XIIT Simposio Brasileiro de Automacao Inteligente

017
Porto Alegre — RS, 12 — 4 de Outubro de 2017

USING REINFORCEMENT LEARNING TO OPTIMIZE GAIT GENERATION
PARAMETERS OF A HUMANOID ROBOT

Isaac J. Siva*, DaNiLo H. PErIcO*, ANNA H. R. Costaf, REINALDO A. C. BIANCHI*

* Electrical Engineering Department
Centro Universitdrio FEI
Sao Bernardo do Campo, Sio Paulo, Brazil

T Escola Politécnica da Universidade de Sdo Paulo
Sao Paulo, Sao Paulo, Brazil

Emails: isaacjesus@fei.edu.br, dperico@fei.edu.br, anna.reali@usp.br,
rbianchi@fei.edu.br

Abstract— Humanoid robots use a gait pattern generator to control the servo motors during the gait preserv-
ing its dynamic balance. There are several gait generation techniques that have been developed for humanoid
robots. The Darwin-OP robot uses a method to generate the gait pattern based on coupled oscillators that
perform sinusoidal trajectories. However this gait pattern generation has several parameters that needs to be
configured by hand. This research arises from the need to find an automatic way to adjust the values of these
parameters. Therefore, this paper proposes a reinforcement learning algorithm with temporal generalization
that aims to optimize the parameter values for the gait pattern generation of a humanoid robot. Experiments
were performed in a simulated environment, and results showed that the algorithm was able to learn the best

parameters values, through the evaluation of the humanoid robot’s walk performance.

Keywords— Machine Learning for robotics, Reward structures for learning, Reinforcement Learning

1 Introduction

Researches on humanoid robots consists of a range
of interests, ranging from the desire to replace
humans in dangerous activities (mining, nuclear
power, dangerous activities in disaster environ-
ments), and to aid in everyday activities (atten-
dants, domestic activities). The advantage of hu-
manoid robots is the fact that locomotion with
legs is the best form of locomotion in environments
with discontinuities in the floor, such as steps and
stones (Westervelt et al., 2007).

The research of Marder and Bucher (2001)
showed that for locomotion control in animals,
there are neuronal circuits responsible for produce
rhythmic motor patterns such as walking. These
biological neuronal circuits are called Central Pat-
tern Generators (CPG). Based CPG, researchers
developed a gait generators for humanoid robots.

In DARwIn-OP robot (Ha, Tamura, Asama,
Han and Hong, 2011) the gait pattern generation
can be configured by parameters, the values of
these parameters can be changed by the parame-
ter’s file, that needs to be configured by hand.

The goal of this work is optimize the param-
eter values of the gait pattern generation of a hu-
manoid DARwIn-OP robot using reinforcement
learning techniques, in order to seek a fast and
dynamically balanced gait.

Temporal-Difference (TD) algorithm was cho-
sen for this application, because the agent needs to
learn the best parameter values only. Considering
that states are composed by a set of parameters,
the important thing here is to identify the best
states (optimal values of the set of parameters),
where the action taken is not important.

ISSN 2175 8905

One of the most difficult problems to be solved
currently in humanoid robots is the walking abil-
ity, and the origin of this research arises by the
need to find an automatic way to adjust the gait
generator parameter values of a humanoid robot
for producing higher speeds gait with dynamically
balanced gait.

The remaining of this paper is organized as
follows: Section 2 presents theoretical background
about Reinforcement Learning. Section 3 presents
theoretical background about DARwIn-OP Gait
Pattern Generation and reviews related work.
Section 4 presents details of the proposed system,
and Section 5 shows the experiments and results
obtained. Finally, the section 6 concludes this
work.

2 Reinforcement Learning and TD())

In reinforcement learning, the agent learns
through interaction with the environment, receiv-
ing negative or positive rewards, according to the
actions taken (Mitchell, 1997).

