Skip to content
Permalink
Branch: master
Find file Copy path
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
722 lines (689 sloc) 262 KB

Main compilations

ISRaD has been built based on two main compilations:

  • Mathieu, J. A., Hatté, C., Balesdent, J., & Parent, É. (2015). Deep soil carbon dynamics are driven more by soil type than by climate: a worldwide meta-analysis of radiocarbon profiles. Global Change Biology, 21(11), 4278–4292. doi:10.1111/gcb.13012
  • He, Y., Trumbore, S. E., Torn, M. S., Harden, J. W., Vaughn, L. J. S., Allison, S. D., & Randerson, J. T. (2016). Radiocarbon constraints imply reduced carbon uptake by soils during the 21st century. Science, 353(6306), 1419–1424. doi:10.1126/science.aad4273

Studies within ISRaD

Currently, there are 304 entries (unique DOIs) in ISRaD, which are from the following publications:

  • Abbott, M. B., & Stafford, T. W. (1996). Radiocarbon Geochemistry of Modern and Ancient Arctic Lake Systems, Baffin Island, Canada. Quaternary Research, 45(3), 300–311. doi:10.1006/qres.1996.0031
  • Agnelli, A., Trumbore, S. E., Corti, G., & Ugolini, F. C. (2002). The dynamics of organic matter in rock fragments in soil investigated by 14C dating and measurements of 13C. European Journal of Soil Science, 53(1), 147–159. doi:10.1046/j.1365-2389.2002.00432.x
  • Aiken, G. R., Spencer, R. G. M., Striegl, R. G., Schuster, P. F., & Raymond, P. A. (2014). Influences of glacier melt and permafrost thaw on the age of dissolved organic carbon in the Yukon River basin. Global Biogeochemical Cycles, 28(5), 525–537. doi:10.1002/2013gb004764
  • Amon, R. M. W., & Meon, B. (2004). The biogeochemistry of dissolved organic matter and nutrients in two large Arctic estuaries and potential implications for our understanding of the Arctic Ocean system. Marine Chemistry, 92(1-4), 311–330. doi:10.1016/j.marchem.2004.06.034
  • Andersson, R. A., Kuhry, P., Meyers, P., Zebühr, Y., Crill, P., & Mörth, M. (2011). Impacts of paleohydrological changes on n-alkane biomarker compositions of a Holocene peat sequence in the eastern European Russian Arctic. Organic Geochemistry, 42(9), 1065–1075. doi:10.1016/j.orggeochem.2011.06.020
  • Andreev, A. A., Klimanov, V. A., & Sulerzhitsky, L. D. (1997). Younger Dryas pollen records from central and southern Yakutia. Quaternary International, 41-42, 111–117. doi:10.1016/s1040-6182(96)00042-0
  • Andreev, A. ., Klimanov, V. ., & Sulerzhitsky, L. . (2001). Vegetation and climate history of the Yana River lowland, Russia, during the last 6400yr. Quaternary Science Reviews, 20(1-3), 259–266. doi:10.1016/s0277-3791(00)00118-9
  • Andreev, A. A., Tarasov, P. E., Klimanov, V. A., Melles, M., Lisitsyna, O. M., & Hubberten, H.-W. (2004). Vegetation and climate changes around the Lama Lake, Taymyr Peninsula, Russia during the Late Pleistocene and Holocene. Quaternary International, 122(1), 69–84. doi:10.1016/j.quaint.2004.01.032
  • Aravena, R., Warner, B. G., Charman, D. J., Belyea, L. R., Mathur, S. P., & Dinel, H. (1993). Carbon Isotopic Composition of Deep Carbon Gases in an Ombrogenous Peatland, Northwestern Ontario, Canada. Radiocarbon, 35(2), 271–276. doi:10.1017/s0033822200064948
  • Arlen-Pouliot, Y., & Bhiry, N. (2005). Palaeoecology of a palsa and a filled thermokarst pond in a permafrost peatland, subarctic Québec, Canada. The Holocene, 15(3), 408–419. doi:10.1191/0959683605hl818rp
  • Atarashi-Andoh, M., Koarashi, J., Ishizuka, S., & Hirai, K. (2012). Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures. Agricultural and Forest Meteorology, 152, 149–158. doi:10.1016/j.agrformet.2011.09.015
  • Baisden, W. T., Amundson, R., Cook, A. C., & Brenner, D. L. (2002). Turnover and storage of C and N in five density fractions from California annual grassland surface soils. Global Biogeochemical Cycles, 16(4), 64–1–64–16. doi:10.1029/2001gb001822
  • Baisden, W. T., & Parfitt, R. L. (2007). Bomb 14C enrichment indicates decadal C pool in deep soil? Biogeochemistry, 85(1), 59–68. doi:10.1007/s10533-007-9101-7
  • Baisden, W. T., Parfitt, R. L., Ross, C., Schipper, L. A., & Canessa, S. (2011). Evaluating 50 years of time-series soil radiocarbon data: towards routine calculation of robust C residence times. Biogeochemistry, 112(1-3), 129–137. doi:10.1007/s10533-011-9675-y
  • Basile-Doelsch, I., Amundson, R., Stone, W. E. E., Masiello, C. A., Bottero, J. Y., Colin, F., … Meunier, J. D. (2005). Mineralogical control of organic carbon dynamics in a volcanic ash soil on La Reunion. European Journal of Soil Science, 0(0), 050912034650042. doi:10.1111/j.1365-2389.2005.00703.x
  • BAUER, I. E., & VITT, D. H. (2011). Peatland dynamics in a complex landscape: Development of a fen-bog complex in the Sporadic Discontinuous Permafrost zone of northern Alberta, Canada. Boreas, 40(4), 714–726. doi:10.1111/j.1502-3885.2011.00210.x
  • Bauters, M., Vercleyen, O., Vanlauwe, B., Six, J., Bonyoma, B., Badjoko, H., … Boeckx, P. (2019). Long‐term recovery of the functional community assembly and carbon pools in an African tropical forest succession. Biotropica, 51(3), 319–329. doi:10.1111/btp.12647
  • Beaulieu-Audy, V., Garneau, M., Richard, P. J. H., & Asnong, H. (2009). Holocene palaeoecological reconstruction of three boreal peatlands in the La Grande Rivière region, Québec, Canada. The Holocene, 19(3), 459–476. doi:10.1177/0959683608101395
  • Becker-Heidmann, P., & Scharpenseel, H.-W. (1986). Thin Layer δ13C and D14C Monitoring of “Lessive” Soil Profiles. Radiocarbon, 28(2A), 383–390. doi:10.1017/s0033822200007499
  • Becker-Heidmann, P., & Scharpenseel, H.-W. (1989). Carbon Isotope Dynamics in Some Tropical Soils. Radiocarbon, 31(03), 672–679. doi:10.1017/s0033822200012273
  • Becker-Heidmann, P., Andresen, O., Kalmar, D., Scharpenseel, H.-W., & Yaalon, D. H. (2002). Carbon Dynamics in Vertisols as Revealed by High-Resolution Sampling. Radiocarbon, 44(1), 63–73. doi:10.1017/s0033822200064687
  • Bellisario, L. M., Bubier, J. L., Moore, T. R., & Chanton, J. P. (1999). Controls on CH4emissions from a northern peatland. Global Biogeochemical Cycles, 13(1), 81–91. doi:10.1029/1998gb900021
  • Benner, R., Benitez-Nelson, B., Kaiser, K., & Amon, R. M. W. (2004). Export of young terrigenous dissolved organic carbon from rivers to the Arctic Ocean. Geophysical Research Letters, 31(5), n/a–n/a. doi:10.1029/2003gl019251
  • Berg, B., & Gerstberger, P. (2004). Element Fluxes with Litterfall in Mature Stands of Norway Spruce and European Beech in Bavaria, South Germany. Biogeochemistry of Forested Catchments in a Changing Environment, 271–278. doi:10.1007/978-3-662-06073-5_16
  • Berhe, A. A., Harden, J. W., Torn, M. S., Kleber, M., Burton, S. D., & Harte, J. (2012). Persistence of soil organic matter in eroding versus depositional landform positions. Journal of Geophysical Research: Biogeosciences, 117(G2), n/a–n/a. doi:10.1029/2011jg001790
  • Bhiry, N., Payette, S., & Robert, É. C. (2007). Peatland development at the arctic tree line (Québec, Canada) influenced by flooding and permafrost. Quaternary Research, 67(3), 426–437. doi:10.1016/j.yqres.2006.11.009
  • Biedenbender, S. H., McClaran, M. P., Quade, J., & Weltz, M. A. (2004). Landscape patterns of vegetation change indicated by soil carbon isotope composition. Geoderma, 119(1-2), 69–83. doi:10.1016/s0016-7061(03)00234-9
  • Billings, W. D. (1987). Carbon balance of Alaskan tundra and taiga ecosystems: past, present and future. Quaternary Science Reviews, 6(2), 165–177. doi:10.1016/0277-3791(87)90032-1
  • Binkley, D., & Resh, S. C. (1999). Rapid Changes in Soils Following Eucalyptus Afforestation in Hawaii. Soil Science Society of America Journal, 63(1), 222–225. doi:10.2136/sssaj1999.03615995006300010032x
  • Bird, M., Santruckova, H., Lloyd, J., & Lawson, E. (2002). The isotopic composition of soil organic carbon on a north-south transect in western Canada. European Journal of Soil Science, 53(3), 393–403. doi:10.1046/j.1365-2389.2002.00444.x
  • Blyakharchuk, T. A., & Sulerzhitsky, L. D. (1999). Holocene vegetational and climatic changes in the forest zone of Western Siberia according to pollen records from the extrazonal palsa bog Bugristoye. The Holocene, 9(5), 621–628. doi:10.1191/095968399676614561
  • Blyakharchuk, T. A. (2003). Four new pollen sections tracing the Holocene vegetational development of the southern part of the West Siberan Lowland. The Holocene, 13(5), 715–731. doi:10.1191/0959683603hl658rp
  • BOL, R., HUANG, Y., MERIDITH, J. A., EGLINTON, G., HARKNESS, D. D., & INESON, P. (1996). The 14C age and residence time of organic matter and its lipid constituents in a stagnohumic gley soil. European Journal of Soil Science, 47(2), 215–222. doi:10.1111/j.1365-2389.1996.tb01392.x
  • Bol, R., Bolger, T., Cully, R., & Little, D. (2003). Recalcitrant soil organic materials mineralize more efficiently at higher temperatures. Journal of Plant Nutrition and Soil Science, 166(3), 300–307. doi:10.1002/jpln.200390047
  • Bouchard, F., Laurion, I., Prėskienis, V., Fortier, D., Xu, X., & Whiticar, M. J. (2015). Modern to millennium-old greenhouse gases emitted from ponds and lakes of the Eastern Canadian Arctic (Bylot Island, Nunavut). Biogeosciences, 12(23), 7279–7298. doi:10.5194/bg-12-7279-2015
  • Butman, D., Raymond, P., Oh, N.-H., & Mull, K. (2007). Quantity, 14C age and lability of desorbed soil organic carbon in fresh water and seawater. Organic Geochemistry, 38(9), 1547–1557. doi:10.1016/j.orggeochem.2007.05.011
  • Butnor, J. R., Samuelson, L. J., Johnsen, K. H., Anderson, P. H., González Benecke, C. A., Boot, C. M., … Zarnoch, S. J. (2017). Vertical distribution and persistence of soil organic carbon in fire-adapted longleaf pine forests. Forest Ecology and Management, 390, 15–26. doi:10.1016/j.foreco.2017.01.014
  • Caner, L., Toutain, F., Bourgeon, G., & Herbillon, A.-J. (2003). Occurrence of sombric-like subsurface A horizons in some andic soils of the Nilgiri Hills (Southern India) and their palaeoecological significance. Geoderma, 117(3-4), 251–265. doi:10.1016/s0016-7061(03)00127-7
  • Carbone, M. S., Winston, G. C., & Trumbore, S. E. (2008). Soil respiration in perennial grass and shrub ecosystems: Linking environmental controls with plant and microbial sources on seasonal and diel timescales. Journal of Geophysical Research: Biogeosciences, 113(G2), n/a–n/a. doi:10.1029/2007jg000611
  • Carbone, M. S., Still, C. J., Ambrose, A. R., Dawson, T. E., Williams, A. P., Boot, C. M., … Schimel, J. P. (2011). Seasonal and episodic moisture controls on plant and microbial contributions to soil respiration. Oecologia, 167(1), 265–278. doi:10.1007/s00442-011-1975-3
  • Carbone, M. S., Richardson, A. D., Chen, M., Davidson, E. A., Hughes, H., Savage, K. E., & Hollinger, D. Y. (2016). Constrained partitioning of autotrophic and heterotrophic respiration reduces model uncertainties of forest ecosystem carbon fluxes but not stocks. Journal of Geophysical Research: Biogeosciences, 121(9), 2476–2492. doi:10.1002/2016jg003386
  • Castanha, C., Trumbore, S. E., & Amundso, R. (2012). Mineral and Organic Matter Characterization of Density Fractions of Basalt- and Granite-Derived Soils in Montane California. An Introduction to the Study of Mineralogy. doi:10.5772/36735
  • Chabbi, A., Kögel-Knabner, I., & Rumpel, C. (2009). Stabilised carbon in subsoil horizons is located in spatially distinct parts of the soil profile. Soil Biology and Biochemistry, 41(2), 256–261. doi:10.1016/j.soilbio.2008.10.033
  • Chasar, L. S., Chanton, J. P., Glaser, P. H., Siegel, D. I., & Rivers, J. S. (2000). Radiocarbon and stable carbon isotopic evidence for transport and transformation of dissolved organic carbon, dissolved inorganic carbon, and CH4in a northern Minnesota peatland. Global Biogeochemical Cycles, 14(4), 1095–1108. doi:10.1029/1999gb001221
  • Chen, Q., Sun, Y., Shen, C., Peng, S., Yi, W., Li, Z., & Jiang, M. (2002). Organic matter turnover rates and CO2 flux from organic matter decomposition of mountain soil profiles in the subtropical area, south China. CATENA, 49(3), 217–229. doi:10.1016/s0341-8162(02)00044-9
  • Cherkinsky, A. E. (1996). 14C Dating and Soil Organic Matter Dynamics in Arctic and Subarctic Ecosystems. Radiocarbon, 38(2), 241–245. doi:10.1017/s0033822200017616
  • Chiti, T., Neubert, R. E. M., Janssens, I. A., Certini, G., Curiel Yuste, J., & Sirignano, C. (2009). Radiocarbon dating reveals different past managements of adjacent forest soils in the Campine region, Belgium. Geoderma, 149(1-2), 137–142. doi:10.1016/j.geoderma.2008.11.030
  • Chiti, T., Certini, G., Grieco, E., & Valentini, R. (2010). The role of soil in storing carbon in tropical rainforests: the case of Ankasa Park, Ghana. Plant and Soil, 331(1-2), 453–461. doi:10.1007/s11104-009-0265-x
  • Chiti, T., Certini, G., Forte, C., Papale, D., & Valentini, R. (2015). Radiocarbon-Based Assessment of Heterotrophic Soil Respiration in Two Mediterranean Forests. Ecosystems, 19(1), 62–72. doi:10.1007/s10021-015-9915-4
  • Chiti, T., Rey, A., Jeffery, K., Lauteri, M., Mihindou, V., Malhi, Y., … Valentini, R. (2018). Contribution and stability of forest-derived soil organic carbon during woody encroachment in a tropical savanna. A case study in Gabon. Biology and Fertility of Soils, 54(8), 897–907. doi:10.1007/s00374-018-1313-6
  • Chiti, T., Díaz-Pinés, E., Butterbach-Bahl, K., Marzaioli, F., & Valentini, R. (2017). Soil organic carbon changes following degradation and conversion to cypress and tea plantations in a tropical mountain forest in Kenya. Plant and Soil, 422(1-2), 527–539. doi:10.1007/s11104-017-3489-1
  • Chorover, J., Amistadi, M. K., & Chadwick, O. A. (2004). Surface charge evolution of mineral-organic complexes during pedogenesis in Hawaiian basalt. Geochimica et Cosmochimica Acta, 68(23), 4859–4876. doi:10.1016/j.gca.2004.06.005
  • Conen, F., Zimmermann, M., Leifeld, J., Seth, B., & Alewell, C. (2008). Relative stability of soil carbon revealed by shifts in δ15N and C:N ratio. Biogeosciences, 5(1), 123–128. doi:10.5194/bg-5-123-2008
  • Cooper, M. D. A., Estop-Aragonés, C., Fisher, J. P., Thierry, A., Garnett, M. H., Charman, D. J., … Hartley, I. P. (2017). Limited contribution of permafrost carbon to methane release from thawing peatlands. Nature Climate Change, 7(7), 507–511. doi:10.1038/nclimate3328
  • Crews, T. E., Kitayama, K., Fownes, J. H., Riley, R. H., Herbert, D. A., Mueller-Dombois, D., & Vitousek, P. M. (1995). Changes in Soil Phosphorus Fractions and Ecosystem Dynamics across a Long Chronosequence in Hawaii. Ecology, 76(5), 1407–1424. doi:10.2307/1938144
  • Crow, S. E., Reeves, M., Schubert, O. S., & Sierra, C. A. (2014). Optimization of method to quantify soil organic matter dynamics and carbon sequestration potential in volcanic ash soils. Biogeochemistry, 123(1-2), 27–47. doi:10.1007/s10533-014-0051-6
  • CUSACK, D. F., TORN, M. S., McDOWELL, W. H., & SILVER, W. L. (2010). The response of heterotrophic activity and carbon cycling to nitrogen additions and warming in two tropical soils. Global Change Biology. doi:10.1111/j.1365-2486.2009.02131.x
  • Cusack, D. F., Chadwick, O. A., Hockaday, W. C., & Vitousek, P. M. (2012). Mineralogical controls on soil black carbon preservation. Global Biogeochemical Cycles, 26(2), n/a–n/a. doi:10.1029/2011gb004109
  • Cusack, D. F., Chadwick, O. A., Ladefoged, T., & Vitousek, P. M. (2012). Long-term effects of agriculture on soil carbon pools and carbon chemistry along a Hawaiian environmental gradient. Biogeochemistry, 112(1-3), 229–243. doi:10.1007/s10533-012-9718-z
  • Czimczik, C. I., Schmidt, M. W. I., & Schulze, E.-D. (2005). Effects of increasing fire frequency on black carbon and organic matter in Podzols of Siberian Scots pine forests. European Journal of Soil Science, 56(3), 417–428. doi:10.1111/j.1365-2389.2004.00665.x
  • Czimczik, C. I., & Trumbore, S. E. (2007). Short-term controls on the age of microbial carbon sources in boreal forest soils. Journal of Geophysical Research: Biogeosciences, 112(G3), n/a–n/a. doi:10.1029/2006jg000389
  • Czimczik, C. I., & Welker, J. M. (2010). Radiocarbon Content of CO2 Respired from High Arctic Tundra in Northwest Greenland. Arctic, Antarctic, and Alpine Research, 42(3), 342–350. doi:10.1657/1938-4246-42.3.342
  • De Klerk, P., Donner, N., Karpov, N. S., Minke, M., & Joosten, H. (2011). Short-term dynamics of a low-centred ice-wedge polygon near Chokurdakh (NE Yakutia, NE Siberia) and climate change during the last ca 1250 years. Quaternary Science Reviews, 30(21-22), 3013–3031. doi:10.1016/j.quascirev.2011.06.016
  • De Feudis, M., Cardelli, V., Massaccesi, L., Trumbore, S. E., Vittori Antisari, L., Cocco, S., … Agnelli, A. (2019). Small altitudinal change and rhizosphere affect the SOM light fractions but not the heavy fraction in European beech forest soil. CATENA, 181, 104091. doi:10.1016/j.catena.2019.104091
  • De Freitas, H. A., Pessenda, L. C. R., Aravena, R., Gouveia, S. E. M., de Souza Ribeiro, A., & Boulet, R. (2001). Late Quaternary Vegetation Dynamics in the Southern Amazon Basin Inferred from Carbon Isotopes in Soil Organic Matter. Quaternary Research, 55(1), 39–46. doi:10.1006/qres.2000.2192
  • Desjardins, T., Andreux, F., Volkoff, B., & Cerri, C. C. (1994). Organic carbon and 13C contents in soils and soil size-fractions, and their changes due to deforestation and pasture installation in eastern Amazonia. Geoderma, 61(1-2), 103–118. doi:10.1016/0016-7061(94)90013-2
  • Doetterl, S., Six, J., Van Wesemael, B., & Van Oost, K. (2012). Carbon cycling in eroding landscapes: geomorphic controls on soil organic C pool composition and C stabilization. Global Change Biology, 18(7), 2218–2232. doi:10.1111/j.1365-2486.2012.02680.x
  • Doetterl, S., Stevens, A., Six, J., Merckx, R., Van Oost, K., Casanova Pinto, M., … Boeckx, P. (2015). Soil carbon storage controlled by interactions between geochemistry and climate. Nature Geoscience, 8(10), 780–783. doi:10.1038/ngeo2516
  • Dörr, H., & Münnich, K. O. (1980). Carbon-14 and Carbon-13 in Soil Co2. Radiocarbon, 22(3), 909–918. doi:10.1017/s0033822200010316
  • Dörr, H., & Münnich, K. O. (1986). Annual Variations of the 14C Content of Soil CO2. Radiocarbon, 28(2A), 338–345. doi:10.1017/s0033822200007438
  • Dörr, H., & Münnich, K. O. (1989). Downward Movement of Soil Organic Matter and Its Influence on Trace-Element Transport (210Pb, 137Cs) in the Soil. Radiocarbon, 31(03), 655–663. doi:10.1017/s003382220001225x
  • Dredge, L. A., & Mott, R. J. (2005). Holocene Pollen Records and Peatland Development, Northeastern Manitoba*. Géographie Physique et Quaternaire, 57(1), 7–19. doi:10.7202/010328ar
  • Dümig, A., Schad, P., Rumpel, C., Dignac, M.-F., & Kögel-Knabner, I. (2008). Araucaria forest expansion on grassland in the southern Brazilian highlands as revealed by 14C and δ13C studies. Geoderma, 145(1-2), 143–157. doi:10.1016/j.geoderma.2007.06.005
  • DUTTA, K., SCHUUR, E. A. G., NEFF, J. C., & ZIMOV, S. A. (2006). Potential carbon release from permafrost soils of Northeastern Siberia. Global Change Biology, 12(12), 2336–2351. doi:10.1111/j.1365-2486.2006.01259.x
  • Elder, C. D., Xu, X., Walker, J., Schnell, J. L., Hinkel, K. M., Townsend-Small, A., … Czimczik, C. I. (2018). Greenhouse gas emissions from diverse Arctic Alaskan lakes are dominated by young carbon. Nature Climate Change, 8(2), 166–171. doi:10.1038/s41558-017-0066-9
  • Ellis, C. J., & Rochefort, L. (2004). CENTURY-SCALE DEVELOPMENT OF POLYGON-PATTERNED TUNDRA WETLAND, BYLOT ISLAND (73° N, 80° W). Ecology, 85(4), 963–978. doi:10.1890/02-0614
  • ELLIS, C. J., & ROCHEFORT, L. (2006). Long-term sensitivity of a High Arctic wetland to Holocene climate change. Journal of Ecology, 94(2), 441–454. doi:10.1111/j.1365-2745.2005.01085.x
  • Elzein, A., & Balesdent, J. (1995). Mechanistic Simulation of Vertical Distribution of Carbon Concentrations and Residence Times in Soils. Soil Science Society of America Journal, 59(5), 1328–1335. doi:10.2136/sssaj1995.03615995005900050019x
  • Estop-Aragonés, C., Cooper, M. D. A., Fisher, J. P., Thierry, A., Garnett, M. H., Charman, D. J., … Hartley, I. P. (2018). Limited release of previously-frozen C and increased new peat formation after thaw in permafrost peatlands. Soil Biology and Biochemistry, 118, 115–129. doi:10.1016/j.soilbio.2017.12.010
  • Eusterhues, K., Rumpel, C., Kleber, M., & Kögel-Knabner, I. (2003). Stabilisation of soil organic matter by interactions with minerals as revealed by mineral dissolution and oxidative degradation. Organic Geochemistry, 34(12), 1591–1600. doi:10.1016/j.orggeochem.2003.08.007
  • Ewing, S. A., Sanderman, J., Baisden, W. T., Wang, Y., & Amundson, R. (2006). Role of large-scale soil structure in organic carbon turnover: Evidence from California grassland soils. Journal of Geophysical Research, 111(G3). doi:10.1029/2006jg000174
  • Fernandez, I. J., Rustad, L. E., & Lawrence, G. B. (1993). Estimating total soil mass, nutrient content, and trace metals in soils under a low elevation spruce-fir forest. Canadian Journal of Soil Science, 73(3), 317–328. doi:10.4141/cjss93-034
  • Fierer, N., Chadwick, O. A., & Trumbore, S. E. (2005). Production of CO2 in Soil Profiles of a California Annual Grassland. Ecosystems, 8(4), 412–429. doi:10.1007/s10021-003-0151-y
  • Fillion, M.-È., Bhiry, N., & Touazi, M. (2014). Differential Development of Two Palsa Fields in a Peatland Located Near Whapmagoostui-Kuujjuarapik, Northern Québec, Canada. Arctic, Antarctic, and Alpine Research, 46(1), 40–54. doi:10.1657/1938-4246-46.1.40
  • Fontaine, S., Barot, S., Barré, P., Bdioui, N., Mary, B., & Rumpel, C. (2007). Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature, 450(7167), 277–280. doi:10.1038/nature06275
  • Garneau, M. (2007). Analyses macrofossiles d’un dépot de tourbe dans la région de Hot Weather Creek, péninsule de Fosheim, île d’Ellesmere, Territoires du Nord-Ouest. Géographie Physique et Quaternaire, 46(3), 285–294. doi:10.7202/032915ar
  • Garneau, M., van Bellen, S., Magnan, G., Beaulieu-Audy, V., Lamarre, A., & Asnong, H. (2014). Holocene carbon dynamics of boreal and subarctic peatlands from Québec, Canada. The Holocene, 24(9), 1043–1053. doi:10.1177/0959683614538076
  • Gaudinski, J. B., Trumbore, S. E., Davidson, E. A., & Zheng, S. (2000). Biogeochemistry, 51(1), 33–69. doi:10.1023/a:1006301010014
  • Gentsch, N., Wild, B., Mikutta, R., Čapek, P., Diáková, K., Schrumpf, M., … Guggenberger, G. (2018). Temperature response of permafrost soil carbon is attenuated by mineral protection. Global Change Biology, 24(8), 3401–3415. doi:10.1111/gcb.14316
  • Gillson, L. (2004). Testing non-equilibrium theories in savannas: 1400 years of vegetation change in Tsavo National Park, Kenya. Ecological Complexity, 1(4), 281–298. doi:10.1016/j.ecocom.2004.06.001
  • Heckman, K., Lawrence, C. R., & Harden, J. W. (2018). A sequential selective dissolution method to quantify storage and stability of organic carbon associated with Al and Fe hydroxide phases. Geoderma, 312, 24–35. doi:10.1016/j.geoderma.2017.09.043
  • GOH, K. M., STOUT, J. D., & RAFTER, T. A. (1977). RADIOCARBON ENRICHMENT OF SOIL ORGANIC MATTER FRACTIONS IN NEW ZEALAND SOILS. Soil Science, 123(6), 385–391. doi:10.1097/00010694-197706000-00007
  • González-Domínguez, B., Niklaus, P. A., Studer, M. S., Hagedorn, F., Wacker, L., Haghipour, N., … Abiven, S. (2019). Temperature and moisture are minor drivers of regional-scale soil organic carbon dynamics. Scientific Reports, 9(1). doi:10.1038/s41598-019-42629-5
  • Guillet, B., Faivre, P., Mariotti, A., & Khobzi, J. (1988). The 14C dates and 13C/12C ratios of soil organic matter as a means of studying the past vegetation in intertropical regions: Examples from Colombia (South America). Palaeogeography, Palaeoclimatology, Palaeoecology, 65(1-2), 51–58. doi:10.1016/0031-0182(88)90111-3
  • GUILLET, B., ACHOUNDONG, G., HAPPI, J. Y., BEYALA, V. K. K., BONVALLOT, J., RIERA, B., … SCHWARTZ, D. (2001). Agreement between floristic and soil organic carbon isotope (13C/12C, 14C) indicators of forest invasion of savannas during the last century in Cameroon. Journal of Tropical Ecology, 17(6), 809–832. doi:10.1017/s0266467401001614
  • Guo, L., Lehner, J. K., White, D. M., & Garland, D. S. (2003). Heterogeneity of natural organic matter from the Chena River, Alaska. Water Research, 37(5), 1015–1022. doi:10.1016/s0043-1354(02)00443-8
  • Guo, L., & Macdonald, R. W. (2006). Source and transport of terrigenous organic matter in the upper Yukon River: Evidence from isotope (δ13C, Δ14C, and δ15N) composition of dissolved, colloidal, and particulate phases. Global Biogeochemical Cycles, 20(2), n/a–n/a. doi:10.1029/2005gb002593
  • Guo, L., Ping, C.-L., & Macdonald, R. W. (2007). Mobilization pathways of organic carbon from permafrost to arctic rivers in a changing climate. Geophysical Research Letters, 34(13), n/a–n/a. doi:10.1029/2007gl030689
  • Hall, S. J., McNicol, G., Natake, T., & Silver, W. L. (2015). Large fluxes and rapid turnover of mineral-associated carbon across topographic gradients in a humid tropical forest: insights from paired 14C analysis. Biogeosciences Discussions, 12(2), 891–932. doi:10.5194/bgd-12-891-2015
  • Harden, J. W., Fries, T. L., & Pavich, M. J. (2002). Biogeochemistry, 60(3), 317–336. doi:10.1023/a:1020308729553
  • Hardie, S. M. L., Garnett, M. H., Fallick, A. E., Ostle, N. J., & Rowland, A. P. (2009). Bomb-14C analysis of ecosystem respiration reveals that peatland vegetation facilitates release of old carbon. Geoderma, 153(3-4), 393–401. doi:10.1016/j.geoderma.2009.09.002
  • Hardie, S. M. L., Garnett, M. H., Fallick, A. E., Rowland, A. P., Ostle, N. J., & Flowers, T. H. (2011). Abiotic drivers and their interactive effect on the flux and carbon isotope (14C and δ13C) composition of peat-respired CO2. Soil Biology and Biochemistry, 43(12), 2432–2440. doi:10.1016/j.soilbio.2011.08.010
  • Harkness, D. D., Harrison, A. F., & Bacon, P. J. (1986). The Temporal Distribution of “Bomb” 14C in a Forest Soil. Radiocarbon, 28(2A), 328–337. doi:10.1017/s0033822200007426
  • Harris, S. A., & Schmidt, I. H. (1994). Permafrost aggradation and peat accumulation since 1200 years B.P. in peat plateaus at Tuchitua, Yukon Territory (Canada). Journal of Paleolimnology, 12(1), 3–17. doi:10.1007/bf00677986
  • Hatton, P.-J., Kleber, M., Zeller, B., Moni, C., Plante, A. F., Townsend, K., … Derrien, D. (2012). Transfer of litter-derived N to soil mineral–organic associations: Evidence from decadal 15N tracer experiments. Organic Geochemistry, 42(12), 1489–1501. doi:10.1016/j.orggeochem.2011.05.002
  • <title>PEDOGENESIS & CARBON DYNAMICS ACROSS A LITHOSEQUENCE UNDER PONDEROSA PINE | Zenodo</title>

