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A B S T R A C T

Conventional location-based accessibility measures are static and cannot represent accessibility fluctuations at
different times of day. To fill this gap, this study proposes location-based space-time accessibility measures to
capture the temporal variation of location-based accessibility. Using the space-time utility perspective, the ac-
cessibility of a location is conceptualized as the space-time utility offered by a set of facilities accessible from the
location. Individuals' facility choice behaviors among multiple alternatives are explicitly considered. A time-
dependent facility attractiveness function is introduced to represent the temporal variation of individuals' needs
to perform activities at a certain facility. The introduced function is formulated as two components: a time-
invariant component representing individual satisfactions derived from activity participation at the facility, and
a time-varying component expressing individuals' dynamic intensities to perform a certain type of activities at
different times of day. To demonstrate the applicability of these proposed measures, a comprehensive case study
has been carried out in Wuhan, China. The results of the case study show that the proposed measures can well
capture the temporal variation of accessibility, due to the dynamics both of traffic conditions and of individuals'
intensities in performing activities at different times of day. The proposed measures require moderate level of
data, in terms of rich facility information; and most of these data could be extracted from social media appli-
cations.

1. Introduction

Accessibility is a core concept in transport geography, urban plan-
ning, and other related fields. It is defined as the ease with which ac-
tivity locations or facilities can be reached from a particular location (or
by individuals at that location) using a particular transport system
(Kwan and Weber, 2008). Accessibility to various facilities (e.g., food,
healthcare, park, and shopping facilities) has been intensively studied
in the literature, not only for policy evaluation purposes (Páez et al.,
2012; Shaw et al., 2014), but also for being an explanatory factor in
many geographic phenomena analyses (e.g., social equity and justice)
(Neutens et al., 2010; Lucas, 2011; van Wee and Geurs, 2011; Neutens,
2015; Giuffrida et al., 2017; Higgs et al., 2017).

The evaluation of accessibility to urban services depends on acces-
sibility measures. In the literature, various measures have been devel-
oped and can be broadly classified into two categories: location-based

(or place-based) and individual-based (or people-based) measures
(Geurs and van Wee, 2004). Conventional location-based measures
conceptualize accessibility largely in terms of the proximity to urban
services from an individual's residential location or workplace.
Common examples of location-based measures include travel distance
to the nearest service location, the cumulative number of services
within a specified cut-off distance, and gravity-type measures in which
the attractiveness of services decreases with distance from the origin
(Neutens et al., 2010). These location-based measures require small
amounts of aggregated data and have been widely applied to many
applications in large-scale study areas. However, a major inadequacy of
such conventional location-based measures is that they are static and
fail to account for the fact that accessibility levels may fluctuate at
different times of day, because of the dynamic nature of human activity-
travel behaviors and traffic conditions (Miller, 2007; Neutens et al.,
2012a; Kwan, 2013).
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It allows us to consider the differences caused by different bus route availability based on the time of day!

However, the method of accounting for time is essentially just checking when the business is open or closed. The paper offers many good details regarding features in an accessibility metric, but the time component is nothing novel (despite their claims!).



The importance of including the critical time dimension in acces-
sibility studies has been well acknowledged in the literature by devel-
oping individual-based measures (Kwan and Weber, 2003; Miller, 2007;
van Wee, 2016). Most individual-based measures are built upon the
time-geographic framework (Hägerstrand, 1970), which captures the
complexities of individual activity-travel behaviors under various
space-time constraints. The number of reachable urban services and the
cumulative activity durations at reachable urban services are two well-
known individual-based measures (Kwan, 1998). A theoretically better
measure is the space-time utility approach, which directly measures the
individual space-time utilities of activity participation (Miller, 1999).
All these individual-based measures are well suited to evaluate the
accessibility of people in different social groups at different times of day
(Kwan and Weber, 2008). However, such individual-based measures
are difficult to generalize to large study areas (Páez et al., 2010; Horner
and Downs, 2014), because it is generally very expensive to acquire a
large number of samples of individual-level activity diary data in large
study areas.

With the recent development of information and communication
technologies (ICTs), it has become technically and economically fea-
sible to collect and assemble huge amounts of spatiotemporal data, such
as taxi trajectories, mobile phone tracking data, and social media data
(Liu et al., 2015; Miller and Goodchild, 2015; de Bruijn et al., 2018;
Yuan et al., 2018). These spatiotemporal Big Data enable data-driven
approaches to extract information about human activity and travel
behaviors and dynamic traffic conditions, thereby providing new data
sources to improve conventional location-based accessibility studies
(Järv et al., 2018). In the literature, considerable progress has recently
been made in location-based accessibility studies by explicitly con-
sidering dynamic traffic conditions (Li et al., 2011; Tenkanen et al.,
2016; Chen et al., 2017; Benenson et al., 2017; Widener et al., 2017;
Yang et al., 2017; Kujala et al., 2018; Zhang et al., 2018; Moya-Gómez
et al., 2018). In addition, increasing attention has been paid in the
literature to improving conventional location-based accessibility mea-
sures by incorporating human mobility patterns. Páez et al. (2010)
improved the conventional cumulative-opportunity measure by using
distinct travel distances for people in different social groups and geo-
graphical regions. Widener et al. (2015) and Fransen et al. (2015) ex-
tended conventional location-based measures by using interaction po-
tential metrics (Farber et al., 2013) and considering inter-zonal
commuting patterns. Chen et al. (2018) improved location-based ac-
cessibility measures by using individual mobility patterns extracted
from mobile phone tracking data. Järv et al. (2018) proposed a generic
framework for integrating the time dimension in location-based ac-
cessibility measures, and illustrated its application in a food accessi-
bility study by considering facilities' opening hours and temporal var-
iation of population distributions and traffic conditions.

