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Accessibility metrics are gaining momentum in public transportation planning and policy-making. However,
critical user experience issues such as crowding discomfort and travel time unreliability are still not considered
in those accessibility indicators. This paper aims to apply a methodology to build spatiotemporal crowding data
and estimate travel time variability in a congested public transport network to improve accessibility calculations.
It relies on using multiple big data sources available in most transit systems such as smart card and automatic
vehicle location (AVL) data. Sdo Paulo, Brazil, is used as a case study to show the impact of crowding and travel
time variability on accessibility to jobs. Our results evidence a population-weighted average reduction of 56.8%
in accessibility to jobs in a regular workday morning peak due to crowding discomfort, as well as reductions of
6.2% due to travel time unreliability and 59.2% when both are combined. The findings of this study can be of
invaluable help to public transport planners and policymakers, as they show the importance of including both
aspects in accessibility indicators for better decision making. Despite some limitations due to data quality and
consistency throughout the study period, the proposed approach offers a new way to leverage big data in public

transport to enhance policy decisions.

1. Introduction

As the more intense use of private cars for commuting in major
cities generates problems and externalities such as congestion, pollu-
tion, and increased stress levels, public transport systems are becoming
more important as a viable sustainable alternative to urban growth. To
plan and design such systems, accessibility metrics are slowly gaining
momentum towards being used as indicators to guide future decision
making (Boisjoly and El-Geneidy, 2017). By calculating the number of
opportunities reachable from each location throughout a city within a
travel time threshold, planners can evaluate the benefits of new pro-
posed transportation infrastructure and decide upon multiple im-
provement plans.

In addition, public transport systems in many cities around the
world are nowadays very crowded, especially during peak hours.
Moreover, deprived urban areas may suffer from the unreliability of
travel times, forcing users to budget more travel time to safeguard their
on-time arrivals (Arbex et al., 2016). Despite a relevant stream of re-
search focusing on user time valuation of crowding discomfort and on
travel time reliability, there remains a gap to evaluate how crowded
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operating conditions and travel time variability of public transport
systems impact metrics related to accessibility to opportunities in cities.

In such a context, this paper aims to investigate how and to what
extent travel time unreliability, the intensity of crowding discomfort
and its spatial distribution affect accessibility to opportunities as per-
ceived by users. Public transportation big data from smart cards and
automatic vehicle location (AVL) for buses over a large period are used
to achieve such objective. Months of data reveal crowding patterns
regularity and travel time variations over time, while fine-grained
crowding levels are used to measure perceived accessibility to jobs with
crowding time valuation. Accessibility inequalities emerge from the
results when including both crowding and travel time variability data.
Finally, we discuss policy implications from such analysis.

Thus, this paper aims to address the following questions:

e How to estimate passenger load density in a very high spatio-
temporal resolution?

e How to infer buffer travel time using public transport datasets, and
what are the limitations?

e What are the impacts of including crowding discomfort valuation
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and travel time variability in accessibility calculations for different
city areas?

The remainder of the paper is organized as follows: in the next
section the background and literature overview regarding smart card
data use in transport research, accessibility, crowding valuation and
travel time reliability are presented; Section 3 describes the proposed
methodology. The results and discussions are presented in Section 4,
followed by the concluding remarks in Section 5.

2. Background

As the aim of this paper is to delve into the impact of crowding and
travel time reliability on accessibility to opportunities, four main
streams of research are analyzed in the following subsections: (1) ac-
cessibility indicators; (2) smart card data use in transportation plan-
ning; (3) crowding discomfort in public transport; and (4) travel time
reliability.

2.1. Accessibility

Accessibility in urban and transportation planning is a concept
formulated long ago by Hansen (1959), defined as the potential of
opportunities for interaction, representing the desire and ability to
overcome spatial distances to access spatially distributed activities such
as employment and social interactions. In-depth reviews of accessibility
measures are found in Geurs and van Wee (2004) and Péez et al.
(2012), including theoretical basis, interpretability, and communic-
ability, as well as data requirements.

Of the main perspectives on accessibility measurement, the location-
based one is related to the level of accessibility to spatially distributed
activities, such as the number of jobs accessible within a specified time
threshold (Geurs and van Wee, 2004). This metric is used by re-
searchers to evaluate current and proposed transportation infra-
structure. Hernandez (2018) uses a cumulative opportunity indicator to
measure accessibility to jobs and education to explore the unequal ac-
cess to urban opportunities among different social classes in Mon-
tevideo. Pereira (2019) evaluates accessibility for an on-going BRT
project and discusses how different cut-off times for cumulative op-
portunity measures based on a single travel time threshold provides a
distinct interpretation of results.

Although accessibility metrics have been extensively researched in
the last decades, it is still marginalized in transportation planning
practice (Boisjoly and El-Geneidy, 2017). From a comprehensive review
of accessibility indicators of 32 recent metropolitan transport plans,
Boisjoly and El-Geneidy (2017) suggest that there is “a trend toward a
greater integration of accessibility objectives in transport plans, yet few
plans have accessibility-based indicators that can guide their decision-
making processes.”. Even so, accessibility analyzes in public transport
networks are important as they help transit agencies and planners to
identify areas that need improvements in transit service provision and
transit investment priorities (Fayyaz et al., 2017). In this sense, recent
initiatives aim to bring accessibility closer to transportation planning:
for instance, Stewart (2017) proposes collaborative accessibility map-
ping for enhanced stakeholder engagement with a visualization tool,
while Walker (2018) discusses how accessibility (“freedom”) should be
a central evaluation criterion for transportation projects and equity
analysis.

Some authors use automatic vehicle location data to address the
problem of measuring actual accessibility as experienced by transit ri-
ders. For instance, based on AVL data to represent actual service,
Stewart (2017) applies spatial analysis techniques to adjust accessibility
metrics to account for the unreliability revealed in actual transit op-
erations. Wessel and Farber (2019) compare accessibility measurements
derived from schedule-based General Transit Feed System (GTFS) data
with those obtained from GPS-based AVL data. They show that
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scheduled-based accessibility measures may overestimate net accessi-
bility by 5-15% on average, and the relative difference between sche-
dule and retrospective datasets decreases as one moves towards hourly
measures of accessibility.

Other authors have focused on travel time variability in accessibility
measures. For instance, Boisjoly and El-Geneidy (2016) derive time-
sensitive analysis for different periods; their results show that the most
commonly used accessibility measure (at 8 am) is representative of the
relative accessibility (static or dynamic) throughout the day. Farber and
Fu (2017) propose a new data object called travel time cube to explore
the spatiotemporal patterns of public transit accessibility; demon-
strating its use in three case studies that evaluate how different types of
changes to the public transit network impact a variety of travel time
characteristics in a region. Conway et al. (2018) describe a method to
extend the concept of reliable accessibility to public transport; a Monte
Carlo approach is applied to generate possible timetables that allow the
estimation of percentiles of travel time to guarantee a certain desired
probability of on-time arrival.

2.2. Smart card data

The adoption of smart cards in public transport systems in recent
years has provided an opportunity for automatic generation of large
data streams with great potential for improving planning and operation
in urban public transport systems (Pelletier et al., 2011). Proper data
analyses generate information such as travel patterns, and number of
transfers (Bagchi and White, 2005), full trip inference (Trépanier et al.,
2007) and route choice analysis (Wilson and Hemily, 2016). A com-
prehensive review of distinct aspects of smart card data use in public
transit planning is provided by Pelletier et al. (2011).

