
}

#[cfg(test)]
mod tests {
 use super::*;

 #[test]
 fn test_helper() {
 assert_eq!(helper("foo", "bar"), "foo bar");
 }
}

https://play.rust-lang.org/

Comprehensive Rust 🦀

147 / 232

Documentation Tests
Rust has built-in support for documentation tests:

Code blocks in /// comments are automatically seen as Rust code.
The code will be compiled and executed as part of cargo test .
Test the above code on the Rust Playground.

/// Shortens a string to the given length.
///
/// ```
/// use playground::shorten_string;
/// assert_eq!(shorten_string("Hello World", 5), "Hello");
/// assert_eq!(shorten_string("Hello World", 20), "Hello World");
/// ```
pub fn shorten_string(s: &str, length: usize) -> &str {
 &s[..std::cmp::min(length, s.len())]
}

https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=3ce2ad13ea1302f6572cb15cd96becf0

Comprehensive Rust 🦀

148 / 232

Integration Tests
If you want to test your library as a client, use an integration test.

Create a .rs file under tests/ :

These tests only have access to the public API of your crate.

use my_library::init;

#[test]
fn test_init() {
 assert!(init().is_ok());
}

Comprehensive Rust 🦀

149 / 232

Unsafe Rust
The Rust language has two parts:

Safe Rust: memory safe, no undefined behavior possible.
Unsafe Rust: can trigger undefined behavior if preconditions are violated.

We will be seeing mostly safe Rust in this course, but it’s important to know what Unsafe Rust is.

Unsafe code is usually small and isolated, and its correctness should be carefully documented. It is
usually wrapped in a safe abstraction layer.

Unsafe Rust gives you access to five new capabilities:

Dereference raw pointers.
Access or modify mutable static variables.
Access union fields.
Call unsafe functions, including extern functions.
Implement unsafe traits.

We will briefly cover unsafe capabilities next. For full details, please see Chapter 19.1 in the Rust
Book and the Rustonomicon.

Details

Unsafe Rust does not mean the code is incorrect. It means that developers have turned off the
compiler safety features and have to write correct code by themselves. It means the compiler no
longer enforces Rust’s memory-safety rules.

https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html
https://doc.rust-lang.org/nomicon/

Comprehensive Rust 🦀

150 / 232

Dereferencing Raw Pointers
Creating pointers is safe, but dereferencing them requires unsafe :

Details

It is good practice (and required by the Android Rust style guide) to write a comment for each
unsafe block explaining how the code inside it satisfies the safety requirements of the unsafe

operations it is doing.

In the case of pointer dereferences, this means that the pointers must be valid, i.e.:

The pointer must be non-null.
The pointer must be dereferenceable (within the bounds of a single allocated object).
The object must not have been deallocated.
There must not be concurrent accesses to the same location.
If the pointer was obtained by casting a reference, the underlying object must be live and no
reference may be used to access the memory.

In most cases the pointer must also be properly aligned.

fn main() {
 let mut num = 5;

 let r1 = &mut num as *mut i32;
 let r2 = &num as *const i32;

 // Safe because r1 and r2 were obtained from references and so are guaranteed to be
 // properly aligned, the objects underlying the references from which they were obta
 // live throughout the whole unsafe block, and they are not accessed either through
 // references or concurrently through any other pointers.
 unsafe {
 println!("r1 is: {}", *r1);
 *r1 = 10;
 println!("r2 is: {}", *r2);
 }
}

https://doc.rust-lang.org/std/ptr/index.html#safety

Comprehensive Rust 🦀

151 / 232

Mutable Static Variables
It is safe to read an immutable static variable:

However, since data races can occur, it is unsafe to read and write mutable static variables:

Details

Using a mutable static is generally a bad idea, but there are some cases where it might make
sense in low-level no_std code, such as implementing a heap allocator or working with some C
APIs.

static HELLO_WORLD: &str = "Hello, world!";

fn main() {
 println!("HELLO_WORLD: {HELLO_WORLD}");
}

static mut COUNTER: u32 = 0;

fn add_to_counter(inc: u32) {
 unsafe { COUNTER += inc; } // Potential data race!
}

fn main() {
 add_to_counter(42);

 unsafe { println!("COUNTER: {COUNTER}"); } // Potential data race!
}

Comprehensive Rust 🦀

152 / 232

Unions
Unions are like enums, but you need to track the active field yourself:

Details

Unions are very rarely needed in Rust as you can usually use an enum. They are occasionally
needed for interacting with C library APIs.

If you just want to reinterpret bytes as a different type, you probably want std::mem::transmute
or a safe wrapper such as the zerocopy crate.

#[repr(C)]
union MyUnion {
 i: u8,
 b: bool,
}

fn main() {
 let u = MyUnion { i: 42 };
 println!("int: {}", unsafe { u.i });
 println!("bool: {}", unsafe { u.b }); // Undefined behavior!
}

https://doc.rust-lang.org/stable/std/mem/fn.transmute.html
https://crates.io/crates/zerocopy

Comprehensive Rust 🦀

153 / 232

Calling Unsafe Functions
A function or method can be marked unsafe if it has extra preconditions you must uphold to avoid
undefined behaviour:

fn main() {
 let emojis = "🗻∈🌏";

 // Safe because the indices are in the correct order, within the bounds of
 // the string slice, and lie on UTF-8 sequence boundaries.
 unsafe {
 println!("{}", emojis.get_unchecked(0..4));
 println!("{}", emojis.get_unchecked(4..7));
 println!("{}", emojis.get_unchecked(7..11));
 }
}

Comprehensive Rust 🦀

154 / 232

Writing Unsafe Functions
You can mark your own functions as unsafe if they require particular conditions to avoid
undefined behaviour.

Details

We wouldn’t actually use pointers for this because it can be done safely with references.

Note that unsafe code is allowed within an unsafe function without an unsafe block. We can
prohibit this with #[deny(unsafe_op_in_unsafe_fn)] . Try adding it and see what happens.

/// Swaps the values pointed to by the given pointers.
///
/// # Safety
///
/// The pointers must be valid and properly aligned.
unsafe fn swap(a: *mut u8, b: *mut u8) {
 let temp = *a;
 *a = *b;
 *b = temp;
}

fn main() {
 let mut a = 42;
 let mut b = 66;

 // Safe because ...
 unsafe {
 swap(&mut a, &mut b);
 }

 println!("a = {}, b = {}", a, b);
}

Comprehensive Rust 🦀

155 / 232

Calling External Code
Functions from other languages might violate the guarantees of Rust. Calling them is thus unsafe:

Details

This is usually only a problem for extern functions which do things with pointers which might
violate Rust’s memory model, but in general any C function might have undefined behaviour
under any arbitrary circumstances.

The "C" in this example is the ABI; other ABIs are available too.

extern "C" {
 fn abs(input: i32) -> i32;
}

fn main() {
 unsafe {
 // Undefined behavior if abs misbehaves.
 println!("Absolute value of -3 according to C: {}", abs(-3));
 }
}

https://doc.rust-lang.org/reference/items/external-blocks.html

Comprehensive Rust 🦀

156 / 232

Implementing Unsafe Traits
Like with functions, you can mark a trait as unsafe if the implementation must guarantee
particular conditions to avoid undefined behaviour.

For example, the zerocopy crate has an unsafe trait that looks something like this:

Details

There should be a # Safety section on the Rustdoc for the trait explaining the requirements for
the trait to be safely implemented.

The actual safety section for AsBytes is rather longer and more complicated.

The built-in Send and Sync traits are unsafe.

use std::mem::size_of_val;
use std::slice;

/// ...
/// # Safety
/// The type must have a defined representation and no padding.
pub unsafe trait AsBytes {
 fn as_bytes(&self) -> &[u8] {
 unsafe {
 slice::from_raw_parts(self as *const Self as *const u8, size_of_val(self))
 }
 }
}

// Safe because u32 has a defined representation and no padding.
unsafe impl AsBytes for u32 {}

https://docs.rs/zerocopy/latest/zerocopy/trait.AsBytes.html

Comprehensive Rust 🦀

157 / 232

Day 3: Afternoon Exercises
Let us build a safe wrapper for reading directory content!

Details

After looking at the exercise, you can look at the solution provided.

Comprehensive Rust 🦀

158 / 232

Safe FFI Wrapper
Rust has great support for calling functions through a foreign function interface (FFI). We will use this
to build a safe wrapper for the libc functions you would use from C to read the filenames of a
directory.

You will want to consult the manual pages:

opendir(3)

readdir(3)

closedir(3)

You will also want to browse the std::ffi module, particular for CStr and CString types which
are used to hold NUL-terminated strings coming from C. The Nomicon also has a very useful
chapter about FFI.

Copy the code below to https://play.rust-lang.org/ and fill in the missing functions and methods:

https://man7.org/linux/man-pages/man3/opendir.3.html
https://man7.org/linux/man-pages/man3/readdir.3.html
https://man7.org/linux/man-pages/man3/closedir.3.html
https://doc.rust-lang.org/std/ffi/
https://doc.rust-lang.org/std/ffi/struct.CStr.html
https://doc.rust-lang.org/std/ffi/struct.CString.html
https://doc.rust-lang.org/nomicon/ffi.html
https://play.rust-lang.org/

Comprehensive Rust 🦀

159 / 232

// TODO: remove this when you're done with your implementation.
#![allow(unused_imports, unused_variables, dead_code)]

mod ffi {
 use std::os::raw::{c_char, c_int, c_long, c_ulong, c_ushort};

 // Opaque type. See https://doc.rust-lang.org/nomicon/ffi.html.
 #[repr(C)]
 pub struct DIR {
 _data: [u8; 0],
 _marker: core::marker::PhantomData<(*mut u8, core::marker::PhantomPinned)>,
 }

 // Layout as per readdir(3) and definitions in /usr/include/x86_64-linux-gnu.
 #[repr(C)]
 pub struct dirent {
 pub d_ino: c_long,
 pub d_off: c_ulong,
 pub d_reclen: c_ushort,
 pub d_type: c_char,
 pub d_name: [c_char; 256],
 }

 extern "C" {
 pub fn opendir(s: *const c_char) -> *mut DIR;
 pub fn readdir(s: *mut DIR) -> *const dirent;
 pub fn closedir(s: *mut DIR) -> c_int;
 }
}

use std::ffi::{CStr, CString, OsStr, OsString};
use std::os::unix::ffi::OsStrExt;

#[derive(Debug)]
struct DirectoryIterator {
 path: CString,
 dir: *mut ffi::DIR,
}

impl DirectoryIterator {
 fn new(path: &str) -> Result<DirectoryIterator, String> {
 // Call opendir and return a Ok value if that worked,
 // otherwise return Err with a message.
 unimplemented!()
 }
}

impl Iterator for DirectoryIterator {
 type Item = OsString;
 fn next(&mut self) -> Option<OsString> {
 // Keep calling readdir until we get a NULL pointer back.
 unimplemented!()
 }
}

impl Drop for DirectoryIterator {
 fn drop(&mut self) {
 // Call closedir as needed.
 unimplemented!()
 }
}

fn main() -> Result<(), String> {
 let iter = DirectoryIterator::new(".")?;
 println!("files: {:#?}", iter.collect::<Vec<_>>());
 Ok(())
}

Comprehensive Rust 🦀

160 / 232

Welcome to Day 4
Today we will look at two main topics:

Concurrency: threads, channels, shared state, Send and Sync .

