
2/7/24, 2:39 PM BA865_Final_project_deliverable - Jupyter Notebook

localhost:8888/notebooks/Downloads/BA865_Final_project_deliverable.ipynb 1/31

BA865 Final Project: Predicting Supreme Court Decisions

Team: Eunjin Jeong, Ji Qi, Yesol Lee, Yongxian Lun

1. Introduction
Case background: The Supreme court is the highest tribunal for all cases and interpretation of the Constitution or the laws in the United
States. Supreme court decisions impact parties in each case, stakeholders, government and society. Supreme court decisions regulate
individuals' life, rights and obligations. Therefore, predicting supreme court decision is critical that it helps stakeholder decision making.
Problem statement: This project aims to predict whether petitioner will win or respondent will win in each case using multiple neural
network models. This is a binary classification problem given winner index, party names, and case facts. Winner index indicates whether
petitioner won or respondent won.
Dataset: The source of this data is the Oyez project. Oyez project is a free law project from Cornell’s Legal Information Institute, Justia, and
Chicago-Kent College of Law to archive Supreme Court data. We used dataset(task1_data.pkl) gathered by Mohammed Alsayed et all, in
https://github.com/smitp415/CSCI_544_Final_Project.git (https://github.com/smitp415/CSCI_544_Final_Project.git)

2. Statistics of dataset

https://github.com/smitp415/CSCI_544_Final_Project.git
https://github.com/smitp415/CSCI_544_Final_Project.git

2/7/24, 2:39 PM BA865_Final_project_deliverable - Jupyter Notebook

localhost:8888/notebooks/Downloads/BA865_Final_project_deliverable.ipynb 2/31

Load the dataset

In [2]:

In [3]:

imports
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.neural_network import MLPClassifier
from sklearn.linear_model import Perceptron
from sklearn.svm import LinearSVC
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import MultinomialNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import VotingClassifier
from sklearn.calibration import CalibratedClassifierCV

import nltk
from gensim.models.doc2vec import Doc2Vec, TaggedDocument
from nltk.tokenize import RegexpTokenizer

import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers

import seaborn as sns

For displaying facts
pd.set_option('display.max_colwidth', None)

2/7/24, 2:39 PM BA865_Final_project_deliverable - Jupyter Notebook

localhost:8888/notebooks/Downloads/BA865_Final_project_deliverable.ipynb 3/31

In [4]:

There are 3464 cases.

Load dataset as dataframe
df = pd.read_pickle('https://github.com/yesol-ba/portfolio/blob/main/Data/ba865_supreme%20court%20data_task1_

#df = pd.read_pickle('/content/task1_data.pkl') # Sally's Path
df.rename(columns={'Facts': 'facts'}, inplace=True)
df.drop(columns=['index'], inplace=True)
df.reset_index(inplace=True)

print(f'There are {len(df)} cases.')

2/7/24, 2:39 PM BA865_Final_project_deliverable - Jupyter Notebook

localhost:8888/notebooks/Downloads/BA865_Final_project_deliverable.ipynb 4/31

In [8]: # Looking at the dataset
df.head(3)

2/7/24, 2:39 PM BA865_Final_project_deliverable - Jupyter Notebook

localhost:8888/notebooks/Downloads/BA865_Final_project_deliverable.ipynb 5/31

Out[8]:
index ID name href first_party second_party winning_party winner_index facts

0 0 50606 Roe v.
Wade

https://api.oyez.org/cases/1971/70-
18 Jane Roe Henry Wade Jane Roe 0

In 1970, Jane Roe (a fictional name
used in court documents to protect
the plaintiff’s identity) filed a lawsuit

against Henry Wade, the district
attorney of Dallas County, Texas,
where she resided, challenging a
Texas law making abortion illegal

except by a doctor’s orders to save
a woman’s life. In her lawsuit, Roe

alleged that the state laws were
unconstitutionally vague and

abridged her right of personal
privacy, protected by the First,

Fourth, Fifth, Ninth, and Fourteenth
Amendments.

