
Singapore Management University

Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

3-2013

Network Structure of Social Coding in GitHub
Ferdian THUNG
Singapore Management University, ferdianthung@smu.edu.sg

David LO
Singapore Management University, davidlo@smu.edu.sg

Lingxiao JIANG
Singapore Management University, lxjiang@smu.edu.sg

Follow this and additional works at: hAp://ink.library.smu.edu.sg/sis_research

Part of the So@ware Engineering Commons

?is Conference Proceedings Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
THUNG, Ferdian; LO, David; and JIANG, Lingxiao. Network Structure of Social Coding in GitHub. (2013). CSMR 2013:
Proceedings of the 2013 17th European Conference on So)ware Maintenance and Reengineering: 5-8 March 2013, Genova, Italy. 323-326.
Research Collection School Of Information Systems.
Available at: hAp://ink.library.smu.edu.sg/sis_research/1687

http://ink.library.smu.edu.sg?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1687&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1687&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1687&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1687&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F1687&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Network Structure of Social Coding in GitHub

Ferdian Thung1, Tegawendé F. Bissyandé2, David Lo1, and Lingxiao Jiang1

1Singapore Management University, Singapore
2Laboratoire Bordelais de Recherche en Informatique, France
{ferdianthung,davidlo,lxjiang}@smu.edu.sg, bissyand@labri.fr

Abstract—Social coding enables a different experience of
software development as the activities and interests of one
developer are easily advertized to other developers. Developers
can thus track the activities relevant to various projects in
one umbrella site. Such a major change in collaborative
software development makes an investigation of networkings
on social coding sites valuable. Furthermore, project hosting
platforms promoting this development paradigm have been
thriving, among which GitHub has arguably gained the most
momentum.

In this paper, we contribute to the body of knowledge
on social coding by investigating the network structure of
social coding in GitHub. We collect 100,000 projects and
30,000 developers from GitHub, construct developer-developer
and project-project relationship graphs, and compute various
characteristics of the graphs. We then identify influential
developers and projects on this subnetwork of GitHub by using
PageRank. Understanding how developers and projects are
actually related to each other on a social coding site is the first
step towards building tool supports to aid social programmers
in performing their tasks more efficiently.

I. INTRODUCTION

Recently, developers have witnessed the emergence of
platforms for social coding, such as GitHub1 and Altassian
BitBucket2. These platforms offer unique experiences to
developers: they can broadcast their activities and/or listen to
the activities of others; they can also investigate and leverage
activities occurring in a variety of projects in one umbrella
site.

The current momentum of social coding sites provides
an opportunity for research on the impact of programmer
networking in software projects. Recently, Dabbish et al.
have investigated, through a series of interviews, the impact
of transparency in GitHub [5]. Such studies are important
as they help us to better understand the phenomenon of
social coding. A good understanding of the characteristics
of GitHub can indeed help researchers and practitioners
to gain more of the insights that are needed to design
better tools for supporting social coders. Furthermore, a
thorough understanding of developer behaviors on GitHub
will yield new ways for inciting more collaborations among
developers.

In this study, we investigate GitHub, which is arguably
the largest social coding site, containing more than 3 mil-
lion repositories. We aim to extend the limited body of
1 http://github.com 2 https://bitbucket.org

knowledge about social coding by constructing the network
structure of projects and developers on GitHub and analyz-
ing various characteristics of these networks. We intend to
answer the following research questions:

RQ1 How strong are the relationships among
projects?

RQ2 How strong are the relationships among the
developers?

RQ3 Which projects are the most influential?
RQ4 Which developers are the most influential?

The remainder of this paper is structured as follows. In
Section II, we present preliminary information on GitHub. In
Section III, we introduce the various network statistics that
we use as well as the PageRank algorithm. In Section IV,
we present our research questions and their answers. We
discuss related work in Section V. We conclude with future
work in Section VI.

II. GITHUB: A SOCIAL CODING SITE

GitHub is a social coding site that uses Git3 as its
distributed revision control and source code management
system. It implements a social network where developers are
enabled to broadcast their activities to others who are inter-
ested and have subscribed to them. GitHub currently hosts
over three million projects maintained by over one million
registered developers. A given developer can participate in
multiple projects and each project may have more than one
developer. The GitHub social coding site is a developer-
friendly environment integrating many functionalities, in-
cluding wiki, issue tracking, and code review.

Within GitHub, there are pages for developers and pages
for projects. An example of a GitHub page4 related to the
user kemitche (Keith Mitchell).This page includes informa-
tion on kemitche’s repositories (i.e., projects) and his recent
public activities, such as committing code to a repository,
opening an issue report, etc., which are seldom easily visible
in other development environments. The page also shows
several statistics that are often used on social networking
sites, such as the number of other developers following him,
the number of projects he is watching, etc. Such transparency
is an interesting feature of GitHub and other social coding
sites.

