The role of the immune system in governing host-microbe interactions in the intestine

Eric M Brown^{1,2}, Manish Sadarangani²⁻⁴ & B Brett Finlay^{1,2,5}

The mammalian intestinal tract harbors a diverse community of trillions of microorganisms, which have co-evolved with the host immune system for millions of years. Many of these microorganisms perform functions critical for host physiology, but the host must remain vigilant to control the microbial community so that the symbiotic nature of the relationship is maintained. To facilitate homeostasis, the immune system ensures that the diverse microbial load is tolerated and anatomically contained, while remaining responsive to microbial breaches and invasion. Although the microbiota is required for intestinal immune development, immune responses also regulate the structure and composition of the intestinal microbiota. Here we discuss recent advances in our understanding of these complex interactions and their implications for human health and disease.

From birth, the mammalian gastrointestinal tract faces the unique challenge of being constantly exposed to a diverse community of microorganisms, collectively called the microbiota. The human intestine harbors approximately 100 trillion microbes, mainly comprised of over 500 species of bacteria^{1,2}. Bacterial composition varies along the intestinal tract, as each species of bacteria colonizes a specific niche (Fig. 1). This colonization begins at birth, with the first microbial exposure being maternally derived, and from then is shaped by host genetics and by exposure to the surrounding environment³. This inevitable colonization by the microbiota has shaped an intimate relationship where host and microbes have co-evolved for mutually beneficial outcomes. The intestine provides a protected, nutrientrich environment in which the microbiota establish a diverse, yet remarkably stable and resilient ecosystem⁴. In turn, the microbiota is involved in many aspects of host physiology, as microbial by-products of digestion provide vitamins and nutrients to host cells and contribute to resistance to colonization by potential pathogens⁵.

Despite the mutually beneficial aspects of microbial colonization in the intestine, the sheer abundance and proximity of these microbes to the host epithelium poses a major challenge, as the host must mitigate the potential for opportunistic breaching of the intestinal barrier, as well as invasion of intestinal epithelial cells (IECs). Achieving homeostasis requires the intestinal immune system to act in concert with the host epithelium to find the equilibrium 'set point', which

¹Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada. ²Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada. ³Department of Pediatrics, Division of Infectious and Immunological Diseases, University of British Columbia and British Columbia Children's Hospital, Vancouver, British Columbia, Canada. ⁴Department of Pediatrics, University of Oxford, Oxford, UK. ⁵Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada. Correspondence should be addressed to B.B.F. (bfinlay@msl.ubc.ca).

Received 15 February; accepted 11 April; published online 18 June 2013; corrected after print 20 September 2013; doi:10.1038/ni.2611

minimizes the potential for harmful effects from the microbiota or potent inflammatory responses⁶. Minimizing this threat means overcoming considerable challenges. The intestinal immune system must tolerate the microbiota, while simultaneously remaining vigilant against the potential threats posed by these microorganisms. Another challenge comes from the dynamic nature of the intestinal microbial composition, where dramatic shifts in community structure can be exogenously induced by antibiotic treatment⁷, dietary changes⁸ and gastrointestinal pathogens⁹. Large shifts in microbial composition can lead to community imbalance, a state known as dysbiosis. Conversely, endogenous effects such as deficiencies or dysregulation of the intestinal immune system itself can also trigger microbial dysbiosis^{10,11}. In this Review, we highlight recent advances in our understanding of how the intestinal immune system guides dynamic host-microbial interactions toward homeostasis and how breakdowns in this system lead to disease.

Innate epithelial barrier defense

It is of paramount importance to host health that the intestinal microbiota is kept at a distance from IECs, minimizing the likelihood of tissue damage and invasion. Innate immune strategies include the use of a mucus layer, antimicrobial peptides (AMPs) and innate lymphoid cells (ILCs) functioning in concert to confine much of the community to the lumen of the intestinal tract. The strategies used are different in the large intestine and the small intestine but ultimately work to promote mutualistic interactions and anatomical containment of the microbiota (**Fig. 2**).

In the large intestine, the numbers of intestinal microbiota reach as high as 10^{12} cells per gram of feces. Here the mucus layer is the vital component of the innate immune system, segregating the microbiota from the intestinal epithelium. Specialized epithelial cells called goblet cells secrete mucin glycoproteins (mucus), which assemble into a thick mucus layer extending 150 micrometers away from the epithelium 12 . The mucus layer comprises a variety of mucin glycoproteins,

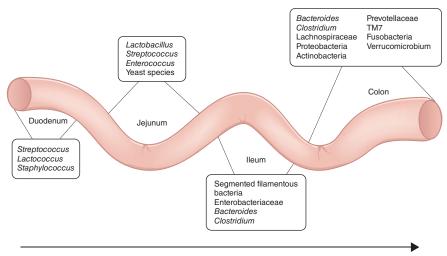


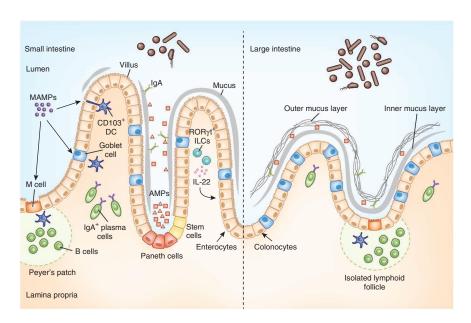
Figure 1 Spatial distribution and composition of the microbiota along the intestinal tract. The quantity and composition of microbial species differs along the intestinal tract. Phyla, families and genera of the microbiota enriched in each particular niche are listed. Nine main bacterial phyla are represented in the mammalian gut microbiota: Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, Verrucomicrobia, Cyanobacteria, Fusobacteria, Spirochaetes and TM7. Most of the bacterial species found in the mammalian intestine are from the phyla Bacteroidetes or Firmicutes. Archaeal and eukaryotic microorganisms also can colonize the intestine in low abundance⁵.

forming a dense inner layer devoid of bacteria and a loose outer layer in which the commensal bacteria reside¹³. The thickness of the inner mucus layer is an important physiological feature and has a role in susceptibility to

pathogen-induced and commensal-induced inflammation 14,15 . The outer mucus layer has a role in shaping the mucosa-associated microbiota by providing glycans as a nutrient source, and the density of the inner layer limits the direct contact of these bacteria with epithelial cells 16 . Aside from mucin glycoproteins, goblet cells also produce trefoil factors and resistin-like molecule- β , which aid in maintaining barrier integrity by stabilizing mucin polymers and reducing the susceptibility to inflammation 17,18 .

