
Pyomo Code Documentation
1. Purpose and Description of this README File

The purpose of this documentation is to describe the purpose of each major segment of code
(henceforth referred to as code block) in the Python jupyter Notebook file:
MultiObjectiveModel_Joplin_Pyomo.ipynb. The purpose of the referred-to Python code file is to
run a series of linear programming models for single- and multi-objective optimization relating to
extreme weather’s effect on a community in terms of three objective functions. The three
objectives used in this program are to minimize economic loss, minimize population dislocation,
and maximize building functionality. The data used as input files to this program have been
preprocessed in a separate program, they are not raw data files. This program is written in Python
using the open-source Pyomo modeling library.

Project Authors and Contributors:

• Tarun Alduri
• Sai Bhavaraju
• Dale Cochran – Code Author
• Andres Gonzalez
• Charles Nicholson
• Yunjie Wen

Contact:

Charles Nicholson: cnicholson@ou.edu

2. Code blocks detail of Jupyter Notebook.

2.1 Code Block 1
The first code block imports the necessary Python libraries and packages for this program. The
most prominent library used in this program is Pyomo, which is used to define and run the model.
The libraries matplotlib and plotly are used to create visualizations of the results generated from
the various runs of the model.

2.2 Code Block 2
The second code block allows the user to set several options for how the remainder of the
program will run, such as setting the solver the code will use to optimize the subsequent models
or which of the optimization models should be run. If a model is not run, the program will not
produce the plots related to the results of that given model. Then the values of the user-defined
variables are checked to ensure that the values entered are valid. If the values are not valid, then
the program outputs a message related to the specific error and stops the code execution.

Variable in Code Description

modelSolver

User-defined variable to determine which
solver will be used throughout the program to
optimize the variations of the model. The
program’s default is to use the open-source

CBC solver engine via the NEOS Server
solver manager (modelSolver=0). The other
two options for this variable are to use
Pyomo’s open-source GLPK solver engine
(modelSolver=1), or to use the Gurobi solver
engine (modelSolver=2).

numEpsilonSteps

User-defined variable to determine the
number of epsilon values that will be evaluated
for each run of the model containing a(n)
epsilon constraint(s). This number will be
applied to all of the model runs that include
one or more epsilon constraints. The
program’s default is to use 20 epsilon values.

maxBudget

User-defined variable to define the maximum
possible budget. This program’s default is to
define the maxBudget as the monetary
amount that would be required to retrofit every
building to the best possible strategy level.
Acceptable values for this variable are
“default” or a numeric value.

availBudget

User-defined variable to define the available
budget (the budget amount used to constrain
the model) as a percentage of maxBudget.
This program’s default is to use availBudget as
20% of maxBudget. Acceptable values for this
variable are percentages (percentages of
maxBudget) entered in decimal form.

runModel1

User-defined variable to determine whether or
not to run the model for optimizing economic
loss subject to population dislocation epsilon
constraints. Acceptable values for this variable
are 1 (run the model) or 0 (don’t run the
model).

runModel2

User-defined variable to determine whether or
not to run the model for optimizing economic
loss subject to building functionality epsilon
constraints. Acceptable values for this variable
are 1 (run the model) or 0 (don’t run the
model).

runModel3

User-defined variable to determine whether or
not to run the model optimizing population
dislocation subject to economic loss epsilon
constraints. Acceptable values for this variable
are 1 (run the model) or 0 (don’t run the
model).

runModel4

User-defined variable to determine whether or
not to run the model optimizing population
dislocation subject to building functionality
epsilon constraints. Acceptable values for this

variable are 1 (run the model) or 0 (don’t run
the model).

runModel5

User-defined variable to determine whether or
not to run the model optimizing building
functionality subject to economic loss epsilon
constraints. Acceptable values for this variable
are 1 (run the model) or 0 (don’t run the
model).

runModel6

User-defined variable to determine whether or
not to run the model optimizing building
functionality subject to population dislocation
epsilon constraints. Acceptable values for this
variable are 1 (run the model) or 0 (don’t run
the model).

runModel7

User-defined variable to determine whether or
not to run the model optimizing economic loss
subject to population dislocation epsilon
constraints. Acceptable values for this variable
are 1 (run the model) or 0 (don’t run the
model).