Along the line of data-driven geographical research (Miller and
Goodchild, 2015), this study aims to incorporate the time dimension in
location-based accessibility measures by explicitly considering in-
dividuals' dynamic intensities for performing activities at facilities using
rich facility information. In recent years, rich facility information has
become publicly available through many social media (and location-
based service) applications, e.g., Foursquare, Twitter, and Google Map.
For example, the Foursquare application enables users to post their
location in a “check-in” to record, track, and share their life moments
with friends. In the application, a user's geographical location is mat-
ched to nearby facilities such as restaurants, shopping malls, cinemas,
and coffee shops. After checking into a facility, users can share their
activity participation experiences through advice, photographs, and
ratings of service quality. Beyond the facilities stored in the application,
users are encouraged to check into new facilities, for which they earn
additional rewards. These user-generated social media data provide an
effective means for researchers to collect and update rich information
about dynamically changing urban facilities. Such rich facility in-
formation could be a useful data source for accessibility studies because

it records not only the detailed characteristics of urban facilities (e.g.,
facility location, type, opening hours and price), but also customers'
behaviors (or experiences) in choosing and using urban facilities.
However, little attention has been paid in the literature to using such
rich facility information for accessibility studies.

By using rich facility information, this study proposes new location-
based space-time accessibility measures to evaluate the temporal var-
iation of location-based accessibility in large-scale study areas. The
proposed accessibility measures reconciles conventional location-based
accessibility measures with the space-time utility perspective (Miller,
1999; Delafontaine et al., 2012). In this study, the accessibility of a
location is conceptualized as the space-time utility offered by a set of
facilities that are accessible from the location. Individuals' facility
choice behaviors among multiple alternatives are explicitly considered.
A time-dependent facility attractiveness function is introduced to re-
present the temporal variation of individuals' needs to perform activ-
ities at a certain facility. The introduced function is further formulated
as two components: an activity satisfaction component, and an activity
intensity component. The former represents the degree of satisfaction
that individuals derive from performing activities at a facility. It is time-
invariant, depending on the facility's qualities. The latter represents
individual intensities when participating in a particular type of activity
at different times of day. It is time-varying, related to activity type and
individual needs to perform this type of activity during a certain time
period. Such a formulation of space-time utility reflects the observation
that individuals' activity utility is related to the satisfaction of per-
forming the activity itself and to the intensity with which the activity is
performed (Axhausen and Gärling, 1992; Lam and Yin, 2001). There-
fore, the proposed measures enable realistic evaluation of temporal
variation of location-based accessibility at different times of day. More
importantly, the proposed measures only required a moderate level of
data with respect to rich facility information, and most of these data
could be extracted from social media data.

2. Conventional location-based accessibility measures

This section briefly introduces conventional location-based acces-
sibility measures to provide necessary background. Most location-based
accessibility measures in the literature can be defined generically as the
sum of products of an attractiveness and a distance decay function
(Kwan, 1998; Páez et al., 2010):

∑=A i W K c( ) ( ) ( )
f f

α
if (1)

where A(i) is the accessibility of individuals living at location i;Wf is the
individual perception of the attractiveness of facility f; α is the sensi-
tivity parameter with respect to facility attractiveness; and K(•) is a
distance decay function that depends on the time (or distance) cif re-
quired to travel from location i to facility f. Depending on how K(•) is
defined, different accessibility measures can be obtained. Using a ne-
gative exponential (or power) function leads to the gravity measure
(Hansen, 1959):
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where βi≥ 0 is the sensitivity parameter with respect to travel time cif.
The larger the value of βi, the stronger will be the distance decay effect
on A(i). By using a binary cutoff function Ri(f), a measure of cumulative
opportunities (Breheny, 1978) can be defined as follows:
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where Ri(f)= 1 if travel time cif is less than or equal to threshold γi and
Ri(f)= 0 otherwise. Smaller values of γi can be interpreted as lower
mobility for people living in location i (i.e., a stronger distance decay
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effect). Spatially varying values of γi or βi could be used for people
living in different locations (Páez et al., 2010).

These conventional location-based accessibility measures are easy
to implement and require only a small amount of data. However, they
are static and are often criticized for their neglect of dynamics in human
behavior and traffic conditions (Kwan and Weber, 2003; Miller, 2007).

