
Case study of model-based systems engineering (MBSE):
Part 2. Develop data-focused processes for distributed
systems analysis and design
Mohit Choudhary November 15, 2011

Distributed systems are inherently data-oriented, with data entities dictating the sub-system boundaries
and specific data interaction that defines the dynamic characteristic of a system. The focus on data
entities and their behavior in distributed environments cannot be undermined. Thus the derivation of
ports and interfaces (data interactions and attributes) being a consequence of functional analysis in a
typical MBSE workflow, such as the IBM® Rational® Harmony systems engineering process seems an
oddity in such a case. In this article, we explore how to develop an MBSE process suited for analysis and
design of distributed systems.

View more content in this series

In the part 1 of this series, we derived the system design of a UAV ground controller by using IBM Rational
Harmony systems engineering as a process guiding us to emerge the sub-systems and the logical interfaces.
However, the design of distributed systems is often data centric, where data entities take the place of first
grade citizens in a system design. Thus it only seems obvious to tweak the Rational Harmony systems
engineering process a bit to allow the design process to focus on the data entities and yet bring the goodness
of a mature MBSE process like Rational Harmony systems engineering into the design.

In distributed systems design, it is necessary to define these data interactions through an evolved interface
language that not only ensures the consistency of the various sub-systems throughout the interaction, but
can also capture the interacted intent and behavior of the data set in the language itself. One such step in the
evolving interface specification language is the OMG Data Distribution Service (DDS) specification (see
Resources). While the hand-off at the end of a standard Rational Harmony systems engineering process (see
Resources) is sufficient to spring operational ICD between sub-systems from the derived logical interfaces,
mapping these logical interfaces to the information exchange constructs with data distribution service (DDS)
might not be straightforward.

In this article, we attempt to tweak the standard Rational Harmony systems engineering process workflow
so that it supports the distributed dissonance instead of Rational Harmony. First, you will see constructs of
the DDS specification and Problem-frame Analysis (see Resources). Then we follow the steps involved in
modified MBSE process that embraces DDS in time and spirit throughout the process of distributed systems
analysis and design. Finally, you will be able to run the steps by using the same case study as in part 1 of the
article.

© Copyright IBM Corporation 2011 Trademarks
Case study of model-based systems engineering (MBSE): Part 2.
Develop data-focused processes for distributed systems analysis and
design

Page 1 of 13

https://www.ibm.com/developerworks/library/?series_title_by=case+study+of+model-based+systems+engineering+(mbse)
http://www.ibm.com/legal/copytrade.shtml
https://www.ibm.com/developerworks/ibm/trademarks/


developerWorks® ibm.com/developerWorks/

Understand DDS and problem frame analysis
The OMG Data Distribution Service (DDS) specification is separated into architectural layers. The lower
layer is the Data Centric Publish and Subscribe (DCPS) layer, which contains type-safe interfaces to a
publish-and-subscribe communication mechanism. The upper layer is the Data Local Reconstruction Layer
(DLRL), which enables application developers to construct a local object model on top of the DCPS layer
to shield the application from DCPS knowledge. The context of this article is limited to a few specific
constructs of DCPS.

Data-centric publish and subscribe
The DCPS layer disseminates data from publishers to interested subscribers. It is implemented using the
concepts of publisher and data writer on the sending side and subscriber and data reader on the receiving
side. The DCPS layer consists of one or more data domains, each of which contains publishers and
subscribers that communicate via DDS. Each publisher and subscriber belongs to a domain. Within any data
domain, data is identified by a topic, which is a type-specific domain segment that allows publishers and
subscribers to refer to data unambiguously.

Within a domain, a topic associates a unique topic name, data type, and a set of quality of service (QoS)
policies with the data itself. Each topic is associated with one data type, although many different topics
can publish the same data type. The behavior of publishers is determined by the QoS policies associated
with the publisher, data writer, and topic elements for a particular data source. Likewise, the behavior of
subscribers is determined by the QoS policies associated with the subscriber, data reader, and topic elements
for a particular data sink. A few of the QoS policies and operations specified in the language and used in the
case study are as shown in Table1 and 2 respectively. The QoS policies and operations.

