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In most parts of the U.S., data on bicycle and pedestrian activity at the neighborhood scale are sparse or non-
existent, despite the importance of such data for local planning. Here, a simple small-area estimation method
is used to pair travel survey with land use and census data to estimate cyclist and pedestrian activity for census
tracts in the state of California. This method is an improvement on fixed per-capita estimates of activity based
only on regional or statewide averages. These activity estimates are then used to calculate the intensity of road
use by cyclists and pedestrians, and crash rates for these road users. For California, the intensity of pedestrian
and cyclist road use in urban census tracts is double that found in suburban tracts, while use in suburban tracts
is an order of magnitude greater than that found in rural tracts. Per-capita estimates would suggest substantially
smaller differences between neighborhood types. On the safety side, although non-severe crashes involving cy-
clists and pedestrians aremuchmore likely inmore urban areas, severe crash rates for the non-motorizedmodes
exhibit no clear spatial pattern. The method used is simple and easily replicable, potentially filling a critical need
for bicycle and pedestrian planners.
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1. Introduction

Good estimates of the total amount of bicycle and pedestrian activity
on our roads are needed for two main purposes. First, knowing how
much cyclists and pedestrians are using roadways can informwhere in-
vestments in bicycle and pedestrian infrastructure are needed. Second,
estimates of total cyclist and pedestrian activity can serve as the denom-
inator for calculation of cyclist and pedestrian crash rates, which, in
turn, help to identify locations for road safety investment. While esti-
mates of vehicle activity are readily available from routinely collected
traffic counts as well as travel demand forecasting models, spatially de-
tailed estimates of bicycle and pedestrian activity rarely are, as few com-
munities conduct regular counts of pedestrians or bicyclists and few
models generate estimates of the use of these modes.

This paper describes and implements a simple small-area estimation
method for estimating cyclist and pedestrian activity in census tracts
based on a combination of travel survey, census, and land use data. Clus-
ter analysis is used to categorize census tracts into neighborhood types,
and these neighborhood types are used to aggregate spatially sparse
travel survey observations in a meaningful way to obtain estimates of
travel activity for each tract. Two sets of activity estimates are calculated
based on two different household-based travel surveys recently con-
ducted in California, providing a robustness check on the results. The
results are a substantial improvement over fixed per-capita estimates
of activity based only on regional or statewide averages.

These tract-level activity estimates then are used to calculate two
important policy indicators: intensity of road use by cyclists and pedes-
trians, and crash rates for these road users. The results show that roads
are used most intensively for cycling and walking in the most densely
populated neighborhoods of the state. The intensity of pedestrian and
cyclist road use in urban census tracts is double that found in suburban
tracts, which is again double that found in rural tracts. On the safety
side, although non-severe crashes involving cyclists and pedestrians
are much more likely in more urban areas, severe crash rates for the
non-motorized modes exhibit no clear spatial pattern. The method pre-
sented is purposefully simple, and could be implemented by pedestrian
and bicycle planners themselves.

2. Background

Estimation of total bicycle and pedestrian activity is hampered by a
lack of basic data. The main sources of bicycle and pedestrian data are
household-based travel surveys. One problem with these surveys is
that they lack full spatial coverage. For example, at the geographic reso-
lution of the census tract, there are more than 2500 tracts in California
that were not sampled at all by the 2009 National Household Travel Sur-
vey (NHTS), and only 15 of the sampled tracts include more than 30
household observations. The 2010–12 California Household Travel Sur-
vey (CHTS) has impressive coverage of the state's census tracts, with
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zero observations in only 550out of 8057 total tracts in the state (USDOT,
2011; CDT, 2013). However, even this large sample only includes 52
tracts in which the number of household observations is 30 or greater.
This sparse spatial coverage is especially problematic for understanding
bicycle and pedestrian activity, which itself is relatively sparse.

To overcome this limitation, most studies in the travel safety litera-
ture aggregate pedestrian and cyclist activity by metropolitan area
(McAndrews, 2011), state (McAndrews et al., 2013; Teschke et al.,
2013), or even the national level (Beck et al., 2007; Mindell et al.,
2012; Dhondt et al., 2013). The focus of these studies is to estimate
the relative safety of different modes of travel by gender, age, and eth-
nicity. They compare the safety results obtained using different mea-
sures of total travel activity (e.g., population, number of trips, distance
traveled, and time spent traveling). Zhu et al. (2008) offer an exception,
using the 2001NHTS data to estimate pedestrian activity in four types of
built environments in New York State. However, the built environment
types in Zhu et al. (2008) are identified at the geographic scale of the
Metropolitan Statistical Area (MSA).