The problem can be describe using a Markov
Decision Process (MDP) (Sutton and Barto,
1998). A MDP is composed of a set of states
s € S, a set of actions a € A to each state s, a
transition model P(s'|s,a) and a reward function
R(s,a,s") (Russell and Norvig, 2010), where:

e S is a set finite of state;

e A is a set finite of action and a(s) are the
actions allowed for the state s;

e P(s'|s,a) or T(s,a,s’) is the transition func-
tion;

Sepisin Bt ds Aufonaro el

e R(s,a,s’) is the reward get s’ by performing
the action a being the state s other reward
R(s") only the resulting state.

Some algorithms such as Q-learning (Watkins
and Dayan, 1992) and SARSA (Rummery and Ni-
ranjan, 1994) require a very large number of it-
erations order to achieve convergence. To miti-
gate this amount of iterations required, one pro-
posed acceleration method, the temporals gener-
alization. The temporal generalization performs
a spreading of learning: when the agent visits a
state, the learning occurred in that state is spread
to nearby states.

TD(A) (Sutton, 1988) is an algorithm that
uses eligibility traces, that is an additional mem-
ory variable associated to each state. We can see
that the eligibility trace is incremented by 1 to the
visited state, while all the others states are decre-
mented by the factor v\, as described in equation

1.

where: A is the factor that decays the eligibil-
ity trace (0 < A < 1), determining how reward’s
future will be considered; Z(.9) is eligibility trace;
~ is the discount factor (0 <~ < 1).

The error equation and the V'(S) value update
is shown in equation 2 and 3, respectively.

YAZy—-1(s)
YAZi—1(s) + 1

lfSZSt ’

Zt(S) (1)

§r+V(S") = V(9), (2)

where: § is the error; V(S’) is the state’s fu-
ture value selected by the taken action A4; V(5) is
the state of the value that the agent is in; r is the
reward.

for all s € state space,

3)

V(s) + V(s) + adZ(s)

where: V(s) is the corresponding value to a
state belonging to the state space; Z(s) is the eli-
gibility trace referring to a state belonging to the
state space; « is the learning rate (0 < a < 1).

3 Gait Pattern Generator

Locomotion control in vertebrate and invertebrate
animals is made by neuronal circuits responsible
for produce rhythmic motor patterns such as walk-
ing (Marder and Bucher, 2001). These biological
neuronal circuits are called Central Pattern Gen-
erators (CPG). Based on the biological CPG, re-
searchers developed gait generators for humanoid
robots, working as a generic CPG model known as
gait pattern generation. The most important task

289

XIIT Simposio Brasileiro de Automacao Inteligente
Porto Alegre — RS, 12 — 4 de Outubro de 2017

of this gait pattern generation is to preserve its dy-
namic balance during the walking (Vukobratovié
and Borovac, 2004).

Recent work have been using machine learn-
ing to improve robot performance. The work of
MacAlpine et al. (2012) presents a learning al-
gorithm to optimize the gait using an Aldebaran
NAO humanoid robot in 3D simulation environ-
ment SimSpark (Simulador SimSpark, 2015). The
authors describe that in order to achieve optimiza-
tion of the parameter values, they used the al-
gorithm Covariance Matrix Adaptation Evolution
Strategy (CMA-ES). The CMA-ES uses a pop-
ulation generation approach similar to a genetic
algorithm.

NAO robot has 40 parameters that can be op-
timized, but the authors selected 14 parameters to
optimize and keep the other ones with fixed val-
ues, these 14 parameters are those that generate
the greatest influence on speed and dynamically
balanced gait. The authors reported that the sim-
ulation was performed in a cluster, and, because
of the parallel learning, the training was about 150
times faster (MacAlpine et al., 2012).

Another work worth citing was conducted by
Shafii et al. (2015) in the 3D simulation environ-
ment, using as main focus the effect of hip height
movement on the walking speed of the robot, in
a way that, the robot with varied height could
walk faster than the robot with fixed hip height.
The tests were made not only to obtain fast for-
ward walk but also to obtain a fast side walk using
CMA-ES. The parameters learned were tested on
real NAO robots and on simulated ones.

