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Abstract 

 

Ascochyta blight, caused by Didymella rabiei, is a significant disease world-wide 

including southern Australia. To explore its intensity and pattern of spread, a weather-

based spatio-temporal model was developed.  The model, spread of Ascochyta rabiei in 

chickpea (SArC), is adapted from the previously published model, AnthracnoseTracer for 

lupins.  The major parameters of the model were either derived from laboratory or field 

experimental data, or estimated through calibration with one year’s field data.  The model 

was then subjected to qualitative and quantitative validation using the following year’s 



130 

 

field data; these data were not used for identifying parameters of the model. For 

quantitative validation, the performance of the model was analysed statistically using a 

confidence interval, correlation-regression approach and a deviation-based approach, and 

the model largely simulated the spread of the disease in fields in two chickpea cultivars of 

different resistance to ascochyta. Sensitivity analysis was then performed to show the 

relative sensitivity of the final model parameters. Given the strength of SArC model in 

the parameter estimation and calibration and validation, it has potential to be used as a 

tool in plant biosecurity and/or managing ascochtya blight in chickpea in farming 

systems.      

 

Introduction  

 

Ascochyta blight, caused by Didymella rabiei, is a significant disease in most of the 

world’s chickpea (Cicer arietinum L.) crops and is a major constraint to chickpea 

production in Australia (Pande et al., 2005). D. rabiei survives on infected seed and 

stubble, forming ascospores and/or conidia that initiate primary infection; ascospores are 

spread by wind and conidia by rain splash or wind-driven rain.  Pycnidia develop on 

infected tissue, resulting in secondary spread through conidia that are dispersed by rain 

splash (Kaiser, 1997, Trapero-Casas & Kaiser, 1992b). In Australia, initiation and 

subsequent spread of this disease are attributed almost entirely to conidial infection and 

only  one mating type (MAT 1-2) has been found to date (Phan et al., 2003, Leo et al., 

2011). Dispersal of conidia occurs in wet and windy conditions (Shtienberg et al., 2006, 

Kimber et al., 2007); favourable conditions such as temperatures of 5-30 ºC optimum 20 

ºC and relative humidity of > 95% are also required for the fungus to penetrate into and 

infect host tissues resulting in disease (Pande et al., 2005, Jhorar et al., 1997, Trapero-

Casas & Kaiser, 1992a, Trapero-Casas & Kaiser, 2007).  
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Understanding the epidemiology of ascochyta blight with respect to interaction with host 

(e.g. degree of cultivar resistance) and environment (e.g. location-specific weather 

conditions) can help in formulating strategic and, to some extent, tactical management of 

the disease at a crop production level. It is impractical, given the limitations of resources 

and time, to investigate the epidemiology of a disease for each and every aspect of the 

host in all its growing environments. Thus, quantitative epidemiology from limited 

environments built into a model can aid in understanding epidemics in environments 

beyond its ‘domain of study’ (Salam et al., 2011).         

 

Empirical models, which provide a fit to observed data but do not necessarily take into 

account all the biological processes that explain the relationship, have been applied in 

epidemiology of plant pathogens since the 1960s (Van der Plank, 1964, Madden et al., 

2007). These models are valuable for determining a relationship between two or more 

variables and comparing the effects of treatments on biological processes (Madden et al., 

2007, Payne et al., 2008). Logistic regression models are empirical models that have been 

used to describe the spatio-temporal development of A. rabiei on chickpea (Kimber et al., 

2007) and Mycosphaerella  pinodes on field pea (Kimber et al., 2007, Zhang et al., 2004). 

Shtienberg et al. (2005) also used empirical modelling to identify the influence of 

temperature and wetness period on pseudothecial maturity of Didymella rabiei on 

chickpea debris, to identify the timing of chemical application most likely to prevent 

primary infection by ascospores. Such statistical models characteristically produce 

outputs without reference to underlying physical or biological variables, hence they are 

sometimes known as “black box” or “input-output” models. Also, extrapolation often is 

not possible using these statistical modelling techniques (Jones et al., 2010). The other 
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broad class of models is known as mechanistic or simulation, as they explain causality 

between the variables by mimicking the system under consideration (Jones et al. 2010). 

Theories which identify key host and environmental interactions that influence the 

pathogen are devised at the beginning of development of these models, followed by 

mathematical representations, then validation, resulting in a working simulation model 

(Madden et al., 2007). Simulation models are generally dynamic, meaning that they 

predict changes in epidemics over time (Jeger, 1986) and are of interest to plant 

pathologists undertaking disease predictions. 

 

Many successful simulation models of plant diseases use weather as the driver to enable 

predictions for varying environmental conditions. Salam et al. (2003, 2011) have 

produced such models for predicting risk of diseases in Australian conditions. The models 

can predict the onset of pseudothecial maturity and seasonal showers of ascospores of 

phoma stem rot (blackleg) of oilseed rape (canola, Brassica napus) caused by 

Leptosphaeria maculans (Salam et al., 2003) and severity and yield loss following release 

of ascospore of Didymella pinodes, cause of ascochyta blight (blackspot) of field peas 

(Pisium sativum) (Salam et al., 2011). The risk of disease based on the models is made 

available every year to stakeholders. However, to the best of our knowledge, a model that 

can simulate the spread of Ascochyta rabiei on chickpea in the field has not been 

developed in Australia or elsewhere. 