Table 1. Documenting relevant DDS QoS Policies

QoS Description

Liveliness Verifies that to make sure expected entities in the system are still alive.

Reliability Determines the level of reliability required in delivery of the samples.

History Controls what happens to an instance whose
value changes before it is communicated to subscribers.

Lifespan Avoids delivering "stale" data to the application.

Deadline Establishes that the topic is expected to have each instance updated
periodically within the deadline.

Table 2. Documenting relevant DDS operations

Operation Description

Read Accesses a collection of data values from the data reader.

Take Removes a sample from the data reader so that the read or take operations
cannot be performed on it.

Wait set &
Listener

Makes the application aware of changes in the DCPS communication status.

Content filter Filters incoming topic samples based on attributes.

Data_Available Status change flag that indicates availability of data at the reader.

Case study of model-based systems engineering (MBSE): Part 2.
Develop data-focused processes for distributed systems analysis and
design

Page 2 of 13



ibm.com/developerWorks/ developerWorks®

Read with
condition

Has "read" access to the samples that match the criteria specified in the
condition. The condition can be a read condition or query condition.

Problem-frame analysis
Problem Frames Approach is an approach to requirements analysis. It enables you to categorize the system
requirements as a set of pre-defined problems analogous to design patterns in the solution space. Once
categorized, the problems can be easily explained by answering a standard set of questions associated with
each problem frame. Figure 1 shows how the technique has been used in this article to document the artifacts
of the case study.

Figure 1. Documenting through problem frames

Proposed work flow
The proposed process workflow is shown in Figure 2.

Figure 2. Workflow for MBSE process

Having defined the system-level use cases in the requirement analysis phase, the process aims at defining the
data entities, attributes and operations for each of the system use cases through problem frame analysis. You
can use the information problem frame to evolve the model entities and their attributes, the connection and
transformation problem frames for defining the behavior of these entities and the work-piece problem frame
to evolve the operations on the defined entities.

Next, we need to define the system information model based in the entities that we identified in the problem
frame analysis phase. The artifact that you produce through this analysis is the topic model that defines the
name, type and QoS of identified DDS topics. Since we have the topic model, in the next phase of entity
functional analysis you will focus on performing functional analysis around the life cycle operations of

Case study of model-based systems engineering (MBSE): Part 2.
Develop data-focused processes for distributed systems analysis and
design

Page 3 of 13



developerWorks® ibm.com/developerWorks/

identified topic model entities. You can use the black box activity diagram to capture the life cycle parallel
flows for each of the identified entities. Further, you have to generate the black box use-case scenarios by
combining one or more flows to establish the real functional flows as sequence diagrams. Use the sequence
to generate the ports and interfaces of the use-case block. Then capture the state based behavior of the use
case and verify the generated sequence diagrams and compare them to the black box scenario sequence
diagrams.

The design synthesis starts by performing the structural decomposition of the system not only based on
the key functions, but also on the model entities themselves. In the next step while describing the white
box activity diagram, you need to include DDS-Data-space as one of the sub-system components to patch
the independent functional flows. Defining the DDS-Data-space as a sub-system component enables the
white box state machine to run as an executable model while preserving the decoupling in space and time
desired through the use of DDS. You can now verify this executable model by comparing the sequence
diagrams that we generate here against those produced as white box scenarios. Finally you need to generate
the system Internal block diagram (IBD) that brings out the white box ports and interfaces. Not surprisingly,
the interfaces in this case map one to one to the topics in the information model that has already adequately
defined the attributes and their behavior.

Problem frame analysis
The scope of this analysis defined by the Perform Area Search use case is detecting UAVs in flight,
assigning search areas to the UAVs, acquiring track data from sensors, and storing this in an information
model. The analysis performed is shown in Tables 3 and 4.