3. Proposed location-based space-time accessibility measures

This section presents the proposed location-based space-time ac-
cessibility measures to evaluate the temporal variation of location-
based accessibility. Unlike conventional location-based measures, the
proposed measures centered at facilities rather than individuals' re-
sidential locations. The service area of facility f delimits all possible
space-time locations from which individuals can travel to the facility
within the given travel-time threshold γf. Fig. 1 illustrates this service
area concept in three-dimensional (3D) space, where the z-axis re-
presents time and the x- and y-axes represent two-dimensional (2D)
geographic space. Given a facility f, a time instant tr, and a travel-time
threshold γf, the facility's service area, denoted by SA(f, tr,γf), can be
expressed as following a backward space-time cone (Miller, 2005) in
the time geographic literature:

= + − + ≥ ≤

≤ +

SA f t γ i t Min t t γ Max t t c t t t
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where tp and tq are the facility's opening and closing times respectively
and cif(tr) is the time-varying travel time required to reach the facility
from location i. A location i within the facility's service area, SA(f, tr,γf),
can be determined by the binary function, Rf(i), as.
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Thus, this service area model can consider the facility's open hour
constraint and the dynamics of traffic conditions at different time in-
stants (i.e., the sizes of the service area can vary by different times of
day).

Following the space-time utility accessibility approach (Miller,
1999), the utility of individuals living in residential location
i∈ SA(f, tr,γf) and performing activities at facility f is denoted by Uf(i)
and formulated generically as:

=U i W t K c t( ) ( ( )) ( ( ))f f r
α

if r (6)

where K(•) is the generic distance decay function and Wf(tr) is the time-
dependent attractiveness of the facility. Using Rf(i) as the distance
decay function, Uf(i) can be defined as:

=U i W t R i( ) ( ( )) ( )f f r
α

f (7)

Similarly, using the negative exponential function, Uf(i) becomes:

= −U i W t β c t( ) ( ( )) exp( ( ))f f r
α

f if r (8)

where βf is the distance decay parameter of facility f. Given βf, the
travel-time-threshold γf for generating SA(f, tr,γf) can be simply de-
termined as:

= −γ ε βlg( )/f f (9)

where ε≈ 0 is a small tolerance (e.g., ε≈ 0.001).
To represent the temporal variation of activity utility at different

times of day, the time-dependent attractiveness, Wf(tr), is formulated in
this study as follows:

=W t s g t( ) ( )f r f f r (10)

where sf is a static “activity satisfaction” parameter representing the
degree of individual satisfaction gained from performing activities at
the facility and gf(tr) is a time-varying “activity intensity” function re-
presenting the intensity of an individual's participation in activities at a
certain time instant tr. This formulation of attractiveness reflects the
observation that the activity utility is related to the satisfaction of
performing the activity itself and the intensity with which the activity is
performed (Axhausen and Gärling, 1992; Lam and Yin, 2001). The
activity satisfaction function is time-invariant and depends on an en-
semble of facility qualities. In practice, this parameter can be directly
estimated from user rating information provided by social media ap-
plications.

The intensity of an individual performing an activity is related to the
activity type and to individual physiological and/or psychological
needs of performing this type of activities (Lam and Yin, 2001; Liao
et al., 2013). In most cases, these physiological and/or psychological
needs depend on the time of day in the context of daily activity-travel
scheduling, and hence activity intensity is represented in this study as a
time-dependent function. Note that the intensities of participation in
activities at facility f may be different from one individual to another.
The gf(tr) function represents the average intensities of all individuals
performing activities at the facility and can be estimated from the
number of customers at the facility throughout the day (i.e., the tem-
poral profile of the number of customers). Fig. 2 illustrates an activity
intensity function for a typical McDonald's restaurant. In the figure, the
number of customers is normalized into a range from zero to one. The
zero value of gf(tr) indicates that no people would participate in activ-
ities at the facility at time instant tr (e.g., a time instant outside the
opening hours of the facility). Within the opening hours, the gf(tr) value
can vary at different times of day.

Three location-based space-time accessibility measures are then
developed to evaluate the accessibility of individuals living at location
i. A location i may be covered by the service areas of several facilities of
the same type. Note that various sizes of service area can be used for
facilities with different qualities. These accessible facilities constitute
the facility choice set for an individual's activity participation, denoted

Fig. 1. Service area concept of a facility.

Fig. 2. Illustrative example of a time-dependent activity intensity function.
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by Fi={f1,⋯, fn}. The first proposed measure, denoted by CWA(i),
expresses the consumer welfare aggregation (CWA) principle used in
conventional location-based accessibility measures. It is the sum of the
activity utilities provided by all facilities in the choice set Fi:

∑= =
∀ ∈

A i CWA i U i( ) ( ) ( )
f F

f
i (11)

where Uf(i) is the utility derived from activity participation at facility
f∈ Fi as defined in Eq. (6). This accessibility measure represents all
possible activity utilities (amounts of welfare) enjoyed by an individual
at location i.