A sizable number of studiesmodeled pedestrian and cyclist volumes
at the level of the intersection or roadway link, based on original
pedestrian count data collection at a sample of locations in an area
(e.g., Pulugurtha and Repaka, 2008; Griswold et al., 2011;
Miranda-Moreno et al., 2011; Hankey et al., 2012; Schneider et al.,
2012). They used regression analysis of pedestrian and cyclist counts
along with characteristics of the count locations to estimate a model
that can predict volumes at all locations in a city. New work in this
line of research augments the intersection count data for cycling with
GPS cycle route data volunteered by users of the Strava cycle fitness ap-
plication (Jestico et al., 2016).

The above-referenced studies predict intersection-specific pedestri-
an and cyclist volumes, but do not take the next step to use these data to
estimate total exposure measures such as distance traveled or time
spent traveling. Intersection and link volumes can help identify where
cycle infrastructure and pedestrian signals could be most useful, and
they can be used to estimate intersection-level crash rates. However,
area-wide exposure measures are needed to estimate area-level crash
rates. Molino et al. (2012) extended this method to generate distance-
based exposure measures for crash rate analysis in Washington, D.C.
The model is data-intensive and, to my knowledge, this method is not
yet implemented in practice.

Similar to the work presented here, Turner et al. (1998) estimated
the census tract-level spatial patterns of total pedestrian and cyclist ac-
tivity, using spatially sparse data to estimate activity rates and census
data to extrapolate these rates to tracts. However, this study employed
only socio-demographic information to estimate walking and bicycling
rates, rather than using socio-demographic information together with
neighborhood typologies, as proposed here.

Where there is good spatial coverage of count data, both volumes
and exposure fromanalyses of these data can be estimated at high levels
of spatial resolution. Unfortunately, there is not good spatial coverage of
count data in most areas, and the methods for translating sparse count
data into full volume and exposure estimates are complex and data-
intensive, requiring both count data and detailed measures of the built
environment. The advantage of the approach presented in this paper
is that the data are readily available formost jurisdictions and themeth-
od is computationally simple; the disadvantage is that the result lacks
the spatial resolution possible with direct counts.

3. Method

In the absence of comprehensive counts of bicyclists and pedes-
trians, the method presented in this paper relies on data for bicycle
and pedestrian activity from two household-based travel diary surveys:
the 2009 National Household Travel Survey (NHTS) and the 2010–2012
California Household Travel Survey (USDOT, 2011; CDT, 2013). Reliance
on household-based surveys means that this method produces
estimates ofwalking and biking by the residents of each census tract, re-
gardless of where these trips are made, rather than estimates of miles
walked and biked within the geographic area of each tract. In other
words, the specific research question themethod is designed to answer
is: How many total miles are walked by pedestrians and biked by cy-
clists living in each census tract in California? However, because most
walk and bike trips are short and begin or end at home (e.g., 76% of
NHTS walk trips and 87% of NHTS bike trips), the estimates derived
from the method should be highly correlated with actual miles walked
and biked within the geographic area of each tract. Notable exceptions
to this include downtowns, university campuses, major employment
centers, and other areas with high volumes of walking by commuters
or visitors.

Themethod used here is one of the simpler techniques in the family
of small-area estimation, a version of the Broad Area Ratio Estimator
with Auxiliary Data (see ABS (2006) for an accessible overview of
small area estimation). It requires four steps. First, cluster analysis is
used to assign census tracts to neighborhood types based on built
environment characteristics. Second, daily miles biked and walked are
calculated for each travel survey respondent. Third, each survey respon-
dent is assigned to a category based on their age, gender, and home
neighborhood type, with daily average miles biked and miles walked
calculated for each respondent category. Finally, these category aver-
ages are used to generate estimates of bicycle and pedestrian activity
for a given area by multiplying the average miles by the population in
each category, as reported in census data. This paper presents estimates
of total daily miles of walking and bicycling for all census tracts in Cali-
fornia circa 2010.

3.1. Classifying census tracts into neighborhood types

To classify census tracts into neighborhood types, k-means cluster
analysis is used. This method takes multiple pieces of information
about each census tract as the input and organizes the tracts into groups
that are similar to each other. The analyst chooses howmany groups to
create and which variables to use as the input data, and these choices
are informed by the analyst's judgment and by a process of testing a va-
riety of input variable forms and numbers of groups.

Here, ten variables representing different aspects of the built envi-
ronment in each census tract in California are used as inputs. These 10
variables were chosen collectively to represent physical characteristics
of the tracts: two types of density, two representing local accessibility,
one representing regional accessibility, one representing bicycle and pe-
destrian friendliness, three characterizing the housing stock, and one
providing an indicator of housing values. Most of these variables are
self-explanatory, but two that deserve further explanation are local
and regional job access. The data used to create the two job access var-
iables are census block group counts of total jobs from the 2010 Longi-
tudinal Employer-Household Dynamics (LEHD) dataset. Local job
access is captured by the inverse distance-weighted sum of the jobs
within five miles, and regional job access is the inverse distance-
weighted sum of all jobs between 5 and 50 miles from a tract. All vari-
ables are standardized prior to cluster analysis.

