
19/07/2022, 14:50 Testing AWS Step Functions flows - DEV Community

https://dev.to/aws-builders/testing-aws-step-functions-flows-2kpn 1/14

Wojciech Matuszewski for AWS Community Builders
Posted on 14 Feb

Testing AWS Step Functions flows
#aws #serverless #typescript #cdk

AWS Step Functions is a serverless orchestrator service. Since its inception, it has

become a go-to for all my low-code and orchestration needs on AWS.

Recently, AWS announced that the Step Functions Local can now mock service

integrations. I found the announcement a great opportunity and excuse to revisit the

topic of testing in the context of AWS Step Functions, which historically was a bit hard.

This article will cover the techniques I use for testing flows that utilize the AWS Step

Functions service as the logic orchestrator. Let us begin.

The code in this blog post is written in TypeScript and uses AWS CDK for

infrastructure piece. This GitHub repository contains all the code used in this article.

WojciechMatuszewski
/ testing-step-functions

Testing AWS Step Functions flows

This repository contains examples of how one might test various AWS Step Functions flows.

The test files are located in the lib/__tests__ directory.

https://dev.to/wojciechmatuszewski
https://dev.to/aws-builders
https://dev.to/t/aws
https://dev.to/t/serverless
https://dev.to/t/typescript
https://dev.to/t/cdk
https://aws.amazon.com/step-functions/
https://docs.aws.amazon.com/step-functions/latest/dg/sfn-local.html
https://aws.amazon.com/blogs/compute/mocking-service-integrations-with-aws-step-functions-local/
https://www.typescriptlang.org/
https://aws.amazon.com/cdk/
https://github.com/WojciechMatuszewski/testing-step-functions
https://dev.to/aws-builders
https://dev.to/wojciechmatuszewski
https://github.com/WojciechMatuszewski
https://github.com/WojciechMatuszewski/testing-step-functions

19/07/2022, 14:50 Testing AWS Step Functions flows - DEV Community

https://dev.to/aws-builders/testing-aws-step-functions-flows-2kpn 2/14

Layers of testing and confidence
Before we dive into specific techniques, we shall take a swift detour and talk about

testing in general.

There are many heuristics when it comes to testing. There is the classical testing

pyramid or the testing honeycomb to name a few. In my personal opinion, in the

context of serverless applications, tests written according to the testing honeycomb

will give you much more confidence and ROI per test written than the "traditional"

testing pyramid approach.

Before you base most of your tests on the local implementation of an AWS service, I

urge you to think about the confidence the test gives you and less about how easy it is

to write. Give the testing honeycomb a try. I'm positive you will not regret it!

By writing integration / end-to-end tests
By utilizing e2e / integration tests, we gain the most confidence from our tests. That

said, the tests are usually slow and can be hard to maintain to some degree.

Here, you will be interacting with AWS services directly, executing the AWS Step

Function and asserting the side-effects of the flow. The side-effect can be, for

example, a new item in Amazon DynamoDB or a message pushed to Amazon SQS.

This style of testing is not free of challenging problems to tackle. Testing AWS Step

Functions flow end-to-end becomes tricky when the Step Function definition is

complex and contains multiple branches and error fallbacks.

Deployment
1. npm run boostrap
2. npm run deploy

Running the tests
1. Ensure that Docker is running.
2. Pull the aws-stepfunctions-local image.
3. npm run test

View on GitHub

https://martinfowler.com/articles/practical-test-pyramid.html
https://engineering.atspotify.com/2018/01/11/testing-of-microservices/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/sqs/
https://docs.aws.amazon.com/step-functions/latest/dg/sfn-local-docker.html
https://github.com/WojciechMatuszewski/testing-step-functions

19/07/2022, 14:50 Testing AWS Step Functions flows - DEV Community

https://dev.to/aws-builders/testing-aws-step-functions-flows-2kpn 3/14

Let us start with a basic example of saving a user into the Amazon DynamoDB table,

then work our way up with Step Function definition complexity.

Simplistic Step Functions workflows

The following image represents the Step Function definition we would like to test.

Lacking branching logic and error handling, all we have to do is test a single execution

path.

You should most likely always have error handling in place in your Step Function

definition. This particular Step Function is only here for demonstration purposes. We

will tackle testing error states later in the article.

Here is how I would write the test I'm referring to.

