Implementation Notes - Resource Usage Tracker

« Motivation

e Data
o Prometheus (cAdvisor)
= 1. query all services periodically and store them somewhere in Database (ex. Postgres)

= 2. query only for specific dynamic sidecar/user services in case of need (this will be a complementary data source to the
Application layer data source)

o Application layer (Director-v2, Director-v0)
= Pseudo Code of Resource Usage Tracker

= Start/Stop events
« 1. Publish events from director-v2 to the resource usage tracker
o (A) situation:
o (B) situation:
o (C) & (D) situation:
e 2. Create dyn_runs table in director-v2 (similarly to comp_runs for computational services)

« Credits/Tokens
o Questions/Notes:

« Database model
o 1. User Service Run table

o 2. Pricing tables
o 3. User Credits tables
« External service integration

e Conclusion

Motivation

We need to create a reliable way to collect and store data for billing purposes. Also, provide the user with some statistics about their usage
and credits left.

Data

Currently, we are interested in :

e Service start time
* Service end time
e CPU/Memory limits
 AWS Instance type

potentially also Storage and Egress should be discussed (I didn't comment on them in this implementation notes).
We have 2 data sources:

¢ (A) Prometheus (cAdvisor)

o PROS: as it is on the container level, it works equally for all services (legacy/dynamic/computational). It is information from a lower
level that tells us the real use of containers in the system.

o CONS: ex. hanging sidecars (container might stay running, even though the user stopped the service). Or the container started to

run, but the user for whatever reason didn't have access to the service.
« (B) Application layer (Director-v2, Director-v0)

o PROS: here we have the closest information to the user when they started/stopped the service

o CONS: the start or stop request might be lost

In the following image, we can see a new resource usage tracker service in Osparc microservice architecture:

&parc

Ops | ... Simcore e : R
/' | Traefik ’| Traefik l ’l websenver) B: I sa) :

—_—————

-

API g A |

@

redis PossraSCL

iSolve(s) |

- -

Prometheus

2/5

Prometheus (cAdvisor)

« lower level information about running containers
« we can get additional useful metrics that Prometheus provides us and potentially can be used for billing purposes (ex.
container_network_transmit_bytes_total). But currently, we are mainly focused on how long the containers were running.

« we will run 2 separate Prometheus on different nodes, which means that the data are stored in two locations in case of loss. (preventive
measure to improve robustness)

Two options for how to interact with Prometheus:

1. query all services periodically and store them somewhere in Database (ex. Postgres)

« PROS: We store needed data in a relational database which is then quickly accessible. We have database backups and availability
guaranteed by AWS.

« CONS: PromQL doesn't support pagination, so we have to create the logic of what we query ourselves so we don't get too much data
back (otherwise we might overload/kill Prometheus). Also, querying and storing data for all running services on the platform can also be

a challenging task to make it robust.

SELECT * FROM = resource tracker_container * LIMIT 50 OFFSET 750 5 Edit
] modity contalmer_id wser M product name service settings reservation additienad info container cpu usage seconds total prometheds created promethess |
O# . 1 S1d7icidisl 142a5Tocfdd: 5 oparc 113 1645186043 F0z3-07T-11 23120000 2023-07-11 22
O Focken T 1T 160TedMxT TedcdlTtad TIL OEPAIG i 16 63407 8210000004 2023-07-12 05:50000-00 2023-07-12 06
. Fdocknriebd 1655 TdaT THa Nl cdTeB208c62 208 Leb-H4A0L A0 TRAd0TS TR0 TEeTMC T T23 ospare i+ 13.370155355050955 2023-07-12 0BAZ00+00 2023-07-12 08
0 IdockerSechcBTI1c0bICHIIbNeS0cTe 1210 4 TA0 6005505 ITOR2T2924abE 1822 128 aspare i+ 16 BEEA94598 20230712 10:46:00:00 20236712 10¢
O Mdockir a2 Te 20631 0405008 T2 0808 SOASA0CE08L 246 1abEAAIT TO5EE00LE] 5 BEPATE 143 16 BOBASA26855005T 2023-07-12 OT:11:00+00 2023-07-12 OF;
oy Aockatiet-4d 3215 11106AbE06 TI66 1 TISE0201 346010 5a 147207041 Te26100 10041305 5 DEPAIE {r 6. 30ETO6546000000 2023-07-12 0 14:00+00 2023-07-12 0%
o0& IhOCkIIELT: 740 SE240307M] EITTH 3adl4ZceToboldbe 732 aspare i+ 13 519360465 2023-07-12 1NAT00+00 2023-07-12 10
0# ockitST TABT L TH0TSb0NIBENT0T T4 Ihe0cahiotar 20000826 148081801904 & ospare L4 6 2386051 34050909 202307-12 OT11:00+00 20230712 OF
oy Mockerbécailalee 1611 5Me5e01 711 1c4baksd 104301 430 T03eaT Sebbedalla o ce0 5 DEPATE & 16772351660 2023-07-12 09:14:00=00 2023-07-12 0%
[mF o {1aTSA4ETINC 1339cc6T5T0200a90000 1 TOGAT 200 T3 ospare i 4. TAPE5T 90095099 073-07-12 LAED000 2023-07-12 10c
[mPF FocknnT 1aTe6ac 104801 233605 T0AGMM SESABA0cbEAEDCSESESERINILS653a0e & osparc {+ 6271038455 2023:07:12 10000 202307-12 11
o# AdockenThTGCIZHESce0L0096a4 042 T1 STRCBAN51IT 20861 16083092 4BchoeTebS01c 714 osgarc 1] 16,911 634884 2023-07-11 173700400 2023-07-11 17
4