 

Diggle et al. (2002) developed a simulation model (“AnthracnoseTracer”) for short 

distance rain-splashed dispersal of anthracnose of lupins, caused by Colletotrichum 

gloeosporioides, from infected seeds, the key epidemiology processes of which are 

similar to ascochyta blight of chickpea. In this study, we have adapted 
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“AnthracnoseTracer” to develop a spatio-temporal model for chickpea that simulates the 

spread of ascochyta blight at a field scale.  The aims of this paper are to (i) describe the 

model, (ii) test the model with observed disease incidence in two chickpea cultivars of 

different ascochyta resistance, and (iii) perform sensitivity analyses.    

 

Material and methods 

 

The model, parameters, and estimation and/or calibration of parameters 

 

The model, Spread of Ascochyta rabiei on Chickpea (SArC) has two broad components: 

(i) the initiation, growth and spread of the pathogen (Ascochyta rabiei) on the host 

(chickpea crop) and (ii) growth of the host associated with the state of the disease (having 

no other potential physiological constraints). The model operates in a production unit 

(e.g. a field) which is segregated into smaller units of 1 m
2 

area, henceforth designated a 

“model-operation-unit”. The relational diagram of the model is shown in Figure 1. The 

model was written in Mathematica™ (Version 5.2, Wolfram Research Inc.). 

 

SArC is driven by hourly weather variables, air temperature (º C), rainfall (mm), wind 

speed (m s
-1

), wind direction (º), standard deviation of the wind direction (º) and the 

resistance of a chickpea cultivar to ascochyta blight (Table 1). Seedling density per 

model-operation-unit and initial infection point(s) in one or more model-operation-units 

are the initialisation variables of the model (Figure 1). The initial seedling density 

(SeedRate, an initialisation parameter) in a model-operation-unit is defined by the seeding 

rate of chickpea.  A standard seeding rate of 45 seeds per m
2
 was used as the value of this 

parameter (Day et al., 2006). It was assumed that 40 of these 45 sown seeds would 

germinate and each seedling would have one growing point initially. In the 

“AnthracnoseTracer” model, infected seeds are the source of disease initiation; an 
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infected seed produces an infected growing point at seedling emergence. Infested pieces 

of stubble replaced infected seeds in SArC. The location of an infected growing point is 

represented in the model as the row-column co-ordinate of the model-operation-unit in 

the field. A field is assumed to be facing north as in the conventional cartographical 

orientation and a column number is designated from south to north and a row number 

from east to west. An infected growing point is a simplified representation of a lesion, 

and sporulates after completion of a latent period (LP), a parameter of the model. The 

latent period is the time between infection and production of sporulating lesions.  

The latent period was calculated from laboratory and field observations. A single A. 

rabiei isolate (7706c) was cultured from storage and a suspension of 6 x 10
5 

spores per ml 

prepared as described by Kimber et al. (2006). Plants of chickpea cultivars Howzat and 

Almaz were artificially spray inoculated until dripping and plants then placed in a 

chamber maintained at approximately 100 % relative humidity (RH). The temperature 

was maintained at approximately 18-20°C. Plants were monitored daily until pycnidia 

containing conidia were first observed, 9 days (180 degree-days) later for cv. Howzat 

(moderately susceptible) and 13 (260 degree-days) for cv. Almaz (moderately resistant). 

In the field, the latent period, from the time of inoculation with infested stubble to 

observation of pycnidia containing conidia on infected seedlings, was approximately 13 

days for both cvs which was translated into approximately 150 degree days using onsite 

weather data from the Bureau of Meteorology (BOM).  Galloway and MacLeod (2002) 

reported the latent period of A. rabiei on chickpea cvs Tyson (susceptible), Sona 

(susceptible) and Kaniva (highly susceptible) in controlled conditions at 20°C to be 8-9 

days (160-180 degree days), RH not specified. Trapero-Casas and Kaiser (1992b) found a 

latent period of 5.5 days (100 degree days) on cv. Burpee (highly susceptible) at 20°C and 
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100 % RH. Accordingly, a latent period of 150 degree days was adopted for the SArC 

model. 

The model assumes that each sporulating growing point produces a number of 

“potentially infective” spores. A potentially infective spore is defined as a spore that has 

the capability to cause infection on an uninfected growing point in suitable environmental 

conditions. The number of potentially infective spores produced per sporulating growing 

point (or sporulating lesion) is the parameter SporeRate of the model (Figure 1). Like the 

parent model, “AnthracnoseTracer”, the SArC model does not consider in detail the 

dynamism of lesion formation.  Furthermore, SporeRate is assumed to be constant, which 

implies that a sporulating growing point produces spores at a constant rate after 

formation. The SporeRate, an arbitrary number, differs between the chickpea cultivars 

depending on their level of resistance to ascochyta blight. In the parent model, this value 

was derived relative to that of a known lupin cultivar.  In the SArC model, the value of 

SporeRate for two chickpea cultivars was derived through calibration.  For this 

calibration, a set of values (0.15 to 0.60) with step 0.05 for cv. Howzat (Figure 2A) and 

for cv. Almaz (Figure 2B) parameter values of 0.050, 0.075, 0.08, 0.10 and 0.15 were 

chosen to encompass the potential range of sporulation rates.  The model was run with 

each of the parameter values and the outputs were compared with observed field data 

(described below in validation of SArC model) through mean squared deviation (MSD) 

statistics (described below in MSD approach). The parameter value for each of the 

cultivars was finally estimated based on the closest agreement between the model outputs 

and observation (Figure 2 A and B).   

 

The number of potentially infective spores spread from a model-operation-unit during a 

wet-hour is linearly related to the total number of sporulating growing points (SporuGP) 
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present in a given time. The model calculates the expected number of spores available for 

dispersion (NoSporeDisperse), in the given period, from a model-operation-unit as a 

random fractional value between 0-1, chosen from a Poisson distribution of the product of 

SporeRate and SporuGP. 

