
Introduction
mdBook is a command line tool to create books with Markdown. It is ideal for
creating product or API documentation, tutorials, course materials or anything
that requires a clean, easily navigable and customizable presentation.

Lightweight Markdown syntax helps you focus more on your content
Integrated search support
Color syntax highlighting for code blocks for many different languages
Theme files allow customizing the formatting of the output
Preprocessors can provide extensions for custom syntax and modifying
content
Backends can render the output to multiple formats
Written in Rust for speed, safety, and simplicity
Automated testing of Rust code samples

This guide is an example of what mdBook produces. mdBook is used by the
Rust programming language project, and The Rust Programming Language
book is another fine example of mdBook in action.

Contributing

mdBook is free and open source. You can find the source code on GitHub and
issues and feature requests can be posted on the GitHub issue tracker.
mdBook relies on the community to fix bugs and add features: if you'd like to
contribute, please read the CONTRIBUTING guide and consider opening a pull
request.

License

The mdBook source and documentation are released under the Mozilla Public
License v2.0.

https://www.rust-lang.org/
https://doc.rust-lang.org/book/
https://github.com/rust-lang/mdBook
https://github.com/rust-lang/mdBook/issues
https://github.com/rust-lang/mdBook/blob/master/CONTRIBUTING.md
https://github.com/rust-lang/mdBook/pulls
https://www.mozilla.org/MPL/2.0/

Installation
There are multiple ways to install the mdBook CLI tool. Choose any one of the
methods below that best suit your needs. If you are installing mdBook for
automatic deployment, check out the continuous integration chapter for more
examples on how to install.

Pre-compiled binaries

Executable binaries are available for download on the GitHub Releases page.
Download the binary for your platform (Windows, macOS, or Linux) and extract
the archive. The archive contains an mdbook executable which you can run to
build your books.

To make it easier to run, put the path to the binary into your PATH .

Build from source using Rust

To build the mdbook executable from source, you will first need to install Rust
and Cargo. Follow the instructions on the Rust installation page. mdBook
currently requires at least Rust version 1.65.

Once you have installed Rust, the following command can be used to build and
install mdBook:

This will automatically download mdBook from crates.io, build it, and install it in
Cargo's global binary directory (~/.cargo/bin/ by default).

To uninstall, run the command cargo uninstall mdbook .

cargo install mdbook

https://github.com/rust-lang/mdBook/releases
https://www.rust-lang.org/tools/install
https://crates.io/

Installing the latest master version

The version published to crates.io will ever so slightly be behind the version
hosted on GitHub. If you need the latest version you can build the git version of
mdBook yourself. Cargo makes this super easy!

Again, make sure to add the Cargo bin directory to your PATH .

If you are interested in making modifications to mdBook itself, check out the
Contributing Guide for more information.

cargo install --git https://github.com/rust-lang/mdBook.git mdbook

https://github.com/rust-lang/mdBook/blob/master/CONTRIBUTING.md

Reading Books
This chapter gives an introduction on how to interact with a book produced by
mdBook. This assumes you are reading an HTML book. The options and
formatting will be different for other output formats such as PDF.

A book is organized into chapters. Each chapter is a separate page. Chapters
can be nested into a hierarchy of sub-chapters. Typically, each chapter will be
organized into a series of headings to subdivide a chapter.

Navigation

There are several methods for navigating through the chapters of a book.

The sidebar on the left provides a list of all chapters. Clicking on any of the
chapter titles will load that page.

The sidebar may not automatically appear if the window is too narrow,
particularly on mobile displays. In that situation, the menu icon (three
horizontal bars) at the top-left of the page can be pressed to open and close the
sidebar.

The arrow buttons at the bottom of the page can be used to navigate to the
previous or the next chapter.

The left and right arrow keys on the keyboard can be used to navigate to the
previous or the next chapter.

Top menu bar

The menu bar at the top of the page provides some icons for interacting with
the book. The icons displayed will depend on the settings of how the book was
generated.

Icon Description

Opens and closes the chapter listing sidebar.

Opens a picker to choose a different color theme.

Opens a search bar for searching within the book.

Instructs the web browser to print the entire book.

Opens a link to the website that hosts the source code of the
book.

Opens a page to directly edit the source of the page you are
currently reading.

Tapping the menu bar will scroll the page to the top.

Search

Each book has a built-in search system. Pressing the search icon () in the menu
bar, or pressing the S key on the keyboard will open an input box for entering
search terms. Typing some terms will show matching chapters and sections in
real time.

Clicking any of the results will jump to that section. The up and down arrow
keys can be used to navigate the results, and enter will open the highlighted
section.

After loading a search result, the matching search terms will be highlighted in
the text. Clicking a highlighted word or pressing the Esc key will remove the
highlighting.

Code blocks

mdBook books are often used for programming projects, and thus support
highlighting code blocks and samples. Code blocks may contain several
different icons for interacting with them:

Icon Description

Copies the code block into your local clipboard, to allow pasting
into another application.

For Rust code examples, this will execute the sample code and
display the compiler output just below the example (see
playground).

For Rust code examples, this will toggle visibility of "hidden"
lines. Sometimes, larger examples will hide lines which are not
particularly relevant to what is being illustrated (see hiding code
lines).

For editable code examples, this will undo any changes you
have made.

Here's an example:

println!("Hello, World!");

Creating a Book
Once you have the mdbook CLI tool installed, you can use it to create and
render a book.

Initializing a book

The mdbook init command will create a new directory containing an empty
book for you to get started. Give it the name of the directory that you want to
create:

It will ask a few questions before generating the book. After answering the
questions, you can change the current directory into the new book:

There are several ways to render a book, but one of the easiest methods is to
use the serve command, which will build your book and start a local
webserver:

The --open option will open your default web browser to view your new book.
You can leave the server running even while you edit the content of the book,
and mdbook will automatically rebuild the output and automatically refresh
your web browser.

Check out the CLI Guide for more information about other mdbook commands
and CLI options.

mdbook init my-first-book

cd my-first-book

mdbook serve --open

Anatomy of a book

A book is built from several files which define the settings and layout of the
book.

book.toml

In the root of your book, there is a book.toml file which contains settings for
describing how to build your book. This is written in the TOML markup
language. The default settings are usually good enough to get you started.
When you are interested in exploring more features and options that mdBook
provides, check out the Configuration chapter for more details.

A very basic book.toml can be as simple as this:

SUMMARY.md

The next major part of a book is the summary file located at src/SUMMARY.md .
This file contains a list of all the chapters in the book. Before a chapter can be
viewed, it must be added to this list.

Here's a basic summary file with a few chapters:

Try opening up src/SUMMARY.md in your editor and adding a few chapters. If
any of the chapter files do not exist, mdbook will automatically create them for

[book]
title = "My First Book"

Summary

[Introduction](README.md)

- [My First Chapter](my-first-chapter.md)
- [Nested example](nested/README.md)
 - [Sub-chapter](nested/sub-chapter.md)

https://toml.io/

you.

For more details on other formatting options for the summary file, check out
the Summary chapter.

Source files

The content of your book is all contained in the src directory. Each chapter is a
separate Markdown file. Typically, each chapter starts with a level 1 heading
with the title of the chapter.

The precise layout of the files is up to you. The organization of the files will
correspond to the HTML files generated, so keep in mind that the file layout is
part of the URL of each chapter.

While the mdbook serve command is running, you can open any of the chapter
files and start editing them. Each time you save the file, mdbook will rebuild the
book and refresh your web browser.

Check out the Markdown chapter for more information on formatting the
content of your chapters.

All other files in the src directory will be included in the output. So if you have
images or other static files, just include them somewhere in the src directory.

Publishing a book

Once you've written your book, you may want to host it somewhere for others
to view. The first step is to build the output of the book. This can be done with
the mdbook build command in the same directory where the book.toml file is
located:

My First Chapter

Fill out your content here.

This will generate a directory named book which contains the HTML content of
your book. You can then place this directory on any web server to host it.

For more information about publishing and deploying, check out the
Continuous Integration chapter for more.

mdbook build

Command Line Tool
The mdbook command-line tool is used to create and build books. After you
have installed mdbook , you can run the mdbook help command in your
terminal to view the available commands.

This following sections provide in-depth information on the different
commands available.

mdbook init <directory> — Creates a new book with minimal
boilerplate to start with.
mdbook build — Renders the book.
mdbook watch — Rebuilds the book any time a source file changes.
mdbook serve — Runs a web server to view the book, and rebuilds on

changes.
mdbook test — Tests Rust code samples.
mdbook clean — Deletes the rendered output.
mdbook completions — Support for shell auto-completion.

The init command
There is some minimal boilerplate that is the same for every new book. It's for
this purpose that mdBook includes an init command.

The init command is used like this:

When using the init command for the first time, a couple of files will be set
up for you:

The src directory is where you write your book in markdown. It contains
all the source files, configuration files, etc.

The book directory is where your book is rendered. All the output is ready
to be uploaded to a server to be seen by your audience.

The SUMMARY.md is the skeleton of your book, and is discussed in more
detail in another chapter.

Tip: Generate chapters from SUMMARY.md

When a SUMMARY.md file already exists, the init command will first parse it
and generate the missing files according to the paths used in the SUMMARY.md .
This allows you to think and create the whole structure of your book and then
let mdBook generate it for you.

mdbook init

book-test/
├── book
└── src
 ├── chapter_1.md
 └── SUMMARY.md

Specify a directory

The init command can take a directory as an argument to use as the book's
root instead of the current working directory.

--theme

When you use the --theme flag, the default theme will be copied into a
directory called theme in your source directory so that you can modify it.

The theme is selectively overwritten, this means that if you don't want to
overwrite a specific file, just delete it and the default file will be used.

--title

Specify a title for the book. If not supplied, an interactive prompt will ask for a
title.

--ignore

Create a .gitignore file configured to ignore the book directory created when
building a book. If not supplied, an interactive prompt will ask whether it should
be created.

--force

Skip the prompts to create a .gitignore and for the title for the book.

mdbook init path/to/book

mdbook init --title="my amazing book"

mdbook init --ignore=none

mdbook init --ignore=git

The build command
The build command is used to render your book:

It will try to parse your SUMMARY.md file to understand the structure of your
book and fetch the corresponding files. Note that files mentioned in
SUMMARY.md but not present will be created.

The rendered output will maintain the same directory structure as the source
for convenience. Large books will therefore remain structured when rendered.