In contrast, the mucus layer in the small intestine lacks distinct inner and outer layers, and is discontinuously secreted along the apical surface¹⁶. In this tissue environment, vast arsenals of AMPs take on a larger role in segregating the microbiota from the epithelium. These include defensins and C-type lectins, which are predominately produced by Paneth cells, a lineage unique to the small intestine and strategically located close to epithelial stem cells in the crypt¹⁹. Paneth cells are essential to containing the microbiota, and a loss of Paneth cells results in increased invasion of the epithelial barrier by pathogenic and symbiotic microbes²⁰. Secreted AMPs are retained in the mucus layer, forming a biochemical barrier to protect IECs from microbial contact. For example, the C-type lectin RegIII-γ is effective at preventing epithelial contact by Gram-positive bacteria²¹. Similarly, defensins are cationic membrane-disrupting molecules that can broadly target bacteria, along with fungi and protozoa²². Both gain-of-function and loss-of-function studies suggest an important role for defensins in shaping the mucosal microbial community. A loss of α -defensin function increases the ratio of Firmicutes to Bacteroidetes in the small intestine, and transgenic expression of human α-defensin-5 in mice leads to smaller populations of Firmicutes, most notably those known to directly contact the epithelium²³. Expression of RegIII- γ and of some α -defensins is inducible and requires microbial signals, whereas a subset of α-defensins is constitutively expressed²⁴⁻²⁶. Many of these proteins kill microbes directly through enzymatic attack of the cell wall, without discrimination between pathogens and commensals. Not all AMPs, however, are microbicidal. Human α-defensin-6 protects against microbial invasion of the epithelium by indiscriminately binding to the microbial cell surface, entangling microbes in a self-assembled 'nano-net' of fibrils²⁷. Furthermore, post-translational modifications of defensins may be of importance, based on studies of human β -defensin-1. The redox state of human β-defensin-1 may have a key role in regulating the composition of microbiota at the epithelial surface and perhaps in preventing translocation of the bacteria associated with the mucosa²⁸.

Increasing numbers and diversity of microbiota


Thus, the local tissue microenvironment tunes the innate immune system to drive protection against epithelial damage.

Innate lymphoid cells

ILCs are a population of lineage marker-negative innate immune cells that rapidly respond to epithelium-derived cytokine signals and are critical to maintaining intestinal homeostasis²⁹. Collectively, they have a cytokine expression pattern resembling that of the T helper cell subsets T_H1, T_H2, T_H17 and T_H22, yet in contrast to T cells, differentiation of ILCs occurs independently of somatic recombination. Development and function of ILCs is dependent on the specific expression of a transcription factor: T-bet (group 1 ILCs), GATA-3 (group 2 ILCs) or RORγt (group 3 ILCs)³⁰. Similar to many immune components, ILCs have a bidirectional relationship with the microbiota; responses of ILCs shift depending on microbial composition, and effector function of ILCs impacts microbial anatomical containment and composition³¹. RORγt⁺ ILCs secrete interleukin 17 (IL-17) and IL-22, which they produce after detecting microbiota through the aryl hydrocarbon receptor³². IL-22 produced by RORγt⁺ ILCs can also be negatively regulated by microbial signals inducing epithelial production of IL-25 or by the presence of an adaptive immune system³³. RORyt-deficient mice, which lack ILCs and T_H17 cells and produce less IgA, are defective in their ability to contain the microbial community and exhibit high titers of IgG antibodies to the microbiota, which implies a breach of the intestinal barrier and a systemic immune response to the microbiota³⁴. Studies in $Rag1^{-/-}$ mice have shown this defect in anatomical containment of the microbiota may be mediated by a depletion of ILC-specific production of IL-22, leading to increased translocation of the microbiota to the mesenteric lymph nodes³⁵. Production of IL-22 by RORyt⁺ ILCs acts directly on the IECs, triggering damage repair and inducing expression of mucin genes and AMPs36.

Studies of the interactions between the other two ILC groups and the microbiota are in their infancy, yet a role for repairing of tissue damage by GATA-3⁺ ILCs through production of amphiregulin and IL-33 has been described³⁷. In *Tbx21*^{-/-}*Rag2*^{-/-} ulcerative colitis mice, the disease was shown to be dependent on ILCs; T-bet⁺ ILCs produce IFN-γ, and deficiency in T-bet results in spontaneous colitis dependent on the microbiota and driven by dysregulated IL-17A production by ILCs expressing the IL-7 receptor³⁸. Additional studies are needed to assess the role of ILCs in regulating the microbiota in human subjects or wild-type mice, as most of these studies have been

Figure 2 Anatomical containment of the microbiota along the intestine. The intestinal epithelium comprises a single layer of enterocytes or colonocytes, and it is the role of the immune system to protect the integrity of this barrier. In the small intestine, absorptive requirements for enterocytes results in a discontinuous mucus layer, with fewer goblet cells. Here Paneth cells are enriched in the crypts, secreting AMPs, which can cross-link with the mucus layer. Through this barrier, sampling of MAMPs can be mediated through antigen uptake by M cells and goblet cells to dendritic cells (DCs), along with direct trans-epithelial luminal sampling from DCs. RORyt ILCs can sense microbial signals and produce IL-22 to aid in IEC barrier function. Commensal-specific IgA is produced by plasma cells in the lamina propria, mediated by DCs in a T cell-independent mechanism. The large intestine uses a thick, continuous mucus layer to compartmentalize the microbiota, with IgA and AMPs having a secondary role.

carried out in immunocompetent mice lacking an adaptive immune system. The similarity in functions and cytokine profiles between ILC groups and adaptive T cells indicates that ILCs may have a greater role in microbial colonization events early in life before a fully mature adaptive immune system is present³⁰. It is clear that ILC-mediated regulation of the microbiota provides another layer of protection to IECs from microbial exposure, repairing damaged tissues, promoting barrier functions and preventing systemic inflammation.

