
Objective-C Runtime
in Practice

CocoaheadsBE - Kontich, 2013-12-03

Introduction

Tom Adriaenssen

I love...

‣ ... my wife
‣ ... my 4 kids
‣ ... to code
‣ ... to play a game of squash
‣ ... good beer

I open sourced...
... some code:

‣ IIViewDeckController: “An
implementation of the
sliding functionality found in
the Path 2.0 or Facebook
iOS apps.”

‣ IIDateExtensions

‣ IIPopoverStatusItem

See: http://github.com/inferis

http://github.com/inferis

I made...
... some apps:

Butane Drash
Hi, @10to1!

http://getbutane.com http://dra.sh

http://getbutane.com
http://getbutane.com

Agenda

Agenda

‣ RUNTIME WHUT?
‣ What is an object?
‣ In practice

RUNTIME

Runtime WHUT?
‣ obj-c runtime is "always present"
‣ You can't use Objective-c without the runtime.

‣ Works behind the scenes:
‣ most developers aren't even aware it is there

and that they’r using it
‣ puts the objective in Objective-C

‣ implemented as dynamic shared library
‣ loaded by default by the OS

Runtime WHUT?
‣ Supports the most important features of

the language
‣ object oriented
‣ messaging
‣ protocols
‣ dynamic typing
‣ forwarding

Foundation
‣ is a support framework
‣ included by default

‣ The Foundation framework defines a base layer of
Objective-C classes.
‣ a set of useful primitive object classes (NSObject,

NSProxy, …)
‣ introduces several paradigms that define functionality

not covered by the Objective-C language.
‣ reflection
‣ memory management
‣ archiving

C + Runtime = Obj-C
‣ The runtime is what makes objective-c.
‣ The runtime is the implementation of the

syntactic "objective" sugar on top of c
‣ You can write any cocoa program

using pure C, but it's hard and
verbose.

Demo
A pure C Objective-C app

In practice

‣ runtime.h overview
‣ Foundation.h, the “simple” stuff
‣ runtime.h, the “spicy” stuff

runtime.h
‣ #import <objc/runtime.h>

‣ a number of C functions to interact with the runtime
‣ Several “categories” of interactions

‣ objc_... interact with toplevel runtime (eg register a class)

‣ class_... interact with classes (eg make subclass)

‣ object_... interact with objects (eg get classname)

‣ method_... interact with methods (eg get the number of arguments)

‣ ivar_... interact with ivars (eg get the type of an ivar)

‣ property_... interact with properties (eg get the name of a property)

‣ protocol_... interact with protocols (eg get properties of a protocol)

‣ sel_... interact with selectors (eg register selector names)

‣ imp_... interact with method implementations (provide implementations
using blocks)

C? Yuk.

Foundation.h to the rescue

‣ The Foundation library provides an obj-c
interface to some of the runtime calls.
	 #include <Foundation/Foundation.h> 	

‣ Check your .pch file: it should be there
‣ iOS: directly
‣ OSX: via #include <Cocoa.h>.

Foundation.h to the rescue

‣ NSObject:
‣ -‐(BOOL)isKindOfClass:(Class)class;

‣ -‐(Class)class;

‣ Functions:
‣ NSString* NSStringFromClass(Class aClass);

‣ Class NSSelectorFromString(NSString* aSelectorName);

Dealing with classes
‣ + (Class)class;

‣ Returns self (the class object). Since this is a
class object, it returns the class itself.

‣ + (Class)superclass;

‣ Returns the class object for the receiver’s
superclass. Gets the parent class of a given
class.

‣ + (BOOL)isSubclassOfClass:(Class)aClass;

‣ Returns a Boolean value that indicates whether
the receiving class is a subclass of, or identical
to, a given class.

Demo
Classes

Dealing with classes
‣ -‐ (BOOL)isKindOfClass:(Class)aClass;

‣ Returns a Boolean value that indicates whether
the receiver is an instance of given class or an
instance of any class that inherits from that class.

‣ -‐ (BOOL)isMemberOfClass:(Class)aClass;

‣ Returns a Boolean value that indicates whether
the receiver is an instance of a given class.