From the cluster analysis of these 10 variables for California's census
tracts, four neighborhood type clusters emerge. The ten variables and
their data sources are listed in Table 1, along with the means of stan-
dardized versions of each of these variables for each neighborhood
type cluster. Standardized variables havemeans of zero for the full sam-
ple, so looking at means of these variables for each cluster provides in-
formation about how that neighborhood type's census tracts are
different from the average for the whole state. For instance, the first
row of Table 1 indicates that the cluster of tracts labeled “Suburb” is
slightly less dense than the state average, that “Urban” tracts are sub-
stantially denser than the state average, that “Rural” tracts are substan-
tially less dense than the state average, and that “Central City” tracts are
much denser than the state average.



Table 1
Mean values of standardized variables within each neighborhood type.

Source Rural (N = 2042) Suburb (N = 3776) Urban (N = 1978) Central city (N = 180)

Population density 2010 Decennial Census −0.69 −0.18 0.76 3.41
Road density ESRI North America Detailed Streets −1.13 0.11 0.88 1.09
Restaurants within 10 min walk MapQuest Point Of Interest −0.29 −0.18 0.25 4.41
Local job access 2010 LEHD −0.69 −0.23 0.81 3.83
Regional job access 2010 LEHD −0.88 −0.06 0.99 0.41
Pct. walk/bike commuters 2011 5-year ACS −0.17 −0.18 0.24 2.57
Pct. single family detached 2011 5-year ACS 0.53 0.16 −0.67 −1.98
Pct. old housing 2011 5-year ACS −0.45 −0.40 1.09 1.43
Pct. new housing 2011 5-year ACS 0.99 −0.34 −0.37 −0.06
Median house value 2011 5-year ACS −0.39 0.03 0.21 0.73
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Fig. 1 depicts the spatial distribution of the neighborhood type clus-
ters for three urban regions in California: the San Francisco Bay Area, Los
Angeles, and Sacramento. The neighborhood types cluster spatially and
largely appear as expected. A small number of tracts were not assigned
to a neighborhood type due to missing data.

3.2. Calculating daily miles walked and biked from travel surveys

Both to provide a point of comparison and to check the robustness of
the results, two travel survey datasetswere used to obtain two indepen-
dent estimates of pedestrian and cyclist activity in California: the Cali-
fornia portion of the 2009 National Household Travel Survey (NHTS)
and the 2010–2012 California Household Travel Survey (USDOT, 2011;
CDT, 2013). The two surveys are similar in most respects, and both in-
clude a full 24-hour travel diary in which every person in surveyed
households provided the full details of their travel and activities for an
assigned day.

The results here focus on those individuals who were surveyed on a
weekday, provided sufficient information for analysis, and who were
not outliers in their walking or bicycling distances. Outliers were identi-
fied as any person who reported walking more than nine miles in one
day, and any person who reported bicycling more than 30 miles in
one day. These two distance thresholds are roughly equivalent to
Fig. 1. Neighborhood type map of th
spending 3 hours traveling by thesemodes. Dropping these outliers re-
moved less than 1% of the observations from each survey.

The final samples included nearly 32,000 individuals from the NHTS
and nearly 68,000 individuals from the CHTS surveys whose data were
used to calculate total miles walked and miles biked for each survey re-
spondent on the travel-diary day. The CHTS included calculated road
network trip distances formost trips, and these distanceswere calculat-
ed for NHTS trips using the MapQuest API. For approximately 10% of
NHTS trips, self-reported distances are used. For approximately 2.5% of
CHTS trips, distances are estimated using self-reported travel times
and assuming an average walking speed of three miles per hour and
an average biking speed of 10 miles per hour. Survey respondents
were dropped from the analysis if they walked or made a bike trip
and did not provide exact origin and destination information, a self-
reported trip distance, or a self-reported travel time.