runModel8

User-defined variable to determine whether or
not to run the model optimizing population
dislocation subject to economic loss epsilon
constraints. Acceptable values for this variable
are 1 (run the model) or 0 (don’t run the
model).

runModel9

User-defined variable to determine whether or
not to run the model optimizing building
functionality subject to economic loss epsilon
constraints. Acceptable values for this variable
are 1 (run the model) or 0 (don’t run the
model).

scaleData

User-defined variable to determine whether or
not the monetary data l (direct economic loss)
and Sc (strategy level cost) should be scaled
by the scaleQuantity value when the data is
read-in.

scaleQuantity

User-defined variable to determine how the
monetary data l (direct economic loss) and Sc
(strategy level cost) should be scaled when
the data is read-in.

2.3 Code Block 3
The third code block loads the two required data files from the current working directory. The
respective files are loaded from Excel CSV files and stored in the program as Pandas data frames.
The first data file, Data_Q_t_6_basedonage_WS60.csv, contains data pertaining to economic
loss, population dislocation, and building functionality. The second data file,
Data_Sc_basedonage_WS60.csv, contains data pertaining to the cost of retrofitting buildings
from one strategy level to another. Subsequently, two for loops are used to ensure the correct

data type for the Z data and to conduct any scaling (if desired). The required data and naming
conventions for the two data files are provided below:

*Note: The two data files must have the required information below. If the names are different,
the files to load into the program must be changed on lines 57 and 63 in the code (in the second
code block).

First Data File
Required Data Required CSV File Column Name
Block ID Z
Arch Type S
Building Strategy Level K
Expected direct economic loss in block i of
structure type j at strategy level k (𝑙!"#).

l

Quantity of building prior to any retrofit actions
in block i of structure type j at strategy level k
(𝑏!"#).

b

Parameter required for model. r_ijk
Functionality of building in block i of structure
type j at strategy level k at time t (𝑄$%#$).

Q_t_hat

Population dislocation in building in block i of
structure type j at strategy level k.

d_ijk

Second Data File
Required Data Required CSV File Column Name
Block ID Z
Arch Type S
Building Strategy Level K
Parameter required for model. r_ijk
Building strategy level after retrofit actions. K’
The cost of retrofitting a building in block i of
structure type j from initial strategy level k to
strategy level k’.

Sc

Variable in Code Description
myData Pandas data frame to hold the information

loaded from the first data file.

myData_Sc Pandas data frame to hold the information
loaded from the second data file.

2.4 Code Block 4
The first major section of the fourth code block creates and defines the base model for the
remainder of the program. Initially the model is declared as a Pyomo concrete model and then
the required indices and sets that will be used throughout the model are declared and initialized.
Next the decision variables, parameters, and their respective domains are declared, and data for

said parameters is initialized from the myData and myData_Sc data frames (the data frames that
contain the required information loaded in the previous code block). The total (max) possible
budget is declared as a parameter and is the budget required to retrofit every building to the best
possible strategy level. Subsequently, the available budget for the model is initialized as 20% of
the total (max) possible budget. Next the three objective functions of interest are defined as
Python functions, followed by the base constraints for the model (the constraints prior to
considering any epsilon constraints). The objective of minimizing economic loss is defined in the
Python function obj_economic and is declared as the Pyomo objective model.objective_1. The
objective of minimizing population dislocation is defined in the Python function obj_dislocation
and is declared as the Pyomo objective model.objective_2. The objective of maximizing building
functionality is defined in the Python function obj_functionality and is declared as the Pyomo
objective model.objective_3. Finally, this section of the code block declares the solver manager
for the program on code line 316 as the NEOS server (the CBC engine will be declared later on).