Darwin-OP robot uses a gait pattern genera-
tion based in coupled oscillators. The oscillators
perform sinusoidal trajectory of movement syn-
chronized in time, so the robot is capable to per-
form a dynamically balanced gait. Ha, Tamura
and Asama (2011) developed the gait pattern gen-
eration for the Darwin-OP robot and also devel-
oped a closed loop control able to protect the
robot from a possible fall, which is done by reading
the gyro data. They developed three oscillators,
one in each foot OSC,,0pe (movement oscillator),
and one in the center of mass OSCy,; (balance os-
cillator). Each oscillator have six sub-oscillators
related to the axes X, Y, Z, «, B e 7y, summing up
18 sub-oscillators (Ha, Tamura and Asama, 2011).

The oscillators can be configured by param-
eters, that can be divided into three groups, as
showed in the Table 1.

Parameters containing the word offset in its
name do not require dynamic test. These values
are statically configured with the robot in the up-
right position, therefore, in this work these param-
eters were setting with default values.

The Feedback parameters are related to the
gain on the gyro feedback, so in this work these
parameters were setting with default values.

Sepisin Bt ds Aufonaro el

XIIT Simposio Brasileiro de Automacao Inteligente
Porto Alegre — RS, 12 — 4 de Outubro de 2017

Table 1: Parameter values of the gait pattern generation.

Offset’s parameter | Parameters of the oscillators | Feedback parameters
X offset period_time balance_knee_gain
Y_offset dsp_ratio balance_ankle_pitch_gain
Z_offset step_forward_back_ratio balance_hip_roll_gain

roll_offset foot_height balance_ankle_roll_gain
pitch_offset swing_right_left
yaw_offset swing_top_down
hip_pitch_offset arm_swing_gain
pelvis_offset

4 Using reinforcement learning to
optimize gait pattern generation
parameters

This paper proposes a reinforcement learning al-
gorithm with temporal generalization that aims to
optimize the parameter values of the gait pattern
generation for a DARwIn-OP robot. To define
the reinforcement learning environment, each pa-
rameter p must be discretized within a range (this
range is determined according to the characteristic
of each parameter). Therefore, a study was con-
ducted to determine the minimum and maximum
value for each parameter, and also the discretiza-
tion step size of each parameter, in order to reduce
the state space in a way that is not prejudicial to
the expected result.
The MDP used in this work is composed of:

e S: the states s are a set of parameters p,,
therefore, s(p1,p2,...,0n) € S;

A: the actions a(s): increment a parameter
value, decrement a parameter value, and stay
on the same state;

T(s,a,s’): the transition function is a deter-
ministic function that will allow the incre-
ment or decrement of only one parameter p;
(1 <i<mn)ofs(pi,p2,-.-,0n) €S, and it also
allows the system to stay in the same state;

r: a negative reward is given to the robot
when it falls, and a positive reward is de-
termined by a function that has as input
the speed of the gait (positive_reward

f(speed)).

For example, if someone creates a state con-
taining a set of three parameters s(p1, p2,p3) € S,
there will be 3 actions of increment of parameter, 3
actions of decrement of parameter and one action
to stay on the same state, summing up 7 actions
a(s) € A, where actions ay, az e ag are increasing
actions; a4, as € ag are actions of decrement; and
the action a7 is to stay on the same state.

The algorithm to optimize the parameter val-
ues using the TD(A) method, is shown in algo-
rithm 1. The episode ends when the robot walks

290

a certain number of footsteps, W, without falling
or if it falls a certain amount of times. Before
starting an episode, the state s € S is randomly
chosen, allowing the robot to learn all the state
space.