In addition to the CWA principle, the consumer welfare maximiza-
tion (CWM) principle and the random utility maximization (RUM)
principle, which are used in the space-time utility accessibility ap-
proach (Miller, 1999), are adopted. The second proposed measure,
denoted by CWM(i), follows the CWM principle. Assuming that the
individual is a rational utility maximizer, he/she chooses only one fa-
cility f∈ Fi which provides the maximum activity utility for performing
an activity. Accordingly, the accessibility of individuals at location i is
measured as the maximum utility provided by a particular facility f∈ Fi:

= =
∈

A i CWM i U i( ) ( ) max ( ( ))
f F

f
{ }i (12)

The third proposed measure, denoted by RUM(i), adopts the RUM
principle. Unlike the CWM principle, the RUM principle builds on
random utility theory, adding an unobservable random error compo-
nent to the activity utility measure, i.e., Eq. (6). The error components
of all facilities ∀f∈ Fi are assumed to follow independently and identi-
cally distributed Gumbel distributions. Accordingly, the mechanism of
choosing a facility to maximize activity utilities can be formulated as a
logit discrete-choice model. Accessibility based on the RUM principle
can therefore be expressed as the following logsum accessibility mea-
sure (van Wee, 2016):

∑= =
⎧
⎨
⎩

⎫
⎬
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A i RUM i
λ

U i( ) ( ) 1 ln exp( ( ))
f F

f
i (13)

Unlike CWM(i), this measure is a summary indicator representing
the expected maximum utility of the full facility choice set.

By using facility-specific parameters (βfor γf), these three proposed
accessibility measures can capture distinct distance decay effects for
facilities with different qualities. Fig. 3 gives a simple illustrative ex-
ample. Suppose that f1 is a famous restaurant and perceived by most
citizens, whereas f2 is a local fast-food shop and perceived only by local
residents. As shown in Fig. 3, using conventional location-based mea-
sures, both facilities, f1 and f2, within travel-time threshold γi are
identified as accessible facilities for people living at location i. This

implies that both facilities have an identical service area of γi. In reality,
the service area of f1 can be much larger than that of f2. People may
drive 20min to f1, but may not be willing to drive 10min to f2. Using
the proposed measures, facility-specific parameters, γf1 and γf2, can be
used to capture different distance decay effects for these two facilities.

Therefore, the proposed measures generalize conventional location-
based accessibility measures in several aspects. First, the proposed
measures can well represent the temporal variation of location-based
accessibility at different times of day using the introduced time-de-
pendent attractiveness function, Wf(tr). The facility's opening hour
constraints and the dynamics of traffic conditions are also explicitly
considered in the service-area model, SA(f, tr,γf). Second, the proposed
measures can well capture various distance decay effects for facilities of
different qualities using facility-specific parameters, γf or βf. Finally, the
proposed measures can explicitly consider individuals' facility choice
behaviors among multiple alternatives using the CWA, CWM, and RUM
principles. Conventional location-based accessibility measures can be
regarded as special cases of CWA(i), using a static attractiveness and
assigning the same distance decay parameter (γf or βf) to all facilities.
Nevertheless, compared to conventional location-based accessibility
measures, the proposed measures require extra rich facility information
data, including facility type, opening hours, user rating (i.e., activity
satisfaction parameter) and the temporal profiles of the number of
customers (i.e., activity intensity function).

4. Study area and methods

4.1. Study area

This section presents a case study in a mega-city (Wuhan, China) to
demonstrate the applicability of the proposed accessibility measures. As
shown in Fig. 4, Wuhan is located in central China and lies in the
middle reaches of the Yangtze River at the intersection of the Yangtze
and Han Rivers. It consists of thirteen administrative districts, including
seven districts in core urban areas and six districts in suburban and
rural areas. The city is the economic, educational, and transportation
center of central China, covering approximately 8594 km2 with a po-
pulation of 10.6 million. Wuhan is the world's largest “college town”,
with a total of 1.2 million university-level students across 85 institu-
tions of higher learning. In recent years, Wuhan has been considered as
one of the fastest-growing cities in China and the world. Its gross do-
mestic product (GDP) exceeded 210 billion USD in 2017 and is growing
at an annual rate of 8.0%. The unique economic and demographic
status of Wuhan makes it an interesting area for accessibility studies.

4.2. Data collection

Two datasets were collected, including a taxi-tracking dataset and a
rich facility information dataset. The taxi-tracking dataset was collected
to estimate hourly traffic conditions in the Wuhan road network, which
consists of 19,306 nodes and 46,757 links. The taxi-tracking dataset
was collected on a typical Thursday (September 3, 2009), including
11,248 taxis' trajectories. The method for estimating hourly mean travel
times using this taxi-tracking dataset has been documented in Chen
et al. (2017). Fig. 5(a) illustrates the estimated traffic conditions of the
road network during a morning peak period (7:00–8:00). Links shown
in red represent congested links (speed< 20 km/h); orange represents
slightly congested links (speed 20–40 km/h); and yellow represents
uncongested links (speed>40 km/h). As illustrated, 18.24% of the
links in the Wuhan network were congested in the morning peak hour.
Fig. 5(b) shows the temporal variations of average travel speed on all
network links. Traffic conditions became more congested during the
morning (7:00–9:00) and evening (17:00–18:00) peak periods.

The rich facility information dataset was collected from Baidu Map,
which is one of the largest open platforms of location-based services in
China. Similarly to many social media applications, Baidu Map allows

Fig. 3. Illustrative example of various distance decay effects for facilities at
different levels.
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Fig. 4. Study area in Wuhan, China.