    October 21, 2010 Thesis Open Access

    PEDOGENESIS & CARBON DYNAMICS ACROSS A LITHOSEQUENCE UNDER PONDEROSA PINE

    Heckman, Katherine Ann

    A Dissertation Submitted to the Faculty of the
    DEPARTMENT OF SOIL, WATER & ENVIRONMENTAL SCIENCE
    In Partial Fulfillment of the Requirements
    For the Degree of
    DOCTOR OF PHILOSOPHY
    In the Graduate College
    THE UNIVERSITY OF ARIZONA

    <iframe class="preview-iframe" id="preview-iframe" width="100%" height="400" src="/record/1486081/preview/Heckman_dissertation_2010.pdf"></iframe>
    Files (4.9 MB)
    Name Size
    Heckman_2010.xlsx
    md5:a6bb6fd67809feb584310bf2bd26f926
    815.3 kB Download
    Heckman_dissertation_2010.pdf
    md5:b758dc134d420068f02fa98e43bf6b63
    4.1 MB Preview Download
    21
    18
    views
    downloads
    See more details...
    All versions This version
    Views 2121
    Downloads 1818
    Data volume 57.4 MB57.4 MB
    Unique views 1919
    Unique downloads 1111
    Indexed in
    Publication date:
    October 21, 2010
    DOI:
    10.5281/zenodo.1486081

    Zenodo DOI Badge

    DOI

    10.5281/zenodo.1486081

    Markdown

    [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.1486081.svg)](https://doi.org/10.5281/zenodo.1486081)

    reStructedText

    .. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.1486081.svg   :target: https://doi.org/10.5281/zenodo.1486081

    HTML

    <a href="https://doi.org/10.5281/zenodo.1486081"><img src="https://zenodo.org/badge/DOI/10.5281/zenodo.1486081.svg" alt="DOI"></a>

    Image URL

    https://zenodo.org/badge/DOI/10.5281/zenodo.1486081.svg

    Target URL

    https://doi.org/10.5281/zenodo.1486081

    License (for files):
    Creative Commons Attribution 4.0 International

    Versions

    Version 1 10.5281/zenodo.1486081 Oct 21, 2010
    Cite all versions? You can cite all versions by using the DOI 10.5281/zenodo.1486080. This DOI represents all versions, and will always resolve to the latest one. Read more.

