SpaceWorks

100-Person Mars Transfer Vehicle using Torpor-Inducing Habitats

66th International Astronautical Congress, Jerusalem, Israel 13 October 2015

Mark Schaffer

Senior Aerospace Engineer mark.schaffer@sei.aero | +1.770.379.8013

John Bradford, Ph.D.

President and COO, SpaceWorks Enterprises, Inc. john.bradford@sei.aero | +1.770.379.8007

> Doug Talk, M.D. Medical Advisor doug.talk@sei.aero | +1.770.379.8000

Contents

- 1. Introduction to concept, definitions, and advantages
- 2. Medical perspective and approach
- 3. Engineering perspective and approach
- 4. Conclusions

Introduction

Motivation

- True permanent settlement on Mars will require on the order of 100 settlers
 - Historical perspective: first European settlements in America started with ~100 settlers each
 - Self-sustainability requires for sufficiently large gene and donor pool (blood, organ, tissue supply)
- Current engineering solutions for near-term exploration missions do not scale well to long-term settlement missions
- Using in-space habitats such as NASA DRA 5.0 TransHab would require 17 habitat modules, or approximately 700 t total launch mass, to transport crew of 100 to Mars

To enable settlement-class missions, <u>we need a radical, out-</u> <u>of-the-box approach</u> to transporting human crew.

Proposal

For deep space transit from Earth to Mars, place passengers in a stasis-like Torpor state by leveraging evolving medical advances in Therapeutic Hypothermia and Total Parenteral Nutrition.

TorporHibernation state characterized by decreased physiological
activity and reduced metabolic rates

TherapeuticMedical treatment that lowers a patient's body temperature (toHypothermia (TH)32-34°C / 89-93°F) in order to induce torpor

Total ParenteralMedical treatment to feed a patient intravenously with nutritionalNutrition (TPN)fluids for extended periods of time

Crew / PassengersFor 100-person mission, 96 passengers are placed in torpor state
during transit to Mars, with an active crew of 4 serving as
caretakers

Passengers are unconscious and stationary in habitat

- Reduces total pressurized volume requirement for habitation and living quarters
- Eliminates need for many ancillary crew accommodations (e.g. food galley, cooking and eating supplies, exercise equipment, entertainment, etc.)
- Allows implementation of rotation-induced artificial gravity within a relatively short rotation radius

Passengers have reduced metabolic rates in torpor state

- 50% to 70% reduction achievable with modest cooling
- Reduces amount of consumable food, water, and oxygen required
- Reduces burden on environmental control and life support systems

Medical Advantages

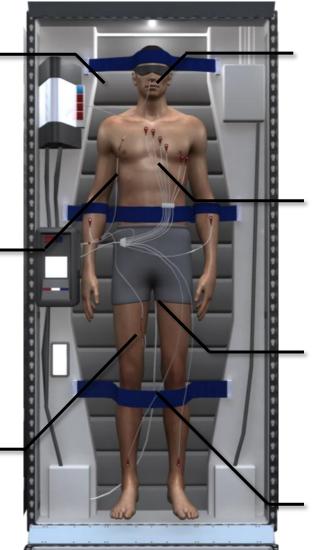
- Bone demineralization and elevated intracranial pressure (ICP) can be minimized with implementation of artificial gravity
 - Recent studies have shown that TH itself can reduce elevated ICP
- Muscle atrophy can be addressed with combination of artificial gravity and application of Neuromuscular Electrical Stimulation (NMES)
- Passengers are stationary, so radiation exposure from Galactic Cosmic Rays (GCR) and Solar Particle Events (SPE) can be minimized by:
 - Design layout of habitat subsystems and consumables to maximize radiation absorption
 - Addition of dedicated radiation shielding materials to improve coverage as needed
- Passengers are unconscious during transit, avoiding psycho-social challenges of longterm confinement and isolation from Earth

Medical Perspective

TH and TPN are both common and well-understood medical procedures.