Variable in Code Description
model The Pyomo concrete model.

model.Z Set of all unique block ID numbers in the Z
column of the myData data frame.

model.S Set of all unique archtypes in the S column of
the myData data frame.

model.K Set of all unique numbers in the K column of
the myData data frame.

model.K_prime Set of all unique numbers in the K’ column of
the myData_Sc data frame.

zsk List of all the block ID, archtype, and strategy
level combinations in the myData data frame.

model.ZSK
Pyomo model set of all block ID, archtype, and
strategy level combinations in the myData
data frame.

zs List of all the block ID and archtype
combinations in the myData data frame.

model.ZS Pyomo model set of all block ID and archtype
combinations in the myData data frame.

kk_prime List of all possible strategy level retrofit
actions.

model.KK_prime
Pyomo model set of all possible strategy level
retrofit actions from initial level K to final level
K_prime.

k_primek List of all combinations of final strategy level
k_prime and initial strategy level k.

model.K_primeK
Pyomo model set of all combinations of final
strategy level K_prime and initial strategy level
K.

zskk_prime
List of all combinations of block ID, archtype,
initial strategy level, and final strategy level
from the myData_Sc data frame.

model.ZSKK_prime
Pyomo model set of all combinations of block
ID, archtype, initial strategy level, and final
strategy level from the myData_Sc data frame.

model.x_ijk
Pyomo decision variable for the total number
of buildings in neighborhood i of structure type
j at strategy level k after retrofitting.

model.y_ijkk_prime

Pyomo decision variable for the total number
of buildings in neighborhood i of structure type
j retrofitted from strategy level k to strategy
level k_prime.

model.l_ijk
Pyomo economic loss cost parameter for
buildings in neighborhood i of structure type j
at strategy level k.

model.d_ijk
Pyomo population dislocation parameter for
buildings in neighborhood i of structure type j
at strategy level k.

model.b_ijk
Pyomo parameter for total number of buildings
in neighborhood i of structure type j at strategy
level k.

model.Q_t_hat
Pyomo Building functionality parameter for
buildings in neighborhood i of structure type j
at strategy level k.

model.Sc_ijkk_prime

Pyomo parameter for the cost of retrofit
actions to retrofit a building in neighborhood i
of structure type j from strategy level k to
strategy level k_prime.

sumSc
The total cost required to retrofit all buildings
in all neighborhoods 𝑖	 ∈ 𝑍 of all structure
types 𝑗	 ∈ 𝑆 to the best possible strategy level.

model.B Pyomo parameter for the available budget for
retrofit actions (20% of sumSc).

obj_economic
Function for defining the objective of
minimizing the direct economic loss (first
objective function).

model.objective_1 Pyomo declaration of direct economic loss
objective function.

model.econ_loss Pyomo parameter to hold and monitor the
direct economic loss.

obj_dislocation
Function for defining the objective of
minimizing the population dislocation (second
objective function).

model.objective_2 Pyomo declaration of population dislocation
objective function.

model.dislocation Pyomo parameter to hold and monitor the
population dislocation.

obj_functionality
Function for defining the objective of
maximizing building functionality (third
objective function).

model.objective_3 Pyomo declaration of building functionality
objective function.

model.functionality Pyomo parameter to hold and monitor the
building functionality.

retrofit_cost_rule

Function for defining the constraint that the
total cost of all retrofit actions taken must be
less than or equal to the available budget
(model.B).

model.retrofit_budget_constraint Pyomo declaration of the retrofiti_cost_rule
model constraint.

number_buildings_ij_rule

Function for defining the constraint that the
total number of buildings in neighborhood i of
structure type j must remain the same before
and after retrofit actions (e.g., building strategy
levels can change, but buildings themselves
cannot be built, destroyed, or moved).

model.number_buildings_ij_constraint Pyomo declaration of the
number_buildings_ij_rule model constraint.

model.a
Pyomo parameter to hold the value of
y_ijk_primek for the building_level_rule model
constraint.

model.c
Pyomo parameter to hold the value of
y_ijkk_prime for the building_level_rule model
constraint.

building_level_rule

Function for defining the constraint that the
number of buildings retrofitted from initial
strategy level k to final strategy level k_prime
must equal the number of buildings that were
retrofitted to final strategy level k_prime from
initial strategy level k.

model.building_level_constraint Pyomo declaration of the building_level_rule
model constraint.

solver_manager Declaration of the Pyomo solver manager to
use for optimizing the model (NEOS server).