 

Spread of A. rabiei spores, like that of other pathogens such as Botrytis cinerea or 

Mycosphaerella pinodes (Setti et al., 2009, Saxena & Johansen, 1997, Taylor et al., 

2007), is initiated when favourable leaf wetness conditions are achieved. As leaf wetness 

data were not readily available, this is represented in the model in a simplified way by 

using a rainfall threshold of 0.1 mm in each hourly period (WHE) of model operation.  In 

justifying using such a parameter value, in the parent model, Diggle et al. (2002) argued 

that 0.1 mm an hour or approximately 2 mm in a day would provide an adequate period of 

leaf wetness.  

 

The spores expected to be dispersed are spread independently from each model-

operation-unit that contains sporulating growing points (sporulating lesions). The model 

assumes that this dispersion originates from the centre of each model-operation-unit. The 

spores landing on the model-operation-unit may originate from the same model-

operation-unit (m
2 

quadrat) or from another model-operation-unit within or outside of the 

production unit (e.g. field). Dispersal of each potentially infective spore (DisperseSpore 

(angle, distance)) is a displacement vector with angle ( S) and distance (dS) components. 

This vector specifies the location at which the spore lands relative to its starting point. 

The actual dispersal is the vector sum of dispersal due to rain splash (DisperseSporeRain 

(angleRain,distanceRain)), and dispersal due to wind (DisperseSporeWind 

(angleWind,distanceWind)). The angle of dispersal due to rain splash (angleRain) is a 
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random number, with uniform probability from 0° to 360°.  Wind-induced dispersal angle 

(angleWind) is chosen from a normal distribution defined by the average wind direction 

(°) in the hour and the standard deviation of wind direction as measured by a recording 

weather station.  The distance component of dispersal due to rain splash (distanceRain in 

metres) is a random value chosen from a half-Cauchy distribution (Xu & Ridout, 1998) 

with median dispersal parameter RainDP:  

 

 distanceRain = RainDP (π z/2)  (Equation 1) 

 

where z is a uniform random number between 0 and 1. The RainDP is the median of the 

distribution distance in metres over which spores may travel. The distance component of 

dispersal (distanceWind) due to wind is calculated in the same way as distanceRain, but 

the median dispersal parameter, WindDP, is multiplied by the average wind speed (m s
-1

) 

for the hour. Examples of distributions for the distance component of displacement due to 

a rain splash, and due to wind at measured wind speeds, are shown in Figure 3, which 

compares the model output with observations from wind tunnel experiments performed in 

2007. 

 

Dispersal of A. rabiei conidia from infested chickpea stubble was examined using a wind 

tunnel developed at the University of Adelaide (INSKIP Dust and Fume Extraction Pty 

Ltd).  Spores were trapped on strips of clear high tack/medium tack double coated 

removable repositionable tape (3M™), 5 mm long x 2 mm wide, on 2 mm diameter metal 

rods. Tape was placed vertically at three positions on the rods (1-6, 11-16 and 31-35 cm). 

Rods were then placed at various distances along the 1.3 m long by 0.5 m wide 

observation chamber of the wind tunnel. Wind speeds were set at 1.4, 2.2, 3.3 and 4.7 m 
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s
-1

 and applied for 30 minutes at a time. When the experimental design required water, 

droplets were applied from 4 mm variable flow drippers inserted along an irrigation line 

inside the tunnel. Tape pieces were peeled from the rods at the end of an experimental run 

using fine tweezers and the number of conidia per tape counted microscopically. The 

counts of conidia at the various distances were thus used to estimate the parameter “spore 

deposition probability”. 

 

The probability that A. rabiei conidia will land on a given cm
2
 after distribution by wind 

and rain is shown in Figure 3. The probability of conidia landing on a cm
2
 area was high 

close to the source and greater wind speed increased the probability that conidia would 

land further from the source. Measured values taken at a wind speed of 1.4 m s
-1

 indicated 

that the probability of landing per cm
2
 area was highest over 0.35 m from the source, with 

a probability of 0.007 cm
2
, and declined to close to zero at 0.60 m. At 4.7 m s

-1
,
 
the 

measured probability of impact per cm
2
 at 0.35 m was 0.010 and close to zero at 0.60 m.  

The model prediction for 1.4 m s
-1 

showed the probability of impact to be highest closer 

to 0.25 m with a probability of 0.020 cm
2
.  This became nearly zero at 0.60 m. The 

prediction of the impact for 4.7 m s
-1 

was 0.020 cm
2
 at 0.40 m, but did not reach zero, 

indicating there is always a chance that a conidium will travel over 1.5 m.  

 

It is unlikely that all potentially infective spores will produce infections because the 

density of receiving growing points in the target model-operation-unit is generally less 

than the total area of the model-operation-unit. In the model, the spore deposition 

probability (ProbableSporeDepo) is used to estimate successful infections from the 

number of potentially infective spores. The ProbableSporeDepo is calculated using an 
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exponential function similar to that commonly used for estimating the fraction of the 

incoming radiation intercepted by a crop canopy (Salam et al., 1994).  

 

ProbableSporeDepo = 1 – exp (-ProbableSporeLimit*UninfectedGP* 

InfectibilityMultiplier) (Equation 2) 

 

ProbableSporeDepo is the limit of the probability of deposition of potentially infective 

spores in units of susceptible growing point per m
2 

as the density of uninfected growing 

points (UninfectedGP InfectibilityMultiplier) approaches 0. The density of susceptible 

growing points on a square metre surface area is better expressed as susceptible growing 

point index, similar to leaf area index (LAI). In this study this was approximated by 

multiplying the uninfected growing points (UninfectedGP) by a multiplier 

(InfectibilityMultiplier) so that it simulated the pattern of LAI of the crop throughout the 

growing season. This multiplier (InfectibilityMultiplier) was approximated as 5, which 

closely matched the pattern of simulated LAI from APSIM (Agricultural Production 

Systems Simulator) model (module chickpea) runs for Roseworthy, South Australia, 2007 

(courtesy of Dr. Imma Farre, Department of Agriculture and Food, Western Australia) 

(Figure 1 A, Appendix E).  The number of susceptible growing points on each day is 

approximated as the product of InfectibilityMultiplier and the number of growing points 

formed on that day.   