Specify a directory

The build command can take a directory as an argument to use as the book's
root instead of the current working directory.

--open

When you use the --open (-o) flag, mdbook will open the rendered book in
your default web browser after building it.

--dest-dir

The --dest-dir (-d) option allows you to change the output directory for the
book. Relative paths are interpreted relative to the book's root directory. If not
specified it will default to the value of the build.build-dir key in book.toml ,
or to ./book .

mdbook build

mdbook build path/to/book

Note: The build command copies all files (excluding files with .md extension) from
the source directory into the build directory.

The watch command
The watch command is useful when you want your book to be rendered on
every file change. You could repeatedly issue mdbook build every time a file is
changed. But using mdbook watch once will watch your files and will trigger a
build automatically whenever you modify a file; this includes re-creating deleted
files still mentioned in SUMMARY.md !

Specify a directory

The watch command can take a directory as an argument to use as the book's
root instead of the current working directory.

--open

When you use the --open (-o) option, mdbook will open the rendered book in
your default web browser.

--dest-dir

The --dest-dir (-d) option allows you to change the output directory for the
book. Relative paths are interpreted relative to the book's root directory. If not
specified it will default to the value of the build.build-dir key in book.toml ,
or to ./book .

Specify exclude patterns

The watch command will not automatically trigger a build for files listed in the
.gitignore file in the book root directory. The .gitignore file may contain

file patterns described in the gitignore documentation. This can be useful for
ignoring temporary files created by some editors.

mdbook watch path/to/book

https://git-scm.com/docs/gitignore

Note: Only .gitignore from book root directory is used. Global
$HOME/.gitignore or .gitignore files in parent directories are not used.

The serve command
The serve command is used to preview a book by serving it via HTTP at
localhost:3000 by default:

The serve command watches the book's src directory for changes, rebuilding
the book and refreshing clients for each change; this includes re-creating
deleted files still mentioned in SUMMARY.md ! A websocket connection is used to
trigger the client-side refresh.

Note: The serve command is for testing a book's HTML output, and is not intended
to be a complete HTTP server for a website.

Specify a directory

The serve command can take a directory as an argument to use as the book's
root instead of the current working directory.

Server options

The serve hostname defaults to localhost , and the port defaults to 3000 .
Either option can be specified on the command line:

--open

When you use the --open (-o) flag, mdbook will open the book in your default
web browser after starting the server.

mdbook serve

mdbook serve path/to/book

mdbook serve path/to/book -p 8000 -n 127.0.0.1

--dest-dir

The --dest-dir (-d) option allows you to change the output directory for the
book. Relative paths are interpreted relative to the book's root directory. If not
specified it will default to the value of the build.build-dir key in book.toml ,
or to ./book .

Specify exclude patterns

The serve command will not automatically trigger a build for files listed in the
.gitignore file in the book root directory. The .gitignore file may contain

file patterns described in the gitignore documentation. This can be useful for
ignoring temporary files created by some editors.

Note: Only the .gitignore from the book root directory is used. Global
$HOME/.gitignore or .gitignore files in parent directories are not used.

https://git-scm.com/docs/gitignore

The test command
When writing a book, you sometimes need to automate some tests. For
example, The Rust Programming Book uses a lot of code examples that could
get outdated. Therefore it is very important for them to be able to automatically
test these code examples.

mdBook supports a test command that will run all available tests in a book. At
the moment, only rustdoc tests are supported, but this may be expanded upon
in the future.

Disable tests on a code block

rustdoc doesn't test code blocks which contain the ignore attribute:

rustdoc also doesn't test code blocks which specify a language other than Rust:

rustdoc does test code blocks which have no language specified:

Specify a directory

The test command can take a directory as an argument to use as the book's
root instead of the current working directory.

```rust,ignore
fn main() {}
```

```markdown
**Foo**: _bar_
```

```
This is going to cause an error!
```

https://doc.rust-lang.org/stable/book/

--library-path

The --library-path (-L) option allows you to add directories to the library
search path used by rustdoc when it builds and tests the examples. Multiple
directories can be specified with multiple options (-L foo -L bar) or with a
comma-delimited list (-L foo,bar). The path should point to the Cargo build
cache deps directory that contains the build output of your project. For
example, if your Rust project's book is in a directory named my-book , the
following command would include the crate's dependencies when running
test :

See the rustdoc command-line documentation for more information.

--dest-dir

The --dest-dir (-d) option allows you to change the output directory for the
book. Relative paths are interpreted relative to the book's root directory. If not
specified it will default to the value of the build.build-dir key in book.toml ,
or to ./book .

--chapter

The --chapter (-c) option allows you to test a specific chapter of the book
using the chapter name or the relative path to the chapter.

mdbook test path/to/book

mdbook test my-book -L target/debug/deps/

https://doc.rust-lang.org/cargo/guide/build-cache.html
https://doc.rust-lang.org/rustdoc/command-line-arguments.html#-l--library-path-where-to-look-for-dependencies

The clean command
The clean command is used to delete the generated book and any other build
artifacts.

Specify a directory

The clean command can take a directory as an argument to use as the book's
root instead of the current working directory.

--dest-dir

The --dest-dir (-d) option allows you to override the book's output
directory, which will be deleted by this command. Relative paths are
interpreted relative to the book's root directory. If not specified it will default to
the value of the build.build-dir key in book.toml , or to ./book .

path/to/book could be absolute or relative.

mdbook clean

mdbook clean path/to/book

mdbook clean --dest-dir=path/to/book

The completions command
The completions command is used to generate auto-completions for some
common shells. This means when you type mdbook in your shell, you can then
press your shell's auto-complete key (usually the Tab key) and it may display
what the valid options are, or finish partial input.

The completions first need to be installed for your shell:

The command prints a completion script for the given shell. Run mdbook
completions --help for a list of supported shells.

Where to place the completions depend on which shell you are using and your
operating system. Consult your shell's documentation for more information
one where to place the script.

mdbook completions bash > ~/.local/share/bash-
completion/completions/mdbook

Format
In this section you will learn how to:

Structure your book correctly
Format your SUMMARY.md file
Configure your book using book.toml
Customize your theme

SUMMARY.md
The summary file is used by mdBook to know what chapters to include, in what
order they should appear, what their hierarchy is and where the source files
are. Without this file, there is no book.

This markdown file must be named SUMMARY.md . Its formatting is very strict
and must follow the structure outlined below to allow for easy parsing. Any
element not specified below, be it formatting or textual, is likely to be ignored
at best, or may cause an error when attempting to build the book.

Structure

1. Title - While optional, it's common practice to begin with a title, generally
Summary . This is ignored by the parser however, and can be omitted.

2. Prefix Chapter - Before the main numbered chapters, prefix chapters can
be added that will not be numbered. This is useful for forewords,
introductions, etc. There are, however, some constraints. Prefix chapters
cannot be nested; they should all be on the root level. And you cannot add
prefix chapters once you have added numbered chapters.

3. Part Title - Headers can be used as a title for the following numbered
chapters. This can be used to logically separate different sections of the
book. The title is rendered as unclickable text. Titles are optional, and the
numbered chapters can be broken into as many parts as desired.

Summary

[A Prefix Chapter](relative/path/to/markdown.md)

- [First Chapter](relative/path/to/markdown2.md)

4. Numbered Chapter - Numbered chapters outline the main content of the
book and can be nested, resulting in a nice hierarchy (chapters, sub-
chapters, etc.).

Numbered chapters can be denoted with either - or * (do not mix
delimiters).

5. Suffix Chapter - Like prefix chapters, suffix chapters are unnumbered, but
they come after numbered chapters.

6. Draft chapters - Draft chapters are chapters without a file and thus
content. The purpose of a draft chapter is to signal future chapters still to
be written. Or when still laying out the structure of the book to avoid
creating the files while you are still changing the structure of the book a
lot. Draft chapters will be rendered in the HTML renderer as disabled links
in the table of contents, as you can see for the next chapter in the table of
contents on the left. Draft chapters are written like normal chapters but
without writing the path to the file.

My Part Title

- [First Chapter](relative/path/to/markdown.md)

Title of Part

- [First Chapter](relative/path/to/markdown.md)
- [Second Chapter](relative/path/to/markdown2.md)
 - [Sub Chapter](relative/path/to/markdown3.md)

Title of Another Part

- [Another Chapter](relative/path/to/markdown4.md)

- [Last Chapter](relative/path/to/markdown.md)

[Title of Suffix Chapter](relative/path/to/markdown2.md)

7. Separators - Separators can be added before, in between, and after any
other element. They result in an HTML rendered line in the built table of
contents. A separator is a line containing exclusively dashes and at least
three of them: --- .

Example

Below is the markdown source for the SUMMARY.md for this guide, with the
resulting table of contents as rendered to the left.

- [Draft Chapter]()

My Part Title

[A Prefix Chapter](relative/path/to/markdown.md)

- [First Chapter](relative/path/to/markdown2.md)

Summary

[Introduction](README.md)

User Guide

- [Installation](guide/installation.md)
- [Reading Books](guide/reading.md)
- [Creating a Book](guide/creating.md)

Reference Guide

- [Command Line Tool](cli/README.md)
 - [init](cli/init.md)
 - [build](cli/build.md)
 - [watch](cli/watch.md)
 - [serve](cli/serve.md)
 - [test](cli/test.md)
 - [clean](cli/clean.md)
 - [completions](cli/completions.md)
- [Format](format/README.md)
 - [SUMMARY.md](format/summary.md)
 - [Draft chapter]()
 - [Configuration](format/configuration/README.md)
 - [General](format/configuration/general.md)
 - [Preprocessors](format/configuration/preprocessors.md)
 - [Renderers](format/configuration/renderers.md)
 - [Environment Variables](format/configuration/environment-
variables.md)
 - [Theme](format/theme/README.md)
 - [index.hbs](format/theme/index-hbs.md)
 - [Syntax highlighting](format/theme/syntax-highlighting.md)
 - [Editor](format/theme/editor.md)
 - [MathJax Support](format/mathjax.md)
 - [mdBook-specific features](format/mdbook.md)
 - [Markdown](format/markdown.md)
- [Continuous Integration](continuous-integration.md)
- [For Developers](for_developers/README.md)
 - [Preprocessors](for_developers/preprocessors.md)
 - [Alternative Backends](for_developers/backends.md)

[Contributors](misc/contributors.md)

Configuration
This section details the configuration options available in the book.toml:

General configuration including the book , rust , build sections
Preprocessor configuration for default and custom book preprocessors
Renderer configuration for the HTML, Markdown and custom renderers
Environment Variable configuration for overriding configuration options
in your environment

General Configuration
You can configure the parameters for your book in the book.toml file.