- Human patients have already been placed in a continuous torpor state using TH for periods up to 14 days, a limit due only to lack of medical rationale for longer periods
- Human patients have undergone multiple TH induction cycles with no negative or detrimental effects reported in either the near-term or long-term
- Human patients regularly receive nutritional sustenance from TPN for extended durations exceeding 1 year

Conversations conducted with multiple medical practitioners, researchers, and experts have confirmed the medical plausibility of this concept and approach for long duration, deep space application.



Implementation of Torpor

Passive **thermal pads** for cooling and rewarming (e.g. KOALA System [™])

TPN administered via tunneled central venous catheter in — chest

Alternate tunneled central venous catheter for **TPN** administration in inner thigh

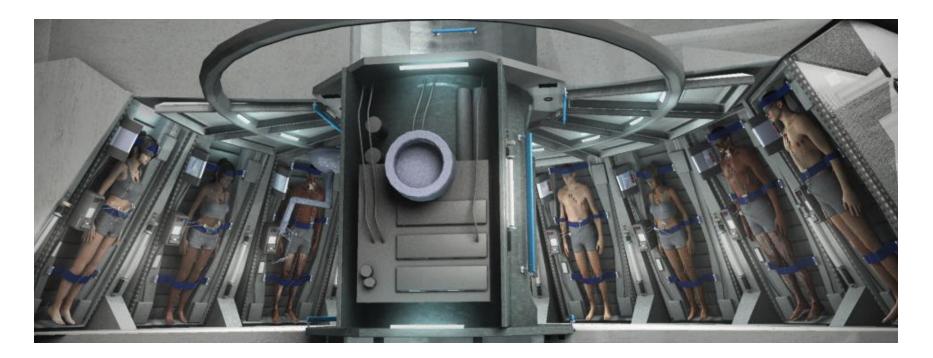
Non-invasive **intranasal cooling** with inert coolant (e.g. RhinoChill System [™])

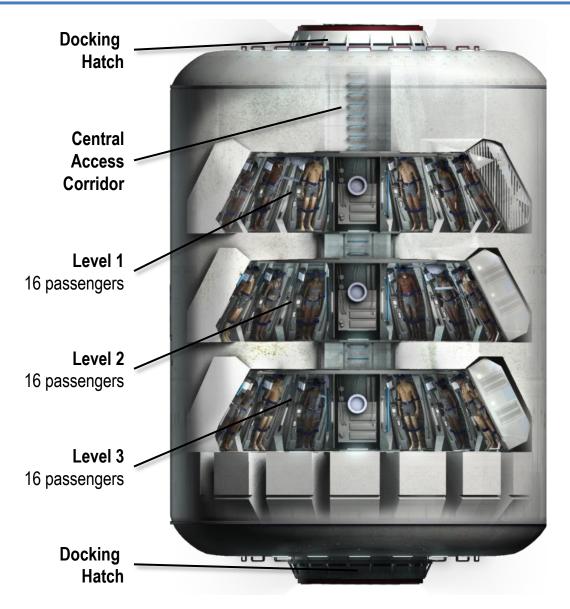
12-lead ECG sensors across body

Urine collection assembly and drain line

Light restraints for maintaining position during zero-G flight

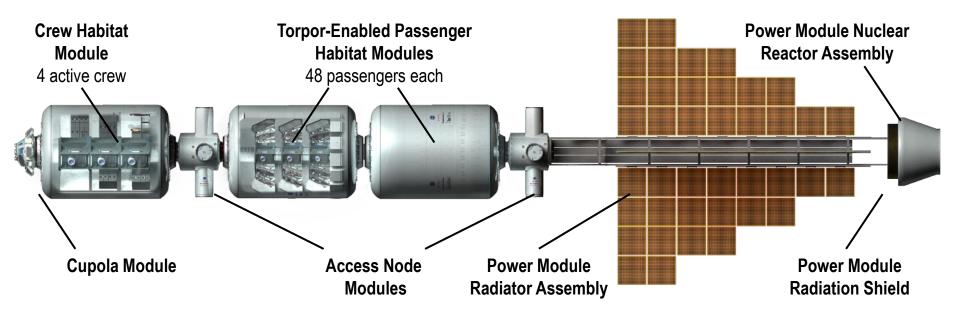
Human model assets credit: http://tf3dm.com/ and http://www.turbosquid.com/


