Installation in Linux:

https://docs.opencv.org/3.4.1/d7/d9f/tutorial_linux_install.html

The following steps have been tested for Ubuntu 10.04 but should work with other distros as well.

Required Packages

- GCC 4.4.x or later
- CMake 2.8.7 or higher
- Git
- GTK+2.x or higher, including headers (libgtk2.0-dev)
- pkg-config
- Python 2.6 or later and Numpy 1.5 or later with developer packages (python-dev, python-numpy)
- ffmpeg or libav development packages: libavcodec-dev, libavformat-dev, libswscale-dev
- [optional] libtbb2 libtbb-dev
- [optional] libdc1394 2.x
- [optional] libjpeg-dev, libpng-dev, libtiff-dev, libjasper-dev, libdc1394-22-dev
- [optional] CUDA Toolkit 6.5 or higher

The packages can be installed using a terminal and the following commands or by using Synaptic Manager:

[compiler] sudo apt-get install build-essential

[required] sudo apt-get install cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev

[optional] sudo apt-get install python-dev python-numpy libtbb2 libtbb-dev libjpeg-dev libpng-dev libtiff-dev libjasper-dev libdc1394-22-dev

Getting OpenCV Source Code

You can use the latest stable OpenCV version or you can grab the latest snapshot from our <u>Git</u> <u>repository</u>.

Getting the Latest Stable OpenCV Version

- Go to our <u>downloads page</u>.
- Download the source archive and unpack it.

Getting the Cutting-edge OpenCV from the Git Repository

Launch Git client and clone <u>OpenCV repository</u>. If you need modules from <u>OpenCV contrib</u> repository then clone it as well.

For example

cd ~/<my_working_directory> git clone https://github.com/opencv/opencv.git git clone https://github.com/opencv/opencv_contrib.git

Building OpenCV from Source Using CMake

- 1. Create a temporary directory, which we denote as <cmake_build_dir>, where you want to put the generated Makefiles, project files as well the object files and output binaries and enter there.
 - For example
 - i. cd ~/opencv
 - ii. mkdir build
 - iii. cd build
- 2. Configuring. Run cmake [<some optional parameters>] <path to the OpenCV source directory>
 - For example
 - i. cmake -D CMAKE_BUILD_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local ..
 - or cmake-gui
 - i. set full path to OpenCV source code, e.g. /home/user/opencv
 - ii. set full path to <cmake_build_dir>, e.g. /home/user/opencv/build
 - iii. set optional parameters
 - iv. run: "Configure"
 - v. run: "Generate"
 - \circ Notecd
 - i. Use cmake -DCMAKE_BUILD_TYPE=Release
 - -DCMAKE_INSTALL_PREFIX=/usr/local .. (without spaces after -D if the above example doesn't work.)
- 3. Description of some parameters
 - build type: CMAKE_BUILD_TYPE=Release\Debug
 - to build with modules from opencv_contrib set
 - OPENCV_EXTRA_MODULES_PATH to contrib/modules/>
 - set BUILD_DOCS for building documents
 - set BUILD_EXAMPLES to build all examples
- 4. [optional] Building python. Set the following python parameters:
 - PYTHON2(3)_EXECUTABLE = <path to python>
 - o PYTHON_INCLUDE_DIR = /usr/include/python<version>
 - PYTHON_INCLUDE_DIR2 = /usr/include/x86_64-linux-gnu/python<version>
 - PYTHON_LIBRARY = /usr/lib/x86_64-linux-gnu/libpython<version>.so
 - PYTHON2(3)_NUMPY_INCLUDE_DIRS =
 - /usr/lib/python<version>/dist-packages/numpy/core/include/
- 5. [optional] Building java.

- Unset parameter: BUILD_SHARED_LIBS
- It is useful also to unset BUILD_EXAMPLES, BUILD_TESTS, BUILD_PERF_TESTS - as they all will be statically linked with OpenCV and can take a lot of memory.
- 6. Build. From build directory execute *make*, it is recommended to do this in several threads
 - For example
 - i. make -j7 # runs 7 jobs in parallel
- [optional] Building documents. Enter <cmake_build_dir/doc/> and run make with target "doxygen"
 - **PERSONAL SIDE NOTE*** by Josh Sullivan
 - i. In opencv/build -> mkdir doxygen
 - ii. git clone https://github.com/doxygen/doxygen.git
 - cd doxygen mkdir build
 - cd build
 - cmake -G "Unix Makefiles" ..
 - make
 - make install
 - ** END SIDE NOTE...CONTINUING WITH TUTORIAL**
 - For example
 - i. cd ~/opencv/build/doxygen
 - **side note ** The new directory is doxygen if you followed my side note. Otherwise the tutorial says cd ~/opencv/build/doc
 - make -j7 doxygen
- 8. To install libraries, execute the following command from build directory
 - sudo make install
- 9. [optional] Running tests
 - Get the required test data from <u>OpenCV extra repository</u>.
 - For example
 - i. git clone https://github.com/opencv/opencv_extra.git
 - 1. set OPENCV_TEST_DATA_PATH environment variable to <path to opencv_extra/testdata>.
 - 2. execute tests from build directory.
 - For example
 - i. <cmake_build_dir>/bin/opencv_test_core

Note

If the size of the created library is a critical issue (like in case of an Android build) you can use the install/strip command to get the smallest size possible. The *stripped* version appears to be twice as small. However, we do not recommend using this unless those extra megabytes do really matter.