Here is an example of what a book.toml file might look like:

Supported configuration options

It is important to note that any relative path specified in the configuration will
always be taken relative from the root of the book where the configuration file
is located.

General metadata

This is general information about your book.

[book]
title = "Example book"
authors = ["John Doe"]
description = "The example book covers examples."

[rust]
edition = "2018"

[build]
build-dir = "my-example-book"
create-missing = false

[preprocessor.index]

[preprocessor.links]

[output.html]
additional-css = ["custom.css"]

[output.html.search]
limit-results = 15

title: The title of the book
authors: The author(s) of the book
description: A description for the book, which is added as meta
information in the html <head> of each page
src: By default, the source directory is found in the directory named src
directly under the root folder. But this is configurable with the src key in
the configuration file.
language: The main language of the book, which is used as a language
attribute <html lang="en"> for example.

book.toml

Rust options

Options for the Rust language, relevant to running tests and playground
integration.

edition: Rust edition to use by default for the code snippets. Default is
"2015". Individual code blocks can be controlled with the edition2015 ,
edition2018 or edition2021 annotations, such as:

[book]
title = "Example book"
authors = ["John Doe", "Jane Doe"]
description = "The example book covers examples."
src = "my-src" # the source files will be found in `root/my-src`
instead of `root/src`
language = "en"

[rust]
edition = "2015" # the default edition for code blocks

Build options

This controls the build process of your book.

build-dir: The directory to put the rendered book in. By default this is
book/ in the book's root directory. This can overridden with the --dest-
dir CLI option.

create-missing: By default, any missing files specified in SUMMARY.md will
be created when the book is built (i.e. create-missing = true). If this is
false then the build process will instead exit with an error if any files do

not exist.

use-default-preprocessors: Disable the default preprocessors of (links
& index) by setting this option to false .

If you have the same, and/or other preprocessors declared via their table
of configuration, they will run instead.

For clarity, with no preprocessor configuration, the default links
and index will run.
Setting use-default-preprocessors = false will disable these
default preprocessors from running.

```rust,edition2015
// This only works in 2015.
let try = true;

```

[build]
build-dir = "book" # the directory where the output
is placed
create-missing = true # whether or not to create missing
pages
use-default-preprocessors = true # use the default preprocessors
extra-watch-dirs = [] # directories to watch for
triggering builds

Adding [preprocessor.links] , for example, will ensure, regardless
of use-default-preprocessors that links it will run.

extra-watch-dirs: A list of paths to directories that will be watched in the
watch and serve commands. Changes to files under these directories

will trigger rebuilds. Useful if your book depends on files outside its src
directory.

Configuring Preprocessors
Preprocessors are extensions that can modify the raw Markdown source before
it gets sent to the renderer.

The following preprocessors are built-in and included by default:

links : Expands the {{ #playground }} , {{ #include }} , and {{
#rustdoc_include }} handlebars helpers in a chapter to include the
contents of a file. See Including files for more.
index : Convert all chapter files named README.md into index.md . That is

to say, all README.md would be rendered to an index file index.html in
the rendered book.

The built-in preprocessors can be disabled with the build.use-default-
preprocessors config option.

The community has developed several preprocessors. See the Third Party
Plugins wiki page for a list of available preprocessors.

For information on how to create a new preprocessor, see the Preprocessors
for Developers chapter.

Custom Preprocessor Configuration

Preprocessors can be added by including a preprocessor table in book.toml
with the name of the preprocessor. For example, if you have a preprocessor
called mdbook-example , then you can include it with:

With this table, mdBook will execute the mdbook-example preprocessor.

This table can include additional key-value pairs that are specific to the
preprocessor. For example, if our example prepocessor needed some extra

[preprocessor.example]

https://github.com/rust-lang/mdBook/wiki/Third-party-plugins

configuration options:

Locking a Preprocessor dependency to a renderer

You can explicitly specify that a preprocessor should run for a renderer by
binding the two together.

Provide Your Own Command

By default when you add a [preprocessor.foo] table to your book.toml file,
mdbook will try to invoke the mdbook-foo executable. If you want to use a

different program name or pass in command-line arguments, this behaviour
can be overridden by adding a command field.

Require A Certain Order

The order in which preprocessors are run can be controlled with the before
and after fields. For example, suppose you want your linenos preprocessor
to process lines that may have been {{#include}} d; then you want it to run
after the built-in links preprocessor, which you can require using either the
before or after field:

[preprocessor.example]
some-extra-feature = true

[preprocessor.example]
renderers = ["html"] # example preprocessor only runs with the HTML
renderer

[preprocessor.random]
command = "python random.py"

or

It would also be possible, though redundant, to specify both of the above in the
same config file.

Preprocessors having the same priority specified through before and after
are sorted by name. Any infinite loops will be detected and produce an error.

[preprocessor.linenos]
after = ["links"]

[preprocessor.links]
before = ["linenos"]

Configuring Renderers
Renderers (also called "backends") are responsible for creating the output of
the book.

The following backends are built-in:

html — This renders the book to HTML. This is enabled by default if no
other [output] tables are defined in book.toml .
markdown — This outputs the book as markdown after running the

preprocessors. This is useful for debugging preprocessors.

The community has developed several backends. See the Third Party Plugins
wiki page for a list of available backends.

For information on how to create a new backend, see the Backends for
Developers chapter.

Output tables

Backends can be added by including a output table in book.toml with the
name of the backend. For example, if you have a backend called mdbook-
wordcount , then you can include it with:

With this table, mdBook will execute the mdbook-wordcount backend.

This table can include additional key-value pairs that are specific to the
backend. For example, if our example backend needed some extra
configuration options:

[output.wordcount]

https://github.com/rust-lang/mdBook/wiki/Third-party-plugins

If you define any [output] tables, then the html backend is not enabled by
default. If you want to keep the html backend running, then just include it in
the book.toml file. For example:

If more than one output table is included, this changes the behavior for the
layout of the output directory. If there is only one backend, then it places its
output directly in the book directory (see build.build-dir to override this
location). If there is more than one backend, then each backend is placed in a
separate directory underneath book . For example, the above would have
directories book/html and book/wordcount .

Custom backend commands

By default when you add an [output.foo] table to your book.toml file,
mdbook will try to invoke the mdbook-foo executable. If you want to use a

different program name or pass in command-line arguments, this behaviour
can be overridden by adding a command field.

Optional backends

If you enable a backend that isn't installed, the default behavior is to throw an
error. This behavior can be changed by marking the backend as optional:

[output.wordcount]
ignores = ["Example Chapter"]

[book]
title = "My Awesome Book"

[output.wordcount]

[output.html]

[output.random]
command = "python random.py"

This demotes the error to a warning.

HTML renderer options

The HTML renderer has a variety of options detailed below. They should be
specified in the [output.html] table of the book.toml file.

The following configuration options are available:

theme: mdBook comes with a default theme and all the resource files
needed for it. But if this option is set, mdBook will selectively overwrite the
theme files with the ones found in the specified folder.

[output.wordcount]
optional = true

Example book.toml file with all output options.
[book]
title = "Example book"
authors = ["John Doe", "Jane Doe"]
description = "The example book covers examples."

[output.html]
theme = "my-theme"
default-theme = "light"
preferred-dark-theme = "navy"
curly-quotes = true
mathjax-support = false
copy-fonts = true
additional-css = ["custom.css", "custom2.css"]
additional-js = ["custom.js"]
no-section-label = false
git-repository-url = "https://github.com/rust-lang/mdBook"
git-repository-icon = "fa-github"
edit-url-template = "https://github.com/rust-
lang/mdBook/edit/master/guide/{path}"
site-url = "/example-book/"
cname = "myproject.rs"
input-404 = "not-found.md"

default-theme: The theme color scheme to select by default in the
'Change Theme' dropdown. Defaults to light .
preferred-dark-theme: The default dark theme. This theme will be used
if the browser requests the dark version of the site via the 'prefers-color-
scheme' CSS media query. Defaults to navy .
curly-quotes: Convert straight quotes to curly quotes, except for those
that occur in code blocks and code spans. Defaults to false .
mathjax-support: Adds support for MathJax. Defaults to false .
copy-fonts: (Deprecated) If true (the default), mdBook uses its built-in
fonts which are copied to the output directory. If false , the built-in fonts
will not be used. This option is deprecated. If you want to define your own
custom fonts, create a theme/fonts/fonts.css file and store the fonts in
the theme/fonts/ directory.
google-analytics: This field has been deprecated and will be removed in a
future release. Use the theme/head.hbs file to add the appropriate
Google Analytics code instead.
additional-css: If you need to slightly change the appearance of your
book without overwriting the whole style, you can specify a set of
stylesheets that will be loaded after the default ones where you can
surgically change the style.
additional-js: If you need to add some behaviour to your book without
removing the current behaviour, you can specify a set of JavaScript files
that will be loaded alongside the default one.
no-section-label: mdBook by defaults adds numeric section labels in the
table of contents column. For example, "1.", "2.1". Set this option to true
to disable those labels. Defaults to false .
git-repository-url: A url to the git repository for the book. If provided an
icon link will be output in the menu bar of the book.
git-repository-icon: The FontAwesome icon class to use for the git
repository link. Defaults to fa-github which looks like . If you are not
using GitHub, another option to consider is fa-code-fork which looks
like .
edit-url-template: Edit url template, when provided shows a "Suggest an
edit" button (which looks like) for directly jumping to editing the currently
viewed page. For e.g. GitHub projects set this to
https://github.com/<owner>/<repo>/edit/<branch>/{path} or for

https://developer.mozilla.org/en-US/docs/Web/CSS/@media/prefers-color-scheme

Bitbucket projects set it to
https://bitbucket.org/<owner>/<repo>/src/<branch>/{path}?

mode=edit where {path} will be replaced with the full path of the file in the
repository.
input-404: The name of the markdown file used for missing files. The
corresponding output file will be the same, with the extension replaced
with html . Defaults to 404.md .
site-url: The url where the book will be hosted. This is required to ensure
navigation links and script/css imports in the 404 file work correctly, even
when accessing urls in subdirectories. Defaults to / . If site-url is set,
make sure to use document relative links for your assets, meaning they
should not start with / .
cname: The DNS subdomain or apex domain at which your book will be
hosted. This string will be written to a file named CNAME in the root of
your site, as required by GitHub Pages (see Managing a custom domain for
your GitHub Pages site).