    Share

    Cite as

    <script type='application/ld+json'>{"@context": "https://schema.org/", "@id": "https://doi.org/10.5281/zenodo.1486081", "@type": "ScholarlyArticle", "creator": [{"@type": "Person", "affiliation": "USDA Forest Service", "name": "Heckman, Katherine Ann"}], "datePublished": "2010-10-21", "description": "\u003cp\u003eA Dissertation Submitted to the Faculty of the\u003cbr\u003e\nDEPARTMENT OF SOIL, WATER \u0026amp; ENVIRONMENTAL SCIENCE\u003cbr\u003e\nIn Partial Fulfillment of the Requirements\u003cbr\u003e\nFor the Degree of\u003cbr\u003e\nDOCTOR OF PHILOSOPHY\u003cbr\u003e\nIn the Graduate College\u003cbr\u003e\nTHE UNIVERSITY OF ARIZONA\u003c/p\u003e", "headline": "PEDOGENESIS \u0026 CARBON DYNAMICS ACROSS A LITHOSEQUENCE UNDER PONDEROSA PINE", "identifier": "https://doi.org/10.5281/zenodo.1486081", "image": "https://zenodo.org/static/img/logos/zenodo-gradient-round.svg", "license": "http://creativecommons.org/licenses/by/4.0/legalcode", "name": "PEDOGENESIS \u0026 CARBON DYNAMICS ACROSS A LITHOSEQUENCE UNDER PONDEROSA PINE", "url": "https://zenodo.org/record/1486081"}</script><script src="/static/gen/zenodo.60c4ee65.js"></script><script type="text/javascript" src="//cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script><script src="/static/gen/zenodo.search.cd696cd5.js"></script><script type="text/javascript">var addthis_config = {"data_track_addressbar": true};</script><script type="text/javascript"> // Bootstrap the Invenio CSL Formatter and invenio-search-js require([ "jquery", 'typeahead.js', 'bloodhound', "node_modules/angular/angular", "node_modules/invenio-csl-js/dist/invenio-csl-js", "node_modules/invenio-search-js/dist/invenio-search-js", "js/zenodo/module" ], function(typeahead, Bloodhound) { angular.element(document).ready(function() { // FIXME: This is already defined in js/zenodo_deposit/filters.js. // It should be moved to a common place... angular.module('zenodo.filters').filter('limitToEllipsis', function () { return function(text, n) { return (text.length > n) ? text.substr(0, n-1) + '…' : text; }; }); angular.bootstrap(document.getElementById("citations"), [ 'invenioSearch', 'zenodo.filters', 'mgcrea.ngStrap.tooltip', ] ); angular.bootstrap(document.getElementById("invenio-csl"), [ 'invenioCsl', ] ); }); } ); require([ "jquery", "js/zenodo/functions", ], function($, recordCommunityCurate) { $(function () { $("#recordCommunityCuration .btn").click(recordCommunityCurate); $('.preview-link').on('click', function(event) { $('#preview').show(); var filename = encodeURIComponent($(event.target).data('filename')); $('#preview-iframe').attr("src","/record/1486081/preview/" + filename); }); }); } ); $(function () { $('[data-toggle="tooltip"]').tooltip(); });</script><script type="text/javascript" src="//s7.addthis.com/js/300/addthis_widget.js#pubid=ra-5137aff66ad9c2a1"></script><script type='text/javascript' src='https://d1bxh8uas1mnw7.cloudfront.net/assets/embed.js'></script><script type="text/javascript">var _paq = _paq || [];_paq.push(["setDomains", ["*.zenodo.org","*.zenodo.cern.ch","*.zenodo.eu","*.zenodo.net"]]);_paq.push(["trackPageView"]);_paq.push(["enableLinkTracking"]);(function() { var u=(("https:" == document.location.protocol) ? "https" : "http") + "://piwik.web.cern.ch/"; _paq.push(["setTrackerUrl", u+"piwik.php"]); _paq.push(["setSiteId", "57"]); var d=document, g=d.createElement("script"), s=d.getElementsByTagName("script")[0]; g.type="text/javascript"; g.defer=true; g.async=true; g.src=u+"piwik.js"; s.parentNode.insertBefore(g,s);})();</script>
  • Hicks Pries, C. E., Schuur, E. A. G., & Crummer, K. G. (2011). Holocene Carbon Stocks and Carbon Accumulation Rates Altered in Soils Undergoing Permafrost Thaw. Ecosystems, 15(1), 162–173. doi:10.1007/s10021-011-9500-4
  • Hicks Pries, C. E., Schuur, E. A. G., & Crummer, K. G. (2012). Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C. Global Change Biology, 19(2), 649–661. doi:10.1111/gcb.12058
  • Hicks Pries, C. E., van Logtestijn, R. S. P., Schuur, E. A. G., Natali, S. M., Cornelissen, J. H. C., Aerts, R., & Dorrepaal, E. (2015). Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems. Global Change Biology, 21(12), 4508–4519. doi:10.1111/gcb.13032
  • Hicks Pries, C. E., Schuur, E. A. G., Natali, S. M., & Crummer, K. G. (2015). Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra. Nature Climate Change, 6(2), 214–218. doi:10.1038/nclimate2830
  • Hicks Pries, C. E., Castanha, C., Porras, R. C., & Torn, M. S. (2017). The whole-soil carbon flux in response to warming. Science, 355(6332), 1420–1423. doi:10.1126/science.aal1319
  • Hicks Pries, C. E., Bird, J. A., Castanha, C., Hatton, P.-J., & Torn, M. S. (2017). Long term decomposition: the influence of litter type and soil horizon on retention of plant carbon and nitrogen in soils. Biogeochemistry, 134(1-2), 5–16. doi:10.1007/s10533-017-0345-6
  • Hilton, R. G., Galy, V., Gaillardet, J., Dellinger, M., Bryant, C., O’Regan, M., … Calmels, D. (2015). Erosion of organic carbon in the Arctic as a geological carbon dioxide sink. Nature, 524(7563), 84–87. doi:10.1038/nature14653
  • <title>Soil radiocarbon data from a fire chronosequence near Delta Junction, Alaska | Zenodo</title>

    November 5, 2019 Dataset Open Access

    Soil radiocarbon data from a fire chronosequence near Delta Junction, Alaska

    Holden, Sandra R.; Czimczik, Claudia I.; Xu, Xiaomei; Treseder, Kathleen K.

    Soil radiocarbon data sampled along a crown fire (stand replacing) chronosequence located near Delta Junction, Alaska, USA consisting of three sites that burned in 2010 (Gilles Creek fire), 2004 (Camp Creek fire), and about 100 years ago (control). 

    Files (843.6 kB)
    Name Size
    Holden_2019.xlsx
    md5:63e97a90e84e0a0584f5f5e442c8b710
    843.6 kB Download
    18
    2
    views
    downloads
    See more details...
    All versions This version
    Views 1818
    Downloads 22
    Data volume 1.7 MB1.7 MB
    Unique views 1414
    Unique downloads 22
    Indexed in
    Publication date:
    November 5, 2019
    DOI:
    10.5281/zenodo.3370057

    Zenodo DOI Badge

    DOI

    10.5281/zenodo.3370057

    Markdown

    [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.3370057.svg)](https://doi.org/10.5281/zenodo.3370057)

    reStructedText

    .. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.3370057.svg   :target: https://doi.org/10.5281/zenodo.3370057

    HTML

    <a href="https://doi.org/10.5281/zenodo.3370057"><img src="https://zenodo.org/badge/DOI/10.5281/zenodo.3370057.svg" alt="DOI"></a>

    Image URL

    https://zenodo.org/badge/DOI/10.5281/zenodo.3370057.svg

    Target URL

    https://doi.org/10.5281/zenodo.3370057

    License (for files):
    Creative Commons Attribution 4.0 International

    Versions

    Version 1 10.5281/zenodo.3370057 Nov 5, 2019
    Cite all versions? You can cite all versions by using the DOI 10.5281/zenodo.3370056. This DOI represents all versions, and will always resolve to the latest one. Read more.

    Share

    Cite as

    <script type='application/ld+json'>{"@context": "https://schema.org/", "@id": "https://doi.org/10.5281/zenodo.3370057", "@type": "Dataset", "creator": [{"@type": "Person", "affiliation": "Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697-2525, USA", "name": "Holden, Sandra R."}, {"@type": "Person", "affiliation": "Department of Earth System Science, University of California, Irvine, Irvine, CA 92697-3100, USA", "name": "Czimczik, Claudia I."}, {"@type": "Person", "affiliation": "Department of Earth System Science, University of California, Irvine, Irvine, CA 92697-3100, USA", "name": "Xu, Xiaomei"}, {"@type": "Person", "affiliation": "Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697-2525, USA", "name": "Treseder, Kathleen K."}], "datePublished": "2019-11-05", "description": "\u003cp\u003eSoil radiocarbon data sampled along a crown fire (stand replacing) chronosequence located near Delta Junction, Alaska, USA consisting of three sites that burned in 2010 (Gilles Creek fire), 2004 (Camp Creek fire), and about 100 years ago (control).\u0026nbsp;\u003c/p\u003e", "distribution": [{"@type": "DataDownload", "contentUrl": "https://zenodo.org/api/files/414fc5e0-b497-4e62-b6b0-cbf8d85708bd/Holden_2019.xlsx", "encodingFormat": "xlsx"}], "identifier": "https://doi.org/10.5281/zenodo.3370057", "license": "http://creativecommons.org/licenses/by/4.0/legalcode", "name": "Soil radiocarbon data from a fire chronosequence near Delta Junction, Alaska", "url": "https://zenodo.org/record/3370057"}</script><script src="/static/gen/zenodo.60c4ee65.js"></script><script type="text/javascript" src="//cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script><script src="/static/gen/zenodo.search.cd696cd5.js"></script><script type="text/javascript">var addthis_config = {"data_track_addressbar": true};</script><script type="text/javascript"> // Bootstrap the Invenio CSL Formatter and invenio-search-js require([ "jquery", 'typeahead.js', 'bloodhound', "node_modules/angular/angular", "node_modules/invenio-csl-js/dist/invenio-csl-js", "node_modules/invenio-search-js/dist/invenio-search-js", "js/zenodo/module" ], function(typeahead, Bloodhound) { angular.element(document).ready(function() { // FIXME: This is already defined in js/zenodo_deposit/filters.js. // It should be moved to a common place... angular.module('zenodo.filters').filter('limitToEllipsis', function () { return function(text, n) { return (text.length > n) ? text.substr(0, n-1) + '…' : text; }; }); angular.bootstrap(document.getElementById("citations"), [ 'invenioSearch', 'zenodo.filters', 'mgcrea.ngStrap.tooltip', ] ); angular.bootstrap(document.getElementById("invenio-csl"), [ 'invenioCsl', ] ); }); } ); require([ "jquery", "js/zenodo/functions", ], function($, recordCommunityCurate) { $(function () { $("#recordCommunityCuration .btn").click(recordCommunityCurate); $('.preview-link').on('click', function(event) { $('#preview').show(); var filename = encodeURIComponent($(event.target).data('filename')); $('#preview-iframe').attr("src","/record/3370057/preview/" + filename); }); }); } ); $(function () { $('[data-toggle="tooltip"]').tooltip(); });</script><script type="text/javascript" src="//s7.addthis.com/js/300/addthis_widget.js#pubid=ra-5137aff66ad9c2a1"></script><script type='text/javascript' src='https://d1bxh8uas1mnw7.cloudfront.net/assets/embed.js'></script><script type="text/javascript">var _paq = _paq || [];_paq.push(["setDomains", ["*.zenodo.org","*.zenodo.cern.ch","*.zenodo.eu","*.zenodo.net"]]);_paq.push(["trackPageView"]);_paq.push(["enableLinkTracking"]);(function() { var u=(("https:" == document.location.protocol) ? "https" : "http") + "://piwik.web.cern.ch/"; _paq.push(["setTrackerUrl", u+"piwik.php"]); _paq.push(["setSiteId", "57"]); var d=document, g=d.createElement("script"), s=d.getElementsByTagName("script")[0]; g.type="text/javascript"; g.defer=true; g.async=true; g.src=u+"piwik.js"; s.parentNode.insertBefore(g,s);})();</script>
  • Hood, E., Fellman, J., Spencer, R. G. M., Hernes, P. J., Edwards, R., D’Amore, D., & Scott, D. (2009). Glaciers as a source of ancient and labile organic matter to the marine environment. Nature, 462(7276), 1044–1047. doi:10.1038/nature08580
  • Horwath, J. L., Sletten, R. S., Hagedorn, B., & Hallet, B. (2008). Spatial and temporal distribution of soil organic carbon in nonsorted striped patterned ground of the High Arctic. Journal of Geophysical Research, 113(G3). doi:10.1029/2007jg000511
  • Hsieh, Y.-P. (1996). Soil Organic Carbon Pools of Two Tropical Soils Inferred by Carbon Signatures. Soil Science Society of America Journal, 60(4), 1117–1121. doi:10.2136/sssaj1996.03615995006000040022x
  • Huang, Y., Bol, R., Harkness, D. D., Ineson, P., & Eglinton, G. (1996). Post-glacial variations in distributions, 13C and 14C contents of aliphatic hydrocarbons and bulk organic matter in three types of British acid upland soils. Organic Geochemistry, 24(3), 273–287. doi:10.1016/0146-6380(96)00039-3
  • Huang, Y., Li, B., Bryant, C., Bol, R., & Eglinton, G. (1999). Radiocarbon Dating of Aliphatic Hydrocarbons A New Approach for Dating Passive-Fraction Carbon in Soil Horizons. Soil Science Society of America Journal, 63(5), 1181–1187. doi:10.2136/sssaj1999.6351181x
  • Hugelius, G., Routh, J., Kuhry, P., & Crill, P. (2012). Mapping the degree of decomposition and thaw remobilization potential of soil organic matter in discontinuous permafrost terrain. Journal of Geophysical Research: Biogeosciences, 117(G2), n/a–n/a. doi:10.1029/2011jg001873
  • Hunt, S., Yu, Z., & Jones, M. (2013). Lateglacial and Holocene climate, disturbance and permafrost peatland dynamics on the Seward Peninsula, western Alaska. Quaternary Science Reviews, 63, 42–58. doi:10.1016/j.quascirev.2012.11.019
  • JANKOVSKÁ, V., ANDREEV, A. A., & PANOVA, N. K. (2006). Holocene environmental history on the eastern slope of the Polar Ural Mountains, Russia. Boreas, 35(4), 650–661. doi:10.1111/j.1502-3885.2006.tb01171.x
  • Jasinski, J., Warner, B. G., Andreev, A. A., Aravena, R., Gilbert, S. E., Zeeb, B. A., … Velichko, A. A. (1998). Holocene environmental history of a peatland in the Lena River valley, Siberia. Canadian Journal of Earth Sciences, 35(6), 637–648. doi:10.1139/e98-015
  • Johnston, C. E., Ewing, S. A., Harden, J. W., Varner, R. K., Wickland, K. P., Koch, J. C., … Jorgenson, M. T. (2014). Effect of permafrost thaw on CO2and CH4exchange in a western Alaska peatland chronosequence. Environmental Research Letters, 9(8), 085004. doi:10.1088/1748-9326/9/8/085004
  • Jones, M. C., Grosse, G., Jones, B. M., & Walter Anthony, K. (2012). Peat accumulation in drained thermokarst lake basins in continuous, ice-rich permafrost, northern Seward Peninsula, Alaska. Journal of Geophysical Research: Biogeosciences, 117(G2), n/a–n/a. doi:10.1029/2011jg001766
  • Jones, M. C., Booth, R. K., Yu, Z., & Ferry, P. (2012). A 2200-Year Record of Permafrost Dynamics and Carbon Cycling in a Collapse-Scar Bog, Interior Alaska. Ecosystems, 16(1), 1–19. doi:10.1007/s10021-012-9592-5
  • Kaiser, C., Meyer, H., Biasi, C., Rusalimova, O., Barsukov, P., & Richter, A. (2007). Conservation of soil organic matter through cryoturbation in arctic soils in Siberia. Journal of Geophysical Research, 112(G2). doi:10.1029/2006jg000258
  • Karhu, K., Fritze, H., Hämäläinen, K., Vanhala, P., Jungner, H., Oinonen, M., … Liski, J. (2010). Temperature sensitivity of soil carbon fractions in boreal forest soil. Ecology, 91(2), 370–376. doi:10.1890/09-0478.1
  • Katsuno, K., Miyairi, Y., Tamura, K., Matsuzaki, H., & Fukuda, K. (2010). A study of the carbon dynamics of Japanese grassland and forest using 14C and 13C. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268(7-8), 1106–1109. doi:10.1016/j.nimb.2009.10.110
  • NULL
  • NULL
  • Kelly, T. J., Lawson, I. T., Roucoux, K. H., Baker, T. R., Honorio-Coronado, E. N., Jones, T. D., & Rivas Panduro, S. (2018). Continuous human presence without extensive reductions in forest cover over the past 2500 years in an aseasonal Amazonian rainforest. Journal of Quaternary Science, 33(4), 369–379. doi:10.1002/jqs.3019
  • Kettles, I. M., Robinson, S. D., Bastien, D.-F., Garneau, M., & Hall, G. E. M. (2003). Physical, geochemical, macrofossil, and ground penetrating radar information on fourteen permafrost-affected peatlands in the Mackenzie Valley, Northwest Territories. doi:10.4095/214221
  • Khomo, L., Trumbore, S., Bern, C. R., & Chadwick, O. A. (2017). Timescales of carbon turnover in soils with mixed crystalline mineralogies. SOIL, 3(1), 17–30. doi:10.5194/soil-3-17-2017
  • Klapstein, S. J., Turetsky, M. R., McGuire, A. D., Harden, J. W., Czimczik, C. I., Xu, X., … Waddington, J. M. (2014). Controls on methane released through ebullition in peatlands affected by permafrost degradation. Journal of Geophysical Research: Biogeosciences, 119(3), 418–431. doi:10.1002/2013jg002441
  • Kleber, M., Mikutta, R., Torn, M. S., & Jahn, R. (2005). Poorly crystalline mineral phases protect organic matter in acid subsoil horizons. European Journal of Soil Science, 0(0), 050912034650054. doi:10.1111/j.1365-2389.2005.00706.x
  • KLEBER, M., NICO, P. S., PLANTE, A., FILLEY, T., KRAMER, M., SWANSTON, C., & SOLLINS, P. (2011). Old and stable soil organic matter is not necessarily chemically recalcitrant: implications for modeling concepts and temperature sensitivity. Global Change Biology, 17(2), 1097–1107. doi:10.1111/j.1365-2486.2010.02278.x
  • Klein, E. S., Yu, Z., & Booth, R. K. (2013). Recent increase in peatland carbon accumulation in a thermokarst lake basin in southwestern Alaska. Palaeogeography, Palaeoclimatology, Palaeoecology, 392, 186–195. doi:10.1016/j.palaeo.2013.09.009
  • Koarashi, J., Iida, T., & Asano, T. (2005). Radiocarbon and stable carbon isotope compositions of chemically fractionated soil organic matter in a temperate-zone forest. Journal of Environmental Radioactivity, 79(2), 137–156. doi:10.1016/j.jenvrad.2004.06.002
  • KOARASHI, J., ATARASHI-ANDOH, M., ISHIZUKA, S., MIURA, S., SAITO, T., & HIRAI, K. (2009). Quantitative aspects of heterogeneity in soil organic matter dynamics in a cool-temperate Japanese beech forest: a radiocarbon-based approach. Global Change Biology, 15(3), 631–642. doi:10.1111/j.1365-2486.2008.01745.x
  • Kögel-Knabner, I., Guggenberger, G., Kleber, M., Kandeler, E., Kalbitz, K., Scheu, S., … Leinweber, P. (2008). Organo-mineral associations in temperate soils: Integrating biology, mineralogy, and organic matter chemistry. Journal of Plant Nutrition and Soil Science, 171(1), 61–82. doi:10.1002/jpln.200700048
  • Kondo, M., Uchida, M., & Shibata, Y. (2010). Radiocarbon-based residence time estimates of soil organic carbon in a temperate forest: Case study for the density fractionation for Japanese volcanic ash soil. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268(7-8), 1073–1076. doi:10.1016/j.nimb.2009.10.101
  • Kramer, M. G., Sanderman, J., Chadwick, O. A., Chorover, J., & Vitousek, P. M. (2012). Long-term carbon storage through retention of dissolved aromatic acids by reactive particles in soil. Global Change Biology, 18(8), 2594–2605. doi:10.1111/j.1365-2486.2012.02681.x
  • Kramer, M. G., & Chadwick, O. A. (2016). Controls on carbon storage and weathering in volcanic soils across a high-elevation climate gradient on Mauna Kea, Hawaii. Ecology, 97(9), 2384–2395. doi:10.1002/ecy.1467
  • KREMENETSKI, C., VASCHALOVA, T., GORIACHKIN, S., CHERKINSKY, A., & SULERZHITSKY, L. (2008). Holocene pollen stratigraphy and bog development in the western part of the Kola Peninsula, Russia. Boreas, 26(2), 91–102. doi:10.1111/j.1502-3885.1997.tb00656.x
  • Krull, E. S., & Skjemstad, J. O. (2003). δ13C and δ15N profiles in 14C-dated Oxisol and Vertisols as a function of soil chemistry and mineralogy. Geoderma, 112(1-2), 1–29. doi:10.1016/s0016-7061(02)00291-4
  • Krull, E. S., Skjemstad, J. O., Burrows, W. H., Bray, S. G., Wynn, J. G., Bol, R., … Harms, B. (2005). Recent vegetation changes in central Queensland, Australia: Evidence from δ13C and 14C analyses of soil organic matter. Geoderma, 126(3-4), 241–259. doi:10.1016/j.geoderma.2004.09.012
  • Krull, E. S., Bestland, E. A., Skjemstad, J. O., & Parr, J. F. (2006). Geochemistry (δ13C, δ15N, 13C NMR) and residence times (14C and OSL) of soil organic matter from red-brown earths of South Australia: Implications for soil genesis. Geoderma, 132(3-4), 344–360. doi:10.1016/j.geoderma.2005.06.001
  • <title>C-isotopic signatures and soil properties of Amazon basin oxisols | Zenodo</title>