// simplistic-e2e.test.ts

import { SFNClient, StartExecutionCommand } from "@aws-sdk/client-sfn";

const sfnClient = new SFNClient({});

test("Saves the user in the DynamoDB table", async () => {

 const startExecutionResult = await sfnClient.send(

 new StartExecutionCommand({

 stateMachineArn: process.env.SIMPLISTIC_E2E_STEP_FUNCTION_ARN,

 input: JSON.stringify({

 firstName: "John",

 lastName: "Doe"

 })

 })

https://res.cloudinary.com/practicaldev/image/fetch/s--RcFl9zfN--/c_limit%2Cf_auto%2Cfl_progressive%2Cq_auto%2Cw_880/https://dev-to-uploads.s3.amazonaws.com/uploads/articles/g27w90enjgffvll3lluv.png

19/07/2022, 14:50 Testing AWS Step Functions flows - DEV Community

https://dev.to/aws-builders/testing-aws-step-functions-flows-2kpn 4/14

First, I start the Step Function, and then I assert, using the aws-testing-library, whether

the item was correctly saved into the Amazon DynamoDB.

Check out the sls-test-tools as well. It is a great library. I'm using aws-testing-library

because I'm used to it.

And that is it! Since this Step Function did not contain multiple branches and error

handling, writing an end-to-end test takes little to no effort. With the most basic

example behind us, let us tackle error states and multiple branches next.

Step Functions with branching logic

Step Functions can be complex, especially when taking error handling and Choice

steps into account. With the increased complexity comes increased difficulty in writing

end-to-end tests.

Let us evolve our Step Function to include "background-check" AWS Lambda

function. Depending on the result, the user in the DynamoDB table will have its

backgroundCheck attribute populated (either "PASS", "FAIL" or "ERROR").

);

 await expect({

 region: process.env.AWS_REGION,

 table: process.env.SIMPLISTIC_E2E_DATA_TABLE_NAME

 }).toHaveItem(

 {

 PK: `USER#${startExecutionResult.executionArn}`

 },
 {

 PK: `USER#${startExecutionResult.executionArn}`,

 firstName: "John",

 lastName: "Doe"

 }

);

}, 15_000);

https://github.com/erezrokah/aws-testing-library
https://github.com/aleios-cloud/sls-test-tools
https://aws.amazon.com/lambda/

19/07/2022, 14:50 Testing AWS Step Functions flows - DEV Community

https://dev.to/aws-builders/testing-aws-step-functions-flows-2kpn 5/14

You can find the AWS Step Function AWS CDK definition here.

To test all possible execution paths of the Step Function, we have to have a way to

force an error or particular response for the BackgroundCheckStep AWS Lambda

function – not an easy task!

So what can we do in this situation? Enter aws-stepfunctions-local.

The aws-stepfunctions-local is a local implementation of the AWS Step Functions

service provided to us by great folks at AWS. With this tool, we will force the lambda

to error without mocking other steps.

You could write a test that executes asserts on the status returned by the

"background-check" AWS Lambda function. For the interest of time, I've chosen

only to write a test for the case where the "background-check" fails.

Since I will be using the Docker version of the aws-stepfunctions-local, the first step is

to integrate the act of spinning up and spinning down the container into the testing

flow. My personal go-to in such situations is the testcontainers package.

https://res.cloudinary.com/practicaldev/image/fetch/s--JKOtEDZC--/c_limit%2Cf_auto%2Cfl_progressive%2Cq_auto%2Cw_880/https://dev-to-uploads.s3.amazonaws.com/uploads/articles/dyhnbbvpzneruot4jnec.png
https://github.com/WojciechMatuszewski/testing-step-functions/blob/main/lib/branching-logic-e2e.ts
https://www.npmjs.com/package/testcontainers

19/07/2022, 14:50 Testing AWS Step Functions flows - DEV Community

https://dev.to/aws-builders/testing-aws-step-functions-flows-2kpn 6/14

Let us unpack what is going on here.

First, the mysterious mockConfigPath and subsequent usages of this variable. The path

points to a mock configuration file described on aws-stepfunctions-local

documentation page and contains a mock definition for the BackgroundCheckStep .

// branching-logic-e2e.test.ts

let container: StartedTestContainer | undefined;

beforeAll(async () => {

 const mockConfigPath = join(__dirname, "./branching-logic-e2e.mocks.json");

 container = await new GenericContainer("amazon/aws-stepfunctions-local")

 .withExposedPorts(8083)

 .withBindMount(mockConfigPath, "/home/branching-logic-e2e.mocks.json", "ro"
 .withEnv("SFN_MOCK_CONFIG", "/home/branching-logic-e2e.mocks.json")

 .withEnv("AWS_ACCESS_KEY_ID", process.env.AWS_ACCESS_KEY_ID as string)

 .withEnv(

 "AWS_SECRET_ACCESS_KEY",

 process.env.AWS_SECRET_ACCESS_KEY as string

)

