Objective-C Runtime
In Practice

CocoaheadsBE - Kontich, 2013-12-03



Introduction



Tom Adriaenssen




| love...

.. My wife

.. my 4 kids

.. o code

.. to play a game of squash

.. good beer



| open sourced...

T ——
... Some code: e

@l 1t Center

IViewDeckController: “An Left & Center g
implementation of the ‘nav Controller
sliding functionality found in |
the Path 2.0 or Facebook Bch To Let
I0OS apps.”
J0000
, )0000
IDateExtensions o
J0000
IPopoverStatusltem 0000
. . , ledge: 0 E
See: http://qgithub.com/inferis 10000

ledge: 44 o000



http://github.com/inferis

| made...

.. SOme apps:

"Il

Butane Drash
http://getbutane.com http://dra.sh

Hi, @10to1!



http://getbutane.com
http://getbutane.com




Agenda

RUNTIME WHUT?

What is an object?

In practice



RUNTIME




Runtime WHUT?

obj-c runtime Is "always present”
You can't use Objective-c without the runtime.
Works lbehind the scenes:

most developers aren't even aware it is there
and that they’r using it

outs the objective in Objective-C
implemented as dynamic shared library
loaded by default by the OS



Runtime WHUT?

Supports the most important features of
the language

object oriented
messaging
protocols
dynamic typing

forwarding



Foundation

IS a support framework
iIncluded by default

The Foundation framework defines a base layer of
Objective-C classes.

a set of useful primitive object classes (NSODbject,
NSProxy, ...)

introduces several paradigms that define functionality
not covered by the Objective-C language.

reflection
memory management

archiving



C + Runtime = Obj-C

The runtime Is what makes objective-c.

The rur

syntacti

time Is the implementation of the
C "objective” sugar on top of C

You can write any cocoa program

using

oure C, but it's hard and

verbose.



Demo

A pure C Objective-C app



In practice

runtime.h overview
Foundation.h, the “simple” stuft

runtime.h, the “spicy” stuft



runtime.h

#import <objc/runtime.h>
a number of C functions to interact with the runtime

Several “categories” of interactions

objc_ ... interact with toplevel runtime (eg register a class)

class ... interact with classes (eg make subclass)

object ... interact with objects (eg get classname)

method ... interact with methods (eg get the number of arguments)
ivar_ ... interact with ivars (eg get the type of an ivar)

property ... interact with properties (eg get the name of a property)
protocol ... interact with protocols (eg get properties of a protocol)
sel ... interact with selectors (eg register selector names)

imp_ ... interact with method implementations (provide implementations

using blocks)



C? Yuk.




Foundation.h to the rescue

ne Foundation library provides an obj-c
iINnterface to some of the runtime calls.

#include <Foundation/Foundation.h>

Check your .pch file: it should be there
IOS: directly

OSX: via #include <Cocoa.hs>.



Foundation.h to the rescue

NSObject:

-(BOOL)isKindOfClass: (Class)class;

-(Class)class;

Functions:
NSString* NSStringFromClass(Class aClass);

Class NSSelectorFromString(NSString* aSelectorName);



Dealing with classes

+ (Class)class;

Returns self (the class object). Since this is a
class object, it returns the class itself.

+ (Class)superclass;

Returns the class object for the receliver’s
superclass. Gets the parent class of a given
class.

+ (BOOL)isSubclassOfClass:(Class)aClass;

Returns a Boolean value that indicates whether
the receiving class is a subclass of, or identical
to, a given class.



Demo

Classes



Dealing with classes

- (BOOL)isKindOfClass:(Class)aClass;

Returns a Boolean value that indicates whether
the receiver Is an instance of given class or an
iInstance of any class that inherits from that class.

- (BOOL)isMemberOfClass:(Class)aClass;

Returns a Boolean value that indicates whether
the receiver is an instance of a given class.

These are not the same!
ISKINdOfClass also works on subclass instances

isMemberOfClass only works on exact class
iInstances



Demo

More classes



Protocols

- (BOOL)conformsToProtocol: (Protocol *)aProtocol;

Returns a Boolean value that indicates whether the
receiver conforms to a given protocol.

A class is said to “conform to” a protocol if it
adopts the protocol or inherits from another class
that adopts it. Protocols are adopted by listing
them within angle brackets after the interface

declaration.

This does not mean that the class listens to the
protocols messages explicitly!



Messages

- (BOOL)respondsToSelector: (SEL)selector

Returns a Boolean value that indicates whether the receiving class
responds to a given selector.

If this returns YES, you can safely send the message to the object.
+ (BOOL)instancesRespondToSelector:(SEL)aSelector;

Returns a Boolean value that indicates whether instances of the receiver
are capable of responding to a given selector.

When you have a Class handy and not an instance of that class. Saves
you creating an instance.

Is smart enough to discover if the class actually implements the message!
- (id)performSelector:(SEL)selector

Sends a specified message to the receiver and returns the result of the
message.



Demo

protocols & messages



Dynamic messaging

So what actually happens when you call
[foo bar]?

when foo Implements bar, that bar get
executed. Instant happy.

out what when there's no bar
implementation?

1. try Lazy Method Resolution
try Fast forwarding

try Normal forwarding

> W

*kaboom™



Dynamic messaging

1. Lazy method resolutio
the runtime sends +reso

n
velnstanceMethod:

(or +resolveClassMethoc
to the class in question.

It that method returns

. for class methods)

YES, the message

send Is restarted under the assumption
that the appropriate method has now been

added.
2. Fast forwarding

3. Normal forwarding

4. *kaboom™



Dynamic messaging

1. Lazy method resolution

2. Fast forwarding
The instance recelving the message is sent -
forwarding TargetForSelector:, but only if it implements it.

