
GUIslice API

Developer Guide

Ver: 0.16.0

Publication date and software version

Published XXXXXX, 2021. Based on GUIslice API Library 0.16.0

Copyright

This document is Copyright © 2021 by Paul Conti. You may distribute or modify it under the terms of the
MIT License. https://opensource.org/licenses/MIT

GUIslice Copyright (c) Calvin Hass 2016-2021

https://opensource.org/licenses/MIT

Chapter 1 Introduction

1.1 Introduction

GUIslice is User Interface platform designed for embedded microcontroller systems, most without any
operating system. The design is such that it trys to minimize overhead. Achieving this goal by being a pure C
library with no dynamic memory allocation.

It's not so much designed to be to be easy to use as much as it's meant to be efficient. Whatever difficulty in
defining storage declarations and other essential defines, enums, and UI coordinates is mitigated by
another tool called the GUIsliceBuilder which will not be further discussed here.

This document explains the main structure and design of the GUIslice library. It's purpose is to give a deeper
understanding than one would get by simply knowing the API. While GUIslice comes with excellent
documentation for the API with many examples there are times when someone needs to view below the
covers. Say, you have to extend GUIslice with new UI Elements or create moveable windows. Hopefully this
document will supply enough information for anyone maintaining or extending the package.

Certain topics that could cloud the explanations of logic flow such as frame rate tracking, or routines that
are very small and that have self-describing names (such as gslc_PageFlipSet) will be either avoided or
confined to the Appendix. If you need more information you will need to examine the actual source code.

af://n10
af://n11

Chapter 2 Architecture

2.1 Phases

2.1.1 C Language definition phase

The GUIslice API storage requirements must be laid out in globals. In addition, various enums for pages
(menus), fonts, UI Elements, and images must be defined at the outset.

We start with defining MAX_PAGE as the total number of pages to be used. Followed by an enum giving the
number of UI Elements (widgets) to be placed on each page and an enum for the number of Fonts accessed,
if any. Optionally, depending upon usage, enum for each font and/or images used must also be provided.

These definitions must be followed by actual storage allocations for pages, fonts, and all UI Elements.

Source code must also be provided for all callbacks.

The important data structures that will be discussed in this document are:

gslc_tsGui
gslc_tsDriver
gslc_tsPage
gslc_tsFont
gslc_tsElem
gslc_tsElemRef

Lesser structures will also be exposed as they come up.

2.1.2 Setup

For Micro-Controllers using Arduino's IDE for development the Application will have been provided with a
Setup() and Loop() function. For Linux initialization will happen in the Main() function.

At the start of an Application, GUIslice API will need to initialize API storage structs and link them together.
The Application will also need to provide to the GUIslice API any details required by the various UI elements,
like coordinates, sizes, colors, fonts, and callback addresses.

It all starts with an optional call to gslc_InitDebug() to setup debugging messaging. This call can be
removed when you deploy your App. The first routine that must be called is gslc_Init() which is
responsible for initializing the global gslc_tsGui struct and starting up the third party TFT driver and
optionally touch interface.

After that gslc_PageAdd() must be called for each page used in the application, followed by whatever API
calls are needed to create the UI Elements to be placed on each page.

The details of these routines will be shown in Chapter 4 API Internals.

af://n18
af://n19
af://n20
af://n40

2.1.3 Loop

Once the API and the Application's requirements for initialization have been completed the Loop phase is
entered. Arduino like apps will have an actual Loop() function while Linux users must provide a While()
loop.

GUIslice is an event loop non-preemptive driven API which does not depend upon multi-threading support.
What this means is that the Application needs to call a function periodically to detect any user or device
interactions.

The routine GUIslice provides for this is called gslc_Update() and breaking this down requires it's own
section so see Chapter 4 gslc_Update for a complete discussion. Of course, Loop() is also where you
provide your own Application Logic just be sure to periodically call gslc_Update() or you won't properly
handle your UI.

2.2 Layers

There are three basic layers to GUIslice API.

Layer one is exposed API meant for users to call directly.