 // For federated credentials (for example, SSO), this environment variable
 .withEnv("AWS_SESSION_TOKEN", process.env.AWS_SESSION_TOKEN as string)

 .withEnv("AWS_DEFAULT_REGION", process.env.AWS_REGION)

 .start();

}, 15_000);

afterAll(async () => {

 await container?.stop();

}, 15_000);

{

 "StateMachines": {

 "BranchingLogic": {

 "TestCases": {

 "ErrorPath": {

 "BackgroundCheckStep": "BackgroundCheckError"

 }
 }

 }

 },

 "MockedResponses": {

 "BackgroundCheckError": {

 "0": {

 "Throw": {

https://docs.aws.amazon.com/step-functions/latest/dg/sfn-local-test-sm-exec.html

19/07/2022, 14:50 Testing AWS Step Functions flows - DEV Community

https://dev.to/aws-builders/testing-aws-step-functions-flows-2kpn 7/14

Notice that I'm only concerned with the BackgroundCheckStep here. By only mocking

BackgroundCheckStep , I can force this particular step to fail. Other steps are not

mocked. Thus the aws-stepfunctions-local will reach out to native AWS services –

in our case Amazon DynamoDB.

The Docker image needs to have AWS-related environment variables populated to

allow aws-stepfunctions-local to talk to other AWS services. Refer to this

documentation page for more information.

As for the test itself, the first thing to do is gather necessary information about the

Step Function under test.

We will need all of this information since we will be re-creating this Step Function

locally. Remember, the aws-stepfunctions-local is the engine that runs our Step

 "Error": "Lambda.TimeoutException",

 "Cause": "Lambda timed out."

 }
 }

 }

 }

}

.withEnv("AWS_ACCESS_KEY_ID", process.env.AWS_ACCESS_KEY_ID as string)

.withEnv("AWS_SECRET_ACCESS_KEY",process.env.AWS_SECRET_ACCESS_KEY as string)

.withEnv("AWS_SESSION_TOKEN", process.env.AWS_SESSION_TOKEN as string)

.withEnv("AWS_DEFAULT_REGION", process.env.AWS_REGION)

// branching-logic-e2e.test.ts

test("Handles the failure of the BackgroundCheck step", async () => {

 const sfnClient = new SFNClient({});

 const describeStepFunctionResult = await sfnClient.send(

 new DescribeStateMachineCommand({

 stateMachineArn: process.env.BRANCHING_LOGIC_E2E_STEP_FUNCTION_ARN

 })
);

 const stepFunctionDefinition =

 describeStepFunctionResult.definition as string;

 const stepFunctionRoleARN = describeStepFunctionResult.roleArn as string;

 // Rest of the test...

}, 50_000);

https://docs.aws.amazon.com/step-functions/latest/dg/sfn-local-config-options.html#docker-credentials

19/07/2022, 14:50 Testing AWS Step Functions flows - DEV Community

https://dev.to/aws-builders/testing-aws-step-functions-flows-2kpn 8/14

Function.

Next, let us re-create and run the Step Function that lives in the cloud using the aws-

stepfunctions-local.

There are two essential pieces of detail I would like to bring your attention to.

1. The name of the Step Function I'm creating. The name parameter must be the

same as declared in the mock configuration file.

2. The stateMachineArn format in the StartExecutionCommand call. The convention of

ARN#TEST_CASE is required by aws-stepfunctions-local. Refer to this documentation

// branching-logic-e2e.test.ts

// Test setup ...

test("Handles the failure of the BackgroundCheck step", async () => {

 // Previous code snippet ...

 const sfnLocalClient = new SFNClient({

 endpoint: `http://localhost:${container?.getMappedPort(8083)}`

 });

 const createLocalSFNResult = await sfnLocalClient.send(

 new CreateStateMachineCommand({

 definition: stepFunctionDefinition,

 name: "BranchingLogic",

 roleArn: stepFunctionRoleARN

 })
);

 const startLocalSFNExecutionResult = await sfnLocalClient.send(

 new StartExecutionCommand({

 stateMachineArn: `${

 createLocalSFNResult.stateMachineArn as string

 }#ErrorPath`,

 input: JSON.stringify({

 firstName: "John",

 lastName: "Doe"

 })

 })
);

 // Rest of the test...

}, 50_000);

https://docs.aws.amazon.com/step-functions/latest/dg/sfn-local-test-sm-exec.html#run-mocked-serv-integ-tests

19/07/2022, 14:50 Testing AWS Step Functions flows - DEV Community

https://dev.to/aws-builders/testing-aws-step-functions-flows-2kpn 9/14

page to learn more.