Android: building binaries and libraries, using AIDL, logging, and interoperability with C, C++,
and Java.

We will attempt to call Rust from one of your own projects today. So try to find a little corner
of your code base where we can move some lines of code to Rust. The fewer dependencies
and “exotic” types the better. Something that parses some raw bytes would be ideal.

Comprehensive Rust 🦀

161 / 232

Fearless Concurrency
Rust has full support for concurrency using OS threads with mutexes and channels.

The Rust type system plays an important role in making many concurrency bugs compile time bugs.
This is often referred to as fearless concurrency since you can rely on the compiler to ensure
correctness at runtime.

Comprehensive Rust 🦀

162 / 232

Threads
Rust threads work similarly to threads in other languages:

Threads are all daemon threads, the main thread does not wait for them.
Thread panics are independent of each other.

Panics can carry a payload, which can be unpacked with downcast_ref .

Details

Key points:

Notice that the thread is stopped before it reaches 10 — the main thread is not waiting.

Use let handle = thread::spawn(...) and later handle.join() to wait for the thread to
finish.

Trigger a panic in the thread, notice how this doesn’t affect main .

Use the Result return value from handle.join() to get access to the panic payload. This is
a good time to talk about Any .

use std::thread;
use std::time::Duration;

fn main() {
 thread::spawn(|| {
 for i in 1..10 {
 println!("Count in thread: {i}!");
 thread::sleep(Duration::from_millis(5));
 }
 });

 for i in 1..5 {
 println!("Main thread: {i}");
 thread::sleep(Duration::from_millis(5));
 }
}

https://doc.rust-lang.org/std/any/index.html

Comprehensive Rust 🦀

163 / 232

Scoped Threads
Normal threads cannot borrow from their environment:

However, you can use a scoped thread for this:

Details

The reason for that is that when the thread::scope function completes, all the threads are
guaranteed to be joined, so they can return borrowed data.
Normal Rust borrowing rules apply: you can either borrow mutably by one thread, or
immutably by any number of threads.

use std::thread;

fn main() {
 let s = String::from("Hello");

 thread::spawn(|| {
 println!("Length: {}", s.len());
 });
}

use std::thread;

fn main() {
 let s = String::from("Hello");

 thread::scope(|scope| {
 scope.spawn(|| {
 println!("Length: {}", s.len());
 });
 });
}

https://doc.rust-lang.org/std/thread/fn.scope.html

Comprehensive Rust 🦀

164 / 232

Channels
Rust channels have two parts: a Sender<T> and a Receiver<T> . The two parts are connected via
the channel, but you only see the end-points.

Details

mpsc stands for Multi-Producer, Single-Consumer. Sender and SyncSender implement
Clone (so you can make multiple producers) but Receiver does not.
send() and recv() return Result . If they return Err , it means the counterpart Sender or
Receiver is dropped and the channel is closed.

use std::sync::mpsc;
use std::thread;

fn main() {
 let (tx, rx) = mpsc::channel();

 tx.send(10).unwrap();
 tx.send(20).unwrap();

 println!("Received: {:?}", rx.recv());
 println!("Received: {:?}", rx.recv());

 let tx2 = tx.clone();
 tx2.send(30).unwrap();
 println!("Received: {:?}", rx.recv());
}

Comprehensive Rust 🦀

165 / 232

Unbounded Channels
You get an unbounded and asynchronous channel with mpsc::channel() :

use std::sync::mpsc;
use std::thread;
use std::time::Duration;

fn main() {
 let (tx, rx) = mpsc::channel();

 thread::spawn(move || {
 let thread_id = thread::current().id();
 for i in 1..10 {
 tx.send(format!("Message {i}")).unwrap();
 println!("{thread_id:?}: sent Message {i}");
 }
 println!("{thread_id:?}: done");
 });
 thread::sleep(Duration::from_millis(100));

 for msg in rx.iter() {
 println!("Main: got {}", msg);
 }
}

Comprehensive Rust 🦀

166 / 232

Bounded Channels
Bounded and synchronous channels make send block the current thread:

use std::sync::mpsc;
use std::thread;
use std::time::Duration;

fn main() {
 let (tx, rx) = mpsc::sync_channel(3);

 thread::spawn(move || {
 let thread_id = thread::current().id();
 for i in 1..10 {
 tx.send(format!("Message {i}")).unwrap();
 println!("{thread_id:?}: sent Message {i}");
 }
 println!("{thread_id:?}: done");
 });
 thread::sleep(Duration::from_millis(100));

 for msg in rx.iter() {
 println!("Main: got {msg}");
 }
}

Comprehensive Rust 🦀

167 / 232

Shared State
Rust uses the type system to enforce synchronization of shared data. This is primarily done via two
types:

Arc<T> , atomic reference counted T : handles sharing between threads and takes care to
deallocate T when the last reference is dropped,
Mutex<T> : ensures mutually exclusive access to the T value.

https://doc.rust-lang.org/std/sync/struct.Arc.html
https://doc.rust-lang.org/std/sync/struct.Mutex.html

Comprehensive Rust 🦀

168 / 232

Arc
Arc<T> allows shared read-only access via its clone method:

Details

Arc stands for “Atomic Reference Counted”, a thread safe version of Rc that uses atomic
operations.
Arc<T> implements Clone whether or not T does. It implements Send and Sync iff T

implements them both.
Arc::clone() has the cost of atomic operations that get executed, but after that the use of

the T is free.
Beware of reference cycles, Arc does not use a garbage collector to detect them.

std::sync::Weak can help.

use std::thread;
use std::sync::Arc;

fn main() {
 let v = Arc::new(vec![10, 20, 30]);
 let mut handles = Vec::new();
 for _ in 1..5 {
 let v = v.clone();
 handles.push(thread::spawn(move || {
 let thread_id = thread::current().id();
 println!("{thread_id:?}: {v:?}");
 }));
 }

 handles.into_iter().for_each(|h| h.join().unwrap());
 println!("v: {v:?}");
}

https://doc.rust-lang.org/std/sync/struct.Arc.html

Comprehensive Rust 🦀

169 / 232

Mutex
Mutex<T> ensures mutual exclusion and allows mutable access to T behind a read-only interface:

Notice how we have a impl<T: Send> Sync for Mutex<T> blanket implementation.

Details

Mutex in Rust looks like a collection with just one element - the protected data.
It is not possible to forget to acquire the mutex before accessing the protected data.

You can get an &mut T from an &Mutex<T> by taking the lock. The MutexGuard ensures that
the &mut T doesn’t outlive the lock being held.
Mutex<T> implements both Send and Sync iff T implements Send .

A read-write lock counterpart - RwLock .
Why does lock() return a Result ?

If the thread that held the Mutex panicked, the Mutex becomes “poisoned” to signal
that the data it protected might be in an inconsistent state. Calling lock() on a
poisoned mutex fails with a PoisonError . You can call into_inner() on the error to
recover the data regardless.

use std::sync::Mutex;

fn main() {
 let v: Mutex<Vec<i32>> = Mutex::new(vec![10, 20, 30]);
 println!("v: {:?}", v.lock().unwrap());

 {
 let v: &Mutex<Vec<i32>> = &v;
 let mut guard = v.lock().unwrap();
 guard.push(40);
 }

 println!("v: {:?}", v.lock().unwrap());
}

https://doc.rust-lang.org/std/sync/struct.Mutex.html
https://doc.rust-lang.org/std/sync/struct.Mutex.html#impl-Sync-for-Mutex%3CT%3E
https://doc.rust-lang.org/std/sync/struct.PoisonError.html

Comprehensive Rust 🦀

170 / 232

Example
Let us see Arc and Mutex in action:

Details

Possible solution:

Notable parts:

v is wrapped in both Arc and Mutex , because their concerns are orthogonal.
Wrapping a Mutex in an Arc is a common pattern to share mutable state between
threads.

v: Arc<_> needs to be cloned as v2 before it can be moved into another thread. Note
move was added to the lambda signature.

Blocks are introduced to narrow the scope of the LockGuard as much as possible.
We still need to acquire the Mutex to print our Vec .

use std::thread;
// use std::sync::{Arc, Mutex};

fn main() {
 let mut v = vec![10, 20, 30];
 let handle = thread::spawn(|| {
 v.push(10);
 });
 v.push(1000);

 handle.join().unwrap();
 println!("v: {v:?}");
}

use std::sync::{Arc, Mutex};
use std::thread;

fn main() {
 let v = Arc::new(Mutex::new(vec![10, 20, 30]));

 let v2 = v.clone();
 let handle = thread::spawn(move || {
 let mut v2 = v2.lock().unwrap();
 v2.push(10);
 });

 {
 let mut v = v.lock().unwrap();
 v.push(1000);
 }

 handle.join().unwrap();

 {
 let v = v.lock().unwrap();
 println!("v: {v:?}");
 }
}

Comprehensive Rust 🦀

171 / 232

Send and Sync
How does Rust know to forbid shared access across thread? The answer is in two traits:

Send : a type T is Send if it is safe to move a T across a thread boundary.
Sync : a type T is Sync if it is safe to move a &T across a thread boundary.

Send and Sync are unsafe traits. The compiler will automatically derive them for your types as
long as they only contain Send and Sync types. You can also implement them manually when you
know it is valid.

Details

One can think of these traits as markers that the type has certain thread-safety properties.
They can be used in the generic constraints as normal traits.

https://doc.rust-lang.org/std/marker/trait.Send.html
https://doc.rust-lang.org/std/marker/trait.Sync.html

Comprehensive Rust 🦀

172 / 232

Send

A type T is Send if it is safe to move a T value to another thread.

