
Chapter 1

Introduction

Scientific computing (SC) is an intersection of computer science, mathematics, and

science. It is a field that solves complex scientific problems by using computing

techniques and tools. Writing documentation is a part of the process of developing

scientific software. The role of documentation is to help people better understand

the software and to “communicate information to its audience and instil knowledge

of the system it describes” [1]. The significance of software documentation has been

presented in many papers by previous researchers [2], [3], [4]. It is further shown

by Smith et al. [5], [6] that developing scientific computing software (SCS) in a

document-driven methodology improves the quality of the software .

Jupyter Notebook is a system for creating and sharing data science and scientific

computing documentation. It is a nonprofit, open-source application born out in

2014, providing interactive computing across multiple programming languages, such

as Python, Javascript, Matlab, and R. A Jupyter Notebook integrates text, live code,

equations, computational outputs, visualizations, and multimedia resources, including

images and videos. Jupyter Notebook is one of the most widely used interactive

1

reviewer
Pencil



M.Eng. Report—J. Doe McMaster University—Your Field

systems among scientists. Its popularity has grown from 200,000 to 2.5 million public

Jupyter Notebooks on GitHub in three years from 2015 to 2018 [7]. It is used in a

variety of areas and ways because of its flexibility and added values. For example,

the notebook can be used as an educational tool in engineering courses, enhancing

teaching and learning e�ciency [8], [9].

Even though the importance of documentation is widely recognized, it is often

missing or poorly documented in SCS because: i) scientists are not aware of the why,

how, and what of documentation [10], [11]; ii) it is time-consuming to produce [12];

iii) scientists generally believe that writing documentation demands more work and

e↵ort than they would likely yield in terms of the benefits of it [13].

We are trying to increase the e�ciency of documentation development by adopt-

ing generative programming. Generative programming is a technique that allows

programmers to write the code or document at a higher abstraction level, and the

generator produces the desired outputs. Drasil is an application of generative pro-

gramming, and it is the framework we use to conduct this research. Drasil saves

us more time in the documentation development process by letting us encode each

piece of information of our scientific problems once and generating the document

automatically.

1.1 Background

1.1.1 Drasil

Drasil is a framework that can generate software artifacts, including Software Re-

quirement Specifications (SRS), code (C++, C#, Java, and Python), README, and

2

reviewer
Pencil

reviewer
Pencil



M.Eng. Report—J. Doe McMaster University—Your Field

Makefile, from a stable knowledge base. The goals of Drasil are reducing knowledge

duplication and improving traceability [14]. Drasil captures the knowledge through

our hand-made case studies. We currently have 10 case studies that cover di↵erent

physics problems, such as Projectile and Pendulum. Recipes for scientific problems

are encoded in Drasil, and it generates code and documentation for us. Each piece

of information only needs to be provided to Drasil once, and that information can be

used wherever it is needed. SRS is a template for designing and documenting scien- add

an

ex-

ample

tific computing software requirement decisions created by Smith et al [15]. Drasil is

capable of generating SRS in document languages HTML and LaTeX. We are looking

to extend the capability of Drasil by generating Jupyter Notebook in Drasil.

1.1.2 Jupyter Notebook

Jupyter Notebook is an interactive open-source web application for creating and shar-

ing computational science documentation that contains text, executable code, math-

ematical equations, graphics, and visualizations.

Structure of a notebook document

A Jupyter Notebook has two components: front-end “cells” and back-end “kernels”.

The notebook consists of a sequence of cells: code cells, markdown cells, and raw

cells. A cell is a multiline text input field. The notebook works by users entering

a piece of information (text or programming code) in cells from the web page user

interface. That information is then passed to the back-end kernels which execute the

code and return the results [16].

3

reviewer
Pencil

reviewer
Pencil



M.Eng. Report—J. Doe McMaster University—Your Field

The Value of Jupyter Notebook

There are several advantages of Jupyter Notebook: sharable, all-in-one, and live

code. First of all, the notebook is easy to share because it can be converted into

other formats such as HTML, Markdown, and PDF. Secondly, it combines all aspects

of data in one single document, making the document easy to visualize, maintain

and modify. In addition, Jupyter Notebook provides an environment of live code

and computational equations. Usually, when programmers are running code on some

other IDEs, they have to write the entire program before executing it. However,

the notebook allows programmers to execute a specific portion of the code without

running the whole program. The ability to run a snippet of code and integrate with

text highlight the usability of the notebook.

1.2 Problem Statement

Since both Jupyter Notebook and Drasil focus on creating and generating scientific

computing documentation, we are interested in extending the values of Jupyter Note-

book to Drasil and the kind of knowledge we can manipulate. Following are the three

main problems we are trying to solve with Drasil in this paper:

1. Generate Jupyter Notebooks. To acheive this, we will have to generate doc-

uments in notebook format. Jupyter Notebook is a simple JSON document

with a .ipynb file extension. Notebook contents are either code or Markdown.

Therefore, non-code contents must be in Markdown format with JSON layout.

Drasil can only write in HTML and LaTeX. We are building a notebook printer

in Drasil for generating documents that are readable and writable in Jupyter

4

reviewer
Pencil

reviewer
Pencil



M.Eng. Report—J. Doe McMaster University—Your Field

Notebook.

2. Develop the structure of lesson plans and generate them. As mentioned, Jupyter

Notebook is used as an educational tool for teaching engineering courses. When

it comes to teaching, lesson plans are often brought up because they help teach-

ers to organize the daily activities in each class time. We are interested in

teaching Drasil a “textbook” structure by starting with generating a simple

physics lesson plan and expanding Drasil’s application. We aim to capture the

elements of textbook chapters, identify the family of lesson plans, and classify

the knowledge to build a general structure in Drasil, which will enable the lesson

plan to generalize to a variety of lessons.

3. Generate notebooks that mix text and code. Jupyter Notebook is an interactive

application for creating documents that contain formattable text and executable

code. However, Drasil doesn’t support interactive recipes. There is no code in

SRS documents, and text and code are generated separately in Drasil. We are

looking for the possibility of generating a notebook document that incorporate

both text and code, thereby enhancing the capabilities of Drasil and its potential

to solve more scientific problems.

1.3 Thesis Outline

Thesis outline here.

5

reviewer
Pencil


	Lay Abstract
	Abstract
	Acknowledgements
	Notation, Definitions, and Abbreviations
	Declaration of Academic Achievement
	Introduction
	Background
	Problem Statement
	Thesis Outline

	Drasil Printer
	How documents are printed in Drasil?
	Notebook Printer

	Conclusion
	Your Appendix