Engineering Perspective

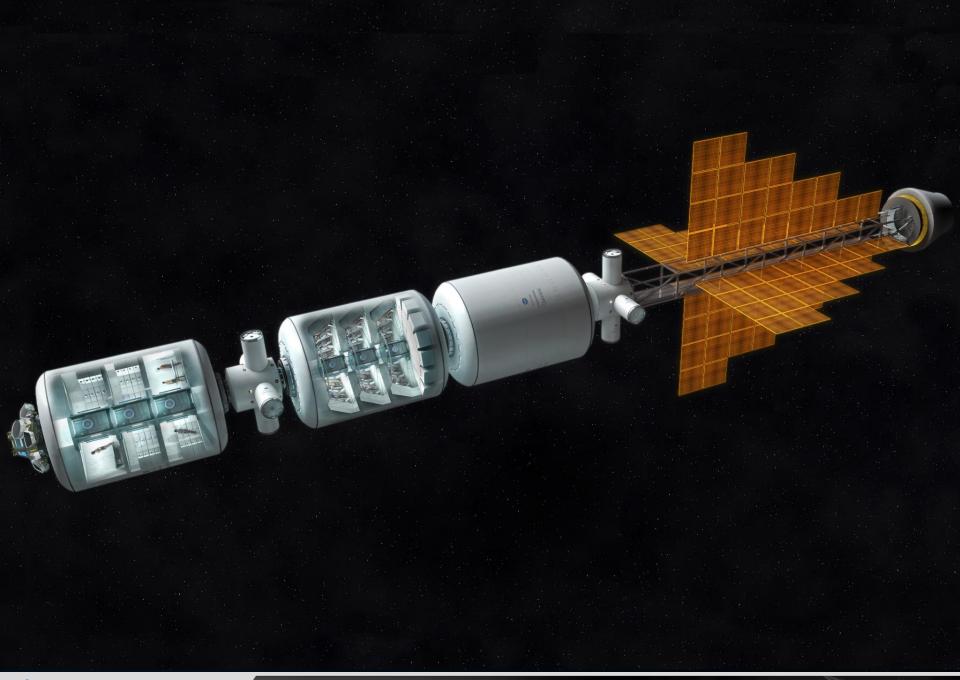

Habitat Interior Design

- 3 levels per module, each with 16 passengers
- Artificial gravity induced by rotation, acceleration field simulates lying down with head slightly raised
- Two robotic manipulator arms on each level to manage passenger lines, leads, and restraints

Artificial Gravity				
Analogy	Earth Gs	Rotation		
Moon	0.16	7.1 rpm		
Mars	0.38	11.5 rpm		
Earth	1.00	17.6 rpm		


Torpor-Enabled Passenger Habitat Module

Summary Metrics				
Passengers	48			
Empty Mass	44 t			
Gross Mass	71 t			
Length	10.0 m			
Diameter	8.5 m			
Habitable Volume	250 m ³			
Power Required	100 kWe			


Assembled Mars Transfer Habitat

Element	Mass	Power
Crew Habitat Module	23 t	27 kWe
Torpor Passenger Habitat Module 1	71 t	101 kWe
Torpor Passenger Habitat Module 2	71 t	101 kWe
Access Nodes & Cupola	11 t	3 kWe
Power Generation Module	19 t	15 kWe
Total	196 t	297 kWe*

* Total power includes 20% margin. Mass margins are carried on all dry masses and included in individual element masses.

Conclusions

Conclusions

- A torpor-enabled habitat solution also shows a number of benefits with respect to the medical challenges of human spaceflight
- Though current 14-day TH durations are significantly short of required 6+ month stasis periods, we believe that with continued advancements we can achieve these extended torpor periods
- Mars Transfer Habitat has a total mass of 200 t, a significant improvement in mass when compared to scaling current architectures for human exploration of Mars
- Overall, the application of long-duration torpor for humans to space exploration missions appears to be both medically and technically feasible

We believe human torpor is an <u>enabling technology</u> to support the human settlement of Mars.