The second major section in this code block solves the base model (defined in the previous major
section of this code block) for each of the three objective functions respectively, without any
epsilon constraints. If the solver returns an optimal solution, the respective results from each solve
are saved into a dataframe (respective to each of the three runs of the model) for later use to
determine the feasible range of epsilon values. For each solve (three total in this code block) the
objective function being evaluated is first activated and the other two are deactivated; the
activated objection function is what the Pyomo model will optimize while the other deactivated
objective functions are ignored. For example, if model.objective_1 is activated and
model.objective_2 and model.objective_3 are deactivated, then when the model is solved it will
optimize (minimize) total economic loss without regard to the population dislocation or the building
functionality. After the program solves the model for each of the three objective functions
separately (i.e., without any epsilon constraints), the resulting economic loss, population
dislocation, and building functionality from each of the separate solves is output, as well as the
maximum possible budget (sumSc variable) and the total available budget used for optimization
(model.B, 20% of sumSc).

Variable in Code Description

model.objective_1.activate()

Pyomo call to activate the first objective
function (minimize total economic loss).
Note: This call can be applied to any objective
function (e.g., model.objective_2 or
model.objective_3).

model.objective_2.deactivate()

Pyomo call to deactivate the second objective
function (minimize population dislocation).
Note: This call can be applied to any objective
function (e.g., model.objective_1 or
model.objective_3).

results

Python variable identifier to hold the results of
the optimization performed on the given
model. The solver option opt is set to cbc to
declare that the CBC solver engine (on the
NEOS server) will be used to solve and
optimize the model.

obj_1_min_epsilon

Python variable to hold the minimum direct
economic loss resulting from optimizing
model.objective_1. This value corresponds to
the minimum epsilon value in the epsilon
feasible range for direct economic loss when
later conducting multi-objective optimization.

obj_2_value_1
Python variable to hold the population
dislocation that resulted from optimizing
(minimizing) direct economic loss by itself.

obj_3_value_1
Python variable to hold the building
functionality that resulted from optimizing
(minimizing) direct economic loss by itself.

obj_2_min_epsilon

Python variable to hold the minimum
population dislocation resulting from
optimizing model.objective_2. This value
corresponds to the minimum epsilon value in
the epsilon feasible range for population
dislocation when later conducting multi-
objective optimization.

obj_1_value_2
Python variable to hold the direct economic
loss that resulted from optimizing (minimizing)
population dislocation by itself.

obj_3_value_2
Python variable to hold the building
functionality that resulted from optimizing
(minimizing) population dislocation by itself.

obj_3_max_epsilon

Python variable to hold the maximum building
functionality resulting from optimizing
model.objective_3. This value corresponds to
the maximum epsilon value in the epsilon
feasible range for building functionality when
later conducting multi-objective optimization.

obj_1_value_3
Python variable to hold the direct economic
loss that resulted from optimizing (maximizing)
building functionality by itself.

obj_2_value_3
Python variable to hold the population
dislocation that resulted from optimizing
(maximizing) building functionality by itself.

The third major section in this code block declares, initializes, and displays the feasible ranges
for the direct economic loss epsilon values, population dislocation epsilon values, and building
functionality epsilon values as Pyomo parameters of the model. Subsequently, this code block
declares and initializes the “step size” for each epsilon range necessary to evaluate 21 respective
epsilon values when conducting multi-objective optimization with epsilon constraints. The
minimum economic loss epsilon value is obtained from optimizing objective function 1 without any
epsilon constraints.

The maximum economic loss epsilon value is the largest economic loss value that resulted
between when objective function 2 (dislocation) was solved without any epsilon constraints and
when objective function 3 (functionality) was solved without any epsilon constraints. The minimum
dislocation epsilon value is obtained from optimizing objective function 2 without any epsilon
constraints. The maximum dislocation epsilon value is the largest dislocation value that resulted
between when objective function 1 (economic loss) was solved without any epsilon constraints
and when objective function 3 (functionality) was solved without any epsilon constraints. The
maximum functionality epsilon value is obtained from optimizing objective function 3 without any
epsilon constraints. The minimum functionality epsilon value is the smallest functionality value
that resulted between when objective function 1 (economic loss) was solved without any epsilon
constraints and when objective function 2 (dislocation) was solved without any epsilon constraints.