3.3. Averages by category

In this step, each respondent was assigned to a socio-demographic
and neighborhood type category, and the average daily walking and
biking distance per person was calculated for each category. Here, I de-
scribe a key adjustment thatwas implemented for the CHTS data, define
the categories, and present summary results.
ree urban regions in California.
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3.3.1. Key CHTS data adjustment
An important difference between the surveys is in the percentage of

respondents who reported making zero trips on the travel diary day.
Overall, this fraction was 12% among weekday respondents to the
NHTS, and 21% among weekday respondents to the CHTS. Evidence
from the existing literature suggests that the lower percentage of immo-
biles in the NHTS is likely to be closer to the actual immobile rate in the
population (Madre et al., 2007). In addition, the subset ofweekdayCHTS
respondents who used a wearable GPS device (nearly 12,000 individ-
uals) reported an immobility rate of 14%, which is substantially lower
than the 21% immobile rate in the full sample. To address this discrepan-
cy andmake the results comparable across the surveys, the CHTS results
presented here are adjusted such that the percent of immobiles in each
gender-age category is equal to the percent of immobiles for that cate-
gory in the subset of the CHTS respondent sample that used a wearable
GPS device.
3.3.2. Category definition
Age categories are based on the travel survey data; ages with similar

levels of biking andwalking activity are grouped together. Two genders,
five age categories, and four neighborhood types were identified, pro-
ducing a total of 40 gender-age-neighborhood type categories for calcu-
lating average miles walked and biked. With so many categories, the
question then arises of whether the number of survey respondents in
each category is sufficient to yield a robust estimate for the population
in that category. All categories in the neighborhood types Urban, Sub-
urb, and Rural contained a large number of individual observations.

However, in the Central City neighborhood type, the number of indi-
vidual survey respondents in each age-gender category was much
smaller. For this reason, the number of categories in the Central City
neighborhood type was reduced to only three for walking (ages 5–17,
18–74, and over 74), categorized by age only. Similarly for cycling, the
number of categories was reduced to two but, in this case, the split
was by gender. These decisionsweremade by examining the actual dis-
tributions in the data, and pooling the original set of categories together
where their average valueswere similar. Thefinal set of averages by cat-
egory is available online (Salon and Handy, 2014).
Table 2
Summary of walking and biking trips on survey day.

N Adjusted N Percent walked at all M
(f

NHTS CHTS NHTS CHTS N

Total 31,715 67,910 18.1% 16.5% 1

Gender
Male 14,903 32,984 17.8% 16.1% 1
Female 16,812 34,926 18.4% 16.8% 1

Age groups (walk)
5–10 1686 4281 22.2% 24.3% 1
11–17 3276 7917 24.4% 26.9% 1
18–59 16,137 36,829 18.4% 15.5% 1
60–74 6832 14,810 16.6% 13.5% 1
75+ 3754 4073 12.5% 7.5% 1

Age groups (bike)
5–10 1686 4284
11–34 7025 17,557
35–59 12,388 27,271
60–69 4987 11,902
70+ 5629 7016

Neighborhood types
Central City 244 1108 41.8% 57.8% 1
Urban 4043 11,405 26.0% 28.9% 1
Suburb 17,130 29,904 18.1% 15.1% 1
Rural 10,502 25,493 14.6% 10.7% 1
3.3.3. Average walking and biking by age, gender, and neighborhood type:
Results for California

The first finding of note is that neither walking nor bicycling are un-
dertaken at all by most respondents to either survey. As is evident from
Table 2, less than 20% of people reported any walking, and less than 3%
of people reported any biking. These respondents thus traveled zero
miles by foot or bike, and these zeroes are included in the calculation
of average distances by category.

For those NHTS respondents who reported at least one walk or one
bike trip, Fig. 2 illustrates the distributions of distances walked and
biked. The majority of pedestrians and cyclists don't walk or cycle very
far. Approximately half of all pedestrian respondents to the survey
walked less than onemile on the travel diary day, and a third of cyclists
biked less than two miles on that day. Distributions based on the CHTS
survey data are similar.

Age and gender differences in bicycling rates and, to a lesser extent,
walking rates are well documented (e.g., Krizek et al., 2005; Lee and
Moudon, 2006a). For the CHTS and NHTS respondents, the walking per-
centages are similar for men and women, while biking is substantially
more likely among men than among women survey respondents.
Among thosewhodowalk or bike, however, the average distances trav-
eled are only slightly lower forwomen than formen. Age differences are
also notable for the respondents. The patterns across age groups are
similar for the percent of respondents whowalked and biked, with chil-
dren being most likely to walk or bike, and the likelihood of walking or
biking declines with age. The distances for both activities are highest in
the middle adult years.

Differences in walking and bicycling across geographic settings are
also well documented (e.g., Handy et al., 2002; Lee and Moudon,
2006b; Saelens and Handy, 2008). For NHTS and CHTS respondents liv-
ing in different types of neighborhoods, the patterns are roughly as ex-
pected. People living in dense urban neighborhood types aremore likely
to walk than those in less dense neighborhood types. Among those who
walked at all, walking distances do not vary substantially across neigh-
borhood types, though the average distancewalked is longest in Central
City neighborhoods. The survey sample results diverge in the pattern for
biking. NHTS central city dwellers are less likely to bike than Urban
neighborhood residents, but both groups are more likely to bike than
residents of Suburb and Rural neighborhoods. Based on CHTS
ean miles walked
or walkers)