If it implements this method and it returns something
other than nil or self, the whole message sending process
IS restarted with that return value as the new target.

forwards the message to another object

no Mmethod implementation is added

target object can use whatever method implementation
as it sees fit.

3. Normal forwarding

4. *kaboom™*



Dynamic messaging

1. Lazy method resolution

2. Fast forwarding

3. Normal forwarding
Two step process:

1. First the runtime will send
-instanceMethodSignatureForSelector: to see what kind
of argument and return types are present.

2. It a valid method signature is returned, the runtime
creates an NSInvocation describing the message being
sent

3. finally -forwardInvocation: is sent to the instance. The
instance should then use the NSInvocation on a target
object to execute the method.

4. *kaboom™*



w1

Dynamic messaging

. Lazy method resolution

Fast forwarding
Normal forwarding

*kaboom*
The runtime calls -doesNotRecognizeSelector:

on the Iinstance.

Default behavior is to throw an
NSInvalidArgumentException, but you could
override this if you’d want to

but! be careful -> errors will go
undetected!



Lazy method resolution

Resolves/creates a method at runtime. Allows a

class to create a method when it doesn't exist.

Override one (or both) of these:

+ (BOOL)resolveClassMethod: (SEL)sel;

given selector for a class method.

Dynamically provides an implementation for a

+ (BOOL)resolveInstanceMethod: (SEL)sel;

given selector for an instance metr

Dynamically provides an implemen

ation for a

od.



Lazy method resolution

SO how does this work”?
implement +resolvelnstanceMethod:
check the selector
provide an implementation
class_addMethod()
need a method IMP:
copy an existing method
use a function

make new method using a block

Same applies to +resolveClassMethod:

resolve happens the first time a method is not found (and only then if you return YES from the
resolver method)

if you don't add an implementation but return YES anyway the you'll get an
NSInvalidArgumentException.



Demo

lazy method resolution



Fast forwarding

You can provide an interface but have the actual
implementation be in another object.

forward messages from one object to another
for the user, it is as if the first object handles the call

the actual handling object is "hidden” from the user

So how does this work?
implement -forwarding TargetForSelector:
check the selector

provide an object that can handle the selector



Demo

fast forwarding



Normal forwarding

nave the object provide a method signature for the selector, so
the runtime knows what arguments and return type there should
De.,

then forward an NSInvocation on an object you choose.

basically the same as fast forwarding but more low level and a
bit more verbose

SO how does this work??
implement +instanceMethodSignatureForSelector:
check the selector
provide an NSMethodSignature™ that describes the selector

implement forwardlnvocation:



Demo

normal forwarding



Swizzling

Swizzling is exchanging the implementation of
one factor of the runtime with another factor.
n Objective-C, you can apply this on two
evels: method swizzling and class swizzling.

Method swizzling

Class swizzling

Dynamic class generation



Method swizzling

You need to have two methods with an
implementation

Can exchange the implementation of the
methods with each other

Not only in your own code, but you can
modify framework code too! (eg UlView, ...)



Demo

method swizzling



Class swizzling

No real swizzling...
Just change the class on an existing object

best used with subclasses or classes with
the same layout/interface

memory allocation is not changed when
changing classes

otherwise:



Demo

class swizzling



Dynamic class generation

(Generate a class at runtime

Provide methods and implementations as
you see fit

add new functionality

change existing functionality



Demo

dynamic class generation



For closing...

Generated properties

provide property storage in your own
backing (eg plist)

No iImplementations in code
generate them at runtime
only provide methods in interface

NoO compiler warnings



Demo

property generation



Warning-fixing

When providing dynamic implementations of selectors, the compiler will emit
warnings for the “unimplemented” messages.

Fix these by placing them in a category instead of in the @interface declaration

@interface AwesomeClass
@end

@interface AwesomeClass (Dynamic)

// look ma, no warning
- (void)withoutCodeButDynamicallyGenerated;

@end

For properties

declare a property as you normally would using @property syntax in your
@interface

specify @dynamic <propertyName> in you @implementation to make sure
the compiler doesn’t autosynthesize the property

or use the same technique as above



Opensourced examples

You can find the example projects use 1o
demo each aspect in my Githulb account:

nttps://qithub.com/Inferis/Objective-C-
Runtime



https://github.com/Inferis/Objective-C-Runtime

Useful References

Apple’s runtime documentation:

runtime reference: https://developer.apple.com/library/mac/
documentation/cocoa/reference/objcruntimeref/Reference/
reference.html

programming guide: https://developer.apple.com/library/mac/
documentation/cocoa/conceptual/objcruntimeguide/
objcruntimeguide.pdf

Mike Ash’s blog: http:// www.mikeash.com/pyblog

objective-c: http://www.mikeash.com/pyblog/?tag=0bjectiveC

friday Q&A: http://www.mikeash.com/pyblog/?tag=fridaygna

Jon Rentzsch swizzling helpers:

https://qithub.com/rentzsch/jrswizzle



https://developer.apple.com/library/mac/documentation/cocoa/reference/objcruntimeref/Reference/reference.html
https://developer.apple.com/library/mac/documentation/cocoa/conceptual/objcruntimeguide/objcruntimeguide.pdf
http://www.mikeash.com/pyblog
http://www.mikeash.com/pyblog/?tag=objectiveC
http://www.mikeash.com/pyblog/?tag=fridayqna
https://github.com/rentzsch/jrswizzle

Thanks for listening.

Questions? Contact me:

Twitter: @inferis
App.Net: @inferis

—-mall: tom@interfaceimplementation.be

vCard: http://inferis.org



mailto:tom@interfaceimplementation.be
http://inferis.org

