
- 1 -

GCC/UPC 4.0
”Flexible Heap” Design Overview

Gary Funck, Intrepid Technology
Email: gary@intrepid.com
Date: September 5, 2006

Version: 1.0

Background

The GCC/UPC 4.0 runtime implements a facility known as a “flexible heap”. The
flexible heap facility removes the need for the user to specify the maximum
amount of memory required for allocation from the UPC language defined heap
facility. The –fupc-heap-N (alternatively –heap N) runtime switch is no longer
required. The –fupc-heap-N switch now controls only the initial amount of heap
allocated to the program.

Requirements

The design of the flexible heap implementation is influenced by the following
requirements and factors:

1. The UPC language specifies that a shared pointer can be cast into a
thread local pointer (a conventional “C” pointer) as long as the referenced
shared object has affinity to the thread that is casting the reference to a
local pointer. This implies that any part of a dynamically allocated shared
object with affinity to thread T must be mapped contiguously into the local
address space of T at the moment of the initial cast to a local pointer. The
reference must remain valid until T terminates (or the object is freed).

2. In order to preserve the local contiguity prescribed by requirement 1,
above, the heap manager must not allow objects that were previously
allocated to be coalesced into a larger object, if that object is not
contiguous in the address space of the thread that has affinity to the
referenced allocation.

3. Each thread should operate independently of all other threads to the
maximum degree possible. Thus, the data structures used to track
references into the global shared address must be thread local unless
there is a requirement that the data structure be shared across all threads.

mailto:gary@intrepid.com

GCC/UPC "Flexible Heap" Design Overview
Intrepid Technology, Inc.

September 5, 2006

 - 2 -

4. Since the maximum amount of space required by the UPC program is not
known until the program executes, a flexible method of obtaining the
required space is required. The use of an underlying file in the file system
is seen as a desirable implementation option, with mapping to the file
provided by the mmap() system call. The MAP_ANONYMOUS facility
previously used by the GCC/UPC runtime is equally flexible, but often its
maximum size is limited, and subject to operating system resource
limitations.

5. The flexible heap facility must be accessible both from the process-based
and the pthreads-based GCC/UPC runtime libraries. The design should
change as little as possible when implemented in either the process-based
or pthreads-based runtime libraries.

6. The flexible heap implementation should be efficient and minimize any
additional overhead, when compared to the previous fixed-heap design.

7. The use of mmap() to map local regions of a thread’s memory onto the
global shared virtual address space may lead to a situation where the
UPC program runs into a limit on the maximum permitted number of
mapped regions supported by the operating system. The design and
implementation should provide configuration options to control the
maximum required number of mmap’d regions, and the default settings
should support a wide range of applications while consuming only a
moderate level of operating system resources.

The Paged Global Shared Virtual Address Space

UPC shared objects are mapped into a paged virtual address space, where each
page is accessed by its Global Page Number (GPN). Global page numbers
begin at zero and increase to the maximum number of allocated pages (minus
one). The UPC runtime uses a page size that is much larger (typically in the 4
Megabyte to 32 Megabyte range) than the underlying operating system
supported page size (which is typically in the 4 Kilobyte to 32 Kilobyte range).
Global page number 0 corresponds to block zero in the underlying mmap()’d file,
and so on.
In a fixed heap implementation, a given thread’s contribution to the global shared
virtual address space is given by the following equation:

Thread_Local_Size = Static_Shared_Object_Size + Maximum_Heap_Size

To simplify the mapping from a (thread, offset) address to (global page number,
page offset) address, the Thread_Local_Size value is rounded up to the nearest
multiple of the UPC runtime’s page size. For fixed heaps, the calculation is
simple:

Global_Page_Number = ((THREADS * Thread_Local_Size) + Offset) / Page_Size
Global_Page_Offset = Offset mod Page_Size

GCC/UPC "Flexible Heap" Design Overview
Intrepid Technology, Inc.