 

The growth of the chickpea plant is described by the development of growing points 

within each model-operation-section. Each seed sown, when germinated, produces one 

growing point which multiplies at a rate that is a function of temperature (GPREPrate) 
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and is limited by proximity to a maximum growing point density (GPmax). The number 

of new growing points (NewGP) in an iteration period of one day, is calculated as: 

 

(NewGP = GPuninfected X GPREPrate X Temp (1 – GPuninfected / GPmax) (Equation 

3) 

 

where GPuninfected is the total number of uninfected growing points at the time of 

iteration, and Temp is the average daily temperature in °C. The parameter GPREPrate is 

defined as the rate of increase of the number of growing points per degree-Celsius per day 

(Figure 4 A and B). 

 

Ten plants each of cultivars Howzat (MS) and Almaz (MR) were randomly selected at 

weekly intervals and the growing points (the number of main stems and the terminal and 

lateral shoots that developed from the main stems) were counted. Growing points were 

counted weekly from the start of the growing season, 12 June 2007, until the end of the 

growing season, 2 November 2007. This gave the estimation of the GPREPrate and 

GPmax for each cultivar.  

 

The number of growing points over time increased in a sigmoid curve for both cvs 

(Figure 4). Growing points on cv. Howzat (Figure 4 A) increased at a steady rate until a 

maximum of 5000 growing points m
2 

at 1500 degree days. The correlation between 

observed values and the model prediction was R
2
 = 0.97. Growing point density of cv. 

Almaz (Figure 4 B) increased exponentially to 1500 growing points m
2
 at less than 750 

degree days, and reached a maximum of almost 6000 growing points m
2 

at 1500 growing 
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degree days. The observed values and the model prediction were closely correlated (R
2
 = 

0.92). 

 

The model produced an output of the proportion of infected plants in a model-operation-

unit, where N is the seedling density at sowing and SporuGP is the number of sporulating 

growing points, as follows: 

 

Infected plants per model-operation-unit = N - N(1-1/N)
 SporuGP

 infective growing points 

per model-operation-unit  (Equation 4) 

 

 

 

 

Field data for model calibration and validation, and weather data for model 

operation 

 

The spread of ascochyta blight on cvs Howzat, Almaz and Genesis 090 (Resistant) was 

studied in the field at Kingsford Research Station (S 34.55, E 138.78), South Australia in 

2007 and Turretfield Research Station (S 34.55, E 138.82), South Australia in 2008. The 

trial in 2007 was termed the calibration plot as information was gathered from this plot to 

be used in calibration of the model. The trial in 2008 was termed a validation plot as it 

was only used to validate the model. Stubble with prominent lesions was used as a single 

source of inoculum placed centrally in each plot in 2007 and 2008. Plots were sown to 

dimensions 12 x 12 m in 2007 and in 2008, 11 m x 9.5 m, with  a gap of 1.75 m between 

plots.  

 

Plots were observed for disease expression at weekly intervals after placement of  

inoculum. Disease incidence was assessed each week starting in August, when disease 

was first observed, until the end of the growing season in November.  
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In 2007 and 2008, at the newly emerged seedling stage, each plot was subdivided into 1 

m
2
 observation quadrats, each of which contained 40 plants. Each plot was assigned a 

number, such that quadrat 1.1 was the focus and quadrat number increased in a clockwise 

direction away from the focus to the south of the plot, as shown in Figure 5. Each plot 

was assessed in a structured way, beginning at the perimeter (outermost, least infected 

middle quadrat, designated 5.1) and moving in a clockwise direction to the centre of the 

plot (most infected centre quadrat, 1.1) which contained the disease focus. Boots were 

sprayed with 70% ethanol before moving from one quadrat to the next. This sampling 

method was designed to reduce the potential for mechanical spread of the pathogen. An 

incidence score (0-100 %) was given as the percentage of the plants diseased of the total 

of 40 plants per m
2 

quadrat.  

 

The 2007 field data were used to calibrate the model and the 2008 data was used for 

model validation. To give uniform analysis the 11 x 9.5 m plot sown in 2008 was 

analysed over 9 x 9 m. The cultivar Genesis 090 was not modelled as no disease was 

observed.   

 

Meteorological data were recorded at hourly intervals by an automated weather 

observation system (AWOS) (Telvent Australia Pty Ltd) at Roseworthy Research Station 

(S 34.51, E 138.68) situated 10 and 13 km from the site in 2007 and 2008, respectively. 

The data were accessed from the Climate & Consultative Services, Bureau of 

Meteorology (BOM), Adelaide, SA and downloaded via the Internet. The data collected 

comprised date and time, air temperature (°C), percentage relative humidity (% RH), 

average wind direction (°), standard deviation of wind direction (°), wind speed (m s
-1

) 

and rainfall (mm).  
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Model validation and statistical analysis employed  

The percentage of plants infected, the main output of the model, was subjected to 

qualitative and quantitative validation. In qualitative validation, observation and 

prediction for each m
2
 unit were recorded on the lay-out of the plot; then each unit (m

2
) 

was coloured according to five arbitrary categories: Low (0-30% of diseased plants, 

green); Medium (31-60%, yellow); High (61-80%, purple); and, Very high (81-100%, 

red).  