[output.html.print]

The [output.html.print] table provides options for controlling the printable
output. By default, mdBook will include an icon on the top right of the book
(which looks like) that will print the book as a single page.

enable: Enable print support. When false , all print support will not be
rendered. Defaults to true .
page-break: Insert page breaks between chapters. Defaults to true .

[output.html.fold]

The [output.html.fold] table provides options for controlling folding of the
chapter listing in the navigation sidebar.

[output.html.print]
enable = true # include support for printable output
page-break = true # insert page-break after each chapter

https://docs.github.com/en/github/working-with-github-pages/managing-a-custom-domain-for-your-github-pages-site

enable: Enable section-folding. When off, all folds are open. Defaults to
false .

level: The higher the more folded regions are open. When level is 0, all
folds are closed. Defaults to 0 .

[output.html.playground]

The [output.html.playground] table provides options for controlling Rust
sample code blocks, and their integration with the Rust Playground.

editable: Allow editing the source code. Defaults to false .
copyable: Display the copy button on code snippets. Defaults to true .
copy-js: Copy JavaScript files for the editor to the output directory.
Defaults to true .
line-numbers: Display line numbers on editable sections of code.
Requires both editable and copy-js to be true . Defaults to false .
runnable: Displays a run button for rust code snippets. Changing this to
false will disable the run in playground feature globally. Defaults to
true .

[output.html.code]

The [output.html.code] table provides options for controlling code blocks.

[output.html.fold]
enable = false # whether or not to enable section folding
level = 0 # the depth to start folding

[output.html.playground]
editable = false # allows editing the source code
copyable = true # include the copy button for copying code
snippets
copy-js = true # includes the JavaScript for the code
editor
line-numbers = false # displays line numbers for editable code
runnable = true # displays a run button for rust code

https://play.rust-lang.org/

hidelines: A table that defines how hidden code lines work for each
language. The key is the language and the value is a string that will cause
code lines starting with that prefix to be hidden.

[output.html.search]

The [output.html.search] table provides options for controlling the built-in
text search. mdBook must be compiled with the search feature enabled (on by
default).

enable: Enables the search feature. Defaults to true .
limit-results: The maximum number of search results. Defaults to 30 .
teaser-word-count: The number of words used for a search result teaser.
Defaults to 30 .
use-boolean-and: Define the logical link between multiple search words.
If true, all search words must appear in each result. Defaults to false .
boost-title: Boost factor for the search result score if a search word
appears in the header. Defaults to 2 .

[output.html.code]
A prefix string per language (one or more chars).
Any line starting with whitespace+prefix is hidden.
hidelines = { python = "~" }

[output.html.search]
enable = true # enables the search feature
limit-results = 30 # maximum number of search results
teaser-word-count = 30 # number of words used for a search result
teaser
use-boolean-and = true # multiple search terms must all match
boost-title = 2 # ranking boost factor for matches in
headers
boost-hierarchy = 1 # ranking boost factor for matches in page
names
boost-paragraph = 1 # ranking boost factor for matches in text
expand = true # partial words will match longer terms
heading-split-level = 3 # link results to heading levels
copy-js = true # include Javascript code for search

boost-hierarchy: Boost factor for the search result score if a search word
appears in the hierarchy. The hierarchy contains all titles of the parent
documents and all parent headings. Defaults to 1 .
boost-paragraph: Boost factor for the search result score if a search
word appears in the text. Defaults to 1 .
expand: True if search should match longer results e.g. search micro
should match microwave . Defaults to true .
heading-split-level: Search results will link to a section of the document
which contains the result. Documents are split into sections by headings
this level or less. Defaults to 3 . (### This is a level 3 heading)
copy-js: Copy JavaScript files for the search implementation to the output
directory. Defaults to true .

[output.html.redirect]

The [output.html.redirect] table provides a way to add redirects. This is
useful when you move, rename, or remove a page to ensure that links to the
old URL will go to the new location.

The table contains key-value pairs where the key is where the redirect file
needs to be created, as an absolute path from the build directory, (e.g.
/appendices/bibliography.html). The value can be any valid URI the browser

should navigate to (e.g. https://rust-lang.org/ , /overview.html , or
../bibliography.html).

This will generate an HTML page which will automatically redirect to the given
location. Note that the source location does not support # anchor redirects.

[output.html.redirect]
"/appendices/bibliography.html" = "https://rustc-dev-guide.rust-
lang.org/appendix/bibliography.html"
"/other-installation-methods.html" = "../infra/other-installation-
methods.html"

Markdown Renderer

The Markdown renderer will run preprocessors and then output the resulting
Markdown. This is mostly useful for debugging preprocessors, especially in
conjunction with mdbook test to see the Markdown that mdbook is passing to
rustdoc .

The Markdown renderer is included with mdbook but disabled by default.
Enable it by adding an empty table to your book.toml as follows:

There are no configuration options for the Markdown renderer at this time;
only whether it is enabled or disabled.

See the preprocessors documentation for how to specify which preprocessors
should run before the Markdown renderer.

[output.markdown]

Environment Variables
All configuration values can be overridden from the command line by setting
the corresponding environment variable. Because many operating systems
restrict environment variables to be alphanumeric characters or _ , the
configuration key needs to be formatted slightly differently to the normal
foo.bar.baz form.

Variables starting with MDBOOK_ are used for configuration. The key is created
by removing the MDBOOK_ prefix and turning the resulting string into kebab-
case . Double underscores (__) separate nested keys, while a single
underscore (_) is replaced with a dash (-).

For example:

MDBOOK_foo -> foo
MDBOOK_FOO -> foo
MDBOOK_FOO__BAR -> foo.bar
MDBOOK_FOO_BAR -> foo-bar
MDBOOK_FOO_bar__baz -> foo-bar.baz

So by setting the MDBOOK_BOOK__TITLE environment variable you can override
the book's title without needing to touch your book.toml .

Note: To facilitate setting more complex config items, the value of an
environment variable is first parsed as JSON, falling back to a string if the
parse fails.

This means, if you so desired, you could override all book metadata when
building the book with something like

$ export MDBOOK_BOOK='{"title": "My Awesome Book", "authors":
["Michael-F-Bryan"]}'
$ mdbook build

The latter case may be useful in situations where mdbook is invoked from a
script or CI, where it sometimes isn't possible to update the book.toml before
building.

Theme
The default renderer uses a handlebars template to render your markdown
files and comes with a default theme included in the mdBook binary.

The theme is totally customizable, you can selectively replace every file from
the theme by your own by adding a theme directory next to src folder in your
project root. Create a new file with the name of the file you want to override
and now that file will be used instead of the default file.

Here are the files you can override:

index.hbs is the handlebars template.
head.hbs is appended to the HTML <head> section.
header.hbs content is appended on top of every book page.
css/ contains the CSS files for styling the book.

css/chrome.css is for UI elements.
css/general.css is the base styles.
css/print.css is the style for printer output.
css/variables.css contains variables used in other CSS files.

book.js is mostly used to add client side functionality, like hiding / un-
hiding the sidebar, changing the theme, ...
highlight.js is the JavaScript that is used to highlight code snippets, you
should not need to modify this.
highlight.css is the theme used for the code highlighting.
favicon.svg and favicon.png the favicon that will be used. The SVG version
is used by newer browsers.
fonts/fonts.css contains the definition of which fonts to load. Custom
fonts can be included in the fonts directory.

Generally, when you want to tweak the theme, you don't need to override all
the files. If you only need changes in the stylesheet, there is no point in
overriding all the other files. Because custom files take precedence over built-in
ones, they will not get updated with new fixes / features.

https://handlebarsjs.com/
https://caniuse.com/#feat=link-icon-svg

Note: When you override a file, it is possible that you break some functionality.
Therefore I recommend to use the file from the default theme as template and
only add / modify what you need. You can copy the default theme into your
source directory automatically by using mdbook init --theme and just remove
the files you don't want to override.

mdbook init --theme will not create every file listed above. Some files, such as
head.hbs , do not have built-in equivalents. Just create the file if you need it.

If you completely replace all built-in themes, be sure to also set
output.html.preferred-dark-theme in the config, which defaults to the built-

in navy theme.

index.hbs
index.hbs is the handlebars template that is used to render the book. The

markdown files are processed to html and then injected in that template.

If you want to change the layout or style of your book, chances are that you will
have to modify this template a little bit. Here is what you need to know.

Data

A lot of data is exposed to the handlebars template with the "context". In the
handlebars template you can access this information by using

Here is a list of the properties that are exposed:

language Language of the book in the form en , as specified in book.toml
(if not specified, defaults to en). To use in <html lang="{{ language
}}"> for example.

title Title used for the current page. This is identical to {{ chapter_title
}} - {{ book_title }} unless book_title is not set in which case it just
defaults to the chapter_title .

book_title Title of the book, as specified in book.toml

chapter_title Title of the current chapter, as listed in SUMMARY.md

path Relative path to the original markdown file from the source directory

content This is the rendered markdown.

path_to_root This is a path containing exclusively ../ 's that points to the
root of the book from the current file. Since the original directory

{{name_of_property}}

structure is maintained, it is useful to prepend relative links with this
path_to_root .

chapters Is an array of dictionaries of the form

containing all the chapters of the book. It is used for example to construct
the table of contents (sidebar).

Handlebars Helpers

In addition to the properties you can access, there are some handlebars
helpers at your disposal.

1. toc

The toc helper is used like this

and outputs something that looks like this, depending on the structure of your
book

{"section": "1.2.1", "name": "name of this chapter", "path":
"dir/markdown.md"}

{{#toc}}{{/toc}}

<ul class="chapter">
 Some chapter

 <ul class="section">
 Some other
Chapter

If you would like to make a toc with another structure, you have access to the
chapters property containing all the data. The only limitation at the moment is
that you would have to do it with JavaScript instead of with a handlebars helper.

2. previous / next

The previous and next helpers expose a link and name property to the
previous and next chapters.

They are used like this

The inner html will only be rendered if the previous / next chapter exists. Of
course the inner html can be changed to your liking.

If you would like other properties or helpers exposed, please create a new issue

<script>
var chapters = {{chapters}};
// Processing here
</script>

{{#previous}}

 <i class="fa fa-angle-left"></i>

{{/previous}}

https://github.com/rust-lang/mdBook/issues

Syntax Highlighting
mdBook uses Highlight.js with a custom theme for syntax highlighting.