The effect of moving ownership to another thread is that destructors will run in that thread. So the
question is when you can allocate a value in one thread and deallocate it in another.

https://doc.rust-lang.org/std/marker/trait.Send.html

Comprehensive Rust 🦀

173 / 232

Sync

A type T is Sync if it is safe to access a T value from multiple threads at the same time.

More precisely, the definition is:

T is Sync if and only if &T is Send

Details

This statement is essentially a shorthand way of saying that if a type is thread-safe for shared use,
it is also thread-safe to pass references of it across threads.

This is because if a type is Sync it means that it can be shared across multiple threads without the
risk of data races or other synchronization issues, so it is safe to move it to another thread. A
reference to the type is also safe to move to another thread, because the data it references can be
accessed from any thread safely.

https://doc.rust-lang.org/std/marker/trait.Sync.html

Comprehensive Rust 🦀

174 / 232

Examples

Send + Sync

Most types you come across are Send + Sync :

i8 , f32 , bool , char , &str , …
(T1, T2) , [T; N] , &[T] , struct { x: T } , …
String , Option<T> , Vec<T> , Box<T> , …
Arc<T> : Explicitly thread-safe via atomic reference count.
Mutex<T> : Explicitly thread-safe via internal locking.
AtomicBool , AtomicU8 , …: Uses special atomic instructions.

The generic types are typically Send + Sync when the type parameters are Send + Sync .

Send + !Sync

These types can be moved to other threads, but they’re not thread-safe. Typically because of
interior mutability:

mpsc::Sender<T>

mpsc::Receiver<T>

Cell<T>

RefCell<T>

!Send + Sync

These types are thread-safe, but they cannot be moved to another thread:

MutexGuard<T> : Uses OS level primitives which must be deallocated on the thread which
created them.

!Send + !Sync

These types are not thread-safe and cannot be moved to other threads:

Rc<T> : each Rc<T> has a reference to an RcBox<T> , which contains a non-atomic reference
count.
*const T , *mut T : Rust assumes raw pointers may have special concurrency considerations.

Comprehensive Rust 🦀

175 / 232

Exercises
Let us practice our new concurrency skills with

Dining philosophers: a classic problem in concurrency.

Multi-threaded link checker: a larger project where you’ll use Cargo to download
dependencies and then check links in parallel.

Details

After looking at the exercises, you can look at the solutions provided.

Comprehensive Rust 🦀

176 / 232

Dining Philosophers
The dining philosophers problem is a classic problem in concurrency:

Five philosophers dine together at the same table. Each philosopher has their own place at
the table. There is a fork between each plate. The dish served is a kind of spaghetti which has
to be eaten with two forks. Each philosopher can only alternately think and eat. Moreover, a
philosopher can only eat their spaghetti when they have both a left and right fork. Thus two
forks will only be available when their two nearest neighbors are thinking, not eating. After an
individual philosopher finishes eating, they will put down both forks.

You will need a local Cargo installation for this exercise. Copy the code below to src/main.rs file,
fill out the blanks, and test that cargo run does not deadlock:

use std::sync::mpsc;
use std::sync::{Arc, Mutex};
use std::thread;
use std::time::Duration;

struct Fork;

struct Philosopher {
 name: String,
 // left_fork: ...
 // right_fork: ...
 // thoughts: ...
}

impl Philosopher {
 fn think(&self) {
 self.thoughts
 .send(format!("Eureka! {} has a new idea!", &self.name))
 .unwrap();
 }

 fn eat(&self) {
 // Pick up forks...
 println!("{} is eating...", &self.name);
 thread::sleep(Duration::from_millis(10));
 }
}

static PHILOSOPHERS: &[&str] =
 &["Socrates", "Plato", "Aristotle", "Thales", "Pythagoras"];

fn main() {
 // Create forks

 // Create philosophers

 // Make them think and eat

 // Output their thoughts
}

Comprehensive Rust 🦀

177 / 232

Multi-threaded Link Checker
Let us use our new knowledge to create a multi-threaded link checker. It should start at a webpage
and check that links on the page are valid. It should recursively check other pages on the same
domain and keep doing this until all pages have been validated.

For this, you will need an HTTP client such as reqwest . Create a new Cargo project and reqwest it
as a dependency with:

If cargo add fails with error: no such subcommand , then please edit the Cargo.toml file by
hand. Add the dependencies listed below.

You will also need a way to find links. We can use scraper for that:

Finally, we’ll need some way of handling errors. We use thiserror for that:

The cargo add calls will update the Cargo.toml file to look like this:

You can now download the start page. Try with a small site such as https://www.google.org/ .

Your src/main.rs file should look something like this:

$ cargo new link-checker
$ cd link-checker
$ cargo add --features blocking,rustls-tls reqwest

$ cargo add scraper

$ cargo add thiserror

[dependencies]
reqwest = { version = "0.11.12", features = ["blocking", "rustls-tls"] }
scraper = "0.13.0"
thiserror = "1.0.37"

https://docs.rs/reqwest/
https://docs.rs/scraper/
https://docs.rs/thiserror/

Comprehensive Rust 🦀

178 / 232

Run the code in src/main.rs with

Tasks

Use threads to check the links in parallel: send the URLs to be checked to a channel and let a
few threads check the URLs in parallel.
Extend this to recursively extract links from all pages on the www.google.org domain. Put an
upper limit of 100 pages or so so that you don’t end up being blocked by the site.

use reqwest::blocking::{get, Response};
use reqwest::Url;
use scraper::{Html, Selector};
use thiserror::Error;

#[derive(Error, Debug)]
enum Error {
 #[error("request error: {0}")]
 ReqwestError(#[from] reqwest::Error),
}

fn extract_links(response: Response) -> Result<Vec<Url>, Error> {
 let base_url = response.url().to_owned();
 let document = response.text()?;
 let html = Html::parse_document(&document);
 let selector = Selector::parse("a").unwrap();

 let mut valid_urls = Vec::new();
 for element in html.select(&selector) {
 if let Some(href) = element.value().attr("href") {
 match base_url.join(href) {
 Ok(url) => valid_urls.push(url),
 Err(err) => {
 println!("On {base_url}: could not parse {href:?}: {err}
(ignored)",);
 }
 }
 }
 }

 Ok(valid_urls)
}

fn main() {
 let start_url = Url::parse("https://www.google.org").unwrap();
 let response = get(start_url).unwrap();
 match extract_links(response) {
 Ok(links) => println!("Links: {links:#?}"),
 Err(err) => println!("Could not extract links: {err:#}"),
 }
}

$ cargo run

Comprehensive Rust 🦀

179 / 232

Android
Rust is supported for native platform development on Android. This means that you can write new
operating system services in Rust, as well as extending existing services.

Comprehensive Rust 🦀

180 / 232

Setup
We will be using an Android Virtual Device to test our code. Make sure you have access to one or
create a new one with:

Please see the Android Developer Codelab for details.

$ source build/envsetup.sh
$ lunch aosp_cf_x86_64_phone-userdebug
$ acloud create

https://source.android.com/docs/setup/start

Comprehensive Rust 🦀

181 / 232

Build Rules
The Android build system (Soong) supports Rust via a number of modules:

Module Type Description

rust_binary Produces a Rust binary.

rust_library Produces a Rust library, and provides both rlib and dylib variants.

rust_ffi
Produces a Rust C library usable by cc modules, and provides both
static and shared variants.

rust_proc_macro
Produces a proc-macro Rust library. These are analogous to compiler
plugins.

rust_test Produces a Rust test binary that uses the standard Rust test harness.

rust_fuzz Produces a Rust fuzz binary leveraging libfuzzer .

rust_protobuf
Generates source and produces a Rust library that provides an
interface for a particular protobuf.

rust_bindgen
Generates source and produces a Rust library containing Rust
bindings to C libraries.

We will look at rust_binary and rust_library next.

Comprehensive Rust 🦀

182 / 232

Rust Binaries
Let us start with a simple application. At the root of an AOSP checkout, create the following files:

hello_rust/Android.bp:

hello_rust/src/main.rs:

You can now build, push, and run the binary:

rust_binary {
 name: "hello_rust",
 crate_name: "hello_rust",
 srcs: ["src/main.rs"],
}

//! Rust demo.

/// Prints a greeting to standard output.
fn main() {
 println!("Hello from Rust!");
}

$ m hello_rust
$ adb push $ANDROID_PRODUCT_OUT/system/bin/hello_rust /data/local/tmp
$ adb shell /data/local/tmp/hello_rust
Hello from Rust!

Comprehensive Rust 🦀

183 / 232

Rust Libraries
You use rust_library to create a new Rust library for Android.

Here we declare a dependency on two libraries:

libgreeting , which we define below,
libtextwrap , which is a crate already vendored in external/rust/crates/ .

hello_rust/Android.bp:

hello_rust/src/main.rs:

hello_rust/src/lib.rs:

You build, push, and run the binary like before:

rust_binary {
 name: "hello_rust_with_dep",
 crate_name: "hello_rust_with_dep",
 srcs: ["src/main.rs"],
 rustlibs: [
 "libgreetings",
 "libtextwrap",
],
 prefer_rlib: true,
}

rust_library {
 name: "libgreetings",
 crate_name: "greetings",
 srcs: ["src/lib.rs"],
}

//! Rust demo.

use greetings::greeting;
use textwrap::fill;

/// Prints a greeting to standard output.
fn main() {
 println!("{}", fill(&greeting("Bob"), 24));
}

//! Greeting library.