SPACEWORKS ENTERPRISES, INC. (SEI) | www.sei.aero

Mark Schaffer | mark.schaffer@sei.aero | +1.770.379.8013 John Bradford, Ph.D. | john.bradford@sei.aero | +1.770.379.8007 Doug Talk, M.D. | doug.talk@sei.aero | +1.770.379.8000

International Astronautical Congress IAC-15-A5.2.12

SPACE IS GO

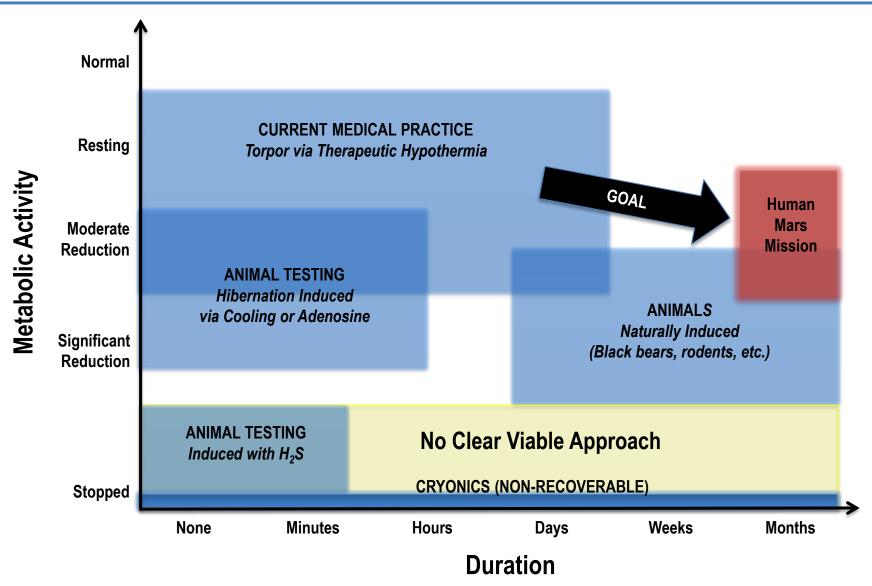
SpaceWorks Enterprises, Inc.

SPACEWORKS ENTERPRISES, INC. (SEI) | www.sei.aero | info@sei.aero

1040 Crown Pointe Parkway, Suite 950 | Atlanta, GA 30338 USA | 770.379.8000

International Astronautical Congress IAC-15-A5.2.12

Appendix

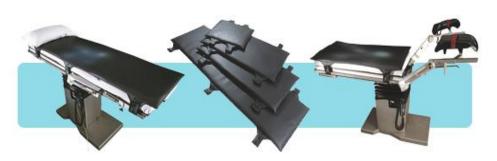


Going Forward

- New proposals being submitted to start animal testing
 - Number of parallel experiments that can be conducted
- Evaluating nearer-term terrestrial applications for technology
 - Featured speaker for workshop at West Point Military Academy last month
 - Support for war-fighter, assist with organ transplantation, etc.
- Examining applicability to other destinations and missions in solar system beyond Mars
- Medical approaches for how achieve this continues to advance
 - TH is still our preferred approach and most readily available technology to leverage
 - ESA is now in some very early research using alternate approach