One of the main uses of smart card information is the inference of
origin-destination (OD) matrices, for which information on boarding
and alighting location and respective times must be known, either re-
corded directly in data collection or through estimation methods. For
transport systems that do not require tap outs of smart cards on the exit,
the alighting location for each transaction should be inferred (Barry
et al., 2002; Trépanier et al., 2007). One alternative commonly found in
the literature is to apply trip chaining for destination inference, where
the destination of each transaction is estimated to be near the next
boarding location (see, for instance, Alsger et al., 2016; Gordon et al.,
2013; He et al., 2015; Munizaga and Palma, 2012; Seaborn et al., 2009;
Wang et al., 2011). For an in-depth review of trip chaining and transfer
inference considerations, the reader is referred to Hickman (2016),
while a comprehensive overview of destination inference models be-
yond trip chaining can be found in Li et al. (2018).

Although smart cards allow a richer assessment of public transport
systems, specific challenges arise, due to factors such as erroneous
software, erroneous data, and faulty hardware, which seem to have
been overlooked in the literature (Robinson et al., 2014). Challenges
may include data correction, data quality improvement, ability to
process large volumes of data, distortion in longitudinal series, lack of
data, and expansion of data samples (Wilson and Hemily, 2016).

2.3. Crowding

Crowding in public transportation systems affect urban commuters
in many large cities in the world. As the number of passengers increases
relative to the available capacity in public transport services, customers
tend to become less willing to use it, which can be considered a user
cost, just the same as the value of time for travel that users allocate
(Horcher et al., 2017). Crowding also generates multiple impacts on
users' health and personal wellbeing, ranging from increased anxiety,
stress, feelings of exhaustion, perceptions of risk and safety, feelings of
invasion of privacy and propensity to arrive late at work, impacting
organizational health and general quality of living (Tirachini et al.,
2013). Contributing drivers of discomfort are dissatisfaction with
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standing and not being seated, fewer opportunities to make use of time
during the journey and physical closeness of other travelers (Haywood
et al.,, 2017). Also, benefits of a frequency increase on a congested
transit line and a transformation from bus to tram can be under-
estimated when comfort is not incorporated in the demand modeling
framework (Van Oort et al., 2015). Therefore, it is crucial to include
crowding effects on travel time valuation for accessibility to opportu-
nities calculation in transport planning.

Load factor and level of service (LOS) are measures used to describe
crowding levels in public transport systems (Kittelson and Associates
et al.,, 2013; Li and Hensher, 2013). Load factor is defined as the
number of passengers per seat available in the vehicle, while LOS refers
to thresholds based on load factor or passengers per area unit, ranging
from A to F, representing the best quality of service to worst, respec-
tively.

Regarding crowding perception, studies have focused on finding the
valuation of time for standing passengers in crowding conditions based
on the density of standees (Horcher et al., 2017; Tirachini et al., 2016;
Whelan and Crockett, 2009). Whelan and Crockett (2009) found
crowding value of time multipliers based on passenger density and a
load factor of transit systems. Horsher et al. (2017) estimated the user
cost of crowding in terms of equivalent travel loss with smart card data
from Hong Kong: an additional passenger per square meter on average
adds 11.9% to the travel time multiplier.

Nowadays, with smart card and AVL data available, it is possible to
infer crowding patterns of transit lines as a direct output of the desti-
nation inference from trip chaining. It is feasible to estimate vehicle
load profiles and distribution of crowding over time and space of public
transport services for multiple periods, such as in Luo et al. (2018) and
Sanchez-Martinez et al. (2018).

2.4. Travel time reliability

Travel time reliability indicates the consistency or dependability in
travel times, as measured from day-to-day or across different times of
the day (FHWA, 2010). It measures the extent of the unexpected delays
travelers experience on their trips. High variation of travel times over
multiple days for the same trip leads to unreliable travel times. Because
of travel time unreliability, many drivers either adjust their schedules
or budget extra time to allow for traffic delays (FHWA, 2010). Relia-
bility metrics in the literature are measured in various ways, including
percent of variation, buffer index, planning time index, misery index,
among others (Pu, 2011). For public transport, some studies have fo-
cused on evaluating reliability (Chen et al., 2009; Kieu et al., 2015; Ma
et al., 2015).

Variability of travel times for public transport passengers are ex-
perienced during multiple trip stages: access times, waiting times,
transfer times, and in-vehicle travel times. To account for those delays,
passengers must also budget additional time to ensure on-time arrival
most of the time. The buffer time concept is easily calculated and may
relate well to the way travelers make decisions, as it represents the
number of minutes of extra travel time that is needed to arrive on time
(Lomax et al., 2003). To be late for work no more than one day per
month (considering about 20 workdays) the buffer time would be the
difference between the average travel time and the 95th percentile
travel time (FHWA, 2010). Some studies also use buffer time as the
difference between the median travel time and the 90th (Lee et al.,
2016) or the 95th percentile travel time (Kwon et al., 2011).

With rich, continuous data, reliability metrics can be more easily
calculated. In public transport, the use of GPS technology in buses' AVL
systems now enables planners to be better informed of commercial bus
speeds throughout the network (Cortés et al., 2011). However, for
public transportation origin-destination (OD) pairs, the travel time
variability is harder to obtain as both transfer times and users' real
routing decisions should also be taken into account.
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2.5. Summary of the literature review

The review of the related literature above evidences that some gaps,
which have led to distinct research streams have been conducted
somewhat separately, without a broader interaction of concepts for
enhancement of the transportation planning process as a whole. Firstly,
although notorious research has been conducted in crowding valuation
for public transport systems, the spatial impact of the increased travel
time valuation due to crowding on accessibility metrics is yet to be
known. Accessibility is typically measured based on travel duration and
distance, and few studies have used generalized travel cost for acces-
sibility calculations (El-Geneidy et al., 2016). Cui and Levinson (2018)
extend accessibility analysis to incorporate the full cost of travel that
comprises the following components: travel time, safety, emissions, and
monetary costs. Nonetheless, to the best of our knowledge, no studies
have analyzed the negative effects of the spatial distribution of
crowding and travel time variability on accessibility indicators of public
transportation systems. As Hernandez (2018) proposes, discussions on
the level of service of public transport should be included. The negative
effects of the spatial distribution of crowding and travel time variability
on accessibility indicators of public transportation systems is a litera-
ture gap this paper aims to fill.

Secondly, while the variability of travel times does cause users to
budget extra travel time for their trips, the spatial distribution of this
effect, and how it impacts accessibility to opportunities in cities is an
important aspect to be explored. As users protect themselves from the
effect of transport network unreliability, they must raise their total
travel time budget, with the outlying results hidden from typical public
transportation surveys.

Addressing these two gaps may also contribute to accessibility re-
search in a way to better evaluate the influence of capacity constraints
of transit vehicles on accessibility indicators. If only travel times are
used to build accessibility maps, passenger capacity is not considered,
thus affecting policy decisions. Comparing the accessibility of two dif-
ferent proposed transit systems that operate with the same speed but
with distinct vehicle capacities will not show any difference for place-
based access using only travel time. However, when the capacity con-
straint is added, the one with higher capacity yields a lower passenger
density, which, in turn, translates into a better quality of service and
lower generalized cost. Accessibility metrics, therefore, should include
crowding and travel time variability effects to enhance their importance
as an indicator for properly designing public transport networks.