Percent biked at all Mean miles biked
(for bikers)

HTS CHTS NHTS CHTS NHTS CHTS

.50 1.36 1.8% 2.5% 4.99 5.15

.52 1.36 2.7% 3.5% 5.28 5.58

.48 1.35 0.9% 1.5% 4.23 4.18

.00 0.88

.45 1.22

.62 1.48

.73 1.41

.69 1.35

3.1% 2.5% 2.03 2.15
2.9% 3.4% 3.76 3.94
1.8% 2.6% 6.60 6.24
1.1% 1.8% 6.13 6.46
0.5% 1.0% 4.70 5.28

.67 1.66 2.1% 5.5% 3.31 4.51

.40 1.42 2.3% 3.6% 5.90 5.31

.54 1.34 1.7% 2.6% 5.00 5.22

.48 1.24 1.5% 1.7% 4.52 4.94



Fig. 2. NHTS distributions of distances walked and biked (excluding non-walkers and non-bikers).
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respondents, it appears that the likelihood of biking at all decreases
monotonically with density. Results of both surveys indicate that,
among those who biked, Central City bikers travel shorter distances on
average than bikers in the other three neighborhood types. Because of
the extremely small number of Central City respondents who biked at
all in the NHTS sample, I do not report NHTS Central City biking results
in the remainder of this paper.

3.4. Using category averages to estimatewalking and biking by census tract

The final step in the method is to use the category averages to esti-
mate total walking and biking at the population level. Eq. (1) estimates
miles of walking and bicycling in 2010 for all tracts in California:

TotalMilestract ¼
X10

i¼1

SurveyAvgMilesi � 2010Populationtract;i ð1Þ

where i indexes gender-age group categories, and each tract is classified
as a neighborhood type.

These estimates range from a low of five miles walked and 1.5 miles
biked (in the same census tractwith only 20 residents) to a high ofmore
than 7000miles walked (in a tract with 11,500 residents) and just over
4000 miles biked (in a tract with over 37,000 residents).

4. Limitations

There are three limitations that bear mention. First and foremost,
there is no way to ground truth the estimates. This is the nature of all
small-area estimation, but it is worth emphasizing. Travel survey sam-
ples are not designed to be representative of the population at small ge-
ographies. This means that these survey data do not provide reliable
estimates of biking and walking at the geographic level of the census
tract, or even at the level of the city. The largest of these surveys has
only very small samples (or no sample) in some geographic areas. I do
compare the small area estimates with regional direct estimates based
on the survey data (see Section 5.1), but it could be argued even at
this level of geographic aggregation that the survey data are not reliable.

A second limitation is the quality of the travel survey data them-
selves. Historically, short trips and non-motorized trips have been
undercounted in travel surveys (Weinstein and Schimek, 2005). Im-
proved survey methods have increased the number of bicycle and pe-
destrian trips captured in travel surveys (Clifton and Krizek, 2004),
but this is likely still an issue. As will become apparent in Section 5 of
this paper, the NHTS and CHTS data provide substantially different esti-
mates of walking and biking, even aggregated to the region level. In ad-
dition, the two surveys yielded different estimates of the percentage of
the population that does not travel on any particular day. This difference
could stem from differences in the sampling methodology, survey de-
sign, or survey implementation.
Finally, as noted earlier, this method estimates total walking and bi-
cycling by the residents of each tract. These numbers are similar to, but
not the same as, estimates of the total walking and bicycling that occurs
in that tract. The numbers will be most similar in areas where those
walking and cycling are also likely to be residents. There are two situa-
tions in which this is not true. The first is the exception of tracts that are
activity centers, such as downtowns or university campuses. The second
is the case of geographically small tracts, often seen in dense urban
areas. In these areas, even short trips often traverse more than one
tract. In this case, the estimates presented here would be valid only if,
on average, the boundary-crossing trips went both ways.

5. Quality of the estimates

There is not a straightforward way to test the accuracy of the esti-
mates produced using small area estimation techniques because valid
data at the small area level simply are not available. To get an idea of
how reliable the estimates are, I take two approaches. First, I compare
the small area estimates (SAE) to direct estimates of the average miles
walked and biked per person at the regional level for each of the sur-
veys. Second, I calculate the correlation between NHTS- and CHTS-
based independent estimates of average miles biked and walked per
person in each gender-age-neighborhood type category.

5.1. Comparison of SAE to direct estimates for California regions

The SAE uses statewide individual reports of residential neighbor-
hood type, age, and gender to estimate average miles walked and
biked per person in each category. Region-level estimates based on
these numbers simply reflect how many people are in each category
in the region. The direct regional estimates reported here are the aver-
age miles walked and biked by survey respondents in the region,
weighted so that the survey respondents in each region are representa-
tive of the actual distribution of age and genderwithin the regional pop-
ulation. Here, I describe these calculations more precisely, present the
results in Figs. 3 and 4, and discuss them.