Fig. 5. Estimated traffic conditions in the Wuhan network: (a) a morning peak hour; (b) temporal variation of average travel speed.
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registered users to post their location at a “check-in” to share their
experiences of using various facilities, such as restaurants, shopping
malls, cinemas, coffee shops, etc. Based on application programming
interfaces (APIs) provided by Baidu Map (http://lbsyun.baidu.com/
index.php?title=jspopular), a toolkit was developed to extract rich
facility information about food services in Wuhan City during
September 2017. Each collected facility had several attributes, in-
cluding its name, latitude and longitude, type, opening hours, total
number of check-in records, user rating of service level, and price.
Among these attributes, the type attribute gives the detailed type of food

service facilities among 40 types. By merging similar types (e.g.,
Chinese restaurants serving Sichuan and Guangdong cuisines), the
27,256 facilities collected were grouped into nine types, as shown in
Fig. 6(b). Chinese restaurants are dominant in Wuhan City, accounting
for 35.1% of overall food service facilities. Following those are fast-food
restaurants (24.1%) and noodle houses (12.1%). Fig. 6(a) shows the
spatial distribution of the facilities collected in Wuhan. As shown, food
service facilities are not evenly distributed in Wuhan City, but rather
are clustered at seven shopping centers. The bottom of Fig. 6 gives the
opening hours for most facilities in each category.

Fig. 6. Food service facilities in Wuhan City: (a) facility spatial distribution; (b) facility type distribution; (c) user rating distribution.

Fig. 7. Activity intensity functions for seven fast-food restaurants.
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The user ratings of service level attribute were used in this case
study to measure individual activity satisfaction directly, i.e., sf in Eq.
(10). Fig. 6(c) illustrates the user ratings for all collected facilities in
Wuhan City. The user ratings, as collected, ranged from 1 to 10. They
were normalized into a scale of 0 to 1. A larger sf value indicates a
higher degree of individual satisfaction with the service offered by the
facility. The average sf value was 0.82, but the values varied sig-
nificantly among facilities. More than half the collected facilities
(55.73%) in Wuhan City were satisfactory (sf≥ 0.8); of these, 27.29%
were very satisfactory (sf≥ 0.9). The percentage of unsatisfactory fa-
cilities (sf < 0.6) was low, accounting for 11.93% of the total. The
“ordinary facility” category (0.6≤ sf < 0.8) accounted for 32.34%.

To generate the activity intensity function, i.e., gf(tr) in Eq. (10), a
survey was carried out to perform a manual count of customer numbers
for nine collected facility types. Forty-seven representative facilities
were randomly selected within the study area. Fig. 7 shows the re-
sulting activity intensity functions for seven fast-food restaurants (two
McDonald's restaurants, four KFC restaurants, and one Yonghe King
restaurant). The figure shows that the activity intensity functions of all
facilities of the same type tended to display a very similar pattern. This
was due to the similar physiological needs of performing the same type
of activities at different facilities. The activity intensity functions for the
other eight types were also generated and are shown in Fig. 8. For these
eight types of facilities, each activity intensity function was generated
by the average of five representative facilities, which also had a very
similar pattern of the activity intensity function. Therefore, we argue
that it is reasonable to use a representative activity intensity function to
approximate the activity intensity functions of all facilities in the same
type.

In this case study, to capture distinct distance decay effects for fa-
cilities of different quality, facilities were classified into three levels:
city, district, and local. Food service facilities classified at the city level
were well-known and could be perceived by most citizens; facilities at
the district level were relatively well-known and could be perceived by
many people living in the same district; and other facilities at the local
level could be perceived only by local residents. In this study, Rf(i), as
calculated in Eq. (5), was used as the distance decay function, and a
larger value of the γf parameter (i.e., a larger service area) was assigned
to facilities at a higher level. This classification of facilities was con-
sistent with the behavioral perspective of accessibility (Cascetta et al.,
2016) that an accessible facility should be perceived by individuals as a
potential location to perform their activities.

According to a survey of eight experienced local residents, all col-
lected facilities were classified, and facilities at the city, district, and

local levels accounted for 1.54%, 45.04%, and 53.43% respectively of
all facilities. City-level facilities were generally located at seven shop-
ping centers in Wuhan City. Local-level facilities were typically snack
places, noodle houses, and fast-food restaurants, whereas district-level
facilities were large Chinese or Western restaurants with a relatively
high rating and price. According to the survey, the threshold para-
meters (i.e., γf) were set to 30min by car for city-level facilities, 15min
by car for district-level facilities, and 20min on foot for local-level fa-
cilities. The walking speed was set as 5 km/h for the whole period of
interest.

4.3. Data analysis

Based on the collected data, accessibility to food services in core
urban areas of Wuhan City are evaluated using three proposed mea-
sures. To calculate the proposed measures, a GIS toolkit is developed.
The detailed information of the developed GIS toolkit is given in the
Appendix A.