3. Methodology

The proposed approach aims to evaluate the spatial distribution of
the impact of both crowding discomfort and travel times variabilities on
perceived accessibility to jobs and discuss transportation planning
policy implications. We use the term “perceived accessibility” to re-
present the potential influence of the higher travel time valuation by
users deriving from crowding and travel time variability on their de-
cisions to justify difficult access to certain locations.

Spatiotemporal variability of travel demand was analyzed by pro-
cessing smart card and AVL data from buses to build a dataset on buffer
times and fine-grained crowding occurrence in Sdo Paulo's public
transport network. Firstly, data filtering was applied to select viable
workdays. Then, general travel demand characteristics were calculated
based on trip chaining methodology that was applied to multiple days.
To calculate buffer times, inferred origin-destinations mean travel time
distributions for a couple of months were used. For crowding estima-
tion, the day that corresponded to the most stable travel demand was
used as a typical workday. From there, networks in the form of GTFS
data were produced, which incorporated discomfort travel time dis-
utility by using crowding travel time multipliers with added buffer
times to allow mapping the inequalities of accessibility.

We first describe the datasets used in this study and initial data
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Fig. 1. Left: Sao Paulo location in a regional context.

filtering. We then describe the proposed procedures for trip chaining
and transfer inference, crowding, and accessibility estimation.

3.1. Datasets

The city of Sdo Paulo is the largest metropolis in Brazil and is one of
the most populated areas in the world, with about 12 million in-
habitants unevenly distributed, as shown in Fig. 1. The public transport
bus network in the city of Sdo Paulo is quite extensive, being one of the
largest in the world, comprising 1335 bus lines (or routes) that are
operated by a fleet of approximately 14,300 vehicles and about 20,000
bus stops (SPTrans, 2018). Metro and rail systems consist of 13 lines
with 174 stations. About 13 million smart card transactions are re-
corded daily from Bilhete Unico, the city public transport smart card,
which is roughly divided into approximately 10 million transactions on
buses and other 3 million on the metro and urban rail systems. The
smart card system in Sdo Paulo has a high penetration rate: about 96%
of all transactions in a typical working day for the bus system; only 4%
is still paid cash onboard (Arbex and da Cunha, 2018).

AVL monitoring data from the entire city bus fleet was used for this
research, which is also managed by SPTrans (an acronym for Sao Paulo
Transportes, the public company responsible for managing the bus
system in Sdo Paulo). Each bus generates a geocoded location record
about every 45 s on average, producing a total of 27 million AVL re-
cords in a typical workday. There are about 180,000 vehicle trip de-
partures per day throughout the city.

A summary of the two datasets, their variables, and data volume is

Table 1
Datasets used in this study.

presented in Table 1. Public transport network data, AVL records, bus
trips, and the smart card dataset, without any personal information,
were provided by SPTrans. Speed profiles were provided by Scipopulis
(Scipopulis, 2018) after processing of raw AVL records. Existing jobs
and population information were obtained from open governmental
databases (IBGE, 2018; MTE, 2018), spatially represented in a hex-
agonal city grid of 4898 units after processing. Apart from jobs and
population data, which were fixed for the period of analysis, all other
datasets comprised a one-year interval, from July 1, 2017, to June 30,
2018.

Right: S3o Paulo municipality's main transit lines and population
distribution.

In buses, the smart card system in Sdo Paulo records a transaction
when the user taps the card at the ticketing device, a small equipment
located near the turnstile. The turnstile is located inside buses near the
front door of each vehicle. Between the front door and the turnstile,
there is a small area with a few seats, mainly dedicated to the elderly
and those with priority needs. The existence of this area provides a
faster boarding process as it enables the bus to depart while users are
still waiting for their turn to pass their smart cards and go through the
turnstile.

Two important issues to highlight are that, firstly, the so-called
Bilhete Unico smart card dataset for bus rides in Sio Paulo records
neither the boarding nor the alighting location, since users are not re-
quired to tap-out; therefore, the proposed methodology comprises the
estimation of boarding location, as well as alighting time and location
estimations using trip chaining method (Trépanier et al., 2007).

Category Attributes

Data volume

Public Transport Network Data
and rail)

Smart Card Transactions

AVL Location records (GPS) Vehicle ID, Line, Time, Latitude, Longitude

Bus Trips
Speed Profiles

Vehicle ID, Line, Trip Start, Duration

Population

Stops, Stations, Locations, Lines, Stop sequences, Fleet Sizes and Standing Area Data (both buses

Card ID, Route ID, Direction, Time, Vehicle/Station ID

Stop ID pair, 24 h Speed Profiles (processed from GPS)
Jobs Hex grid job distribution from government data (RAIS)
Hex grid population distribution from government data (IBGE)

20,306 bus stops and stations

~15,000 buses

~ 3,989,000,000/year

~260,000,000 processed

~ 8,742,000,000/year

~ 541,000,000 processed

~ 3,600,000 processed records (20 days)
510,140 records (20 days)

4,949,966 jobs in 4898 cells

11,809,666 people in 4898 cells
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Secondly, the transaction validation point location may be different
between bus types, as it is not positioned immediately on vehicle en-
trance. Therefore, the transaction record location may not reflect the
real boarding location of the user. As a result, during the data cleaning
phase, part of the transactions needed to be discarded, as they might
wrongly indicate that the user did not board that actual stop. In the next
subsection, we describe the initial data filtering and the selection of
eligible workdays.

3.2. Data filtering

Travel time for trips between all OD pairs for several months was
used to estimate travel time variability. To identify valid workdays,
initially, the three months with the highest demand in terms of total
transactions were selected. We discarded national holidays and week-
ends. Outliers were identified and removed for each month using the
interquartile range method applied to the distribution of total daily
transactions for workdays of each month. The interquartile range has a
variable upper and lower limit for the dataset as shown in Eq. (1). Days
for which the total transaction count was lower than Lyg,,, and higher
than L,, were considered as outliers for that month.

Lyp=Q:3+2X[Q3— Qi

Laown = Q1 — 2 X |Q3 - Qll
(€]

where:

Lyp is the upper limit for data filtering;

Lgown is the lower limit for data filtering;

Q; is the i-th quartile of the total smart card transactions for that
month for all workdays.

Fig. 2 depicts the monthly variation of smart card transactions, re-
vealing the months with the lowest daily demands as January and July,
due school vacation, and the months with highest: September, October,
and November 2017. Eleven days were removed from these three
months, due to an instability of bus AVL data collection in some regions
of the city, thus resulting in 42 workdays. Other 22 days had to be
removed due to the unavailability of smart card transactions for very

g =

12,000,000

11,000,000

Daily Total Smart Card Transactions

10,000,000

9,000,000
7 8 9 10 1

Journal of Transport Geography 85 (2020) 102671

few rail stations in which the integration with the bus network is pos-
sible, such that the city-wide results would not be undermined. Finally,
the trip chaining methodology was applied to the resulting 20 valid
workdays as described in the following subsection.

3.3. Trip chaining and transfer inference

We used trip chaining to infer destination locations as riders are not
required to tap the smart card when alighting in Sao Paulo. A transfer
inference process distinguishes transfers from short activities and is
needed to group transactions (trip legs or stages) to build trips, enabling
calculation of demand characteristics and OD matrices.