Sensing the microbiota

The intestinal immune system in germ-free mammals is underdeveloped, deficient in many immune components including circulating antibodies and mucosal T cells, and does not produce mucus and AMP³⁹. This indicates that the presence of intestinal microbiota induces immune maturation. Simultaneously the immune system must be able to sense what microbes are present and respond appropriately. A variety of proteins called pattern recognition receptors (PRRs) are expressed by IECs and many hematopoietic cells and mediate interactions between the immune system and the microbiota. Expression of these PRRs is crucial for maintaining homeostasis with the intestinal microbiota⁴⁰. PRRs include Toll-like receptors (TLRs) and nuclear oligomerization domain-like receptors (NLRs), which recognize microbe-associated molecular patterns (MAMPs), including lipopolysaccharide, lipid A, peptidoglycan, flagella and microbial RNA/DNA, leading to a variety of downstream signaling pathways⁴¹. PRR-MAMP interactions are crucial in promoting mucosal barrier function, regulating the production of mucin glycoproteins, AMPs, IgA and IL-22 (ref. 42). Accumulating evidence suggests a loss of specific PRRs can lead to an altered microbial composition and intestinal barrier defects leading to microbial invasion of systemic organs. The composition of the ileal microbiota in TLR2-, TLR4-, TLR5- and TLR9-deficient mice was shown to remain stable in the short term, however TLR deficiency lead to longer-term familial shifts in microbial composition⁴³. Specifically, deficiency of TLR5, which recognizes bacterial flagellin, leads to an increased translocation of commensals to the liver and spleen, increased susceptibility to colitis and metabolic abnormalities 44,45. These observations suggest that the abnormalities seen in short-term TLR-deficiencies may result from a barrier defect in the containment of commensals, rather than compositional shifts in the microbiota. Mice lacking the adaptor

protein MyD88 have increased colonization of the liver and spleen by commensal microbiota⁴⁶ and reconstitution of MyD88 in Paneth cells limited the microbial penetration into these tissues²⁰. Aside from the well-described role as a TLR adaptor protein, MyD88deficiency also leads to a loss of signaling events downstream of the IL-1 receptor, including production of IL-1, IL-18 and IL-33 (ref. 47). Recently the inflammasome has garnered increased attention as an important regulator of intestinal homeostasis. In mice, deficiency in the receptor NLRP6 leads to decreased production of IL-18 from the inflammasome, increased susceptibility to dextran sodium sulphate (DSS)-induced colitis and an altered colonic microbiota enriched in the Prevotellaceae and TM7 (ref. 48). NLRP6 also controls the IL-18 dependent downregulation of IL-22 binding protein, a critical regulator of intestinal tissue repair⁴⁹.

Pattern recognition of MAMPs is particularly important in the small intestine, which lacks a thick mucus layer segregating the microbiota⁵⁰. Here recognition of luminal antigens by intestinal dendritic cells is an important mode of sensing and controlling the immune response to the microbiota⁵¹. Recent evidence has shown CD103+ dendritic cells, a subset of dendritic cells that are crucial to maintaining intestinal homeostasis, can sample luminal antigens in the small intestine through direct luminal sampling⁵², goblet cell-mediated delivery⁵³ or through M-cell transcytosis in Peyer's patches⁵¹. More experimental data are needed to explore the impact and prevalence of each of these mechanisms. It is hypothesized that different modes of antigen sampling could lead to different outcomes⁵⁴, and future studies in this area will be important to understand how the immune system responds to the intestinal microbial composition. Though innate barriers segregate the microbiota from the IECs, it is clear that controlled sensory mechanisms exist to sample composition of the microbiota, and this is a key regulator of homeostasis.

Generation and function of IgA responses to microbiota

Whereas the innate immune system provides protection via the mucus layer, AMPs and ILCs to indiscriminately control microbial composition and penetration of the epithelium, the adaptive immune system provides an additional layer of protection. This is mediated by the production of IgA, which acts as a link between these two arms of the immune system. Whereas nonspecific IgA binds to microbial surface glycans causing bacterial agglutination⁵⁵, microbe-specific IgA

is the main adaptive immune response controlling the microbiota. Production of IgA results from stimulation of B cells in Peyer's Patches by dendritic cells, which sample the small number of bacteria penetrating through the mucus layer^{56,57}. The cytokine milieu found in this environment, and in particular the presence of TGF- β , results in B cell class switching to produce IgA, which is then transcytosed back into the intestinal lumen⁵⁷. Secreted IgA is preferentially used to recognize the microbiota, and it has a variety of unique properties, tuning IgA to respond effectively to an environment filled with microbial antigens. Host repertoires of IgA coat a majority of the intestinal microbiota without eliciting potent and potentially damaging responses, and seem to be specific for distinct bacterial epitopes of commensals⁵⁸. The repertoire of secreted IgA is constantly shifting to respond to the changing intestinal microbial environment and might be dynamically shaped to mirror the composition of the microbiota⁵⁸. How microbiota-specific IgA mediates epithelial protection is unclear, although several functions have been described. The action of IgA may include trapping of organisms in the mucus, prevention of epithelialcell invasion and alteration of bound bacteria, including abrogation of bacterial resistance to the oxidative burst response⁵⁹. The importance of IgA in keeping the systemic immune system ignorant of the microbiota is evident by the fact that IgA-deficient mice exhibit priming of IgG responses to organisms which would be expected to form part of the microbiota⁶⁰. In addition, IgA may also have a role in shaping the composition of microbiota. Mice lacking genes for IgA class switching have an expansion of Firmicutes, notably epithelial-associated segmented filamentous bacteria, and Rag2^{-/-} mice have an altered microbiota, which can be restored after bone marrow reconstitution⁶¹. Furthermore, mice deficient in somatic hypermutation genes have an expansion of microbiota in the small intestine and impaired mucosal defense⁶². Present literature, based on mouse models, suggests that IgA adds an immunological buffer to host-microbiota interactions in the intestine and the affinity of microbe-IgA interaction required to achieve this buffering appears to be bacterial species–specific⁶³. Yet the mechanisms and signaling pathways of how IgA functions in humans remain poorly understood, and more studies are needed to examine how IgA interacts with human commensals.

T cell-mediated responses

Several T cell subsets are involved in containment of the microbiota, including CD4+CD25+FoxP3+ regulatory T (Treg) cells, CD4+FoxP3-T regulatory type 1 (Tr1) cells and T_H17 cells. Their functions range from providing help for B cells in production of IgA to avoiding autoimmunity and chronic inflammation. Production of IgA results from both T cell-dependent and T cell-independent pathways⁵⁷, but the extent of interaction between IgA and T cells in the intestinal submucosa is unclear. Aside from their suppressor function, T_{reg} cells can differentiate to act as helper cells to induce microbiota-specific IgA responses. In one study, depletion of T_{reg} cells resulted in a decrease in IgA+ B cells and subsequent adoptive transfer of Treg cells into $Tcrb^{-/-} \times Tcrd^{-/-}$ mice reversed this process⁶⁴. Whether this interaction occurred in Peyer's patches, isolated lymphoid follicles or in the lamina propria was not examined. *In vitro* studies suggested that this was dependent on the activity of TGF-β⁶⁴ but additional investigation is required to understand the precise nature and location of this interaction.