Layer two is the driver interface layer. The specific driver is choosen by the user of the API by
uncommenting the desired driver configuration file inside GUIslice_config.h .

Layer three contains actual third party drivers that are called from layer two. This would be for the TFT
graphics, Touch and File access support.

af://n48
af://n52

2.3 Hierarchical view of data structures

2.4 Elements vs Element References

2.5 Singular vs Compound Elements

Chapter 3 Driver Modules

3.1 Display drivers

While we have discussed the existence of the driver layer where files are of the form GUIslice_drv_xxxx.
<h,cpp> ; They're two additional files we should mention, GUIslice_config_ard.h and
GUIslice_config_linux.h .

These are holdovers from the early days of GUIslice API. You generally don't need to deal with them unless
you are adding a new driver pair say, GUIslice_drv_mydriver.<h,cpp> . In this case you need to add your
include file to either of these files to allow GUIslice to use your new driver.

In the future one or both may be removed but for now you need to be aware of them.

One more point, while GUIslice prefixes the driver files with "drv" they are not in fact drivers. In fact, It might
best be renamed the Graphics layer. If you open, GUIslice_drv_adagfx.cpp you will soon see why. It's
littered with #if defined , elseif , and #endif statements to deal with individual TFT and Touch
drivers. Having a fourth layer that handles the interfaces to real drivers would make the code much easier
to follow and maintain. Again this is an artifact of how GUIslice evolved over time.

This isn't included as a criticism as much as a warning of what you will face if you need to extend an existing
driver file.

For many of these the calls translate to a simple one to one calls to say, Adafruit_GFX routines or whatever
Graphics package is being used. The complex part however is in font handling where each TFT DRiver seems
to have a different approach and with Touch drivers that also need special handling.

You will need to study the source code to appreciate whats involved.

af://n59
af://n60
af://n61
af://n62
af://n63

3.2 Touch drivers

3.2.1 Debouncing

3.2.2 Filtering

3.2.3 Calibration scaling

3.2.4 Rotation

3.2.5 gslc_InitTouchHandler()

If you need special handling of the touch interface or to support a new touch chip there is an alternative
approach you can take rather than modifying the driver files. As briefly discussed in an earlier section
GUIslice API has provided the call gslc_InitTouchHandler() which allows to you inteface touch through
your own code. You can see GUIslice/examples/arduino/ex16_ard_touch_hnd for a demonstration.

af://n74
af://n75
af://n76
af://n77
af://n78
af://n79

3.3 Identifying What features the Driver supports

GUIslice provides default implementations for certain API calls such as, gslc_DrvDrawPoints() , and
gslc_DrvDrawFrameRect() , among others. Now most graphic drivers have optimized versions of these

routines. So how does GUIslice know to use them? If you open GUIslice_drv_adagfx.h you will see a
group of #defines specifying whats supported by the driver and what GUIslice must supply instead.

The Zero indicates not supported and one declares support.

#define DRV_HAS_DRAW_POINT 1 ///< Support gslc_DrvDrawPoint()

#define DRV_HAS_DRAW_POINTS 0 ///< Support gslc_DrvDrawPoints()

#define DRV_HAS_DRAW_LINE 1 ///< Support gslc_DrvDrawLine()

#define DRV_HAS_DRAW_RECT_FRAME 1 ///< Support gslc_DrvDrawFrameRect()

#define DRV_HAS_DRAW_RECT_FILL 1 ///< Support gslc_DrvDrawFillRect()

#define DRV_HAS_DRAW_RECT_ROUND_FRAME 1 ///< Support gslc_DrvDrawFrameRoundRect()

#define DRV_HAS_DRAW_RECT_ROUND_FILL 1 ///< Support gslc_DrvDrawFillRoundRect()

#define DRV_HAS_DRAW_CIRCLE_FRAME 1 ///< Support gslc_DrvDrawFrameCircle()

#define DRV_HAS_DRAW_CIRCLE_FILL 1 ///< Support gslc_DrvDrawFillCircle()

#define DRV_HAS_DRAW_TRI_FRAME 1 ///< Support gslc_DrvDrawFrameTriangle()

