
Elpis
From simulation to fabrication

Rodrigo Huerta Gañán (rodrigo@ac.upc.edu)

Aurora Tomás Berjaga (aurora@ac.upc.edu)

ARCO - 23 November 2021

 Rodrigo Huerta Gañán and Aurora Tomás Berjaga ARCO-UPC

Table of contents

1. PA work

2. MA work

3. PD work

4. Conclusions

2

 Rodrigo Huerta Gañán and Aurora Tomás Berjaga ARCO-UPC

1. Processor Architecture (PA) work

3

 Rodrigo Huerta Gañán and Aurora Tomás Berjaga ARCO-UPC

1. Baseline

4

Elpis core

✓ Total custom core implemented from scratch in Verilog

✓ Based on RISC-V mixed with some MIPS ideas, and customized instructions

✓ 5-stage (IF, ID, EX, MEM, WB) pipelined, in-order and multicycle processor

✓ Support for different type of instructions and pipeline lengths

 Rodrigo Huerta Gañán and Aurora Tomás Berjaga ARCO-UPC

1. Baseline

5

Microarchitectural features:

● Full set of bypasses

● Main memory (5 cycles delay)

● L1 iCache and L1 dCache

● Memory arbiter

● iTLB and dTLB
○ Virtual memory support

● History File
○ In-order exceptions support

● Store Buffer
○ Solve RAW dependencies

○ OoO writes

Basic instructions: ADD, SUB, MUL, LDB, LDW, STB, STW, BEQ, JUMP

 Rodrigo Huerta Gañán and Aurora Tomás Berjaga ARCO-UPC

2. Multiprocessors Architecture (MA) work

6

 Rodrigo Huerta Gañán and Aurora Tomás Berjaga ARCO-UPC

2. FPGA Synthesis process

Main issues:

➢ Assignation to regs from different always blocks

➢ Mix of blocking and non-blocking assignations

➢ Use of ‘x values

➢ Non-desired inferred latches

➢ Non inferred RAM blocks

○ Use of SRAM bits for RAM and caches instead of Logic Elements

■ Complete re-coding of RAM and TLB

■ Big modifications to caches

➢ No timing requirements accomplished

○ Use of a PLL to downclock the original FPGA clock

7

Altera De10-Lite

 Rodrigo Huerta Gañán and Aurora Tomás Berjaga ARCO-UPC

3. Core extensions

✓ Correction of detected bugs

✓ Enabling I/O

◆ Interaction with switches and hexadecimal displays

✓ More complete ISA

◆ Incorporation of new instructions: addi, subi, or, ori, and,

andi, xor, xori, sll, srl, sra, slli, srli, srai,

bge, blt, bne, movr*, ecall*, read*, print

✓ Creation of a compiler in Python

◆ Translates from assembly language to machine code

✓ Incorporation and use of Unit Testing

8

Unit Testing

Elpis compiler

 Rodrigo Huerta Gañán and Aurora Tomás Berjaga ARCO-UPC

3. Core extensions

Once Elpis was synthesized, the compilation

report obtained was:

● Fmax of 43.94 MHz, fixed with PLL to run

at 40 MHz.

● Low resource usage:

➢ 27% of use of logic elements

➢ 16% of use of memory bits

9

 Rodrigo Huerta Gañán and Aurora Tomás Berjaga ARCO-UPC

4. Road to dual core: Horus diagram

● Multiprocessor composed of 2 Elpis cores

● New incorporations:

➢ Shared Last Level Cache (LLC)

➢ Directory-based cache coherence

➢ LLC access buffer as a serialization point

➢ IO arbiter

● Core modifications:

➢ L1 caches → 4’Cs

➢ Larger RAM size

➢ Point to point communication to L1 caches

from LLC and directory

➢ Caches arbiter

10

 Rodrigo Huerta Gañán and Aurora Tomás Berjaga ARCO-UPC

● Direct-mapped with 4 lines of 128 bits each

● Added support for directory invalidations

and requests

➢ Coherence support with valid and

dirty bits, instead of a FSM for each

line based on MSI for directory

● Added support for invalidations due to LLC

inclusivity

➢ Added a new state: ByPass

4. Road to dual core: L1 caches

11

 Rodrigo Huerta Gañán and Aurora Tomás Berjaga ARCO-UPC

4. Road to dual core: Directory

● Centralized directory with inclusivity LLC

● Write-invalidate protocol

● Stable states and transient states

Structure for each LLC cache block:

