
1.

2.

08 Dependency Typings
Until now we've seen that our dependencies don't get typed automatically. In the previous sections we've seen a workaround in the form of installing the dependency into
the node_modules folder (using "npm install" or manually), but there are two problems with that:

Installing into the node_modules only works for npm dependencies. If the dependency comes straight from Github or a custom repository then it can't simply be
installed using "npm install"
Some dependencies (like Redux) do not come with their definition files (d.ts) either because they weren't created in TypeScript or because their deployment
process doesn't produce these definitions

To handle these cases there is another technique described below. Remember that this is only required for the IDE and standalone TypeScript compiler to recognise
these definitions. JSPM doesn't need them when compiling our files or bundling our app.

The Typings Project

The Typing project was original created in the name " " and its purpose was to solve the exact problems listed above, especially before Definitely Typed TypeScript started
. It contains a huge registry for known libraries and includes a tool for creating d.ts for unknown or private libraries. The latest version introducessupporting npm packages

significant breaking changes, thus changing its name and a new repository that is now called (). Read here for details aboutTypings https://github.com/typings/typings
differences between TSD and Typings: .https://github.com/typings/typings/issues/72

We will use the Typings tool to solve the problems listed above and find a way to do that in a reproducible manner.

Install Typings globally using npm:

npm install typings -g

Using the Typings Registry

We have two known libraries that don't have a d.ts. These are and . The original redux project () is written in JavaScriptredux redux-thunk https://github.com/rackt/redux/
and so it redux-thunk ().https://github.com/gaearon/redux-thunk

Fortunately, both of these libraries exist on the DefinitelyTyped registry:

https://github.com/DefinitelyTyped/DefinitelyTyped/tree/master/redux
https://github.com/DefinitelyTyped/DefinitelyTyped/tree/master/redux-thunk

Install these library definitions using the following command:

typings install redux --ambient
typings install redux-thunk --ambient

You should now have a new folder in your project called "typings". Inside you'll find two versions of the definitions, for both libraries, one for the browser and one for the
server (using node.js):

http://definitelytyped.org/
https://github.com/Microsoft/TypeScript/wiki/Typings-for-npm-packages
https://github.com/Microsoft/TypeScript/wiki/Typings-for-npm-packages
https://github.com/typings/typings
https://github.com/typings/typings
https://github.com/typings/typings/issues/72
https://github.com/rackt/redux/
https://github.com/gaearon/redux-thunk
https://github.com/DefinitelyTyped/DefinitelyTyped/tree/master/redux
https://github.com/DefinitelyTyped/DefinitelyTyped/tree/master/redux-thunk

When compiling the project using tsc we need to tell it to ignore the "main" typings, otherwise TypeScript would complain about duplicate typings. Do that by adding
"main" to our tsconfig.json exclusion list:

"exclude": [
 "jspm_packages",
 "node_modules",
 "dist",
 "typings/main.d.ts",
 "typings/main"
]

Now, you can look at your TypeScript files that use redux or redux-think and your IDE should be happier.

Installing Typings for Custom Dependencies

Please avoid committing these to our repository. Make sure you add the "typings" folder to your .gitignore file.

tsconfig.json

The other dependency we have is on . This is a little library created by Infomedia and published to npm: angular2-redux https://www.npmjs.com/package/angular-2-redux
. Even though it's a library that comes with d.ts files it's not recognised because it's in a custom location (under jspm/npm/...). Even though we can install it with npm, let's
learn how to include its typings as part of the set of typings we install anyway for other dependencies.

When installing a library in a custom location inside our project we need to tell typings where to find it and how to name it:

typings install file:jspm_packages/npm/angular2-redux@1.0.8/dist/index.d.ts --name angular2-redux

Notice that the version is important here as this is the actual directory where this library resides in your JSPM folder dependency tree.

Let's also do that for the angular2-simple-list:

typings install file:jspm_packages/github/InfomediaLtd/angular2-simple-list@master/app/index.d.ts
--name angular2-simple-list

The typings directory should now have definitions for all the above dependencies:

Configurable Typings Installation and Dealing with Version Changes

This method is not ideal because it required an extra step when dependencies change. It also requires knowing which dependencies need typings and how to install
them.

The Typings tool allows creation of a typings.json file with all the information required for installing typings. You can drop a --save at the end of the "typings install" and it
will then add the required installation information to this file. Then, when running "typings install" it will look up that info and perform the appropriate installation steps for
all dependencies specified in there. This solves the problem of knowing which dependencies need typings and how to install then - it can be done once per dependency
as we add it to JSPM.