In healthy hosts, T_{reg} cells prevent excessive cell-mediated immune responses, which would cause harmful inflammation, allowing tolerance of the microbiota. The importance of T_{reg} cells is highlighted in the Helicobacter hepaticus colitis model in Rag2-/- mice, where adoptive transfer of T_{reg} cells is sufficient to inhibit inflammation.

This occurs via suppression of T_H1 cell responses and T cellindependent innate immune-induced inflammation, with the latter mechanism being via pathways dependent on IL-10 and TGF- $\beta^{65,66}$. TGF- β also has a key role in maintaining homeostasis of the intestinal microbiota, being required for T cell-dependent regulation of IgA production and suppression of innate immune-induced inflammation. TGF-β also stimulates differentiation of T_H17 cells⁶⁷, and several T_H17 cell-derived cytokines, including IL-17 and IL-22 have key roles in the regulation of normal intestinal microbiota. The balance between differentiation of T_H17 cell and T_{reg} cell subsets is reciprocally regulated in the intestine, mediated by STAT3-dependent cytokines such as IL-6 and IL-23 (refs. 68,69). Stat3^{-/-} mice cannot produce an adequate T_{reg} cell compartment, resulting in uncontrolled $T_{H}17$ responses and severe colitis⁷⁰. Tr1 cells are complementary to T_{reg} cells in that they are a predominant source of IL-10 in the small intestine, whereas T_{reg} cells largely perform this function in the colon⁷¹. The importance of the differing locations of these two cell types is not completely clear, however, as both can suppress colitis in adoptive transfer studies of mice⁷². We also discuss the role of T cells below, with specific reference to HIV infection.

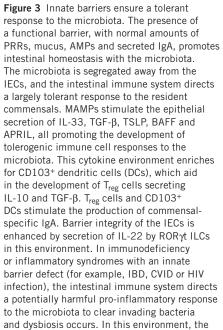
Immune responses to pathogens alters microbiota

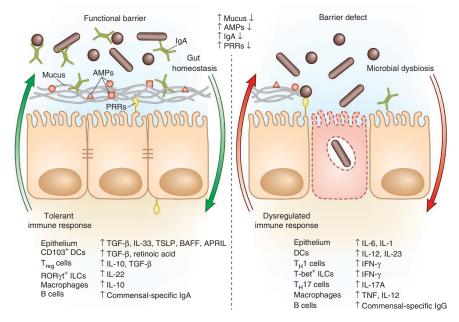
It is clear from the evidence provided so far that the intestinal immune system regulates the spatial containment of the microbiota by recognizing and responding to microbial signals, using multiple layers of immune protection to promote homeostasis. Ingestion of gastrointestinal pathogens represents a threat to intestinal homeostasis. Side effects of the immune response to pathogens can lead to tissue damage and alter the composition of the microbiota, in some cases leading to dysbiosis. Pathogenic insult results in a robust proinflammatory immune response, which can lead to disruption of the intestinal barrier and an altered microbiota, favoring the colonization efficiency and survival of the pathogen 73,74. The well-characterized enteric pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) triggers intestinal immune responses that lead to disruption of the microbiota⁷⁵. In this case, the host immune response to S. Typhimurium mediates the disruption of the microbiota rather than the pathogen itself, and the pathogen takes advantage of the host immune response for its own benefit. Intestinal inflammation can promote the production of tetrathionate and nitrates, which are substrates that confer a growth advantage in the gut for S. Typhimurium and Escherichia coli, respectively^{76,77}. Secreted immune effector molecules such as elastase and AMPs can also be induced by invading Gram-negative pathogens to outcompete the Gram-positive resident microbiota 78,79. Similar studies using the intestinal pathogen Citrobacter rodentium show how host inflammatory responses can drive a shift in the microbiota favoring the replacement of the resident Firmicutes with Proteobacteria, leading to chronic intestinal inflammation⁷³. Furthermore, during infection with the protozoan parasite Toxoplasma gondii, MyD88-dependent production of IFN-γ by CD4⁺ T_H1 cells can cause intestinal dysbiosis leading to death of Paneth cells⁸⁰. Overall, although the immune system has evolved to contain resident microbial challenges, responses can have collateral effects on the microbiota, shifting it to an altered, dysbiotic state. However, in most cases this side effect is favorable for host health in the long term, as it prevents more serious systemic infections such as bacteremia. Host and microbe interactions are constantly evolving; as the host attempts to balance infective responsiveness with tolerance, the microbes relentlessly evolve systems to ensure their survival in the intestinal niche. In a healthy host, many gastrointestinal infections are self-limiting, but the transient and long-term effects of drastically altering the microbiota are just beginning to be resolved.

Table 1 Polymorphisms and mutations associated with IBD

Pathway or site affected	Genes affected in CD	Genes affected in UC	Genes affected in CD and UC
Paneth cells	ITLN1, NOD2, ATG16L1		XBP1
Bacterial sensing	TLR4, TLR9, CD14, MAL		
Innate mucosal defense	NOD2, ITLN1, CARD8, NLRP3, IL18RAP	SLC11A1, FCGR2A/B	CARD9, REL
Autophagy	ATG16L1, IRGM, NOD2, LRRK2	PARK7, DAP	CUL2
Immune cell recruitment	CCL11-CCL2-CCL7-CCL8, CCR6	IL8RA-IL8RB	MST1
Antigen presentation	ERAP2, LNPEP, DENND1B		
IL-23/Th17	STAT3	IL21	IL23R, JAK2, TYK2, ICOSLG, TNFSF15
T cell regulation	NDFIP1, TAGAP, IL2RA	IL2, TNFRSF9, PIM3, IL7R, TNFSF8, IFNG, IL21	TNFSF8, IL12B, IL23R, PRDM1, ICOSLG
B cell regulation	IL5, IKZF1, BACH2	IL7R, IRF5	
Immune tolerance	IL27, SBNO2, NOD2	IL1R/IL1R2	IL10, CREM

These changes may promote dysbiosis through loss of immune regulation of the microbiota. CD, Crohn's disease; UC, ulcerative colitis. Adapted from refs. 81 and 105.