Variable in Code Description
model.econ_loss_max Pyomo parameter for the maximum direct

economic loss epsilon value.

model.econ_loss_min
Pyomo parameter for the minimum direct
economic loss epsilon value (result of
optimizing direct economic loss by itself).

model.dislocation_max Pyomo parameter for the maximum population
dislocation epsilon value.

model.dislocation_min
Pyomo parameter for the minimum population
dislocation epsilon value (result of optimizing
population dislocation by itself).

model.functionality_max
Pyomo parameter for the maximum building
functionality epsilon value (result of optimizing
building functionality by itself).

model.functionality_min Pyomo parameter for the minimum building
functionality epsilon value.

model.econ_loss_step
Pyomo parameter for the “step size”
necessary to evaluate 21 direct economic loss
epsilon values within the respective feasible

epsilon range (between model.econ_loss_min
and model.econ_loss_max).

model.dislocation_step

Pyomo parameter for the “step size”
necessary to evaluate 21 population
dislocation epsilon values within the
respective feasible epsilon range (between
model.dislocation_min and
model.dislocation_max).

model.functionality_step

Pyomo parameter for the “step size”
necessary to evaluate 21 building functionality
epsilon values within the respective feasible
epsilon range (between
model.functionality_min and
model.functionality_max).

2.5 Code Block 5
The fifth code block runs several variants of the base model to conduct multi-objective
optimization. The first six runs of the model in this code block optimize each combination of
optimizing one objective function with one of the other objectives set as an epsilon constraint. The
last three runs of the model in this code block optimize each of the three objective functions with
the other two objectives set as epsilon constraints.

The first model run optimizes the first objective function (minimize direct economic loss) with the
base model constraints in addition to an epsilon constraint for the second objective (minimize
population dislocation). The model is run, optimized, and the results are recorded/displayed 21
times for the 21 distinct population dislocation epsilon values. For each run of the model in this
code block, the respective epsilon constraint is added to the model prior to optimization and then
subsequently removed from the model after optimization. There are 21 epsilon values/constraints
evaluated because there are 20 “steps” between the minimum and maximum population
dislocation epsilon values (including the minimum, but not including the maximum, so the 21st
epsilon value evaluated is the maximum in the epsilon range).

Variable in Code Description

obj_1_2_epsilon_results

Pandas data frame to hold the population
dislocation epsilon value used in the epsilon
constraint and the resulting direct economic
loss (objective), population dislocation, and
building functionality from each run of the
model.

model.obj_2_e

Pyomo parameter to hold the population
dislocation epsilon value for the epsilon
constraint in the respective run of the model.
The epsilon constraint is declared such that
the resulting population dislocation from
optimizing the model must be less than or
equal to the given epsilon value.

This second model run optimizes the first objective function (minimize direct economic loss) with
the base model constraints in addition to an epsilon constraint for the third objective (maximize
building functionality). The model is run, optimized, and the results are recorded/displayed 21
times for the 21 distinct building functionality epsilon values. For each run of the model in this
code block, the respective epsilon constraint is added to the model prior to optimization and then
subsequently removed from the model after optimization. There are 21 epsilon values/constraints
evaluated because there are 20 “steps” between the minimum and maximum building functionality
epsilon values (including the minimum, but not including the maximum, so the 21st epsilon value
evaluated is the maximum in the epsilon range).

Variable in Code Description

obj_1_3_epsilon_results

Pandas data frame to hold the building
functionality epsilon value used in the epsilon
constraint and the resulting direct economic
loss (objective), population dislocation, and
building functionality from each run of the
model.

model.obj_3_e

Pyomo parameter to hold the building
functionality epsilon value for the epsilon
constraint in the respective run of the model.
The epsilon constraint is declared such that
the resulting building functionality from
optimizing the model must be greater than or
equal to the given epsilon value.

The third model run optimizes the second objective function (minimize population dislocation) with
the base model constraints in addition to an epsilon constraint for the first objective (minimize
direct economic loss). The model is run, optimized, and the results are recorded/displayed 21
times for the 21 distinct direct economic loss epsilon values. For each run of the model in this
code block, the respective epsilon constraint is added to the model prior to optimization and then
subsequently removed from the model after optimization. There are 21 epsilon values/constraints
evaluated because there are 20 “steps” between the minimum and maximum direct economic
loss epsilon values (including the minimum, but not including the maximum, so the 21st epsilon
value evaluated is the maximum in the epsilon range).