‣ These are not the same!
‣ isKindOfClass also works on subclass instances
‣ isMemberOfClass only works on exact class

instances

Demo
More classes

Protocols
‣ -‐ (BOOL)conformsToProtocol:(Protocol *)aProtocol;

‣ Returns a Boolean value that indicates whether the
receiver conforms to a given protocol.

‣ A class is said to “conform to” a protocol if it
adopts the protocol or inherits from another class
that adopts it. Protocols are adopted by listing
them within angle brackets after the interface
declaration.
‣ This does not mean that the class listens to the

protocols messages explicitly!

Messages
‣ -‐ (BOOL)respondsToSelector:(SEL)selector

‣ Returns a Boolean value that indicates whether the receiving class
responds to a given selector.

‣ If this returns YES, you can safely send the message to the object.
‣ + (BOOL)instancesRespondToSelector:(SEL)aSelector;

‣ Returns a Boolean value that indicates whether instances of the receiver
are capable of responding to a given selector.

‣ When you have a Class handy and not an instance of that class. Saves
you creating an instance.

‣ Is smart enough to discover if the class actually implements the message!
‣ -‐ (id)performSelector:(SEL)selector

‣ Sends a specified message to the receiver and returns the result of the
message.

Demo
protocols & messages

Dynamic messaging
‣ So what actually happens when you call  

[foo bar]?
‣ when foo implements bar, that bar get

executed. Instant happy.
‣ but what when there's no bar

implementation?
1. try Lazy Method Resolution
2. try Fast forwarding
3. try Normal forwarding
4. *kaboom*

Dynamic messaging
1. Lazy method resolution 

the runtime sends +resolveInstanceMethod:
(or +resolveClassMethod: for class methods)
to the class in question.
‣ If that method returns YES, the message

send is restarted under the assumption
that the appropriate method has now been
added.

2. Fast forwarding

3. Normal forwarding

4. *kaboom*

Dynamic messaging
1. Lazy method resolution
2. Fast forwarding 

The instance receiving the message is sent -
forwardingTargetForSelector:, but only if it implements it.
‣ If it implements this method and it returns something

other than nil or self, the whole message sending process
is restarted with that return value as the new target.
‣ forwards the message to another object
‣ no method implementation is added
‣ target object can use whatever method implementation

as it sees fit.
3. Normal forwarding
4. *kaboom*

Dynamic messaging
1. Lazy method resolution
2. Fast forwarding

3. Normal forwarding 
Two step process:
1. First the runtime will send  

-instanceMethodSignatureForSelector: to see what kind
of argument and return types are present.

2. If a valid method signature is returned, the runtime
creates an NSInvocation describing the message being
sent

3. finally -forwardInvocation: is sent to the instance. The
instance should then use the NSInvocation on a target
object to execute the method.

4. *kaboom*

Dynamic messaging
1. Lazy method resolution
2. Fast forwarding

3. Normal forwarding

4. *kaboom* 
The runtime calls -doesNotRecognizeSelector:
on the instance.
‣ Default behavior is to throw an

NSInvalidArgumentException, but you could
override this if you’d want to
‣ but! be careful -> errors will go

undetected!

Lazy method resolution
‣ Resolves/creates a method at runtime. Allows a

class to create a method when it doesn't exist.
‣ Override one (or both) of these:
‣ + (BOOL)resolveClassMethod:(SEL)sel;

‣ Dynamically provides an implementation for a
given selector for a class method.

‣ + (BOOL)resolveInstanceMethod:(SEL)sel;

‣ Dynamically provides an implementation for a
given selector for an instance method.

Lazy method resolution
‣ So how does this work?

‣ implement +resolveInstanceMethod:
‣ check the selector
‣ provide an implementation

‣ class_addMethod()
‣ need a method IMP:

‣ copy an existing method
‣ use a function
‣ make new method using a block

!
‣ Same applies to +resolveClassMethod:
‣ resolve happens the first time a method is not found (and only then if you return YES from the

resolver method)
‣ if you don't add an implementation but return YES anyway the you'll get an

NSInvalidArgumentException.