Automatic language detection has been turned off, so you will probably want to
specify the programming language you use like this:

Supported languages

These languages are supported by default, but you can add more by supplying
your own highlight.js file:

apache
armasm
bash
c
coffeescript
cpp
csharp
css
d
diff
go
handlebars
haskell
http
ini
java

```rust
fn main() {
    // Some code
}
```

https://highlightjs.org/

javascript
json
julia
kotlin
less
lua
makefile
markdown
nginx
objectivec
perl
php
plaintext
properties
python
r
ruby
rust
scala
scss
shell
sql
swift
typescript
x86asm
xml
yaml

Custom theme

Like the rest of the theme, the files used for syntax highlighting can be
overridden with your own.

highlight.js normally you shouldn't have to overwrite this file, unless you
want to use a more recent version.

highlight.css theme used by highlight.js for syntax highlighting.

If you want to use another theme for highlight.js download it from their
website, or make it yourself, rename it to highlight.css and put it in the
theme folder of your book.

Now your theme will be used instead of the default theme.

Improve default theme

If you think the default theme doesn't look quite right for a specific language, or
could be improved, feel free to submit a new issue explaining what you have in
mind and I will take a look at it.

You could also create a pull-request with the proposed improvements.

Overall the theme should be light and sober, without too many flashy colors.

https://github.com/rust-lang/mdBook/issues

Editor
In addition to providing runnable code playgrounds, mdBook optionally allows
them to be editable. In order to enable editable code blocks, the following
needs to be added to the book.toml:

To make a specific block available for editing, the attribute editable needs to
be added to it:

The above will result in this editable playground:

Note the new Undo Changes button in the editable playgrounds.

Customizing the Editor

By default, the editor is the Ace editor, but, if desired, the functionality may be
overridden by providing a different folder:

[output.html.playground]
editable = true

```rust,editable
fn main() {
    let number = 5;
    print!("{}", number);
}
```

fn main() {
 let number = 5;
 print!("{}", number);
}

1
2
3
4

https://ace.c9.io/

Note that for the editor changes to function correctly, the book.js inside of the
theme folder will need to be overridden as it has some couplings with the

default Ace editor.

[output.html.playground]
editable = true
editor = "/path/to/editor"

MathJax Support
mdBook has optional support for math equations through MathJax.

To enable MathJax, you need to add the mathjax-support key to your
book.toml under the output.html section.

Note: The usual delimiters MathJax uses are not yet supported. You can't
currently use $$... $$ as delimiters and the \[... \] delimiters
need an extra backslash to work. Hopefully this limitation will be lifted
soon.

Note: When you use double backslashes in MathJax blocks (for example
in commands such as \begin{cases} \frac 1 2 \\ \frac 3 4
\end{cases}) you need to add two extra backslashes (e.g., \begin{cases}
\frac 1 2 \\\\ \frac 3 4 \end{cases}).

Inline equations

Inline equations are delimited by \\(and \\) . So for example, to render the

following inline equation you would write the following:

[output.html]
mathjax-support = true

∫ xdx = + Cx2
2

\\(\int x dx = \frac{x^2}{2} + C \\)

https://www.mathjax.org/

Block equations

Block equations are delimited by \\[and \\] . To render the following
equation

you would write:

μ = 1
N ∑

i=0
xi

\\[\mu = \frac{1}{N} \sum_{i=0} x_i \\]

mdBook-specific features

Hiding code lines

There is a feature in mdBook that lets you hide code lines by prepending them
with a specific prefix.

For the Rust language, you can use the # character as a prefix which will hide
lines like you would with Rustdoc.

Will render as

When you tap or hover the mouse over the code block, there will be an eyeball
icon () which will toggle the visibility of the hidden lines.

By default, this only works for code examples that are annotated with rust .
However, you can define custom prefixes for other languages by adding a new
line-hiding prefix in your book.toml with the language name and prefix
character(s):

fn main() {
 let x = 5;
 let y = 6;

 println!("{}", x + y);
}

 let x = 5;
 let y = 6;

 println!("{}", x + y);

[output.html.code.hidelines]
python = "~"

https://doc.rust-lang.org/stable/rustdoc/write-documentation/documentation-tests.html#hiding-portions-of-the-example

The prefix will hide any lines that begin with the given prefix. With the python
prefix shown above, this:

will render as

This behavior can be overridden locally with a different prefix. This has the
same effect as above:

Rust Playground

Rust language code blocks will automatically get a play button () which will
execute the code and display the output just below the code block. This works
by sending the code to the Rust Playground.

If there is no main function, then the code is automatically wrapped inside one.

~hidden()
nothidden():
~ hidden()
 ~hidden()
 nothidden()

~hidden()
nothidden():
~ hidden()
 ~hidden()
 nothidden()

```python,hidelines=!!!
!!!hidden()
nothidden():
!!!    hidden()
    !!!hidden()
    nothidden()
```

println!("Hello, World!");

https://play.rust-lang.org/

If you wish to disable the play button for a code block, you can include the
noplayground option on the code block like this:

Or, if you wish to disable the play button for all code blocks in your book, you
can write the config to the book.toml like this.

Rust code block attributes

Additional attributes can be included in Rust code blocks with comma, space, or
tab-separated terms just after the language term. For example:

These are particularly important when using mdbook test to test Rust
examples. These use the same attributes as rustdoc attributes, with a few
additions:

editable — Enables the editor.
noplayground — Removes the play button, but will still be tested.
mdbook-runnable — Forces the play button to be displayed. This is

intended to be combined with the ignore attribute for examples that
should not be tested, but you want to allow the reader to run.
ignore — Will not be tested and no play button is shown, but it is still

highlighted as Rust syntax.

```rust,noplayground
let mut name = String::new();
std::io::stdin().read_line(&mut name).expect("failed to read line");
println!("Hello {}!", name);
```

[output.html.playground]
runnable = false

```rust,ignore
# This example won't be tested.
panic!("oops!");
```

https://doc.rust-lang.org/rustdoc/documentation-tests.html#attributes

should_panic — When executed, it should produce a panic.
no_run — The code is compiled when tested, but it is not run. The play

button is also not shown.
compile_fail — The code should fail to compile.
edition2015 , edition2018 , edition2021 — Forces the use of a specific

Rust edition. See rust.edition to set this globally.

Including files

With the following syntax, you can include files into your book:

The path to the file has to be relative from the current source file.

mdBook will interpret included files as Markdown. Since the include command
is usually used for inserting code snippets and examples, you will often wrap
the command with ``` to display the file contents without interpreting them.

Including portions of a file

Often you only need a specific part of the file, e.g. relevant lines for an example.
We support four different modes of partial includes:

{{#include file.rs}}

```
{{#include file.rs}}
```

{{#include file.rs:2}}
{{#include file.rs::10}}
{{#include file.rs:2:}}
{{#include file.rs:2:10}}

The first command only includes the second line from file file.rs . The second
command includes all lines up to line 10, i.e. the lines from 11 till the end of the
file are omitted. The third command includes all lines from line 2, i.e. the first
line is omitted. The last command includes the excerpt of file.rs consisting
of lines 2 to 10.

To avoid breaking your book when modifying included files, you can also
include a specific section using anchors instead of line numbers. An anchor is a
pair of matching lines. The line beginning an anchor must match the regex
ANCHOR:\s*[\w_-]+ and similarly the ending line must match the regex
ANCHOR_END:\s*[\w_-]+ . This allows you to put anchors in any kind of

commented line.

Consider the following file to include:

Then in the book, all you have to do is:

/* ANCHOR: all */

// ANCHOR: component
struct Paddle {
 hello: f32,
}
// ANCHOR_END: component

////////// ANCHOR: system
impl System for MySystem { ... }
////////// ANCHOR_END: system

/* ANCHOR_END: all */

Lines containing anchor patterns inside the included anchor are ignored.

Including a file but initially hiding all except
specified lines

The rustdoc_include helper is for including code from external Rust files that
contain complete examples, but only initially showing particular lines specified
with line numbers or anchors in the same way as with include .

The lines not in the line number range or between the anchors will still be
included, but they will be prefaced with # . This way, a reader can expand the
snippet to see the complete example, and Rustdoc will use the complete
example when you run mdbook test .

For example, consider a file named file.rs that contains this Rust program:

Here is a component:
```rust,no_run,noplayground
{{#include file.rs:component}}
```

Here is a system:
```rust,no_run,noplayground
{{#include file.rs:system}}
```

This is the full file.
```rust,no_run,noplayground
{{#include file.rs:all}}
```


We can include a snippet that initially shows only line 2 by using this syntax:

This would have the same effect as if we had manually inserted the code and
hidden all but line 2 using # :

That is, it looks like this (click the "expand" icon to see the rest of the file):

fn main() {
 let x = add_one(2);
 assert_eq!(x, 3);
}

fn add_one(num: i32) -> i32 {
 num + 1
}

To call the `add_one` function, we pass it an `i32` and bind the
returned value to `x`:

```rust
{{#rustdoc_include file.rs:2}}
```

To call the `add_one` function, we pass it an `i32` and bind the
returned value to `x`:

```rust
# fn main() {
    let x = add_one(2);
#     assert_eq!(x, 3);
# }
#
# fn add_one(num: i32) -> i32 {
#     num + 1
# }
```

 let x = add_one(2);

Inserting runnable Rust files

With the following syntax, you can insert runnable Rust files into your book:

The path to the Rust file has to be relative from the current source file.

When play is clicked, the code snippet will be sent to the Rust Playground to be
compiled and run. The result is sent back and displayed directly underneath the
code.

Here is what a rendered code snippet looks like:

Any additional values passed after the filename will be included as attributes of
the code block. For example {{#playground example.rs editable}} will
create the code block like the following:

And the editable attribute will enable the editor as described at Rust code
block attributes.

Controlling page <title>

A chapter can set a <title> that is different from its entry in the table of contents
(sidebar) by including a {{#title ...}} near the top of the page.

{{#playground file.rs}}

fn main() {
 println!("Hello World!");
}

```rust,editable
# Contents of example.rs here.
```

https://play.rust-lang.org/

{{#title My Title}}

Markdown
mdBook's parser adheres to the CommonMark specification with some
extensions described below. You can take a quick tutorial, or try out
CommonMark in real time. A complete Markdown overview is out of scope for
this documentation, but below is a high level overview of some of the basics.
For a more in-depth experience, check out the Markdown Guide.