Variable in Code Description

obj_2_1_epsilon_results

Pandas data frame to hold the direct economic
loss epsilon value used in the epsilon
constraint and the resulting direct economic
loss, population dislocation (objective), and
building functionality from each run of the
model.

model.obj_1_e
Pyomo parameter to hold the direct economic
loss epsilon value for the epsilon constraint in
the respective run of the model.

The epsilon constraint is declared such that
the resulting direct economic loss from
optimizing the model must be less than or
equal to the given epsilon value.

The fourth model run optimizes the second objective function (minimize population dislocation)
with the base model constraints in addition to an epsilon constraint for the third objective
(maximize building functionality). The model is run, optimized, and the results are
recorded/displayed 21 times for the 21 distinct building functionality epsilon values. For each run
of the model in this code block, the respective epsilon constraint is added to the model prior to
optimization and then subsequently removed from the model after optimization. There are 21
epsilon values/constraints evaluated because there are 20 “steps” between the minimum and
maximum building functionality epsilon values (including the minimum, but not including the
maximum, so the 21st epsilon value evaluated is the maximum in the epsilon range).

Variable in Code Description

obj_2_3_epsilon_results

Pandas data frame to hold the building
functionality epsilon value used in the epsilon
constraint and the resulting direct economic
loss, population dislocation (objective), and
building functionality from each run of the
model.

model.obj_3_e

Pyomo parameter to hold the building
functionality epsilon value for the epsilon
constraint in the respective run of the model.
The epsilon constraint is declared such that
the resulting building functionality from
optimizing the model must be greater than or
equal to the given epsilon value.

The fifth model run optimizes the third objective function (maximize building functionality) with the
base model constraints in addition to an epsilon constraint for the first objective (minimize direct
economic loss). The model is run, optimized, and the results are recorded/displayed 21 times for
the 21 distinct direct economic loss epsilon values. For each run of the model in this code block,
the respective epsilon constraint is added to the model prior to optimization and then subsequently
removed from the model after optimization. There are 21 epsilon values/constraints evaluated
because there are 20 “steps” between the minimum and maximum direct economic loss epsilon
values (including the minimum, but not including the maximum, so the 21st epsilon value evaluated
is the maximum in the epsilon range).

Variable in Code Description

obj_3_1_epsilon_results
Pandas data frame to hold the direct economic
loss epsilon value used in the epsilon
constraint and the resulting direct economic

loss, population dislocation, and building
functionality (objective) from each run of the
model.

model.obj_1_e

Pyomo parameter to hold the direct economic
loss epsilon value for the epsilon constraint in
the respective run of the model.
The epsilon constraint is declared such that
the resulting direct economic loss from
optimizing the model must be less than or
equal to the given epsilon value.

The sixth model run optimizes the third objective function (maximize building functionality) with
the base model constraints in addition to an epsilon constraint for the second objective (minimize
population dislocation). The model is run, optimized, and the results are recorded/displayed 21
times for the 21 distinct population dislocation epsilon values. For each run of the model in this
code block, the respective epsilon constraint is added to the model prior to optimization and then
subsequently removed from the model after optimization. There are 21 epsilon values/constraints
evaluated because there are 20 “steps” between the minimum and maximum population
dislocation epsilon values (including the minimum, but not including the maximum, so the 21st
epsilon value evaluated is the maximum in the epsilon range).

Variable in Code Description

obj_3_2_epsilon_results

Pandas data frame to hold the population
dislocation epsilon value used in the epsilon
constraint and the resulting direct economic
loss, population dislocation, and building
functionality (objective) from each run of the
model.

model.obj_2_e

Pyomo parameter to hold the population
dislocation epsilon value for the epsilon
constraint in the respective run of the model.
The epsilon constraint is declared such that
the resulting population dislocation from
optimizing the model must be less than or
equal to the given epsilon value.

The seventh model run optimizes the first objective function (minimize direct economic loss) with
the base model constraints in addition to an epsilon constraint for the second objective (minimize
population dislocation) and an epsilon constraint for the third objective (maximize building
functionality). The model is run, optimized, and the results are recorded/displayed for each
combination of the 21 distinct population dislocation epsilon values and 21 distinct building
functionality epsilon values. For this code block, a distinct population dislocation epsilon constraint
is added to the model, and then the model is run/optimized along with each distinct building
functionality epsilon constraint. Each distinct building functionality epsilon constraint is removed

from the model after optimization and prior to the subsequent optimization with the next building
functionality epsilon constraint. This process is then repeated for each of the remaining distinct
population dislocation epsilon constraints.