In this case study, three steps are designed to demonstrate unique
characteristics of the proposed measures. The first step is to examine
the capabilities of proposed measures (using CWA(i) for illustration) to
capture temporal variation of location-based accessibility, due to both
dynamic traffic conditions and time-varying activity intensity functions.
To distinguish their distinctive effects, the CWA(i) measure is also
calculated for the scenario that the values of all activity intensity
functions to be 1 (i.e., gf(tr)= 1) throughout the day. All accessibility
measures are calculated for every hour of the day. The second step is to
investigate facilities' various distance decay effects on accessibility
spatial disparities using the CWA(i) measure for illustration. For com-
parison, CWA(i) accessibility values is also calculated for the scenario
that classified all facilities in the study area into the district level. In
another word, the same γf parameter (i.e., 15min by car) is used for all
facilities. The third step is to investigate the individuals' facility choice
behavior effects on the evaluation of location-based accessibility. The
spatial distributions of three proposed measures, i.e., CWA(i), CWM(i)
and RUM(i), are compared and analyzed.

Throughout the case study, Uf(i) defined in Eq. (7) is used to cal-
culate the space-time utility based on the distance decay function, Rf(i).
The sensitivity parameter for facility attractiveness (i.e., α) is set to
0.49, according to a previous study (Chen et al., 2017) that calibrated
this parameter in Wuhan City. The whole study area is discretized into a
set of grid cells with the size of 300m×300m.

Fig. 8. Activity intensity functions for nine types of food service facilities.
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5. Results

5.1. Accessibility temporal variation

This section reports the results of case study. Fig. 9(b) shows the
calculated spatial distribution of food service accessibility in terms of
CWA(i) as defined in Eq. (11) during lunch time (12:00–13:00). As
shown, food service accessibility, in terms of CWA(i), was not evenly
distributed. Distinctive peaks were found near the seven shopping
centers, especially Wugang and Xudong.

Fig. 10 shows the temporal variation of accessibility to food services
in Wuhan City. The blue line in this figure shows the total CWA(i) value
for the whole city at different times of day, and reveals that accessibility
varied significantly. The accessibility value reached its peak values
during lunch time (12:00–13:00) and dinner time (18:00–19:00). This
was due to the high values of the activity intensity function, gf(tr),
during these time periods (see Fig. 8). The spatial distributions of the
accessibility value for the two periods are illustrated in Figs. 9(b) and
9(c), which show that the total CWA(i) value during lunch time were
38.14% (i.e., (4.89–3.54) / 3.54) larger than during dinner time. This
result was due to the better traffic conditions during lunch time than
during dinner time in Wuhan City. Fig. 9(a) shows the accessibility
value during the breakfast time period (7:00–8:00). Although traffic
conditions in Wuhan City during breakfast time are as congested as at
dinner time, individual intensities for having breakfast at food service
facilities were not as high as those for having dinner at these facilities.
In fact, the accessibility value during breakfast time was only 2.26%
(0.08/3.54) of those during dinner time. Fig. 9(d) gives the accessibility
value for the off-peak period from 22:00–23:00. During this period,
traffic flows smoothly in Wuhan City. However, most restaurants (e.g.,

Chinese restaurants) are closed, with the exception of some fast food
restaurants, coffee shops, and bars. In addition, individual intensities
for eating at fast-food restaurants and coffee shops during this period
are relatively low. All these factors contribute to low accessibility value
during this off-peak period, accounting for only 2.86% of the value
during lunch time. Therefore, the proposed accessibility measures can
well capture the temporal variation of location-based accessibility, due
to the dynamic traffic conditions and individuals' intensities of per-
forming activities at different times of day.

The red line in Fig. 10 shows the temporal variation of accessibility
(i.e., total CWA(i) value) when gf(tr)= 1 was set throughout the day. In
this case, the accessibility value fluctuated due to only dynamic traffic
conditions and the opening hours of facilities. The accessibility value
reach its peaks when traffic conditions become smooth during the
periods of 13:00–14:00 and 21:00–22:00. However, this result of peak
accessibility values, particularly during the period of 21:00–22:00, was
not reasonable from the perspective of individuals' space-time utilities;
because the intensities for individuals having dinners during that period
are low. Conversely, by incorporating individuals' time-varying activity
intensities (see the blue line), the periods with peak accessibility to food
services were well shifted to the lunch (12:00–13:00) and dinner
(18:00–19:00) time periods. Therefore, the introduced activity intensity
function, gf(tr), can enhance the ability to evaluate the temporal var-
iation of accessibility at different times of day.

5.2. Facilities' various distance decay effects

Fig. 11 shows the spatial accessibility according to the CWA(i)
measure during dinner time (18:00–19:00) by classifying all facilities at
the district level. In this setting, the CWA(i) measure approaches the

Fig. 9. Accessibility to food services at different times of day.
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conventional location-based accessibility measure (i.e., cumulative
opportunities). The total CWA(i) value was significantly overestimated
by 75.14% (i.e., 6.20/3.54–1) compared to that shown in Fig. 9(c). This
result is reasonable because local-level facilities accounted for 53.43%
of total facilities in Wuhan City, and their service areas were over-
estimated by classifying them at the district level. Therefore, using a
single distance decay effect for facilities with different qualities can
introduce considerable bias into the evaluation of location-based ac-
cessibility.