1 1 50613
Stanley

v.
Illinois

https://api.oyez.org/cases/1971/70-
5014

Peter
Stanley,

Sr.
Illinois Stanley 0

Joan Stanley had three children
with Peter Stanley. The Stanleys

never married, but lived together off
and on for 18 years. When Joan

died, the State of Illinois took the
children. Under Illinois law, unwed

fathers were presumed unfit
parents regardless of their actual
fitness and their children became

wards of the state. Peter appealed
the decision, arguing that the Illinois

law violated the Equal Protection
Clause of the Fourteenth

Amendment because unwed
mothers were not deprived of their

children without a showing that
they were actually unfit parents.

The Illinois Supreme Court rejected
Stanley’s Equal Protection claim,

holding that his actual fitness as a
parent was irrelevant because he

and the children’s mother were
unmarried.

2/7/24, 2:39 PM BA865_Final_project_deliverable - Jupyter Notebook

localhost:8888/notebooks/Downloads/BA865_Final_project_deliverable.ipynb 6/31

In [6]:

index ID name href first_party second_party winning_party winner_index facts

2 2 50623
Giglio

v.
United
States

https://api.oyez.org/cases/1971/70-
29

John
Giglio United States Giglio 0

John Giglio was convicted of
passing forged money orders.

While his appeal to the you.S. Court
of Appeals for the Second Circuit

was pending, Giglio’s counsel
discovered new evidence. The

evidence indicated that the
prosecution failed to disclose that it

promised a key witness immunity
from prosecution in exchange for

testimony against Giglio. The
district court denied Giglio’s motion
for a new trial, finding that the error
did not affect the verdict. The Court

of Appeals affirmed.

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3464 entries, 0 to 3463
Data columns (total 9 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 index 3464 non-null int64
 1 ID 3464 non-null int64
 2 name 3464 non-null object
 3 href 3464 non-null object
 4 first_party 3464 non-null object
 5 second_party 3464 non-null object
 6 winning_party 3464 non-null object
 7 winner_index 3464 non-null int64
 8 facts 3464 non-null object
dtypes: int64(3), object(6)
memory usage: 243.7+ KB

There are 3 numerical columns and 6 object columns
df.info()

2/7/24, 2:39 PM BA865_Final_project_deliverable - Jupyter Notebook

localhost:8888/notebooks/Downloads/BA865_Final_project_deliverable.ipynb 7/31

In [7]:

Descriptive statistics

In [9]:

In [10]:

Out[7]: index 0
ID 0
name 0
href 0
first_party 0
second_party 0
winning_party 0
winner_index 0
facts 0
dtype: int64

Average facts character length: 1179
Average facts word length: 189

There are 3464 cases.
There are 2114 rows for class 0.
There are 1350 rows for class 1.

There isn't any missing values in this dataset
df.isna().sum()

avg_char = df['facts'].apply(lambda x: len(str(x))).mean()
print(f'Average facts character length: {avg_char:.0f}')

avg_word = df['facts'].apply(lambda x: len(str(x).split())).mean()
print(f'Average facts word length: {avg_word:.0f}')

del avg_char, avg_word

print(f'There are {len(df)} cases.')
print(f'There are {len(df[df["winner_index"]==0])} rows for class 0.')
print(f'There are {len(df[df["winner_index"]==1])} rows for class 1.')

2/7/24, 2:39 PM BA865_Final_project_deliverable - Jupyter Notebook

localhost:8888/notebooks/Downloads/BA865_Final_project_deliverable.ipynb 8/31

In [11]:

In [12]:

Out[11]: count 3464.000000
mean 1179.302252
std 556.335680
min 95.000000
25% 784.000000
50% 1112.500000
75% 1496.000000
max 6108.000000
Name: facts, dtype: float64

Out[12]: count 3464.000000
mean 188.618938
std 91.496982
min 13.000000
25% 125.000000
50% 176.000000
75% 239.000000
max 974.000000
Name: facts, dtype: float64

Facts character stats
df['facts'].apply(lambda x: len(str(x))).describe()