Inflammation and immunodeficiency


Despite the wide array of immune mechanisms working to promote intestinal homeostasis, chronic inflammation can result from breakdowns in this system. Inflammatory bowel disease (IBD), which encompasses both Crohn's disease and ulcerative colitis, is highly prevalent in developed nations. The currently accepted hypothesis regarding the etiology of IBD is that specific environmental factors trigger intestinal inflammation in a genetically susceptible individual. Although alteration of the intestinal microbiota is one possible 'environmental' trigger, inherited immune defects can also modify the commensal flora in affected individuals, creating a perpetual cycle that ultimately leads to disease. Over 160 genetic loci have been linked with the development of IBD^{81,82} (**Table 1**), and revealingly many of the identified gene products are involved in mediating interactions between the immune system and intestinal microorganisms. One of the strongest links is between Nod2 mutations and ileal Crohn's disease^{83–85}. A leading

hypothesis is that this is due to an effect on the ileal microbiota, as Nod2-deficient mice have greater bacterial loads in the terminal ileum⁸⁶. Expression of α -defensins is lower in Nod2-deficient mice (compared to wildtype mice) and in humans with Crohn's disease, particularly when a Nod2 mutation is present^{87,88}. Nod2 mutations may interfere with the microbiota, resulting in intestinal inflammation. Alternatively, inhibition of Paneth cell antimicrobial activity may actually be secondary to the inflammation89, highlighting the complex nature of the interplay between the host and microbiota in the intestine. Recently, a role for ILCs has been described in the pathogenesis of IBD, as an accumulation of T-bet⁺ IFN-γ-producing ILCs was observed in inflamed tissues of patients with Crohn's disease⁹⁰. It is clear that

IBD encompasses multiple defects in different upstream pathways, resulting in the final common result of chronic intestinal inflammation. It is also important to appreciate the bidirectional relationship that exists as immune dysregulation can drive microbial changes, and shifts in the microbiota can drive immune dysfunction (Fig. 3).

Breakdowns in host-microbial mutualism in the intestine can also occur in a wide array of immunodeficiency-related conditions in humans where the normal functioning of the intestinal immune system is compromised. HIV infection and common variable immunodeficiency (CVID) are examples of acquired or congenital immunodeficiencies that include an enteropathy (chronic intestinal inflammation). Study of affected individuals may therefore provide vital information on immune control of the microbiota. During acute HIV-1 infection, it is estimated that over 50% of the CD4⁺ T cells are preferentially depleted from the lamina propria because of direct infection, immune activation-induced cell death and the cytotoxic

epithelium can secrete IL-1 and IL-6 in response to danger signals. Secretion of IL-12 and IL-23 by DCs and macrophages promote a T_H1 and T_H17 response. These T helper cells secrete high levels of IFN- γ and IL-17A, respectively, and T-bet+ ILCs also accumulate to produce IFN- γ . A breach in the epithelial barrier by the microbiota in this situation can also lead to higher levels of B cells secreting commensal-specific IgG.

host response⁹¹, contributing to HIV enteropathy. HIV infection also results in relative depletion of $T_{\rm H}17$ cells. The exact mechanisms remain unknown and may include direct infection and/or alteration of the T_H17 lineage commitment^{92,93}. Rhesus macaques infected with the homologous retrovirus simian immunodeficiency virus (SIV) as well as HIV-infected humans who have undergone T_H17 depletion exhibit increased translocation of bacteria and viruses^{94–98}. Studies of patients infected with HIV-1, linked with models of $Cd4^{-/-}$ mice, provide evidence that CD4+ T cells promote anatomical containment of the microbiota and direct tolerogenic responses to microbial signals rather than driving shifts in composition of the microbiota. This has been confirmed in small studies comparing HIV-1-positive and HIV-1-negative humans, where there were no major differences in the overall composition of the microbiome⁹⁹. However, one study did find negative correlations between total bacterial load and duodenal CD4+ and CD8+ T cell activation (defined by a CD38⁺HLA⁻DR⁺ phenotype)¹⁰⁰.

CVID is a collection of congenital immunodeficiency syndromes with different underlying causes, which have in common the characteristic of B cell dysfunction. The enteropathy associated with CVID has been poorly described, but it is clear that patients have chronic intestinal inflammation, in some cases similar to celiac sprue¹⁰¹. Whether symptoms are driven by a loss in the regulation of the microbiota has yet to be discovered. However, a recent study described the microbiota-epithelium interactions in B cell–deficient mice as a factor in the normal metabolic functions of IECs and highlighted the similarities seen between B cell–deficient mice and patients with CVID¹⁰².

In many cases, the antibody repertoire in immunodeficient patients is depleted. As IgA is the predominant antibody directed to the intestinal microbiota, gastrointestinal disorders seen in patients with CVID and with HIV infection may be the result of a loss of IgA-mediated regulation of the microbiota. No single pathogen has been associated with CVID gastrointestinal syndromes ¹⁰³ and IgG antibodies given to immunodeficient patients to protect against systemic infection do not treat CVID-associated enteropathy ^{101,102}. In HIV-infected patients, low numbers of intestinal IgA+ plasma cells have also been reported ¹⁰⁴. The role of the microbiota in these syndromes is not fully understood and more studies need to be done to determine the etiology of gastrointestinal abnormalities seen in immunodeficiency syndromes. The symptoms of these diseases, however, highlight the importance of a functional intestinal immune system in maintaining host-microbe homeostasis.

Conclusion and perspectives

Over millions of years of host-microbe co-evolution, the intestinal immune system has used various strategies to respond to the microbial environment in a way that benefits host health. These strategies are multilayered, multifunctional and interconnected, and function in a tissue-specific manner to avert immune-mediated epithelial damage. Constant feedback from multiple layers of immunity, including specialized IECs and innate and adaptive immune cells, is required to contain and tolerate the microbial load. As the inherent complexities of the system become clearer, a number of open questions remain. For example, the human gut is colonized with stable communities of eukaryotic microorganisms and a broad diversity of viruses. Being the dominant members of the community, bacteria have been the subject of much of the focus, but how the intestinal immune system interacts with eukaryotic microorganisms is unclear.

As Duerkop and Hooper¹⁰⁶ highlight in this Focus, we are also just beginning to realize how endogenous viruses of our intestinal tract

can interact with our immune system. As techniques for system-wide analysis improve, it will be important to understand the bi-directional relationship of the host-microbial system if new therapeutics are to be developed to combat inflammatory diseases. It is unknown as to what level the microbial composition of an individual is driven by the host immunity and genetics or by inherent dynamics of the microbial system. For example, it is unclear whether microbial dysbiosis seen after deletions of specific immune genes is due to resulting inflammation from proximity of microbiota to IECs or is due to the loss of function of immune effectors themselves. Constant feedback between host and microbe is required to find and maintain a homeostatic balance. In unbalanced situations, such as in immunodeficiency, a working knowledge of how these systems interact will further the potential for targeted system-wide interventions that best improve health and prevent disease.