The quantitative validation was performed for the whole plot (Figure 6 A) and two 

sections of the plot, inner (orange) and outer (yellow) (Figure 6 B). For this validation, 

the performance of the model was analysed statistically using a confidence interval, 

correlation-regression approach (prediction versus observation) and a deviation approach 

(prediction minus observation).  The confidence interval was calculated for each mean at 

99.9% (Conover, 1998). The purpose of this analysis was to explore if the range of the 

true mean between an observation and the corresponding prediction overlapped at very 

high (99.9%) confidence level. Logistic regression-based statistics were employed, y = 

1/{1 + [(1 – y0)/y0] exp(–ct)} (Madden et al., 2007, Zhang et al., 2004). The purpose of 

this analysis was to identify the differences, if any, between the observation and the 

model prediction, with the estimated values of the logslopes compared using two tailed t-

tests at P < 0.05 (from the student t-distribution table, Freund (1984). This was performed 

for three dates, 5 September, 3 October and 2 November 2008, for cvs Howzat and Almaz 

in two scenarios comparing (i) the slopes of the observed and model prediction of the 

whole plot (Figure 6 A), and (ii) the outer and inner sections of the plot (Figure 6 B). 

Statistical software, Genstat edition 10.1 (VSNI international Ltd) was used for this 

analysis.  
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The deviation-based statistics that were employed were mean squared deviation (MSD) 

(Equations 5-8). 
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Where, x is the model output, y is the measurement, xi and yi are the simulated and 

measured values, respectively, for the i-th from n number of measurements x̄ and ȳ are 

the means of xi and yi (i = 1, 2...n), and r is the correlation coefficient between the 

simulation and measurement. MSD has three additive components: (i) squared bias (SB), 

the first term of the right side of Equation 2; (ii) squared difference between predicted and 

observed standard deviations (SDSD), the second term of the right side of Equation 2 and 

(iii) lack of positive correlation weighted by the standard deviations of prediction and 

observation (LCS), the third term of the right side of Equation 2.  MSD measures the total 

deviation between predictions and observations. The lower the value of MSD, the closer 

the prediction is to the observation. SB indicates the mean agreement between the model 

and observation, whereas SDSD and LCS together show how closely the model predicts 

variability around the mean. There are two sources of this variability, the magnitude of 
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fluctuation among the n observations and the pattern of the fluctuation across n 

observations; SDSD and LCS quantify the model’s ability to describe the former and 

latter variability, respectively. Like the logistic regression approach, this was performed 

for both cvs Howzat and Almaz in two scenarios, (i) comparing the slopes of the observed 

and model prediction of the whole plot (Figure 6 A), and (ii) the outer and inner sections 

of the plot (Figure 6 B). 

 

Sensitivity analysis 

 

The parameters considered for the sensitivity analysis in the SArC model are presented in 

Table 2. These parameters explained development and dispersal of A. rabiei on chickpeas 

and were tested with values below and above the parameter set used in the model. A 

value 50% below and above of the model parameter set was applied for all but the latent 

period. The latent period was adjusted to a set value of 50 degree-days above or below the 

original value because an increase or decrease of a value by 50 degree-days represented 

varying latent periods reported in literature (Galloway & MacLeod, 2002, Trapero-Casas 

& Kaiser, 1992a).  

 

Results 

 

Observation versus Simulation – a qualitative comparison  

 

Figures 7 and 8 (A to C) show the observed development of ascochyta blight on chickpea 

cvs Howzat and Almaz, in a pictorial scale, on each m
2 

unit in the field, on 5 September, 

3 October and 2 November compared with prediction from SArC. In 2008 the model 

slightly overestimated disease incidence in cv. Howzat at the beginning of the season and 

underestimated it at the end of the season (Figure 7 A to C). The spread of disease was 

influenced by the prevailing winds, blowing towards the SE direction. In contrast, disease 
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on cv. Almaz at the beginning of the season was slightly underestimated by the model but 

by the end of the season was slightly overestimated (Figure 8 A to C). Again, disease was 

influenced by wind blowing mainly towards the SE direction.  The distribution of disease 

was patchy on 3 October (Figure 8 B) and 2 November (Figure 8 C); however, the model 

did not show any such patchiness in the prediction (Figure 8 A to C). 

 

Observation versus Simulation – a quantitative comparison using confidence 

interval and logistic regression analysis  

 

For both the cultivars, confidence interval (CI) statistics presented in Figure 9 (A to C) 

reveal that the 99.9% CI for the means for observation and prediction for each of the 

dates (5 September, 3 October and 2 November 2008) overlap, indicating a lack of 

significant difference between the observation and the model prediction. 

 

The slopes of the logistic regression for disease incidence across the whole plot showed 

no significant difference (P > 0.05) between observation and prediction (Table 3) for cvs 

Howzat and Almaz.  

 

Table 4 shows the slopes of the logistic regression for disease incidence, across the inner 

and outer sections of the plot, for the observation and prediction in cvs Howzat and 

Almaz. The model prediction for the inner section differed significantly (P < 0.05) from 

the observation on 3 October 2008 and 2 November 2008 for cv. Howzat.  The same was 

true for the outer early (5 September 2008) and late (2 November 2008) observations. For 

the cv. Almaz, slopes observations and predictions were similar for both the inner or outer 

sections.  
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Observation versus Simulation – a quantitative comparison using MSD approach  

 

Across the whole validation plot, the difference between observation and prediction for 

the early measured data (5 September 2008) is evident in Figure 10 (A), which shows the 

MSD for cvs Howzat and Almaz to be 320 and 153, respectively. Both deviations were 

largely attributed to LCS i.e. variability, in terms of pattern of fluctuation around the 

mean. With the subsequent data (on 3 October 2008), deviation between prediction and 

observation for both cultivars was also largely attributed to LCS. At the final assessment 

(2 November 2008), the MSD between observation and model prediction was attributed 

mainly to LCS for cv. Almaz, but to SDSD for cv. Howzat.  