Table 3. Information and connection problem frame analysis
Entity Attributes and description

UAVInfo: Unmanned Ariel vehicle. 1. Real world: models the characteristics of UAVs in flight

a. Objects

i. UAV

b. Events on the objects and reaction in Information model

i. UAV not contactable

A. UAV position update not available within a
deadline period.

B. Updates that are lost are lost.

2. Attributes

a. Identification

i. Vehicle id, sent by UAV

ii. No other identification attributes, no system generated

b. Time information

i. Update time – is the information of time of position
update

ii. Available flight time – is the information of time left in
flight

c. UAVstate

i. Search assigned

ii. Search unassigned

d. Sensor information

i. List of available sensors with attributes

e. Own vehicle data

i. Position data

ii. Motion data

Case study of model-based systems engineering (MBSE): Part 2.
Develop data-focused processes for distributed systems analysis and
design

Page 4 of 13



ibm.com/developerWorks/ developerWorks®

3. Data

a. No history of updates. Only instantaneous value.

Sensor: Used by the UAV to detect tracks. 1. Types of sensors

a. SAR

b. FLIR

c. OPTICAL

2. Sensor attributes

a. Sensor start time – used to determine if the sensor is active.

b. State

i. Active

ii. Inactive

Sensor tracks: A set of measures from a specific target by which the position
and motion of the target can be computed.

The track exists as a separate information structure only if there is additional
data that is required at the level of a track that is not available in a given
sample for that track.

1. Real world: models the sensor track information sent by sensor.

a. Objects

i. Emitters/contacts detected by a sensor

ii. Measures sent by the sensor. There is a periodicity
associated with the measures.

b. Events on the objects and reaction in information model

i. Sensor not contactable

A. Track measure not available within a deadline
period.

B. Track measures that are lost are lost, the sensor
track continues with measures from the point at
which we get connected again.

ii. Sensor cannot contact track any more – track measure
not available within a deadline period.

iii. Sensor regains a track – track measure available again.

iv. Distinguish between sensors not able to track vs.
sensor not contactable?

A. Availability of liveliness status of the sensor

2. Attributes

a. Identification

i. ID, sent by external sensor – composite of

ii. Sensor ID

iii. Track-ID, numeric value from 1 to 50.

iv. No other identification attributes, no system generated
ID

b. Time information - <store history of each state transition in
terms of timestamp at which it occurred.>

i. Created time – is the information from the sensor
measure time, first measure for the track.

ii. Track age – is the time elapsed since last measure
update.

c. Track state - depending upon the deadline indication of
associated measures

i. Active

ii. Lost

d. Source sensor– from sensor ID in any measure, normally set
based on the first sample

3. Data

a. Consists of one or more track measures

b. Stores history of measures over a 30 minute window

c. Measures earlier than this are purged?

4. Sensor specific attributes

a. General information about these attributes: Almost all of this
data is taken directly from the incoming sensor data and used
to display to users.

Case study of model-based systems engineering (MBSE): Part 2.
Develop data-focused processes for distributed systems analysis and
design

Page 5 of 13



developerWorks® ibm.com/developerWorks/

4. Sensor Track Measures 1. Real world: models a single data sample sent by a sensor

2. Attributes

a. Identification – is sent by sensor

i. Sensor ID

ii. Track ID – sent by sensor

b. Measure ID - Sequence number

c. Time of the sample – sent by sensor, has to be maintained

d. Valid or invalid data (good/bad/delayed) – requires
transformation based on data range validations, in turn based
on sensor. Invalid measures are rejected by the system.

e. Data – a sample can contain one or more of the following:

i. Position – Latitude and Longitude

ii. Projection used

iii. Speed

3. Characteristics

a. Track Measures are emitted by sensors at 1 Hz frequency

Table 4. Work-piece problem frame analysis

Entity Analysis

Static information 1. Is there any static information related to sensor tracks?

a. Characteristics of sensors

i. The RMS values from sensors for errors etc., typically
a table, used in the system for computation

Sensor Tracks as work-piece problems <operations on a realized entity> 1. Operator driven actions

a. Creation

i. Direct creation from sensor measures

A. Track Age calculated from last measure update

B. First Measure used to get track ID

b. Select a sensor track to be made into a system track

2. Lifecycle related

a. Updating a sensor track on new available update (measure) for
the track.