ACKNOWLEDGMENTS

We thank M. Wlodarska, L. Reynolds and N. Gill for the critical revision of this manuscript and thoughtful insights. The Finlay laboratory is supported by operating grants from Canadian Institutes of Health Research.

COMPETING FINANCIAL INTERESTS

The authors declare no competing financial interests.

Reprints and permissions information is available online at http://www.nature.com/reprints/index.html.

- Xu, J. & Gordon, J.I. Honor thy symbionts. Proc. Natl. Acad. Sci. USA 100, 10452–10459 (2003).
- Eckburg, P.B. et al. Diversity of the human intestinal microbial flora. Science 308, 1635–1638 (2005).
 - This is the first comprehensive study to use a culture-independent approach to describe the composition of the intestinal microbiota in healthy adult mans law BE at al. Evolution of mammals and their gut microbes. Science 320.
- Ley, R.E. et al. Evolution of mammals and their gut microbes. Science 320, 1647–1651 (2008).
- Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).
- Sekirov, I., Russel, S.L., Antunes, L.C.M. & Finlay, B.B. Gut microbiota in health and disease. *Physiol. Rev.* 90, 859–904 (2010).
- Garrett, W.S., Gordon, J.I. & Glimcher, L.H. Homeostasis and inflammation in the intestine. Cell 140, 859–870 (2010).
- Willing, B.P., Russell, S.L. & Finlay, B.B. Shifting the balance: antibiotic effects on host-microbiota mutualism. *Nat. Rev. Microbiol.* 9, 233–243 (2011).
- Maslowski, K.M. & Mackay, C.R. Diet, gut microbiota and immune responses. Nat. Immunol. 12, 5–9 (2011).
- Gill, N., Wlodarska, M. & Finlay, B.B. Roadblocks in the gut: barriers to enteric infection. Cell. Microbiol. 13, 660–669 (2011).
- Willing, B.P., Gill, N. & Finlay, B.B. The role of the immune system in regulating the microbiota. *Gut Microbes* 1, 213–223 (2010).
- Hooper, L.V. & Macpherson, A.J. Immune adaptations that maintain homeostasis with the intestinal microbiota. *Nat. Rev. Immunol.* 10, 159–169 (2010).
- Kim, Y.S. & Ho, S.B. Intestinal goblet cells and mucins in health and disease: recent insights and progress. *Curr. Gastroenterol. Rep.* 12, 319–330 (2010).
- Johansson, M.E. et al. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc. Natl. Acad. Sci. USA 105, 15064–15069 (2008). This study provides the first visual evidence of the composition of the mucus layer, highlighting the function of the mucus layer in segregating the microbiota away from the host epithelium.
- Wlodarska, M. et al. Antibiotic treatment alters the colonic mucus layer and predisposes the host to exacerbated Citrobacter rodentium-induced colitis. Infect. Immun. 79, 1536–1545 (2011).
- Fyderek, K. Mucosal bacterial microflora and mucus layer thickness in adolescents with inflammatory bowel disease. World J. Gastroenterol. 15, 5287 (2009).
- Johansson, M., Larsson, J. & Hansson, G. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of hostmicrobial interactions. *Proc. Natl. Acad. Sci. USA* 108 (suppl. 1), 4659–4665 (2011).
- Podolsky, D.K. et al. Identification of human intestinal trefoil factor. Goblet cellspecific expression of a peptide targeted for apical secretion. J. Biol. Chem. 268, 6694–6702 (1993).
- Artis, D. et al. RELMbeta/FIZZ2 is a goblet cell-specific immune-effector molecule in the gastrointestinal tract. Proc. Natl. Acad. Sci. USA 101, 13596–13600 (2004).
- Bevins, C.L. & Salzman, N.H. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. *Nat. Rev. Microbiol.* 9, 356–368 (2011).

- Vaishnava, S., Behrendt, C.L., Ismail, A.S., Eckmann, L. & Hooper, L.V. Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. *Proc. Natl. Acad. Sci. USA* 105, 20858–20863 (2008).
- Vaishnava, S. et al. The antibacterial lectin RegIllgamma promotes the spatial segregation of microbiota and host in the intestine. Science 334, 255–258 (2011).
- Selsted, M.E. & Ouellette, A.J. Mammalian defensins in the antimicrobial immune response. *Nat. Immunol.* 6, 551–557 (2005).
- Salzman, N. et al. Enteric defensins are essential regulators of intestinal microbial ecology. Nat. Immunol. 11, 76–83 (2010).
- Brandi, K., Plitas, G., Schnabl, B., DeMatteo, R.P. & Pamer, E.G. MyD88-mediated signals induce the bactericidal lectin RegIII gamma and protect mice against intestinal *Listeria monocytogenes* infection. *J. Exp. Med.* 204, 1891–1900 (2007).
- Kaiser, V. & Diamond, G. Expression of mammalian defensin genes. J. Leukoc. Biol. 68, 779–784 (2000).
- Menendez, A. et al. Bacterial stimulation of the TLR-MyD88 pathway modulates the homeostatic expression of ileal Paneth cell α-defensins. J. Innate Immun. 5, 39–49 (2013).
- Chu, H. et al. Human alpha-defensin 6 promotes mucosal innate immunity through self-assembled peptide nanonets. Science 337, 477–481 (2012).
- 28. Schroeder, B. et al. Reduction of disulphide bonds unmasks potent antimicrobial activity of human β -defensin 1. Nature **469**, 419–423 (2011).
- Spits, H. & Di Santo, J.P. The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. *Nat. Immunol.* 12, 21–27 (2011).
- Spits, H. & Cupedo, T. Innate lymphoid cells: emerging insights in development, lineage relationships, and function. *Annu. Rev. Immunol.* 30, 647–675 (2012).
- Sonnenberg, G. & Artis, D. Innate lymphoid cell interactions with microbiota: implications for intestinal health and disease. *Immunity* 37, 601–610 (2012).
- Qiu, J. et al. The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. *Immunity* 36, 92–104 (2012).
- Sawa, S. et al. RORgammat+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. *Nat. Immunol.* 12, 320–326 (2011).
- Lochner, M. et al. Microbiota-induced tertiary lymphoid tissues aggravate inflammatory disease in the absence of RORgamma t and LTi cells. J. Exp. Med. 208, 125–134 (2011).
- Sonnenberg, G. et al. Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science 336, 1321–1325 (2012).
- Sonnenberg, G.F., Monticelli, L.A., Elloso, M.M., Fouser, L.A. & Artis, D. CD4+ lymphoid tissue-inducer cells promote innate immunity in the gut. *Immunity* 34, 122–134 (2011).
- Monticelli, L.A. et al. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat. Immunol. 12, 1045–1054 (2011).
- Powell, N. et al. The transcription factor T-bet regulates intestinal inflammation mediated by interleukin-7 receptor+ innate lymphoid cells. *Immunity* 37, 674–684 (2012).
- Cebra, J.J. Influences of microbiota on intestinal immune system development. Am. J. Clin. Nutr. 69, 1046S-1051S (1999).
- Abreu, M.T. Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. *Nat. Rev. Immunol.* 10, 131–144 (2010).
- Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).
- Carvalho, F.A., Aitken, J.D., Vijay-Kumar, M. & Gewirtz, A.T. Toll-like receptorgut microbiota interactions: perturb at your own risk!. *Annu. Rev. Physiol.* 74, 177–198 (2012).
- Ubeda, C. et al. Familial transmission rather than defective innate immunity shapes the distinct intestinal microbiota of TLR-deficient mice. J. Exp. Med. 209, 1445–1456 (2012).
- Vijay-Kumar, M. et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 328, 228–231 (2010).
- Vijay-Kumar, M. et al. Deletion of TLR5 results in spontaneous colitis in mice. J. Clin. Invest. 117, 3909–3921 (2007).
- Slack, E. et al. Innate and adaptive immunity cooperate flexibly to maintain host-microbiota mutualism. Science 325, 617–620 (2009).
- Salcedo, R. et al. MyD88-mediated signaling prevents development of adenocarcinomas of the colon: role of interleukin 18. J. Exp. Med. 207, 1625–1636 (2010).
- Elinav, E. et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145, 745–757 (2011).
 - This work demonstrates that both the microbiota and the host's genotype can affect mucosal disease, and disease susceptibility can be transferred to another wild-type host by a colitogenic microbiota.
- Huber, S. et al. IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine. Nature 491, 259–263 (2012).
- Santaolalla, R. & Abreu, M.T. Innate immunity in the small intestine. Curr. Opin. Gastroenterol. 28, 124–129 (2012).
- Coombes, J.L. & Powrie, F. Dendritic cells in intestinal immune regulation. Nat. Rev. Immunol. 8, 435–446 (2008).