[y

Initialize all V(s) arbitrarily
while The desired number of episodes is
not reached do

N

3 Choose an initial state s.
4 for for all s do
5 | Z(s)«0
6 end
7 while Desired number of steps without
falling is not reached or the mazimum
number of falls is not reached do
8 Update the parameters p,, w.r.t.
the chosen state s.
9 X; and Y; receive the current global
position.
10 Performs W footsteps.
11 Xy and Y} receive the current
global position.
12 Calculate the speed of the gait.
13 if robot fall then
14 ‘ r < negative_reward
15 end
16 else
17 ‘ r < positive_reward
18 end
19 a < action of the state s using
policy derived from e — greedy
20 Take action a observe the state s’
21 §—r+~V(s)=V(s)
22 Z(s)« Z(s)+1
23 for Vs € S do
24 V(s) < V(s) +adZ(s)
25 Z(8) + yAZ(s)
26 end
27 Update the state s:
28 s+ s
29 end
30 end

Algorithm 1: Algorithm TD()\) for parameter
learning.

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

Table 2: Configuration variables for reinforcement
learning

Maximum number of steps per episode | 40
Number of footstep (W) 4

Learning rate () 0.10

Exploration rate (e) 0.15

A 0.05

vy 0.90

An exponential function was adopted to sepa-
rate the parameter values that generate low speeds
of gait.

negative_reward if robot fall

f(speed) = K, 10055 otherwise
(4)
Where K, and K, are constants used to in-
fluence the reinforcement given. K; is a linear
constant gain and K is an exponential constant
gain. Experimentally K; was defined as 0.33 and

Ky =10.

5 Experiments

This section presents four experiments: The first
experiment learns the best parameters value of
period_time and swing_right_left. The sec-
ond experiment checks the robot gait behav-
ior using the parameter values learned from
first experiment. The third experiment learns
the best parameters value of period_time and
swing_right_left with the footstep length in-
creased. The fourth experiment checks the robot
gait behavior using the parameter values learned
in the third experiment.

Two gait generator parameters were chosen
to be optimized during the development of this
work (period_time and swing_right_left), in order
to have a small state space. The other parameters
were set to default values. The learning variables
were set with the same values that had already
been used in previous works (Martins, 2007), as
shown in Table 2.

The selection of actions is made using the
e — greedy rule as described in Sutton (Sutton and
Barto, 1998). Line 7 of the algorithm 1, contains
the condition for the end of the episode. In this ex-
periment, the maximum number of falls was set to
10 and the maximum number of steps per episode
is presented in Table 2.

Experiments used in Equation 4 as rewards.
In algorithm, the negative reward value has re-
lationship to the value of positive reward and
the maximum number of steps per episode.
negative_reward = —400 was used for the maxi-
mum number of steps per episode equal to 40.

291

XIIT Simposio Brasileiro de Automacao Inteligente
- Porto Alegre — RS, 12 — 4 de Outubro de 2017

50000 steps
T ;

100000 steps
" r T T T

=

a
A

=
i
=
[
]
=
&

swing_right_le ft

.
=]

-
)

600 700 800
period _time
200000 steps

600 700 800
period_time
300000 steps
i T

900

swing_righ

800
period_time

i |
800
period _time

00 700 300 500 600 700 300

Figure 1: Experiment 1: Graphs of the values of
V(s) after 50.000; 100.000; 200.000; 300.000 steps.

The parameters that have been opti-
mized in this experiment are period_time and
swing_right_left. The period_time was discretized
into 35 values in a range of 450 to 960 with step
15. The swing_right_left was discretized into
13 values in a range of 15 to 39 with step 2.
Therefore, the total number of states was 455
(=13-35).

The graphs to represent V(s) values (Figures
1, 3, 4, 7) use a color pattern, where the lighter
color is the region that has the highest value.