b. Automatic purging of sensor tracks with no measures in 30 min
history.

c. Archiving

i. No requirement

Sensor Track Measures as work-piece problem 1. Operator driven actions

a. Nil – owned by the sensor

2. Lifecycle related

a. Indicating missed deadline of update

b. Automatic purging of measures older than 30 min history.

c. Archiving

i. No requirements

Information model analysis
In this step, you need to perform the information model analysis using the information and connection
problem frame analysis of the previous phase. The objective of this phase is to identify the DDS topics that
represent the data entities and their behavior. Each topic forms the unit of interaction in a DDS environment.
The correct representation of its behavior can vastly reduce the sub-systems responsibility of housekeeping
and generic management. A representative information model subset of case study is as shown in Figure 2.

Case study of model-based systems engineering (MBSE): Part 2.
Develop data-focused processes for distributed systems analysis and
design

Page 6 of 13



ibm.com/developerWorks/ developerWorks®

An example of this reduction can be seen in the behavior that is defined for the topic "SensorTrackMeasure".
The key description (the list of data fields whose value forms the key) defined on this topic is a composite
structure composed of SensorID and trackID. Different data values with the same key value represent
successive values for the same instance, while different data values with different key values represent
different instances. Further, the HistoryQosPolicy of the topic is defined as KEEP_ALL with a depth
of 1800 to indicate that at most 1800 samples of each such instance is maintained in the data space (@
1Hz update for 30 minutes). Finally, the LifespanQosPolicy with a duration corresponding to 30 minutes
specifies the maximum duration of validity of the data sample in the DDS space, after which it shall be
automatically disposed. Defining such behavior about the SensorTrackMeasure entity unambiguously
defines to the DDS service to take over the responsibility of history management for the entity. It would now
be redundant to model such functionality into the use case.

Figure 3. Topic model representation

Topic name (description) Topic definition QoS policies QoS rationale

<<UC01_04 Sensor track measure>>

Deadline 1 sec

Destination order BY_SOURCE_TIMESTAMP

Durability Volatile

History KEEP_ALL

History depth 30

Lifespan 1800000ms

Liveliness AUTOMATIC

Latency budget 30ms

Ownership SHARED

Reliability BEST_EFFORT

Resource limit Default
max_samples,
max_instances,
max_samples_per_instance
(all set to
LENGTH_UNLIMITED)

Transport priority 1

This topic shall publish
sensor track measure
information

struct idendity
{
unsigned long ulsensorID ;
unsigned long ultrackID;
};
typedef unsigned long
measure_ID;
struct SensorTrackMeasure
{
Identity ulSourceID; //
owner of meassage
measure_ID ulSeq_no;
unsigned long
ullSystemTimemilliSecs; //
current time in milliseconds
float fLatitudeDeg; //
latitude
float fLongitude Deg; //
Longitude
double dXSpeedMtrs; // X
coordinate
double dYSpeedMtrs; // Y
coordinate
};
#pragma keylist
SensorTrackMeasure
ulSourseID Durability service Default

Remarks:

The representative topic model at figure 2 describes the name, type and QoS policies that are related to the
topic "SensorTrackMeasure". We use a similar exercise for the rest of the use case to describe the following
topics:

• UAVInfo
• SensorTrack
• SensorTrackMeasure
• Command

Case study of model-based systems engineering (MBSE): Part 2.
Develop data-focused processes for distributed systems analysis and
design

Page 7 of 13



developerWorks® ibm.com/developerWorks/

It is important to note that not all model entities identified during the problem frame analysis phase have
one-to-one correspondence to the topic model.

Entity functional analysis

The input to the entity functional analysis phase is the topic model and the work-piece problem frame
analysis model. This phase focuses on performing functional analysis around the lifecycle operations
of identified topics. The artifacts produced at this step are the black box activity diagram, scenarios and
state charts of the use case. The black box activity diagram for the use case is shown in figure 4, while the
representative scenarios and state charts are shown in figures 5 and 6 respectively.