Variable in Code Description

obj_1_23_epsilon_results

Pandas data frame to hold the population
dislocation and building functionality epsilon
values used in the epsilon constraints and the
resulting direct economic loss (objective),
population dislocation, building functionality,
and percent of the available budget used for
retrofit actions from each run of the model.

model.obj_2_e

Pyomo parameter to hold the population
dislocation epsilon value for the epsilon
constraint in the respective run of the model.
The epsilon constraint is declared such that
the resulting population dislocation from
optimizing the model must be less than or
equal to the given epsilon value.

model.obj_3_e

Pyomo parameter to hold the building
functionality epsilon value for the epsilon
constraint in the respective run of the model.
The epsilon constraint is declared such that
the resulting building functionality from
optimizing the model must be greater than or
equal to the given epsilon value.

budget_used

Python variable to hold the monetary cost of
all retrofit actions taken as a result of
optimizing the model with the given population
dislocation and building functionality epsilon
constraints.

percent_budget_used

The percent of the available budget used to
conduct the retrofit actions taken as a result of
optimizing the model with the given population
dislocation and building functionality epsilon
constraints.

results_df
Pandas data frame to hold the results of each
model run and write them to an Excel CSV file
in the working directory.

obj_1_23_data

Pandas data frame to hold the high-level
results of the model runs after any infeasible
iterations have been dropped. Infeasible
iterations may occur (particularly at epsilon
value extremes) due to data scaling or timing-
out of the solver engine.

obj_1_23_optimal
Pandas data frame to hold the high-level
results of the model runs after removing the
dominant points

The ninth model run optimizes the second objective function (minimize population dislocation)
with the base model constraints in addition to an epsilon constraint for the first objective (minimize
direct economic loss) and an epsilon constraint for the third objective (maximize building
functionality). The model is run, optimized, and the results are recorded/displayed for each
combination of the 21 distinct direct economic loss epsilon values and 21 distinct building
functionality epsilon values. For this code block, a distinct direct economic loss epsilon constraint
is added to the model, and then the model is run/optimized along with each distinct building
functionality epsilon constraint. Each distinct building functionality epsilon constraint is removed
from the model after optimization and prior to the subsequent optimization with the next building
functionality epsilon constraint. This process is then repeated for each of the remaining distinct
direct economic loss epsilon constraints.

Variable in Code Description

obj_2_13_epsilon_results

Pandas data frame to hold the direct economic
loss and building functionality epsilon values
used in the epsilon constraints and the
resulting direct economic loss, population
dislocation (objective), building functionality,
and percent of the available budget used for
retrofit actions from each run of the model.

model.obj_1_e

Pyomo parameter to hold the direct economic
loss epsilon value for the epsilon constraint in
the respective run of the model.
The epsilon constraint is declared such that
the resulting direct economic loss from
optimizing the model must be less than or
equal to the given epsilon value.

model.obj_3_e

Pyomo parameter to hold the building
functionality epsilon value for the epsilon
constraint in the respective run of the model.
The epsilon constraint is declared such that
the resulting building functionality from
optimizing the model must be greater than or
equal to the given epsilon value.

budget_used

Python variable to hold the monetary cost of
all retrofit actions taken as a result of
optimizing the model with the given direct
economic loss and building functionality
epsilon constraints.

percent_budget_used

The percent of the available budget used to
conduct the retrofit actions taken as a result of
optimizing the model with the given direct
economic loss and building functionality
epsilon constraints.

results_df
Pandas data frame to hold the results of each
model run and write them to an Excel CSV file
in the working directory.

obj_2_13_data
Pandas data frame to hold the high-level
results of the model runs after any infeasible
iterations have been dropped. Infeasible

iterations may occur (particularly at epsilon
value extremes) due to data scaling or timing-
out of the solver engine.

obj_2_13_optimal
Pandas data frame to hold the high-level
results of the model runs after removing the
dominant points