/// Greet `name`.
pub fn greeting(name: &str) -> String {
 format!("Hello {name}, it is very nice to meet you!")
}

$ m hello_rust_with_dep
$ adb push $ANDROID_PRODUCT_OUT/system/bin/hello_rust_with_dep /data/local/tmp
$ adb shell /data/local/tmp/hello_rust_with_dep
Hello Bob, it is very
nice to meet you!

https://cs.android.com/android/platform/superproject/+/master:external/rust/crates/

Comprehensive Rust 🦀

184 / 232

AIDL
The Android Interface Definition Language (AIDL) is supported in Rust:

Rust code can call existing AIDL servers,
You can create new AIDL servers in Rust.

https://developer.android.com/guide/components/aidl

Comprehensive Rust 🦀

185 / 232

AIDL Interfaces
You declare the API of your service using an AIDL interface:

birthday_service/aidl/com/example/birthdayservice/IBirthdayService.aidl:

birthday_service/aidl/Android.bp:

Add vendor_available: true if your AIDL file is used by a binary in the vendor partition.

package com.example.birthdayservice;

/** Birthday service interface. */
interface IBirthdayService {
 /** Generate a Happy Birthday message. */
 String wishHappyBirthday(String name, int years);
}

aidl_interface {
 name: "com.example.birthdayservice",
 srcs: ["com/example/birthdayservice/*.aidl"],
 unstable: true,
 backend: {
 rust: { // Rust is not enabled by default
 enabled: true,
 },
 },
}

Comprehensive Rust 🦀

186 / 232

Service Implementation
We can now implement the AIDL service:

birthday_service/src/lib.rs:

birthday_service/Android.bp:

//! Implementation of the `IBirthdayService` AIDL interface.
use
com_example_birthdayservice::aidl::com::example::birthdayservice::IBirthdayService::I
BirthdayService;
use com_example_birthdayservice::binder;

/// The `IBirthdayService` implementation.
pub struct BirthdayService;

impl binder::Interface for BirthdayService {}

impl IBirthdayService for BirthdayService {
 fn wishHappyBirthday(&self, name: &str, years: i32) -> binder::Result<String> {
 Ok(format!(
 "Happy Birthday {name}, congratulations with the {years} years!"
))
 }
}

rust_library {
 name: "libbirthdayservice",
 srcs: ["src/lib.rs"],
 crate_name: "birthdayservice",
 rustlibs: [
 "com.example.birthdayservice-rust",
 "libbinder_rs",
],
}

Comprehensive Rust 🦀

187 / 232

AIDL Server
Finally, we can create a server which exposes the service:

birthday_service/src/server.rs:

birthday_service/Android.bp:

//! Birthday service.
use birthdayservice::BirthdayService;
use
com_example_birthdayservice::aidl::com::example::birthdayservice::IBirthdayService::B
nBirthdayService;
use com_example_birthdayservice::binder;

const SERVICE_IDENTIFIER: &str = "birthdayservice";

/// Entry point for birthday service.
fn main() {
 let birthday_service = BirthdayService;
 let birthday_service_binder = BnBirthdayService::new_binder(
 birthday_service,
 binder::BinderFeatures::default(),
);
 binder::add_service(SERVICE_IDENTIFIER, birthday_service_binder.as_binder())
 .expect("Failed to register service");
 binder::ProcessState::join_thread_pool()
}

rust_binary {
 name: "birthday_server",
 crate_name: "birthday_server",
 srcs: ["src/server.rs"],
 rustlibs: [
 "com.example.birthdayservice-rust",
 "libbinder_rs",
 "libbirthdayservice",
],
 prefer_rlib: true,
}

Comprehensive Rust 🦀

188 / 232

Deploy
We can now build, push, and start the service:

In another terminal, check that the service runs:

You can also call the service with service call :

$ m birthday_server
$ adb push $ANDROID_PRODUCT_OUT/system/bin/birthday_server /data/local/tmp
$ adb shell /data/local/tmp/birthday_server

$ adb shell service check birthdayservice
Service birthdayservice: found

$ $ adb shell service call birthdayservice 1 s16 Bob i32 24
Result: Parcel(
 0x00000000: 00000000 00000036 00610048 00700070 '....6...H.a.p.p.'
 0x00000010: 00200079 00690042 00740072 00640068 'y. .B.i.r.t.h.d.'
 0x00000020: 00790061 00420020 0062006f 0020002c 'a.y. .B.o.b.,. .'
 0x00000030: 006f0063 0067006e 00610072 00750074 'c.o.n.g.r.a.t.u.'
 0x00000040: 0061006c 00690074 006e006f 00200073 'l.a.t.i.o.n.s. .'
 0x00000050: 00690077 00680074 00740020 00650068 'w.i.t.h. .t.h.e.'
 0x00000060: 00320020 00200034 00650079 00720061 ' .2.4. .y.e.a.r.'
 0x00000070: 00210073 00000000 's.!..... ')

Comprehensive Rust 🦀

189 / 232

AIDL Client
Finally, we can create a Rust client for our new service.

birthday_service/src/client.rs:

birthday_service/Android.bp:

Notice that the client does not depend on libbirthdayservice .

Build, push, and run the client on your device:

//! Birthday service.
use
com_example_birthdayservice::aidl::com::example::birthdayservice::IBirthdayService::I
BirthdayService;
use com_example_birthdayservice::binder;

const SERVICE_IDENTIFIER: &str = "birthdayservice";

/// Connect to the BirthdayService.
pub fn connect() -> Result<binder::Strong<dyn IBirthdayService>, binder::StatusCode>
{
 binder::get_interface(SERVICE_IDENTIFIER)
}

/// Call the birthday service.
fn main() -> Result<(), binder::Status> {
 let name = std::env::args()
 .nth(1)
 .unwrap_or_else(|| String::from("Bob"));
 let years = std::env::args()
 .nth(2)
 .and_then(|arg| arg.parse::<i32>().ok())
 .unwrap_or(42);

 binder::ProcessState::start_thread_pool();
 let service = connect().expect("Failed to connect to BirthdayService");
 let msg = service.wishHappyBirthday(&name, years)?;
 println!("{msg}");
 Ok(())
}

rust_binary {
 name: "birthday_client",
 crate_name: "birthday_client",
 srcs: ["src/client.rs"],
 rustlibs: [
 "com.example.birthdayservice-rust",
 "libbinder_rs",
],
 prefer_rlib: true,
}

$ m birthday_client
$ adb push $ANDROID_PRODUCT_OUT/system/bin/birthday_client /data/local/tmp
$ adb shell /data/local/tmp/birthday_client Charlie 60
Happy Birthday Charlie, congratulations with the 60 years!

Comprehensive Rust 🦀

190 / 232

Changing API
Let us extend the API with more functionality: we want to let clients specify a list of lines for the
birthday card:

package com.example.birthdayservice;

/** Birthday service interface. */
interface IBirthdayService {
 /** Generate a Happy Birthday message. */
 String wishHappyBirthday(String name, int years, in String[] text);
}

Comprehensive Rust 🦀

191 / 232

Logging
You should use the log crate to automatically log to logcat (on-device) or stdout (on-host):

hello_rust_logs/Android.bp:

hello_rust_logs/src/main.rs:

Build, push, and run the binary on your device:

The logs show up in adb logcat :

rust_binary {
 name: "hello_rust_logs",
 crate_name: "hello_rust_logs",
 srcs: ["src/main.rs"],
 rustlibs: [
 "liblog_rust",
 "liblogger",
],
 prefer_rlib: true,
 host_supported: true,
}

//! Rust logging demo.

use log::{debug, error, info};

/// Logs a greeting.
fn main() {
 logger::init(
 logger::Config::default()
 .with_tag_on_device("rust")
 .with_min_level(log::Level::Trace),
);
 debug!("Starting program.");
 info!("Things are going fine.");
 error!("Something went wrong!");
}

$ m hello_rust_logs
$ adb push $ANDROID_PRODUCT_OUT/system/bin/hello_rust_logs /data/local/tmp
$ adb shell /data/local/tmp/hello_rust_logs

$ adb logcat -s rust
09-08 08:38:32.454 2420 2420 D rust: hello_rust_logs: Starting program.
09-08 08:38:32.454 2420 2420 I rust: hello_rust_logs: Things are going fine.
09-08 08:38:32.454 2420 2420 E rust: hello_rust_logs: Something went wrong!

Comprehensive Rust 🦀

192 / 232

Interoperability
Rust has excellent support for interoperability with other languages. This means that you can:

Call Rust functions from other languages.
Call functions written in other languages from Rust.

When you call functions in a foreign language we say that you’re using a foreign function interface,
also known as FFI.

Comprehensive Rust 🦀

193 / 232

Interoperability with C
Rust has full support for linking object files with a C calling convention. Similarly, you can export
Rust functions and call them from C.

You can do it by hand if you want:

We already saw this in the Safe FFI Wrapper exercise.

This assumes full knowledge of the target platform. Not recommended for production.

We will look at better options next.

extern "C" {
 fn abs(x: i32) -> i32;
}

fn main() {
 let x = -42;
 let abs_x = unsafe { abs(x) };
 println!("{x}, {abs_x}");
}

Comprehensive Rust 🦀

194 / 232

Using Bindgen
The bindgen tool can auto-generate bindings from a C header file.

First create a small C library:

interoperability/bindgen/libbirthday.h:

interoperability/bindgen/libbirthday.c:

Add this to your Android.bp file:

interoperability/bindgen/Android.bp:

Create a wrapper header file for the library (not strictly needed in this example):

interoperability/bindgen/libbirthday_wrapper.h:

You can now auto-generate the bindings:

interoperability/bindgen/Android.bp:

Finally, we can use the bindings in our Rust program:

interoperability/bindgen/Android.bp:

typedef struct card {
 const char* name;
 int years;
} card;

void print_card(const card* card);

#include <stdio.h>
#include "libbirthday.h"

void print_card(const card* card) {
 printf("+--------------\n");
 printf("| Happy Birthday %s!\n", card->name);
 printf("| Congratulations with the %i years!\n", card->years);
 printf("+--------------\n");
}

cc_library {
 name: "libbirthday",
 srcs: ["libbirthday.c"],
}

#include "libbirthday.h"

rust_bindgen {
 name: "libbirthday_bindgen",
 crate_name: "birthday_bindgen",
 wrapper_src: "libbirthday_wrapper.h",
 source_stem: "bindings",
 static_libs: ["libbirthday"],
}

https://rust-lang.github.io/rust-bindgen/introduction.html

Comprehensive Rust 🦀

195 / 232

interoperability/bindgen/main.rs:

Build, push, and run the binary on your device:

Finally, we can run auto-generated tests to ensure the bindings work:

interoperability/bindgen/Android.bp:

rust_binary {
 name: "print_birthday_card",
 srcs: ["main.rs"],
 rustlibs: ["libbirthday_bindgen"],
}

//! Bindgen demo.

use birthday_bindgen::{card, print_card};

fn main() {
 let name = std::ffi::CString::new("Peter").unwrap();
 let card = card {
 name: name.as_ptr(),
 years: 42,
 };
 unsafe {
 print_card(&card as *const card);
 }
}