Text and Paragraphs

Text is rendered relatively predictably:

Will look like you might expect:

Here is a line of text.

This is a new line.

Headings

Headings use the # marker and should be on a line by themselves. More #
mean smaller headings:

Here is a line of text.

This is a new line.

https://github.com/raphlinus/pulldown-cmark
https://commonmark.org/
https://commonmark.org/help/tutorial/
https://spec.commonmark.org/dingus/
https://www.markdownguide.org/

A heading

Some text.

A smaller heading

More text.

Lists

Lists can be unordered or ordered. Ordered lists will order automatically:

milk
eggs
butter

1. carrots
2. celery
3. radishes

A heading

Some text.

A smaller heading

More text.

* milk
* eggs
* butter

1. carrots
1. celery
1. radishes

Links

Linking to a URL or local file is easy:

Use mdBook.

Read about mdBook.

A bare url: https://www.rust-lang.org.

Relative links that end with .md will be converted to the .html extension. It is
recommended to use .md links when possible. This is useful when viewing the
Markdown file outside of mdBook, for example on GitHub or GitLab which
render Markdown automatically.

Links to README.md will be converted to index.html . This is done since some
services like GitHub render README files automatically, but web servers
typically expect the root file to be called index.html .

You can link to individual headings with # fragments. For example,
mdbook.md#text-and-paragraphs would link to the Text and Paragraphs

section above. The ID is created by transforming the heading such as
converting to lowercase and replacing spaces with dashes. You can click on any
heading and look at the URL in your browser to see what the fragment looks
like.

Images

Including images is simply a matter of including a link to them, much like in the
Links section above. The following markdown includes the Rust logo SVG image

Use [mdBook](https://github.com/rust-lang/mdBook).

Read about [mdBook](mdBook.md).

A bare url: <https://www.rust-lang.org>.

https://github.com/rust-lang/mdBook
https://www.rust-lang.org/

found in the images directory at the same level as this file:

Produces the following HTML when built with mdBook:

Which, of course displays the image like so:

Extensions

mdBook has several extensions beyond the standard CommonMark
specification.

Strikethrough

Text may be rendered with a horizontal line through the center by wrapping the
text with two tilde characters on each side:

This example will render as:

An example of strikethrough text.

![The Rust Logo](images/rust-logo-blk.svg)

<p></p>

An example of ~~strikethrough text~~.

This follows the GitHub Strikethrough extension.

Footnotes

A footnote generates a small numbered link in the text which when clicked
takes the reader to the footnote text at the bottom of the item. The footnote
label is written similarly to a link reference with a caret at the front. The
footnote text is written like a link reference definition, with the text following
the label. Example:

This example will render as:

This is an example of a footnote1.

1 This text is the contents of the footnote, which will be rendered towards the
bottom.

The footnotes are automatically numbered based on the order the footnotes
are written.

Tables

Tables can be written using pipes and dashes to draw the rows and columns of
the table. These will be translated to HTML table matching the shape. Example:

This is an example of a footnote[^note].

[^note]: This text is the contents of the footnote, which will be
rendered
 towards the bottom.

https://github.github.com/gfm/#strikethrough-extension-

This example will render similarly to this:

Header1 Header2

abc def

See the specification for the GitHub Tables extension for more details on the
exact syntax supported.

Task lists

Task lists can be used as a checklist of items that have been completed.
Example:

This will render as:

 Complete task
 Incomplete task

See the specification for the task list extension for more details.

Smart punctuation

Some ASCII punctuation sequences will be automatically turned into fancy
Unicode characters:

ASCII sequence Unicode

-- –

Header1	Header2
abc	def

- [x] Complete task
- [] Incomplete task

https://github.github.com/gfm/#tables-extension-
https://github.github.com/gfm/#task-list-items-extension-

ASCII sequence Unicode

--- —

... …

" “ or ”, depending on context

' ‘ or ’, depending on context

So, no need to manually enter those Unicode characters!

This feature is disabled by default. To enable it, see the output.html.curly-
quotes config option.

Heading attributes

Headings can have a custom HTML ID and classes. This let's you maintain the
same ID even if you change the heading's text, it also let's you add multiple
classes in the heading.

Example:

This makes the level 1 heading with the content Example heading , ID first ,
and classes class1 and class2 . Note that the attributes should be space-
separated.

More information can be found in the heading attrs spec page.

Example heading { #first .class1 .class2 }

https://github.com/raphlinus/pulldown-cmark/blob/master/specs/heading_attrs.txt

Running mdbook in Continuous
Integration
There are a variety of services such as GitHub Actions or GitLab CI/CD which
can be used to test and deploy your book automatically.

The following provides some general guidelines on how to configure your
service to run mdBook. Specific recipes can be found at the Automated
Deployment wiki page.

Installing mdBook

There are several different strategies for installing mdBook. The particular
method depends on your needs and preferences.

Pre-compiled binaries

Perhaps the easiest method is to use the pre-compiled binaries found on the
GitHub Releases page. A simple approach would be to use the popular curl
CLI tool to download the executable:

Some considerations for this approach:

This is relatively fast, and does not necessarily require dealing with
caching.
This does not require installing Rust.

mkdir bin
curl -sSL https://github.com/rust-
lang/mdBook/releases/download/v0.4.30/mdbook-v0.4.30-x86_64-unknown-
linux-gnu.tar.gz | tar -xz --directory=bin
bin/mdbook build

https://docs.github.com/en/actions
https://docs.gitlab.com/ee/ci/
https://github.com/rust-lang/mdBook/wiki/Automated-Deployment
https://github.com/rust-lang/mdBook/releases

Specifying a specific URL means you have to manually update your script
to get a new version. This may be a benefit if you want to lock to a specific
version. However, some users prefer to automatically get a newer version
when they are published.
You are reliant on the GitHub CDN being available.

Building from source

Building from source will require having Rust installed. Some services have Rust
pre-installed, but if your service does not, you will need to add a step to install
it.

After Rust is installed, cargo install can be used to build and install mdBook.
We recommend using a SemVer version specifier so that you get the latest non-
breaking version of mdBook. For example:

This includes several recommended options:

--no-default-features — Disables features like the HTTP server used by
mdbook serve that is likely not needed on CI. This will speed up the build

time significantly.
--features search — Disabling default features means you should then

manually enable features that you want, such as the built-in search
capability.
--vers "^0.4" — This will install the most recent version of the 0.4

series. However, versions after like 0.5.0 won't be installed, as they may
break your build. Cargo will automatically upgrade mdBook if you have an
older version already installed.
--locked — This will use the dependencies that were used when

mdBook was released. Without --locked , it will use the latest version of
all dependencies, which may include some fixes since the last release, but
may also (rarely) cause build problems.

cargo install mdbook --no-default-features --features search --vers
"^0.4" --locked

You will likely want to investigate caching options, as building mdBook can be
somewhat slow.

Running tests

You may want to run tests using mdbook test every time you push a change or
create a pull request. This can be used to validate Rust code examples in the
book.

This will require having Rust installed. Some services have Rust pre-installed,
but if your service does not, you will need to add a step to install it.

Other than making sure the appropriate version of Rust is installed, there's not
much more than just running mdbook test from the book directory.

You may also want to consider running other kinds of tests, like mdbook-
linkcheck which will check for broken links. Or if you have your own style
checks, spell checker, or any other tests it might be good to run them in CI.

Deploying

You may want to automatically deploy your book. Some may want to do this
every time a change is pushed, and others may want to only deploy when a
specific release is tagged.

You'll also need to understand the specifics on how to push a change to your
web service. For example, GitHub Pages just requires committing the output
onto a specific git branch. Other services may require using something like SSH
to connect to a remote server.

The basic outline is that you need to run mdbook build to generate the output,
and then transfer the files (which are in the book directory) to the correct
location.

https://github.com/Michael-F-Bryan/mdbook-linkcheck#continuous-integration
https://docs.github.com/en/pages

You may then want to consider if you need to invalidate any caches on your
web service.

See the Automated Deployment wiki page for examples of various different
services.

404 handling

mdBook automatically generates a 404 page to be used for broken links. The
default output is a file named 404.html at the root of the book. Some services
like GitHub Pages will automatically use this page for broken links. For other
services, you may want to consider configuring the web server to use this page
as it will provide the reader navigation to get back to the book.

If your book is not deployed at the root of the domain, then you should set the
output.html.site-url setting so that the 404 page works correctly. It needs to

know where the book is deployed in order to load the static files (like CSS)
correctly. For example, this guide is deployed at https://rust-
lang.github.io/mdBook/, and the site-url setting is configured like this:

You can customize the look of the 404 page by creating a file named
src/404.md in your book. If you want to use a different filename, you can set
output.html.input-404 to a different filename.

book.toml
[output.html]
site-url = "/mdBook/"

https://github.com/rust-lang/mdBook/wiki/Automated-Deployment
https://docs.github.com/en/pages
https://rust-lang.github.io/mdBook/

For Developers
While mdbook is mainly used as a command line tool, you can also import the
underlying library directly and use that to manage a book. It also has a fairly
flexible plugin mechanism, allowing you to create your own custom tooling and
consumers (often referred to as backends) if you need to do some analysis of
the book or render it in a different format.

The For Developers chapters are here to show you the more advanced usage of
mdbook .

The two main ways a developer can hook into the book's build process is via,

Preprocessors
Alternative Backends

The Build Process

The process of rendering a book project goes through several steps.

1. Load the book
Parse the book.toml , falling back to the default Config if it doesn't
exist
Load the book chapters into memory
Discover which preprocessors/backends should be used

2. For each backend:
1. Run all the preprocessors.
2. Call the backend to render the processed result.

Using mdbook as a Library

The mdbook binary is just a wrapper around the mdbook crate, exposing its
functionality as a command-line program. As such it is quite easy to create your
own programs which use mdbook internally, adding your own functionality (e.g.
a custom preprocessor) or tweaking the build process.

The easiest way to find out how to use the mdbook crate is by looking at the API
Docs. The top level documentation explains how one would use the MDBook
type to load and build a book, while the config module gives a good explanation
on the configuration system.

https://docs.rs/mdbook/*/mdbook/
https://docs.rs/mdbook/*/mdbook/book/struct.MDBook.html
https://docs.rs/mdbook/*/mdbook/config/index.html

Preprocessors
A preprocessor is simply a bit of code which gets run immediately after the book
is loaded and before it gets rendered, allowing you to update and mutate the
book. Possible use cases are:

Creating custom helpers like {{#include /path/to/file.md}}
Substituting in latex-style expressions ($$ \frac{1}{3} $$) with their
mathjax equivalents

See Configuring Preprocessors for more information about using
preprocessors.

