

SemiMod GmbH

REPORT

- Topic: SG13G2 MOSFET Model Library in Ngspice Sanity Check
- Author 1 Markus Müller
- Author 2 Mario Krattenmacher
- Contact: markus.mueller@semimod.de

Contents

1	Introduction	1
2	IHP SG13G2 PSP NMOS $w=0.35\mu\mathrm{m}~l=0.13\mu\mathrm{m}$ Sanity Checks	1
3	IHP SG13G2 PSP NMOS $w=0.90\mu{ m m}~l=0.13\mu{ m m}$ Sanity Checks	6
4	IHP SG13G2 PSP NMOS $w=0.35\mu\mathrm{m}~l=0.25\mu\mathrm{m}$ Sanity Checks	10
5	IHP SG13G2 PSP PMOS $w = 0.35 \mu \mathrm{m} l = 0.13 \mu \mathrm{m}$ Sanity Checks	15
6	IHP SG13G2 PSP PMOS $w = 0.35\mu\mathrm{m}~l = 0.35\mu\mathrm{m}$ Sanity Checks	19
7	IHP SG13G2 NMOS Length Scaling Sanity Checks	24
8	IHP SG13G2 PMOS Length Scaling Sanity Checks	25
9	IHP SG13G2 NMOS Width Scaling Sanity Checks	26
10	IHP SG13G2 PMOS Width Scaling Sanity Checks	28
11	IHP SG13G2 NMOS Corner Sanity Checks	29

1 Introduction

This document shows several **simulated** MOSFET characteristics for the open-source IHP SG13G2 process. The code for generating this document is available on Gitlab and maintained by SemiMod GmbH. The document is automatically generated using the DMT-core, DMT-extraction and Pylatex packages. The transistor width used for normalization of currents is given in the section headings.

2 IHP SG13G2 PSP NMOS $w = 0.35 \,\mu\text{m} \, l = 0.13 \,\mu\text{m}$ Sanity Checks

This section gives an overview of the DC Characteristics of the transistor. Next, some DC characteristics @T = 300 K are visualized.

Figure 1: $J_{\rm D}(V_{\rm GS})$ at $V_{\rm DS}$ and T = 300 K.

Figure 3: $J_{\rm D}(V_{\rm DS})$ at $V_{\rm GS}$ and T = 300 K.

Next, some AC characteristics $@T = 300 \,\mathrm{K}$ are visualized.

Figure 5: $f_{\text{max}}(J_{\text{D}})$ at V_{DS} and T = 300 K.

Figure 7: $\Re \{\underline{Y}_{21}\} (J_D)$ at V_{DS} and T = 300 K.

Next, some characteristics at different T and $V_{\rm DS}=1.5\,{\rm V}$ are visualized.

Figure 9: $f_{\rm T}(J_{\rm D})$ at $V_{\rm DS} = 1.5 \,{\rm V}$ over T.

This section gives an overview of the DC Characteristics of the transistor. Next, some DC characteristics @T = 300 K are visualized.

Figure 10: $J_{\rm D}(V_{\rm GS})$ at $V_{\rm DS}$ and T = 300 K.

Figure 11: $J_{\rm D}(V_{\rm GS})$ at $V_{\rm BC}$ and $T = 300 \,\rm K$.

Figure 12: $J_{\rm D}(V_{\rm DS})$ at $V_{\rm GS}$ and T = 300 K.

Next, some AC characteristics @T = 300 K are visualized.

Figure 13: $f_{\rm T}(J_{\rm D})$ at $V_{\rm DS}$ and T = 300 K.

Figure 15: $MSG(J_D)$ at V_{DS} and T = 300 K.

Next, some characteristics at different T and $V_{\rm DS} = 1.5\,{\rm V}$ are visualized.

Figure 17: $J_{\rm D}(V_{\rm GS})$ at $V_{\rm DS} = 1.5 \,\rm V$ over T.

Figure 18: $f_{\rm T}(J_{\rm D})$ at $V_{\rm DS} = 1.5$ V over T.

4 IHP SG13G2 PSP NMOS $w=0.35\,\mu\mathrm{m}~l=0.25\,\mu\mathrm{m}$ Sanity Checks

This section gives an overview of the DC Characteristics of the transistor. Next, some DC characteristics @T = 300 K are visualized.

Figure 19: $J_{\rm D}(V_{\rm GS})$ at $V_{\rm DS}$ and T = 300 K.

Figure 21: $J_{\rm D}(V_{\rm DS})$ at $V_{\rm GS}$ and T = 300 K.

Next, some AC characteristics @T = 300 K are visualized.

Figure 23: $f_{\text{max}}(J_{\text{D}})$ at V_{DS} and T = 300 K.

Figure 25: $\Re \{\underline{Y}_{21}\} (J_D)$ at V_{DS} and T = 300 K.