September 5, 2006

 - 3 -

Flexible heaps complicate the calculation above, because each thread no longer
has a statically defined contribution to the global shared address space. As each
UPC thread allocates more shared memory, a thread's local contribution
increases. For efficiency reasons, the per thread contribution increases by a
series of "chunks", where each chunk is a multiple of the page size, and at a
minimum is large enough to contain a given newly allocated object in its entirety.
The requirement that any newly allocated object is completely contained in a
chunk ensures that a per-thread slice of that object can be contiguously mapped
into the memory of the thread that has affinity to that slice of the shared object.
(Note that the chunk size discussed above is the per-thread chunk size.)
Although each page within a per-thread chunk must be contiguous in the global
shared address space, individual per-thread chunks will be spread across the
virtual address space as new chunks are allocated. Thus, the global page
associated with page N+1 in a thread's virtual address space may be at some
arbitrary distance away from page N in the thread's virtual address space.
The UPC runtime uses an array known at the Global Page Table (GPT) to map
an address given in the (Thread, Thread_Offset) form into the (global page
number, page offset) form used to locate the addressed object's data inside the
memory mapped file associated with the UPC global shared virtual memory
space. The mapping calculation is given by:

Thread_PN = Thread_Offset / Page_Size
Page_Offset = Thread_Offset mod Page_Size
Global_Page_Number = GPT[Thread_PN * THREADS + Thread]

The GPT is allocated by the GCC/UPC runtime before the UPC main program is
executed; it is sized to accommodate the maximum number of per-thread
address bits specified in the configuration file, upc_config.h. Here are the
configuration parameters used by the default 64-bit runtime configuration:

/* On 64-bit machines, use page size of 32M (25 bits) and a max per thread
 offset of 128G (38 bits). This leaves 13 bits for the per thread
 number of pages. */
#define UPC_VM_OFFSET_BITS 25
#define UPC_VM_MAX_PAGES_PER_THREAD (1 << (38 - UPC_VM_OFFSET_BITS))
/* Derive some VM specific constants. */
#define UPC_VM_PAGE_MASK (UPC_VM_MAX_PAGES_PER_THREAD - 1)
#define UPC_VM_PAGE_SIZE (1 << UPC_VM_OFFSET_BITS)
#define UPC_VM_OFFSET_MASK (UPC_VM_PAGE_SIZE - 1)

Using the calculation described above, the UPC runtime can map an address of
the form (thread, offset) into (global page number, page offset), which can in turn
be used to locate the data in the operating system file that underlies the UPC
program's shared data virtual memory space. However, in order to access the
data using machine level instructions, this global page must be mapped into the
referencing thread's address space. This mapping is done via the mmap()
system call.

GCC/UPC "Flexible Heap" Design Overview
Intrepid Technology, Inc.

September 5, 2006

 - 4 -

To efficiently implement the mapping between (global page number, page offset)
and (local mmapp'd page base address, page offset), the UPC runtime uses two
per-thread data structures:

1. The Local Page Table (LPT) is used to map pages in shared objects that
have affinity to the currently executing thread:
Page_Base_Addr = LPT[Thread_PN]

2. The Global Map Table is used to reference shared objects with affinity to
threads other than the currently executing thread. The GMT hashes the
Global Page Number into a row in the table. Each row in the table
implements an associative set, where the first element in the set is the
most recently used.

The relevant program logic is shown in the code excerpt below:
 if (t == MYTHREAD)
 {
 /* A local reference:
 Refer to the Local Page Table to find the proper mapping. */
 page_base = lpt[pn];
 }
 else
 {
 /* A global reference to another thread's storage:
 Refer to the cached map entries in the Global Map Table. */
 page_base = upc_vm_map_global_page (t, pn);
 }
 p_offset = (offset & UPC_VM_OFFSET_MASK);
 addr = page_base + p_offset;
 return addr;

Entries in the LPT are never unmapped (via an munmap call), because shared
data with affinity to the currently executing thread may be addressed by a regular
"C" pointer by casting its shared address into a local address. There is no such
requirement for references to shared data with affinity to other threads, however.
Thus, mappings recorded in the GMT may come and go.

(continued on next page)

GCC/UPC "Flexible Heap" Design Overview
Intrepid Technology, Inc.