$ m print_birthday_card
$ adb push $ANDROID_PRODUCT_OUT/system/bin/print_birthday_card /data/local/tmp
$ adb shell /data/local/tmp/print_birthday_card

rust_test {
 name: "libbirthday_bindgen_test",
 srcs: [":libbirthday_bindgen"],
 crate_name: "libbirthday_bindgen_test",
 test_suites: ["general-tests"],
 auto_gen_config: true,
 clippy_lints: "none", // Generated file, skip linting
 lints: "none",
}

$ atest libbirthday_bindgen_test

Comprehensive Rust 🦀

196 / 232

Calling Rust
Exporting Rust functions and types to C is easy:

interoperability/rust/libanalyze/analyze.rs

interoperability/rust/libanalyze/analyze.h

interoperability/rust/libanalyze/Android.bp

We can now call this from a C binary:

interoperability/rust/analyze/main.c

interoperability/rust/analyze/Android.bp

Build, push, and run the binary on your device:

//! Rust FFI demo.
#![deny(improper_ctypes_definitions)]

use std::os::raw::c_int;

/// Analyze the numbers.
#[no_mangle]
pub extern "C" fn analyze_numbers(x: c_int, y: c_int) {
 if x < y {
 println!("x ({x}) is smallest!");
 } else {
 println!("y ({y}) is probably larger than x ({x})");
 }
}

#ifndef ANALYSE_H
#define ANALYSE_H

extern "C" {
void analyze_numbers(int x, int y);
}

#endif

rust_ffi {
 name: "libanalyze_ffi",
 crate_name: "analyze_ffi",
 srcs: ["analyze.rs"],
 include_dirs: ["."],
}

#include "analyze.h"

int main() {
 analyze_numbers(10, 20);
 analyze_numbers(123, 123);
 return 0;
}

cc_binary {
 name: "analyze_numbers",
 srcs: ["main.c"],
 static_libs: ["libanalyze_ffi"],
}

Comprehensive Rust 🦀

197 / 232

Details

#[no_mangle] disables Rust’s usual name mangling, so the exported symbol will just be the name
of the function. You can also use #[export_name = "some_name"] to specify whatever name you
want.

$ m analyze_numbers
$ adb push $ANDROID_PRODUCT_OUT/system/bin/analyze_numbers /data/local/tmp
$ adb shell /data/local/tmp/analyze_numbers

Comprehensive Rust 🦀

198 / 232

With C++
The CXX crate makes it possible to do safe interoperability between Rust and C++.

The overall approach looks like this:

See the CXX tutorial for an full example of using this.

https://cxx.rs/
https://cxx.rs/tutorial.html

Comprehensive Rust 🦀

199 / 232

Interoperability with Java
Java can load shared objects via Java Native Interface (JNI). The jni crate allows you to create a
compatible library.

First, we create a Rust function to export to Java:

interoperability/java/src/lib.rs:

interoperability/java/Android.bp:

Finally, we can call this function from Java:

interoperability/java/HelloWorld.java:

interoperability/java/Android.bp:

//! Rust <-> Java FFI demo.

use jni::objects::{JClass, JString};
use jni::sys::jstring;
use jni::JNIEnv;

/// HelloWorld::hello method implementation.
#[no_mangle]
pub extern "system" fn Java_HelloWorld_hello(
 env: JNIEnv,
 _class: JClass,
 name: JString,
) -> jstring {
 let input: String = env.get_string(name).unwrap().into();
 let greeting = format!("Hello, {input}!");
 let output = env.new_string(greeting).unwrap();
 output.into_inner()
}

rust_ffi_shared {
 name: "libhello_jni",
 crate_name: "hello_jni",
 srcs: ["src/lib.rs"],
 rustlibs: ["libjni"],
}

class HelloWorld {
 private static native String hello(String name);

 static {
 System.loadLibrary("hello_jni");
 }

 public static void main(String[] args) {
 String output = HelloWorld.hello("Alice");
 System.out.println(output);
 }
}

java_binary {
 name: "helloworld_jni",
 srcs: ["HelloWorld.java"],
 main_class: "HelloWorld",
 required: ["libhello_jni"],
}

https://en.wikipedia.org/wiki/Java_Native_Interface
https://docs.rs/jni/

Comprehensive Rust 🦀

200 / 232

Finally, you can build, sync, and run the binary:

$ m helloworld_jni
$ adb sync # requires adb root && adb remount
$ adb shell /system/bin/helloworld_jni

Comprehensive Rust 🦀

201 / 232

Exercises
For the last exercise, we will look at one of the projects you work with. Let us group up and do this
together. Some suggestions:

Call your AIDL service with a client written in Rust.

Move a function from your project to Rust and call it.

Details

No solution is provided here since this is open-ended: it relies on someone in the class having a
piece of code which you can turn in to Rust on the fly.

Comprehensive Rust 🦀

202 / 232

Thanks!
Thank you for taking Comprehensive Rust 🦀! We hope you enjoyed it and that it was useful.

We’ve had a lot of fun putting the course together. The course is not perfect, so if you spotted any
mistakes or have ideas for improvements, please get in contact with us on GitHub. We would love
to hear from you.

https://github.com/google/comprehensive-rust/discussions

Comprehensive Rust 🦀

203 / 232

Other Rust Resources
The Rust community has created a wealth of high-quality and free resources online.

Official Documentation

The Rust project hosts many resources. These cover Rust in general:

The Rust Programming Language: the canonical free book about Rust. Covers the language in
detail and includes a few projects for people to build.
Rust By Example: covers the Rust syntax via a series of examples which showcase different
constructs. Sometimes includes small exercises where you are asked to expand on the code in
the examples.
Rust Standard Library: full documentation of the standard library for Rust.
The Rust Reference: an incomplete book which describes the Rust grammar and memory
model.

More specialized guides hosted on the official Rust site:

The Rustonomicon: covers unsafe Rust, including working with raw pointers and interfacing
with other languages (FFI).
Asynchronous Programming in Rust: covers the new asynchronous programming model
which was introduced after the Rust Book was written.
The Embedded Rust Book: an introduction to using Rust on embedded devices without an
operating system.

Unofficial Learning Material

A small selection of other guides and tutorial for Rust:

Learn Rust the Dangerous Way: covers Rust from the perspective of low-level C programmers.
Rust for Embedded C Programmers: covers Rust from the perspective of developers who
write firmware in C.
Rust for professionals: covers the syntax of Rust using side-by-side comparisons with other
languages such as C, C++, Java, JavaScript, and Python.
Rust on Exercism: 100+ exercises to help you learn Rust.
Ferrous Teaching Material: a series of small presentations covering both basic and advanced
part of the Rust language. Other topics such as WebAssembly, and async/await are also
covered.
Beginner’s Series to Rust and Take your first steps with Rust: two Rust guides aimed at new
developers. The first is a set of 35 videos and the second is a set of 11 modules which covers
Rust syntax and basic constructs.

Please see the Little Book of Rust Books for even more Rust books.

https://doc.rust-lang.org/book/
https://doc.rust-lang.org/rust-by-example/
https://doc.rust-lang.org/std/
https://doc.rust-lang.org/reference/
https://doc.rust-lang.org/nomicon/
https://rust-lang.github.io/async-book/
https://doc.rust-lang.org/stable/embedded-book/
http://cliffle.com/p/dangerust/
https://docs.opentitan.org/doc/ug/rust_for_c/
https://overexact.com/rust-for-professionals/
https://exercism.org/tracks/rust
https://ferrous-systems.github.io/teaching-material/index.html
https://docs.microsoft.com/en-us/shows/beginners-series-to-rust/
https://docs.microsoft.com/en-us/learn/paths/rust-first-steps/
https://lborb.github.io/book/

Comprehensive Rust 🦀

204 / 232

Credits
The material here builds on top of the many great sources of Rust documentation. See the page on
other resources for a full list of useful resources.

The material of Comprehensive Rust is licensed under the terms of the Apache 2.0 license, please
see LICENSE for details.

Rust by Example

Some examples and exercises have been copied and adapted from Rust by Example. Please see the
third_party/rust-by-example/ directory for details, including the license terms.

Rust on Exercism

Some exercises have been copied and adapted from Rust on Exercism. Please see the
third_party/rust-on-exercism/ directory for details, including the license terms.

CXX

The Interoperability with C++ section uses an image from CXX. Please see the third_party/cxx/
directory for details, including the license terms.

https://google.github.io/LICENSE
https://doc.rust-lang.org/rust-by-example/
https://exercism.org/tracks/rust
https://cxx.rs/

Comprehensive Rust 🦀

205 / 232

Solutions
You will find solutions to the exercises on the following pages.

Feel free to ask questions about the solutions on GitHub. Let us know if you have a different or
better solution than what is presented here.

Note: Please ignore the // ANCHOR: label and // ANCHOR_END: label comments you see in
the solutions. They are there to make it possible to re-use parts of the solutions as the
exercises.

https://github.com/google/comprehensive-rust/discussions

Comprehensive Rust 🦀

206 / 232

Day 1 Morning Exercises

Arrays and for Loops

(back to exercise)

Comprehensive Rust 🦀

207 / 232

// Copyright 2022 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// ANCHOR: transpose
fn transpose(matrix: [[i32; 3]; 3]) -> [[i32; 3]; 3] {
 // ANCHOR_END: transpose
 let mut result = [[0; 3]; 3];
 for i in 0..3 {
 for j in 0..3 {
 result[j][i] = matrix[i][j];
 }
 }
 return result;
}

// ANCHOR: pretty_print
fn pretty_print(matrix: &[[i32; 3]; 3]) {
 // ANCHOR_END: pretty_print
 for row in matrix {
 println!("{row:?}");
 }
}

// ANCHOR: tests
#[test]
fn test_transpose() {
 let matrix = [
 [101, 102, 103], //
 [201, 202, 203],
 [301, 302, 303],
];
 let transposed = transpose(matrix);
 assert_eq!(
 transposed,
 [
 [101, 201, 301], //
 [102, 202, 302],
 [103, 203, 303],
]
);
}
// ANCHOR_END: tests

// ANCHOR: main
fn main() {
 let matrix = [
 [101, 102, 103], // <-- the comment makes rustfmt add a newline
 [201, 202, 203],
 [301, 302, 303],
];

 println!("matrix:");
 pretty_print(&matrix);

 let transposed = transpose(matrix);
 println!("transposed:");
 pretty_print(&transposed);
}

Comprehensive Rust 🦀

208 / 232

Bonus question

It requires more advanced concepts. It might seem that we could use a slice-of-slices (&[&[i32]])
as the input type to transpose and thus make our function handle any size of matrix. However, this
quickly breaks down: the return type cannot be &[&[i32]] since it needs to own the data you
return.

