
GENERATING JUPYTER NOTEBOOKS IN

DRASIL

GENERATING JUPYTER NOTEBOOKS IN DRASIL

BY

TING-YU WU, B.Sc.

a Report

submitted to the Department of Computing and Software

and the School of Graduate Studies

of McMaster University

in partial fulfilment of the requirements

for the degree of

Masters of Engineering

© Copyright by Ting-Yu Wu, April 2023

All Rights Reserved

Masters of Engineering (2023) McMaster University

(Department of Computing and Software) Hamilton, Ontario, Canada

TITLE: Generating Jupyter Notebooks in Drasil

AUTHOR: Ting-Yu Wu

B.Sc. (Information & Computer Engineering),

Chung Yuan Christian University, Taoyuan, Taiwan

SUPERVISOR: Dr. Spencer Smith and Dr. Jacques Carette

NUMBER OF PAGES: xvi, 80

ii

Lay Abstract

Jupyter Notebook is a widely-used web application that enables users to create and

share documentation, especially for scientific and engineering problems, due to its flex-

ibility and ability to integrate text and code in a single document. To improve the

efficiency of software documentation development, Drasil offers a framework that al-

lows users to provide high-level information about their scientific problems and gener-

ates software documentation for them using the standardized Software Requirements

Specification (SRS) template. In this work, we contribute to Drasil by generating

Jupyter Notebooks, focusing on achieving three goals: generating SRS in notebook

format, generating educational documents (i.e., lesson plans), and combining text and

code in Drasil-generated Jupyter Notebooks.

iii

reviewer
Pencil

Abstract

Scientific Computing (SC) involves analyzing and simulating complex scientific and

engineering problems using computing techniques and tools. To improve the un-

derstandability, maintainability, and reproducibility of SC software, documentation

should be an integral part of the development process. Jupyter Notebook is a popular

tool for developing SC software documentation, and is also used to enhance teaching

and learning efficiency in engineering education due to its flexibility and benefits, such

as the ability to combine text and code. Despite the importance of documentation,

it is often missing or poorly executed in SC software because it is time-consuming.

Drasil is a framework that aims to improve the efficiency of documentation de-

velopment. By encoding each piece of information for scientific problems once and

generating the document automatically, Drasil saves time in the documentation de-

velopment process. We are interested in generating Jupyter Notebooks in Drasil to

expand its applications, including generating educational documents.

To achieve this, we implement a JSON printer capable of generating Drasil soft-

ware artifacts, such as Software Requirement Specifications (SRS), in notebook for-

mat. This enables us to generate Jupyter Notebooks in Drasil, and generate educa-

tional documents, starting with lesson plans. We develop the structure of our lesson

iv

plans and designed the language of lesson plans in Drasil. Additionally, Jupyter Note-

books seamlessly integrate different content types with code, making them ideal for

data research. We explore two different approaches for splitting the contents. These

approaches involve splitting content either by sections or by content types. The goal

of these approaches is to effectively combine text and code of our Drasil-generated

Jupyter Notebooks.

v

reviewer
Pencil

Acknowledgements

I am deeply grateful to my supervisors, Dr. Spencer Smith and Dr. Jacques Carette,

for their support and guidance throughout this project. Their expertise and insights

have been invaluable in shaping my research, and I could not have completed this work

without their guidance. Their constructive feedback, encouragement, and patience

have been truly appreciated, and I feel fortunate to have had the opportunity to work

with them.

I would also like to express my gratitude to my colleagues, Jason Balaci, Sam

Crawford, and Don Chen, for their willingness to share their expertise and knowledge.

Their dedication and talent have inspired and motivated me, and I am grateful to

have worked alongside such amazing colleagues.