All that is left is to assert on the data of a given Amazon DynamoDB item. The

assertion is almost identical as in the Simplistic Step Functions section.

We assert on an Amazon DynamoDB table that lives in the AWS. Since we did not

provide any mocks for the step that saves the user data to Amazon DynamoDB, the

aws-stepfunctions-local made the request to the actual service, utilizing the

credentials from Docker environment variables.

Click to expand (the whole test definition)

By decomposing AWS Step Function Tasks
Switching gears from a somewhat complex end-to-end tests world, there exists

another technique I would like to highlight.

I first saw this method of testing various AWS Step Function tasks while browsing code

written by my colleagues at Stedi.

// branching-logic-e2e.test.ts

// Test setup ...

test("Handles the failure of the BackgroundCheck step", async () => {

 // Previous code snippet ...

 await expect({

 region: process.env.AWS_REGION,

 table: process.env.BRANCHING_LOGIC_E2E_DATA_TABLE_NAME

 }).toHaveItem(

 {

 PK: `USER#${startLocalSFNExecutionResult.executionArn}`

 },
 {

 PK: `USER#${startLocalSFNExecutionResult.executionArn}`,

 firstName: "John",

 lastName: "Doe",

 // The `BackgroundCheckStep` must have failed for this attribute to have
 backgroundCheck: "ERROR"

 }

);

}, 50_000);

https://docs.aws.amazon.com/step-functions/latest/dg/sfn-local-test-sm-exec.html#run-mocked-serv-integ-tests
http://stedi.com/

19/07/2022, 14:50 Testing AWS Step Functions flows - DEV Community

https://dev.to/aws-builders/testing-aws-step-functions-flows-2kpn 10/14

My friend Graham Allan wrote about it on his blog here. Check it out!

Testing Pass state transformations
Have you ever spent way too much time trying to transform data via the Pass state to

the shape you need it to be? I know I have.

As great as the AWS console and the AWS Step Functions data flow simulator is, I find

the feedback loop of a test case unbeatable.

So, how can we reliably extract those Pass states from our AWS CDK code and test

them? Here is my solution.

Here is our sample Construct definition. It contains the transformDataStep that we

would like to test.

// pass-states-integration.ts

export class PassStatesIntegration extends Construct {

 constructor(scope: Construct, id: string) {

 super(scope, id);

 const transformDataStep = new aws_stepfunctions.Pass(

 this,

 "TransformDataStep",

 {

 parameters: {
 payload: aws_stepfunctions.JsonPath.stringAt(

 "States.Format('{} {}', $.firstName, $.lastName)"

)

 }
 }

);

 // You can imagine the definition being a bit more complex.

 const stepFunctionDefinition = transformDataStep;

 const stepFunction = new aws_stepfunctions.StateMachine(

 this,

 "StepFunction",

 {

 definition: stepFunctionDefinition

 }

);
 }

}

https://twitter.com/Grundlefleck
https://grundlefleck.github.io/2022/01/12/how-using-the-same-programming-language-for-iac-made-a-step-function-testable.html
https://aws.amazon.com/about-aws/whats-new/2021/04/aws-step-functions-adds-new-data-flow-simulator-for-modelling-input-and-output-processing/
https://docs.aws.amazon.com/cdk/v2/guide/constructs.html

19/07/2022, 14:50 Testing AWS Step Functions flows - DEV Community

https://dev.to/aws-builders/testing-aws-step-functions-flows-2kpn 11/14

We will be using the aws-stepfunctions-local, so the test setup looks very similar to the

previous code snippets in this article.

To test the transformDataStep , we must retrieve the transformDataStep ASL

definition. We can do this in two ways.

1. Use the DescribeStateMachine API call, like we did in the Step Functions with

branching logic section.

2. Make the transformDataStep a publicly accessible property on the

PassStatesIntegration construct.

I'm going to go with option number two since we have already seen option number one

in action.

// pass-states-integration.test.ts

let container: StartedTestContainer | undefined;

beforeAll(async () => {

 container = await new GenericContainer("amazon/aws-stepfunctions-local")

 .withExposedPorts(8083)

 .withEnv("AWS_DEFAULT_REGION", process.env.AWS_REGION)

 .start();

}, 15_000);

afterAll(async () => {

 await container?.stop();

}, 15_000);

//// pass-states-integration.ts

export class PassStatesIntegration extends Construct {

+ public transformDataStep: aws_stepfunctions.Pass;

 constructor(scope: Construct, id: string) {

 super(scope, id);

- const transformDataStep = new aws_stepfunctions.Pass(

+ this.transformDataStep = new aws_stepfunctions.Pass(

 this,

 "TransformIncomingDataStep",

 {

 parameters: {

 payload: aws_stepfunctions.JsonPath.stringAt(

https://docs.aws.amazon.com/step-functions/latest/dg/concepts-amazon-states-language.html

19/07/2022, 14:50 Testing AWS Step Functions flows - DEV Community

https://dev.to/aws-builders/testing-aws-step-functions-flows-2kpn 12/14

With the transformDataStep made public, the test body would look as follows.