Aoockerecdbtded 0Z0ILRMBZAAANI563 TRDSA0EBEDSECBOBN01CHEI0ILIITMeIE 5 CEDANG i 16568879121 2023-07-12 1:1100+00 2023-07-12 11
2. query only for specific dynamic sidecar/user services in case of need (this will be a complementary data source to the
Application layer data source)

 PROS: Much fewer requests on Prometheus, much fewer data stored in Postgres, and can be queried only for specific services in case

of need (therefore should not be a problem with pagination).

¢ CONS: Data are not stored in our managed database, but we rely on Prometheus data which lives in the docker volume. (Maybe we can
use AWS-managed Prometheus?)

Application layer (Director-v2, Director-v0)

As director-v2 is responsible for starting/stopping user services, we should store this information somewhere. Probably we need to deal with
each of the following services differently:

« legacy dynamic services (director-v0?)

« dynamic services (director-v2)

« computation services (director-v2 or comp_runs DB table)

Pseudo Code of Resource Usage Tracker

Here is a pseudocode of how we can deal with tracking of running user services and updating user credits/tokens left.

sessions: list = []

When resource tracker gets information that some service starts we add a new “session” to the list of session:
sessions.add("s41l-id-123")

When resource tracker gets information that the user stopped the service we remove the session
sessions.remove("s41l-id-123")

update_credits("s41-id-123") # This will trigger function that will compute how much credits were used and updal

10 # As we want sometimes to update credits of long running services, we need to trigger regulary compute_credits 1
11 # periodically sheduled task (ex. each 1 hour)
12 for session in sessions:

13 update_credits(session)

Start/Stop events
There are 2 options for how to work with service start/stop events
1. Publish events from director-v2 to the resource usage tracker
a. PROS: Fewer changes to director-v2
b. CONS: The event can be lost on the way.

2. Create dyn_runs table in director-v2 (similarly to comp_runs for computational services)
a. PROS: We store the history of all running user services with their current state (as starting/stopping user services is the responsibility
of director-v2 he can save the start event reliably through transaction).

b. CONS: New table in DB which will grow over time (MD: we really don’t need to worry about this).

1. Publish events from director-v2 to the resource usage tracker

The following table shows all situations when the user starts/stops service and whether the event is received by the Resource usage tracker

service.
Situation Start Stop Comment
A This is good, we are able to reliably bill.
B X
c X
D X X

(A) situation:

« this is good, we are able to reliably bill (I guess we even do not need to double-check with the Prometheus data source)

(B) situation:
« | get the information that the user started a service, therefore | can add a new session to the sessions list.

e The problem is how to determine whether the service is still running, or some problem occurred. Also, how should we bill in this
situation?

