2023-08-03 Integration

DB model
Pricing Plans Pricing Details

PK | pricing_plan_id PK | pricing_detail_id
product_name 4_\04 FK1 | pricing_plan_id
name unit_name
description COost_per_unit
classification valid_from
is_active valid_to
created_at specific_info
modified_at

Example

Pricing Plans Table

pricing_plan_ product nham | name description classification is_active created_at modified_at
id e
1 sim4life Dynamic TIER true
2 simdlife Computational ... TIER true
Type A
3 simdlife Computational ... TIER true
Type B
4 tip CPU hours CPU_HOUR true
5 tip Storage . STORAGE true

Pricing Details Table

pricing_detail_i pricing_paln_id unit_name cost_per_unit valid_from valid_to specific_info

d

1 1 S 5 e NULL {*aws_instance_t
ype*: “EC2-
small“}

2 1 M 10 . NULL {*aws_instance_t
ype*: “EC2-
medium*“}

3 1 L 15 . NULL {*aws_instance_t
ype*: “EC2-
large*}

4 2 s 10 NULL (.2

5 2 M 20 NULL (.2

6 2 L 30 NULL {.}
7 3 XXL 50 NULL {.}
8 4 CPU Hours 3 NULL NULL
9 5 Storage 10 NULL NULL
Integration

GET Ipricing-plans --> Retrieves a list of all active pricing plans for the product

GET Ipricing-plans/{id}/pricing-details — Retrieves all pricing details associated with a specific pricing plan. This includes mainly

unit_name, cost_per_unit.
When the client is starting a job with something like POST Irun he should provide us with:
{ "pricing_plan_id": 1, "pricing_detail_id": 3}

By using IDs instead of names we make it more rigid. For example, these ids, similarily to wallet_id can be passed to the resource usage
tracker. What is good with this approach is that this id uniquely defines the cost_per_unit at that moment, so we can always easily

reconstruct the cost.

Also if we would rename the “M” to “Medium” we would not break the API.