Hooking Into MDBook

MDBook uses a fairly simple mechanism for discovering third party plugins. A
new table is added to book.toml (e.g. [preprocessor.foo] for the foo
preprocessor) and then mdbook will try to invoke the mdbook-foo program as
part of the build process.

Once the preprocessor has been defined and the build process starts, mdBook
executes the command defined in the preprocessor.foo.command key twice.
The first time it runs the preprocessor to determine if it supports the given
renderer. mdBook passes two arguments to the process: the first argument is
the string supports and the second argument is the renderer name. The
preprocessor should exit with a status code 0 if it supports the given renderer,
or return a non-zero exit code if it does not.

If the preprocessor supports the renderer, then mdbook runs it a second time,
passing JSON data into stdin. The JSON consists of an array of [context,
book] where context is the serialized object PreprocessorContext and book
is a Book object containing the content of the book.

https://docs.rs/mdbook/latest/mdbook/preprocess/struct.PreprocessorContext.html
https://docs.rs/mdbook/latest/mdbook/book/struct.Book.html

The preprocessor should return the JSON format of the Book object to stdout,
with any modifications it wishes to perform.

The easiest way to get started is by creating your own implementation of the
Preprocessor trait (e.g. in lib.rs) and then creating a shell binary which

translates inputs to the correct Preprocessor method. For convenience, there
is an example no-op preprocessor in the examples/ directory which can easily
be adapted for other preprocessors.

Example no-op preprocessor

https://docs.rs/mdbook/latest/mdbook/book/struct.Book.html
https://github.com/rust-lang/mdBook/blob/master/examples/nop-preprocessor.rs

// nop-preprocessors.rs

use crate::nop_lib::Nop;
use clap::{Arg, ArgMatches, Command};
use mdbook::book::Book;
use mdbook::errors::Error;
use mdbook::preprocess::{CmdPreprocessor, Preprocessor,
PreprocessorContext};
use semver::{Version, VersionReq};
use std::io;
use std::process;

pub fn make_app() -> Command {
 Command::new("nop-preprocessor")
 .about("A mdbook preprocessor which does precisely nothing")
 .subcommand(
 Command::new("supports")
 .arg(Arg::new("renderer").required(true))
 .about("Check whether a renderer is supported by
this preprocessor"),
)
}

fn main() {
 let matches = make_app().get_matches();

 // Users will want to construct their own preprocessor here
 let preprocessor = Nop::new();

 if let Some(sub_args) = matches.subcommand_matches("supports") {
 handle_supports(&preprocessor, sub_args);
 } else if let Err(e) = handle_preprocessing(&preprocessor) {
 eprintln!("{}", e);
 process::exit(1);
 }
}

fn handle_preprocessing(pre: &dyn Preprocessor) -> Result<(), Error>
{
 let (ctx, book) = CmdPreprocessor::parse_input(io::stdin())?;

 let book_version = Version::parse(&ctx.mdbook_version)?;
 let version_req = VersionReq::parse(mdbook::MDBOOK_VERSION)?;

 if !version_req.matches(&book_version) {
 eprintln!(
 "Warning: The {} plugin was built against version {} of

mdbook, \
 but we're being called from version {}",
 pre.name(),
 mdbook::MDBOOK_VERSION,
 ctx.mdbook_version
);
 }

 let processed_book = pre.run(&ctx, book)?;
 serde_json::to_writer(io::stdout(), &processed_book)?;

 Ok(())
}

fn handle_supports(pre: &dyn Preprocessor, sub_args: &ArgMatches) ->
! {
 let renderer = sub_args
 .get_one::<String>("renderer")
 .expect("Required argument");
 let supported = pre.supports_renderer(renderer);

 // Signal whether the renderer is supported by exiting with 1 or
0.
 if supported {
 process::exit(0);
 } else {
 process::exit(1);
 }
}

/// The actual implementation of the `Nop` preprocessor. This would
usually go
/// in your main `lib.rs` file.
mod nop_lib {
 use super::*;

 /// A no-op preprocessor.
 pub struct Nop;

 impl Nop {
 pub fn new() -> Nop {
 Nop
 }
 }

 impl Preprocessor for Nop {
 fn name(&self) -> &str {
 "nop-preprocessor"

 }

 fn run(&self, ctx: &PreprocessorContext, book: Book) ->
Result<Book, Error> {
 // In testing we want to tell the preprocessor to blow
up by setting a
 // particular config value
 if let Some(nop_cfg) =
ctx.config.get_preprocessor(self.name()) {
 if nop_cfg.contains_key("blow-up") {
 anyhow::bail!("Boom!!1!");
 }
 }

 // we *are* a no-op preprocessor after all
 Ok(book)
 }

 fn supports_renderer(&self, renderer: &str) -> bool {
 renderer != "not-supported"
 }
 }

 #[cfg(test)]
 mod test {
 use super::*;

 #[test]
 fn nop_preprocessor_run() {
 let input_json = r##"[
 {
 "root": "/path/to/book",
 "config": {
 "book": {
 "authors": ["AUTHOR"],
 "language": "en",
 "multilingual": false,
 "src": "src",
 "title": "TITLE"
 },
 "preprocessor": {
 "nop": {}
 }
 },
 "renderer": "html",
 "mdbook_version": "0.4.21"
 },
 {

Hints For Implementing A Preprocessor

By pulling in mdbook as a library, preprocessors can have access to the existing
infrastructure for dealing with books.

For example, a custom preprocessor could use the
CmdPreprocessor::parse_input() function to deserialize the JSON written to
stdin . Then each chapter of the Book can be mutated in-place via

 "sections": [
 {
 "Chapter": {
 "name": "Chapter 1",
 "content": "# Chapter 1\n",
 "number": [1],
 "sub_items": [],
 "path": "chapter_1.md",
 "source_path": "chapter_1.md",
 "parent_names": []
 }
 }
],
 "__non_exhaustive": null
 }
]"##;
 let input_json = input_json.as_bytes();

 let (ctx, book) =
mdbook::preprocess::CmdPreprocessor::parse_input(input_json).unwrap(
);
 let expected_book = book.clone();
 let result = Nop::new().run(&ctx, book);
 assert!(result.is_ok());

 // The nop-preprocessor should not have made any changes
to the book content.
 let actual_book = result.unwrap();
 assert_eq!(actual_book, expected_book);
 }
 }
}

https://docs.rs/mdbook/latest/mdbook/preprocess/trait.Preprocessor.html#method.parse_input

Book::for_each_mut() , and then written to stdout with the serde_json
crate.

Chapters can be accessed either directly (by recursively iterating over chapters)
or via the Book::for_each_mut() convenience method.

The chapter.content is just a string which happens to be markdown. While it's
entirely possible to use regular expressions or do a manual find & replace,
you'll probably want to process the input into something more computer-
friendly. The pulldown-cmark crate implements a production-quality event-
based Markdown parser, with the pulldown-cmark-to-cmark crate allowing
you to translate events back into markdown text.

The following code block shows how to remove all emphasis from markdown,
without accidentally breaking the document.

For everything else, have a look at the complete example.

fn remove_emphasis(
 num_removed_items: &mut usize,
 chapter: &mut Chapter,
) -> Result<String> {
 let mut buf = String::with_capacity(chapter.content.len());

 let events = Parser::new(&chapter.content).filter(|e| {
 let should_keep = match *e {
 Event::Start(Tag::Emphasis)
 | Event::Start(Tag::Strong)
 | Event::End(Tag::Emphasis)
 | Event::End(Tag::Strong) => false,
 _ => true,
 };
 if !should_keep {
 *num_removed_items += 1;
 }
 should_keep
 });

 cmark(events, &mut buf, None).map(|_| buf).map_err(|err| {
 Error::from(format!("Markdown serialization failed: {}",
err))
 })
}

https://docs.rs/mdbook/latest/mdbook/book/struct.Book.html#method.for_each_mut
https://crates.io/crates/pulldown-cmark
https://crates.io/crates/pulldown-cmark-to-cmark
https://github.com/rust-lang/mdBook/blob/master/examples/nop-preprocessor.rs

Implementing a preprocessor with a different
language

The fact that mdBook utilizes stdin and stdout to communicate with the
preprocessors makes it easy to implement them in a language other than Rust.
The following code shows how to implement a simple preprocessor in Python,
which will modify the content of the first chapter. The example below follows
the configuration shown above with preprocessor.foo.command actually
pointing to a Python script.

import json
import sys

if __name__ == '__main__':
 if len(sys.argv) > 1: # we check if we received any argument
 if sys.argv[1] == "supports":
 # then we are good to return an exit status code of 0,
since the other argument will just be the renderer's name
 sys.exit(0)

 # load both the context and the book representations from stdin
 context, book = json.load(sys.stdin)
 # and now, we can just modify the content of the first chapter
 book['sections'][0]['Chapter']['content'] = '# Hello'
 # we are done with the book's modification, we can just print it
to stdout,
 print(json.dumps(book))

Alternative Backends
A "backend" is simply a program which mdbook will invoke during the book
rendering process. This program is passed a JSON representation of the book
and configuration information via stdin . Once the backend receives this
information it is free to do whatever it wants.

See Configuring Renderers for more information about using backends.

The community has developed several backends. See the Third Party Plugins
wiki page for a list of available backends.

Setting Up

This page will step you through creating your own alternative backend in the
form of a simple word counting program. Although it will be written in Rust,
there's no reason why it couldn't be accomplished using something like Python
or Ruby.

First you'll want to create a new binary program and add mdbook as a
dependency.

When our mdbook-wordcount plugin is invoked, mdbook will send it a JSON
version of RenderContext via our plugin's stdin . For convenience, there's a
RenderContext::from_json() constructor which will load a RenderContext .

This is all the boilerplate necessary for our backend to load the book.

$ cargo new --bin mdbook-wordcount
$ cd mdbook-wordcount
$ cargo add mdbook

https://github.com/rust-lang/mdBook/wiki/Third-party-plugins
https://docs.rs/mdbook/*/mdbook/renderer/struct.RenderContext.html
https://docs.rs/mdbook/*/mdbook/renderer/struct.RenderContext.html#method.from_json

Note: The RenderContext contains a version field. This lets backends
figure out whether they are compatible with the version of mdbook it's
being called by. This version comes directly from the corresponding field
in mdbook 's Cargo.toml .