The overall approach for this stage is depicted in Fig. 3. Firstly, it
was necessary to estimate the boarding location for each transaction,
which was accomplished using AVL data from buses or the location of
rail and metro stations and BRT transfer terminals. The location of the
corresponding alighting stop was then inferred using the next boarding
location; in other words, it was assumed that the passenger ends a
transit trip leg in the vicinity of the location identified as the boarding
location of the next trip leg. To find the destination of the trip leg that
corresponds to the last transaction of a day, the origin of the first
transaction of that day was considered, in a similar way to previous
works in the literature that apply trip chaining (e.g., Munizaga and
Palma, 2012; Trépanier et al., 2007). This assumption reflects that most
users departs from and returns to home when they use public transport
during the day. If the number of stops traveled by the user was negative
(i.e., when the direction of the bus line provided by AVL might be
wrong, thus resulting in a spatial inconsistency regarding the inferred
boarding and the alighting location), this procedure was reapplied
considering the reverse direction of the line, as backward movement is
inconsistent. Once trip chaining was concluded, the procedure splits
into two parts: one to calculate loads, crowding and statistics at the line
and stop levels and the other to distinguish activities to build full trips
and the OD matrices.

This process was applied to all 20 selected valid workdays, using the
Python language data analysis libraries: Pandas and Numpy (NumPy,
2018; Pandas, 2018). A single regular PC desktop computer equipped

%*%@

12 1 2 3 4 5 6

Month (from 07/17 to 06/18)

Fig. 2. Volume of smart card transactions distribution for every month in the study period.
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with an Intel processor (i7 4770 CPU @ 3.4GHz with 32 GB RAM) was
used to process the data for three days, which was deemed as a feasible
timeframe for this analysis on a typical regular desktop computer..

3.3.1. Boarding stop estimation

The boarding location was estimated by comparing each transaction
time with all AVL records of the corresponding vehicle ID for that day.
The vehicle location record that yielded the minimum absolute time
difference with respect to the boarding transaction time was assigned to
that transaction. As both datasets are composed of millions of records,
this imposes a challenging processing problem. Therefore, in our ap-
proach, we looped vehicle by vehicle and compare the time of all
transactions that occurred in that vehicle with the time of every loca-
tion record for that vehicle. After the location of each transaction had
been assigned, the nearest bus stop ID of that route was then de-
termined.

It should be noted, however, that in Sao Paulo, the exact boarding
location may not be exactly where the boarding transaction occurred,
as there is a small standing area between the bus door and the turnstile,
where the ticketing machine is positioned inside the bus. Therefore, the
location corresponding to the instant that the passenger passes through
the bus turnstile is assigned as the boarding location. The previous
assumption indeed might bring some errors to the boarding location
estimation and is adequately treated later, during transaction validity
check. On the other hand, turnstiles discourage fare evasion, which is
very low in Sdo Paulo and thus has not influenced the results.

For metro, urban rail, and BRT stations, the process of assigning the
boarding location is straightforward, as, for every smart card transac-
tion that takes place corresponds to a fixed location turnstile whose

code is properly identified and registered.

3.3.2. Alighting stop estimation

For alighting location and alighting stop estimation, a trip chaining
model was applied. The alighting stop ID was assumed as the nearest
stop of the subsequent boarded vehicle. To avoid inconsistencies that
might arise, mainly due to data quality, one of the methodological
challenges in processing smart cards as highlighted by ***Wilson
(2016), in this paper we used two types of validity checks to search for
erroneous and inconsistent data: transaction validity check and trip va-
lidity check, which are, respectively, the first and second validity checks
depicted in Fig. 3. The transaction validity check was applied after the
destination inference stage and filtered for the problems listed below:

e Untraceable cards. For example, smart cards used by operators when
users pay cash onboard (about 4%);

There is only one transaction for that card ID throughout the day;
No location data inferred for the transaction. This might occur be-
cause a vehicle had a malfunctioning AVL;

Distance from the transaction location to the nearest bus stop of the
corresponding line is greater than 500 m. This threshold was chosen
as the acceptable error for boarding location estimation for this
study;

Time difference between transaction timestamp and AVL location
record is greater than 2 min. For example, for an average speed of
15 km/h, a reasonable value for buses in urban traffic as our data
shows, this would represent a 500 m error to the estimated boarding
location;

Coded line in AVL equipment different from the coded line in the
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vehicle fare equipment; distance from estimated alighting stop to
the next boarding stop is greater than 2000 m. This is higher than
most of the previous studies in the literature (e.g., 1000 m as in
Munizaga and Palma, 2012) once the user might have made the
validation transaction after the bus departed due to turnstile loca-
tion in buses;

e The number of stops traveled per transaction equals zero. This
condition occurs whenever users taps the card right before alighting,
which happens for users that held back their validation transactions,
mainly near terminals or on crowded vehicles in which they are
incapable to pass the turnstile earlier.

The resulting filtered valid transactions account for about 75% of all
transactions. Most removals (about 16% loss) are due to the turnstile
location issues, adjusted with the last two transaction validity check
filters. From this step on, a transaction expansion factor for each bus
route and direction was determined. This transaction expansion factor
was used in crowding estimation (lower left portion of Fig. 3) as input
data to expand transactions with known start and end stop IDs to all
transactions recorded throughout the day for each route and direction.

After the trip chaining process, all remaining valid transactions
proceed to travel time calculation. In this process, each transaction is
assigned an estimated travel time by using hourly average bus speeds
between adjacent stops that are calculated from AVL data processing.
The road network distance between consecutive positions along the trip
path is considered for computing the average speed between AVL
consecutive positions, which may be interpolated to determine the
average speed between consecutive bus stops, making it easier to cal-
culate travel times (Monteiro et al., 2015). For rail systems (metro and
train lines) travel times from GTFS is used. For all possible station-to-
station OD pairs, the shortest paths are calculated considering the
generalized costs on the rail network (Arbex and Da Cunha, 2017),
which accounts for waiting, in-vehicle, and transfer times. It should be
noted that the size of the rail network is limited; consequently, for many
OD pairs, there is only one possible feasible path.

After all travel times had been estimated, the main trip chaining
process started (lower right portion of Fig. 3). It loops through every
single card ID, merging multiple boardings into a single full trip
whenever the time difference between each alighting and the next
transaction is below a specified threshold. We used 30 min in this study,
as the OD matrices with 30 min allowable transfer time are slightly
more accurate compared to those with 60 and 90 min (Alsger et al.,
2016). This process is illustrated graphically in Fig. 4, denoting a user
who made five transactions and three full trips.

The trip validity check filters only for valid trips, as below:

e Total distance traveled must be higher than zero;

e The number of transfers should be between 0 and 6. This threshold
was chosen as most trips can be made with up to 6 transfers, and
trips with 7 or more might actually have been 2 trips with a short
activity in between;

e First boarding Stop ID should be different from the last alighting
Stop ID;

e Total trip travel time should be between 1 min and 6 h (time be-
tween first boarding and last alighting);

e Average trip speed should be between 0.01 and 80 km/h;

e The minimum haversine distance between first boarding and last
alighting stop should be 300 m;

o The trip circuitry factor is below 3. Trip circuitry factor is the net-
work distance traveled by the user distance divided by the haversine
distance between the first boarding and last alighting stop. The
maximum threshold of 3 was chosen as higher values might imply
that the user made short activities instead of a transfer.

At last, a full-trip level expansion factor was built to make up for the
invalid trips. It is based on smart card users as the penetration rate is
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very high, about 96% in Sao Paulo (Arbex and da Cunha, 2018). This
factor was determined by simply dividing the number of unique card
IDs (including untraceable cards) observed for that day by the number
of unique card IDs that only generated valid trips. Though this as-
sumption could be revised and refined using a large metropolitan travel
survey, this trip expansion factor procedure showed satisfactory for the
aims of our study.