 

In the inner section of the validation plot (Figure 10B), the MSD analysis indicates that 

differences between observation and prediction for cv. Howzat were due predominantly 

to LCS. However, the squared bias (SB) also contributed to this deviation in the early 

observation (5 September 2008) (Figure 10B). In cv. Almaz, the MSD analysis indicates 

that, for all three observation dates, the difference between observation and prediction 

was mainly due to LCS; however, in the later two measurements (3 October and 2 

November 2008) SB also contributed to MSD. 

 

While the overestimation of plant infection in the outer section of the validation plot 

when the model was run for both cultivars with data for 3 October 2008 was attributed to 

LCS, the SB also contributed to a significant proportion of the overall MSD in cv. 

Howzat (Figure 10 C). With the 02 November 2008 data, the deviation (MSD = 987 for 

Howzat and 1121 for Almaz) between observation and prediction was similar for both the 

cultivars (Figure 10 C). Here, the attribution of the deviations (MSD) was not similar for 
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the two cultivars; the MSD components SDSD and LCS played a leading role in causing 

the deviation in cv. Howzat and Almaz, respectively.  

 

Sensitivity of parameter in SArC model 

 

Figure 11 shows the sensitivity of six parameters of the SArC model in simulating the 

spread of A. rabiei in the field. With respect to relative change in model output in terms 

of percent plant infection, three parameters appeared to be less sensitive in that they 

caused variation in model output of about 10% or less.  Of these parameters, two 

(DistanceWind, DistanceRain) related to dispersion of spores by wind and rain, and the 

other (LP) was latent period.  The parameter that drives the model with respect to the 

probability of deposition of potentially infective spores on a chickpea plant 

(ProbableSporeDepo) was moderately sensitive to the increased but not the decreased 

values. The same was true for the parameter SporeRate that denotes the number of 

potentially infective spores produced per sporulating lesion. The GPREPRate, i.e. the 

growth of the chickpea plant as described by growing point development, was the most 

sensitive parameter of the model (Figure 11). An increased and reduced value of this 

parameter resulted in about 70 and 25% reduction in model output, respectively. 

 

Discussion 

The SArC model, developed in this study, is the first model simulating the spread of the 

pathogen Ascochyta rabiei and ascochyta blight on chickpeas in a natural environment. 

The principles and structure of the model are based on the published model 

“AnthracnoseTracer” (Diggle et al. 2002) and other literature (Xu & Ridout, 1998). 

AnthracnoseTracer, which simulates the spread of anthracnose in lupins, was largely 

theoretical, therefore, a main focus in developing the SArC model was to acquire 
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experimental data for estimation and calibration of parameters. The other focus was to 

validate the model with extensive field data. These aspects have greatly strengthened 

confidence in the model with respect to its operational and predictive values.  

 

Eight of nine parameters of the model were either estimated or calibrated with laboratory 

or field experimental data. The exception was the rainfall threshold which was taken from 

published literature, which reflects the minimum amount of leaf wetness required for 

germination of spores and successful penetration of host tissue (Diggle et al. 2002).  

 

Three-step model validation, using independent data on percent plant infection recorded 

three times in the field from each square metre quadrat of a 9 by 9 m plot, was 

encouraging. Independent data were not used for any processes of development of the 

SArC model. A pictorial representation, the first step of the model validation employed in 

this study, was intended to provide a general impression, or snapshot, of the model’s 

capability of simulating the observation. A similar snapshot of model output was 

published previously for phoma stem canker of oilseed rape (Aubertot et al., 2006). The 

present qualitative validation showed that the model, in general, capably predicted the 

observed spread of ascochyta blight in Howzat and Almaz, two cultivars of chickpea that 

differed in resistance. This inference is supported in the first part of the two-step model 

validation, where it was observed that the 99.9% confidence intervals for the mean values 

of the observations and the predictions overlapped, indicating that the values were likely 

to be similar (Madden et al., 2007), The second part of the model validation, in which the 

statistical significance (t-statistics) of the slopes of logistic equations for the observation 

and prediction was tested, showed that the model agreed with observations for all 

comparisons on three dates of data recording for both the cultivars, when the average of 
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the data of the whole validation plot was used. This was also true for comparisons of the 

inner and outer sections of the validation plot for cv. Almaz, although there was some 

discrepancy between observation and model prediction for cv. Howzat. The small sample 

size with the many zeros present in the data, when the plot was analysed in two sections, 

is likely to have caused overestimation of the effect measure, indicated by the large 

regression slopes (Nemes et al., 2009). This indicates that this analysis may not be 

reliable in estimating accurately the slope due to the zeros values present. 