#define DRV_HAS_DRAW_TRI_FILL 1 ///< Support gslc_DrvDrawFillTriangle()

#define DRV_HAS_DRAW_TEXT 1 ///< Support gslc_DrvDrawTxt()

#define DRV_HAS_DRAW_BMP_MEM 0 ///< Support gslc_DrvDrawBmp24FromMem()

#define DRV_OVERRIDE_TXT_ALIGN 0 ///< Driver provides text alignment

af://n84

Chapter 4 API Internals
Here the discussion will be about the more important API's. Even the actual UI Element creation API's will
only be represented by a couple of UI Elements, gslc_ElemCreateTxt() , gslc_ElemCreateBtnTxt() , and
gslc_ElemCreateLine . This is because the existing User API documentation is more than adequate for

understanding. Instead the idea is to show the logic that applies to any such call within the API. What
structures are involved, and how they are used by the lower level routines.

The API for gslc_ElemCreateImg() and gslc_ElemCreateBtnImg() will be explored in Chapter 7 Special
Features.

4.1 gslc_Init()

This routine is responsible for setting up the gslc_tsGui, gslc_tsDriver, and gslc_tsFont structures. It will also
fire up the TFT Display driver and any touch interface or even GPIO interface.

gslc_tsGui is the main container of data for GUIslice. Virtually everything needed is attached to this struct.
That's the reason it's required in every call to the API. Most of what is in here is self-explanatory, like nDispW,
and nDispH. So for these the source code comments are sufficient for understanding.

The items in yellow will be addressed in this chapter while the ones in GREEN outline will be discussed in
Chapter 4 gslc_Update(). Thoses in BLUE will be in Chapter 7 Extending GUIslice.

By convention gslc_tsGui pGui will the address of m_Gui , pvDriver will be set to address of m_drv , asPage
will be set to the address of the m_asPage[MAX_PAGE] array and asFont will set to address
m_asFont[MAX_FONT] .

bool gslc_Init(gslc_tsGui* pGui,void* pvDriver,gslc_tsPage* asPage,uint8_t nMaxPage,

 gslc_tsFont* asFont,uint8_t nMaxFont);

af://n90
af://n93

gslc_Init() will begin by Initializing state of the display values inside gslc_tsGui to zeroes, set
nPageMax=nMaxPage , nPageCnt=0 , nFontMax=nMaxFont , nFontCnt=0 , default display orientation to
GSLC_ROTATE . It will also init the page stack to NULL.

Diagram 4.1A gives the overall flow of this routine and it shows a driver specific function will be called to init
the TFT driver and fill out pvDriver structure. The driver names will be of the form GUIslice_drv_xxxx.cpp
where "xxxx" could be adagfx, m5stack, sdl, tft_espi, or any others that might be supported now or in the
future. Chapter 6 Driver Modules will explore this deeper.

Diagram 4.1A gslc_Init() Flow

As you can see from the flow diagram we need to go to the GUIslice_drv_XXXX.cpp driver layer to access the
touch hardware. Unless the user supplied a custom touch handler by registering it with a
gslc_InitTouchHandler() call. In which case the user will have sub-classed TouchHandler and set their

config file to use this implementation at the driver layer.

Diagram 4.1B Touch Initialization Flow

4.2 gslc_PageAdd()

This routine adds a new page to the globally defined page array that was passed into gslc_Init()
function (&m_asPage[]).

Diagram 4.2 gslc_PageAdd() Flow

void gslc_PageAdd(gslc_tsGui* pGui,int16_t nPageId,gslc_tsElem* psElem,

 uint16_t nMaxElem,gslc_tsElemRef* psElemRef,uint16_t nMaxElemRef)

af://n112

4.3 gslc_ElemCreateTxt()

4.4 gslc_ElemCreateBtnTxt()

4.5 gslc_ElemCreateLine()

4.6 Error handling & messages

af://n118
af://n119
af://n120
af://n121

Chapter 5 gslc_Update()

The polling loop for GUIslice. Performs GUIslice handling functions for any touch events and screen
drawing. Note that nothing appears on screen until this routine is called.