3.4. Crowding estimation

After all previous steps had been performed, the left portion of the
approach depicted in Fig. 3 was conducted with the final aim to reach a
highly detailed resolution of crowding data, that is, the load factor and
passenger density (passenger per square meter in standing areas),
hourly, for each bus and rail line, between every pair of subsequent
stops. This data enabled the calculation of public transportation level of
services for all segments, including the bus network as well as metro
and train rail services. The load factor is defined as the passenger load
(i.e., the number of passengers going through a pair of stops within a
specific time interval) divided by the number of seats supplied in that
same period (Kittelson and Associates et al., 2013). This section details
how this crowding was calculated for both buses and rail systems.

Regarding the bus system, the information required corresponds to
the fleet database, with vehicle capacities and standing areas, and bus
lines departures for each day, with their start time. For buses, both load
factor and passenger/m> are calculated for all routes and directions,
while for the rail system, only passenger density is calculated for all
services. Table 2 illustrates the average capacities of vehicle types used
in Sdo Paulo transit system. Table 3 represents Level of Services (LOS)
based on load factors (bus system) and passenger density (rail system)
adopted in this study, which is used to map and communicate crowding
spatial distribution. Load factor thresholds for buses consider local
crowding distribution and rail LOS are adopted from Sarkar and Jain
(2017). Passenger/m? is used to apply crowding discomfort valuation
for rail, as this metric is comparable between all trains' internal layouts.

For the rail crowding estimation, the first step was to construct
passenger load for all segments and time intervals throughout the day.
Initially, the shortest path algorithm was applied (as the rail network is
not large and does not allow many multiple paths), considering gen-
eralized costs within rail network to build all OD pairs shortest paths
and eligible transfers within the network. Then, a destination station
distribution matrix was built for each hour of the day and each origin
station, considering station destinations inferred from the trip chaining.
In a second step, the total number of boardings for each station were
organized for each hour of the day, based on total smart card transac-
tions and a station-based expansion factor that accounts for other forms
of payments for each station (i.e., cash and the metropolitan smart card
in Sdo Paulo metro area). From there, passenger OD pairs were assigned
to the shortest generalized cost path to achieve hourly passenger loads.
The final results are passengers per square meters in standing areas for
all rail segments between subsequent stations along the day after in-
corporating fleet composition data, standing area per rail vehicle type,
and scheduled hourly frequency.

3.5. Accessibility

We adopt the cumulative opportunities accessibility metric, which
has been widely used because of its easy communication, interpret-
ability, and calculation (El-Geneidy and Levinson, 2006; Geurs and van
Wee, 2004). It is calculated as in Eq. 2, by counting the number of jobs
reachable A; from location i to all other locations j, reducing the number
of jobs available in j, O;, by an impedance function f(t;) of time cost
from i to j. Jobs are added if they can be reached within a specified
travel time threshold as in Eq. 3 and 4, considering or not travel time
variability, respectively.
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Fig. 4. A graphical example of user transactions and estimated full trips for a day.

Table 2
Average seat capacity and available standing area in main vehicle types.

Vehicle type name (average capacity of
main vehicle types)

Seat capacity  Standing area

available [m?]

Microbus 21 29
Minibus 20 3.4
Midibus 25 4.9
Basic 35 6.5
Padron 13 m 32 8.9
Padron 15 m 38 10
Articulated bus 18.5 m 37 15.2
Articulated bus 23.0 m 57 18.8
Biarticulated buses 47 25
Metro trains (average) 271 213
Urban rail trains (average) 406 267
Table 3

Level of Service (LOS) used in this study (adapted from Sarkar and Jain (2017)).

LOS Load Factor (Buses) Passenger Density (Rail)
Passengers/seat Passenger/m?
A < 1.0 (Seated Passengers) =0
B = 1.0-1.5 > 0-2.0
C = 1.5-2.0 = 2.0-4.0
D = 2.0-2.5 = 4.0-6.0
E = 2.5-3.0 = 6.0-8.0
F = 3.0 = 8.0
n
A=, 0 (1)
p=] @
1Lt < Tl_esm
S (y) = 0.t > T
sy > T, 3
95th
L) = 1, (G + bty) < T;
2V 95th
0, (tj + bty) > T; 4

This study proposes a variable travel time threshold defined as
T;°5" which is the 95th percentile of all observed full trips travel times

departing from location i for a chosen time period, as this better reflects
current travel behaviors of worker access to employment opportunities.
The average travel time of trips observed from smart card data for zones
located further away from city central areas is two to three times higher
than those of central zones. Therefore, using a single value such as T; =
45 min for travel time threshold (usual for cumulative opportunity
accessibility calculations) would hinder insights about crowding influ-
ence on accessibility for distant areas, as some zones have an average
travel time of more than 100 min. Nonetheless, to support the adoption
of the T;>>™ approach, we also perform a comparison with both the
cumulative opportunity using 30, 60 and 90 min as well as gravity-
based negative exponential impedance function. We used all observed
full trips for the 95th travel time calculation, as there is no information
regarding trip purpose on smart card data and using other methods to
infer trip purpose would add more uncertainty to the data. Although the
observed travel time does not include access or first waiting times due
to the nature of the smart card dataset, it still represents inter-region
propensity to accept higher travel times as jobs are located further away
than users' residence.

To include travel time variability in accessibility calculations, the
buffer time needed to guarantee on-time arrival when traveling from
location i to j 95% of times, bt;; is added to travel time t; in Eq. 4. In this
research, as our travel time data is estimated from the dataset and not
directly measured, we used a median-based buffer time, defined as the
difference between the Tij95‘h and the Tijsom travel time between loca-
tions i and j considering multiple days of data.

Eq. 5 denotes total travel time: the sum of access time from walking
tijw‘l”‘, waiting time tijw"i‘, in-vehicle travel times tiji"_vehide and transfer
times t;"**" if the trip requires any transfers. To assess the difference
in accessibility due to crowding, a a coefficient is applied to the in-
vehicle travel time component in Eq. 4. The a coefficient is defined in
Eq. 6, in which passenger density between two pairs of subsequent
stations or stops densitysegmen: is considered to raise in-vehicle travel
time perception due to discomfort. This coefficient was calculated for
each stop-to-stop segment, hourly, for all bus/metro/rail routes. Eq. 6 is
defined based on values proposed in Whelan and Crockett (2009), due
to the absence of local studies. While we acknowledge that the effect of
crowding on perceived travel time might also vary depending on if a
passenger has a seat or not, for the sake of simplicity, crowding dis-
comfort is applied to all users traveling an overcrowded route/
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direction/h, regardless whether they were standing. Although trip
generalized costs would require weighting other travel components
such as walking and waiting times, we decided to weight only in-ve-
hicle travel time and add buffer times to focus on those effects as
evaluating the spatial impact of crowding conditions and travel time
variability on perceived accessibility to jobs is the main objective of this

paper.

tij = ti;valk + ti}van + a.ti;n—vehzcle + tijransfcr

)]

{0.0SS-densitysegmcm + 1.5321, with crowding discomfort
o=

1, without crowding discomfort 6)

4. Results and discussion
4.1. Variability of travel demand characteristics

In order to evaluate the spatial influence of crowding discomfort
and travel time variability on accessibility to jobs, crowding patterns
have been calculated using a representative workday, along with buffer
time estimated from multiple workdays of public transportation big
data. To evaluate the stability of travel demand and support using a
representative workday for crowding patterns, this section reports re-
sults based on a 20-workday analysis. Firstly, Table 4 reports the results
of the evaluation of the variability of demand travel patterns using
general trip statistics after the application of the methodology for the
20 qualified workdays, considering a 24-h period. Most importantly, it
can be seen that the coefficients of variation of all reported attributes
are low, which means that public transport demand is stable throughout
the 20 regular workdays from a city-wide point-of-view. These results
support the use of crowding patterns evaluated for a representative day
to measure its spatial impact on accessibility.

