Skip to content
main
Switch branches/tags
Go to file
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 

README.md

Data Analytics I

Online Material for the Data Analytics I course

Binder

This repository contains additional material for the Data Analytics I course. The material is created for educational purposes and serves students to get familiar with the R code and visualization of results.

Course content:

The course aims to explain the difference between causal and predictive modeling and introduces some of the widely used predictive modeling methods and their core principles. The lectures start with the basic concepts in causal and predictive modeling to underline different goals in each approach. The statistical theory is based on a linear regression model which is broadly used in the applied research. The theoretical results further deepen the understanding of what the differences between causal and predictive modeling are. During the rest of the course, several predictive methods are discussed. Additionally, strategies how to obtain the best predictive model including resampling methods such as cross‑validation are overviewed.

Course outline:

  1. Basic Econometrics Concepts
  2. Properties of Linear Estimators and Predictions
  3. Prediction vs. Causal Inference (Linear Regression)
  4. Supervised Machine Learning Methods

About

Online Material for the Data Analytics I course

Resources

License

Releases

No releases published

Packages

No packages published