5.1.1. Regional average of small area estimates
Calculating the SAE for each region is straightforward. Eq. (1) pro-

vides estimates of miles walked and miles biked for each tract in the
state. The SAE-based regional estimates are calculated by adding up
these miles by region and dividing by the total population over four
years of age. Eq. (2) specifies this calculation, where there are J tracts
in each region and TotalMilesj is given by Eq. (1).

SAEMilesPerCapitaregion ¼
XJ

j¼1

TotalMiles j=
XJ

j¼1

TotalPopulation j ð2Þ
5.1.2. Regional average of direct estimates, NHTS
Calculating the direct regional estimates from the NHTS data is

straightforward as well. Using the same raw survey data that was



Fig. 3. Comparison between direct regional estimates of average miles walked and regionalized small area estimates.
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used to create the small area estimates, I calculated the category-
weighted average miles walked and biked per person by region. The
weights in Eq. (3) adjust the respondent sample to be representative
of the actual regional population in terms of the age-gender-
neighborhood type categories.

DirectMilesPerCapitaregion ¼
XN

n¼1
wn � TotalMilesn

N
ð3Þ

where n indexes survey respondents and wn = region percent in cate-
gory/sample percent in category, and there are N survey respondents
from the region.

5.1.3. Regional average of direct estimates, CHTS
The direct regional estimates from the CHTS data are also calculated

using Eq. (3), but the calculation is complicated by the need to adjust
the data for respondents who made zero trips on the travel diary day.
Fig. 4. Comparison between direct regional estimates of ave
This adjustment affects the number of respondents for whom TotalMiles
is zero and, therefore, also affects both the total number of respondents
N and the “sample percent in category” part of the weight.

To adjust the CHTS data to reflect the estimated number of respon-
dents who made zero trips in each region, I made the following
assumptions:

1. The NHTS regional variation in the fraction of respondents reporting
zero trips is assumed;

2. The CHTS regional variation in the fraction of zero-trip respondents
in each gender-age category is assumed; and

3. The total number of zero trip respondents across the state is the same
as in the small area estimates.

Figs. 3 and 4 depict the comparison between SAE-based regional re-
sults and direct regional estimates from each of the two surveys. The
height of the bars represents the direct regional estimate of average
miles walked and biked per person for each survey, with error bars
rage miles biked and regionalized small area estimates.



Fig. 5. Pedestrian road use intensity by neighborhood type and population per road mile.
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providing a 95% confidence interval for this average value. The diamond
and triangle symbols represent the SAEmeans for the CHTS- and NHTS-
based estimates, respectively.

Looking at Fig. 3, the first point of note is that the CHTS estimates of
walking are lower across the board than those from the NHTS, and their
95% confidence intervals donot overlap formost regions. Fig. 4 indicates
that, for biking, the CHTS estimates are higher than the NHTS estimates
in most regions, and confidence intervals overlap for only half of the re-
gions. These comparisons provide evidence that even direct mean esti-
mates from travel surveys are not reliable at the regional level.

Comparing the SAE and direct regional estimates of walking for each
survey, I find good agreement in six out of eight California regions using
the NHTS data; these SAEs are within the 95% confidence intervals for
the direct mean estimates. This agreement occurs in half of the regions
for the CHTS-based estimates. Interestingly, the SAE from both surveys
suggestsmorewalking in the Los Angeles region than thedirect regional
estimates indicate.

Comparing the regional estimates of cycling in Fig. 4 tells a different
story. The SAE-based regional estimates from theNHTS data are approx-
imately 0.10 miles for most regions, whereas there is substantial varia-
tion in the direct regional estimates. The CHTS-based SAE and direct
regional estimates both exhibit more variation, but are not necessarily
consistent with one another. One reason for the apparent unreliability
of these estimates is that the number of survey respondents who
biked at all is small (570 in the NHTS versus 1700 in the CHTS). Another
explanation could be that variation in cycling infrastructure between re-
gions is substantial, and is not incorporated in the SAE values. This is
consistent with the finding that the CHTS-based SAE values are lower
Fig. 6. Cyclist road use intensity by neighborh
than the regional direct estimates for places with good bike infrastruc-
ture (Bay Area, Sacramento), and higher than the regional direct esti-
mates for places with worse-than-average bike infrastructure (Los
Angeles, San Joaquin).