Table 5 shows estimated buffer time distribution (needed to guar-
antee on-time arrival when traveling from location i to j for 95% of the
times, given by bt;) considering the partition of the city of Sdo Paulo
into 32 administrative districts, also referred to as Subprefectures. The
median is inferior to 3 min for all OD pairs with at least 30 trips for all
20 days, indicating that the analyzed OD pairs tend to have relatively
stable travel times. Nonetheless, some OD pairs revealed significantly
higher buffer times, with the maximum reaching 13.6 min.

Fig. 5 illustrates how variability in travel time between OD pairs
allows the estimation of buffer times using the proposed methodology.
In this figure, the blue dashed lines represent the minimum and max-
imum mean travel times for all days comparing two chosen OD pairs.
Buffer times are calculated as T;”>"-T;°*" considering the median va-
lues for all days. OD pair 20-14 (Parelheiros to Santo Amaro) yields a
high buffer time of 8.7 min, while for OD pair 04-12 (Casa Verde to Vila
Mariana) corresponds to only 2.3 min. As this method relies on

Table 4
Travel demand characteristics and variability.

Interday Stats [20 work days]

Daily Trip Stats Time Mean SD cv
Period

Volume of Trips 24 h 8,208,096 159,519 1.9%

Trip distance (m) [median] 24 h 9462 138 1.5%

Number of Transfers [mean] 24 h 0.88 0.01 1.5%

Travel Time (min) [median] 24 h 37.3 0.6 1.5%

Trip speed (km/h) [median] 24 h 15.7 0.2 1.4%

Load Factor [weighted 24 h 1.42 0.03 2.4%
average]

% of Passenger-hour on LOSA 24 h 59.7% 1.5% 2.6%
or B
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Table 5
Subprefecture OD pairs and buffer times.
Area Zoning Type Subprefectures
Time Period 7 h-10 h
City Partitions 32
Possible OD Pairs 1024
OD Pairs With Trips All 20 work 897
days
At Least 100 Trips (Every 523
20 days)
Estimated Buffer Time for OD Pairs 10th Percentile 0.7
(minutes) 50th Percentile 2.3
(30+ Trips/20 days) 90th Percentile 4.8
Maximum 13.6

observed trips, there is indeed a certain trade-off between zone size and
trip sample. We adopted the size for a sample equal to 30 trips, thus
resulting in 563 OD pairs for which we could estimate buffer times. OD
pairs without sufficient observable trips did not include a buffer time
addition.

By combining the results obtained so far, we could use crowding
data based on the most representative day without loss of generality.
The most regular day was chosen in a similar way to the methodology
proposed by Liu et al. (2019) that considers the mean error of passenger
travel demand of each OD pair. For this study, the day with the least
mean error for OD pairs trip volumes among the 20 workdays, con-
sidering a travel matrix from a regional partition resulting in 81 OD
pairs, is September 4, 2017, which was used to obtain the results that
follow.

4.2. Crowding spatiotemporal distribution

Using data from the day with the least mean error for OD pairs trip
volumes (i.e., September 4, 2017), the spatiotemporal distribution of
crowding levels could be estimated. Considering the temporal dimen-
sion, Fig. 6 shows passenger-hour by LOS for each hour of that day on
the entire bus system. It can be observed that the passenger-hour by the
level of service estimation is a good measure of crowding distribution,
as it weights passenger loads on segments by their travel times for each
specific hour. Fig. 6 also evidences an intense peak of passenger-hour
during peak hours between 6:00 and 8:59 in the morning.

A GTFS network with travel time multiplied by crowding discomfort
perception (considering conditions between 7:00 and 7:59 am), buffer
time from 20 days morning peak trip (6:00-8:59) with a departure time
of 7:00 was used in the following accessibility comparisons.

Bus passenger loads and LOS are depicted in Fig. 7 for the
7:00-7:59 am period, in which thickness denotes passenger loads, and
the colors represent LOS (as presented in Table 3). Fig. 7 shows that the
more central areas have a higher level of service for the bus system,
while the transportation corridors that connect the suburban areas to
the more central areas suffer from worse crowding conditions.

Passenger loads and LOS for the rail system (metro and me-
tropolitan train) are depicted in Fig. 8. As the volumes of passenger load
are of a different magnitude, it was necessary to present them in a
different figure. The maximum load is the central black LOS F segment
with about 70,000 passengers/h. Bus loads are made transparent for
system-wide comparisons. During this period, most rail segments op-
erate near capacity, indicating high usage of the system.

4.3. Accessibility to jobs

Cumulative opportunity accessibility metric is a well-known way to
measure how a public transport network serves its purpose: promoting
urban dwellers access to multiple types of opportunities. In this sub-
section, we use cumulative accessibility to jobs to evaluate how com-
muters' access to employment is spatially affected by crowding
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Travel Times Distribution for OD pair
Casa Verde (04) to Vila Mariana (12)
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Fig. 5. Travel Time Distribution for two OD pairs with a high (left) and low (right) variability between days.

discomfort and variability of travel time. To apply Eq. 1 (presented in
subsection 3.5) to measure accessibility, a matrix of all-pairs travel time
must be calculated.

We use four scenarios for comparisons, representing travel time
perception of users, based on an exact 7 a.m. departure. It should be
noted that this is a simplification that was adopted to reduce processing
times. Averaging accessibility over the departure period is ideal (Owen
and Levinson, 2015); however, it would require days of processing with
OTP due to the size of the resulting travel time matrix with the large

spatial resolution required for this study. The scenarios are as follows:

(a) Network with bus speeds from 7 a.m.;

(b) Network with bus speeds from 7 a.m. + travel time variability;

(c) Network with bus speeds from 7 a.m. + crowding discomfort;

(d) Network with bus speeds from 7 a.m. + travel time variability +
crowding discomfort.

To increase the spatial resolution of results, 4898 centroids of a 300-
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Fig. 6. Hourly Passenger-hour distribution by Level of Service.



R. Arbex and C.B. Cunha

Journal of Transport Geography 85 (2020) 102671

Bus System Crowding Distribution (7h-7h59)
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Fig. 7. Bus System Level of Service for 7 h-7 h59 period.

m size hex grid that cover the whole urbanized area of the city of Sdo
Paulo were used as departing locations. Hexagon division was chosen
because of the advantages of being more similar in shape to circles
compared to squares, which potentially lessens bias due to edge effects
(Birch et al., 2007).

Travel time estimation for each OD pair for accessibility calculations
is performed using software OpenTripPlanner OTP (OpenTripPlanner),
2019), a multi-modal trip planner from a group of open-source software
projects that aims to provide transportation network analysis services
(Conveyal, 2018). A similar use of OTP for accessibility calculations had
also been made by Widener et al. (2017) and El-Geneidy et al. (2016).
OTP requires as inputs a GTFS format transit network file, an Open-
StreetMap (OSM) database file, and some simple routing parameters.
The transit network files we used are the four modified General Transit
Feed System (GTFS) (Google, 2019) files, which comprise scenarios (a)
to (d). The output files of OTP analysis are travel time matrices with
total time (including access, waiting, in-vehicle travel times and
transfer times) between all OD pairs.