Lastly, I would like to thank my parents for their unconditional love and unwaver-

ing support throughout my academic journey. Their encouragement have given me

the confidence to pursue my dreams, and I am forever grateful for their belief in me.

vi

Contents

Lay Abstract iii

Abstract iv

Acknowledgements vi

Notation and Abbreviations xiv

Declaration of Academic Achievement xvi

1 Introduction 1

1.1 Background . 3

1.2 Problem Statement . 6

1.3 Thesis Outline . 8

2 Drasil Printer 9

2.1 How documents are printed in Drasil 10

2.2 Notebook Printer . 16

3 Lesson Plans 22

3.1 Language of Lesson Plans . 23

vii

reviewer
Pencil

3.2 A Case Study: Projectile Motion . 28

3.3 Knowledge Reusability . 31

4 Code Block Generation 34

4.1 Unit of Contents . 35

4.2 Code Block . 41

5 Conclusion 47

5.1 Future Work . 47

5.2 Conclusion . 50

A Appendix 52

viii

List of Figures

1.1 Example of a Jupyter Notebook . 5

3.2 Review Chapter Created Manually 29

3.3 Review Chapter Generated using Drasil 31

4.4 Snapshot of Example Chapter Generated using Drasil 44

4.5 Snapshot of Example Chapter Created Manually 45

A.6 Learning Objectives Generated using Drasil 73

A.7 Case Problem Generated using Drasil 74

A.8 Case Problem Generated using Drasil Cont. 75

A.9 Case Problem Generated using Drasil Cont. 75

A.10 Case Problem Generated using Drasil Cont. 76

A.11 Case Problem Generated using Drasil Cont. 76

ix

List of Tables

2.1 Summary of Packages and Modules in drasil-printers 10

3.2 Structure of Lesson Plans . 23

3.3 Summary of Notebook Modules . 28

x

List of Codes

2.1 Source Code for Definition of a Printable Document 11

2.2 Source Code for Definition of RawContent 11

2.3 Source Code for Definition of LayoutObj 12

2.4 Source Code for Definition of Spec 12

2.5 Source Code for Definition of Contents 12

2.6 Code for Encoding rectVel . 13

2.7 Code for Converting rectVel to a Sentence 14

2.8 Source Code for Converting ModelExpr to Contents 14

2.9 Source Code for Rendering EqnBlock to LaTeX 15

2.10 Source Code for Rendering LayoutObjs into JSON 17

2.11 Source Code for Converting Contents into JSON 18

2.12 Source Code for Rendering a Markdown Table 18

2.13 Source Code for Making Metadata 20

2.14 Source Code for markdownCell . 21

2.15 Source Code for Calling markdownCell 21

3.1 Code for Definition of Document . 24

3.2 Source Code for Notebook Core Language 25

xi

3.3 Source Code for LsnDecl . 26

3.4 Source Code for Section and the section Constructor 26

3.5 Source Code for Chapter Constructors 27

3.6 Source Code for Making Chapters . 27

3.7 Source Code for mkNb . 27

3.8 Source Code for Encoded Review Chapter 30

3.9 Source Code for Forming a Notebook 30

3.10 Source Code for scalarPos . 32

3.11 Source Code for lcrectPos . 33

4.1 Nested and Flattened Section Comparison 36

4.2 Nested and Flattened Introduction Comparison 37

4.3 Pseudocode for Definition of DocSection 38

4.4 Source Code for printLO’ . 40

4.5 Source Code for the New Definition of RawContent 41

4.6 Source Code for Rendering CodeBlock to LayoutObj 42

4.7 Source Code for the New Definition of LayoutObj 42

4.8 Source Code for Rendering CodeBlock to LayoutObj 43

4.9 Source Code for Generating a CodeBlock 43

4.10 Source Code for Rendering CodeBlock into JSON 44

4.11 Source Code for Encoding Example Chapter 46

5.1 Source Code for horiz velo . 49

A.1 JSON Code of a Notebook Document 53

A.2 Source Code for Language.Drasil.JSON.Print 54

xii

A.3 Source Code for Language.Drasil.JSON.Helpers 62

A.4 Source Code for DocLang.Notebook 66

A.5 Source Code for DocumentLanguage.Notebook.Core 68

A.6 Source Code for DocumentLanguage.Notebook.DocumentLanguage . 70

A.7 Source Code for DocumentLanguage.Notebook.LsnDecl 72

xiii

Notation and Abbreviations

Notation

ac constant acceleration

t time

v speed

vi initial speed

Abbreviations

CSS Cascading Style Sheets

GOOL Generic Object-Oriented Language

HTML HyperText Markup Language

IDE Integrated Development Environment

JSON JavaScript Object Notation

PDF Portable Document Format

xiv

SC Scientific Computing

SRS Software Requirement Specifications

xv

Declaration of Academic

Achievement

I, Ting-Yu Wu, am the sole author of this paper unless otherwise stated. The research