You can attempt to use something like Vec<Vec<i32>> , but this doesn’t work out-of-the-box either:
it’s hard to convert from Vec<Vec<i32>> to &[&[i32]] so now you cannot easily use
pretty_print either.

Once we get to traits and generics, we’ll be able to use the std::convert::AsRef trait to abstract
over anything that can be referenced as a slice.

In addition, the type itself would not enforce that the child slices are of the same length, so such
variable could contain an invalid matrix.

use std::convert::AsRef;
use std::fmt::Debug;

fn pretty_print<T, Line, Matrix>(matrix: Matrix)
where
 T: Debug,
 // A line references a slice of items
 Line: AsRef<[T]>,
 // A matrix references a slice of lines
 Matrix: AsRef<[Line]>
{
 for row in matrix.as_ref() {
 println!("{:?}", row.as_ref());
 }
}

fn main() {
 // &[&[i32]]
 pretty_print(&[&[1, 2, 3], &[4, 5, 6], &[7, 8, 9]]);
 // [[&str; 2]; 2]
 pretty_print([["a", "b"], ["c", "d"]]);
 // Vec<Vec<i32>>
 pretty_print(vec![vec![1, 2], vec![3, 4]]);
}

https://doc.rust-lang.org/std/convert/trait.AsRef.html

Comprehensive Rust 🦀

209 / 232

Day 1 Afternoon Exercises

Designing a Library

(back to exercise)

Comprehensive Rust 🦀

210 / 232

// Copyright 2022 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// ANCHOR: setup
struct Library {
 books: Vec<Book>,
}

struct Book {
 title: String,
 year: u16,
}

impl Book {
 // This is a constructor, used below.
 fn new(title: &str, year: u16) -> Book {
 Book {
 title: String::from(title),
 year,
 }
 }
}

// This makes it possible to print Book values with {}.
impl std::fmt::Display for Book {
 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
 write!(f, "{} ({})", self.title, self.year)
 }
}
// ANCHOR_END: setup

// ANCHOR: Library_new
impl Library {
 fn new() -> Library {
 // ANCHOR_END: Library_new
 Library { books: Vec::new() }
 }

 // ANCHOR: Library_len
 //fn len(self) -> usize {
 // unimplemented!()
 //}
 // ANCHOR_END: Library_len
 fn len(&self) -> usize {
 self.books.len()
 }

 // ANCHOR: Library_is_empty
 //fn is_empty(self) -> bool {
 // unimplemented!()
 //}
 // ANCHOR_END: Library_is_empty
 fn is_empty(&self) -> bool {
 self.books.is_empty()
 }

 // ANCHOR: Library_add_book
 //fn add_book(self, book: Book) {
 // unimplemented!()
 //}

Comprehensive Rust 🦀

211 / 232

 // ANCHOR_END: Library_add_book
 fn add_book(&mut self, book: Book) {
 self.books.push(book)
 }

 // ANCHOR: Library_print_books
 //fn print_books(self) {
 // unimplemented!()
 //}
 // ANCHOR_END: Library_print_books
 fn print_books(&self) {
 for book in &self.books {
 println!("{}", book);
 }
 }

 // ANCHOR: Library_oldest_book
 //fn oldest_book(self) -> Option<&Book> {
 // unimplemented!()
 //}
 // ANCHOR_END: Library_oldest_book
 fn oldest_book(&self) -> Option<&Book> {
 self.books.iter().min_by_key(|book| book.year)
 }
}

// ANCHOR: main
// This shows the desired behavior. Uncomment the code below and
// implement the missing methods. You will need to update the
// method signatures, including the "self" parameter! You may
// also need to update the variable bindings within main.
fn main() {
 let library = Library::new();

 //println!("Our library is empty: {}", library.is_empty());
 //
 //library.add_book(Book::new("Lord of the Rings", 1954));
 //library.add_book(Book::new("Alice's Adventures in Wonderland", 1865));
 //
 //library.print_books();
 //
 //match library.oldest_book() {
 // Some(book) => println!("My oldest book is {book}"),
 // None => println!("My library is empty!"),
 //}
 //
 //println!("Our library has {} books", library.len());
}
// ANCHOR_END: main

#[test]
fn test_library_len() {
 let mut library = Library::new();
 assert_eq!(library.len(), 0);
 assert!(library.is_empty());

 library.add_book(Book::new("Lord of the Rings", 1954));
 library.add_book(Book::new("Alice's Adventures in Wonderland", 1865));
 assert_eq!(library.len(), 2);
 assert!(!library.is_empty());
}

#[test]
fn test_library_is_empty() {
 let mut library = Library::new();
 assert!(library.is_empty());

 library.add_book(Book::new("Lord of the Rings", 1954));
 assert!(!library.is_empty());
}

#[test]

Comprehensive Rust 🦀

212 / 232

fn test_library_print_books() {
 let mut library = Library::new();
 library.add_book(Book::new("Lord of the Rings", 1954));
 library.add_book(Book::new("Alice's Adventures in Wonderland", 1865));
 // We could try and capture stdout, but let us just call the
 // method to start with.
 library.print_books();
}

#[test]
fn test_library_oldest_book() {
 let mut library = Library::new();
 assert!(library.oldest_book().is_none());

 library.add_book(Book::new("Lord of the Rings", 1954));
 assert_eq!(
 library.oldest_book().map(|b| b.title.as_str()),
 Some("Lord of the Rings")
);

 library.add_book(Book::new("Alice's Adventures in Wonderland", 1865));
 assert_eq!(
 library.oldest_book().map(|b| b.title.as_str()),
 Some("Alice's Adventures in Wonderland")
);
}

Comprehensive Rust 🦀

213 / 232

Day 2 Morning Exercises

Points and Polygons

(back to exercise)

Comprehensive Rust 🦀

214 / 232

// Copyright 2022 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#[derive(Debug, Copy, Clone, PartialEq, Eq)]
// ANCHOR: Point
pub struct Point {
 // ANCHOR_END: Point
 x: i32,
 y: i32,
}

// ANCHOR: Point-impl
impl Point {
 // ANCHOR_END: Point-impl
 pub fn new(x: i32, y: i32) -> Point {
 Point { x, y }
 }

 pub fn magnitude(self) -> f64 {
 f64::from(self.x.pow(2) + self.y.pow(2)).sqrt()
 }

 pub fn dist(self, other: Point) -> f64 {
 (self - other).magnitude()
 }
}

impl std::ops::Add for Point {
 type Output = Self;

 fn add(self, other: Self) -> Self::Output {
 Self {
 x: self.x + other.x,
 y: self.y + other.y,
 }
 }
}

impl std::ops::Sub for Point {
 type Output = Self;

 fn sub(self, other: Self) -> Self::Output {
 Self {
 x: self.x - other.x,
 y: self.y - other.y,
 }
 }
}

// ANCHOR: Polygon
pub struct Polygon {
 // ANCHOR_END: Polygon
 points: Vec<Point>,
}

// ANCHOR: Polygon-impl
impl Polygon {
 // ANCHOR_END: Polygon-impl
 pub fn new() -> Polygon {
 Polygon { points: Vec::new() }

Comprehensive Rust 🦀

215 / 232

 }

 pub fn add_point(&mut self, point: Point) {
 self.points.push(point);
 }

 pub fn left_most_point(&self) -> Option<Point> {
 self.points.iter().min_by_key(|p| p.x).copied()
 }

 pub fn iter(&self) -> impl Iterator<Item = &Point> {
 self.points.iter()
 }

 pub fn length(&self) -> f64 {
 if self.points.is_empty() {
 return 0.0;
 }

 let mut result = 0.0;
 let mut last_point = self.points[0];
 for point in &self.points[1..] {
 result += last_point.dist(*point);
 last_point = *point;
 }
 result += last_point.dist(self.points[0]);
 result
 }
}

// ANCHOR: Circle
pub struct Circle {
 // ANCHOR_END: Circle
 center: Point,
 radius: i32,
}

// ANCHOR: Circle-impl
impl Circle {
 // ANCHOR_END: Circle-impl
 pub fn new(center: Point, radius: i32) -> Circle {
 Circle { center, radius }
 }

 pub fn circumference(&self) -> f64 {
 2.0 * std::f64::consts::PI * f64::from(self.radius)
 }

 pub fn dist(&self, other: &Self) -> f64 {
 self.center.dist(other.center)
 }
}

// ANCHOR: Shape
pub enum Shape {
 Polygon(Polygon),
 Circle(Circle),
}
// ANCHOR_END: Shape

impl From<Polygon> for Shape {
 fn from(poly: Polygon) -> Self {
 Shape::Polygon(poly)
 }
}

impl From<Circle> for Shape {
 fn from(circle: Circle) -> Self {
 Shape::Circle(circle)
 }
}

Comprehensive Rust 🦀

216 / 232

impl Shape {
 pub fn perimeter(&self) -> f64 {
 match self {
 Shape::Polygon(poly) => poly.length(),
 Shape::Circle(circle) => circle.circumference(),
 }
 }
}

// ANCHOR: unit-tests
#[cfg(test)]
mod tests {
 use super::*;

 fn round_two_digits(x: f64) -> f64 {
 (x * 100.0).round() / 100.0
 }

 #[test]
 fn test_point_magnitude() {
 let p1 = Point::new(12, 13);
 assert_eq!(round_two_digits(p1.magnitude()), 17.69);
 }

 #[test]
 fn test_point_dist() {
 let p1 = Point::new(10, 10);
 let p2 = Point::new(14, 13);
 assert_eq!(round_two_digits(p1.dist(p2)), 5.00);
 }

 #[test]
 fn test_point_add() {
 let p1 = Point::new(16, 16);
 let p2 = p1 + Point::new(-4, 3);
 assert_eq!(p2, Point::new(12, 19));
 }

 #[test]
 fn test_polygon_left_most_point() {
 let p1 = Point::new(12, 13);
 let p2 = Point::new(16, 16);

 let mut poly = Polygon::new();
 poly.add_point(p1);
 poly.add_point(p2);
 assert_eq!(poly.left_most_point(), Some(p1));
 }

 #[test]
 fn test_polygon_iter() {
 let p1 = Point::new(12, 13);
 let p2 = Point::new(16, 16);

 let mut poly = Polygon::new();
 poly.add_point(p1);
 poly.add_point(p2);

 let points = poly.iter().cloned().collect::<Vec<_>>();
 assert_eq!(points, vec![Point::new(12, 13), Point::new(16, 16)]);
 }