Diagram 5.A gslc_Update() Flow

void gslc_Update(gslc_tsGui* pGui)

af://n125

Diagram 5.B Poll Input GPIO/pin Flow

Diagram 5.C Poll Touch Flow

5.1 gslc_GetTouch()

The touch handling logic is used by both the touchscreen handler as well as the GPIO/pin/keyboard input
controller. It should be mentioned that while the source code uses the term "Keyboard" GUIslice API really
isn't providing full keyboard support, unlike the TFT Keypad Extended UI Element. It's more of lower level a
key has been pressed support. Also, no key debouncing is provided.

Get the last touch event from the Touch Driver handler.

Diagram 5.1A gslc_GetTouch() Flow

The code for grabbing a touch event is quite complex so the source code within the driver of interest is the
best way to see specifics. Independent of the actual implementation the overall flow is like this:

Diagram 5.1B Generic Touch Driver Flow

bool gslc_GetTouch(gslc_tsGui* pGui, int16_t* pnX, int16_t* pnY, uint16_t* pnPress,

gslc_teInputRawEvent* peInputEvent, int16_t* pnInputVal);

af://n135

5.2 gslc_TrackTouch()

Handles a touch event and performs the necessary tracking, glowing and selection actions depending on
the press state.

Diagram 5.2 gslc_TrackTouch() Flow

void gslc_TrackTouch(gslc_tsGui* pGui,gslc_tsPage* pPage,int16_t nX,int16_t nY,uint16_t

nPress)

af://n147

5.3 gslc_TrackInput()

Handles a direct input event from a keyboard or GPIO pin and performs the necessary tracking, glowing and
selection actions depending on the state.

Diagram 5.3 gslc_TrackInput() Flow

void gslc_TrackInput(gslc_tsGui* pGui,gslc_tsPage* pPage,gslc_teInputRawEvent

eInputEvent,int16_t nInputVal);

af://n156

5.4 gslc_EventCreate

This routine uses the passed in parameters to fill in an event structure. This structure will guide the lower
routines logic and also the overall handling of the UI.

Diagram 5.4 gslc_EventCreate() Flow

gslc_tsEvent gslc_EventCreate(gslc_tsGui* pGui,gslc_teEventType eType,uint8_t

nSubType,void* pvScope,void* pvData)

af://n165

5.5 gslc_PageEvent()

Common event handler function for a page.

Diagram 5.5 gslc_PageEvent() Flow

bool gslc_PageEvent(void* pvGui,gslc_tsEvent sEvent);

af://n175

5.5.1 gslc_CollectEvent()

Common event handler function for an element collection.

Diagram 5.5.1 gslc_CollectEvent() Flow

5.5.1.1 gslc_CollectTouch()

bool gslc_CollectEvent(void* pvGui,gslc_tsEvent sEvent);

af://n182
af://n188

Diagram 5.5.1.1 gslc_CollectTouch() Flow

Diagram 5.5.1.1A GSLC_TOUCH_DOWN Flow

Diagram 5.5.1.1B GSLC_TOUCH_UP Flow

Diagram 5.5.1.1C GSLC_TOUCH_MOVE Flow

5.5.1.2 gslc_CollectInput()

Diagram 5.5.1.2 gslc_CollectInput() Flow

5.5.1.3 gslc_ElemSendEventTouch()

af://n203
af://n207

Diagram 5.5.1.3 gslc_ElemSendEventTouch() Flow

5.6 gslc_PageRedrawGo()

Redraw the active page

If the page has been marked as needing redraw, then all elements are rendered
If the page has not been marked as needing redraw then onlythe elements that have been marked as
needing redraw are rendered.

Diagram 5.6A gslc_PageRedrawGo() Flow

af://n213

Diagram 5.6B gslc_PageRedrawGo() Flow

Note that you will see various calls to deal with Flip pages. This is to support double buffering of displays
that support this feature. Very few drivers support this and since the names of these routines describes
them sufficiently there is no reason to go into a deep explanation or flowchart.