 

A difference or deviation between the model prediction and reality (or observation) is 

expected, as reality is always simplified in a model, partly because our understanding of 

basic processes is limited, partly because this enables us to handle the model (Salam, 

1992). Furthermore, models in biological systems are working hypotheses and it is not 

possible to prove hypotheses absolutely in science (Whisler et al., 1986). Thus, modelling 

is a continuous process aimed at improving predictability. To improve the accuracy of the 

model’s prediction, a first step should be to identify the discrepancies between prediction 

and observation. The MSD analysis in the third step of model validation provided the 

opportunity to locate the major cause of deviation between model prediction and 

observation. In this study, LCS appeared to be the major deviation between observation 

and prediction.  The LCS denotes the lack of positive correlation weighted by the 

standard deviations of the prediction and observation; it is one of the three additive 

components of MSD. Together with SDSD, the LCS shows how closely the model 

predicts variability around the mean.  There are two sources of this variability, the 

magnitude of fluctuation among the n observations and the pattern of the fluctuation 

across n observations; the LCS quantifies the model’s ability to simulate the latter 

variability. One of the reasons that the model could not simulate some of the observed 
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disease spread may be simplification of the infection process. Unusual patterns of disease 

spread were occasionally observed in the field. For example, severe disease occurred in 

the north-east section of the plot of cv. Almaz on 3 October and 2 November (Figure 8, B 

and C), which was not predicted by the model. The disease observed may have been due 

to mechanical spread or other phenomena such as gusts of wind. The model simulated 

less disease in the north-western corner of c.v Howzat (Figure 7, B and C) than was 

observed. Again, the model did not simulate this event, thus further tweaking of the 

model may lead to closer simulation of these occurrences. 

 

The model is a simplified version of spread and infection caused by A. rabiei in the field 

and does not encompass every detail of the interaction. For example, it does not take into 

account the dynamics associated with turbulent winds, continuously changing wind 

directions and topography, which would add complexity to the model. Gust of winds 

create turbulence near the leaf surface and can disperse spores upwards to be caught in 

laminar winds (Sache, 2000); if spores are transported high enough via gusts they can 

reach the laminar boundary level where they can travel many kilometres (Lacey & West, 

2006). The pattern of spore dispersal was studied in a wind and rain tunnel with laminar 

flow of air, thus further research is needed to estimate dispersal in turbulent winds to 

model this phenomenon. Moderately resistance cvs of chickpea have also been shown to 

decrease in resistance as the plants age (Basandrai et al., 2007, Chongo & Gossen, 2001).  

Reduction of resistance as plants age may explain why the moderately resistant cv. Almaz 

showed unusual disease occurrence in the north-east section of the plot as the crop 

matured, thus resistance may need to be adjusted overtime within the model to increase 

accuracy.  

 



152 

 

In modelling, certainty in parameters is always an issue. Sensitivity analysis tests how 

responsive the model is to changes in certain parameters (Whisler et al., 1986). When a 

parameter is insensitive or less sensitive, for example parameters related to rain and wind-

assisted dispersal and latent period in the SArC model, this implies that it is robust, so 

improving this parameter value will contribute least to performance of the model; also 

when applying the model in different environments, calibration of this parameter could be 

a lesser priority. Sensitivity analysis showed the SArC model to be very sensitive to 

growing point replication rate (GPRepRate) and spore replication rate (SporeRate).  The 

value of the growing point replication rate was calculated using field experiments; 

therefore, there is little scope to improve this parameter. However, this sensitivity 

provides a caution that special attention may be required to assign the value of the 

parameter when the model is applied to an environment different from that in which it 

was tested. The other sensitive parameter, the spore replication rate, was derived from 

model calibration. This reflects the degree of resistance to ascochyta blight.  It is an 

important parameter and future research should aim to quantify the productivity of 

conidia. 

 

Given the strength of the SArC model in the validation and the scope identified for its 

improvement, it has potential to be used as a tool in plant biosecurity and/or managing 

ascochtya blight in chickpea. For example, in the field of biosecurity, it may be used to 

predict the spread of exotic plants pathogens such as anthracnose on lentils 

(Colletotrichum truncatum), and to study the implications if the disease were to occur in 

Australia. From a disease management point of view, the model might be used to identify 

the scale of potential damage, if any. It can also be used to examine the effect of cv. on 

disease spread and could help farmers decide which cultivars to sow.  
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This study has produced the first simulation model to predict the spread of Ascochyta 

rabiei. Although some aspects of the model need further investigation to determine 

applicability in other agroecological regions outside of South Australia, the model will be 

useful for chickpea growers as an ascochyta management tool and, with further 

development, could be used to predict exotic plant pathogens with similar dispersal 

methods. 
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Table 1 Cultivar description, seed source and ascochyta blight rating of chickpeas used in 

the field trials at Kingsford in 2007 and Turretfield in 2008. 

Chickpea cultivar 

and description 

Resistance rating 
a
 Seed source 

b
 

Howzat - Desi type, 

medium to tall 

height, early 

flowering, medium 

size, light brown 

seed  

 

MS Balaklava, SA 

MS Turretfield, SA 

Almaz - Kabuli 

type, medium 

height, late 

flowering, large 

cream seed 

 

MR Riverton, SA  

MR Turretfield, SA 

Genesis 090 - 

Kabuli type, 

medium height, mid 

flowering, medium 

to small cream seeds 

R Riverton, SA  

R Turretfield, SA 

a.  MS = moderately susceptible, MR = moderately resistant, R = resistant  

b. Seeds were sourced from chickpea breeding trials and commercial trials in South Australia (SA)
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Table 2 Parameter sensitivity, comprising the parameter description, the unit, the original 

model parameter values, and the adjusted range (± 50 % or ± 50). The latent period of 

150 degree days was adjusted by ± 50 based on latent periods found in  the literature and 

through experiment.  