 "States.Format('{} {}', $.firstName, $.lastName)"

)

 }

 }

);

 // You can imagine the definition being a bit more complex.

- const stepFunctionDefinition = transformDataStep;

+ const stepFunctionDefinition = this.transformDataStep;

 const stepFunction = new aws_stepfunctions.StateMachine(

 this,

 "StepFunction",

 {

 definition: stepFunctionDefinition

 }

);

 }
}}

// pass-states-integration.test.ts

// Test setup ...

test("Handles the failure of the BackgroundCheck step", async () => {

 const stack = new cdk.Stack();

 const construct = new PassStatesIntegration(stack, "PassStatesIntegration");

 const transformDataStepDefinition = construct.transformDataStep.toStateJson()
 const stepFunctionDefinition = JSON.stringify({

 StartAt: "TransformDataStep",
 States: {

 TransformDataStep: {

 ...transformDataStepDefinition,

 End: true

 }

 }

 });

 const sfnLocalClient = new SFNClient({

 endpoint: `http://localhost:${container?.getMappedPort(8083)}`

 });

 const createLocalSFNResult = await sfnLocalClient.send(

 new CreateStateMachineCommand({

19/07/2022, 14:50 Testing AWS Step Functions flows - DEV Community

https://dev.to/aws-builders/testing-aws-step-functions-flows-2kpn 13/14

The ASL for the TransformDataStep is extracted via the toStateJson method. The rest

of the test is similar to how we did it previously. The only difference is how we make

the assertion.

This testing method is analogous to the one described by the By decomposing AWS

Step Function Tasks section.

Closing words
I hope you find this blog post helpful regarding AWS Step Functions testing.

Consider following me on Twitter for more serverless content - @wm_matuszewski.

 definition: stepFunctionDefinition,

 name: "PassStates",

 roleArn: "arn:aws:iam::012345678901:role/DummyRole"

 })
);

 const startLocalSFNExecutionResult = await sfnLocalClient.send(

 new StartExecutionCommand({

 stateMachineArn: createLocalSFNResult.stateMachineArn,

 input: JSON.stringify({

 firstName: "John",

 lastName: "Doe"

 })

 })
);

 await waitFor(async () => {

 const getExecutionHistoryResult = await sfnLocalClient.send(

 new GetExecutionHistoryCommand({

 executionArn: startLocalSFNExecutionResult.executionArn

 })

);

 const successState = getExecutionHistoryResult.events?.find(

 event => event.type == "ExecutionSucceeded"

);

 expect(successState?.executionSucceededEventDetails?.output).toEqual(

 JSON.stringify({ payload: "John Doe" })

);
 });

}, 20_000);

https://twitter.com/wm_matuszewski

19/07/2022, 14:50 Testing AWS Step Functions flows - DEV Community

https://dev.to/aws-builders/testing-aws-step-functions-flows-2kpn 14/14

Thank you for your valuable time.

Code of Conduct Report abuse

Discussion (0)

•

AWS Community Builders

Build On!

Would you like to become an AWS Community Builder? Learn more about the program and

apply to join when applications are open next.

More from AWS Community Builders

AWS Cloud WAN: The General Availability and Product Features

aws cloud cloudwan networking

There will be 175 Zettabytes of data in the world by 2025. Where will we store it?

awsdatabases terraform bigdata aws

AWS Cost Explorer - Cost Anomaly Detection Report identified an unauthorized Amazon

Sagemaker Canvas user

aws beginners security cost

Learn more

#

#

#

https://dev.to/code-of-conduct
https://dev.to/report-abuse
https://dev.to/aws-builders
https://dev.to/aws-builders
https://dev.to/aws-builders/aws-cloud-wan-the-general-availability-and-product-features-a3g
https://dev.to/aws-builders/there-will-be-175-zettabytes-of-data-in-the-world-by-2025-where-will-we-store-it-1ck4
https://dev.to/aws-builders/aws-cost-explorer-cost-anomaly-detection-report-identifed-an-unauthorized-amazon-sagemaker-canvas-user-3524
https://aws.amazon.com/developer/community/community-builders/