Facts word stats
df['facts'].apply(lambda x: len(str(x).split())).describe()

2/7/24, 2:39 PM BA865_Final_project_deliverable - Jupyter Notebook

localhost:8888/notebooks/Downloads/BA865_Final_project_deliverable.ipynb 9/31

In [13]:

3. Data preprocessing

Metal device set to: Apple M1

2024-02-07 13:08:02.118679: I tensorflow/core/common_runtime/pluggable_device/pluggable_device_factory.cc:3
05] Could not identify NUMA node of platform GPU ID 0, defaulting to 0. Your kernel may not have been built
with NUMA support.
2024-02-07 13:08:02.119044: I tensorflow/core/common_runtime/pluggable_device/pluggable_device_factory.cc:2
71] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 0 MB memory) -> physical P
luggableDevice (device: 0, name: METAL, pci bus id: <undefined>)
2024-02-07 13:08:02.171462: W tensorflow/core/platform/profile_utils/cpu_utils.cc:128] Failed to get CPU fr
equency: 0 Hz
2024-02-07 13:08:02.215477: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:112] P
lugin optimizer for device_type GPU is enabled.

The average fact in our data has 1000 words, and we have 3464 samples.

The ratio of samples to average sample length is 3. We are nowhere close to 1500.

We need a larger dataset containing at least 1500000 samples.

Seqence Model Check (Not Pass)
text_vectorization = keras.layers.TextVectorization(
 max_tokens=1000, # adding more tokens to allow for increase due to bigrams.
 output_mode="multi_hot", # This is requesting integer encodings (which means we'll have a sequence of int
)
text_vectorization.adapt(df['facts'])
vectorized_facts = text_vectorization(df['facts'])

lengths = [len(x) for x in vectorized_facts]

print(f'The average fact in our data has {np.mean(lengths):.0f} words, and we have {len(df)} samples.\n')

print(f'The ratio of samples to average sample length is {(len(df)/np.mean(lengths)):.0f}. We are nowhere clo

print(f'We need a larger dataset containing at least {(np.mean(lengths)*1500):.0f} samples.')

2/7/24, 2:39 PM BA865_Final_project_deliverable - Jupyter Notebook

localhost:8888/notebooks/Downloads/BA865_Final_project_deliverable.ipynb 10/31

'winner_index' as Label: 0 means first party(petitioner) wins and 1 means second party(respondent) wins. There are imbalances, so we will
upsample minor class.
'first_party', 'second_party', 'facts' as Predictors: We will use these features as predictors but do feature engineering to combine it.
'name', 'winning_party': ‘name’ consists of first party name and second party name, so we don’t use this feature as we already included
party names in ‘facts’. ‘winning party’ is represented by ‘winner_index’, which is target variable.
'ID', 'href': ‘ID’ was generated as an identifier when gathering data. It doesn’t add a lot of values, and new IDs in test set that didn’t appear
in train set might produce errors. ‘href’ is reference number grated after case, so we won’t use it as well.

Feature engineering

Checking whether party names are included in facts
13.05% of facts don't contain the first party name
17.18% of facts don't contain the second party name
1.93% of facts don't contain both first party the second party names

Therefore, we decided to merge 'facts', 'first_party', and 'second_party' to preserve party information.
Then, we will only use merged 'facts' as a predictor.

2/7/24, 2:39 PM BA865_Final_project_deliverable - Jupyter Notebook

localhost:8888/notebooks/Downloads/BA865_Final_project_deliverable.ipynb 11/31

In [14]:

In [15]:

13.05% of facts don't contain the first party name
17.18% of facts don't contain the second party name
1.93% of facts don't contain both first party the second party names

name_pet = []
name_rep = []
for i in range(df.shape[0]):
 fact = df["facts"][i]
 petitioner = df["first_party"][i]
 respondent = df["second_party"][i]
 p = True
 r = True
 for _ in petitioner.split():
 if _ in fact:
 p = True
 break
 else:
 p = False
 if p == False:
 #name_pet.append("Petitioner name not found in {}".format(i))
 name_pet.append(i)
 for _ in respondent.split():
 if _ in fact:
 r = True
 break
 else:
 r = False
 if r == False:
 #name_rep.append("Respondent name not found in {}".format(i))
 name_rep.append(i)

perc_miss_pet = len(name_pet) / len(df) * 100
print('{:.2f}% of facts don\'t contain the first party name'.format(perc_miss_pet))

perc_miss_rep = len(name_rep) / len(df) * 100
print('{:.2f}% of facts don\'t contain the second party name'.format(perc_miss_rep))

perc_miss_both = len(set(set(name_pet) & set(name_rep))) / len(df) * 100
print('{:.2f}% of facts don\'t contain both first party the second party names'.format(perc_miss_both))

2/7/24, 2:39 PM BA865_Final_project_deliverable - Jupyter Notebook

localhost:8888/notebooks/Downloads/BA865_Final_project_deliverable.ipynb 12/31

In [16]:

In [116]:

Imbalance in Label class
winner_index

Out[116]: 'John Giglio United States John Giglio was convicted of passing forged money orders. While his appeal to t
he you.S. Court of Appeals for the Second Circuit was pending, Giglio’s counsel discovered new evidence. Th
e evidence indicated that the prosecution failed to disclose that it promised a key witness immunity from p
rosecution in exchange for testimony against Giglio. The district court denied Giglio’s motion for a new tr
ial, finding that the error did not affect the verdict. The Court of Appeals affirmed.'

Combining first party and second party with facts
df['facts'] = df['first_party']+' '+df['second_party']+' '+df['facts']

df['facts'][2]

2/7/24, 2:39 PM BA865_Final_project_deliverable - Jupyter Notebook

localhost:8888/notebooks/Downloads/BA865_Final_project_deliverable.ipynb 13/31

In [18]:

Train-Test split

We split train-test before upsampling to avoid duplicated rows in each set

0 2114
1 1350
Name: winner_index, dtype: int64

Out[18]: <AxesSubplot:ylabel='Type'>

print(df["winner_index"].value_counts())

df.groupby('winner_index').size().plot(kind='pie',
 y = "winner_index",
 label = "Type",
 autopct='%1.1f%%')

2/7/24, 2:39 PM BA865_Final_project_deliverable - Jupyter Notebook

localhost:8888/notebooks/Downloads/BA865_Final_project_deliverable.ipynb 14/31

In [19]:

In [20]:

Upsampling train data

We upsampled minor class, which is winner index 0 (respondent winning) using sklearn resample.
Eventually got 1689 cases in each class and shuffled the rows.

In [21]:

(1691, 2)
(1080, 2)

Perform an 80-20 split for training and testing data
X_train, X_test, \
y_train, y_test = train_test_split(
 df[['winner_index', 'facts']],
 df['winner_index'],
 test_size=0.2,
 stratify=df['winner_index'],
 random_state=865
)

petitioner = X_train[X_train["winner_index"] == 0]
respondent = X_train[X_train["winner_index"] == 1]
print(petitioner.shape)
print(respondent.shape)

from sklearn.utils import resample
upsample_respondent = resample(respondent,
 replace=True,
 n_samples=len(petitioner),
 random_state=865)

2/7/24, 2:39 PM BA865_Final_project_deliverable - Jupyter Notebook

localhost:8888/notebooks/Downloads/BA865_Final_project_deliverable.ipynb 15/31

In [22]:

In [23]:

1 1691
0 1691
Name: winner_index, dtype: int64

Out[22]: <AxesSubplot:ylabel='Type'>

upsample_train = pd.concat([upsample_respondent, petitioner])

print(upsample_train["winner_index"].value_counts())

upsample_train.groupby('winner_index').size().plot(kind='pie',
 y = "winner_index",
 label = "Type",
 autopct='%1.1f%%')

Let's shuffle things...
shuffled_indices= np.arange(upsample_train.shape[0])
np.random.shuffle(shuffled_indices)

2/7/24, 2:39 PM BA865_Final_project_deliverable - Jupyter Notebook

localhost:8888/notebooks/Downloads/BA865_Final_project_deliverable.ipynb 16/31

In [24]:

In [25]:

6. Dense layer with Text Vectorization layer

2-grams + TD-IDF

In [96]:

In [102]:

2024-02-07 13:41:09.708249: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:112] P
lugin optimizer for device_type GPU is enabled.

shuffled_train = upsample_train.iloc[shuffled_indices,:]

X_train= shuffled_train['facts']

y_train = shuffled_train['winner_index']

Dropping winner_index in X_test set
X_test = X_test['facts']

text_vectorization_bi_tfidf = keras.layers.TextVectorization(
 ngrams=2,
 max_tokens=20000,
 output_mode = "tf_idf"
standardize=custom_standardization_fn,
split=custom_split_fn
)

text_vectorization_bi_tfidf.adapt(tf.data.Dataset.from_tensor_slices(X_train.values))

2/7/24, 2:39 PM BA865_Final_project_deliverable - Jupyter Notebook

localhost:8888/notebooks/Downloads/BA865_Final_project_deliverable.ipynb 17/31

In [104]:

Out[104]: <tf.Tensor: shape=(3382, 20000), dtype=float32, numpy=
array([[514.46844 , 15.966226 , 4.1964893, ..., 0. ,
 0. , 0.],
 [608.96265 , 9.024388 , 1.3988298, ..., 0. ,
 0. , 0.],
 [755.9537 , 9.718572 , 4.1964893, ..., 0. ,
 0. , 0.],
 ...,
 [467.22134 , 10.412756 , 3.4970746, ..., 0. ,
 0. , 0.],
 [1028.9369 , 19.437143 , 8.392979 , ..., 0. ,
 0. , 0.],
 [367.47748 , 6.2476535, 2.7976596, ..., 0. ,
 0. , 0.]], dtype=float32)>

binary_2gram_tfidf_text = text_vectorization_bi_tfidf(X_train)
binary_2gram_tfidf_text

2/7/24, 2:39 PM BA865_Final_project_deliverable - Jupyter Notebook

localhost:8888/notebooks/Downloads/BA865_Final_project_deliverable.ipynb 18/31

In [105]: max_tokens=20000
hidden_dim=16

def td_idf_model():
 inputs = keras.Input(shape=(max_tokens,))
 x = keras.layers.Dense(hidden_dim, activation="relu")(inputs)
 x = layers.Dense(200, activation="relu")(x)
 x = layers.Dense(100, activation="relu")(x)
 x = layers.Dense(50, activation="tanh")(x)
 x = keras.layers.Dropout(0.5)(x)
 outputs = keras.layers.Dense(1, activation="sigmoid")(x)
 model = keras.Model(inputs, outputs)
 model.compile(optimizer="rmsprop",
 loss="binary_crossentropy",
 metrics=["accuracy"])

 return model

model_bi_tfidf = td_idf_model()
keras.utils.plot_model(model_bi_tfidf,show_shapes=True)

2/7/24, 2:39 PM BA865_Final_project_deliverable - Jupyter Notebook

localhost:8888/notebooks/Downloads/BA865_Final_project_deliverable.ipynb 19/31

Out[105]:

2/7/24, 2:39 PM BA865_Final_project_deliverable - Jupyter Notebook

localhost:8888/notebooks/Downloads/BA865_Final_project_deliverable.ipynb 20/31

2/7/24, 2:39 PM BA865_Final_project_deliverable - Jupyter Notebook

localhost:8888/notebooks/Downloads/BA865_Final_project_deliverable.ipynb 21/31

2/7/24, 2:39 PM BA865_Final_project_deliverable - Jupyter Notebook

localhost:8888/notebooks/Downloads/BA865_Final_project_deliverable.ipynb 22/31

2/7/24, 2:39 PM BA865_Final_project_deliverable - Jupyter Notebook

localhost:8888/notebooks/Downloads/BA865_Final_project_deliverable.ipynb 23/31

In [106]: k = 4
num_validation_samples = len(X_train) // k
num_epochs = 25
batch_sizes = 50
all_loss_histories = []
all_val_loss_histories = []
all_acc_histories = []
all_val_acc_histories = []