The only file in our study that needed to be modified is stop_times.txt,
as it comprises route and stop level travel times. We modified travel

11

times for all pairs of stops for each route and direction to represent each
scenario. The schedule is included as part of the GTFS information with
hourly headways for all services.

We use the number of jobs as a proxy for opportunities due to spatial
data availability. The location of jobs is estimated by distributing city
jobs to hex grids based on their street location, as available at the free-
access governmental database RAIS obtained from Brazil's Ministry of
Work (MTE, 2018). In the RAIS database, for each company, the street
postal code is available. We distributed job count from each company to
a buffer of 50 m around the street where it is located. Then, jobs were
aggregated to the hex grid layer based on area share. There is a small
location error associated with this procedure, as the government does
not share the exact known location of each company within the street in
this public dataset. However, the precise location is not required as the
spatial resolution of our analysis is based on a 300-m hex grid.

To aggregate results into the larger city regions, the population is
considered to weight accessibility. The population count for each hex
grid is estimated using data from the latest national census conducted in
2010 (IBGE, 2018) after distributing the population by proportional
area share of census tract shapes to the hex grid layer. As census tracts
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Rail system Crowding Distribution (7h-7h59)
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Fig. 8. Rail System Loads and Levels of Service for the 7 h-7 h59 period.

are small in area (about the size of a hex grid) so that the spatial dis-
tribution of the population is kept representative.

To allow research replicability, we have made the code used in this
section freely available on Github repository platform (http://bit.ly/
38Bb9ip) along with some sample data that is required to generate a
population-weighted average accessibility by regions. The code in-
cludes calculation procedures for all accessibility metrics used in this
paper.

Table 6 shows the results of population-weighted accessibility
averages by city regions for all four scenarios (a-d). With the addition of
perceived travel times due to crowding discomfort only, the reduction
of accessibility considering travel time as perceived by users is acute.
The results show that the crowding discomfort valuation influences
access to jobs, particularly for zones located further away from the
central area. Travel time variability has a hidden impact on some

Table 6
Accessibility to Jobs aggregated by Subprefectures.

specific areas of the city. On average, the commuters' weighted average
reductions in perceived accessibility to jobs in a workday morning peak
are 56.8% due to crowding discomfort, 6.2% due to travel time varia-
bility and 59.2% when both are combined. When taken together,
crowding and travel time variability have a stronger impact of reducing
perceived accessibility to job opportunities in a congested public
transportation network due to heightened travel time perception and
how users perceive the quality of their travels. This outcome clearly
evidences the impending need for including both crowding and travel
time reliability aspects on accessibility calculations to properly reflect
user perception.

In order to verify the validity of the new approach that uses a
variable travel time threshold (defined as the 95th percentile of all
observed full trips travel times T;”>"), we show in Table 7 a comparison
with accessibility metrics that are more commonly used in practice.

Area Data (City Regions)

Jobs Accessible (Scenarios of Perceived Travel Time)

Comparisons

ID Name Avg. 95th Percentile Travel Time Morning Peak Public (a) (b) (© (d) (©vs(@a ((b)vs(@) (d)vs(a)
(Morning Peak) [min] [6 h-8 h59] Transport Trips [6 h-
8 h59]
1 CENTRAL 68 90,661 3,878,228 3,792,160 3,302,188 3,200,416 —15% —-2% —-17%
2 NORTH 94 324,950 2,509,171 2,357,440 840,719 779,079 —66% —6% —69%
3  WEST 79 239,812 2,736,942 2,597,693 1,531,143 1,447,089 —44% —5% —47%
4  EAST 97 522,337 2,104,872 1,947,195 660,113 626,006 —69% —7% —-70%
5 SOUTH 87 440,233 2,377,274 2,222,429 1,091,344 1,016,678 —54% -7% —57%
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Table 7
Accessibility to Jobs aggregated by city regions computed for scenarios (a-d), considering the proposed 95th percentile-based and commonly used accessibility
metrics.
Scenario Region 95th Percentile Gravity-based Cumul. 30 min Cumul. 60 min  Cumul. 90 min
(a) Network with bus speeds from 7 a.m. CENTRAL 3,878,228 492,315 992,506 3,356,586 4,650,091
NORTH 2,509,171 178,401 80,318 763,605 2,449,489
WEST 2,736,942 256,145 266,145 1,443,315 3,100,288
EAST 2,104,872 148,397 83,659 574,893 1,811,380
SOUTH 2,377,274 206,306 161,995 1,072,427 2,584,308
(b) Network with bus speeds from 7 a.m. and travel time variability CENTRAL 3,792,160 478,048 933,139 3,356,586 4,650,091
NORTH 2,357,440 169,193 70,509 763,605 2,449,489
WEST 2,597,693 245,051 247,162 1,443,315 3,100,288
EAST 1,947,195 141,034 75,929 574,893 1,811,380
SOUTH 2,222,429 195,985 144,946 1,072,427 2,584,308
(c) Network with bus speeds from 7 a.m. and crowding discomfort CENTRAL 3,302,188 431,586 826,255 2,727,310 4,392,476
NORTH 840,719 88,398 44,868 255,072 939,713
WEST 1,531,143 175,702 187,879 877,177 1,950,818
EAST 660,113 72,494 55,611 270,683 701,599
SOUTH 1,091,344 125,686 101,729 541,598 1,415,690
(d) Network with bus speeds from 7 a.m. + travel time variability + crowding CENTRAL 3,200,416 419,475 771,833 2,634,136 4,320,389
discomfort NORTH 779,079 84,062 41,064 234,452 879,119
WEST 1,447,089 168,815 176,572 832,289 1,873,206
EAST 626,006 69,243 51,339 254,871 667,907
SOUTH 1,016,678 119,954 93,511 508,831 1,347,223
(c) vs (a) CENTRAL —15% —12% —17% —19% —6%
NORTH —66% —50% —44% —67% —62%
WEST —44% —-31% —29% —39%% —-37%
EAST —69% —-51% —34% —53% —-61%
SOUTH —54% —-39% —37% —49% —45%
(b) vs (a) CENTRAL —-2% -3% —6% —3% -1%
NORTH —6% —5% —12% —10% —6%
WEST —5% —4% —7% —7% —4%
EAST —7% —-5% —9% —8% —6%
SOUTH —-7% —-5% —-11% —8% —5%
(d) vs (a) CENTRAL —17% —-15% —22% —22% -7%
NORTH —69% —53% —49% —69% —64%
WEST —47% —34% —34% —42% —40%
EAST —70% —53% —39% —56% —63%
SOUTH —57% —42% —42% —53% —48%

More specifically, we also calculate population-weighted accessibility
averages by city regions for all scenarios (a-d) and comparisons be-
tween them considering a gravity-based impedance function as well as
using fixed travel time thresholds of 30, 60 and 90 min for cumulative
opportunity accessibility.

These results in Table 7 evidence that single cut-off time thresholds
are not suited for the proposed application, as low cut-offs such as
30 min do not properly represent the average travel time required for
the peripheral zones to reach most city jobs. For example, accessible
jobs using 30 min cut-off for the east region correspond to less than 5%
of the 90 min cut-off. However, larger values such as 90 min or more
improperly inflate accessibility levels for central zones. From our ana-
lysis of smart card data, only 5% of travelers have travel times superior
to 68 min from the central region (Table 6). Therefore, due to the
nature of very distinct travel times distributions for different city re-
gions, there is not a single appropriate cut-off time.