    November 5, 2019 Dataset Open Access

    C-isotopic signatures and soil properties of Amazon basin oxisols

    Kuhnen, Ágatha; Matschullat, Jörg; Sierra, Carlos A; Lima, R. M. B. de

    This dataset presents C isotopic data from two sites (Apuí and Manacapuru) located in the state of Amazonas, Brazil. Soils were sampled at three time periods, under weak raining (March-2016), extreme dry (August-2016), and strong wet (March-2017) conditions. The dataset first presents general information about the site (on the tab "site"), followed by more detailed information (on the tab "profile") about both sampling locations. The coordinates, altitude, mean annual temperature, mean annual precipitation, soil order in USDA taxonomy and their respective land use categories and vegetation classifications are described. 

    On the 'layer' tab, information about the soil depth, percent sand, silt and clay, pH CaCl2 and H2O, Organic and Total Carbon, total nitrogen and carbon/nitrogen ratio are described. The bulk C-isotopic signature is also listed on this tab as the Bulk Layer Δ14C and its standard deviation, Bulk Layer Fraction Modern and its standard deviation. 

    The "Incubation" tab describes details of the soil incubations conducted at Apuí and Manacapuru. Information about the material and length of incubation, as well as the CO2 fluxes over the duration of incubation are reported. The respired C-isotopic signature during the incubation is also given on this tab as the incubation Δ14C and its standard deviation, incubation Fraction Modern and its standard deviation. 

    Supported by: BMZ, Ministério da Educação, DAAD, CAPES, GIZ, MPI
    Files (842.3 kB)
    Name Size
    Kuhnen_2019.xlsx
    md5:de943f270343cd7502744a21e4fbf51e
    842.3 kB Download
    12
    2
    views
    downloads
    See more details...
    All versions This version
    Views 1212
    Downloads 22
    Data volume 1.7 MB1.7 MB
    Unique views 99
    Unique downloads 22
    Indexed in
    Publication date:
    November 5, 2019
    DOI:
    10.5281/zenodo.2645510

    Zenodo DOI Badge

    DOI

    10.5281/zenodo.2645510

    Markdown

    [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.2645510.svg)](https://doi.org/10.5281/zenodo.2645510)

    reStructedText

    .. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.2645510.svg   :target: https://doi.org/10.5281/zenodo.2645510

    HTML

    <a href="https://doi.org/10.5281/zenodo.2645510"><img src="https://zenodo.org/badge/DOI/10.5281/zenodo.2645510.svg" alt="DOI"></a>

    Image URL

    https://zenodo.org/badge/DOI/10.5281/zenodo.2645510.svg

    Target URL

    https://doi.org/10.5281/zenodo.2645510

    Keyword(s):
    Carbon Isotope ISRaD Incubation Organic Carbon Total Carbon 14C Amazon basin Oxisols
    Related identifiers:
    Part of
    License (for files):
    Creative Commons Attribution 4.0 International

    Versions

    Version 1 10.5281/zenodo.2645510 Nov 5, 2019
    Cite all versions? You can cite all versions by using the DOI 10.5281/zenodo.2645509. This DOI represents all versions, and will always resolve to the latest one. Read more.