Next, some characteristics at different T and $V_{\rm DS}=1.5\,{\rm V}$ are visualized.

Figure 26: $J_{\rm D}(V_{\rm GS})$ at $V_{\rm DS}=1.5\,{\rm V}$ over T.

Figure 27: $f_{\rm T}(J_{\rm D})$ at $V_{\rm DS} = 1.5$ V over T.

This section gives an overview of the DC Characteristics of the transistor. Next, some DC characteristics @T = 300 K are visualized.

Figure 28: $J_{\rm D}(V_{\rm GS})$ at $V_{\rm DS}$ and T = 300 K.

Figure 29: $J_{\rm D}(V_{\rm GS})$ at $V_{\rm BC}$ and T = 300 K.

Next, some AC characteristics @T = 300 K are visualized.

Figure 31: $f_{\rm T}(J_{\rm D})$ at $V_{\rm DS}$ and T = 300 K.

Figure 33: $MSG(J_D)$ at V_{DS} and T = 300 K.

Next, some characteristics at different T and $V_{\rm DS} = 1.5\,{\rm V}$ are visualized.

Figure 35: $J_{\rm D}(V_{\rm GS})$ at $V_{\rm DS} = 1.5$ V over T.

Figure 36: $f_{\rm T}(J_{\rm D})$ at $V_{\rm DS} = 1.5$ V over T.

6 IHP SG13G2 PSP PMOS $w = 0.35 \,\mu\text{m}$ l = 0.35 µm Sanity Checks

This section gives an overview of the DC Characteristics of the transistor. Next, some DC characteristics @T = 300 K are visualized.

Figure 37: $J_{\rm D}(V_{\rm GS})$ at $V_{\rm DS}$ and T = 300 K.

Figure 38: $J_{\rm D}(V_{\rm GS})$ at $V_{\rm BC}$ and T = 300 K.

Figure 39: $J_{\rm D}(V_{\rm DS})$ at $V_{\rm GS}$ and T = 300 K.

Next, some AC characteristics @T = 300 K are visualized.

Figure 41: $f_{\text{max}}(J_{\text{D}})$ at V_{DS} and T = 300 K.

Figure 43: $\Re \{\underline{Y}_{21}\}(J_D)$ at V_{DS} and T = 300 K.

Next, some characteristics at different T and $V_{\rm DS}=1.5\,{\rm V}$ are visualized.

Figure 45: $f_{\rm T}(J_{\rm D})$ at $V_{\rm DS} = 1.5$ V over T.

7 IHP SG13G2 NMOS Length Scaling Sanity Checks

Figure 46: $J_{\rm D}(V_{\rm GS})$ at $V_{\rm DS} = 1$ V over device length.

Figure 47: $J_{\rm D}(V_{\rm DS})$ at $V_{\rm GS}=0.9\,{\rm V}$ over device length.

Figure 48: $f_{\rm T}(J_{\rm D})$ at $V_{\rm DS} = 1$ V over device length.

8 IHP SG13G2 PMOS Length Scaling Sanity Checks

Figure 49: $J_{\rm D}(V_{\rm GS})$ at $V_{\rm DS} = 1 \, {\rm V}$ over device length.

Figure 50: $J_{\rm D}(V_{\rm DS})$ at $V_{\rm GS}=0.9\,{\rm V}$ over device length.

Figure 51: $f_{\rm T}(J_{\rm D})$ at $V_{\rm DS} = 1$ V over device length.

9 IHP SG13G2 NMOS Width Scaling Sanity Checks

Figure 52: $J_{\rm D}(V_{\rm GS})$ at $V_{\rm DS}=1\,{\rm V}$ over device width.

Figure 53: $J_{\rm D}(V_{\rm DS})$ at $V_{\rm GS} = 0.9$ V over device width.

Figure 54: $f_{\rm T}(J_{\rm D})$ at $V_{\rm DS} = 1$ V over device width.

10 IHP SG13G2 PMOS Width Scaling Sanity Checks

Figure 55: $J_{\rm D}(V_{\rm GS})$ at $V_{\rm DS}=1\,{\rm V}$ over device width.

Figure 56: $J_{\rm D}(V_{\rm DS})$ at $V_{\rm GS}=0.9\,{\rm V}$ over device width.

Figure 57: $f_{\rm T}(J_{\rm D})$ at $V_{\rm DS} = 1$ V over device width.

11 IHP SG13G2 NMOS Corner Sanity Checks

Figure 58: $J_{\rm D}(V_{\rm GS})$ at $V_{\rm DS} = 1$ V over corners.

Figure 59: $J_{\rm D}(V_{\rm DS})$ at $V_{\rm GS}=0.9\,{\rm V}$ over corners.

Figure 60: $f_{\rm T}(J_{\rm D})$ at $V_{\rm DS}=1\,{\rm V}$ over corners.