➢ Presence bit for each core

➢ Dirty bits

➢ FSM

Inputs:

✓ Petitions (read, write)

✓ ACKs fetch and invalid

✓ Way and set of addresses in LLC

Outputs:

✓ Petition permission

✓ Requests fetch and invalid

12

 Rodrigo Huerta Gañán and Aurora Tomás Berjaga ARCO-UPC

4. Road to dual core: LLC

● Addition of 2 extra states: Petition and ByPass

● First approach was direct-mapping with 64

blocks of 128 bits

➢ Rejected due to inclusivity

● Final approach → N-way associative:

➢ 8 ways

➢ 8 sets each way

➢ 128 bits each block

➢ pLRU

● Consistency model based on Relaxed

consistency

13

 Rodrigo Huerta Gañán and Aurora Tomás Berjaga ARCO-UPC

4. Road to dual core: Issues & overview

Once Horus was synthesized, the compilation report

obtained was:

● High resource usage:

➢ 92% of usage of LEs due to LLC 8-way

associative cache → With direct-mapping

LLC the usage was about 60%

● Fmax of 28MHz:

➢ Use of a PLL to fix the clock to run at 25MHz

➢ With 1 core we can reach up to 40MHz. The

decrease of the frequency is because we

have use some atomicity of operations.

14

 Rodrigo Huerta Gañán and Aurora Tomás Berjaga ARCO-UPC

5. Demo Coherence

15

https://docs.google.com/file/d/1iiG1ZqtpiKH4YuRAgyh4ISY1PBJ7gd9_/preview

 Rodrigo Huerta Gañán and Aurora Tomás Berjaga ARCO-UPC

5. Demo FPGA

16

https://docs.google.com/file/d/1tl8cAdo-B-7qCcRno-sciq0CIMbtr5Gw/preview

 Rodrigo Huerta Gañán and Aurora Tomás Berjaga ARCO-UPC

3. Processor Design (PD) work

17

 Rodrigo Huerta Gañán and Aurora Tomás Berjaga ARCO-UPC

6. Open MPW Shuttle Program (MPW-3 edition)

● MPW-3 is the third Open MPW Shuttle providing

fabrication for fully open-source projects using the

SkyWater 130 nm Open Source PDK announced by

Google and SkyWater.

● Efabless is the company in charge of the fabrication and

Google pays the tapeout for 40 of different projects

18

● Our target: Deliver the Elpis project to be manufactured

 Rodrigo Huerta Gañán and Aurora Tomás Berjaga ARCO-UPC

7. What is needed

● Skywater PDK → Set of files that defines each cell (“logic gate”) in the foundry

● Caravel user project wrapper

➢ PicoRISC-V as main processor that is used to program the user design

➢ Fully integration with OpenLane, Sky130nm and Caravel (PicoRISC-V and related minimum

HW)

● OpenLane is an automated RTL to GDSII flow based on several components and scripts for design

exploration and optimization. The flow performs full ASIC implementation steps from RTL all the

way down to GDSII.

➢ GDSII → File that contains the layout of the chip and is sent to the vendor who makes the mask

for the chip to manufactured in the fab.

19

 Rodrigo Huerta Gañán and Aurora Tomás Berjaga ARCO-UPC

8. OpenLane workflow

Flow that consists of several stages, where each

stage may consist of multiple sub-stages.