5.2. Correlation between NHTS- and CHTS-based small area estimates

Looking at correlations between the two independent NHTS- and
CHTS-based estimates of average miles walked and biked per person
in each category produces encouraging results. Overall correlations are
0.81 for miles walked and 0.85 for miles biked. The correlations are
higher in Urban and Suburb neighborhood types (0.9 or higher in all
cases), and substantially lower in Rural neighborhood types in spite of
relatively large sample sizes (0.6 or lower). Because of small sample
sizes in Central City neighborhoods, there are effectively only two cate-
gories formiles biked and three formileswalked, so correlations are not
particularlymeaningful. Taken together, this evidence indicates that the
estimates in Urban and Suburb areas are the most robust.

It is important to note that, although the correlation is high between
the estimates developedwith the two surveys, the actual numbers differ
quite substantially. This suggests that the estimates are best used to
compare relative differences between tracts, rather than as absolute
numbers.

6. Application examples

The estimates ofmileswalked and biked by census tract can be com-
bined with other data to produce metrics useful for planning. The first
ood type and population per road mile.



Fig. 7. Annual severe pedestrian crash rates by neighborhood type.
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metric divides estimated miles of walking and biking by walkable
(i.e., non-highway) road miles. The results provide information about
where roads are being used most intensively by pedestrians and cy-
clists,which can then be used to prioritize non-motorized infrastructure
needs. The second metric divides pedestrian and cyclist crash data by
estimates of walking and biking miles to calculate a crash rate for each
census tract, which will shed light on which parts of the state are rela-
tively safe or especially dangerous for these activities. In each case, the
metrics developed here are compared to a default population-based
metric.

6.1. Intensity of roadway use by cyclists and pedestrians

To prioritize bicycle and pedestrian infrastructure needs in different
census tracts, it is useful to knowwhere the roads aremost heavily used
by cyclists and pedestrians. This is often accomplished by manual
counts at specific intersections, but manual counts are labor intensive
and, therefore, cannot provide comprehensive spatial coverage. The
ratio of the estimates of total miles walked and biked to the total
miles of non-highway roads in each tract provides an indicator for pe-
destrian and cyclist intensity of road use in each tract.

Fig. 5 depicts both NHTS- and CHTS-based small area estimates of
the mean miles walked per non-highway road mile for each neighbor-
hood type,with the distribution of population per roadmile for compar-
ison. Fig. 6 depicts this information for miles biked. Overall, roads and
sidewalks are most heavily used by pedestrians and cyclists in the
most densely-populated neighborhoods of the state. This overall pat-
tern is expected, but the particulars of the estimated rates of use are
Fig. 8. Annual non-severe pedestrian c
informative. Specifically, roads in Urban neighborhoods are used more
than twice as heavily by both pedestrians and cyclists as roads in Suburb
neighborhoods. Results based on both surveys indicate that Central City
road use by pedestrians is approximately an order of magnitude (10
times) greater than Suburban pedestrian road use. Both cyclists and pe-
destrians use Rural roads at an extremely low level.

The walking results contrast sharply with the estimates of popula-
tion per road mile, which indicate only a three-fold difference between
Central City and Suburb neighborhood types. This is because people in
more urban neighborhood types walk much more than people in rural
areas. For cycling, we see the same pattern, but it is somewhat less pro-
nouncedbecause there is not asmuch of a differencebetween neighbor-
hood types for cycling.

6.2. Cyclist and pedestrian crash rates

A second important application of estimates of total miles walked
and biked is to gain a better understanding of the relative safety ofwalk-
ing and cycling at a detailed geographic resolution. To accomplish this,
activity estimates are merged with California's Statewide Integrated
Traffic Records System (SWITRS) data on pedestrian and cyclist crashes
by census tract for the years 2003–2012 (TIMS, 2014). With this infor-
mation, crash rates can be calculated by census tract: the number of pe-
destrian crashes that occurred in each tract per mile walked, and the
number of cyclist crashes that occurred in each tract per mile biked.
Crashes are divided into two categories: severe crashes are those that
resulted in severe injury or death for the pedestrian or cyclist, and
non-severe crashes are those that resulted in a non-severe visible injury
rash rates by neighborhood type.



Fig. 9. Annual severe bike crash rates by neighborhood type.
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or a complaint of pain by the pedestrian or cyclist. These crash severity
classifications are provided in the SWITRS dataset.

Tract-level estimates for the entire state are provided online (Salon
and Handy, 2014). Figs. 7–10 depict average crash rates by neighbor-
hood type, and include a comparison to what the crash rates are on a
straight per capita basis. Note that, due to gaps in the crash data, it
was not possible to assign approximately 10% of the state's crashes to
specific census tracts. The analysis shown here does not include these
crashes, and therefore the estimates for crash rates are slightly
underestimated.