 #[test]
 fn test_shape_perimeters() {
 let mut poly = Polygon::new();
 poly.add_point(Point::new(12, 13));
 poly.add_point(Point::new(17, 11));
 poly.add_point(Point::new(16, 16));
 let shapes = vec![
 Shape::from(poly),
 Shape::from(Circle::new(Point::new(10, 20), 5)),
];

Comprehensive Rust 🦀

217 / 232

 let perimeters = shapes
 .iter()
 .map(Shape::perimeter)
 .map(round_two_digits)
 .collect::<Vec<_>>();
 assert_eq!(perimeters, vec![15.48, 31.42]);
 }
}
// ANCHOR_END: unit-tests

fn main() {}

Comprehensive Rust 🦀

218 / 232

Day 2 Afternoon Exercises

Luhn Algorithm

(back to exercise)

Comprehensive Rust 🦀

219 / 232

// Copyright 2022 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// ANCHOR: luhn
pub fn luhn(cc_number: &str) -> bool {
 // ANCHOR_END: luhn
 let mut digits_seen = 0;
 let mut sum = 0;
 for (i, ch) in cc_number.chars().rev().filter(|&ch| ch != ' ').enumerate() {
 match ch.to_digit(10) {
 Some(d) => {
 sum += if i % 2 == 1 {
 let dd = d * 2;
 dd / 10 + dd % 10
 } else {
 d
 };
 digits_seen += 1;
 }
 None => return false,
 }
 }

 if digits_seen < 2 {
 return false;
 }

 sum % 10 == 0
}

fn main() {
 let cc_number = "1234 5678 1234 5670";
 println!(
 "Is {} a valid credit card number? {}",
 cc_number,
 if luhn(cc_number) { "yes" } else { "no" }
);
}

// ANCHOR: unit-tests
#[test]
fn test_non_digit_cc_number() {
 assert!(!luhn("foo"));
}

#[test]
fn test_empty_cc_number() {
 assert!(!luhn(""));
 assert!(!luhn(" "));
 assert!(!luhn(" "));
 assert!(!luhn(" "));
}

#[test]
fn test_single_digit_cc_number() {
 assert!(!luhn("0"));
}

#[test]
fn test_two_digit_cc_number() {

Comprehensive Rust 🦀

220 / 232

Strings and Iterators

(back to exercise)

 assert!(luhn(" 0 0 "));
}

#[test]
fn test_valid_cc_number() {
 assert!(luhn("4263 9826 4026 9299"));
 assert!(luhn("4539 3195 0343 6467"));
 assert!(luhn("7992 7398 713"));
}

#[test]
fn test_invalid_cc_number() {
 assert!(!luhn("4223 9826 4026 9299"));
 assert!(!luhn("4539 3195 0343 6476"));
 assert!(!luhn("8273 1232 7352 0569"));
}
// ANCHOR_END: unit-tests

Comprehensive Rust 🦀

221 / 232

// Copyright 2022 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// ANCHOR: prefix_matches
pub fn prefix_matches(prefix: &str, request_path: &str) -> bool {
 // ANCHOR_END: prefix_matches
 let prefixes = prefix.split('/');
 let request_paths = request_path
 .split('/')
 .map(|p| Some(p))
 .chain(std::iter::once(None));

 for (prefix, request_path) in prefixes.zip(request_paths) {
 match request_path {
 Some(request_path) => {
 if (prefix != "*") && (prefix != request_path) {
 return false;
 }
 }
 None => return false,
 }
 }
 true
}

// ANCHOR: unit-tests
#[test]
fn test_matches_without_wildcard() {
 assert!(prefix_matches("/v1/publishers", "/v1/publishers"));
 assert!(prefix_matches("/v1/publishers", "/v1/publishers/abc-123"));
 assert!(prefix_matches("/v1/publishers", "/v1/publishers/abc/books"));

 assert!(!prefix_matches("/v1/publishers", "/v1"));
 assert!(!prefix_matches("/v1/publishers", "/v1/publishersBooks"));
 assert!(!prefix_matches("/v1/publishers", "/v1/parent/publishers"));
}

#[test]
fn test_matches_with_wildcard() {
 assert!(prefix_matches(
 "/v1/publishers/*/books",
 "/v1/publishers/foo/books"
));
 assert!(prefix_matches(
 "/v1/publishers/*/books",
 "/v1/publishers/bar/books"
));
 assert!(prefix_matches(
 "/v1/publishers/*/books",
 "/v1/publishers/foo/books/book1"
));

 assert!(!prefix_matches("/v1/publishers/*/books", "/v1/publishers"));
 assert!(!prefix_matches(
 "/v1/publishers/*/books",
 "/v1/publishers/foo/booksByAuthor"
));
}
// ANCHOR_END: unit-tests

Comprehensive Rust 🦀

222 / 232

fn main() {}

Comprehensive Rust 🦀

223 / 232

Day 3 Morning Exercise

A Simple GUI Library

(back to exercise)

Comprehensive Rust 🦀

224 / 232

// Copyright 2022 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// ANCHOR: setup
pub trait Widget {
 /// Natural width of `self`.
 fn width(&self) -> usize;

 /// Draw the widget into a buffer.
 fn draw_into(&self, buffer: &mut dyn std::fmt::Write);

 /// Draw the widget on standard output.
 fn draw(&self) {
 let mut buffer = String::new();
 self.draw_into(&mut buffer);
 println!("{buffer}");
 }
}

pub struct Label {
 label: String,
}

impl Label {
 fn new(label: &str) -> Label {
 Label {
 label: label.to_owned(),
 }
 }
}

pub struct Button {
 label: Label,
 callback: Box<dyn FnMut()>,
}

impl Button {
 fn new(label: &str, callback: Box<dyn FnMut()>) -> Button {
 Button {
 label: Label::new(label),
 callback,
 }
 }
}

pub struct Window {
 title: String,
 widgets: Vec<Box<dyn Widget>>,
}

impl Window {
 fn new(title: &str) -> Window {
 Window {
 title: title.to_owned(),
 widgets: Vec::new(),
 }
 }

 fn add_widget(&mut self, widget: Box<dyn Widget>) {
 self.widgets.push(widget);

Comprehensive Rust 🦀

225 / 232

 }
}

// ANCHOR_END: setup

// ANCHOR: Window-width
impl Widget for Window {
 fn width(&self) -> usize {
 // ANCHOR_END: Window-width
 std::cmp::max(
 self.title.chars().count(),
 self.widgets.iter().map(|w| w.width()).max().unwrap_or(0),
)
 }

 // ANCHOR: Window-draw_into
 fn draw_into(&self, buffer: &mut dyn std::fmt::Write) {
 // ANCHOR_END: Window-draw_into
 let mut inner = String::new();
 for widget in &self.widgets {
 widget.draw_into(&mut inner);
 }

 let window_width = self.width();

 // TODO: after learning about error handling, you can change
 // draw_into to return Result<(), std::fmt::Error>. Then use
 // the ?-operator here instead of .unwrap().
 writeln!(buffer, "+-{:-<window_width$}-+", "").unwrap();
 writeln!(buffer, "| {:^window_width$} |", &self.title).unwrap();
 writeln!(buffer, "+={:=<window_width$}=+", "").unwrap();
 for line in inner.lines() {
 writeln!(buffer, "| {:window_width$} |", line).unwrap();
 }
 writeln!(buffer, "+-{:-<window_width$}-+", "").unwrap();
 }
}

// ANCHOR: Button-width
impl Widget for Button {
 fn width(&self) -> usize {
 // ANCHOR_END: Button-width
 self.label.width() + 8 // add a bit of padding
 }

 // ANCHOR: Button-draw_into
 fn draw_into(&self, buffer: &mut dyn std::fmt::Write) {
 // ANCHOR_END: Button-draw_into
 let width = self.width();
 let mut label = String::new();
 self.label.draw_into(&mut label);

 writeln!(buffer, "+{:-<width$}+", "").unwrap();
 for line in label.lines() {
 writeln!(buffer, "|{:^width$}|", &line).unwrap();
 }
 writeln!(buffer, "+{:-<width$}+", "").unwrap();
 }
}

// ANCHOR: Label-width
impl Widget for Label {
 fn width(&self) -> usize {
 // ANCHOR_END: Label-width
 self.label
 .lines()
 .map(|line| line.chars().count())
 .max()
 .unwrap_or(0)
 }

 // ANCHOR: Label-draw_into

Comprehensive Rust 🦀

226 / 232

 fn draw_into(&self, buffer: &mut dyn std::fmt::Write) {
 // ANCHOR_END: Label-draw_into
 writeln!(buffer, "{}", &self.label).unwrap();
 }
}

// ANCHOR: main
fn main() {
 let mut window = Window::new("Rust GUI Demo 1.23");
 window.add_widget(Box::new(Label::new("This is a small text GUI demo.")));
 window.add_widget(Box::new(Button::new(
 "Click me!",
 Box::new(|| println!("You clicked the button!")),
)));
 window.draw();
}
// ANCHOR_END: main

Comprehensive Rust 🦀

227 / 232

Day 3 Afternoon Exercises

Safe FFI Wrapper

(back to exercise)

Comprehensive Rust 🦀

228 / 232

// Copyright 2022 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// ANCHOR: ffi
mod ffi {
 use std::os::raw::{c_char, c_int, c_long, c_ulong, c_ushort};

 // Opaque type. See https://doc.rust-lang.org/nomicon/ffi.html.
 #[repr(C)]
 pub struct DIR {
 _data: [u8; 0],
 _marker: core::marker::PhantomData<(*mut u8, core::marker::PhantomPinned)>,
 }

 // Layout as per readdir(3) and definitions in /usr/include/x86_64-linux-gnu.
 #[repr(C)]
 pub struct dirent {
 pub d_ino: c_long,
 pub d_off: c_ulong,
 pub d_reclen: c_ushort,
 pub d_type: c_char,
 pub d_name: [c_char; 256],
 }

 extern "C" {
 pub fn opendir(s: *const c_char) -> *mut DIR;
 pub fn readdir(s: *mut DIR) -> *const dirent;
 pub fn closedir(s: *mut DIR) -> c_int;
 }
}

use std::ffi::{CStr, CString, OsStr, OsString};
use std::os::unix::ffi::OsStrExt;

