diff --git a/report_generator/report_generator.py b/report_generator/report_generator.py index 0bf441517..381694f52 100755 --- a/report_generator/report_generator.py +++ b/report_generator/report_generator.py @@ -176,7 +176,7 @@ def create_list(res_entry, props_list): stages_splitter = { 'training': ['training', 'computation'], - 'inference': ['prediction', 'transformation', 'search'] + 'inference': ['prediction', 'transformation', 'search', 'predict_proba'] } for stage_key in stages_splitter.keys(): diff --git a/sklearn_bench/svm.py b/sklearn_bench/svm.py index 4fea1e025..8ca0907e2 100644 --- a/sklearn_bench/svm.py +++ b/sklearn_bench/svm.py @@ -24,6 +24,7 @@ def main(): from sklearn.svm import SVC X_train, X_test, y_train, y_test = bench.load_data(params) + y_train = np.asfortranarray(y_train).ravel() if params.gamma is None: params.gamma = 1.0 / X_train.shape[1] @@ -46,7 +47,7 @@ def main(): def metric_call(x, y): return bench.log_loss(x, y) clf_predict = clf.predict_proba else: - state_predict = 'predict' + state_predict = 'prediction' accuracy_type = 'accuracy[%]' def metric_call(x, y): return bench.accuracy_score(x, y) clf_predict = clf.predict