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Intro

Random Variable

• Probability is about random variables (r.v.)

• A random variable is any “probabilistic” outcome.
• Flip of coin
• Height of someone randomly chosen in a population
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Intro

Sample Space & Atoms

• r.v. take on values in a sample space discrete or continuous
• For example:

• The sample space of a toss of a coin is coin ∈ {H,T}
• Height of person: person ∈ {0,∞}

• We call the values atoms
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Intro

Discrete Distributions

• A discrete distribution assigns a probability to every atom in
the sample space:

• E.G. let X ∈ {H,T} now

P(X = H) = 0.5

P(X = T ) = 0.5

• Note: the entire state space must sum to 1∑
x

P(X = x) = 1
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Intro

• Now is a good time to introduce an Event (X ) and a
Outcome (x).

• An Event is simply a subset of a sample space (S), in formal
terms, X ⊆ S .

• Sum over part of the Discrete Space Dice:

• P(D>3) = P(D = 4) + P(D = 5) + P(D = 6)

5 / 16



Intro

Probability Theory : Bayes Rule

P(A and B|B) = P(A ∩ B|B) = P(A,B|B) = P(A|B) = P(A,B)

P(B)

Note: The first two formula’s starting from the left is just to for
your notation. Specifically P(A,B|B) = P(A|B) in the literature
people remove the B because it’s standard/redundant, but it is
important to understand the relationship.
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Intro

P(A,B|B) = P(A,B)

P(B)

P(A,B|B)P(B) = P(A,B)

Now Note:

P(A,B|A) = P(A,B)

P(A)

P(A,B|A)P(A) = P(A,B)
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Intro

Thus Bayes theorem is:

P(A,B|A) = P(A,B|B)P(B)
P(A)

Or in the standard notation where
P(A,B|B) = P(A ∩ B|B) = P(A | B)

P(A|B) = P(B|A)P(A)
P(B)
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Intro

Conditional Distributions

P(X = x ,Y = y |Y = y) = P(x |y) = P(x , y)

P(y)
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Intro

Chain Rule

P(X ,Y ) = P(X ,Y )
P(Y )

P(Y )
= P(X ,Y |Y )P(Y )

Then in General:

P(X1, . . . ,XN) =
N∏

n=1

P(Xn|X1, . . . ,Xn−1)

=
N∏

n=1

P(Xn| ∩n−1
j=1 Xj)
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Intro

Marginalization

• Given a collection of R.V. we are only interested in a subset of
them

• Lets compute P(X ) from joint distribution P(X ,Y ,Z )

• Marginalization allows us to compute this:

P(X ) =
∑
y

∑
z

P(X ,Y = y ,Z = z)

Sum over all the possible values that Y and Z can take in the joint
distribution of X ,Y ,Z gives us P(X )
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Intro

Continuous

fX (x) =

∫ b

a

∫ d

c
f (x , y , z)dxdz

Where x ∈ [a, b] and y ∈ [c , d ]
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Intro

Deriving above from Chain Rule:∑
y

∑
z

P(x , y , z) = P(y , z |x)P(x)

= P(x)
∑
y

∑
z

P(y , z |x)

= P(x)

Note:
∑
y

∑
z
P(y , z |x) = 1
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Intro

Bayes Theorem using Marginalization and Chain Rule

P(Y |X ) =
P(X |Y )P(Y )

P(X )

=
P(X |Y )P(Y )∑

y
P(X |Y = y)P(Y = y)
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Intro

Ok, this version of Bayes is a lot to take in but it is KEY to
understanding how we can use the observable data to uncover the
hidden distribution.

• P(Y ) is the prior distribution, in other words, the distribution
we know already from the data.

• P(Y |X ) is the posterior distribution, in other words, we
update future knowledge using our prior knowledge of the
distribution (i.e P(Y )) given the new observed data X

Next is the P(X ), our data observed data comes in terms of data
points, how do we estimate P(X ) from the data.

• Using the rules above
∑
y
P(X |Y = y)P(Y = y) = P(X ), in

other words, since we observe, P(X |Y ) using the chain rule +
marginalization above we can get P(X )
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Intro

Example

Let Y be a disease and X be a symptom. From the distribution of
the symptom given the disease P(X |Y ) and the probability of the
disease P(Y ), we can compute the (more useful) distribution of
the disease given the symptom P(Y |X ).
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