    Share

    Cite as

    <script type='application/ld+json'>{"@context": "https://schema.org/", "@id": "https://doi.org/10.5281/zenodo.2645510", "@type": "Dataset", "creator": [{"@id": "https://orcid.org/0000-0001-8027-7963", "@type": "Person", "affiliation": "TU Bergakademie Freiberg", "name": "Kuhnen, \u00c1gatha"}, {"@id": "https://orcid.org/0000-0003-0549-7354", "@type": "Person", "affiliation": "TU Bergakademie Freiberg", "name": "Matschullat, J\u00f6rg"}, {"@id": "https://orcid.org/0000-0003-0009-4169", "@type": "Person", "affiliation": "Max Planck Institute for Biogeochemistry", "name": "Sierra, Carlos A"}, {"@id": "https://orcid.org/0000-0003-1260-447X", "@type": "Person", "affiliation": "Embrapa Amaz\u00f4nia Ocidental", "name": "Lima, R. M. B. de"}], "datePublished": "2019-11-05", "description": "\u003cp\u003eThis dataset presents C isotopic data from two sites (Apu\u0026iacute; and Manacapuru)\u0026nbsp;located in the state of Amazonas, Brazil. Soils were sampled at three time periods, under weak raining\u0026nbsp;(March-2016), extreme dry (August-2016), and strong\u0026nbsp;wet (March-2017)\u0026nbsp;conditions.\u0026nbsp;The dataset first presents\u0026nbsp;general information about the site (on the tab \u0026quot;site\u0026quot;), followed by\u0026nbsp;more detailed information (on the tab \u0026quot;profile\u0026quot;) about both sampling locations. The\u0026nbsp;coordinates, altitude, mean annual temperature, mean annual precipitation, soil order in USDA taxonomy and their respective land use categories\u0026nbsp;and vegetation classifications\u0026nbsp;are described.\u0026nbsp;\u003c/p\u003e\n\n\u003cp\u003eOn the \u0026#39;layer\u0026#39; tab,\u0026nbsp;information about the soil depth, percent sand, silt and clay, pH CaCl2 and H2O, Organic and Total Carbon, total nitrogen and carbon/nitrogen ratio are described. The bulk C-isotopic signature is also listed on this tab as the Bulk Layer \u0026Delta;14C and its standard deviation, Bulk Layer Fraction Modern and its standard deviation.\u0026nbsp;\u003c/p\u003e\n\n\u003cp\u003eThe\u0026nbsp;\u0026quot;Incubation\u0026quot; tab describes\u0026nbsp;details of the\u0026nbsp;soil incubations conducted\u0026nbsp;at Apu\u0026iacute; and Manacapuru. Information about the material and length of incubation, as well as the CO2 fluxes over the duration of incubation are reported. The respired C-isotopic signature during the incubation is also given on this tab as the incubation \u0026Delta;14C and its standard deviation, incubation Fraction Modern and its standard deviation.\u0026nbsp;\u003c/p\u003e", "distribution": [{"@type": "DataDownload", "contentUrl": "https://zenodo.org/api/files/cf8c363f-ae10-486b-86af-8b7a1b50cf53/Kuhnen_2019.xlsx", "encodingFormat": "xlsx"}], "identifier": "https://doi.org/10.5281/zenodo.2645510", "inLanguage": {"@type": "Language", "alternateName": "eng", "name": "English"}, "isPartOf": [{"@id": "https://doi.org/10.5194/soil-2019-16", "@type": "CreativeWork"}], "keywords": ["Carbon Isotope", "ISRaD", "Incubation", "Organic Carbon", "Total Carbon", "14C", "Amazon basin", "Oxisols"], "license": "http://creativecommons.org/licenses/by/4.0/legalcode", "name": "C-isotopic signatures and soil properties of Amazon basin oxisols", "url": "https://zenodo.org/record/2645510"}</script><script src="/static/gen/zenodo.60c4ee65.js"></script><script type="text/javascript" src="//cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script><script src="/static/gen/zenodo.search.cd696cd5.js"></script><script type="text/javascript">var addthis_config = {"data_track_addressbar": true};</script><script type="text/javascript"> // Bootstrap the Invenio CSL Formatter and invenio-search-js require([ "jquery", 'typeahead.js', 'bloodhound', "node_modules/angular/angular", "node_modules/invenio-csl-js/dist/invenio-csl-js", "node_modules/invenio-search-js/dist/invenio-search-js", "js/zenodo/module" ], function(typeahead, Bloodhound) { angular.element(document).ready(function() { // FIXME: This is already defined in js/zenodo_deposit/filters.js. // It should be moved to a common place... angular.module('zenodo.filters').filter('limitToEllipsis', function () { return function(text, n) { return (text.length > n) ? text.substr(0, n-1) + '…' : text; }; }); angular.bootstrap(document.getElementById("citations"), [ 'invenioSearch', 'zenodo.filters', 'mgcrea.ngStrap.tooltip', ] ); angular.bootstrap(document.getElementById("invenio-csl"), [ 'invenioCsl', ] ); }); } ); require([ "jquery", "js/zenodo/functions", ], function($, recordCommunityCurate) { $(function () { $("#recordCommunityCuration .btn").click(recordCommunityCurate); $('.preview-link').on('click', function(event) { $('#preview').show(); var filename = encodeURIComponent($(event.target).data('filename')); $('#preview-iframe').attr("src","/record/2645510/preview/" + filename); }); }); } ); $(function () { $('[data-toggle="tooltip"]').tooltip(); });</script><script type="text/javascript" src="//s7.addthis.com/js/300/addthis_widget.js#pubid=ra-5137aff66ad9c2a1"></script><script type='text/javascript' src='https://d1bxh8uas1mnw7.cloudfront.net/assets/embed.js'></script><script type="text/javascript">var _paq = _paq || [];_paq.push(["setDomains", ["*.zenodo.org","*.zenodo.cern.ch","*.zenodo.eu","*.zenodo.net"]]);_paq.push(["trackPageView"]);_paq.push(["enableLinkTracking"]);(function() { var u=(("https:" == document.location.protocol) ? "https" : "http") + "://piwik.web.cern.ch/"; _paq.push(["setTrackerUrl", u+"piwik.php"]); _paq.push(["setSiteId", "57"]); var d=document, g=d.createElement("script"), s=d.getElementsByTagName("script")[0]; g.type="text/javascript"; g.defer=true; g.async=true; g.src=u+"piwik.js"; s.parentNode.insertBefore(g,s);})();</script>
  • Kuhry, P., & Vitt, D. H. (1996). Fossil Carbon/Nitrogen Ratios as a Measure of Peat Decomposition. Ecology, 77(1), 271–275. doi:10.2307/2265676
  • KUHRY, P. (2008). Palsa and peat plateau development in the Hudson Bay Lowlands, Canada: timing, pathways and causes. Boreas, 37(2), 316–327. doi:10.1111/j.1502-3885.2007.00022.x
  • Kultti, S., Oksanen, P., & Väliranta, M. (2004). Holocene tree line, permafrost, and climate dynamics in the Nenets Region, East European Arctic. Canadian Journal of Earth Sciences, 41(10), 1141–1158. doi:10.1139/e04-058
  • Ladyman, S. J., & Harkness, D. D. (1980). Carbon Isotope Measurement as An Index of Soil Development. Radiocarbon, 22(3), 885–891. doi:10.1017/s0033822200010286
  • LÄHTEENOJA, O., RUOKOLAINEN, K., SCHULMAN, L., & OINONEN, M. (2009). Amazonian peatlands: an ignored C sink and potential source. Global Change Biology, 15(9), 2311–2320. doi:10.1111/j.1365-2486.2009.01920.x
  • Lähteenoja, O., Reátegui, Y. R., Räsänen, M., Torres, D. D. C., Oinonen, M., & Page, S. (2011). The large Amazonian peatland carbon sink in the subsiding Pastaza-Marañón foreland basin, Peru. Global Change Biology, 18(1), 164–178. doi:10.1111/j.1365-2486.2011.02504.x
  • Lähteenoja, O., Reátegui, Y. R., Räsänen, M., Torres, D. D. C., Oinonen, M., & Page, S. (2011). The large Amazonian peatland carbon sink in the subsiding Pastaza-Marañón foreland basin, Peru. Global Change Biology, 18(1), 164–178. doi:10.1111/j.1365-2486.2011.02504.x
  • Lamarre, A., Garneau, M., & Asnong, H. (2012). Holocene paleohydrological reconstruction and carbon accumulation of a permafrost peatland using testate amoeba and macrofossil analyses, Kuujjuarapik, subarctic Québec, Canada. Review of Palaeobotany and Palynology, 186, 131–141. doi:10.1016/j.revpalbo.2012.04.009
  • Laskar, A. H., Yadava, M. G., & Ramesh, R. (2012). Radiocarbon and Stable Carbon Isotopes in Two Soil Profiles from Northeast India. Radiocarbon, 54(1), 81–89. doi:10.2458/azu_js_rc.v54i1.15840
  • Lassey, K. R., Tate, K. R., Sparks, R. J., & Claydon, J. J. (1996). Historic Measurements of Radiocarbon in New Zealand Soils. Radiocarbon, 38(2), 253–270. doi:10.1017/s003382220001763x
  • Lavoie, M., Mack, M. C., & Schuur, E. A. G. (2011). Effects of elevated nitrogen and temperature on carbon and nitrogen dynamics in Alaskan arctic and boreal soils. Journal of Geophysical Research, 116(G3). doi:10.1029/2010jg001629
  • Lawrence, C. R., Harden, J. W., Xu, X., Schulz, M. S., & Trumbore, S. E. (2015). Long-term controls on soil organic carbon with depth and time: A case study from the Cowlitz River Chronosequence, WA USA. Geoderma, 247-248, 73–87. doi:10.1016/j.geoderma.2015.02.005
  • Leavitt, S. W., Follett, R. F., Kimble, J. M., & Pruessner, E. G. (2007). Radiocarbon and δ13C depth profiles of soil organic carbon in the U.S. Great Plains: A possible spatial record of paleoenvironment and paleovegetation. Quaternary International, 162-163, 21–34. doi:10.1016/j.quaint.2006.10.033
  • Lee, H., Schuur, E. A. G., Inglett, K. S., Lavoie, M., & Chanton, J. P. (2011). The rate of permafrost carbon release under aerobic and anaerobic conditions and its potential effects on climate. Global Change Biology, 18(2), 515–527. doi:10.1111/j.1365-2486.2011.02519.x
  • LEIFELD, J., ZIMMERMANN, M., FUHRER, J., & CONEN, F. (2009). Storage and turnover of carbon in grassland soils along an elevation gradient in the Swiss Alps. Global Change Biology, 15(3), 668–679. doi:10.1111/j.1365-2486.2008.01782.x
  • Leith, F. I., Garnett, M. H., Dinsmore, K. J., Billett, M. F., & Heal, K. V. (2014). Source and age of dissolved and gaseous carbon in a peatland–riparian–stream continuum: a dual isotope (14C and δ13C) analysis. Biogeochemistry, 119(1-3), 415–433. doi:10.1007/s10533-014-9977-y
  • Li, Y., & Mathews, B. W. (2010). Effect of conversion of sugarcane plantation to forest and pasture on soil carbon in Hawaii. Plant and Soil, 335(1-2), 245–253. doi:10.1007/s11104-010-0412-4
  • Liu, W., Moriizumi, J., Yamazawa, H., & Iida, T. (2006). Depth profiles of radiocarbon and carbon isotopic compositions of organic matter and CO2 in a forest soil. Journal of Environmental Radioactivity, 90(3), 210–223. doi:10.1016/j.jenvrad.2006.07.003
  • Loisel, J., & Garneau, M. (2010). Late Holocene paleoecohydrology and carbon accumulation estimates from two boreal peat bogs in eastern Canada: Potential and limits of multi-proxy archives. Palaeogeography, Palaeoclimatology, Palaeoecology, 291(3-4), 493–533. doi:10.1016/j.palaeo.2010.03.020
  • Loisel, J., Yu, Z., Beilman, D. W., Camill, P., Alm, J., Amesbury, M. J., … Barber, K. (2014). A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. The Holocene, 24(9), 1028–1042. doi:10.1177/0959683614538073
  • Lupascu, M., Welker, J. M., Seibt, U., Maseyk, K., Xu, X., & Czimczik, C. I. (2013). High Arctic wetting reduces permafrost carbon feedbacks to climate warming. Nature Climate Change, 4(1), 51–55. doi:10.1038/nclimate2058
  • Lupascu, M., Czimczik, C. I., Welker, M. C., Ziolkowski, L. A., Cooper, E. J., & Welker, J. M. (2018). Winter Ecosystem Respiration and Sources of CO2 From the High Arctic Tundra of Svalbard: Response to a Deeper Snow Experiment. Journal of Geophysical Research: Biogeosciences, 123(8), 2627–2642. doi:10.1029/2018jg004396
  • Lybrand, R. A., Heckman, K., & Rasmussen, C. (2017). Soil organic carbon partitioning and Δ14C variation in desert and conifer ecosystems of southern Arizona. Biogeochemistry, 134(3), 261–277. doi:10.1007/s10533-017-0360-7
  • Mann, P. J., Eglinton, T. I., McIntyre, C. P., Zimov, N., Davydova, A., Vonk, J. E., … Spencer, R. G. M. (2015). Utilization of ancient permafrost carbon in headwaters of Arctic fluvial networks. Nature Communications, 6(1). doi:10.1038/ncomms8856
  • Marín-Spiotta, E., Swanston, C. W., Torn, M. S., Silver, W. L., & Burton, S. D. (2008). Chemical and mineral control of soil carbon turnover in abandoned tropical pastures. Geoderma, 143(1-2), 49–62. doi:10.1016/j.geoderma.2007.10.001
  • Marin-Spiotta, E., Chadwick, O. A., Kramer, M., & Carbone, M. S. (2011). Carbon delivery to deep mineral horizons in Hawaiian rain forest soils. Journal of Geophysical Research, 116(G3). doi:10.1029/2010jg001587
  • Mariotti, A., & Peterschmitt, E. (1994). Forest savanna ecotone dynamics in India as revealed by carbon isotope ratios of soil organic matter. Oecologia, 97(4), 475–480. doi:10.1007/bf00325885
  • Martel, Y. A., & Paul, E. A. (1974). The Use of Radiocarbon Dating of Organic Matter in the Study of Soil Genesis. Soil Science Society of America Journal, 38(3), 501–506. doi:10.2136/sssaj1974.03615995003800030033x
  • Martens, C. S., Kelley, C. A., Chanton, J. P., & Showers, W. J. (1992). Carbon and hydrogen isotopic characterization of methane from wetlands and lakes of the Yukon-Kuskokwim delta, western Alaska. Journal of Geophysical Research, 97(D15), 16689. doi:10.1029/91jd02885
  • Masiello, C. A., Chadwick, O. A., Southon, J., Torn, M. S., & Harden, J. W. (2004). Weathering controls on mechanisms of carbon storage in grassland soils. Global Biogeochemical Cycles, 18(4), n/a–n/a. doi:10.1029/2004gb002219
  • Mayer, S., Schwindt, D., Steffens, M., Völkel, J., & Kögel-Knabner, I. (2018). Drivers of organic carbon allocation in a temperate slope-floodplain catena under agricultural use. Geoderma, 327, 63–72. doi:10.1016/j.geoderma.2018.04.021
  • McClaran, M. P., & Umlauf, M. (2000). Desert grassland dynamics estimated from carbon isotopes in grass phytoliths and soil organic matter. Journal of Vegetation Science, 11(1), 71–76. doi:10.2307/3236777
  • De Tapia, E. M., Rubio, I. D., Castro, J. G., Solleiro, E., & Sedov, S. (2005). Radiocarbon Dates from Soil Profiles in the Teotihuacán Valley, Mexico: Indicators of Geomorphological Processes. Radiocarbon, 47(1), 159–175. doi:10.1017/s0033822200052279
  • McFarlane, K. J., Hanson, P. J., Iversen, C. M., Phillips, J. R., & Brice, D. J. (2018). Local Spatial Heterogeneity of Holocene Carbon Accumulation throughout the Peat Profile of an Ombrotrophic Northern Minnesota Bog. Radiocarbon, 60(3), 941–962. doi:10.1017/rdc.2018.37
  • McFarlane, K. J., Torn, M. S., Hanson, P. J., Porras, R. C., Swanston, C. W., Callaham, M. A., & Guilderson, T. P. (2012). Comparison of soil organic matter dynamics at five temperate deciduous forests with physical fractionation and radiocarbon measurements. Biogeochemistry, 112(1-3), 457–476. doi:10.1007/s10533-012-9740-1
  • Porras, R. C., Hicks Pries, C. E., McFarlane, K. J., Hanson, P. J., & Torn, M. S. (2017). Association with pedogenic iron and aluminum: effects on soil organic carbon storage and stability in four temperate forest soils. Biogeochemistry, 133(3), 333–345. doi:10.1007/s10533-017-0337-6
  • Meyer, S., Leifeld, J., Bahn, M., & Fuhrer, J. (2012). Free and protected soil organic carbon dynamics respond differently to abandonment of mountain grassland. Biogeosciences, 9(2), 853–865. doi:10.5194/bg-9-853-2012
  • Mikutta, R., Schaumann, G. E., Gildemeister, D., Bonneville, S., Kramer, M. G., Chorover, J., … Guggenberger, G. (2009). Biogeochemistry of mineral–organic associations across a long-term mineralogical soil gradient (0.3–4100kyr), Hawaiian Islands. Geochimica et Cosmochimica Acta, 73(7), 2034–2060. doi:10.1016/j.gca.2008.12.028
  • Milton, G. M., & Kramer, S. J. (1997). Using 14C as a Tracer of Carbon Accumulation and Turnover in Soils. Radiocarbon, 40(2), 999–1011. doi:10.1017/s003382220001897x
  • Monreal, C. M., Schulten, H.-R., & Kodama, H. (1997). Age, turnover and molecular diversity of soil organic matter in aggregates of a Gleysol. Canadian Journal of Soil Science, 77(3), 379–388. doi:10.4141/s95-064
  • Mueller, C. W., Gutsch, M., Kothieringer, K., Leifeld, J., Rethemeyer, J., Brueggemann, N., & Kögel-Knabner, I. (2014). Bioavailability and isotopic composition of CO2 released from incubated soil organic matter fractions. Soil Biology and Biochemistry, 69, 168–178. doi:10.1016/j.soilbio.2013.11.006
  • Muhr, J., & Borken, W. (2009). Delayed recovery of soil respiration after wetting of dry soil further reduces C losses from a Norway spruce forest soil. Journal of Geophysical Research, 114(G4). doi:10.1029/2009jg000998
  • Myers-Smith, I. H., Harden, J. W., Wilmking, M., Fuller, C. C., McGuire, A. D., & Chapin, F. S. (2008). Wetland succession in a permafrost collapse: interactions between fire and thermokarst. Biogeosciences, 5(5), 1273–1286. doi:10.5194/bg-5-1273-2008
  • Nagy, R. C., Porder, S., Brando, P., Davidson, E. A., Figueira, A. M. e S., Neill, C., … Trumbore, S. (2018). Soil Carbon Dynamics in Soybean Cropland and Forests in Mato Grosso, Brazil. Journal of Geophysical Research: Biogeosciences, 123(1), 18–31. doi:10.1002/2017jg004269
  • Nakagawa, F., Yoshida, N., Nojiri, Y., & Makarov, V. (2002). Production of methane from alasses in eastern Siberia: Implications from its14C and stable isotopic compositions. Global Biogeochemical Cycles, 16(3), 14–1–14–15. doi:10.1029/2000gb001384
  • NATALI, S. M., SCHUUR, E. A. G., TRUCCO, C., HICKS PRIES, C. E., CRUMMER, K. G., & BARON LOPEZ, A. F. (2011). Effects of experimental warming of air, soil and permafrost on carbon balance in Alaskan tundra. Global Change Biology, 17(3), 1394–1407. doi:10.1111/j.1365-2486.2010.02303.x
  • Natali, S. M., Schuur, E. A. G., Mauritz, M., Schade, J. D., Celis, G., Crummer, K. G., … Webb, E. E. (2015). Permafrost thaw and soil moisture driving CO2 and CH4 release from upland tundra. Journal of Geophysical Research: Biogeosciences, 120(3), 525–537. doi:10.1002/2014jg002872
  • Nave, L. E., Drevnick, P. E., Heckman, K. A., Hofmeister, K. L., Veverica, T. J., & Swanston, C. W. (2017). Soil hydrology, physical and chemical properties and the distribution of carbon and mercury in a postglacial lake-plain wetland. Geoderma, 305, 40–52. doi:10.1016/j.geoderma.2017.05.035
  • Neff, J. C., Finlay, J. C., Zimov, S. A., Davydov, S. P., Carrasco, J. J., Schuur, E. A. G., & Davydova, A. I. (2006). Seasonal changes in the age and structure of dissolved organic carbon in Siberian rivers and streams. Geophysical Research Letters, 33(23). doi:10.1029/2006gl028222
  • Negandhi, K., Laurion, I., Whiticar, M. J., Galand, P. E., Xu, X., & Lovejoy, C. (2013). Small Thaw Ponds: An Unaccounted Source of Methane in the Canadian High Arctic. PLoS ONE, 8(11), e78204. doi:10.1371/journal.pone.0078204
  • Nichols, H. (1967). Pollen Diagrams from Sub-Arctic Central Canada. Science, 155(3770), 1665–1668. doi:10.1126/science.155.3770.1665
  • Nowinski, N. S., Trumbore, S. E., Jimenez, G., & Fenn, M. E. (2009). Alteration of belowground carbon dynamics by nitrogen addition in southern California mixed conifer forests. Journal of Geophysical Research: Biogeosciences, 114(G2), n/a–n/a. doi:10.1029/2008jg000801
  • Nowinski, N. S., Taneva, L., Trumbore, S. E., & Welker, J. M. (2010). Decomposition of old organic matter as a result of deeper active layers in a snow depth manipulation experiment. Oecologia, 163(3), 785–792. doi:10.1007/s00442-009-1556-x
  • O’Donnell, J. A., Aiken, G. R., Walvoord, M. A., Raymond, P. A., Butler, K. D., Dornblaser, M. M., & Heckman, K. (2014). Using dissolved organic matter age and composition to detect permafrost thaw in boreal watersheds of interior Alaska. Journal of Geophysical Research: Biogeosciences, 119(11), 2155–2170. doi:10.1002/2014jg002695
  • O’DONNELL, J. A., HARDEN, J. W., McGUIRE, A. D., KANEVSKIY, M. Z., JORGENSON, M. T., & XU, X. (2010). The effect of fire and permafrost interactions on soil carbon accumulation in an upland black spruce ecosystem of interior Alaska: implications for post-thaw carbon loss. Global Change Biology, 17(3), 1461–1474. doi:10.1111/j.1365-2486.2010.02358.x
  • O’Donnell, J. A., Jorgenson, M. T., Harden, J. W., McGuire, A. D., Kanevskiy, M. Z., & Wickland, K. P. (2011). The Effects of Permafrost Thaw on Soil Hydrologic, Thermal, and Carbon Dynamics in an Alaskan Peatland. Ecosystems, 15(2), 213–229. doi:10.1007/s10021-011-9504-0
  • O’Brien, B. J. (1986). The Use of Natural and Anthropogenic 14C to Investigate the Dynamics of Soil Organic Carbon. Radiocarbon, 28(2A), 358–362. doi:10.1017/s0033822200007463
  • Ohno, T., Heckman, K. A., Plante, A. F., Fernandez, I. J., & Parr, T. B. (2017). 14 C mean residence time and its relationship with thermal stability and molecular composition of soil organic matter: A case study of deciduous and coniferous forest types. Geoderma, 308, 1–8. doi:10.1016/j.geoderma.2017.08.023
  • Oksanen, P. O., Kuhry, P., & Alekseeva, R. N. (2001). Holocene development of the Rogovaya River peat plateau, European Russian Arctic. The Holocene, 11(1), 25–40. doi:10.1191/095968301675477157
  • Oksanen, P. O., Kuhry, P., & Alekseeva, R. N. (2005). Holocene Development and Permafrost History of the Usinsk Mire, Northeast European Russia. Géographie Physique et Quaternaire, 57(2-3), 169–187. doi:10.7202/011312ar
  • OKSANEN, P. O. (2008). Holocene development of the Vaisjeäggi palsa mire, Finnish Lapland. Boreas, 35(1), 81–95. doi:10.1111/j.1502-3885.2006.tb01114.x
  • Ouzilleau Samson, D., Bhiry, N., & Lavoie, M. (2010). Late-Holocene palaeoecology of a polygonal peatland on the south shore of Hudson Strait, northern Québec, Canada. The Holocene, 20(4), 525–536. doi:10.1177/0959683609356582
  • Panova, N. K., Trofimova, S. S., Antipina, T. G., Zinoviev, E. V., Gilev, A. V., & Erokhin, N. G. (2010). Holocene dynamics of vegetation and ecological conditions in the southern Yamal Peninsula according to the results of comprehensive analysis of a relict peat bog deposit. Russian Journal of Ecology, 41(1), 20–27. doi:10.1134/s1067413610010042
  • Paul, E. A., Follett, R. F., Leavitt, S. W., Halvorson, A., Peterson, G. A., & Lyon, D. J. (1997). Radiocarbon Dating for Determination of Soil Organic Matter Pool Sizes and Dynamics. Soil Science Society of America Journal, 61(4), 1058–1067. doi:10.2136/sssaj1997.03615995006100040011x
  • <title>Soil radiocarbon from moist acidic tussock and erect shrub tundra at Toolik Field Station | Zenodo</title>

    November 4, 2019 Dataset Open Access

    Soil radiocarbon from moist acidic tussock and erect shrub tundra at Toolik Field Station

    Pedron, Shawn; Holden, Sandra R.; Welker, Jeffrey M.; Ziolkowski, Lori A.; Mortero, Grace; Li, Hongyu; Walker, Jennifer; Xu, Xiaomei; Czimczik, Claudia I.

    Soil radiocarbon data from one moist acidic tussock tundra and one erect shrub tundra (Betula glandulosa) site in the northern foothills of the Brooks Range near Toolik Field Station, AK, USA. Data covers the active layer. The tussock site is located on Itkillik I glacial deposits. The shrub site is a palsa within a riparian area, and likely underwent a relatively recent shift in vegetation cover from wet sedge to shrub. (The soil profile is made up of two different soil types within the active layer).

    Files (841.7 kB)
    Name Size
    Pedron_2019.xlsx
    md5:afaceeb014ef18deaf34b2b26d0f55f9
    841.7 kB Download
    12
    3
    views
    downloads
    See more details...
    All versions This version
    Views 1212
    Downloads 33
    Data volume 2.5 MB2.5 MB
    Unique views 99
    Unique downloads 22
    Indexed in
    Publication date:
    November 4, 2019
    DOI:
    10.5281/zenodo.3370053

    Zenodo DOI Badge

    DOI

    10.5281/zenodo.3370053

    Markdown

    [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.3370053.svg)](https://doi.org/10.5281/zenodo.3370053)

    reStructedText

    .. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.3370053.svg   :target: https://doi.org/10.5281/zenodo.3370053

    HTML

    <a href="https://doi.org/10.5281/zenodo.3370053"><img src="https://zenodo.org/badge/DOI/10.5281/zenodo.3370053.svg" alt="DOI"></a>

    Image URL

    https://zenodo.org/badge/DOI/10.5281/zenodo.3370053.svg

    Target URL

    https://doi.org/10.5281/zenodo.3370053

    License (for files):
    Creative Commons Attribution 4.0 International

    Versions

    Version 1 10.5281/zenodo.3370053 Nov 4, 2019
    Cite all versions? You can cite all versions by using the DOI 10.5281/zenodo.3370052. This DOI represents all versions, and will always resolve to the latest one. Read more.