It is recommended that backends use the semver crate to inspect this field and
emit a warning if there may be a compatibility issue.

Inspecting the Book

Now our backend has a copy of the book, lets count how many words are in
each chapter!

Because the RenderContext contains a Book field (book), and a Book has the
Book::iter() method for iterating over all items in a Book , this step turns out

to be just as easy as the first.

// src/main.rs
extern crate mdbook;

use std::io;
use mdbook::renderer::RenderContext;

fn main() {
 let mut stdin = io::stdin();
 let ctx = RenderContext::from_json(&mut stdin).unwrap();
}

https://crates.io/crates/semver
https://docs.rs/mdbook/*/mdbook/book/struct.Book.html
https://docs.rs/mdbook/*/mdbook/book/struct.Book.html#method.iter

Enabling the Backend

Now we've got the basics running, we want to actually use it. First, install the
program.

Then cd to the particular book you'd like to count the words of and update its
book.toml file.

When it loads a book into memory, mdbook will inspect your book.toml file to
try and figure out which backends to use by looking for all output.* tables. If

fn main() {
 let mut stdin = io::stdin();
 let ctx = RenderContext::from_json(&mut stdin).unwrap();

 for item in ctx.book.iter() {
 if let BookItem::Chapter(ref ch) = *item {
 let num_words = count_words(ch);
 println!("{}: {}", ch.name, num_words);
 }
 }
}

fn count_words(ch: &Chapter) -> usize {
 ch.content.split_whitespace().count()
}

$ cargo install --path .

 [book]
 title = "mdBook Documentation"
 description = "Create book from markdown files. Like Gitbook but
implemented in Rust"
 authors = ["Mathieu David", "Michael-F-Bryan"]

+ [output.html]

+ [output.wordcount]

none are provided it'll fall back to using the default HTML renderer.

Notably, this means if you want to add your own custom backend you'll also
need to make sure to add the HTML backend, even if its table just stays empty.

Now you just need to build your book like normal, and everything should Just
Work.

The reason we didn't need to specify the full name/path of our wordcount
backend is because mdbook will try to infer the program's name via convention.
The executable for the foo backend is typically called mdbook-foo , with an
associated [output.foo] entry in the book.toml . To explicitly tell mdbook
what command to invoke (it may require command-line arguments or be an
interpreted script), you can use the command field.

$ mdbook build
...
2018-01-16 07:31:15 [INFO] (mdbook::renderer): Invoking the "mdbook-
wordcount" renderer
mdBook: 126
Command Line Tool: 224
init: 283
build: 145
watch: 146
serve: 292
test: 139
Format: 30
SUMMARY.md: 259
Configuration: 784
Theme: 304
index.hbs: 447
Syntax highlighting: 314
MathJax Support: 153
Rust code specific features: 148
For Developers: 788
Alternative Backends: 710
Contributors: 85

Configuration

Now imagine you don't want to count the number of words on a particular
chapter (it might be generated text/code, etc). The canonical way to do this is
via the usual book.toml configuration file by adding items to your
[output.foo] table.

The Config can be treated roughly as a nested hashmap which lets you call
methods like get() to access the config's contents, with a
get_deserialized() convenience method for retrieving a value and

automatically deserializing to some arbitrary type T .

To implement this, we'll create our own serializable WordcountConfig struct
which will encapsulate all configuration for this backend.

First add serde and serde_derive to your Cargo.toml ,

And then you can create the config struct,

 [book]
 title = "mdBook Documentation"
 description = "Create book from markdown files. Like Gitbook but
implemented in Rust"
 authors = ["Mathieu David", "Michael-F-Bryan"]

 [output.html]

 [output.wordcount]
+ command = "python /path/to/wordcount.py"

$ cargo add serde serde_derive

Now we just need to deserialize the WordcountConfig from our
RenderContext and then add a check to make sure we skip ignored chapters.

Output and Signalling Failure

While it's nice to print word counts to the terminal when a book is built, it might
also be a good idea to output them to a file somewhere. mdbook tells a
backend where it should place any generated output via the destination field
in RenderContext .

extern crate serde;
#[macro_use]
extern crate serde_derive;

...

#[derive(Debug, Default, Serialize, Deserialize)]
#[serde(default, rename_all = "kebab-case")]
pub struct WordcountConfig {
 pub ignores: Vec<String>,
}

 fn main() {
 let mut stdin = io::stdin();
 let ctx = RenderContext::from_json(&mut stdin).unwrap();
+ let cfg: WordcountConfig = ctx.config
+ .get_deserialized("output.wordcount")
+ .unwrap_or_default();

 for item in ctx.book.iter() {
 if let BookItem::Chapter(ref ch) = *item {
+ if cfg.ignores.contains(&ch.name) {
+ continue;
+ }
+
 let num_words = count_words(ch);
 println!("{}: {}", ch.name, num_words);
 }
 }
 }

https://docs.rs/mdbook/*/mdbook/renderer/struct.RenderContext.html

Note: There is no guarantee that the destination directory exists or is
empty (mdbook may leave the previous contents to let backends do
caching), so it's always a good idea to create it with
fs::create_dir_all() .

If the destination directory already exists, don't assume it will be empty.
To allow backends to cache the results from previous runs, mdbook may
leave old content in the directory.

There's always the possibility that an error will occur while processing a book
(just look at all the unwrap() 's we've written already), so mdbook will interpret
a non-zero exit code as a rendering failure.

For example, if we wanted to make sure all chapters have an even number of
words, erroring out if an odd number is encountered, then you may do
something like this:

+ use std::fs::{self, File};
+ use std::io::{self, Write};
- use std::io;
 use mdbook::renderer::RenderContext;
 use mdbook::book::{BookItem, Chapter};

 fn main() {
 ...

+ let _ = fs::create_dir_all(&ctx.destination);
+ let mut f =
File::create(ctx.destination.join("wordcounts.txt")).unwrap();
+
 for item in ctx.book.iter() {
 if let BookItem::Chapter(ref ch) = *item {
 ...

 let num_words = count_words(ch);
 println!("{}: {}", ch.name, num_words);
+ writeln!(f, "{}: {}", ch.name, num_words).unwrap();
 }
 }
 }

Now, if we reinstall the backend and build a book,

+ use std::process;
 ...

 fn main() {
 ...

 for item in ctx.book.iter() {
 if let BookItem::Chapter(ref ch) = *item {
 ...

 let num_words = count_words(ch);
 println!("{}: {}", ch.name, num_words);
 writeln!(f, "{}: {}", ch.name, num_words).unwrap();

+ if cfg.deny_odds && num_words % 2 == 1 {
+ eprintln!("{} has an odd number of words!",
ch.name);
+ process::exit(1);
 }
 }
 }
 }

 #[derive(Debug, Default, Serialize, Deserialize)]
 #[serde(default, rename_all = "kebab-case")]
 pub struct WordcountConfig {
 pub ignores: Vec<String>,
+ pub deny_odds: bool,
 }

As you've probably already noticed, output from the plugin's subprocess is
immediately passed through to the user. It is encouraged for plugins to follow
the "rule of silence" and only generate output when necessary (e.g. an error in
generation or a warning).

All environment variables are passed through to the backend, allowing you to
use the usual RUST_LOG to control logging verbosity.

Wrapping Up

Although contrived, hopefully this example was enough to show how you'd
create an alternative backend for mdbook . If you feel it's missing something,
don't hesitate to create an issue in the issue tracker so we can improve the user
guide.

The existing backends mentioned towards the start of this chapter should serve
as a good example of how it's done in real life, so feel free to skim through the
source code or ask questions.

$ cargo install --path . --force
$ mdbook build /path/to/book
...
2018-01-16 21:21:39 [INFO] (mdbook::renderer): Invoking the
"wordcount" renderer
mdBook: 126
Command Line Tool: 224
init: 283
init has an odd number of words!
2018-01-16 21:21:39 [ERROR] (mdbook::renderer): Renderer exited with
non-zero return code.
2018-01-16 21:21:39 [ERROR] (mdbook::utils): Error: Rendering failed
2018-01-16 21:21:39 [ERROR] (mdbook::utils): Caused By: The
"mdbook-wordcount" renderer failed

https://github.com/rust-lang/mdBook/issues

Contributors
Here is a list of the contributors who have helped improving mdBook. Big
shout-out to them!

mdinger
Kevin (kbknapp)
Steve Klabnik (steveklabnik)
Adam Solove (asolove)
Wayne Nilsen (waynenilsen)
funnkill
Fu Gangqiang (FuGangqiang)
Michael-F-Bryan
Chris Spiegel (cspiegel)
projektir
Phaiax
Matt Ickstadt (mattico)
Weihang Lo (weihanglo)
Avision Ho (avisionh)
Vivek Akupatni (apatniv)
Eric Huss (ehuss)
Josh Rotenberg (joshrotenberg)
Songlin Jiang (HollowMan6)

If you feel you're missing from this list, feel free to add yourself in a PR.

https://github.com/mdinger
https://github.com/kbknapp
https://github.com/steveklabnik
https://github.com/asolove
https://github.com/waynenilsen
https://github.com/funkill
https://github.com/FuGangqiang
https://github.com/Michael-F-Bryan
https://github.com/cspiegel
https://github.com/projektir
https://github.com/Phaiax
https://github.com/mattico
https://github.com/weihanglo
https://github.com/avisionh
https://github.com/apatniv
https://github.com/ehuss
https://github.com/joshrotenberg
https://github.com/HollowMan6

	Introduction
	1. Installation
	2. Reading Books
	3. Creating a Book
	4. Command Line Tool
	4.1. init
	4.2. build
	4.3. watch
	4.4. serve
	4.5. test
	4.6. clean
	4.7. completions

	5. Format
	5.1. SUMMARY.md
	5.2. Configuration
	5.2.1. General
	5.2.2. Preprocessors
	5.2.3. Renderers
	5.2.4. Environment Variables

	5.3. Theme
	5.3.1. index.hbs
	5.3.2. Syntax highlighting
	5.3.3. Editor

	5.4. MathJax Support
	5.5. mdBook-specific features
	5.6. Markdown

	5.1.1. Draft chapter
	6. Continuous Integration
	7. For Developers
	7.1. Preprocessors
	7.2. Alternative Backends

	Contributors