September 5, 2006

 - 5 -

Although the mappings via the LPT and GMT are relatively efficient, the UPC
runtime speeds up the address calculation further, by caching the two most
recent address mapping calculations. The code that implements this additional
level of caching follows:

 offset = ((size_t) p.vaddr - (size_t) UPC_SHARED_SECTION_START);
 p_offset = offset & UPC_VM_OFFSET_MASK;
 pn = (offset >> UPC_VM_OFFSET_BITS) & UPC_VM_PAGE_MASK;
 this_page = (pn << SHARED_PTR_THREAD_SIZE) | p.thread;
 if (this_page == __upc_page1_ref)
 addr = __upc_page1_base + p_offset;
 else if (this_page == __upc_page2_ref)
 addr = __upc_page2_base + p_offset;
 else
 {
 addr = __upc_vm_map_addr (p);
 __upc_page2_ref = __upc_page1_ref;
 __upc_page2_base = __upc_page1_base;
 __upc_page1_ref = this_page;
 __upc_page1_base = addr - p_offset;
 }

Per-Thread Update of Allocated Memory Size

Whenever the amount of currently allocated space is insufficient to satisfy a
dynamic memory allocation request, the global shared memory available to each
UPC thread is increased. The global shared memory is increased by appending
additional blocks to the file underlying the global shared memory. The file size is
increased by the product of THREADS and the per thread number of newly
allocated pages.
The maximum number of pages available to each thread is maintained in a
global structure that can be accessed by all threads. Accesses to this global
cur_page_alloc value must be serialized to avoid race conditions. Thus, it
relatively expensive for a thread to frequently access this value. To avoid
unnecessary accesses to the globally maintained value, the UPC runtime uses a
per thread copy of the value which is guaranteed to always be less than or equal
to the current global value, as a result of the fact that the shared global address
space is never decreased. The per thread copy of the cur_page_alloc value is
updated whenever a reference is made to a page whose thread-relative page
number is not less than the current locally maintained current page allocation
value.
When the UPC runtime determines that the number of pages available to the
currently executing thread has increased, it maps the pages now available to the
thread and updates the Local Page Table (LPT). The UPC runtime is careful to
batch sequences of pages that have contiguous global page numbers into a
single mmap() call. This insures that the newly mapped region will be contiguous
in the local address space of the thread that has affinity to those pages and also
helps decrease the number of separate memory mapped regions within the Unix

GCC/UPC "Flexible Heap" Design Overview
Intrepid Technology, Inc.

September 5, 2006

 - 6 -

process underlying the UPC thread (or associated with the pthreads mapped to
UPC threads in a pthreads based implementation).

Heap Allocation Sequence Numbers: A Tool to Make Sure that
Free Does Not Combine Non-Contiguous Memory Regions

Any slice of a shared object returned by the UPC language defined dynamic
memory allocation functions with affinity to a given thread must be contiguous in
that thread's local address space. This property insures that valid casts from a
shared pointer to a local pointer operate in the UPC language prescribed
manner.
The GCC/UPC heap implementation uses a sequence number that is associated
with each set of pages that are added to the thread's available virtual memory, in
response to a dynamic memory allocation library call. The upc_free() function
will not coalesce entries in the free space list that have different sequence
numbers. This ensures that every per-thread slice of a newly allocated shared
object will be mapped into a contiguous region in the local address space of the
thread with affinity to that slice.

The UPC Heap Allocation Functions are Written in the UPC
Language

The UPC dynamic memory allocation routines maintain the heap data structures
in UPC shared memory. This ensures that the space needed to manage the
heap will grow naturally as new virtual memory space is allocated to the UPC
program. Further, placing the heap data structures in shared memory simplifies
the transformation of free space into allocated space – the pointer to the free
space entry selected for allocation is simply incremented by a fixed offset to then
point to the newly allocated space. The upc_free() operation finds the control
information associated with the object that is to be freed by simply decrementing
the pointer to the object.
In the GCC/UPC version 3 fixed heap implementation, all of shared memory
could be easily accessed because the entire shared memory region was mapped
into each UPC thread's address space. Now that the mapping is more
complicated, re-implementing the heap allocator in UPC makes sense because it
hides the details of the shared memory virtualization and maintains the
implementation in a form that is easier to understand and maintain.

GCC/UPC "Flexible Heap" Design Overview
Intrepid Technology, Inc.