5.6.1 gslc_PageRedrawCalc()

Check the redraw flag on all elements on the current page and update the redraw status if additional
redraws are required (or the entire page should be marked as requiring redraw).

The typical case for this being required is when an element requires redraw but it is marked as being
transparent. Therefore, the lower level elements should be redrawn.
For now, just mark the entire page as requiring redraw.

Diagram 5.6.1A gslc_PageRedrawCalc() Flow

af://n230

Diagram 5.6.1B gslc_PageRedrawCalc() Flow

5.6.2 gslc_SetClipRect()

Update the drawing clip rectangle.

Diagram 5.6.2 gslc_SetClipRect() Flow

5.6.3 gslc_PageRedrawSet()

Adjust the flag that indicates whether the entire page requires a redraw.

Diagram 5.6.3 gslc_PageRedrawSet() Flow

5.6.4 gslc_InvalidateRgnReset()

Clear our regions.

Diagram 5.6.4 gslc_InvalidateRgnReset() Flow

af://n247
af://n252
af://n257

Chapter 6 Fonts

Chapter 7 Special Features

7.1 Page Layers

7.1.1 Pages, switching between

7.1.2 Popups

7.2 Images

7.2.1 Image Format Support

7.2.2 gslc_ElemCreateImg()

7.2.3 gslc_ElemCreateBtnImg()

7.3 Elements in FLASH

7.4 Element aliases

af://n264
af://n265
af://n266
af://n267
af://n268
af://n269
af://n270
af://n271
af://n272
af://n273
af://n274

Chapter 8 Extending GUIslice's UI

8.1 Singular vs Compound Elements

8.2 Modify existing elements

8.3 Creating new elements

8.4 Elements in FLASH

af://n278
af://n279
af://n280
af://n281
af://n282

Appendix

Variable naming conventions

af://n285
af://n286

	Chapter 1 Introduction
	1.1 Introduction

	Chapter 2 Architecture
	2.1 Phases
	2.1.1 C Language definition phase
	2.1.2 Setup
	2.1.3 Loop

	2.2 Layers
	2.3 Hierarchical view of data structures
	2.4 Elements vs Element References
	2.5 Singular vs Compound Elements

	Chapter 3 Driver Modules
	3.1 Display drivers
	3.2 Touch drivers
	3.2.1 Debouncing
	3.2.2 Filtering
	3.2.3 Calibration scaling
	3.2.4 Rotation
	3.2.5 gslc_InitTouchHandler()

	3.3 Identifying What features the Driver supports

	Chapter 4 API Internals
	4.1 gslc_Init()
	4.2 gslc_PageAdd()
	4.3 gslc_ElemCreateTxt()
	4.4 gslc_ElemCreateBtnTxt()
	4.5 gslc_ElemCreateLine()
	4.6 Error handling & messages

	Chapter 5 gslc_Update()
	5.1 gslc_GetTouch()
	5.2 gslc_TrackTouch()
	5.3 gslc_TrackInput()
	5.4 gslc_EventCreate
	5.5 gslc_PageEvent()
	5.5.1 gslc_CollectEvent()
	5.5.1.1 gslc_CollectTouch()
	5.5.1.2 gslc_CollectInput()
	5.5.1.3 gslc_ElemSendEventTouch()

	5.6 gslc_PageRedrawGo()
	5.6.1 gslc_PageRedrawCalc()
	5.6.2 gslc_SetClipRect()
	5.6.3 gslc_PageRedrawSet()
	5.6.4 gslc_InvalidateRgnReset()

	Chapter 6 Fonts
	Chapter 7 Special Features
	7.1 Page Layers
	7.1.1 Pages, switching between
	7.1.2 Popups

	7.2 Images
	7.2.1 Image Format Support
	7.2.2 gslc_ElemCreateImg()
	7.2.3 gslc_ElemCreateBtnImg()

	7.3 Elements in FLASH
	7.4 Element aliases

	Chapter 8 Extending GUIslice's UI
	8.1 Singular vs Compound Elements
	8.2 Modify existing elements
	8.3 Creating new elements
	8.4 Elements in FLASH

	Appendix
	Variable naming conventions