All the experiments were performed in an In-
tel 15-4690 3.5GHz computer, comprised of 8 GB of
RAM, 120GB of SSD, NVIDIA GeForce GTX660
2GB DDRS5, running Linux Ubuntu 14.04. Dur-
ing all experiments the algorithm proposed was
implemented in the simulator Webots 8.0.3, us-
ing C++ programming language. Webots is a 3D
simulation environment used to model, program
and simulate mobile robots.

5.1 First experiment: optimizing parameters val-
ues.

The aim here is to learn new parameters values
that makes the robot move with higher speed. In
this experiment the robot performs the walking
on the simulator. The graphs depicted in Figure
1 show the V(s) values for all states. The anal-
ysis of these graphs allow us to understand that
the algorithm was able to find the parameter val-
ues responsible for producing higher speeds and
the best dynamically balanced gait (the areas of
lighter color have the highest values of V(s)).

It is also possible to observe in the graphs
(Figure 1) that only 100.000 steps has the re-
gion of the best values, which is approximately

* Sepsobsierd toma kgt

Convergence

LT [v v Bror,
R - T. « —* Moving average
*, - oo As
e . ..

5000

3000
Episode

Figure 2: Experiment 1: Convergence graph.

S, B

swing_right_le ft
i

[~
[=]

15

period_time

Figure 3: Experiment 2: Graph of values param-
eters learned.

the same region found in 300.000 steps. Focus-
ing on the central area of the best values re-
gion of these graphs, the values are approximately
period_time ~ 600 and swing_right_left ~ 22.
In Webots simulator the default values of these
two parameters are period_time 600 and
swing_right_left = 20. Therefore, the execu-
tion of the proposed algorithm could find values of
period_time and swing_right_left that were ap-
proximately the same default values of the simu-
lator.

The graph of Figure 2 shows the sum of the
difference between the current value of Vi(s) to
the previous value of V;_1(s) per episode for all
states s. The moving average used in these two
graphs was 50 episodes.

5.2 Second experiment: Testing the robot with
the optimized parameters

This experiment is made to check the robot gait
behavior in the simulator, using the parameter
values learned by the proposed learning algo-
rithm. To perform this experiment we first set
up the robot with the values of period_time and
swing_right_le ft related to point P, chosen. For
each point the robot performs a gait during a cer-
tain time interval. This time interval should be
the same for all points P, to be tested.

Table 3 shows a simulation performed with
some parameter values to compare the speed

292

XIIT Simposio Brasileiro de Automacao Inteligente
- Porto Alegre — RS, 12 — 4 de Outubro de 2017

Table 3: Performance of the parameter values

P1L | P2 | P3 P4

period_time 480 | 600 | 700 600
swing_right_left 20 20 20 32
Travelled distance [m] | 49.0 | 54.6 | 42.2 | 51.61
Mean speed [cm/s] 17.7 | 19.7 | 15.2 | 18.61
and the stability. In Figure 3, the values

period_time 600 and swing_right_left = 20
related to point P2 that is inside the region of the
best values. Values of the points P1, P3 and P4
are outside the region of the best values.

Point P4 showed a speed slower when com-
pared to P2, and a speed higher than that of P1
and P3 points, but the algorithm leaves point P4
out of the best values region because during the
gait there was a fall of the robot. Points P1, P2
and P3 performed the gait without falling during
this experiment.

5.8 Third experiment: Optimizing parameters
values to increase the speed gait

Here we aim is to learn new parameters values that
makes the robot move with higher speed with the
robot’s footstep length increased (footstep length
is the maximum distance between the two legs at
the instant one leg is ahead of the other during
the gait). The method setXAmplitude (setXAm-
plitude is the forward footstep length) was used
to increase the footstep length. However, this
method is delimited in the range of -1 to 1, then,
to perform this experiment we needed increase the
range for -1.5 to 1.5. In previous experiments, the
value used in the method setXAmplitude was 1.

In this experiment, the value used in the
method setXAmplitude was 1.5. Table 2 shows the
configuration variables of the reinforcement learn-
ing algorithm.