For each validation fold, we will train a full set of epochs, and store the history.
for fold in range(k):
 validation_data = binary_2gram_tfidf_text[num_validation_samples * fold:
 num_validation_samples * (fold + 1)]
 validation_targets = y_train[num_validation_samples * fold:
 num_validation_samples * (fold + 1)]
 training_data = np.concatenate([
 binary_2gram_tfidf_text[:num_validation_samples * fold],
 binary_2gram_tfidf_text[num_validation_samples * (fold + 1):]])
 training_targets = np.concatenate([
 y_train[:num_validation_samples * fold],
 y_train[num_validation_samples * (fold + 1):]])

 model_bi_tfidf = td_idf_model()
 callbacks = [keras.callbacks.ModelCheckpoint("tfidf_2gram.keras",
 save_best_only=True)
]
 history = model_bi_tfidf.fit(training_data, training_targets,
 validation_data = (validation_data,validation_targets),
 epochs=num_epochs, batch_size=batch_sizes,callbacks=callbacks)
 #model = keras.models.load_model("tfidf_2gram.keras")

 val_loss_history = history.history['val_loss']
 val_acc_history = history.history['val_accuracy']
 loss_history = history.history['loss']
 acc_history = history.history['accuracy']
 all_val_loss_histories.append(val_loss_history)
 all_loss_histories.append(loss_history)
 all_val_acc_histories.append(val_acc_history)
 all_acc_histories.append(acc_history)

average_loss_history = [np.mean([x[i] for x in all_loss_histories]) for i in range(num_epochs)]

2/7/24, 2:39 PM BA865_Final_project_deliverable - Jupyter Notebook

localhost:8888/notebooks/Downloads/BA865_Final_project_deliverable.ipynb 24/31

In [107]:

Epoch 1/25

2024-02-07 13:42:33.741880: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:112] P
lugin optimizer for device_type GPU is enabled.

51/51 [==============================] - ETA: 0s - loss: 0.2980 - accuracy: 0.8762

2024-02-07 13:42:37.077380: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:112] P
lugin optimizer for device_type GPU is enabled.

51/51 [==============================] - 5s 28ms/step - loss: 0.2980 - accuracy: 0.8762 - val_loss: 0.0864
- val_accuracy: 0.9775
Epoch 2/25
51/51 [==============================] - 1s 13ms/step - loss: 0.0482 - accuracy: 0.9874 - val_loss: 0.0762
- val_accuracy: 0.9787
Epoch 3/25
51/51 [==============================] - 1s 13ms/step - loss: 0.0176 - accuracy: 0.9953 - val_loss: 0.0382
- val_accuracy: 0.9905
Epoch 4/25
51/51 [==============================] - 1s 12ms/step - loss: 0.0035 - accuracy: 0.9984 - val_loss: 0.0414

l 0 9917

Out[107]: 0.9885798817873002

average_val_loss_history = [np.mean([x[i] for x in all_val_loss_histories]) for i in range(num_epochs)]
average_acc_history = [np.mean([x[i] for x in all_acc_histories]) for i in range(num_epochs)]
average_val_acc_history = [np.mean([x[i] for x in all_val_acc_histories]) for i in range(num_epochs)]

np.mean(average_val_acc_history)

2/7/24, 2:39 PM BA865_Final_project_deliverable - Jupyter Notebook

localhost:8888/notebooks/Downloads/BA865_Final_project_deliverable.ipynb 25/31

In [108]: import matplotlib.pyplot as plt
plt.style.use('ggplot')

plt.plot(average_loss_history,c='r')
plt.plot(average_acc_history,c="r",linestyle="dashed")
plt.plot(average_val_loss_history,c='b')
plt.plot(average_val_acc_history,c='b',linestyle="dashed")
plt.xlabel("Epochs")
plt.legend(['Training Loss','Training Accuracy','Validation Loss','Validation Accuracy'])
plt.show()