The black box activity diagram represents actions based on the DDS constructs like read, write,
content_filter, or read_with_query_condition. These constructs are means of simplifying the functional
flows. Bringing such binding into the activity flow is considered essential for achieving functional efficiency
through the use of DDS. On the other hand, the black box scenarios are created to represent the real world
scenarios by referencing different sequence of generated flows into main sequence representing the scenario.
This step is very important to ensure that the requirements as understood through the requirement analysis
phase are satisfied. This in turn helps us to perform the sufficiency analysis of the detailed topics and the
operations around them.

In case of any mismatch it is considered essential to go back and change the information model until
the desired real world functional sequences are achieved. Further, deriving the state machine of the use
case is straightforward. The use case state machine is composed of multiple ‘AND' states with each one
representing the state behavior of the independent functional flows in the activity diagram. While each of
the flows is represented by an AND state and thus independent in its execution, yet these are bound together
through event flows from one AND state to other wait sub-states in order to enable the execution of the
state machine as a whole. This is necessary to verify the auto-generated sequences through model execution
against the black box scenarios produced earlier.

Figure 4. Black box activity diagram (data-oriented)

Case study of model-based systems engineering (MBSE): Part 2.
Develop data-focused processes for distributed systems analysis and
design

Page 8 of 13



ibm.com/developerWorks/ developerWorks®

Figure 5. Black box scenarios (data-oriented)

Figure 6. Black box state chart (data-oriented)

Design synthesis
The structural decomposition of the system in this approach is based not only on the identification of key
system functions, but also on the derived topic model. Further, the allocation of functions from the white

Case study of model-based systems engineering (MBSE): Part 2.
Develop data-focused processes for distributed systems analysis and
design

Page 9 of 13



developerWorks® ibm.com/developerWorks/

box activity diagram is performed by allocating a complete flow from the black box activity diagram
independently to a swim lane. Such an allocation is possible due to the accessibility of derived topic
instances and samples across the sub-system boundaries by means of the DDS global data space.

The derived white box activity diagram for the use case is as shown in Figure 7. The functionality allocated
to the swim lane representing DDS data space is that of stitching the rest of the components together through
publish/ subscribe paradigm. This representation is considered necessary to bring the sub-systems together to
participate in real world scenarios at the model level and also to bring life into the executable white box state
machine. The next step in the process is to evolve the white box scenarios for the use case, representing the
white box view of the black box scenarios. A representative white box scenario is as shown in Figure 8.

Finally, we derive the ports and interfaces from the white box scenarios and arrive at the white box state
behavior of the sub-system components in preparation for the hand-off. The representative state behavior
and the white box ports and interfaces of the sub systems are as shown in Figure 9 and 10, respectively.

The sub-system state charts in this case use exactly the same pattern as the corresponding black box ones.
The only differences between the two being the events triggering the transition from sub-system wait state
are generated by the component DDS-Data-space. The state machine of the DDS-Data-space is a mock
representation to enable execution of the different decoupled components. The white box state machines
are now executed to compare the generated sequence diagrams against the white box scenarios in order to
baseline the model for hand-off. Finally, the sub-system interfaces with unambiguous mapping to the topic
model are generated from the base lined model as shown in Table 5.

Figure 7. White box activity diagram (data-oriented)

Case study of model-based systems engineering (MBSE): Part 2.
Develop data-focused processes for distributed systems analysis and
design

Page 10 of 13



ibm.com/developerWorks/ developerWorks®

Figure 8. White box sequence diagram (data-oriented)

Figure 9. White box state behavior (data-oriented)

Case study of model-based systems engineering (MBSE): Part 2.
Develop data-focused processes for distributed systems analysis and
design

Page 11 of 13



developerWorks® ibm.com/developerWorks/

Figure 10. White box ports and interfaces (data-oriented)

Table 5. White box interface list
Block Port Name I/F Type Interface Event Topic Name / Description

reqSelectUAV Operator selection through h/
w interrupt

reqAbortSearch Operator selection through h/
w interrupt

reqSelectSearchArea Operator selection through h/
w interrupt

pOperator Provided

reqExecuteSearch Operator selection through h/
w interrupt

MMIController

pDDSDataSpace Required reqPublishCommand CommandTopic

Provided reqOnDataAvailable SensorTrackMeasureTopicSensorTrackManager pDDSDataSpace