It can be seen in the graph of Figure 7
that there was a shift in the region of the
best values of the parameters period_time and
swing_right_left. However, there are two small
areas of the graphic that stand out with a lighter
color (because these two small regions have the
highest values of V(s)). Besides the shift of the
region of the best values, it can be seen that there
was a decrease in the size of the area of the re-
gion (the two small regions have the largest val-
ues of V(s)), so the best region decreased when
compared to the V(s) graph of Figure 3.

The graph of the Figure 4 shows two graphs
with the maximum values for each value of
period_time and swing_right_left, Figure 5 also
shows the amounts of V(s) for each value of
period_time and swing_right_left; However, in
Figure 4 we can see more precisely where is the
region with the highest values of V(s).

SBAIZ20TT

2500

2000

o}
=
2

Maximum V(s)
=]
3
3

500

ol
400 500 600 700 800 300 1000
swing_right_left

300000 steps

5
01000 1200 1300 1600 1800 2000 2200
Maximum V(s)

B0 700 80 %0
period_time

Figure 4: Experiment 3: Graph with the maxi-
mum values of V(s).

2000
1600
1200
B00
400

—400
—800

12000 " " # .+ Accumulated reward per &pisede
. -, Moying average’ " .
e M LA

Accumulated reward

1 i i 1 H
2000 4000 6000 8000 10000
Episode

Figure 6: Experiment 3: Graph of reward accu-
mulated per episode.

In Figure 6 the algorithm executed approxi-
mately 540,000 steps and we can see the accumu-
lated reward per episode.

5.4 Fourth experiment: Testing the robot with
the optimized parameters

To perform this experiment, the robot was
first setup with the values of period_time and

XIIT Simposio Brasileiro de Automacao Inteligente
s Porto Alegre — RS, 12 — 4 de Outubro de 2017

swing_right_le ft

.mﬂ .
period_time

Figure 7: Experiment 4: Graph of values param-
eters learned.

Table 4: Performance of the parameter values

P1 P2 P3
period_time 600 625 675
swing_right_left 20 24 25

Travelled distance [m]
Travelled distance [m]

17.4(fall) | 17.9 | 16.8
101.2(fall) | 102.2 | 99.0
Travelled distance [m] | 110.4(fall) | 113.0 | 108.9
Travelled distance [m] | 124.1(fall) | 127.5 | 123.4

Mean speed [cm/s] 28.4 28.8 | 27.8

swing_right_le ft related to point P, chosen. For
each point, one type of gait is performed with the
robot during a certain period of time. This inter-
val should be equal for all points P, to be tested.
During this gait, it’s checked if the robot falls,
and every four steps it was calculated the speed
of the gait; when the experiment was concluded,
the average speed was calculated.

Table 4 shows the results when using the pa-
rameters values that the algorithm found as the
best values (parameter values of period_time =
625 and swing_right_left = 24 for the P2
point, and period period_time = 675 and
swing_right_left = 25 for the P3 point). Table 4
shows that the values of P1 (period_time = 600
and swing_right_le ft = 20) showed a good speed
gait, however in some times the robot falls. There-
fore, the speed is high but the robot does not have
a dynamically balanced gait.

Observing the points position in Figure 7
taken from Table 4 and used in the experiment,
one can see that all 3 points are located in a re-
gion considered as having good values. However,
P1 does not have as good dynamically balanced
gait as the dynamically gait shown by P2 and P3.

Figure 8 shows the traveled path by the
robots. In graph, we can observe that the param-
eter values of the robot 1 (P1) makes the robot
performs a walk with slip.

|| = » Robot1(P1)
+ + Robot 2 (P2)
| » = Robot3(P3)

=20

20 100 120
X [m]

Figure 8: Traveled path by the robots in the sim-
ulator.

6 Conclusions

This paper showed a reinforcement learning al-
gorithm that has been able to optimize the gait
generator parameter values of a humanoid robot
in a simulated environment, was also possible to
identify the relationship between the parameters.