5.3. Individuals' facility choice behavior effects

Fig. 12 shows the accessibility spatial patterns of RUM(i) and CWM
(i) measures during dinner time (18:00–19:00). It is apparent that the
RUM(i) and CWM(i) measures had very different spatial patterns of food
service accessibility than the CWA(i) measure shown in Fig. 9(c). The
CWA(i) measure expresses the CWA (consumer welfare aggregation)
principle used in conventional location-based accessibility measures,
and the space-time utilities provided by all facilities within the choice
set of location i were aggregated to form the location's accessibility.
Because food service facilities were clustered in Wugang and Xudong,
distinctive peaks were observed in these two areas (see Fig. 9(c)). Un-
like CWA(i), the RUM(i) measure expresses the RUM (random utility
maximization) principle. It accommodates the law of diminishing
marginal utility from microeconomic theory, meaning that inclusion of

the first facility in the choice set yields more utility than inclusion of the
second and subsequent facilities, with a continuing reduction for more
facilities. Accordingly, as shown in Fig. 12(a), distinctive peaks did not
form at Wugang and Xudong, and the seven shopping centers had si-
milar accessibility levels, which were still higher than those of other
areas with fewer facilities. The CWM(i) measure expresses the CWM
(consumer welfare maximization) principle, and only the facility pro-
viding the maximum utility was considered in evaluating the location's
accessibility. Hence, the seven shopping centers as well as their closest
neighboring areas had similar levels of accessibility in terms of the
CWM(i) measure, as shown in Fig. 12(b). Therefore, how individuals'
facility choice behaviors among multiple alternatives were modeled
had a significant impact on accessibility evaluation. Compared to the
CWA(i) measure, the RUM(i) and CWM(i) measures, using the CWM and
RUM principles, could be useful alternatives to evaluate the accessi-
bility of urban service delivery.

6. Discussion

The analysis presented above demonstrates the capabilities of the
proposed location-based space-time accessibility measures to capture
temporal variation in accessibility over the course of the day.
Consistently with previous literature (Li et al., 2011; Neutens et al.,
2012b; Tenkanen et al., 2016; Widener et al., 2017; Kujala et al., 2018;
Järv et al., 2018), the analysis highlights the roles of dynamic traffic
conditions and facilities' opening hours in evaluating accessibility at
different times of day. More importantly, the analysis contributes to the
existing literature by showing how individuals' time-varying intensities
for performing activities at different types of facilities shape accessi-
bility fluctuations over 24 h. It suggests that planners and policymakers
should be aware of the time-varying accessibility (or utility) provided
by various types of facilities at different times of day. For example, a
location with clustered Chinese restaurants may have a high level of
food service accessibility at dinner time, but a low accessibility at
breakfast time. From this perspective, we argue that examining acces-
sibility over a specific time period alone will yield only a partial un-
derstanding of dynamic spatial accessibility patterns over the course of
the day, particularly for study areas with heterogeneous distributions of
facilities of different types. Substantial improvements on facilities'
service level could be achieved by adopting a dynamic allocation of
resources (e.g., employees) in accordance with the individuals' time-
varying intensities for performing activities at facilities.

The analysis underscores the significance of facilities' various dis-
tance decay effects for accessibility studies. It suggests that using a

Fig. 10. Temporal variation of location-based accessibility.

Fig. 11. Accessibility to food service using a single distance decay parameter.
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single service-area size for all facilities at different levels could in-
troduce a considerable bias into evaluating spatial accessibility dis-
parities. This result is consistent with previous accessibility studies
performed using the floating catchment area approach (Luo and
Whippo, 2012; McGrail and Humphreys, 2014; Dony et al., 2015; Bauer
and Groneberg, 2016). The analysis also demonstrates how individuals'
facility choice behaviors among multiple alternatives influence the
spatial distribution of accessibility. It suggests that incorporating a
space-time utility approach (Miller, 1999) provides a flexible frame-
work for modeling individuals' facility choice behaviors to evaluate
location-based accessibility. Other principles, i.e., RUM (random utility
maximization) and CWM (consumer welfare maximization), can be
useful alternatives to the conventional CWA (consumer welfare ag-
gregation) principle commonly used in location-based measures. This
result supports van Wee's assertion (2016) that individuals' facility
choice behaviors, as an important option value, should be considered
when evaluating location-based accessibility.

The case study results suggest that the proposed measures require a
moderate level of data with respect to rich facility information, in-
cluding facility locations, types, opening hours, user ratings, and tem-
poral profiles of numbers of customers. Most of these data (i.e., loca-
tions, types, opening hours, and user ratings) can be extracted from
social media applications, such as Baidu Map, Foursquare, Twitter,
TripAdvisor, Yelp, and etc. The check-in records for a facility may be a
potential data source from which to collect temporal profiles of num-
bers of customers. However, in the collected dataset, the frequency of
user check-ins was not sufficient to obtain reasonable activity intensity
functions. Field surveys were therefore carried out. Nevertheless, the
case study showed that facilities of the same type tend to have very
similar patterns of activity intensity functions, an observation that can
be used to generate a representative activity intensity function for all
facilities of the same type. Therefore, we suggest that conventional
location-based accessibility can be greatly enriched by incorporating
the critical time dimension and the individual behavioral preferences
extracted from such rich facility information.

