Skip to content
NumPy-based Python interface to Intel (R) MKL FFT functionality
Branch: master
Clone or download
Type Name Latest commit message Commit time
Failed to load latest commit information.
conda-recipe attempt to add travis CI Nov 28, 2018
mkl_fft releasing mkl_fft 1.0.12 Apr 16, 2019
LICENSE.txt renaming .travis.yaml, adding build status to README Nov 28, 2018 Consolidated version spec into one file Jul 31, 2018

mkl_fft -- a NumPy-based Python interface to Intel (R) MKL FFT functionality

Build Status

mkl_fft started as a part of Intel (R) Distribution for Python* optimizations to NumPy, and is now being released as a stand-alone package. It can be installed into conda environment using

   conda install -c intel mkl_fft

Since MKL FFT supports performing discrete Fourier transforms over non-contiguously laid out arrays, MKL can be directly used on any well-behaved floating point array with no internal overlaps for both in-place and not in-place transforms of arrays in single and double floating point precision.

This eliminates the need to copy input array contiguously into an intermediate buffer.

mkl_fft directly supports N-dimensional Fourier transforms.

More details can be found in SciPy 2017 conference proceedings:

It implements the following functions:

Complex transforms, similar to those in scipy.fftpack:

fft(x, n=None, axis=-1, overwrite_x=False)

ifft(x, n=None, axis=-1, overwrite_x=False)

fft2(x, shape=None, axes=(-2,-1), overwrite_x=False)

ifft2(x, shape=None, axes=(-2,-1), overwrite_x=False)

fftn(x, n=None, axes=None, overwrite_x=False)

ifftn(x, n=None, axes=None, overwrite_x=False)

Real transforms

rfft(x, n=None, axis=-1, overwrite_x=False) - real 1D Fourier transform, like scipy.fftpack.rfft

rfft_numpy(x, n=None, axis=-1) - real 1D Fourier transform, like numpy.fft.rfft

rfft2_numpy(x, s=None, axes=(-2,-1)) - real 2D Fourier transform, like numpy.fft.rfft2

rfftn_numpy(x, s=None, axes=None) - real 2D Fourier transform, like numpy.fft.rfftn

... and similar irfft* functions.

The package also provides mkl_fft._numpy_fft and mkl_fft._scipy_fft interfaces which provide drop-in replacements for equivalent functions in NumPy and SciPy respectively.

To build mkl_fft from sources on Linux:

  • install a recent version of MKL, if necessary;
  • execute source /path/to/mklroot/bin/ intel64 ;
  • execute pip install .
You can’t perform that action at this time.