In the first experiment it is possible to con-
clude that the parameter values of period_time
and swing_right_left used by Webots simulator
are the best values since they combine speed with
dynamically balanced gait. In the second experi-
ment we concluded that it is possible to increase
the speed by changing the values parameters, how-
ever, increase the footstep length result in a diffi-
cult to perform a dynamically balanced gait.

The deep reinforcement learning may also be
implemented to decrease the learning time, mak-
ing it possible to increase the number of param-
eters to be learned. In Webots simulator we can
include more than one robot in the simulation en-
vironment. In such configuration it will be possi-
ble to have the agents sharing the knowledge to
achieve their goals.

Acknowledgments

The authors acknowledge the Centro Univer-
sitdrio FEI and Sao Paulo Research Foundation
(FAPESP Grant 2016/21047-3) for supporting
this project. The authors acknowledge the sup-
port of NVIDIA Corporation with the donation
of the Jetson TX1 developer kit. The authors
would also like to thank the scholarships provided
by CAPES and CNPq.

References

Ha, I., Tamura, Y. and Asama, H. (2011).
Gait pattern generation and stabilization for
humanoid robot based on coupled oscilla-
tors, Intelligent Robots and Systems (IROS),

294

XIIT Simposio Brasileiro de Automacao Inteligente
Porto Alegre — RS, 12 — 4 de Outubro de 2017

2011 IEEE/RSJ International Conference
on, IEEE, pp. 3207-3212.

Ha, I., Tamura, Y., Asama, H., Han, J. and Hong,
D. W. (2011). Development of Open Hu-
manoid Platform DARwIn-OP, Proceedings
of SICE Annual Conference (SICE), IEEE,
pp. 2178-2181.

MacAlpine, P., Barrett, S., Urieli, D., Vu, V. and
Stone, P. (2012). Design and optimization of
an omnidirectional humanoid walk: A win-
ning approach at the robocup 2011 3d simu-
lation competition., AAAL

Marder, E. and Bucher, D. (2001). Central pat-
tern generators and the control of rhythmic
movements, Current biology 11(23): RI86—-
R996.

Martins, M. F. (2007). Aprendizado por refor¢o
acelerado por heuristicas aplicado ao dominio
do futebol de robds, Master’s thesis, Centro
Universitdrio FEI.

Mitchell, T. M. (1997). Machine Learning, 1 edn,
McGraw-Hill, Inc., New York, NY, USA.

Rummery, G. A. and Niranjan, M. (1994). On-
line Q-learning using connectionist systems,
University of Cambridge, Department of En-
gineering.

Russell, S. J. and Norvig, P. (2010). Artificial in-
telligence: a modern approach, 3 edn, Pren-
tice Hall, Upper Saddle River, NJ.

Shafii, N., Lau, N. and Reis, L. P. (2015).
Learning to walk fast: Optimized hip height
movement for simulated and real humanoid
robots, Journal of Intelligent € Robotic Sys-
tems 80(3-4): 555-571.

Simulador SimSpark (2015).
URL: http://simspark.sourceforge.net/

Sutton, R. S. (1988). Learning to predict by
the methods of temporal differences, Machine
learning 3(1): 9-44.

Sutton, R. S. and Barto, A. G. (1998). Introduc-
tion to Reinforcement Learning, 1st edn, MIT
Press, Cambridge, MA, USA.

Vukobratovié, M. and Borovac, B. (2004). Zero-
moment point—thirty five years of its life,
International Journal of Humanoid Robotics
1(01): 157-173.

Watkins, C. J. C. H. and Dayan, P. (1992). Q-
learning, Machine learning 8(3-4): 279-292.

Westervelt, E. R., Grizzle, J. W., Chevallereau,
C., Choi, J. H. and Morris, B. (2007). Feed-
back control of dynamic bipedal robot locomo-
tion, Control and automation, CRC Press,
Boca Raton.