Demo
lazy method resolution

Fast forwarding
‣ You can provide an interface but have the actual

implementation be in another object.
‣ forward messages from one object to another
‣ for the user, it is as if the first object handles the call
‣ the actual handling object is "hidden" from the user

!

‣ So how does this work?
‣ implement -forwardingTargetForSelector:
‣ check the selector
‣ provide an object that can handle the selector

Demo
fast forwarding

Normal forwarding
‣ have the object provide a method signature for the selector, so

the runtime knows what arguments and return type there should
be.
‣ then forward an NSInvocation on an object you choose.
‣ basically the same as fast forwarding but more low level and a

bit more verbose
‣ So how does this work?
‣ implement +instanceMethodSignatureForSelector:
‣ check the selector
‣ provide an NSMethodSignature* that describes the selector
‣ implement forwardInvocation:

Demo
normal forwarding

Swizzling
‣ Swizzling is exchanging the implementation of

one factor of the runtime with another factor.
In Objective-C, you can apply this on two
levels: method swizzling and class swizzling.
‣ Method swizzling
‣ Class swizzling
‣ Dynamic class generation

Method swizzling

‣ You need to have two methods with an
implementation

‣ Can exchange the implementation of the
methods with each other

‣ Not only in your own code, but you can
modify framework code too! (eg UIView, …)

Demo
method swizzling

Class swizzling
‣ No real swizzling…
‣ Just change the class on an existing object
‣ best used with subclasses or classes with

the same layout/interface
‣ memory allocation is not changed when

changing classes
‣ otherwise: NUKULAR EXCEPTION

Demo
class swizzling

Dynamic class generation

‣ Generate a class at runtime
‣ Provide methods and implementations as

you see fit
‣ add new functionality
‣ change existing functionality

Demo
dynamic class generation

For closing…	
‣ Generated properties
‣ provide property storage in your own

backing (eg plist)
‣ No implementations in code
‣ generate them at runtime
‣ only provide methods in interface
‣ no compiler warnings

Demo
property generation

Warning-fixing
‣ When providing dynamic implementations of selectors, the compiler will emit

warnings for the “unimplemented” messages.
‣ Fix these by placing them in a category instead of in the @interface declaration
!
!
!
!

‣ For properties
‣ declare a property as you normally would using @property syntax in your

@interface
‣ specify @dynamic <propertyName> in you @implementation to make sure

the compiler doesn’t autosynthesize the property
‣ or use the same technique as above

@interface AwesomeClass
@end !
@interface AwesomeClass (Dynamic) !
// look ma, no warning
-‐ (void)withoutCodeButDynamicallyGenerated; !
@end

Opensourced examples

‣ You can find the example projects use to
demo each aspect in my Github account:
‣ https://github.com/Inferis/Objective-C-

Runtime

https://github.com/Inferis/Objective-C-Runtime

Useful References
‣ Apple’s runtime documentation:
‣ runtime reference: https://developer.apple.com/library/mac/

documentation/cocoa/reference/objcruntimeref/Reference/
reference.html

‣ programming guide: https://developer.apple.com/library/mac/
documentation/cocoa/conceptual/objcruntimeguide/
objcruntimeguide.pdf

‣ Mike Ash’s blog: http://www.mikeash.com/pyblog
‣ objective-c: http://www.mikeash.com/pyblog/?tag=objectiveC
‣ friday Q&A: http://www.mikeash.com/pyblog/?tag=fridayqna

‣ Jon Rentzsch swizzling helpers:
‣ https://github.com/rentzsch/jrswizzle

https://developer.apple.com/library/mac/documentation/cocoa/reference/objcruntimeref/Reference/reference.html
https://developer.apple.com/library/mac/documentation/cocoa/conceptual/objcruntimeguide/objcruntimeguide.pdf
http://www.mikeash.com/pyblog
http://www.mikeash.com/pyblog/?tag=objectiveC
http://www.mikeash.com/pyblog/?tag=fridayqna
https://github.com/rentzsch/jrswizzle

Thanks for listening.

Twitter: @inferis
App.Net: @inferis
E-mail: tom@interfaceimplementation.be
vCard: http://inferis.org

Questions? Contact me:

mailto:tom@interfaceimplementation.be
http://inferis.org