    Share

    Cite as

    <script type='application/ld+json'>{"@context": "https://schema.org/", "@id": "https://doi.org/10.5281/zenodo.3370053", "@type": "Dataset", "creator": [{"@type": "Person", "affiliation": "Department of Earth System Science, University of California, Irvine, CA 92697-3100, USA", "name": "Pedron, Shawn"}, {"@type": "Person", "affiliation": "Department of Earth System Science, University of California, Irvine, CA 92697-3100, USA", "name": "Holden, Sandra R."}, {"@type": "Person", "affiliation": "Department of Biological Sciences, University of Alaska, Anchorage, AK 99508, USA", "name": "Welker, Jeffrey M."}, {"@type": "Person", "affiliation": "School of the Earth, Ocean and Environment, University of South Carolina, Columbia, SC 29208, USA", "name": "Ziolkowski, Lori A."}, {"@type": "Person", "affiliation": "Department of Earth System Science, University of California, Irvine, CA 92697-3100, USA", "name": "Mortero, Grace"}, {"@type": "Person", "affiliation": "School of the Earth, Ocean and Environment, University of South Carolina, Columbia, SC 29208, USA", "name": "Li, Hongyu"}, {"@type": "Person", "affiliation": "Department of Earth System Science, University of California, Irvine, CA 92697-3100, USA", "name": "Walker, Jennifer"}, {"@type": "Person", "affiliation": "Department of Earth System Science, University of California, Irvine, CA 92697-3100, USA", "name": "Xu, Xiaomei"}, {"@type": "Person", "affiliation": "Department of Earth System Science, University of California, Irvine, CA 92697-3100, USA", "name": "Czimczik, Claudia I."}], "datePublished": "2019-11-04", "description": "\u003cp\u003eSoil radiocarbon data from one moist acidic tussock tundra and one erect shrub tundra (\u003cem\u003eBetula glandulosa\u003c/em\u003e) site\u0026nbsp;in\u0026nbsp;the northern foothills of the Brooks Range near\u0026nbsp;Toolik Field Station, AK, USA. Data covers the active layer. The tussock site is located on Itkillik I glacial deposits. The shrub site is a palsa within a riparian area, and likely underwent a relatively recent shift in vegetation cover from wet sedge to shrub. (The soil profile is made up of two different soil types within the active layer).\u003c/p\u003e", "distribution": [{"@type": "DataDownload", "contentUrl": "https://zenodo.org/api/files/0ddd59f9-6729-400c-a552-4bcd64856722/Pedron_2019.xlsx", "encodingFormat": "xlsx"}], "identifier": "https://doi.org/10.5281/zenodo.3370053", "license": "http://creativecommons.org/licenses/by/4.0/legalcode", "name": "Soil radiocarbon from moist acidic tussock and erect shrub tundra at Toolik Field Station", "url": "https://zenodo.org/record/3370053"}</script><script src="/static/gen/zenodo.60c4ee65.js"></script><script type="text/javascript" src="//cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script><script src="/static/gen/zenodo.search.cd696cd5.js"></script><script type="text/javascript">var addthis_config = {"data_track_addressbar": true};</script><script type="text/javascript"> // Bootstrap the Invenio CSL Formatter and invenio-search-js require([ "jquery", 'typeahead.js', 'bloodhound', "node_modules/angular/angular", "node_modules/invenio-csl-js/dist/invenio-csl-js", "node_modules/invenio-search-js/dist/invenio-search-js", "js/zenodo/module" ], function(typeahead, Bloodhound) { angular.element(document).ready(function() { // FIXME: This is already defined in js/zenodo_deposit/filters.js. // It should be moved to a common place... angular.module('zenodo.filters').filter('limitToEllipsis', function () { return function(text, n) { return (text.length > n) ? text.substr(0, n-1) + '…' : text; }; }); angular.bootstrap(document.getElementById("citations"), [ 'invenioSearch', 'zenodo.filters', 'mgcrea.ngStrap.tooltip', ] ); angular.bootstrap(document.getElementById("invenio-csl"), [ 'invenioCsl', ] ); }); } ); require([ "jquery", "js/zenodo/functions", ], function($, recordCommunityCurate) { $(function () { $("#recordCommunityCuration .btn").click(recordCommunityCurate); $('.preview-link').on('click', function(event) { $('#preview').show(); var filename = encodeURIComponent($(event.target).data('filename')); $('#preview-iframe').attr("src","/record/3370053/preview/" + filename); }); }); } ); $(function () { $('[data-toggle="tooltip"]').tooltip(); });</script><script type="text/javascript" src="//s7.addthis.com/js/300/addthis_widget.js#pubid=ra-5137aff66ad9c2a1"></script><script type='text/javascript' src='https://d1bxh8uas1mnw7.cloudfront.net/assets/embed.js'></script><script type="text/javascript">var _paq = _paq || [];_paq.push(["setDomains", ["*.zenodo.org","*.zenodo.cern.ch","*.zenodo.eu","*.zenodo.net"]]);_paq.push(["trackPageView"]);_paq.push(["enableLinkTracking"]);(function() { var u=(("https:" == document.location.protocol) ? "https" : "http") + "://piwik.web.cern.ch/"; _paq.push(["setTrackerUrl", u+"piwik.php"]); _paq.push(["setSiteId", "57"]); var d=document, g=d.createElement("script"), s=d.getElementsByTagName("script")[0]; g.type="text/javascript"; g.defer=true; g.async=true; g.src=u+"piwik.js"; s.parentNode.insertBefore(g,s);})();</script>
  • Pegoraro, E., Mauritz, M., Bracho, R., Ebert, C., Dijkstra, P., Hungate, B. A., … Schuur, E. A. G. (2019). Glucose addition increases the magnitude and decreases the age of soil respired carbon in a long-term permafrost incubation study. Soil Biology and Biochemistry, 129, 201–211. doi:10.1016/j.soilbio.2018.10.009
  • Pérez, T., Garcia-Montiel, D., Trumbore, S., Tyler, S., Camargo, P. de, Moreira, M., … Cerri, C. (2006). NITROUS OXIDE NITRIFICATION AND DENITRIFICATION15N ENRICHMENT FACTORS FROM AMAZON FOREST SOILS. Ecological Applications, 16(6), 2153–2167. doi:10.1890/1051-0761(2006)016[2153:nonadn]2.0.co;2
  • Pessenda, L. C. R., Valencia, E. P. E., Camargo, P. B., Telles, E. C. C., Martinelli, L. A., Cerri, C. C., … Rozanski, K. (1996). Natural Radiocarbon Measurements in Brazilian Soils Developed on Basic Rocks. Radiocarbon, 38(2), 203–208. doi:10.1017/s0033822200017574
  • Pessenda, L. C. R., Gouveia, S. E. M., & Aravena, R. (2001). Radiocarbon Dating of Total Soil Organic Matter and Humin Fraction and Its Comparison with 14C Ages of Fossil Charcoal. Radiocarbon, 43(2B), 595–601. doi:10.1017/s0033822200041242
  • PETEET, D., ANDREEV, A., BARDEEN, W., & MISTRETTA, F. (2008). Long-term Arctic peatland dynamics, vegetation and climate history of the Pur-Taz region, Western Siberia. Boreas, 27(2), 115–126. doi:10.1111/j.1502-3885.1998.tb00872.x
  • Phillips, C. L., McFarlane, K. J., Risk, D., & Desai, A. R. (2013). Biological and physical influences on soil 14CO2 seasonal dynamics in a temperate hardwood forest. Biogeosciences, 10(12), 7999–8012. doi:10.5194/bg-10-7999-2013
  • Posada, J. M., & Schuur, E. A. G. (2011). Relationships among precipitation regime, nutrient availability, and carbon turnover in tropical rain forests. Oecologia, 165(3), 783–795. doi:10.1007/s00442-010-1881-0
  • Quideau, S. A., Chadwick, O. A., Trumbore, S. E., Johnson-Maynard, J. L., Graham, R. C., & Anderson, M. A. (2001). Vegetation control on soil organic matter dynamics. Organic Geochemistry, 32(2), 247–252. doi:10.1016/s0146-6380(00)00171-6
  • Rabbi, S. M. F., Hua, Q., Daniel, H., Lockwood, P. V., Wilson, B. R., & Young, I. M. (2013). Mean Residence Time of Soil Organic Carbon in Aggregates Under Contrasting Land Uses Based on Radiocarbon Measurements. Radiocarbon, 55(1), 127–139. doi:10.2458/azu_js_rc.v55i1.16179
  • Rasmussen, C., Torn, M. S., & Southard, R. J. (2005). Mineral Assemblage and Aggregates Control Carbon Dynamics in a California Conifer Forest. Soil Science Society of America Journal, 69(6), 1711–1721. doi:10.2136/sssaj2005.0040
  • Rasmussen, C., & White, D. A. (2010). Vegetation Effects on Soil Organic Carbon Quality in an Arid Hyperthermic Ecosystem. Soil Science, 175(9), 438–446. doi:10.1097/ss.0b013e3181f38400
  • Rasmussen, C., Throckmorton, H., Liles, G., Heckman, K., Meding, S., & Horwath, W. (2018). Controls on Soil Organic Carbon Partitioning and Stabilization in the California Sierra Nevada. Soil Systems, 2(3), 41. doi:10.3390/soilsystems2030041
  • Resh, S. C., Binkley, D., & Parrotta, J. A. (2002). Greater Soil Carbon Sequestration under Nitrogen-fixing Trees Compared with Eucalyptus Species. Ecosystems, 5(3), 217–231. doi:10.1007/s10021-001-0067-3
  • Rethemeyer, J., Kramer, C., Gleixner, G., John, B., Yamashita, T., Flessa, H., … Grootes, P. M. (2005). Transformation of organic matter in agricultural soils: radiocarbon concentration versus soil depth. Geoderma, 128(1-2), 94–105. doi:10.1016/j.geoderma.2004.12.017
  • Richter, D. D., Markewitz, D., Trumbore, S. E., & Wells, C. G. (1999). Rapid accumulation and turnover of soil carbon in a re-establishing forest. Nature, 400(6739), 56–58. doi:10.1038/21867
  • Robinson, S. D. (2006). Carbon accumulation in peatlands, southwestern Northwest Territories, Canada. Canadian Journal of Soil Science, 86(Special Issue), 305–319. doi:10.4141/s05-086
  • Rogers, B. M., Veraverbeke, S., Azzari, G., Czimczik, C. I., Holden, S. R., Mouteva, G. O., … Randerson, J. T. (2014). Quantifying fire-wide carbon emissions in interior Alaska using field measurements and Landsat imagery. Journal of Geophysical Research: Biogeosciences, 119(8), 1608–1629. doi:10.1002/2014jg002657
  • Rumpel, C., Kögel-Knabner, I., & Bruhn, F. (2002). Vertical distribution, age, and chemical composition of organic carbon in two forest soils of different pedogenesis. Organic Geochemistry, 33(10), 1131–1142. doi:10.1016/s0146-6380(02)00088-8
  • Rumpel, C., Chaplot, V., Chabbi, A., Largeau, C., & Valentin, C. (2008). Stabilisation of HF soluble and HCl resistant organic matter in sloping tropical soils under slash and burn agriculture. Geoderma, 145(3-4), 347–354. doi:10.1016/j.geoderma.2008.04.001
  • Saiz, G., Bird, M., Wurster, C., Quesada, C. A., Ascough, P., Domingues, T., … Lloyd, J. (2015). The influence of C3 and C4 vegetation on soil organic matter dynamics in contrasting semi-natural tropical ecosystems. Biogeosciences, 12(16), 5041–5059. doi:10.5194/bg-12-5041-2015
  • Sanderman, J., Creamer, C., Baisden, W. T., Farrell, M., & Fallon, S. (2017). Greater soil carbon stocks and faster turnover rates with increasing agricultural productivity. SOIL, 3(1), 1–16. doi:10.5194/soil-3-1-2017
  • NULL
  • Scharpenseel, H. W., & Pietig, F. (1973). University of Bonn Natural Radiocarbon Measurements V. Radiocarbon, 15(1), 13–41. doi:10.1017/s0033822200058586
  • Schimel, J. P., Wetterstedt, J. Å. M., Holden, P. A., & Trumbore, S. E. (2011). Drying/rewetting cycles mobilize old C from deep soils from a California annual grassland. Soil Biology and Biochemistry, 43(5), 1101–1103. doi:10.1016/j.soilbio.2011.01.008
  • Schöning, I., & Kögel-Knabner, I. (2006). Chemical composition of young and old carbon pools throughout Cambisol and Luvisol profiles under forests. Soil Biology and Biochemistry, 38(8), 2411–2424. doi:10.1016/j.soilbio.2006.03.005
  • Schulze, K., Borken, W., Muhr, J., & Matzner, E. (2009). Stock, turnover time and accumulation of organic matter in bulk and density fractions of a Podzol soil. European Journal of Soil Science, 60(4), 567–577. doi:10.1111/j.1365-2389.2009.01134.x
  • Schulze, K., Borken, W., & Matzner, E. (2010). Dynamics of dissolved organic 14C in throughfall and soil solution of a Norway spruce forest. Biogeochemistry, 106(3), 461–473. doi:10.1007/s10533-010-9526-2
  • Schuur, E. A. G., Chadwick, O. A., & Matson, P. A. (2001). CARBON CYCLING AND SOIL CARBON STORAGE IN MESIC TO WET HAWAIIAN MONTANE FORESTS. Ecology, 82(11), 3182–3196. doi:10.1890/0012-9658(2001)082[3182:ccascs]2.0.co;2
  • Schuur, E. A. G., & Trumbore, S. E. (2006). Partitioning sources of soil respiration in boreal black spruce forest using radiocarbon. Global Change Biology, 12(2), 165–176. doi:10.1111/j.1365-2486.2005.01066.x
  • Schuur, E. A. G., Vogel, J. G., Crummer, K. G., Lee, H., Sickman, J. O., & Osterkamp, T. E. (2009). The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature, 459(7246), 556–559. doi:10.1038/nature08031
  • Schwartz, D., de Foresta, H., Mariotti, A., Balesdent, J., Massimba, J. P., & Girardin, C. (1996). Present dynamics of the savanna-forest boundary in the Congolese Mayombe: a pedological, botanical and isotopic (13C and 14C) study. Oecologia, 106(4), 516–524. doi:10.1007/bf00329710
  • Shaw, D., Franklin, J., Bible, K., Klopatek, J., Freeman, E., Greene, S., & Parker, G. (2004). Ecological Setting of the Wind River Old-growth Forest. Ecosystems, 7(5). doi:10.1007/s10021-004-0135-6
  • Shen, C., Yi, W., Sun, Y., Xing, C., Yang, Y., Yuan, C., … Liu, T. (2001). Distribution of 14C and 13C in Forest Soils of the Dinghushan Biosphere Reserve. Radiocarbon, 43(2B), 671–678. doi:10.1017/s0033822200041321
  • Sierra, C. A., Trumbore, S. E., Davidson, E. A., Frey, S. D., Savage, K. E., & Hopkins, F. M. (2012). Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil. Biogeosciences, 9(8), 3013–3028. doi:10.5194/bg-9-3013-2012
  • Sierra, C. A., Jiménez, E. M., Reu, B., Peñuela, M. C., Thuille, A., & Quesada, C. A. (2013). Low vertical transfer rates of carbon inferred from radiocarbon analysis in an Amazon Podzol. Biogeosciences, 10(6), 3455–3464. doi:10.5194/bg-10-3455-2013
  • Sollins, P., Swanston, C., Kleber, M., Filley, T., Kramer, M., Crow, S., … Bowden, R. (2006). Organic C and N stabilization in a forest soil: Evidence from sequential density fractionation. Soil Biology and Biochemistry, 38(11), 3313–3324. doi:10.1016/j.soilbio.2006.04.014
  • Sollins, P., Kramer, M. G., Swanston, C., Lajtha, K., Filley, T., Aufdenkampe, A. K., … Bowden, R. D. (2009). Sequential density fractionation across soils of contrasting mineralogy: evidence for both microbial- and mineral-controlled soil organic matter stabilization. Biogeochemistry, 96(1-3), 209–231. doi:10.1007/s10533-009-9359-z
  • Stephan, S., Berrier, J., De Petre, A. A., Jeanson, C., Kooistra, M. J., Scharpenseel, H. W., & Schiffmann, H. (1983). Characterization of in situ organic matter constituents in vertisols from Argentina, using submicroscopic and cytochemical methods — first report. Geoderma, 30(1-4), 21–34. doi:10.1016/0016-7061(83)90054-x
  • Stout, J. D., & Goh, K. M. (1980). The Use of Radiocarbon to Measure the Effects of Earthworms On Soil Development. Radiocarbon, 22(3), 892–896. doi:10.1017/s0033822200010298
  • Striegl, R. G., Dornblaser, M. M., Aiken, G. R., Wickland, K. P., & Raymond, P. A. (2007). Carbon export and cycling by the Yukon, Tanana, and Porcupine rivers, Alaska, 2001-2005. Water Resources Research, 43(2). doi:10.1029/2006wr005201
  • Stubbins, A., Hood, E., Raymond, P. A., Aiken, G. R., Sleighter, R. L., Hernes, P. J., … Spencer, R. G. M. (2012). Anthropogenic aerosols as a source of ancient dissolved organic matter in glaciers. Nature Geoscience, 5(3), 198–201. doi:10.1038/ngeo1403
  • Swanston, C. W., Torn, M. S., Hanson, P. J., Southon, J. R., Garten, C. T., Hanlon, E. M., & Ganio, L. (2005). Initial characterization of processes of soil carbon stabilization using forest stand-level radiocarbon enrichment. Geoderma, 128(1-2), 52–62. doi:10.1016/j.geoderma.2004.12.015
  • Swindles, G. T., Morris, P. J., Whitney, B., Galloway, J. M., Gałka, M., Gallego‐Sala, A., … Lähteenoja, O. (2017). Ecosystem state shifts during long‐term development of an Amazonian peatland. Global Change Biology, 24(2), 738–757. doi:10.1111/gcb.13950
  • Szymanski, L. M., Sanford, G. R., Heckman, K. A., Jackson, R. D., & Marín-Spiotta, E. (2019). Conversion to bioenergy crops alters the amount and age of microbially-respired soil carbon. Soil Biology and Biochemistry, 128, 35–44. doi:10.1016/j.soilbio.2018.08.025
  • Tan, W., Zhou, L., & Liu, K. (2013). Soil aggregate fraction-based 14C analysis and its application in the study of soil organic carbon turnover under forests of different ages. Chinese Science Bulletin, 58(16), 1936–1947. doi:10.1007/s11434-012-5660-7
  • NULL
  • Taylor, A. J., Lai, C.-T., Hopkins, F. M., Wharton, S., Bible, K., Xu, X., … Ehleringer, J. R. (2015). Radiocarbon-Based Partitioning of Soil Respiration in an Old-Growth Coniferous Forest. Ecosystems, 18(3), 459–470. doi:10.1007/s10021-014-9839-4
  • Tefs, C., & Gleixner, G. (2012). Importance of root derived carbon for soil organic matter storage in a temperate old-growth beech forest – Evidence from C, N and 14C content. Forest Ecology and Management, 263, 131–137. doi:10.1016/j.foreco.2011.09.010
  • Tegen, I., & Dörr, H. (1996). 14C Measurements of Soil Organic Matter, Soil Co2 and Dissolved Organic Carbon (1987–1992). Radiocarbon, 38(2), 247–251. doi:10.1017/s0033822200017628
  • Martinelli, I. A., Pessenda, L. C. R., Espinoza, E., Camargo, P. B., Telles, F. C., Cerri, C. C., … Trumbore, S. (1996). Carbon-13 variation with depth in soils of Brazil and climate change during the Quaternary. Oecologia, 106(3), 376–381. doi:10.1007/bf00334565
  • Tifafi, M., Camino-Serrano, M., Hatté, C., Morras, H., Moretti, L., Barbaro, S., … Guenet, B. (2018). The use of radiocarbon 14C to constrain carbon dynamics in the soil module of the land surface model ORCHIDEE (SVN r5165). Geoscientific Model Development, 11(12), 4711–4726. doi:10.5194/gmd-11-4711-2018
  • Tonneijck, F. H., van der Plicht, J., Jansen, B., Verstraten, J. M., & Hooghiemstra, H. (2006). Radiocarbon Dating of Soil Organic Matter Fractions in Andosols in Northern Ecuador. Radiocarbon, 48(3), 337–353. doi:10.1017/s0033822200038790
  • Torn, M. S., Trumbore, S. E., Chadwick, O. A., Vitousek, P. M., & Hendricks, D. M. (1997). Mineral control of soil organic carbon storage and turnover. Nature, 389(6647), 170–173. doi:10.1038/38260
  • Torn, M. S., Lapenis, A. G., Timofeev, A., Fischer, M. L., Babikov, B. V., & Harden, J. W. (2002). Organic carbon and carbon isotopes in modern and 100-year-old-soil archives of the Russian steppe. Global Change Biology, 8(10), 941–953. doi:10.1046/j.1365-2486.2002.00477.x
  • Torn, M. S., Vitousek, P. M., & Trumbore, S. E. (2005). The Influence of Nutrient Availability on Soil Organic Matter Turnover Estimated by Incubations and Radiocarbon Modeling. Ecosystems, 8(4), 352–372. doi:10.1007/s10021-004-0259-8
  • Tremblay, S., Bhiry, N., & Lavoie, M. (2014). Long-term dynamics of a palsa in the sporadic permafrost zone of northwestern Quebec (Canada). Canadian Journal of Earth Sciences, 51(5), 500–509. doi:10.1139/cjes-2013-0123
  • Trumbore, S. E. (1993). Comparison of carbon dynamics in tropical and temperate soils using radiocarbon measurements. Global Biogeochemical Cycles, 7(2), 275–290. doi:10.1029/93gb00468
  • Trumbore, S. E., Davidson, E. A., Barbosa de Camargo, P., Nepstad, D. C., & Martinelli, L. A. (1995). Belowground cycling of carbon in forests and pastures of eastern Amazonia. Global Biogeochemical Cycles, 9(4), 515–528. doi:10.1029/95gb02148
  • De Camargo, P. B., Trumbore, S. E., Martinelli, L. A., Davidson, E. A., Nepstad, D. C., & Victoria, R. L. (1999). Soil carbon dynamics in regrowing forest of eastern Amazonia. Global Change Biology, 5(6), 693–702. doi:10.1046/j.1365-2486.1999.00259.x
  • <title>LBA-ECO CD-08 Carbon Isotopes in Belowground Carbon Pools, Amazonas and Para, Brazil , https://doi.org/10.3334/ORNLDAAC/1025</title><script type="application/ld+json">{"provider":{"logo":"https://daac.ornl.gov/daac_logo.png","name":"ORNL DAAC","url":"https://daac.ornl.gov","@type":"Organization"},"sourceOrganization":{"logo":"https://daac.ornl.gov/daac_logo.png","name":"ORNL DAAC","url":"https://daac.ornl.gov","@type":"Organization"},"creator":[{"name":"TELLES, E.D.C.","@type":"Person"},{"name":"DE CAMARGO, P.B.","@type":"Person"},{"name":"MARTINELLI, L.A.","@type":"Person"},{"name":"TRUMBORE, S.E.","@type":"Person"},{"name":"DA COSTA, E.S.","@type":"Person"},{"name":"SANTOS, J.","@type":"Person"},{"name":"HIGUCHI, N.","@type":"Person"},{"name":"OLIVEIRA, R.C.D.","@type":"Person"},{"name":"MARKEWITZ, D.","@type":"Person"}],"publishingPrinciples":"https://daac.ornl.gov/submit/","isAccessibleForFree":"true","keywords":["C14","C13","CARBON13","ROOTS","CARBON ISOTOPES","RADIOCARBON","SOIL ORGANIC MATTER","SOIL CARBON","LAND SURFACE > SOILS > CARBON","LAND SURFACE > SOILS > SOIL GAS/AIR","SOLID EARTH > GEOCHEMISTRY > GEOCHEMICAL PROPERTIES > ISOTOPES","LABORATORY > MASS SPECTROMETERS","LABORATORY > CHN ANALYZERS"],"spatialCoverage":{"geo":{"box":"-3.017 -60.2091 -2.5 -47.516","@type":"GeoShape"},"@type":"Place"},"url":"https://doi.org/10.3334/ORNLDAAC/1025","about":{"url":"https://daac.ornl.gov/LBA/guides/CD08_C_Isotopes_Belowground.html","name":"User Guide","image":"https://daac.ornl.gov/daac_logo.png","@type":"WebPage"},"publisher":{"logo":"https://daac.ornl.gov/daac_logo.png","contactPoint":{"email":"uso@daac.ornl.gov","telephone":"+18652413952","contactType":"customer support","name":"ORNL DAAC User Support Office","@type":"ContactPoint"},"name":"ORNL DAAC","url":"https://daac.ornl.gov","@type":"Organization"},"@type":"DataSet","citation":"Telles, E.D.C., P.B. de Camargo, L.A. Martinelli, S.E. Trumbore, E.S. da Costa, J. Santos, N. Higuchi, R.C.D. Oliveira, and D. Markewitz. 2011. LBA-ECO CD-08 Carbon Isotopes in Belowground Carbon Pools, Amazonas and Para, Brazil. ORNL DAAC, Oak Ridge, Tennessee, USA. http://dx.doi.org/10.3334/ORNLDAAC/1025","dateCreated":"2011-08-22","locationCreated":"Oak Ridge, Tennessee, USA","thumbnailUrl":"","temporalCoverage":"1992-05-01/1999-07-05","version":"1","name":"LBA-ECO CD-08 Carbon Isotopes in Belowground Carbon Pools, Amazonas and Para, Brazil ","description":"This data set contains carbon isotope signatures from soil organic matter collected from the following sites: the forests of the ZF-2 INPA reserve approximately 80 km north of the city of Manaus, Amazon; the Tapajos National Forest approximately 83 km south of the city of Santarem, Para; and the Fazenda Vitoria, a ranch near the city of Paragominas, Para. Samples from the Fazenda Vitoria were from degraded and managed pasture sites as well as mature and secondary forests. In addition,carbon isotope signatures from roots sorted by size class, hand-picked from soil pits in the Flona Tapajos and Fazenda Vitoria, are included, as are carbon isotope signatures from soil gases from samples collected at the Fazenda Vitoria. There are 4 ASCII data files with this data set.\r\n\r\n","sameAs":"https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1025","distribution":[{"provider":{"logo":"https://daac.ornl.gov/daac_logo.png","name":"ORNL DAAC","url":"https://daac.ornl.gov","@type":"Organization"},"url":"https://daac.ornl.gov/daacdata/lba/carbon_dynamics/CD08_C_Isotopes_Belowground/","name":"Direct Access: LBA-ECO CD-08 Carbon Isotopes in Belowground Carbon Pools, Amazonas and Para, Brazil ","publisher":{"logo":"https://daac.ornl.gov/daac_logo.png","name":"ORNL DAAC","url":"https://daac.ornl.gov","@type":"Organization"},"encodingFormat":null,"description":"This link allows direct data access via Earthdata Login to: LBA-ECO CD-08 Carbon Isotopes in Belowground Carbon Pools, Amazonas and Para, Brazil ","@type":"DataDownload"},{"provider":{"logo":"https://daac.ornl.gov/daac_logo.png","name":"ORNL DAAC","url":"https://daac.ornl.gov","@type":"Organization"},"contentSize":"22.1 KB","name":"Download Dataset: LBA-ECO CD-08 Carbon Isotopes in Belowground Carbon Pools, Amazonas and Para, Brazil ","description":"Download entire dataset bundle: LBA-ECO CD-08 Carbon Isotopes in Belowground Carbon Pools, Amazonas and Para, Brazil ","url":"https://daac.ornl.gov/cgi-bin/download.pl?ds_id=1025&source=schema_org_metadata","encodingFormat":null,"publisher":{"logo":"https://daac.ornl.gov/daac_logo.png","name":"ORNL DAAC","url":"https://daac.ornl.gov","@type":"Organization"},"@type":"DataDownload"}],"datePublished":"2011-08-22","includedInDataCatalog":[{"provider":{"logo":"https://daac.ornl.gov/daac_logo.png","name":"ORNL DAAC","url":"https://daac.ornl.gov","@type":"Organization"},"url":"https://daac.ornl.gov/cgi-bin/dataset_lister.pl?p=11","name":"Large Scale Biosphere-Atmosphere Experiment (LBA-ECO)","publisher":{"logo":"https://daac.ornl.gov/daac_logo.png","name":"ORNL DAAC","url":"https://daac.ornl.gov","@type":"Organization"},"@type":"DataCatalog"},{"provider":{"logo":"https://daac.ornl.gov/daac_logo.png","name":"ORNL DAAC","url":"https://daac.ornl.gov","@type":"Organization"},"url":"https://search.earthdata.nasa.gov/search","name":"NASA Earthdata Search","publisher":{"logo":"https://daac.ornl.gov/daac_logo.png","name":"ORNL DAAC","url":"https://daac.ornl.gov","@type":"Organization"},"@type":"DataCatalog"}],"@context":"https://schema.org","@id":"https://doi.org/10.3334/ORNLDAAC/1025"}</script><script type="application/ld+json">{"@context": "http://schema.org/","@type": "Organization","url": "https://daac.ornl.gov","logo": "https://daac.ornl.gov/daac_logo.png"}</script>
    <script> var dataLayer = window.dataLayer = window.dataLayer || []; dataLayer.push({ 'event': 'ipAddress', 'ipAddress': '77.183.187.236' });</script>Skip to main content
    ORNL DAAC HomeNASA Home
    Search ORNL DAAC Use fullText search (only for fallback) datasource (only for fallback) select source (only for fallback) Data Website DOI Search