Delete the typings folder and run the following commands one by one:

https://www.npmjs.com/package/angular-2-redux

typings install redux --ambient --save
typings install redux-thunk --ambient --save
typings install file:jspm_packages/npm/angular2-redux@1.0.8/dist/index.d.ts --name angular2-redux
--save
typings install file:jspm_packages/github/InfomediaLtd/angular2-simple-list@master/app/index.d.ts
--name angular2-simple-list --save

You should now see a typings.json file in the top directory of your project:

{
 "devDependencies": {
 "angular2-redux": "file:jspm_packages/npm/angular2-redux@1.0.8/dist/index.d.ts",
 "angular2-simple-list":
"file:jspm_packages/github/InfomediaLtd/angular2-simple-list@master/app/index.d.ts"
 },
 "ambientDevDependencies": {
 "redux": "github:DefinitelyTyped/DefinitelyTyped/redux/redux.d.ts",
 "redux-thunk": "github:DefinitelyTyped/DefinitelyTyped/redux-thunk/redux-thunk.d.ts"
 }
}

Now, delete the typings folder and run "typings install". This should recreate the folder with the expected d.ts files.

Dealing with Version Changes

Another problem with this approach is the versioning of dependencies. If we run "jspm update" and any dependency version changes then the above json file is not
correct anymore. The folder specified in there has the old version and thus the typings installation will fail.

We can solve this with an automated script that will generate the typings.json file from a configuration. Here's an example of how this could be done.

Add the following to your package.json file:

"typingsDependencies": {
 "registry": [
 "redux",
 "redux-thunk"
],
 "file": [
 "jspm_packages/npm/angular2-redux@VERSION/dist/index.d.ts",
 "jspm_packages/github/InfomediaLtd/angular2-simple-list@VERSION/app/index.d.ts"
]
},

This is a custom section that we create for ourselves to know which dependencies need typings and how to retrieve them. The "VERSION" in there should be substituted

typings.json

package.json

with the version we have at the time of installation.

Now, create this script file:

var fs = require("fs");
var typingsDependencies = JSON.parse(fs.readFileSync("package.json")).typingsDependencies;
var result = {"devDependencies": {},"ambientDevDependencies": {}};
// generate dt dependencies
typingsDependencies && (typingsDependencies.registry||[]).forEach(value => {
 result.ambientDevDependencies[value] = "github:DefinitelyTyped/DefinitelyTyped/" + value + "/" +
value + ".d.ts";
});
// generate local d.ts dependencies
typingsDependencies && (typingsDependencies.file||[]).forEach((path) => {
 var dependencyName = path.replace(/@VERSION.*/, "");
 var parentPath = dependencyName.replace(/[^\/]*$/, "");
 var namePrefix = dependencyName.replace(parentPath,"");
 var matchingFolders = fs.readdirSync(parentPath)
 .filter(name => name.startsWith(namePrefix+"@"))
 .filter(name => fs.lstatSync(parentPath + "/" + name).isDirectory());
 if (matchingFolders.length > 0) {
 result.devDependencies[namePrefix] = "file:" + path.replace(/VERSION/,
matchingFolders[0].replace(/.*@/,""));
 } else {
 console.log("Couldn't find a single match for '" + path + "' in " + parentPath);
 }
});
fs.writeFile("typings.json", JSON.stringify(result, null, 4), err => console.log(err||"Created
typings.json"));

You can test it out by running it:

node typings.js

This should override the typings.json with a new content based on the dependencies added to our package.json and the appropriate versions from the jspm folders. If no
versions were changed then it should be the same as the file created manually above.

The "npm run" environment is a powerful tool for automating simple tasks and make them cross compatible:

typings.js

You can automate the creation of the file with the typings installation by adding some scripts to our package.json:

"scripts": {
 "postinstall": "jspm install && npm run typings",
 "typings": "node typings.js && rm -rf typings && typings install"
},

This adds two scripts you can run:

"npm run typings": This will run the script to create typings.json, delete the typings folder and then run the typings installation
"npm install": after installing all npm dependencies it will run the "postinstall" script which also adds the jspm dependencies and executes the "typings" script to
set up the additional typings

npm install

Having this process in place means we don't need to check in the typings.json or worry about versioning. Every time we want to ensure all dependencies are correct and
their typings versions are installed we would run the above script.

Summary

This section was all about workarounds that hopefully will be resolved soon in the next TypeScript version. These workaround are required only for your IDE to recognise
the types and provide the important IntelliSense that aids during development.

It also introduces reproducible dependency installation in the form of npm scripting, which is very important for automating tasks and keeping everyone with the same
development workflow.

package.json

	08 Dependency Typings