Several directions for future research are worth noting. First, the
proposed accessibility measures did not consider the congestion effects
on facilities. Further studies are required to extend the proposed mea-
sures to incorporate competitions from both demand and supply sides
using floating catchment area approach (Neutens, 2015). Dynamics in
customer demands at different times of day can also be incorporated
using mobile phone big data (Chen et al., 2018; Järv et al., 2018).
Second, the CWA, CWM, and RUM principles were used in this study to

evaluate spatial accessibility to a single type of facilities (i.e., food
services). The extension of the proposed measures to systematically
evaluate accessibility to multiple types of urban services (e.g., job,
healthcare, park, and shopping facilities, etc.) using discrete choice
models, such as nested logit models, is another interesting topic for
further research. Third, the proposed measures only consider the road
transportation model. Extension of the proposed measures to multi-
mode transportation network is another topic for further investigation.
Last but not least, in the case study, a survey was carried out to de-
termine the service areas of facilities at the three levels. In recent years,
several studies have investigated the problem of shopping-center ser-
vice area delineation by using taxi-trajectory Big Data (Yue et al., 2012;
Chen et al., 2017). The delineation of service areas for different types of
urban facilities using emerging spatiotemporal Big Data and the in-
corporation of the results into accessibility studies need further in-
vestigation.

7. Conclusion

This study has proposed three location-based space-time accessi-
bility measures by reconciling conventional location-based accessibility
measures with the space-time utility perspective. The dynamic acces-
sibility of a location was conceptualized as the temporal variation of
space-time utility offered by facilities accessible from the location. The
temporal variation of individuals' intensities to perform activities at
facilities was explicitly formulated. The facilities' opening hour con-
straints and the dynamics of traffic conditions were also considered. To
demonstrate the capability of the proposed measures, a comprehensive
case study was performed in Wuhan, China. The case study results in-
dicated that the proposed measures can well capture the temporal
variation of location-based accessibility, due to the dynamic nature of
traffic conditions and individuals' intensities of performing activities at
different times of day.
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Appendix A. Appendix

This appendix presents the developed GIS toolkit for calculating the proposed location-based space-time accessibility measures. The GIS toolkit

Fig. 12. Accessibility to food services using the RUM(i) and CWM(i) measures.
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was implemented using Visual C# programming language and integrated with the ArcGIS 9.3 software.
As shown in Fig. 13, the toolkit comprises two types of input: road network and rich facility information. Rich facility information is organized by

a GIS point layer, an intensity function table, and a service area table. The GIS point layer stores a bundle of attributes, including facility's geo-
graphical location, type_ID, level_ID, opening time tp, closing time tq and user rating sf. The type_ID is a foreign key of intensity function table, which
stores the time-dependent activity intensity function, gf(t). The level_ID is a foreign key of service area table, which specifies the type of distance
decay function (i.e., exp(•) or Ri(f)) and distance decay parameter (i.e., βi or γi). The road network information is formulated as a GIS polyline layer
with the road geometries, and a speed table with node-link topologies.

Fig. 13. User interface of the developed toolkit.
The outputs are the calculated location-based space-time accessibility measures, i.e., CWA(i), CWM(i) and RUM(i). To store the calculation

results, the whole study area is discretized into grid cells of equal size and stored in a GIS raster layer. The detailed steps for calculating accessibility
measures are described below (using RUM(i) for illustration).

Step 1. Initialization.
01: For each cell i.
02: A(i)= 0.
03: End For.
Step 2. Accessibility measure calculation.
04: For each facility f∈ F.
05: Construct the service area SA(f, tr,γf).
06: For each cell i∈ SA(f, tr,γf).
07: Retrieve cif(tr) (travel time from facility f to cell i).
08: Calculate utility Uf(i) using Eq. (6).
09: Set A(i)=A(i)+ Exp(Uf(i)).
10: End For.
11: End For.
12: For each cell i.
13: Set =A i A i( ) ln( ( ))λ

1 .
14: End For.
Step 1 is the initialization by setting A(i)= 0 for all cells. Step 2 is to calculate accessibility measures for each cell f∈ F. Firstly, the service area of

the facility is constructed by using backward space-time cone algorithm (Chen et al., 2016), allowing all accessible cells i∈ SA(f, tr,γf) of the facility
to be determined. Then, travel time from facility f to accessible cell i, cif(tr), can be retrieved. The utility of activity participations at facility f for
individuals at cell i is calculated from Uf(i)= (Wf(tr))αK(cif(tr)). The utility derived for different facilities are added iteratively as A(i)=A(i)+ Exp
(Uf(i)). After utilities from all facilities are added, the RUM(i) value is obtained by A iln( ( ))λ

1 .
This algorithm can be readily modified for calculating CWA(i) and CWM(i) measures by respectively using A(i)=A(i)+Uf(i) and

A(i)= Max (A(i),Uf(i)) on Line 09. Lines 12–14 are not needed for both CWA(i) and CWM(i) measures.
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