3 http://git-scm.com/ 4 https://github.com/kemitche

1

https://github.com/kemitche

III. METHODOLOGY

In this section we describe our methodology for con-
structing a sample network from GitHub. We also introduce
the statistics and the PageRank algorithm that we use for
analyzing the network.

A. Network Construction

We construct two kinds of networks from GitHub data: a
project-project network, and a developer-developer network.
The project-project network is a graph of projects. This
graph represents a network in which each node is a project,
and where two nodes are connected if the corresponding
projects have at least one common developer. We further-
more associate a weight to each edge of the graph; this
weight corresponds to the number of developers that work
together on both projects.

To construct this project-project network,a trivial solution
is to check one project with every other project and look for
the number of common developers. However this would be
costly. To alleviate this computation issue, we perform the
steps described in Algorithm 1. For each project, we first get
the developers that work for it, we then find all the projects
that the developers work for. This set of projects is typically
of a small size. We then just compare the input project with
all projects in the set.

Algorithm 1 Selecting Efficiently
Input: Projects // set of projects
Network ; // Project-project network
foreach project Pa in Projects do

Developers listDevelopersInvolved(Pa)

foreach developer Da in Developers do
smallSetProjects listProjects(Da)

foreach project Pb in smallSetProjects do
link countCommonDevelopers(Pa, Pb)

Network {Network, link}

return Network

In a developer-developer network, each node represents
a given developer in our dataset. The corresponding graph
contains an edge between two vertices when the corre-
sponding developers work together in at least one common
project. Thus the developer-developer network is built based
on collaborations among developers, where collaboration is
simply defined as working together towards the same goal
or purpose, i.e., completing a software project. Similarly to
the project-project graph, we associate a weight to each edge
taking into account the number of projects where the two
relevant developers work together. To build the developer-
developer network, we proceed with the same methodology
as for the project-project network.

B. Network Statistics

Various statistics can be computed to characterize a net-
work. In this study, we primarily use a common metric,
node degree, which, for a given node, considers the number

of distinct nodes that are directly connected to it. We also
rely on other common measurements, namely the network
diameter and the average shortest path. The diameter of
a network is the longest shortest path between all pairs of
nodes in a network, while the average shortest path is the
average of all shortest paths.

To estimate the diameter and the average shortest path, we
randomly sampled 1000 nodes from the graph and calculate
shortest paths for all possible pairings of the 1000 nodes
following [9].

C. PageRank

Introduced by Brin and Page, the PageRank algorithm for
weighting web pages importance based on their links has
gained popularity driven by its use in the Google search
engine [3]. PageRank works in many iterations. In the initial
iteration, the algorithm assigns the same PageRank score
to all web pages. Then subsequent iterations update these
scores: the score of a page p is distributed to the pages that
p links to; each linked page receive 1

|Lp| of the score, where
Lp is the set of pages that p links to. The PageRank score of
a web page p at iteration i can be computed by the following
equation:

PR(p, i) =
1� r

T
+ r

X

q2Kp

PR(q, i� 1)

|L
q

|

In this equation, r represents the probability that a web
surfer would continue to surf (a.k.a. the damping factor), T
is the number of web pages in the database of the search
engine, Kp is the set of web pages that link to p, and Lq is
the set of web pages that q links to.

IV. EMPIRICAL EVALUATION

We describe our dataset and experiment results that an-
swer the research questions presented in Section I.

A. Dataset

There are more than one million people hosting about 3
million private and public projects in GitHub. We analyze
the first 100,000 projects that are returned by GitHub API5.
This set of projects appears to vary randomly. We again
randomly sample 30,000 developers from the developers of
the 100,000 projects.

B. Project-Project Relationship

To answer the first research question, we proceed in two
steps: first, we compute the number of edges in the project-
project graph. We have found 1,161,522 edges, meaning
that 1,161,522 pairs of projects share at least one common
developer. Second, we compute the degree of each node, i.e.,
the number of edges incident to this node in the project-
project network. Figure 1 shows the degree distribution

2

1

10

100

1000

10000

100000

1 10 100 1000 10000

Fr
e

q
u

e
n

cy
 (

lo
g-

sc
al

e
)

Degree (log-scale)

Figure 1. Project Degree Distribution: y-axis shows the number of projects
having given edge degrees.

across the 100,000 projects of our dataset. We find that the
degree distribution follows a long tail distribution [1].