2/7/24, 2:39 PM BA865_Final_project_deliverable - Jupyter Notebook

localhost:8888/notebooks/Downloads/BA865_Final_project_deliverable.ipynb 26/31

In [109]:

In [110]:

Out[109]: <tf.Tensor: shape=(693, 20000), dtype=float32, numpy=
array([[409.47488 , 6.2476535, 2.0982447, ..., 0. ,
 0. , 0.],
 [341.22906 , 4.165102 , 4.1964893, ..., 0. ,
 0. , 0.],
 [797.95105 , 20.131327 , 4.8959045, ..., 0. ,
 0. , 0.],
 ...,
 [1065.6847 , 13.18949 , 5.5953193, ..., 0. ,
 0. , 0.],
 [157.49034 , 20.825512 , 7.693564 , ..., 0. ,
 0. , 0.],
 [388.4762 , 11.801123 , 3.4970746, ..., 0. ,
 0. , 0.]], dtype=float32)>

22/22 [==============================] - 0s 9ms/step - loss: 0.1162 - accuracy: 0.9913

Out[110]: [0.1162339448928833, 0.9913420081138611]

binary_2gram_tf_test = text_vectorization_bi_tfidf(X_test)
binary_2gram_tf_test

 model_bi_tfidf.evaluate(binary_2gram_tf_test, y_test)

2/7/24, 2:39 PM BA865_Final_project_deliverable - Jupyter Notebook

localhost:8888/notebooks/Downloads/BA865_Final_project_deliverable.ipynb 27/31

In [111]:

6. Conclusion

2024-02-07 13:43:59.478761: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:112] P
lugin optimizer for device_type GPU is enabled.

from sklearn.metrics import roc_curve
y_pred_keras = model_bi_tfidf.predict(binary_2gram_tf_test).ravel()
fpr_keras, tpr_keras, thresholds_keras = roc_curve(y_test, y_pred_keras)

from sklearn.metrics import auc
auc_keras = auc(fpr_keras, tpr_keras)

plt.figure(1)
plt.plot([0, 1], [0, 1], 'k--')
plt.plot(fpr_keras, tpr_keras, label='Keras (area = {:.3f})'.format(auc_keras))
plt.xlabel('False positive rate')
plt.ylabel('True positive rate')
plt.title('ROC curve')
plt.legend(loc='best')
plt.show()

2/7/24, 2:39 PM BA865_Final_project_deliverable - Jupyter Notebook

localhost:8888/notebooks/Downloads/BA865_Final_project_deliverable.ipynb 28/31

Model Selection & Interpretation
Best model: Dense layer with text-vectorizatoin(bigram, TD-IDF) performed best(AUC) among our models

Sigmoid/Binary-crossentrophy: Since our prediction problem was binary classification, we used sigmoid output activation function
that it returns values between 0 and 1, which can be treated as probabilities of a data point belonging to binary class. Likewise, we used
binary-crossentrophy as loss function.
Test accuracy/AUC: We measured test accuracy for each model. To choose best model, we generated AUC.

LIME: We used LIMe to explain our model and to see what words in text contributed to the prediction

In [178]: # Create lime explainer
try:
 import lime
 from lime.lime_text import LimeTextExplainer
except ImportError as error:
 !pip install lime
 import lime
 from lime.lime_text import LimeTextExplainer

X_train_array = X_train.to_numpy()
X_test_array = X_test.to_numpy()
y_train_array = y_train.to_numpy()
y_test_array = y_test.to_numpy()

class_names=['petitioner_winning','respondent_winning']
explainer=LimeTextExplainer(class_names=class_names)

def new_predict(text):
 vectorized = text_vectorization_bi_tfidf(text)
 padded = keras.preprocessing.sequence.pad_sequences(vectorized, maxlen=20000,padding='post')
 pred=model_bi_tfidf.predict(padded)
 pos_neg_preds = []
 for i in pred:
 temp=i[0]
 pos_neg_preds.append(np.array([1-temp,temp])) #I would recommend rounding temp and 1-temp off to 2 places
 return np.array(pos_neg_preds)