#[derive(Debug)]
struct DirectoryIterator {
 path: CString,
 dir: *mut ffi::DIR,
}
// ANCHOR_END: ffi

// ANCHOR: DirectoryIterator
impl DirectoryIterator {
 fn new(path: &str) -> Result<DirectoryIterator, String> {
 // Call opendir and return a Ok value if that worked,
 // otherwise return Err with a message.
 // ANCHOR_END: DirectoryIterator
 let path = CString::new(path).map_err(|err| format!("Invalid path: {err}"))?;
 // SAFETY: path.as_ptr() cannot be NULL.
 let dir = unsafe { ffi::opendir(path.as_ptr()) };
 if dir.is_null() {
 Err(format!("Could not open {:?}", path))
 } else {
 Ok(DirectoryIterator { path, dir })
 }
 }
}

// ANCHOR: Iterator
impl Iterator for DirectoryIterator {

Comprehensive Rust 🦀

229 / 232

 type Item = OsString;
 fn next(&mut self) -> Option<OsString> {
 // Keep calling readdir until we get a NULL pointer back.
 // ANCHOR_END: Iterator
 // SAFETY: self.dir is never NULL.
 let dirent = unsafe { ffi::readdir(self.dir) };
 if dirent.is_null() {
 // We have reached the end of the directory.
 return None;
 }
 // SAFETY: dirent is not NULL and dirent.d_name is NUL
 // terminated.
 let d_name = unsafe { CStr::from_ptr((*dirent).d_name.as_ptr()) };
 let os_str = OsStr::from_bytes(d_name.to_bytes());
 Some(os_str.to_owned())
 }
}

// ANCHOR: Drop
impl Drop for DirectoryIterator {
 fn drop(&mut self) {
 // Call closedir as needed.
 // ANCHOR_END: Drop
 if !self.dir.is_null() {
 // SAFETY: self.dir is not NULL.
 if unsafe { ffi::closedir(self.dir) } != 0 {
 panic!("Could not close {:?}", self.path);
 }
 }
 }
}

// ANCHOR: main
fn main() -> Result<(), String> {
 let iter = DirectoryIterator::new(".")?;
 println!("files: {:#?}", iter.collect::<Vec<_>>());
 Ok(())
}
// ANCHOR_END: main

Comprehensive Rust 🦀

230 / 232

Day 4 Morning Exercise

Dining Philosophers

(back to exercise)

Comprehensive Rust 🦀

231 / 232

// Copyright 2022 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// ANCHOR: Philosopher
use std::sync::mpsc;
use std::sync::{Arc, Mutex};
use std::thread;
use std::time::Duration;

struct Fork;

struct Philosopher {
 name: String,
 // ANCHOR_END: Philosopher
 left_fork: Arc<Mutex<Fork>>,
 right_fork: Arc<Mutex<Fork>>,
 thoughts: mpsc::SyncSender<String>,
}

// ANCHOR: Philosopher-think
impl Philosopher {
 fn think(&self) {
 self.thoughts
 .send(format!("Eureka! {} has a new idea!", &self.name))
 .unwrap();
 }
 // ANCHOR_END: Philosopher-think

 // ANCHOR: Philosopher-eat
 fn eat(&self) {
 // ANCHOR_END: Philosopher-eat
 println!("{} is trying to eat", &self.name);
 let left = self.left_fork.lock().unwrap();
 let right = self.right_fork.lock().unwrap();

 // ANCHOR: Philosopher-eat-end
 println!("{} is eating...", &self.name);
 thread::sleep(Duration::from_millis(10));
 }
}

static PHILOSOPHERS: &[&str] =
 &["Socrates", "Plato", "Aristotle", "Thales", "Pythagoras"];

fn main() {
 // ANCHOR_END: Philosopher-eat-end
 let (tx, rx) = mpsc::sync_channel(10);

 let forks = (0..PHILOSOPHERS.len())
 .map(|_| Arc::new(Mutex::new(Fork)))
 .collect::<Vec<_>>();

 for i in 0..forks.len() {
 let tx = tx.clone();
 let mut left_fork = forks[i].clone();
 let mut right_fork = forks[(i + 1) % forks.len()].clone();

 // To avoid a deadlock, we have to break the symmetry
 // somewhere. This will swap the forks without deinitializing
 // either of them.

Comprehensive Rust 🦀

232 / 232

 if i == forks.len() - 1 {
 std::mem::swap(&mut left_fork, &mut right_fork);
 }

 let philosopher = Philosopher {
 name: PHILOSOPHERS[i].to_string(),
 thoughts: tx,
 left_fork,
 right_fork,
 };

 thread::spawn(move || {
 for _ in 0..100 {
 philosopher.eat();
 philosopher.think();
 }
 });
 }

 drop(tx);
 for thought in rx {
 println!("{thought}");
 }
}

	Welcome to Comprehensive Rust 🦀
	1. Running the Course
	1.1. Course Structure
	1.2. Keyboard Shortcuts

	2. Using Cargo
	2.1. Rust Ecosystem
	2.2. Code Samples
	2.3. Running Cargo Locally

	3. Welcome
	3.1. What is Rust?

	4. Hello World!
	4.1. Small Example

	5. Why Rust?
	5.1. Compile Time Guarantees
	5.2. Runtime Guarantees
	5.3. Modern Features

	6. Basic Syntax
	6.1. Scalar Types
	6.2. Compound Types
	6.3. References
	6.3.1. Dangling References

	6.4. Slices
	6.4.1. String vs str

	6.5. Functions
	6.5.1. Methods
	6.5.2. Overloading

	7. Exercises
	7.1. Implicit Conversions
	7.2. Arrays and for Loops

	8. Variables
	8.1. Type Inference
	8.2. static & const
	8.3. Scopes and Shadowing

	9. Memory Management
	9.1. Stack vs Heap
	9.2. Stack Memory
	9.3. Manual Memory Management
	9.4. Scope-Based Memory Management
	9.5. Garbage Collection
	9.6. Rust Memory Management
	9.7. Comparison

	10. Ownership
	10.1. Move Semantics
	10.2. Moved Strings in Rust
	10.2.1. Double Frees in Modern C++

	10.3. Moves in Function Calls
	10.4. Copying and Cloning
	10.5. Borrowing
	10.5.1. Shared and Unique Borrows

	10.6. Lifetimes
	10.7. Lifetimes in Function Calls
	10.8. Lifetimes in Data Structures

	11. Exercises
	11.1. Designing a Library
	11.2. Iterators and Ownership

	12. Welcome
	13. Structs
	13.1. Tuple Structs
	13.2. Field Shorthand Syntax

	14. Enums
	14.1. Variant Payloads
	14.2. Enum Sizes

	15. Methods
	15.1. Method Receiver
	15.2. Example

	16. Pattern Matching
	16.1. Destructuring Enums
	16.2. Destructuring Structs
	16.3. Destructuring Arrays
	16.4. Match Guards

	17. Exercises
	17.1. Health Statistics
	17.2. Points and Polygons

	18. Control Flow
	18.1. Blocks
	18.2. if expressions
	18.3. if let expressions
	18.4. while expressions
	18.5. while let expressions
	18.6. for expressions
	18.7. loop expressions
	18.8. match expressions
	18.9. break & continue

	19. Standard Library
	19.1. Option and Result
	19.2. String
	19.3. Vec
	19.4. HashMap
	19.5. Box
	19.5.1. Recursive Data Types
	19.5.2. Niche Optimization

	19.6. Rc

	20. Modules
	20.1. Visibility
	20.2. Paths
	20.3. Filesystem Hierarchy

	21. Exercises
	21.1. Luhn Algorithm
	21.2. Strings and Iterators

	22. Welcome
	23. Traits
	23.1. Deriving Traits
	23.2. Default Methods
	23.3. Important Traits
	23.3.1. Iterator
	23.3.2. FromIterator
	23.3.3. From and Into
	23.3.4. Read and Write
	23.3.5. Add, Mul, ...
	23.3.6. Drop
	23.3.7. Default

	24. Generics
	24.1. Generic Data Types
	24.2. Generic Methods
	24.3. Trait Bounds
	24.4. impl Trait
	24.5. Closures
	24.6. Monomorphization
	24.7. Trait Objects

	25. Exercises
	25.1. A Simple GUI Library

	26. Error Handling
	26.1. Panics
	26.1.1. Catching Stack Unwinding

	26.2. Structured Error Handling
	26.3. Propagating Errors with ?
	26.3.1. Converting Error Types
	26.3.1.1. Example

	26.3.2. Deriving Error Enums
	26.3.3. Dynamic Error Types
	26.3.4. Adding Context to Errors

	27. Testing
	27.1. Unit Tests
	27.2. Test Modules
	27.3. Documentation Tests
	27.4. Integration Tests

	28. Unsafe Rust
	28.1. Dereferencing Raw Pointers
	28.2. Mutable Static Variables
	28.3. Unions
	28.4. Calling Unsafe Functions
	28.4.1. Writing Unsafe Functions
	28.4.2. Extern Functions

	28.5. Implementing Unsafe Traits

	29. Exercises
	29.1. Safe FFI Wrapper

	30. Welcome
	31. Concurrency
	31.1. Threads
	31.2. Scoped Threads
	31.3. Channels
	31.3.1. Unbounded Channels
	31.3.2. Bounded Channels

	31.4. Shared State
	31.4.1. Arc
	31.4.2. Mutex
	31.4.3. Example

	31.5. Send and Sync
	31.5.1. Send
	31.5.2. Sync
	31.5.3. Examples

	32. Exercises
	32.1. Dining Philosophers
	32.2. Multi-threaded Link Checker

	33. Android
	33.1. Setup
	33.2. Build Rules
	33.2.1. Binary
	33.2.2. Library

	33.3. AIDL
	33.3.1. Interface
	33.3.2. Implementation
	33.3.3. Server
	33.3.4. Deploy
	33.3.5. Client
	33.3.6. Changing API

	33.4. Logging
	33.5. Interoperability
	33.5.1. With C
	33.5.1.1. Calling C with Bindgen
	33.5.1.2. Calling Rust from C

	33.5.2. With C++
	33.5.3. With Java

	34. Exercises
	35. Thanks!
	36. Other Resources
	37. Credits
	38. Solutions
	38.1. Day 1 Morning
	38.2. Day 1 Afternoon
	38.3. Day 2 Morning
	38.4. Day 2 Afternoon
	38.5. Day 3 Morning
	38.6. Day 3 Afternoon
	38.7. Day 4 Morning