September 5, 2006

 - 7 -

The flexible heap allocation routines are written in UPC, and at present the heap
allocation module is the only GCC/UPC runtime library source file that is written
in UPC. The UPC heap allocation library functions depend upon the UPC virtual
memory implementation, and at the same time also interact with the VM
mechanism whenever requests are made to add new pages to the UPC
program's global shared virtual memory address space. Thus, care must be
taken in the implementation to avoid circular dependencies both during
initialization and during normal execution of the UPC program. The heap
allocation routines must be careful to use a safe subset of UPC facilities and
library functions because some library functions implicitly rely upon UPC's
dynamic memory allocation functions (UPC language defined locks for example).

Paging and the UPC Memory-to-Memory Library Functions

The flexible heap implementation virtualizes the UPC program's shared memory
address space. This VM implementation breaks the address space up into
pages that are subsequently mapped into the referencing thread's local address
space as required.
Dividing the UPC global shared memory into a series of potentially separately
mapped pages complicates the implementation of the memory to memory
operations, defined in the UPC library. The memory-to-memory UPC library
functions, such as upc_memget() and upc_memput(), now must be written in a
way that that memory copy operations will not cross VM page boundaries.
Alternatively the memory-to-memory operations could consult the page tables to
determine if particular sequences of pages that are contiguous in the virtual
address space also happen to be contiguous in the thread's address space.
However, since the UPC page size has been configured by default to be fairly
large, page crossings should be infrequent, and a simpler algorithm is
appropriate.
For example, the implementation of upc_memput() is shown below:

 for (;;)
 {
 char *destp = (char *)upc_sptr_to_addr (dest);
 size_t offset = ((size_t)dest.vaddr - (size_t)UPC_SHARED_SECTION_START);
 size_t p_offset = (offset & UPC_VM_OFFSET_MASK);
 size_t n_copy = min (UPC_VM_PAGE_SIZE - p_offset, n);
 memcpy (destp, src, n_copy);
 n -= n_copy;
 if (!n)
 break;
 dest.vaddr += n_copy;
 src += n_copy;
 }

Above, the upc_sptr_to_addr() function converts a shared pointer into a regular C
pointer that points to the data associated with the designated shared memory
address. The paged nature of the UPC virtual memory implementation ensures

GCC/UPC "Flexible Heap" Design Overview
Intrepid Technology, Inc.

September 5, 2006

 - 8 -

that all bytes from the location in the VM page identified by the translated shared
pointer can be directly addressed. The upc_memput() implementation above
efficiently makes use the fact that the UPC shared memory is mapped into fixed
size physical pages. The runtime also ensures that at least the two most recently
mapped pages are mapped into the currently executing thread's local address
space.
The upc_memcpy() function implements a copy between two shared objects and
places a special requirement upon the runtime. The runtime must guarantee that
the two most VM memory mappings are valid. This guarantee avoids the need to
utilize an intermediate local memory buffer to effect the copy.

Judicious Use of Inlining

To further improve efficiency, and to factor out common code, the UPC runtime
uses GCC's inline specifier to selectively inline internal library support functions
called from frequently executed runtime library routines. An example is shown in
the UPC shared memory access routine below:

/* To speed things up, the last two unique (page, thread)
 lookups are cached. Caller must validate the pointer
 'p' (check for NULL, etc.) before calling this routine. */
static inline
void *
upc_sptr_to_addr (upc_shared_ptr_t p)
{
 /* … */
 if (this_page == __upc_page1_ref)
 addr = __upc_page1_base + p_offset;
 else if (this_page == __upc_page2_ref)
 addr = __upc_page2_base + p_offset;
 else
 {
 addr = __upc_vm_map_addr (p);
 /* … */
 }
 return addr;
}

static inline
void *
upc_access_sptr_to_addr (upc_shared_ptr_t p)
{
 if (IS_NULL_SHARED (p))
 __upc_fatal (UPC_NULL_ACCESS_MSG);
 if (p.thread >= THREADS)
 __upc_fatal (UPC_INVALID_THREAD_IN_ADDR_MSG);
 return upc_sptr_to_addr (p);
}

u_intQI_t
__getqi2 (upc_shared_ptr_t p)
{
 const u_intQI_t *addr = (u_intQI_t *) upc_access_sptr_to_addr (p);
 return *addr;
}

GCC/UPC "Flexible Heap" Design Overview
Intrepid Technology, Inc.