    <script>var tabToHighlight = "Get Data";</script>

    LBA-ECO CD-08 Carbon Isotopes in Belowground Carbon Pools, Amazonas and Para, Brazil

    Spatial and Temporal Coverage

    Spatial Coverage

    1. Bounding rectangle
    2. N: -2.50
    3. S: -3.02
    4. E: -47.52
    5. W: -60.21

    Temporal Coverage

    1992-05-01 to 1999-07-05

    Overview

    DOIhttps://doi.org/10.3334/ORNLDAAC/1025
    Version1
    Project
    Published2011-08-22
    Updated2011-08-22
    Usage95 downloads
    Download Data22.1 KBUser Guide

    Description

    This data set contains carbon isotope signatures from soil organic matter collected from the following sites: the forests of the ZF-2 INPA reserve approximately 80 km north of the city of Manaus, Amazon; the Tapajos National Forest approximately 83 km south of the city of Santarem, Para; and the Fazenda Vitoria, a ranch near the city of Paragominas, Para. Samples from the Fazenda Vitoria were from degraded and managed pasture sites as well as mature and secondary forests. In addition,carbon isotope signatures from roots sorted by size class, hand-picked from soil pits in the Flona Tapajos and Fazenda Vitoria, are included, as are carbon isotope signatures from soil gases from samples collected at the Fazenda Vitoria. There are 4 ASCII data files with this data set.

    Science Keywords

    • LAND SURFACE
    • SOILS
    • CARBON
    • LAND SURFACE
    • SOILS
    • SOIL GAS/AIR
    • SOLID EARTH
    • GEOCHEMISTRY
    • GEOCHEMICAL PROPERTIES
    • ISOTOPES

    Data Use and Citation

    This dataset is openly shared, without restriction, in accordance with the NASA Data and Information Policy.

    Download citation from Datacite
    RISBibTexOther
    Crosscite Citation Formatter
    Telles, E.D.C., P.B. de Camargo, L.A. Martinelli, S.E. Trumbore, E.S. da Costa, J. Santos, N. Higuchi, R.C.D. Oliveira, and D. Markewitz. 2011. LBA-ECO CD-08 Carbon Isotopes in Belowground Carbon Pools, Amazonas and Para, Brazil. ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/1025

    See our Data Use and Citation Policy for more information.

    Data Files

    Sign in to download files.

    Companion Files

    Expand for companion files
    Toggle Companion Files

    Sign in to download files.

    Dataset Companion Files

    Dataset has 1 companion files.

    • CD08_C_Isotopes_Belowground.pdf
    <script>function initMap() { var map = new google.maps.Map(document.getElementById('map'), { zoom: 1, center: {lat: -2.7585, lng: -53.86255}, mapTypeId: 'terrain', disableDefaultUI: true }); var bounds = { north: -2.5, south: -3.017, east: -47.516, west: -60.2091 }; /* draw spatial coverage */ var rectangle = new google.maps.Rectangle({ strokeColor: "#ff0000", strokeOpacity: 0.8, strokeWeight: 2, fillColor: "#ff0000", fillOpacity: 0.1, map: map, bounds: bounds }); map.fitBounds(bounds); /* add zoom event listener to re-zoom after bounds are set */ google.maps.event.addListenerOnce(map, 'bounds_changed', function(event) { if (this.getZoom() < 1) { this.setZoom(1); } }); }</script><script async defer src="https://maps.googleapis.com/maps/api/js?key=AIzaSyAD9fBPKHua7BDy7QrgSHzlnFwR6PhF-M4&callback=initMap"></script>