+ We can periodically ask director v2 for a status (as currently, director-v2 has only information about the currently running service, he is
able to provide us running status, but most probably we will get an error if the service is not running anymore)

RUNMING
Ask director-v2 for status Still running, retry later

If | would have information, when it was
stopped by user, | can bill

Ask prometheus for
status

RUNNING

(COMPLETE)
EX. hanging sidecar ’-\33

RUNNING

hanging sidecar would be running, but

maybe | can query for service
NOT

RUNNING

| can bill (based on
prometheus end time)

RUNNING

277 (how should we bill)

Ask prometheus for
status

NOT
RUNNING

| can bill (based on
prometheus end time)

(C) & (D) situation:

The problem here is that we didn't receive the event about a user starting a service. We need to get the information from somewhere else
(when we get it, then the problem is reduced to situations A & B). These are some options that come to my mind:

1. Scans periodically Prometheus for all services and when it finds a service that the resource usage tracker does not have info about, it
will add it to the sessions list.
a. PROS:

b. CONS: We need to query Prometheus for all of the containers regularly which might be challenging.

2. Ask periodically director-v2 for a list of currently running user services, when the resource usage tracker finds out that there was a
service that he didn't know about, it will add it to the sessions list.
a. PROS:

b. CONS: director-v2 can provide us only with the current state of the resources, he doesn't store the history.

3. Director-v2 will periodically stream events to the resource-usage-tracker about running services.
a. PROS:

b. CONS: A lot of data will be streamed periodically, and some of them might be potentially lost on the way.
2. Create dyn_runs table in director-v2 (similarly to comp_runs for computational services)

This is a different approach, where we will introduce dyn_runs table in the director-v2. By this, we can ensure in a transaction, that when we
start a user service the “run_id" is stored in the database. Basically, each time somebody runs a dynamic service, a new row in the
dyn_runs table will be created. Secondly, director-v2 will update the status of the service in the table.

Basically, we will reduce the previous table just for the first two situations:
Situation Start Stop Comment
A This is good, | am able to reliably bill.

B X

Resource usage tracker “sessions* list will be obtained by the comp_runs & dyn_runs tables (or we can create one combined table, the DB
model example can be found in the database model section below). Regarding updating user credits, the resource usage tracker will only
deal with the (A) and (B) situations.

TABLES:
Comp_runs
dyn_runs
user_credit_account

director-vZ

Yy

resource usage
tracker

Regular flow in resource usage tracker (PSEUDO CODE):

Get all not billed services from DB
sessions = get_not_billed_services()

1
2
3
4 for session in sessions:

5 # Check in DB, whether director-v2 updated status to COMPLETE
6 if session['status'] = "COMPLETE":

7 # I can bill

8 update_credits(session)

9 mark_as_billed(session)

10 else:

11 # Either it is still running, or director-v2 might have problem and didnt update status correctly
12 # Therefore we will double check with prometheus

13 prometheus_status = check_user_service_prometheus_status(session)

14 if prometheus_status = "RUNNING":

15 # User service is still running, I will update credits

16 update_credits(session)

17 else:

18 # So probably was problem in director-v2

19 # I can bill based on Prometheus last running timestamp + update status to complete
20 update_status(session, "COMPLETE")

21 update_credits(session)

22 mark_as_billed(session)

23

24

¢ PROS

o We have a good source of truth when the user starts a service.
o If resource-usage-tracker was down we can still compute services that have run because we have a history in the dyn_runs table.
o We need to deal with much less corner cases.
o We can provide this run_id to the container label, so we can easily combine it with the second data source.
o It might also help us during debugging of strange situations
* CONS:

o some work on director-v2
Questions/Notes:

« Optimization: The resource usage tracker can listen to director-v2 stop service events, which would trigger the update_credits() right
away in case of a user stopping the service.
* Maybe director-v2 can import the data into a “new database*, the same holds for computational services (@Sylvain maybe we do not

need to refactor the comp_runs table but we can create a new one in the same structure for both comp & dyn services)

Credits/Tokens

This is a diagram of what needs to happen when the user stopped the service. (Also this needs to be triggered periodically so we can

update the user account for long-running services - this will have some delay similarity to AWS Cost Explorer)

User stopped

the service %
ﬁ [c{i:T(;en:il;T;g:; "{ compute credits]—b[update user credits]

Periodical Trigger
(each 1 hour)

1. We need to compute how long the service was running
2. We need to compute how many credits/tokens the service consumed

a. ex. service with 4 CPUs, small aws instance type run for 40 minutes:

AWS instance pricing

CPU h ing tabl
mapping table ours mapping table

instance | credits | product
small | § | sim4life CPUh |_credits | product

medium | 10 | sim4life 1] 4 | simdlife
big | 15 | sim4life

Credit used:

D66*(5+4*4)=1386

3. We need to update the user credits table
a. ex. 100-13.86 = only 86.14 credits left

Questions/Notes:

+ How we will deal with situations when the user is reaching 0 credits?
o should we probably ask before each start of the service whether users have enough buffer to start the service? how we will estimate
what is enough?
o Based on Niels's input we should inform the user when they have only a small amount of credits left.

o What happens when the user reaches 0 credits? Are we able to stop the service? Will they have access to the data of the service?

Database model

Here is a proposal for the data model, so we can start some discussions:

User Service Run M
— . Pricing Table CPU hours Pricing Table AWS Instance Type
PK | run_id :
: PK | id PK | id
product .
: product product
user_id .
. cpu_hour type
project_id M
. credits credits
node_id .
M valid_from valid_from
user_email :
: valid_to valid_to
project_name :
node_label M
Immutable — M
service_version .
cpu_limit .
. User Credits History
N User Credits Available
memory_limit M
. PK | id
. PK | user_id
aws_instance_type N
M user_id
. PK | product
gpu_type .
N product
M available_credits
created_at .
. credits
N maodified_at
L user_service_type .
. created_at
(-
stopped_at N
: run_id [NULLABLE]
status .
Mutable : modified_at
billed :
modified_at M
— .

1. User Service Run table

« In this proposal, we have one table and whenever we run a user service (computational or dynamic one) we will create a unique run_id
and populate it with all needed information. Most of the columns are immutable and we store them so we can have their history (even
when the user deletes the project/node or even when the user is deleted, the immutable part of this table stays untouched).

« The mutable part of this table is modified when the user service is either stopped or analyzed by regular triggers for long-running

services.

NOTE: run_id can be passed as a container label, then it can be easily queried in Prometheus if needed.

2. Pricing tables

+ We need to have mapping tables and also their validity.
+ We can provide an internal endpoint to update the price.

+ Regarding AWS instances, in the beginning, we will want to have three options: small, medium, and big machines.

3. User Credits tables

« Here are probably more options on how to design this, this proposal takes into consideration two tables (One is to have the whole
history, also good when we need to debug something, the second one is to have quick access to the user's current amount of available
credits):

o User Credits History should be the whole history of adding or using credits, meaning when the user adds 1000 credits it should
occur there, but also when we compute some finished user service it should occur there with a negative sign (that is the reason why
run_id is there for reference). When we SUM everything we get the current amount of available credits.

o User Credits Available should be the aggregated always up-to-date table with currently available credits. The reason for this is that

we do not need to compute always his whole history to get this number, but rather compute it incrementally.

External service integration

We will need to integrate with 3rd party service that will provide us with the number of credits, which the user purchases, which need to be

stored in the User Credits History table.

/ Webserver \

Projects plugin

Login plugin

Resource
Usage
Billing plugin > Tracker

External
Service

Wl

Conclusion

We discussed the pros and cons and decided we will go with the “DIRECTOR-v2 — RabbitMQ — Resource Usage Tracker” approach,
meaning the new table with run_id will be created in the resource-usage-tracker service which will listen to the events published by director-
v2 and dy-sidecars.

Other notes:

o |tis sufficient to have a general Credit Mapping Table that can be used for different use cases

« Yet another alternative to where the resource usage tracker can get the data from was briefly discussed. We can always look just for

container labels. Potencionaly they can be updated during runtime. — Still we decided we will go with the RabbitMQ approach.

Next Steps:

-, Sundae
Define Rabbit MQ message @matusdrobuliak66
Dynamic Sidecar (dynamic services) send message
Director-v2 (computational services) @sanderegg
Create User Credit History table @matusdrobuliak66
AWS managed rabbitMQ + replicas @mrniceguy11 @YuryHrytsuk
Create Credit table (mapping of instances, CPU hours to price) @matusdrobuliak66

Backend: API show user credits @matusdrobuliak66

Backend: Modify API to User Service Run Table @matusdrobuliak66

Frontend: Show user credits @odeimaiz