Using the SAE from the two surveys as a basis for activity levels,
there is no robust pattern by neighborhood type in severe crash rates
per mile of activity for pedestrians (Fig. 7) and cyclists (Fig. 9) in
California. Crash rates per capita do appear to show a pattern, but be-
cause people bike and walk more or less depending partially on their
neighborhood type, these population-based patterns are likelymislead-
ing. Note that the finding of no pattern does not mean that there are no
hot spots for severe crashes; problematic intersections and road
segments have been clearly identified in specific locations (see,
e.g., Schuurman et al., 2009). This finding implies, however, that these
especially dangerous locations are spread across neighborhood types
in the state.

At first glance, the lack of a spatial pattern in severe crash rates
might appear counterintuitive, since the more urban areas have
much more vehicle traffic in them. However, urban areas also have
many more miles walked by pedestrians and miles cycled by bicy-
clists. In addition, and likely critical for this finding, the average
Fig. 10. Annual non-severe bike cra
speed of vehicles in the different neighborhood types is different; ve-
hicles travel faster in less dense areas, making it more likely that those
crashes that do occur will be severe. The following comparison is
striking. Approximately 36% of the 10 years of reported pedestrian
crashes in Rural areas were classified as severe, while this figure in
Central City neighborhoods is only 11%. For reported bicycle crashes,
14% were severe in Rural areas versus only 5% in the Central City. In
both cases, Urban and Suburb percentages of crashes that were severe
are in between.

There is a clear pattern in non-severe crash rates per mile of activity
(see Figs. 8 and 10), with non-severe crashes higher in more urban
neighborhood types. Some portion of this pattern in non-severe crashes
may result from a higher likelihood of reporting such crashes to the po-
lice in urbanized areas (the density of police is higher, so reporting is
easier). However, much of the pattern is likely a truth about the relative
severity of crashes inmore and less urban areas. These data indicate that
the likelihood of experiencing a crash at all is higher for pedestrians and
cyclists in more urban environments, but the likelihood of that crash
being severe is lower.

7. Conclusion

An average of 835 million dollars were invested in bicycle and pe-
destrian facilities in each of the past five years in the U.S. (FHWA,
2015a). Approximately 5000 pedestrians and bicyclists die and more
than 100,000 are injured on U.S. streets in a typical year (NHTSA,
2010–2015). Knowing how much and where bicycle and pedestrian
sh rates by neighborhood type.
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activity occurs is critical as cities prioritize future investments and con-
sider new safety measures.

This paper has introduced a simple small-area estimation technique
to estimate pedestrian and cyclist activity levels at a fine geographic
scale. Activity levels were estimated for all census tracts in California
using two separate travel survey datasets. These activity estimates
were used to produce two measures useful to planners: the intensity
of infrastructure use by pedestrians and cyclists, and walking and bicy-
cling crash rates. In the absence of more comprehensive data on bicycle
and pedestrian activity at small geographic scales, thismethod could be-
come a valuable tool for planners. It is simple to execute and it repre-
sents a clear improvement over activity estimates that are based only
on population.

One substantial caveat that deserves repeating here is that themeth-
od assigns all pedestrian and cyclist activity to the census tract where
people reside, rather than where the activity actually occurs. Most
non-motorized trips are short, however, and begin and/or end at
home. However, there are some places where many nonresidents
might walk or bike (i.e., downtowns, university campuses, etc.). An im-
portant implication is that this method should not be used to calculate
crash risk within activity centers. This is because pedestrian or bicyclist
exposure in these types of locations would be systematically
underestimated, meaning that crash risk could be overestimated.

Despite this and other limitations, there is strong potential for this
simple method to be both used and extended. Although the analysis
here uses actual population numbers from the Census, the method
could also be applied to forecasts of population by category in future
years. In addition, the impact of land use policies could be captured by
changing the neighborhood type classifications for zones. Geographic
units other than census tracts could also be used, though it is important
that the units are internally homogeneous with respect to neighbor-
hood type.

Improvements to the method itself could be made as well. This
paper uses one of the simplest techniques among small-area estimation
methods. Future research could investigate the utility of incorporating
more advanced regression-based small-area estimation methods, tak-
ing into account individual built environment characteristics rather
than representing built environment variation with only four neighbor-
hood types. Studies show, for example, that bicycle activity is strongly
correlated with bicycle infrastructure (e.g., Dill and Carr, 2003), but
there is (at this writing) no state-wide database on such infrastructure
that would enable the inclusion of this variable in the method.
Conducting this analysis at the region rather than the state level might
produce improved estimates as well, due to regional variation in infra-
structure and weather.

Efforts are underway to improve and expand systematic bicycle and
pedestrian counts (FHWA, 2015b) and to incorporate bicycle and pe-
destrianmodes into travel demand forecastingmodels in amore robust
way. Increasing use of GPS-enabled travel surveys will also provide
more accurate data on non-motorized travel. The method presented
here is a useful option to estimate activity in the meantime, and itself
might be improved over time.
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