Finally, we measure the diameter of the largest connected
component and the average shortest path between sampled
project nodes. By following [9] and [7], the shortest part
between two nodes is computed by ignoring the weights of
the edges in the graph. The length of a path between two
nodes is simply the length of the series of nodes between the
two nodes. The diameter is 9 and the average shortest path,
3.7. These numbers are lower than the findings reported for
many real networks [7], implying that project networks are
actually more interconnected than human networks. Project
networks, as defined in Section III, indeed, only require one
common developer to establish a connection between two
projects.

Project networks are more interconnected than human net-
works.

C. Developer-developer Relationship

To answer the second research question, we proceed with
the same steps as in the first question. The number of edges
computed in the developer-developer network is 23,678,445,
revealing that many pairs of developers share at least one
common project. Note that this number is significantly larger
than the number of edges in the project-project graph.

Figure 2 illustrates the degree distribution in the
developer-developer network. This distribution does not
form a long tail, as some projects involve an excessively
large number of developers. Thus, each developer in such
projects will share a connection with all other developers
in the same project, resulting in both a high degree and a
high frequency. Nonetheless, we still notice that, overall,
some developers share a project with many other developers
while the majority of developers share projects with a few
developers.

The diameter of the largest connected component is 5 and
the average shortest path is 2.47. We compare these values
to findings in studies on two networks, namely Facebook
and Sourceforge. In their study on the Sourceforge project
hosting platform, Surian et al. have shown that the average
shortest-path among project developers is 6.55 [9], following
the popular assumption of “six-degree-of-separation” [11].

5 http://developer.github.com

1

10

100

1000

10000

1 10 100 1000 10000 100000

Fr
e

q
u

e
n

cy
 (

lo
g-

sc
al

e
)

Degree (log-scale)

Figure 2. Developer Degree Distribution: y-axis corresponds to the number
of developers having a given degree.
The average shortest path in Github is significantly lower,
which suggests that the social coding concept actually
enables more collaborations among developers. Besides,
GitHub uses Git, a distributed version control system, while
SourceForge uses subversion (SVN) which is centralized.
The appeal of distributed version control to developers may
have also contributed to the shorter shortest paths on GitHub.

A recent study of the Facebook social graph has concluded
that individuals on Facebook have potentially tremendous
reach with an average shortest path of 4.7 [13]. The Github
developer social network allows for even better reach as
developer-developer relationships are less tight than human-
human relationships in daily life social networks. Indeed,
hundreds of developers may collaborate in a single project
without even knowing each other.

Social coding enables substantially more collaborations
among developers.

D. Influential Projects

To identify influential projects, we run the PageRank
algorithm described in Section III on the project-project
network. Since a collaboration relation is bidirectional and
standard PageRank works on directional graph, we convert
every undirected edge in our network into two unidirectional
edges. Asides from its established effectiveness in measuring
the importance of network nodes, as implemented in the
Google search engine, PageRank is also known to be faster
than many other importance score algorithms, including
Betweenness centrality [6]. This property is indeed essential
since the computation for thousands of nodes can be time
consuming.

Project url PageRank
https://github.com/mxcl/homebrew 0.0009862
https://github.com/rails/rails 0.0006378
https://github.com/lifo/docrails 0.0006370
https://github.com/joyent/node 0.0002161
https://github.com/rubinius/rubinius 0.0001678

Table I
TOP 5 MOST INFLUENTIAL PROJECTS

We detail in Table I the top-5 PageRank scores that the
algorithm has produced after it was run for each project in
the network. These influential projects provide libraries, pro-
grammer utilities and scripts and language implementations.
The top-1 project is homebrew entitled “the missing package

3

manager for OS X”, which provides a package installer of
UNIX tools for Mac users. This project has 7233 developers.
It shares one or more developers with many other projects
such as rails, docrails, homebrew-php, rvm, etc.

E. Influential Developers

To identify the influential developers, we run the PageR-
ank algorithm in the developer-developer network. The
algorithm returns a score for every developer. The top-5
developers in terms of their scores are shown in Table II.

Developer PageRank
Joshua Peek josh[AT]joshpeek.com 0.00009536
Aman Gupta aman[AT]tmm1.net 0.00008860
Steve Richert steve.richert[AT]gmail.com 0.00008850
Michael Klishin michaelklishin[AT]me.com 0.00008170
Josh Kalderimis josh.kalderimis[AT]gmail.com 0.00008163

Table II
TOP 5 MOST INFLUENTIAL DEVELOPERS

The top-1 developer is Joshua Peek. This developer, who
is part the core team of rails, the second influential project,
works on 81 projects in collaboration with many others
including Aman Gupta from the top-5 influential developers
and others such as Sam Stephenson, Aaron Patterson, Mislav
Marohnic, etc.

F. Threats to Validity

In this preliminary study, we only study a sample of
projects and developers in GitHub. In the future, we plan to
mitigate this threat further by including more projects and
developers. Another threat to validity is that we consider
two developers to be linked as long as they are involved
in the same project. Another threat is that we consider two
developers to be linked as long as they are involved in the
same project.