Required reqPublishSensorTrack SensorTrackTopic

Provided reqOnDataAvailable CommandTopic

reqPublishUAVInfo UAVInfoTopic

pDDSDataSpace

Required

reqPublishSensorTrackMeasure SensorTrackMeasureTopic

reqRecieveUAVInfo UAVInfo message on UAV
link

Provided

reqRecieveSensorTrackMeasureSensorTrack Measure msg on
UAV link

UAVBridge

pUAV

Required evSendCommand Command message on UAV
link

reqOnDataAvailable SensorTrackTopicpDDSDataSpace Provided

reqOnDataAvailable UAVInfoTopic

DisplayController

pDisplay Required evUpdateDisplay Interface on display link

pMMIController Provided reqPublishCommand CommandTopic

reqPublishUAVInfo UAVInfoTopicProvided

reqPublishSensorTrackMeasure SensorTrackMeasureTopic

pUAVBridge

Required reqOnDataAvailable CommandTopic

reqOnDataAvailable SensorTrackTopicpDisplayController Required

reqOnDataAvailable UAVInfoTopic

Provided reqPublishSensorTrack SensorTrackTopic

DDSDataSpace

pSensorTrackManager

Required reqOnDataAvailable SensorTrackMeasureTopic

Case study of model-based systems engineering (MBSE): Part 2.
Develop data-focused processes for distributed systems analysis and
design

Page 12 of 13



ibm.com/developerWorks/ developerWorks®

Conclusion

The main concern while putting together the architecture of a distributed component-based system is to be
able to unambiguously define business functions and their interfaces across sub-systems. We can adequately
address these concerns if the system embraces the following Open Architecture principles of service-
oriented architecture (SOA) (see Resources):

• Modularity: This implies architecture that has carefully partitioned business and technical functions
in a way that allows them to be independently accessed with minimal need to maintain state between
interactions. The use of publish and subscribe paradigm in the design of a distributed system inherently
promotes use of stateless nature of sub-system design. As is evident from the case study in the paper,
each of the independent activity flows naturally represent an AND state of the component, while the
only predominant state in each AND state being the wait state for each flow. The behavior is largely
stateless after that resulting in the creation or update of a defined entity which itself is exposed to
rest of the system through a write operation and never preserved. Such a design naturally exhibits the
properties of a modular system that preserves minimal state between interactions.

• Open standards: The use of open standards most affects the distributed system design where those
standards have to do with service description, discovery, and access of functionality. SysML is a
modeling language based on open standard and so is DDS specification. SysML is the language
for unambiguous definition of system or sub-system functionality. While, DDS is a language for
unambiguously defining sub-system interfaces it also magically encapsulates within itself the
mechanisms of discovery and access.

• Interoperability: In distributed systems, interoperability relies on well-defined interface syntax and
semantics. DDS as an interface language not only clearly exposes the interface capability in what it
does, but also the relevant semantics and behavior of the data model unambiguously. This leaves no
scope of misinterpretation of data by applying the wrong context to its interpretation.

Thus getting the two enablers viz. DDS and SysML together in a MBSE process seems like a definite
success story for distributed systems analysis and design, one that closely follows the path defined by a
mature process like Rational Harmony systems engineering that itself is based on systems engineering best
practices.

© Copyright IBM Corporation 2011
(www.ibm.com/legal/copytrade.shtml)
Trademarks
(www.ibm.com/developerworks/ibm/trademarks/)

Case study of model-based systems engineering (MBSE): Part 2.
Develop data-focused processes for distributed systems analysis and
design

Page 13 of 13

http://www.ibm.com/legal/copytrade.shtml
https://www.ibm.com/developerworks/ibm/trademarks/

	Table of Contents
	Understand DDS and problem frame analysis
	Data-centric publish and subscribe
	Problem-frame analysis
	Proposed work flow
	Problem frame analysis
	Information model analysis
	Entity functional analysis
	Design synthesis

	Conclusion
	Trademarks