➢ Synthesis

➢ Floorplan and PDN (Power Distribution

Network)

➢ Placement

➢ Clock Tree Synthesis (CTS)

➢ Routing

➢ GDSII Generation

➢ Checks

20

 Rodrigo Huerta Gañán and Aurora Tomás Berjaga ARCO-UPC

9. First set of problems

● Very difficult to install all the needed tools and dependencies

● Each workflow is highly time consuming

● Documentation of caravel user project and openlane is unclear, disperse and incomplete (and

sometimes unavailable 😀)

● IVerilog compiles different to Quartus, so we had to perform some changes in our Verilog code

● The .c compilation program the user project and connect it to caravel has no support of the c standard

library

● We had to move to doing macros for different modules after playing a bit with OpenLane as the flow

was failing due to different issues such us overlap, density, etc. Even that we played with different

variables like DIE_AREA or PL_TARGET_DENSITY among others

● As the area was a critical restriction, we decided to present a lighter version of our Elpis core

21

 Rodrigo Huerta Gañán and Aurora Tomás Berjaga ARCO-UPC

10. Elpis (light version)

22

In our simpler version of Elpis core we decided

to get rid off:

✘ Multiplication pipeline

✘ History File

✘ TLBs

 Rodrigo Huerta Gañán and Aurora Tomás Berjaga ARCO-UPC

11. SRAM

● The SkyWater PDK has no support for inferring SRAMs

● OpenRAM is an external tool that its purpose is to give support of creating SRAM for the Sky130

PDK, among others

● However, it has many problems:

➢ The SRAM needs to be on the top design due to power layer restrictions → Caches not viable

➢ The DRC (Design Rule Checking) checking fails. It can be fixed changing some PDK files,

but then it will fail for the rest of the design

● So, it was discarded to be used after some effort trying to solve each problem and we created our

custom RAM (with very reduced RAM size) just letting the tool to infer the needed logic for a simple

Verilog definition

23

 Rodrigo Huerta Gañán and Aurora Tomás Berjaga ARCO-UPC

12. Using macros

● We decided to create different macros in order to

take advantage of different density configurations

● First, we tried to have different macros:

chip_controller, i_arbiter, o_arbiter, custom_sram

and core

● As some macros where tiny, we had problems in the

connection of the power pins and we decided to join

i_arbier, o_arbiter and chip_controller in a unique

macro. So, we have 3 different macros in the end

24

 Rodrigo Huerta Gañán and Aurora Tomás Berjaga ARCO-UPC

13. Second set of problems

● Solve setup violations (the setup time constraint is the amount of time required for the

input to a flip-flop to be stable before a clock edge)

➢ Solved it increasing the clock period

● Solve hold violations (the hold time constraint is the minimum amount of time needed for

the input to a flip-flop to be stable after a clock edge)

➢ Solve it adding extra variables for the hold violations

● Warnings for slew violations that we were impossible to fix (time needed to change from

0 to 1 or vice versa in a flip flop)

➢ They do not avoid finishing the design

25

 Rodrigo Huerta Gañán and Aurora Tomás Berjaga ARCO-UPC

14. Second set of problems

● Run 2 additional checkings in the Efabless platform: Precheck and Tapeout precheck → Later one raised

a strange DRC error related to metal density

➢ It was supposed to be an official fix before the final date (it wasn’t) → we ended up using a

workaround with a modified OpenLane docker image provided by another user, but ...

➢ … this workaround creates huge slew violations in the wrapper (top design that joins the macros)

➢ Final decision: User image for macros + official image for wrapper

✓ This mix eliminates the new slew violations and solves the DRC error

● When we reached this point, we were run out of time and we only had time to test the whole design in

RTL simulation and a very similar design in a Intel FPGA. So, after delivering the design we tried to run a

GL simulation with the generated netlist and we have found out that it is not working :(

26

 Rodrigo Huerta Gañán and Aurora Tomás Berjaga ARCO-UPC

15. Conclusions

● The compilation of different RTL tools is different (Quartus, modelsim, Iverilog, yosys)

➢ GL tests are essential even having the design working in a FPGA, e.g.

● OpenLane and Sky130 have potential, but they need more development, better documentation

support and maturity (they have been around for 1 year and a half)

● It’s hard to do a tapeout in 1 month and a half with a (yet immature) tool that is used for first time for

us even having a previous design for another workflow working (FPGA)

27

Elpis
From simulation to fabrication

Rodrigo Huerta Gañán (rodrigo@ac.upc.edu)

Aurora Tomás Berjaga (aurora@ac.upc.edu)

ARCO - 23 November 2021