There are various ways that the networks could be built
and various metrics could be used. In this preliminary study,
we just focus on two different networks and several metrics.
In the future, we would investigate other ways to build
networks and other metrics.

V. RELATED WORK

There have been a number of studies that analyze network
structure. Surian et al. investigate the network structure of
SourceForge [9]. Other studies analyze the relationships be-
tween social media and software development. For example,
Bougie et al. and Tian et al. analyze the use of microblogs
and Twitter in software development [2], [10]. Treude et al.
investigate how developers use StackOverflow [12].

VI. CONCLUSION AND FUTURE WORK

We have performed an empirical study on a popular social
coding site: GitHub. In this study, we extract information
about 100,000 projects from GitHub and analyze both the

project-project network and the developer-developer net-
work. Our evaluation results show that distribution graphs
in the project-project network generally follows a power
law or long tail phenomenon while the developer-developer
network generally does not. Nevertheless, we have shown
that social coding indeed improves collaboration among
developers: this conclusion can be inferred from the small
value of the average shortest path in the largest community
of developers.

In this work, we have measured some properties of the
network structure of social coding in GitHub. In the future,
we plan to develop a recommendation system to choose
suitable developers to work together for particular projects
in GitHub. We could then re-measure the properties after
our recommendation system is applied to a subset of the
developer and project population and investigate if there is
a significance change in the properties of the sub-network.
Information of most influential projects and developers
could also be of interest to recruiters. We would investigate
possibility of recommending suitable candidates to different
recruiters following the work by Capiluppi et al. and Singer
et al. in [4], [8]. We also plan to investigate the difference
between followers network in GitHub with our developer-
developer network. Another interesting future work is to
perform a longitudinal study to investigate how the GitHub
network structure evolves over time. We also plan to con-
sider more fine-grained levels of granularity to define a
collaboration relation (e.g., how much code two developers
contribute to the same method/file/package/project, etc.). We
would like to quantify the degree of collaboration between
two developers.”

REFERENCES

[1] C. Anderson, The Long Tail: How Endless Choice is Creating
Unlimited Demand., 2006.

[2] G. Bougie, J. Starke, M.-A. Storey, and D. German, “Towards un-
derstanding twitter use in software engineering: Preliminary findings
ongoing challenges and future questions,” in Web2SE.

[3] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web
search engine,” in WWW, 1998.

[4] A. Capiluppi, A. Serebrenik, and L. Singer, “Assessing technical
candidates on the social web,” in IEEE Software, 2012.

[5] L. A. Dabbish, H. C. Stuart, J. Tsay, and J. D. Herbsleb, “Social
coding in github: transparency and collaboration in an open software
repository,” in CSCW, 2012, pp. 1277–1286.

[6] L. C. Freeman, “A Set of Measures of Centrality Based on Between-
ness,” Sociometry, vol. 40, no. 1, pp. 35–41, Mar. 1977.

[7] J. Leskovec and E. Horvitz, “Planetary-scale views on a large instant-
messaging network,” in WWW, 2008, pp. 915–924.

[8] L. Singer, F. Filho, B. Cleary, C. Treude, M.-A. Storey, and K. Schnei-
der, “Mutual assessment in the social programmer ecosystem: An
empirical investigation of developer profile aggregators,” in CSCW,
2013.

[9] D. Surian, D. Lo, and E.-P. Lim, “Mining collaboration patterns from
a large developer network,” in WCRE, 2010, pp. 269–273.

[10] Y. Tian, P. Achananuparp, I. N. Lubis, D. Lo, and E.-P. Lim, “What
does software engineering community microblog about?” in MSR,
2012.

[11] J. Travers and S. Milgram, “An Experimental Study of the Small
World Problem,” Sociometry, vol. 32, no. 4, pp. 425–443, 1969.

[12] C. Treude, O. Barzilay, and M.-A. Storey, “How do programmers ask
and answer questions on the web?” in ICSE (NIER), 2011.

[13] J. Ugander, B. Karrer, L. Backstrom, and C. Marlow, “The anatomy
of the facebook social graph,” CoRR, vol. abs/1111.4503, 2011.

4

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	3-2013

	Network Structure of Social Coding in GitHub
	Ferdian THUNG
	David LO
	Lingxiao JIANG
	Citation

	Introduction
	GitHub: A Social Coding Site
	Methodology
	Network Construction
	Network Statistics
	PageRank

	Empirical Evaluation
	Dataset
	Project-Project Relationship
	Developer-developer Relationship
	Influential Projects
	Influential Developers
	Threats to Validity

	Related Work
	Conclusion and Future Work
	References

