
GovTool
Git(Hub) workflow proposal

by example



User story

As a team leader

I want to coordinate delivery of features to staging,

so they can be reviewed by product owners.

● Two features are ready.
● Only one is picked to be delivered.
● The picked feature is reviewed and QA tested.
● The picked feature end up on staging/preprod 

to be further received by PO.

Case study



Scenario #1
current workflow



Scenario #1: current workflow

● 2 developers are working on 2 different tasks.



Scenario #1: current workflow

● 2 developers are working on 2 different tasks.
● featA is merged after a review.



Scenario #1: current workflow

● 2 developers are working on 2 different tasks.
● featA is merged after a review.
● featB has to be rebased to actual develop.



Scenario #1: current workflow

● 2 developers are working on 2 different tasks.
● featA is merged after a review.
● featB has to be rebased to actual develop and featB

is merged after review to develop.



Scenario #1: current workflow

● 2 developers are working on 2 different tasks.
● featA is merged after a review.
● featB has to be rebased to actual develop and featB

is merged after review to develop.
● A decision is made to deliver only featA.



Scenario #1: current workflow

● 2 developers are working on 2 different tasks.
● featA is merged after a review.
● featB has to be rebased to actual develop and featB

is merged after review to develop.
● A decision is made to deliver only featA.
● To deliver to test we need to:

○ create a branch from test,
○ cherry-pick featA commits,
○ merge to test.



Scenario #1: current workflow

● 2 developers are working on 2 different tasks.
● featA is merged after a review.
● featB has to be rebased to actual develop and featB

is merged after review to develop.
● A decision is made to deliver only featA.
● test-candidate is created.
● To deliver to test we need to:

○ cherry-pick featA commits,
○ merge to test.



Scenario #1: current workflow

● 2 developers are working on 2 different tasks.
● featA is merged after a review.
● featB has to be rebased to actual develop and featB

is merged after review to develop.
● A decision is made to deliver only featA.
● test-candidate is created.
● Commits from featA are cherry-picked.
● To deliver to test we need to:

○ merge to test.



Scenario #1: current workflow

● 2 developers are working on 2 different tasks.
● featA is merged after a review.
● featB has to be rebased to actual develop and featB

is merged after review to develop.
● A decision is made to deliver only featA.
● test-candidate is created.
● Commits from featA are cherry-picked.
● test-candidate is merged after a review to test.



Scenario #1: current workflow

● 2 developers are working on 2 different tasks.
● featA is merged after a review.
● featB has to be rebased to actual develop and featB

is merged after review to develop.
● A decision is made to deliver only featA.
● test-candidate is created.
● Commits from featA are cherry-picked.
● test-candidate is merged after a review to test.
● QA tests are performed on test.



Scenario #1: current workflow

● 2 developers are working on 2 different tasks.
● featA is merged after a review.
● featB has to be rebased to actual develop and featB

is merged after review to develop.
● A decision is made to deliver only featA.
● test-candidate is created.
● Commits from featA are cherry-picked.
● test-candidate is merged after a review to test.
● QA tests are performed on test.
● To deliver to staging we need to:

○ create a branch from staging,
○ cherry-pick test commits,
○ merge to staging.



Scenario #1: current workflow

● 2 developers are working on 2 different tasks.
● featA is merged after a review.
● featB has to be rebased to actual develop and featB

is merged after review to develop.
● A decision is made to deliver only featA.
● test-candidate is created.
● Commits from featA are cherry-picked.
● test-candidate is merged after a review to test.
● QA tests are performed on test.
● To deliver to staging we need to:

○ create a branch from staging,
○ cherry-pick test commits,
○ merge test into staging,
○ merge to staging.

CAVEAT: In this simple scenario we don't have 
to cherry pick commits, but it is an edge case!



Scenario #1: current workflow - risks

● Every decision to pick only some selected features from the pool of all available features leads to cherry-picking of either 
regular commits or merge commits.

● Cherry-picking creates a potential of human error (missing parts of a feature, dependencies, etc.)
● A pull request crafted by cherry-picking features has to be reviewed because of the above.
● The source branch (like branch “develop” in example) is never

a continuation of the target branch (like “test”), it is a fork.
Therefore the cherry-picking is necessary.

● This burdensome process is repeated on three different
stages of the current workflow: develop > test, test > staging
and staging > beta.

● Testing on reviewed features is on hold until
the test-candidate is merged, thus tasks are in limbo
state where they are completed, but not yet tested.

● There is a possibility that some cherry-picks will
cause conflicts that has to be resolved by person
with a knowledge not only in the git tool,
but also in a domain, language,
frameworks, libraries, etc.



Scenario #2
proposal



Scenario #2: proposal

● 2 developers are working on 2 different tasks.



Scenario #2: proposal

● 2 developers are working on 2 different tasks.
● featA is reviewed.



Scenario #2: proposal

● 2 developers are working on 2 different tasks.
● featA is reviewed.
● featA is deployed to be QA tested.
● At this point the featA is ready to be deployed on preprod (aka staging).



Scenario #2: proposal

● 2 developers are working on 2 different tasks.
● featA is reviewed.
● featA is deployed to be QA tested.
● featA is merged to preprod.



Scenario #2: proposal

● 2 developers are working on 2 different tasks.
● featA is reviewed.
● featA is deployed to be QA tested.
● featA is merged to preprod.
● featB is reviewed.



Scenario #2: proposal

● 2 developers are working on 2 different tasks.
● featA is reviewed.
● featA is deployed to be QA tested.
● featA is merged to preprod.
● featB is reviewed.
● featB is deployed to be QA tested.
● At this point the featB is ready to be deployed on preprod (aka staging).



Scenario #2: proposal

● 2 developers are working on 2 different tasks.
● featA is reviewed.
● featA is deployed to be QA tested.
● featA is merged to preprod.
● featB is reviewed.
● featB is deployed to be QA tested.
● featB is merged to preprod.



Scenario #2: proposal

● 2 developers are working on 2 different tasks.
● featA is reviewed.
● featA is deployed to be QA tested.
● featA is merged to preprod.
● featB is reviewed.
● featB is deployed to be QA tested.
● featB is merged to preprod.
● …



Scenario #2: proposal - risks

● Every decision to pick only some selected features from the pool of all available features leads to cherry-picking 
of either regular commits or merge commits.

● Cherry-picking creates a potential of human error (missing parts of a feature, dependencies, etc.)
● A pull request crafted by cherry-picking features has to be reviewed because of the above.
● The source branch (like branch “develop” in example) is never

a continuation of the target branch (like “test”), it is a fork.
Therefore the cherry-picking is necessary.

● This process is repeated on ONE stage of the workflow: staging > beta.
● Testing on reviewed features is on hold until

the test-candidate is merged, thus tasks are in limbo
state where they are completed, but not yet tested.

● There is a possibility that some cherry-picks will
cause conflicts that has to be resolved by person
with a knowledge not only in the git tool,
but also in a domain, language,
frameworks, libraries, etc.



Scenario #2: proposal - benefits

● Pull requests are merged only when fully reviewed and tested.
● The preprod branch is a place to start development from.
● No need of cherry picking anything to deliver work to QA nor PO.
● By utilising tags QA can trace their work by referring to a certain points in preprod history.
● Less PRs to review.
● Less points where human error can occur.
● Less engagement needed of the competent developer to formulate push-candidates.



Q&A