    <script src="/js/jquery.js"></script><script src="/js/utils.js?1.2"></script><script>highlight(tabToHighlight);</script><script src="/js/jquery-ui/jquery-ui.min.js"></script><script src="/js/succinct-master/jQuery.succinct.min.js"></script><script src="/js/integrated-search/integrated-search.min.js"></script><script src="https://cdn.earthdata.nasa.gov/tophat2/tophat2.js" id="earthdata-tophat-script" data-current-daac="ORNL DAAC" data-show-fbm="true" data-width="950"></script><script src="/js/NetTracker/ntpagetag.js"></script><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-WNP7MLF" height="0" width="0" style="display:none;visibility:hidden"></iframe><script src="https://fbm.earthdata.nasa.gov/for/ORNL/feedback.js"></script><script src="https://status.earthdata.nasa.gov/assets/banner_widget.js"></script><script src="/js/common.min.js"></script><script src="/js/eui/custom/javascript/eui.min.js"></script>
    <script src="/js/listers.js"></script><script src="/js/jquery.tablesorter.min.js"></script><script src="/js/datatables/datatables.min.js"></script><script src="/js/datatables/file-size.min.js"></script><script src="/js/datatables/dataTables.conditionalPaging.min.js"></script><script src="/js/granule-lister.min.js?v1.1.1"></script><script> USE_SERVER_SIDE_PAGINATION = 0; DS_IN_CART = 0; USER_IS_LOGGED_IN = 00; INGEST_HOST = ''; GRANULE_NAME_CUTOFF = 58;</script> * Trumbore, S. E., Chadwick, O. A., & Amundson, R. (1996). Rapid Exchange Between Soil Carbon and Atmospheric Carbon Dioxide Driven by Temperature Change. Science, 272(5260), 393–396. doi:10.1126/science.272.5260.393 * Koarashi, J., Hockaday, W. C., Masiello, C. A., & Trumbore, S. E. (2012). Dynamics of decadally cycling carbon in subsurface soils. Journal of Geophysical Research: Biogeosciences, 117(G3), n/a–n/a. doi:10.1029/2012jg002034 * Marzaioli, F., Lubritto, C., Galdo, I. D., D’Onofrio, A., Cotrufo, M. F., & Terrasi, F. (2010). Comparison of different soil organic matter fractionation methodologies: Evidences from ultrasensitive 14C measurements. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268(7-8), 1062–1066. doi:10.1016/j.nimb.2009.10.098 * Trumbore, S. E., & Harden, J. W. (1997). Accumulation and turnover of carbon in organic and mineral soils of the BOREAS northern study area. Journal of Geophysical Research: Atmospheres, 102(D24), 28817–28830. doi:10.1029/97jd02231 * Trumbore, S. E., Bubier, J. L., Harden, J. W., & Crill, P. M. (1999). Carbon cycling in boreal wetlands: A comparison of three approaches. Journal of Geophysical Research: Atmospheres, 104(D22), 27673–27682. doi:10.1029/1999jd900433 * Väliranta, M., Kaakinen, A., & Kuhry, P. (2003). Holocene climate and landscape evolution East of the Pechora Delta, East-European Russian Arctic. Quaternary Research, 59(3), 335–344. doi:10.1016/s0033-5894(03)00041-3 * Van Dam, D., van Breemen, N., & Veldkamp, E. (1997). Biogeochemistry, 39(3), 343–375. doi:10.1023/a:1005880031579 * Van der Voort, T. S., Hagedorn, F., McIntyre, C., Zell, C., Walthert, L., Schleppi, P., … Eglinton, T. I. (2016). Variability in 14C contents of soil organic matter at the plot and regional scale across climatic and geologic gradients. Biogeosciences, 13(11), 3427–3439. doi:10.5194/bg-13-3427-2016 * Van Mourik, J. M., Nierop, K. G. J., & Vandenberghe, D. A. G. (2010). Radiocarbon and optically stimulated luminescence dating based chronology of a polycyclic driftsand sequence at Weerterbergen (SE Netherlands). CATENA, 80(3), 170–181. doi:10.1016/j.catena.2009.11.004 * Vardy, S. R., Warner, B. G., & Aravena, R. (1998). Climatic Change, 40(2), 285–313. doi:10.1023/a:1005473021115 * Vardy, S. R., Warner, B. G., Turunen, J., & Aravena, R. (2000). Carbon accumulation in permafrost peatlands in the Northwest Territories and Nunavut, Canada. The Holocene, 10(2), 273–280. doi:10.1191/095968300671749538 * VARDY, S. R., WARNER, B. G., & ASADA, T. (2008). Holocene environmental change in two polygonal peatlands, south-central Nunavut, Canada. Boreas, 34(3), 324–334. doi:10.1111/j.1502-3885.2005.tb01104.x * <script src="https://code.jquery.com/jquery-3.3.1.slim.min.js" integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo" crossorigin="anonymous">.</script> <script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.3/umd/popper.min.js" integrity="sha384-ZMP7rVo3mIykV+2+9J3UJ46jBk0WLaUAdn689aCwoqbBJiSnjAK/l8WvCWPIPm49" crossorigin="anonymous">.</script> <script src="https://stackpath.bootstrapcdn.com/bootstrap/4.1.1/js/bootstrap.min.js" integrity="sha384-smHYKdLADwkXOn1EmN1qk/HfnUcbVRZyYmZ4qpPea6sjB/pTJ0euyQp0Mk8ck+5T" crossorigin="anonymous">.</script> <script src="https://cdnjs.cloudflare.com/ajax/libs/fancybox/3.3.5/jquery.fancybox.min.js">.</script> <script>$(document).ready(function() { console.log('jquery is working'); $(".bluebox").addClass("shadow p-3 mb-5 rounded"); });</script> <style>pre { display: block; font-family: "Times New Roman", Times, serif; white-space: pre; margin: 1em 0; width:1050px; word-wrap: break-word; } .bod { width: 1100px; background:#F8F8F8; } .tab { padding-left:5em; } .graybox { background:#eeeeee; }
        .bluebox {
        background:#dbf8ff;
        margin-right:100px;
        /*background:#bff2ff;*/
        }
    
        .container {
        max-width:1000px;
        width:100%;
        padding-left:0px;
        padding-right:0px;
        margin-left:auto;
        margin-right:auto;
        }
    
        img {
        max-width: 100%;
        height: auto;
        }
    
        body {
        -webkit-font-smoothing: antialiased;
        background-color: #000;
        background: url("https://ngee-arctic.ornl.gov/sites/all/themes/bootstrap/ngee_bootstrap/img/sitebgrd.jpg");
        background-repeat: repeat-x;
        }
    
        .topBar {
        background: url("https://ngee-arctic.ornl.gov/sites/all/themes/bootstrap/ngee_bootstrap/img/siteBanner.jpg");
        margin-bottom: 10px;
        padding-bottom: 4px;
        background-size: cover;
        text-align:left;
        margin-left:0px;
        margin-right:0px;
        }
    
        .center-logo {
        margin: auto;
        font-family: Myriad Pro, Myriad Web Pro Regular, Lucida Grande, Geneva, Trebuchet MS, sans-serif;
        }
    
        .center-logo h1 {
        font-weight: 500;
        color: #458ec0;
        font-size: 3.0em;
        margin-top: 10px;
        margin-bottom: 0px;
        text-transform: none;
        margin-left: -15px;
        text-shadow: 1px 1px rgba(58, 58, 58, 0.75);
        }
    
        .center-logo p {
        text-transform: none;
        font-size: 0.95em;
        /*color: #fff;*/
        font-style: italic;
        line-height: 1.1em;
        margin-left: -15px;
        text-shadow: 1px 1px rgba(115, 115, 115, 0.6);
        }
    
        .navbar {
        border-radius: 0px;
    
        margin-bottom: 0px;
        min-height: 44px;
        }
    
        .navbar-inverse {
        border: none;
        font-family: 'Open Sans Condensed', sans-serif;
        font-weight: normal;
        text-transform: uppercase;
        font-size: 16px;
        background-color: #458ec0;
        }
    
        .ccsiLogo {
        height: 130px;
        margin: 5px 0px 0px 5px;
        }
        .center-logo h3 {
        margin-left: -15px;
        font-size: 1.2em;
        text-transform: none;
        color: #33b3cc;
        margin-top: 0px;
        margin-bottom: 5px;
        /*text-shadow: 1px 1px rgba(58, 58, 58, 0.75);*/
        font-weight: 300; /* increased font weight in place of shadow for greater readability. vdk 2/26 */
        }
        .siteTitle {
        margin-left: 4px;
        margin-top: -20px;
        }
        .ornlLeaf {
        height: 20px;
        width: 14px;
        }
    
        #myNavbar {
        margin-top: -10px;
        margin-left: 0px;
        margin-right: 0px;
        max-height:40px;
        }
    
        .ornlLogo {
        height: 32px;
        margin: 5px 20px;
        }
        #brandingBar {
        background-color: #346b90;
        height: 40px;
        margin: 0 -15px;
        }
    
        .ornlLogoBanner {
        background-color:#346b90;
        text-align:left;
        }
    
        .pagebox { /* standard page container */
        clear: both;
        margin:0 auto 3rem auto;
        
        height:auto;
        background-color: #FFFFFF;
        box-shadow: 0px 0px 25px #555;
        padding-bottom: 10px;
        }
    
        .fancybox-slide--iframe .fancybox-content {
        width  : 800px;
        height : 600px;
        max-width  : 80%;
        max-height : 80%;
        margin: 0;
        }
    
    
        footer {
        max-width: 960px;
        margin: 0 -15px;
        background-color: #458ec0;
        color: #fff;
        min-height: 120px;
        text-align: center;
        line-height: 1.1em;
        }
    
        #manageBar {
        background-color: #346b90;
        font-family: 'Open Sans Condensed',sans-serif;
        width: auto;
        text-align: center;
        color: #fff;
        font-size: 14px;
        font-style: italic;
        line-height: 1.5em;
        padding: 0px 0;
        /* font-weight: 100; */
        height: 25px;
        }
    
        .brandingBox{margin-top:20px;padding:0 40px;margin-bottom:20px;line-height:1.3em;}
        .brandingBox p{margin-left:20px;margin-top:7px;} .brandingBox div{padding:0px;} .brandingBox img{padding:5px;margin-left:10px;}
        @media(max-width:991px) {.brandingBox{padding:0px;text-align:center;} .brandingBox img{width:90%;padding:5px;margin-top:7px;} }
    
        .brandingBox div a {
        background: transparent;
        text-decoration: none;
        color: #77BEE0;
        }
        .brandingLinks { font-size:14px; }
        .brandingLinks a:hover { color: blue; }
    
        strong { font-weight: bold; }</style>
    <script type="application/ld+json">
      {"sourceOrganization": {"name": "In collaboration with Oak Ridge National Laboratory", "@type": "Organization"},"publisher": {"name":"Next Generation Ecosystem Experiments - Arctic", "@type":"Organization"},"keywords":["Delta14CO2", "volumetric water content", , , "Barrow, Alaska", "Intensive Site 0", "Area A", "Area C", "Intensive Site 1", "Barrow Environmental Observatory", "Utqiagvik, Alaska", "Area B", "AB Transects"],"spatialCoverage":{"geo":{"box":"71.2 -156.7 71.35 -156.4","@type":"GeoShape"},"@type":"Place"},"url":"","temporalCoverage":"20120808/20140908","name":"Radiocarbon in Ecosystem Respiration and Soil Pore-Space CO2 with Surface Gas Flux, Air Temperature, and Soil Temperature and Moisture, Barrow, Alaska, 2012-2014","description":"
      
      Dataset includes Delta14C measurements made from CO2 that was collected and purified in 2012-2014 from surface soil chambers, soil pore space, and background atmosphere.  In addition to 14CO2 data, dataset includes co-located measurements of CO2 and CH4 flux, soil and air temperature, and soil moisture.  Measurements and field samples were taken from intensive study site 1 areas A, B, and C, and the site 0 and AB transects, from specified positions in high-centered, flat-centered, and low centered polygons. The column &quot;sample_size&quot; was added to &quot;radiocarbon_field_Barrow_2012_2013_2014.csv&quot; September 2018 with no changes to other data. Dataset DOI:10.5440/1364062; https://doi.org/10.5440/1364062
      
      ","@id":"None","creator": [{"name":"Lydia Vaughn (lydiajsmith@lbl.gov)", "@type":"Person"}, {"name":"Margaret Torn (mstorn@lbl.gov)", "@type":"Person"}, {"name":"Rachel Porras (rcporras@lbl.gov)", "@type":"Person"}, {"name":"Bryan Curtis (John.Curtis@colorado.edu)", "@type":"Person"}, {"name":"Oriana Chafe (oechafe@lbl.gov)", "@type":"Person"}],"includedInDataCatalog": {"url": "https://ngee-arctic.ornl.gov/data", "name": "Next Generation Ecosystem Experiments - Arctic", "@type": "DataCatalog"}, "@type":"Dataset", "@context":"https://schema.org"}
    </script>
    

    NGEE Arctic

    Next-Generation Ecosystem Experiments

    Advancing the predictive power of Earth system models through understanding of the structure and function of Arctic terrestrial ecosystems

    NGEE Arctic Website .

    Radiocarbon in Ecosystem Respiration and Soil Pore-Space CO2 with Surface Gas Flux, Air Temperature, and Soil Temperature and Moisture, Barrow, Alaska, 2012-2014

    DOI: https://doi.org/10.5440/1364062
    NGEE Arctic Record ID: NGA148

    Abstract

    Dataset includes Delta14C measurements made from CO2 that was collected and purified in 2012-2014 from surface soil chambers, soil pore space, and background atmosphere. In addition to 14CO2 data, dataset includes co-located measurements of CO2 and CH4 flux, soil and air temperature, and soil moisture. Measurements and field samples were taken from intensive study site 1 areas A, B, and C, and the site 0 and AB transects, from specified positions in high-centered, flat-centered, and low centered polygons. The column "sample_size" was added to "radiocarbon_field_Barrow_2012_2013_2014.csv" September 2018 with no changes to other data. Dataset DOI:10.5440/1364062; https://doi.org/10.5440/1364062

    Dataset Citation

    Lydia Vaughn, Margaret Torn, Rachel Porras, Bryan Curtis, Oriana Chafe. 2018. Radiocarbon in Ecosystem Respiration and Soil Pore-Space CO2 with Surface Gas Flux, Air Temperature, and Soil Temperature and Moisture, Barrow, Alaska, 2012-2014. Next Generation Ecosystem Experiments Arctic Data Collection, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, USA. Dataset accessed on [insert_date] at https://doi.org/10.5440/1364062.

    Dates:

    20120808 - 20140908

    Geographic Location:

    NGEE Arctic Barrow Study Site

    Bounding Coordinates:

    N:71.35
    S:71.2
    E:-156.4
    W:-156.7

    Place Keywords:

    Barrow, Alaska; Intensive Site 0; Area A; Area C; Intensive Site 1; Barrow Environmental Observatory; Utqiagvik, Alaska; Area B; AB Transects

    Subject Keywords:

    GEOCHEMISTRY, Delta14CO2, Soil moisture, volumetric water content, soil temperature, thaw depth,
    Dataset Usage Rights
    Public Datasets

    This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0 .

    See the NGEE Arctic Data Policies for more details https://ngee-arctic.ornl.gov/data-policies .

    Oak Ridge National Laboratory is managed by UT-Battelle for the Department of Energy

    • Wagai, R., Kajiura, M., Asano, M., & Hiradate, S. (2015). Nature of soil organo-mineral assemblage examined by sequential density fractionation with and without sonication: Is allophanic soil different? Geoderma, 241-242, 295–305. doi:10.1016/j.geoderma.2014.11.028
    • WAHLEN, M., TANAKA, N., HENRY, R., DECK, B., ZEGLEN, J., VOGEL, J. S., … BROECKER, W. (1989). Carbon-14 in Methane Sources and in Atmospheric Methane: The Contribution from Fossil Carbon. Science, 245(4915), 286–290. doi:10.1126/science.245.4915.286
    • Waldrop, M. P., Harden, J. W., Turetsky, M. R., Petersen, D. G., McGuire, A. D., Briones, M. J. I., … Pruett, L. E. (2012). Bacterial and enchytraeid abundance accelerate soil carbon turnover along a lowland vegetation gradient in interior Alaska. Soil Biology and Biochemistry, 50, 188–198. doi:10.1016/j.soilbio.2012.02.032
    • Walter, K. M., Chanton, J. P., Chapin, F. S., Schuur, E. A. G., & Zimov, S. A. (2008). Methane production and bubble emissions from arctic lakes: Isotopic implications for source pathways and ages. Journal of Geophysical Research, 113. doi:10.1029/2007jg000569
    • Walter Anthony, K., Daanen, R., Anthony, P., Schneider von Deimling, T., Ping, C.-L., Chanton, J. P., & Grosse, G. (2016). Methane emissions proportional to permafrost carbon thawed in Arctic lakes since the 1950s. Nature Geoscience, 9(9), 679–682. doi:10.1038/ngeo2795
    • Wang, Y., Amundson, R., & Trumbore, S. (1996). Radiocarbon Dating of Soil Organic Matter. Quaternary Research, 45(3), 282–288. doi:10.1006/qres.1996.0029
    • Wang, Y., Amundson, R., & Trumbore, S. (1999). The impact of land use change on C turnover in soils. Global Biogeochemical Cycles, 13(1), 47–57. doi:10.1029/1998gb900005
    • Wang, Y., Amundson, R., & Niu, X.-F. (2000). Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurements of soil CO2flux. Global Biogeochemical Cycles, 14(1), 199–211. doi:10.1029/1999gb900074
    • WANG, L., OUYANG, H., ZHOUM, C.-P., ZHANG, F., SONG, M.-H., & TIAN, Y.-Q. (2005). Soil Organic Matter Dynamics Along a Vertical Vegetation Gradient in the Gongga Mountain on the Tibetan Plateau. Journal of Integrative Plant Biology, 47(4), 411–420. doi:10.1111/j.1744-7909.2005.00085.x
    • WERNER, K., TARASOV, P. E., ANDREEV, A. A., MÃ�LLER, S., KIENAST, F., ZECH, M., … DIEKMANN, B. (2010). A 12.5-kyr history of vegetation dynamics and mire development with evidence of Younger Dryas larch presence in the Verkhoyansk Mountains, East Siberia, Russia. Boreas, 39(1), 56–68. doi:10.1111/j.1502-3885.2009.00116.x
    • Wunderlich, S., & Borken, W. (2012). Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen. Biogeosciences, 9(8), 3477–3489. doi:10.5194/bg-9-3477-2012
    • Yu, Z., Campbell, I. D., Campbell, C., Vitt, D. H., Bond, G. C., & Apps, M. J. (2003). Carbon sequestration in western Canadian peat highly sensitive to Holocene wet-dry climate cycles at millennial timescales. The Holocene, 13(6), 801–808. doi:10.1191/0959683603hl667ft
    • Zhang, H., Gallego-Sala, A. V., Amesbury, M. J., Charman, D. J., Piilo, S. R., & Väliranta, M. M. (2018). Inconsistent Response of Arctic Permafrost Peatland Carbon Accumulation to Warm Climate Phases. Global Biogeochemical Cycles, 32(10), 1605–1620. doi:10.1029/2018gb005980
    • Zibulski, R., Herzschuh, U., Pestryakova, L. A., Wolter, J., Müller, S., Schilling, N., … Tian, F. (2013). River flooding as a driver of polygon dynamics: modern vegetation data and a millennial peat record from the Anabar River lowlands (Arctic Siberia). Biogeosciences Discussions, 10(3), 4067–4125. doi:10.5194/bgd-10-4067-2013
    • Zimmermann, C., & Lavoie, C. (2001). A paleoecological analysis of a southern permafrost peatland, Charlevoix, Quebec. Canadian Journal of Earth Sciences, 38(6), 909–919. doi:10.1139/e00-110
    • Zimov, S. A. (1997). North Siberian Lakes: A Methane Source Fueled by Pleistocene Carbon. Science, 277(5327), 800–802. doi:10.1126/science.277.5327.800
    • Zuidhoff, F. S., & Kolstrup, E. (2000). Changes in palsa distribution in relation to climate change in Laivadalen, northern Sweden, especially 1960-1997. Permafrost and Periglacial Processes, 11(1), 55–69. doi:10.1002/(sici)1099-1530(200001/03)11:1<55::aid-ppp338>3.0.co;2-t
You can’t perform that action at this time.