The eighth model run optimizes the third objective function (maximize building functionality) with
the base model constraints in addition to an epsilon constraint for the first objective (minimize
direct economic loss) and an epsilon constraint for the second objective (minimize population
dislocation). The model is run, optimized, and the results are recorded/displayed for each
combination of the 21 distinct direct economic loss epsilon values and 21 distinct population
dislocation epsilon values. For this code block, a distinct direct economic loss epsilon constraint
is added to the model, and then the model is run/optimized along with each distinct population
dislocation epsilon constraint. Each distinct population dislocation epsilon constraint is removed
from the model after optimization and prior to the subsequent optimization with the next population
dislocation epsilon constraint. This process is then repeated for each of the remaining distinct
direct economic loss epsilon constraints.

Variable in Code Description

obj_3_12_epsilon_results

Pandas data frame to hold the direct economic
loss and population dislocation epsilon values
used in the epsilon constraints and the
resulting direct economic loss, population
dislocation, building functionality (objective),
and percent of the available budget used for
retrofit actions from each run of the model.

model.obj_1_e

Pyomo parameter to hold the direct economic
loss epsilon value for the epsilon constraint in
the respective run of the model.
The epsilon constraint is declared such that
the resulting direct economic loss from
optimizing the model must be less than or
equal to the given epsilon value.

model.obj_2_e

Pyomo parameter to hold the population
dislocation epsilon value for the epsilon
constraint in the respective run of the model.
The epsilon constraint is declared such that
the resulting population dislocation from
optimizing the model must be less than or
equal to the given epsilon value.

budget_used

Python variable to hold the monetary cost of
all retrofit actions taken as a result of
optimizing the model with the given direct
economic loss and population dislocation
epsilon constraints.

percent_budget_used

The percent of the available budget used to
conduct the retrofit actions taken as a result of
optimizing the model with the given direct
economic loss and population dislocation
epsilon constraints.

results_df
Pandas data frame to hold the results of each
model run and write them to an Excel CSV file
in the working directory.

obj_3_12_data

Pandas data frame to hold the high-level
results of the model runs after any infeasible
iterations have been dropped. Infeasible
iterations may occur (particularly at epsilon
value extremes) due to data scaling or timing-
out of the solver engine.

obj_3_12_optimal
Pandas data frame to hold the high-level
results of the model runs after removing the
dominant points

The eighth code block (code lines 577-585) displays a plot of the results from the seventh code
block (optimizing direct economic loss with population dislocations set as an epsilon constraint).
In the plot, the direct economic loss (the objective function) is displayed on the y-axis and the
population dislocation that resulted from each corresponding run of the model is displayed on the
x-axis.

2.6 Code Block 6
The fifth code block in this program creates plots to visualize the results generated from each of
the nine multi-objective optimization model runs in the previous code block. Most of the plots
generated use the matplotlib library and are scatterplots or contour plots. For the model runs that
used two epsilon constraints, interactive 3D plots were also generated using the plotly library.

3. Run the code in complier

To run this program please follow these argument guidelines:

Notice that the input data files are the only hard requirements to run the script. The
arguments can be presented as single-character flags or full argument flags as
described by the following table:

REQUIRED Short
Flags Full Flags Description

YES -q --Q= Path to the Q_t data file.
YES -c --Sc= Path to the S_tcdata file.

NO -s --solver= Solver selection (default: 0): {0=Neos Server
| 1=GLPK | 2=Gurobi}

NO -e -epsilon= Number of epsilon steps (default: 20)

NO -m --maxBuddget=

Maximum budget amount (default:
"default"): {integer value (usually millions) |
"default"=maximum possible budge as the
monetary amount that would be required to
retrofit every building to the best possible
strategy level}

NO -a --availBudget
Fraction of the budget that is available to
the model(default: 0.2, 20% budget): {
decimal value (usually between 0 and 1)}

NO -r --runModels=
List of (which of the 9) models to run (default:
111111111, run all): {sequence of 9 binary
values}

NO -d --scaleData Should the input data be scaled? (default:
1, scale the data):{1|0}

NO -f --scaleQuantity=
Factor by which the data should be scaled
(default: 1000000, scale data by a million):
{integer value(usually millions)}

NO -v --verbose Should all output be printed to console?