- Farache, J. et al. Luminal bacteria recruit CD103+ dendritic cells into the intestinal epithelium to sample bacterial antigens for presentation. *Immunity* 38, 581–595 (2013).
- McDole, J.R. et al. Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature 483, 345–349 (2012).
- Knoop, K.A., Miller, M.J. & Newberry, R.D. Transepithelial antigen delivery in the small intestine: different paths, different outcomes. *Curr. Opin. Gastroenterol.* 29, 112–118 (2013).
- Mestecky, J. & Russell, M.W. Specific antibody activity, glycan heterogeneity and polyreactivity contribute to the protective activity of S-IgA at mucosal surfaces. *Immunol. Lett.* 124, 57–62 (2009).
- Niess, J.H. et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307, 254–258 (2005).
- Macpherson, A.J. & Uhr, T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303, 1662–1665 (2004).
 - This report demonstrates that specialized bacteria-laden dendritic cells can induce protective IgA to protect the host epithelium from bacterial invasion, and migration of these dendritic cells is limited to the mesenteric lymph nodes of the mucosal immune system.
- Hapfelmeier, S. et al. Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses. Science 328, 1705–1709 (2010).
- Peterson, D.A., McNulty, N.P., Guruge, J.L. & Gordon, J.I. IgA response to symbiotic bacteria as a mediator of gut homeostasis. *Cell Host Microbe* 2, 328–339 (2007).
- Macpherson, A.J. et al. A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 288, 2222–2226 (2000).
- Suzuki, K. et al. Aberrant expansion of segmented filamentous bacteria in IgAdeficient gut. Proc. Natl. Acad. Sci. USA 101, 1981–1986 (2004).
- Wei, M. et al. Mice carrying a knock-in mutation of Aicda resulting in a defect in somatic hypermutation have impaired gut homeostasis and compromised mucosal defense. Nat. Immunol. 12, 264–270 (2011).
- Slack, E., Balmer, M.L., Fritz, J.H. & Hapfelmeier, S. Functional flexibility of intestinal IgA—broadening the fine line. Front. Immunol. 3, 100 (2012).
- Cong, Y., Feng, T., Fujihashi, K., Schoeb, T. & Elson, C. A dominant, coordinated T regulatory cell-IgA response to the intestinal microbiota. *Proc. Natl. Acad.* Sci. USA 106, 19256–19261 (2009).
 - This study extends the role for T_{reg} cells to include the induction and maintainance of IgA^+ plasma cells in the intestine, and promotion of mutualism with the microbiota.
- Read, S., Malmstrom, V. & Powrie, F. Cytotoxic T lymphocyte–associated antigen 4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation. J. Exp. Med. 192, 295–302 (2000).
- Maloy, K.J. et al. CD4+CD25+ T(R) cells suppress innate immune pathology through cytokine-dependent mechanisms. J. Exp. Med. 197, 111–119 (2003).
- Li, M.O., Wan, Y.Y. & Flavell, R.A. T cell-produced transforming growth factor-β1 controls T cell tolerance and regulates T_H1- and T_H17-cell differentiation. *Immunity* 26, 579–591 (2007).
- Ahern, P.P. et al. Interleukin-23 drives intestinal inflammation through direct activity on T cells. Immunity 33, 279–288 (2010).
- Littman, D.R. & Rudensky, A.Y. Th17 and regulatory T cells in mediating and restraining inflammation. Cell 140, 845–858 (2010).
- Chaudhry, A. et al. CD4+ regulatory T cells control T_H17 responses in a Stat3dependent manner. Science 326, 986–991 (2009).
- Maynard, C.L. et al. Regulatory T cells expressing interleukin 10 develop from Foxp3⁺ and Foxp3⁻ precursor cells in the absence of interleukin 10. Nat. Immunol. 8, 931–941 (2007).
- Foussat, A. et al. A comparative study between T regulatory type 1 and CD4+CD25+
 T cells in the control of inflammation. J. Immunol. 171, 5018–5026 (2003).
- Lupp, C. et al. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe 2, 119–129 (2007).
 - This study reveals that the composition of the intestinal microbiota changes in distinctive ways in response to infection and inflammation, and underscores the importance of intestinal microbial ecosystems during infection.
- Littman, D.R. & Pamer, E.G. Role of the commensal microbiota in normal and pathogenic host immune responses. *Cell Host Microbe* 10, 311–323 (2011).
- Stecher, B. et al. Salmonella enterica serovar typhimurium exploits inflammation to compete with the intestinal microbiota. PLoS Biol. 5, 2177–2189 (2007).
- Winter, S.E. et al. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature 467, 426–429 (2010).
- 77. Winter, S.E. *et al.* Host-derived nitrate boosts growth of *E. coli* in the inflamed gut. *Science* **339**, 708–711 (2013).
- Gill, N. et al. Neutrophil elastase alters the murine gut microbiota resulting in enhanced Salmonella colonization. PLoS ONE 7, e49646 (2012).
- Stelter, C. et al. Salmonella-induced mucosal lectin RegIIIb kills competing gut microbiota. PLoS ONE 6, e20749 (2011).
- Raetz, M. et al. Parasite-induced T_H1 cells and intestinal dysbiosis cooperate in IFN-gamma-dependent elimination of Paneth cells. Nat. Immunol. 14, 136–142 (2013).
- Khor, B., Gardet, A. & Xavier, R.J. Genetics and pathogenesis of inflammatory bowel disease. *Nature* 474, 307–317 (2011).