September 5, 2006

 - 9 -

Above, the code generated for the getqi2() function will usually follow the fast
path through the referenced inlined functions, and infrequently call the external
__upc_vm_map_addr() function. Thus, the remote access implemented by this
function will typically require only a single procedure call to the library access
routine itself.
It is anticipated that a similar technique for inlining the fast path through the
memory access routines will be utilized in an improved runtime implementation
that initially targets the Berkeley runtime API on the Cray XT3 (and its
successors). Once any issues related to inlining those UPC library functions
have been ironed out, the GCC/UPC runtime will be upgraded in a similar
fashion.

Pthreads Implications

The user can direct GCC/UPC to utilize POSIX threads (pthreads) in the
implementation of each UPC thread. This implementation choice is selected by
passing the –fupc-pthreads-model-tls switch to the GCC/UPC compiler. The
pthreads based implementation runs each UPC thread within the context a its
own POSIX thread (pthread).
The GCC/UPC flexible heap runtime design and implementation does not
change in any significant way, when executing in an environment where each
UPC thread is mapped to a pthread. Each UPC thread will maintain its own
thread local Local Page Table, and Global Map Table. An alternative
implementation, where pages accessed via each UPC thread's Local Page Table
(because the LPT's of all threads can be directly addressed by all pthreads)
might offer some efficiencies at the cost of increasing the need to serialize
accesses to the LPT's of other threads.
In the present design, a given UPC thread will map pages with affinity to other
threads via the hashed Global Map Table. In a pthreads environment, it may be
that one or more UPC threads map a particular thread's page in their own GMT's.
Further the mapping to the same page will be recorded in the LPT of the thread
that has affinity to that page. Since Linux and most Unix'es permit this sort of
map aliasing, pthreads based UPC programs will operate correctly, though
perhaps not optimally using the current design. The main benefit of the design is
that it remains the same in both the process-based and pthreads-based
implementtions.

GCC/UPC "Flexible Heap" Design Overview
Intrepid Technology, Inc.

September 5, 2006

 - 10 -

Limitations

The previous GCC/UPC version 3 compiler took advantage of the fact that the
entire global memory region was directly mapped into each UPC thread's
address space, and that a location identified by a shared pointer could be
mapped directly into a locally accessible memory location by a simple calculation
involving only a multiply and an add. The GCC/UPC version 3 compiler would
generate code that performed this address mapping and memory access directly.
Alternatively, the user could direct the compiler to generate calls to the runtime
library instead by compiling with the –fupc-libcall switch, but the –fno-upc-libcall
option was generally preferred because it eliminated the runtime library call
overhead.
GCC/UPC version 4 translates all remote get and put operations into calls to the
runtime library and does not generate explicit code to implement accesses to
shared memory. The flexible heap implementation is sufficiently complex, and
subject to change that it doesn't make sense for the compiler to generate explicit
code to implement the remote get and put operations. Thus, at present, external
library routines will always be called.
Due to the call overhead, and more complicated memory mapping, it is likely that
UPC programs (compiled with GCC/UPC version 4) that make frequent reference
to shared memory will run (sometimes noticeably) more slowly than the same
programs compiled with GCC/UPC version 3.

Benefits

The flexible heap facility removes the requirement that the user supply an explicit
upper limit on the size of the UPC dynamic memory allocation runtime heap.
Further, by removing the restriction that the entire shared address space must be
mapped into each UPC thread's address space, it should be possible to increase
the amount of memory available to each thread, and thus make it possible for a
UPC program compiled by GCC/UPC version 4, and linked with its runtime, to
handle larger problems than those compiled with version 3. This will be
especially noticeable on platforms that support only 32 bit address spaces.
The lack of directly generated code for UPC's remote access operations will be
offset in the future by moving many of the frequently executed runtime
procedures into a pre-included header file, where they will be declared as inline
functions.

-- End --

	GCC/UPC 4.0�”Flexible Heap” Design Overview
	Background
	Requirements
	The Paged Global Shared Virtual Address Space
	Per-Thread Update of Allocated Memory Size
	Heap Allocation Sequence Numbers: A Tool to Make Sure that Free Does Not Combine Non-Contiguous Memory Regions
	The UPC Heap Allocation Functions are Written in the UPC Language
	Paging and the UPC Memory-to-Memory Library Functions
	Judicious Use of Inlining
	Pthreads Implications
	Limitations
	Benefits