On the other hand, gravity-based accessibility metrics build upon
spatial interaction modeling theory and are deemed as an alternative to
avoid an arbitrary selection of cut-off times for accessibility calcula-
tions. For the gravity-based metrics, we calibrated a negative ex-
ponential impedance function using travel time following the metho-
dology proposed by Iacono et al. (2010) that uses the percentage of
trips by travel time interval. We used data from a large recent regional
household survey published in 2018 from Metr6 SP (2018) to filter
transit and walk trips, and the resulting impedance function (as in Eq.
2) is fity) = a ePY = 0.355 ¢92%, As presented in Table 7, while
gravity-based indeed provides better results than 30-min cut-off fixed
threshold, using the assumption of a fixed a and f parameters for the
impedance function for all zones does not properly represent the acute
differences in trip duration frequency distribution throughout city
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regions. While only 2% of trips from central zones take more than
90 min, about 17% of those from the eastern region take more than that
value. Therefore, we proposed the 95th percentile of travel times, cal-
culated for subprefecture level (32 city divisions) using smart card data,
for our accessibility calculations.

Fig. 9 compares reachability for scenarios (a), (¢) and (d) con-
sidering two points for a trip departing at 7 h. On the left, a point in
Parelheiros subprefecture (id = 20) and, on the right, one in Pinheiros
(id = 11). The average combined reduction due to crowding and travel
time variability on perceived accessibility to jobs is 87% for Parelheiros
subprefecture and only 20% for Pinheiros. While for the former ac-
cessibility to key job locations in more central areas are affected, for the
latter, the influence of crowding does not appear to hinder how users
perceive accessibility to central jobs.

Most importantly, Fig. 10, which represents the spatial influence of
both crowding discomfort and travel time variability on accessibility to
jobs, reveals that both aspects highly impact the outskirts and periph-
eries. On the other hand, the accessibility from more centrally located
areas are not much influenced by crowding and travel times vari-
abilities, since, as seen in Fig. 7, users have access to unused capacity on
bus lines to reach nearby jobs. This uneven impact is of most relevance
for city planners and policymakers aiming to find support to showcase
how improving frequencies, capacities and implementing more dedi-
cated lanes for public transport systems for reliability will bring re-
sidents closer to city opportunities.

5. Conclusion and future work

We have proposed a methodology to measure and evaluate the
spatial impact of travel time variability and crowding discomfort on
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accessibility to jobs considering travel time as perceived by users in a
large congested public transport network using multiple months of
smart card and AVL big data. Crowding distribution was revealed for a
representative workday from stable travel patterns among 20 work-
days, enabling the creation of a public transport networks with em-
bedded crowding time valuation for all routes and added buffer time for
OD pairs. Buffer time was estimated using 95th travel time from re-
vealed trips for OD pairs with a minimum representative number of
trips, with limitations such as zone sizes and lack of trip purpose in-
formation. We analyzed accessibility comparing scenarios that con-
sidered (a) speeds from AVL data, (b) speeds and travel time reliability,
(c) speeds and crowding, and (d) all three together.

The results we have obtained show that there is a spatially uneven
and significant influence of the higher perceived travel times and trip
buffer times on reduction of accessibility considering travel time as
perceived by users throughout the city of Sdo Paulo, Brazil. While
higher perceived travel times do not reduce accessibility per se,
crowding and travel time variability may be used to justify harder ac-
cess to certain areas when travelers make decisions where to look for
jobs. Literature has shown the relevance of crowding discomfort on user
perception and travel time unreliability in trip buffer times, and this
research aimed to translate those into accessibility assessments. In this
paper, we have shown the importance of how crowding and travel time
variability influence accessibility and propose future research paths to
include those aspects for policy evaluations using accessibility metrics.

For public transport providers, the policy implications of this re-
search are two-fold. Firstly, the proposed methodology enables insights
to unveil city areas that are more influenced by crowding and travel
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time reliability effects, thus enabling investment priority in regions
which the population will sense higher gains in perceived travel time.
Secondly, the proposed approach allows the evaluation of different
intervention scenarios in public transport systems: in the case where
higher capacity vehicles are proposed, traditional travel-time only ac-
cessibility metrics are not able to capture benefits as perceived by users.
Therefore, using the proposed methodology while evaluating higher
capacity vehicle plans, the reduction of crowding and users' perceived
travel time is revealed. Transit agencies should consider that plans that
ought to increase only speeds and improve general accessibility will not
thrive if the system has capacity constraints that hamper attracting new
users.

Data quality and availability issues have emerged from the analysis
as there was a need to remove otherwise valid workdays from our
analysis due to data loss. Therefore, the examination of data quality
should be done carefully, evaluating potential data losses and errors to
enable large panel analysis. Although these data issues may arise due to
the multiple and diverse datasets that we have had to analyze, com-
prising billions of records, we acknowledge our efforts to maintain the
most precise analysis and plan for further validations with a large travel
survey recently made available for researchers. We also plan to in-
vestigate how to improve the precision of boarding stop identification
obtained from GPS data and estimated alighting stop identification
using the aforementioned travel survey and other local field surveys on
buses. Other limitations of our work have also to be noticed: the lack of
information on real-time travel speeds and times for the rail system, as
well as not including access or first waiting time in trips inferred from
smart card data. However, this is a known issue in methodologies for
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Fig. 10. Influence of crowding and travel time variability on accessibility to jobs considering travel time as perceived by users for a 7 a.m. departure.

smart card data processing.

Multiple future research opportunities arise from this research. One
is related to developing an econometric model to evaluate the impact
on accessibility incorporating socio-economic variables of city districts,
a topic still unexplored in the literature. Fine-tuning the effect of
crowding on perceived travel time differently for seating and standing
passengers is another possible future improvement. Future research
could also assess the distribution of crowding and travel time variability
impacts on accessibility along the day for complete profiling of trans-
portation proposals. Other future research direction may comprise
analyzing day-to-day variability of crowding influence. Including in-
creased travel time whenever users are unable to board vehicles due to
crowding is another possibility of future research.

Calibrating crowding valuation for local characteristics is also an
important future research path. Future research should apply a stated
preference survey with socio-economic data to measure how users
evaluate crowding by presenting pictures of crowding levels (Batarce
et al., 2016; Tirachini et al., 2017) or by further analyzing smart card
data itself (Yap et al., 2017). Ultimately, future work accessibility
should consider a complete generalized cost function for impedance,
also including weighted walking and waiting times based on the local
perception of travel time. The approach we have proposed to analyze
the effect of crowding and travel time variability on accessibility me-
trics are transferrable and thus can be applied in other cities; it is cer-
tainly useful to improve public transport systems, particularly in large
metropolis in developing countries, whose network coverage and LOS
usually do not match those found in more developed countries. Pol-
icymakers can use finer measures for evaluating distinct transportation
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projects and proposals for equity impacts on perceived travel time
savings with proper crowding valuation. In this sense, future work
should include the proposed accessibility metrics as one of the main
objective functions in the problem of designing public transport net-
work, as accessibility is a core concept that translates the target of
promoting access to opportunities. Bringing public transport plans
evaluation metrics closer to user perception of service quality will
contribute to attractive public transportation systems. In the long run,
this will increase public transport as a viable option, promoting a modal
shift from cars and thus creating more livable environments for future
generations.
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