2/7/24, 2:39 PM BA865_Final_project_deliverable - Jupyter Notebook

localhost:8888/notebooks/Downloads/BA865_Final_project_deliverable.ipynb 29/31

Input your new case

One case only

In [187]:

In [188]:

In [189]:

Out[189]: 'Carol Howes, Warden Randall Lee Fields A jury found Randall Fields guilty of two counts of third-degree cr
iminal sexual conduct for the sexual abuse of a thirteen-year-old child. Fields was in jail on a disorderly
charge when Lenawee County, Michigan deputies questioned him about allegations of sex with a minor. The sex
case was unrelated to the one Fields was in jail for at the time. Fields filed an appeal of right in the Mi
chigan Court of Appeals claiming that his statements were inadmissible because he had not been given his Mi
randa warnings before questioning. The state court reasoned that because Fields was free to return to the j
ail and was questioned on a matter unrelated to his incarceration, there was no obligation to provide him w
arnings under Miranda. Fields then filed a petition for a writ of habeas corpus under 28 U.S.C. § 2254 clai
ming that his Fifth Amendment right against self-incrimination was violated, and the U.S. District Court ag
reed. The United States Court of Appeals for the Sixth Circuit affirmed.'

petitioner = 'Carol Howes, Warden'

respondent = ' Randall Lee Fields'

facts = ' A jury found Randall Fields guilty of two counts of third-degree criminal sexual conduct for the se

expt = petitioner + respondent + facts

expt

2/7/24, 2:39 PM BA865_Final_project_deliverable - Jupyter Notebook

localhost:8888/notebooks/Downloads/BA865_Final_project_deliverable.ipynb 30/31

In [190]:

More cases

In [203]:

In [205]:

In []:

Prediction probabilities

1.00petitioner_wi...

0.00respondent_wi...

petitioner_winning respondent_winning
Randall

0.00
unrelated

0.00
incrimination

0.00
jail
0.00
an
0.00

Fields
0.00

habeas
0.00

then
0.00

C
0.00

time
0.00

Text with highlighted words
Carol Howes, Warden Randall Lee Fields A jury
found Randall Fields guilty of two counts of
third-degree criminal sexual conduct for the
sexual abuse of a thirteen-year-old child. Fields
was in jail on a disorderly charge when Lenawee
County, Michigan deputies questioned him about
allegations of sex with a minor. The sex case
was unrelated to the one Fields was in jail for at
the time. Fields filed an appeal of right in the
Michigan Court of Appeals claiming that his
statements were inadmissible because he had not
been given his Miranda warnings before
questioning. The state court reasoned that
because Fields was free to return to the jail and
was questioned on a matter unrelated to his

Out[205]: array([[0.]], dtype=float32)

explainer.explain_instance(expt,new_predict).show_in_notebook(text=True)

vectorized = text_vectorization_bi_tfidf([expt])
padded = keras.preprocessing.sequence.pad_sequences(vectorized, maxlen=20000,padding='post')

model_bi_tfidf.predict(padded).round(2)

2/7/24, 2:39 PM BA865_Final_project_deliverable - Jupyter Notebook

localhost:8888/notebooks/Downloads/BA865_Final_project_deliverable.ipynb 31/31

Suggestion
Cross-validation with upsampled data: For better measurement, we could have done upsampling manually in each cross validation folds.
However, since our goal was exploring multiple NN models, upsampling in each folds hurted runtime efficiency and code-reuse. We decided
to upsample train set first. As we kept test set aside, we obtained a valid measure of model performance on test set.
Domain specific pretrained model: We could further work using domain specific pretrained model. We found
https://github.com/ashkonf/LeGloVe (https://github.com/ashkonf/LeGloVe), which is python implementation of GloVe word vectors for legal
domain-specific corpuses.
Gather more features: In Oyez database, we could find more information such as advocate, location, lower court and date. Gathering this
information as new features might be able to improve our model performance.

https://github.com/ashkonf/LeGloVe
https://github.com/ashkonf/LeGloVe