- 82. Jostins, L. *et al.* Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. *Nature* **491**, 119–124 (2012).
- Wehkamp, J. et al. NOD2 (CARD15) mutations in Crohn's disease are associated with diminished mucosal alpha-defensin expression. Gut 53, 1658–1664 (2004).
- Ogura, Y. et al. A frameshift mutation in NOD2 associated with susceptibity to Crohn's disease. Nature 411, 603–606 (2001).
- 85. Hugot, J.P. et al. Association of NOD-2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411, 599–603 (2001) References 84 and 85 reported NOD2 as a susceptibility locus for Crohn's disease, providing evidence the first genetic link to IBD and insight into how a dysregulated immune response to the microbiota can lead to inflammatory
- Petnicki-Ocwieja, T. et al. Nod2 is required for the regulation of commensal microbiota in the intestine. Proc. Natl. Acad. Sci. USA 106, 15813–15818 (2009)
- Kobayashi, K.S. et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307, 731–734 (2005).
- Wehkamp, J. et al. Reduced Paneth cell alpha-defensins in ileal Crohn's disease. Proc. Natl. Acad. Sci. USA 102, 18129–18134 (2005).
- Simms, L.A. et al. Reduced alpha-defensin expression is associated with inflammation and not NOD2 mutation status in ileal Crohn's disease. Gut 57, 903–910 (2008).
- 90. Bernink, J.H. *et al.* Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. *Nat. Immunol.* **14**, 221–229 (2013).
- Mehandru, S. et al. Mechanisms of gastrointestinal CD4+ T-cell depletion during acute and early human immunodeficiency virus type 1 infection. J. Virol. 81, 599–612 (2007).
- Brenchley, J.M. et al. Differential T_H17 CD4 T-cell depletion in pathogenic and nonpathogenic lentiviral infections. Blood 112, 2826–2835 (2008).
- Gosselin, A. et al. Peripheral blood CCR4+CCR6+ and CXCR3+CCR6+CD4+ T cells are highly permissive to HIV-1 infection. J. Immunol. 184, 1604–1616 (2010).
- Brenchley, J.M. & Douek, D.C. HIV infection and the gastrointestinal immune system. *Mucosal Immunol.* 1, 23–30 (2008).

- Raffatellu, M. et al. Simian immunodeficiency virus-induced mucosal interleukin-17 deficiency promotes Salmonella dissemination from the gut. Nat. Med. 14, 421–428 (2008).
- Macal, M. et al. Effective CD4+ T-cell restoration in gut-associated lymphoid tissue of HIV-infected patients is associated with enhanced Th17 cells and polyfunctional HIV-specific T-cell responses. Mucosal Immunol. 1, 475–488 (2008).
- Cecchinato, V. et al. Altered balance between Th17 and Th1 cells at mucosal sites predicts AIDS progression in simian immunodeficiency virus-infected macaques. Mucosal Immunol. 1, 279–288 (2008).
- Favre, D. et al. Critical loss of the balance between Th17 and T regulatory cell populations in pathogenic SIV infection. PLoS Pathog. 5, e1000295 (2009).
- Saxena, D. et al. Human microbiome and HIV/AIDS. Curr. HIV/AIDS Rep. 9, 44–51 (2012).
- Ellis, C.L. et al. Molecular characterization of stool microbiota in HIV-infected subjects by panbacterial and order-level 16S ribosomal DNA (rDNA) quantification and correlations with immune activation. J. Acquir. Immune Defic. Syndr. 57, 363–370 (2011).
- 101. Malamut, G. et al. The enteropathy associated with common variable immunodeficiency: the delineated frontiers with celiac disease. Am. J. Gastroenterol. 105, 2262–2275 (2010).
- Shulzhenko, N. et al. Crosstalk between B lymphocytes, microbiota and the intestinal epithelium governs immunity versus metabolism in the gut. Nat. Med. 17. 1585–1593 (2011).
- Mannon, P.J. et al. Excess IL-12 but not IL-23 accompanies the inflammatory bowel disease associated with common variable immunodeficiency. Gastroenterology 131, 748–756 (2006).
- 104. Scamurra, R.W. et al. Mucosal plasma cell repetoire during HIV-1 infection. J. Immunol. 169, 4008–4016 (2002).
- 105. Man, S.M., Kaakoush, N.O. & Mitchell, H.M. The role of bacteria and patternrecognition receptors in Crohn's disease. *Nat. Rev. Gastroenterol. Hepatol.* 8, 152–168 (2011).
- 106. Duerkop, B.A. & Hooper, L.V. Resident viruses and their interactions with the immune system. *Nat. Immunol.* (18 Jun 2013) doi:10.1038/ni.2614.

Erratum: The role of the immune system in governing host-microbe interactions in the intestine

Eric M Brown, Manish Sadarangani & B Brett Finlay
Nat. Immunol. 14, 660–667 (2013); published online 18 June 2013; corrected after print 20 September 2013

In the version of this article initially published, a label was missing from Figure 2. The lymphoid structure in the large intestine should be labeled 'Isolated lymphoid follicle'. The error has been corrected in the HTML and PDF versions of the article.