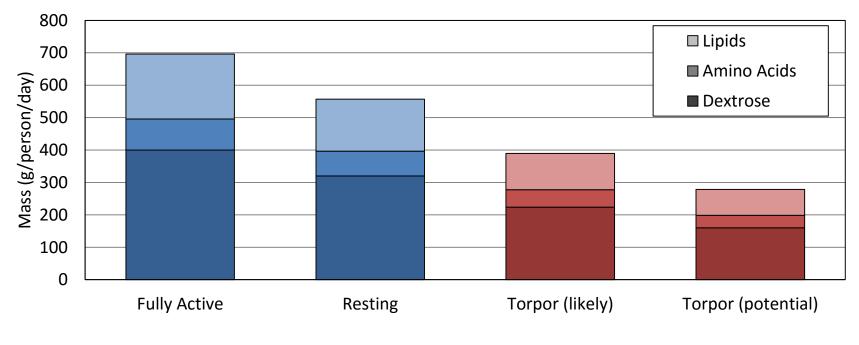
Metabolic Reduction Knowledge Spectrum

International Astronautical Congress IAC-15-A5.2.12


Body Thermal Management

Incorporate two mechanisms for thermal management of crew. Both are low mass, low power, and easily automated.

- Non-invasive intranasal cooling with inert coolant (e.g. RhinoChill System [™])
- Passive thermal pads for cooling and rewarming
 (e.g. KOALA System ™)

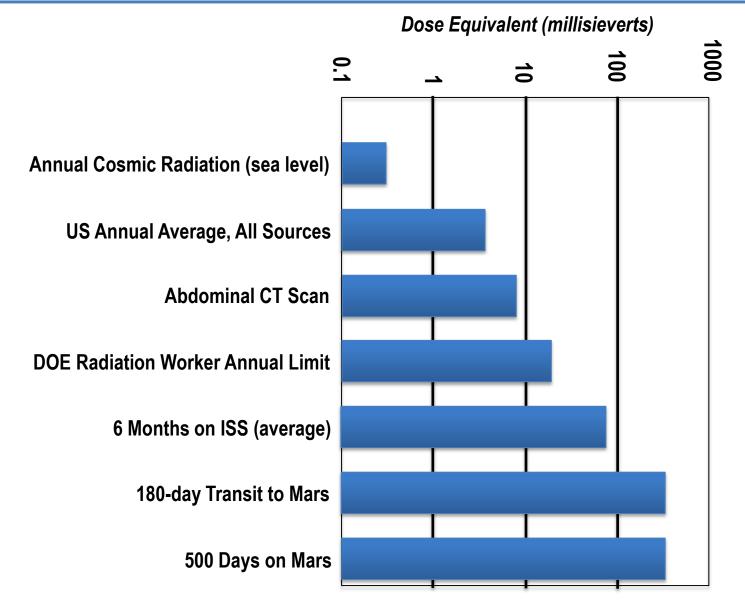


	Cooling	Rewarming
Target Temperature	32° to 34° C (89° to 93° F)	36° to 37° C (97° to 98° F)
Rate of Change	0.5° C (1° F) per hour	0.5° to 2° C (1° to 4° F) per hour
Time Required	6 hours	2 to 8 hours

Nutritional Management

- TPN is feeding a person intravenously by fluids, bypassing the usual process of eating and digestion
- Mixture containing dextrose, amino acids, electrolytes, lipids, vitamins, and trace elements contains all essential nutrients for human body to function

TPN Dosage Rate vs. Activity Level


Muscle Atrophy and Bone Loss

- Average bone loss rate on Russian Mir Space
 Station was measured to be 1-2% per month
- During Mars mission, crew members could lose up to 40% of muscle strength <u>even with exercise</u>
- A 30-50 year old crew member could have the strength of an 80 year old (Space.com, 2010)

Radiation Exposure

Increased Intracranial Pressure (ICP)

- NASA's VIIP Project looking at impact of longterm microgravity on eye
- First time examined on ISS
- Numerous astronauts have reported persistent vision issues after mission
- First completed case study results in 2015 indicated TH reduced elevated ICP

Risk Rating		
ISS-12	Partially Controlled	
Lunar	Partially Controlled	
Deep Space Journey	Uncontrolled	
Planetary	Uncontrolled	

"if left untreated, could lead to deleterious health effects" - NASA Tech Roadmap

Psychological Challenges

- NASA HI-SEAS IV mission
- Year-long Mars analog mission
- Crew of 6 in habitat on Mauna Loa, Hawaii
- Longest HI-SEAS mission to date