 

Biological 

parameter 

description 

Unit  Model 

parameter 

value 

Tested 

range 

Low High 

Growth of the 

chickpea plant 

as described by 

growing point 

development 

GPREPRate 0.0065 

 

± 50 % 0.00325 

 

0.00975 

 

The probability 

of deposition 

of potentially 

infective spores 

on a chickpea 

plant 

ProbableSporeDepo 0.000065 

 

± 50 % 0.0000325 

 

0.0000975 

 

Distance a 

spore is 

transported by 

rain 

DistanceRain 0.015 

 

± 50 % 0.0075 

 

0.0225 

 

Distance a 

spore is 

transported by 

wind 

DistanceWind 0.015 

 

± 50 % 0.0075 

 

0.0225 

 

The number of 

potentially 

infective spores 

produced per 

sporulating 

lesion 

SporeRate 0.220 ± 50 % 0.11 

 

0.33 

 

The period of 

time between 

infection and 

production of 

sporulating 

lesions 

LP 150 ± 50 100 200 
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Table 3 Logistic regression analysis of the observed incidence of ascochyta blight across 

the whole plot compared to the model prediction of incidence on 5 September 2008, 3 

October 2008 and 2 November 2008 for chickpea cultivars Howzat and Almaz. SE ± of 

the residual are shown for the logit data. The regression slopes were compared for the 

model and the observation. Significance was determined by student t-distribution table (P 

< 0.05) from 80 observations.  
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Table 4 Logistic regression analysis of the observed incidence of ascochyta blight across 

the inner and outer sections of the plot compared to the model prediction of incidence on 

5 September 2008, 3 October 2008 and 2 November 2008 for chickpea cultivars Howzat 

and Almaz. The regression slopes were compared for the model and the observation. SE ± 

of the residuals are shown for the logit data. Significance was determined by student t-

distribution table (P < 0.05) from 24 observations for the inner and 45 observations for 

the outer sections.  
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Figure 1 Relational diagram of the SARC (spread of Ascochyta rabiei on chickpea) 

model including the development and dissemination of A. rabiei in a chickpea field 

represented by the model. Ovals (blue) represent the parameters of the model identified 

through calibration or investigation; Bold (orange) ovals represent initialisation variables 

used to run the model; ovals (yellow) represent information used to drive the simulation 

process. 
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Figure 2 Calibration of the parameter SporeRate for chickpea cultivars Howzat (A) and 

Almaz (B) for 15 September, 12 October and 2 November 2007. Values of 0.15 to 0.60, 

with a step of 0.05, were used in calibrating cv. Howzat. Values of 0.050, 0.075, 0.08, 

0.10 and 0.15 were used in calibrating cv. Almaz. The parameters which showed closest 

agreement between model output and observations for each cultivar were applied to the 

model as the SporeRate parameter. SporeRate is assumed to be constant so that a 

sporulating growing point produces spores at a constant rate after formation. The 

SporeRate is an arbitrary number. 
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Figure 3 The measured and predicted probability that conidia of A. rabiei will land on a 

given cm
2
 area in the presence of rain plus wind at 1.4 to 4.7 m s

-1
.   Measured data were 

obtained from wind and rain tunnel experiments and the prediction was calculated via the 

equation, distanceRain = RainDP (π z/2), where z a uniform random number on the 

interval between 0 and 1. 
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Figure 4 (A) and (B) The growing point density of chickpea cvs Howzat (A) and Almaz 

(B) per m
2
. Growing point development was recorded at Kingsford, South Australia in 

2007. Growing points (main stem development and lateral shoot development) were 

calculated using growing degree-days (number accumulated degree-days above the base 

temperature taken from first infection observation). The line (-) indicates the model 

prediction and the symbol () indicates the measured values of growing points.  
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Figure 5 Disease assessment strategy for each cultivar in field trials. Quadrats, 1 m
2
, 

were assigned numbers as follows: 1.1 for the centre quadrat; 2.1 to 2.8, in a clockwise 

direction for the next quadrats; 3.1 to 3.16 in a clockwise direction for the next quadrats; 

4.1 to 4.24 in a clockwise direction for the next quadrats; 5.1 to 5.32 in a clockwise 

direction for the next quadrats. Dashed arrows from 5.1 to 1.1 and back to 5.1 indicate 

entry and exit points used when assessing disease. Solid arrows show the pattern in which 

disease was assessed, proceeding in a clockwise direction. 
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Figure 6 (A) Statistical design for the 9 x 9 m plot to compare the accuracy of the 

observed and the model prediction output for cvs Howzat and Almaz on the whole plot 

level (dotted shading) and (B) over two sections of the plot, the inner (dotted) and outer 

(checked shading) of the plot.  
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Figure 7 The percentage of plants infected per m
2
 in a 9 x 9 plot planted with cv. Howzat. 

Observation and prediction on (A) 5 September 2008, (B) 3 October 2008 and (C) 2 

November 2008.  
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Figure 8 The percentage of plants infected per m
2
 in a 9 x 9 m

 
plot planted with cv. 

Almaz. Observation and prediction on (A) 5 September 2008, (B) 3 October 2008 and (C)  

2 November 2008.  
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Figure 9 (A to C) Comparison of the observed (Obs) and modelled (Pre) mean  plant 

infection (%) on 5 September, 3 October and 2 November 08, across (A) the whole plot, 

(B) the inner section of the plot and (C) the outer section of the plot. The bars indicate 

means and the lines indicate 99.9% confidence intervals.    
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 Figure 10 (A to C) Comparison of mean squared deviation (MSD) and its components; 

lack of correlation (LCS), weighted by the standard deviations (SDSD), and squared bias 

(SB), for the observed and predicted plant infection (%) on 5 September, 3 October and 2 

November 2008 in cvs Howzat and Almaz. Performed over (A) the whole plot, (B) inner 

section of the plot and (C) outer section of the plot.  
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Figure 11 Sensitivity analysis indicating parameters most affected by a change of ± 50 % 

from the original parameter value.  
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