presented in this thesis was conducted under the guidance, direction, and supervision

of Dr. Spencer Smith and Dr. Jacques Carette. This work is a contribution to the

Drasil research project and has been supported by the contributions of previous and

current fellow students.

xvi

reviewer
Pencil

Chapter 1

Introduction

Scientific Computing (SC) is at the intersection of computer science, mathematics,

and science. SC analyses and simulates mathematical methods of complex scientific

and engineering problems by using computing techniques and tools. To improve un-

derstandability, maintainability, and reproducibility, writing documentation should

be part of the process of developing scientific software. The role of documentation

is to help people better understand the software and to “communicate information

to its audience and instill knowledge of the system it describes” [1]. The signif-

icance of software documentation has been presented in many papers by previous

researchers. High-quality documentation serves as the foundation for effective com-

munication within software development teams, while also contributing to the overall

excellence of the software product [2–4]. Additionally, Smith et al. [5, 6] shows that

developing SC software in a document-driven methodology potentially improves the

quality of the software.

Jupyter Notebook is a popular approach for documenting SC software, providing a

system for creating and sharing data science and scientific computing documentation

1

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

and code. This nonprofit, open-source application was born in 2014. Jupyter Note-

book provides interactive computing across multiple programming languages, such as

Python, Javascript, Matlab, and R. A Jupyter Notebook integrates text, live code,

equations, computational outputs, visualizations, and multimedia resources, includ-

ing images and videos. Jupyter Notebook is one of the most widely used interactive

systems among scientists. Its popularity has grown from 200,000 to 2.5 million public

Jupyter Notebooks on GitHub in three years from 2015 to 2018 [7]. It is used in

a variety of areas and ways because of its flexibility and added values. For exam-

ple, Notebooks can be used as an educational tool in engineering courses, enhancing

teaching and learning efficiency [8, 9].

Even though the importance of documentation is widely recognized, it is often

missing or poorly realized in SC software because: i) scientists are not aware of the

why, how, and what of documentation [10, 11]; ii) it is time-consuming to produce

[12]; iii) scientists generally believe that writing documentation demands more work

and effort than they would likely yield in terms of the benefits of it [13].

Jupyter Notebook simplifies the process of maintaining SC documentation by en-

abling explanatory text and code to be combined in a single document. Furthermore,

it provides easy sharing of notebooks on platforms like GitHub and exportation to

different formats, such as PDF. However, there are also some downsides to employing

it. While Jupyter Notebook streamlines documenting code, it can be more chal-

lenging to maintain and refactor the code itself, especially when dealing with large

datasets or complex code. Debugging and refactoring code across multiple segments,

for instance, can be time-consuming and difficult to test. Poor coding practices may

lead to poor quality and reproducibility of Jupyter Notebooks [14, 15].

2

reviewer
Pencil

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

We are trying to increase the efficiency of documentation development by adopt-

ing generative programming. Generative programming is a technique that allows

programmers to write the code or document at a higher abstraction level, and the

generator produces the desired outputs. Drasil is an application of generative pro-

gramming, and it is the framework we use to conduct this research. Drasil saves

us more time in the documentation development process by letting us encode each

piece of information of our scientific problems once and generating the document

automatically.

In this chapter, we will provide an introduction to Drasil and Jupyter Notebook,

including their usage and benefits. Following this, we will delve into the problems

that our paper aims to address.

1.1 Background

Chapter 1.1.1 gives a general introduction to Drasil, and Chapter 1.1.2 discusses the

features and benefits of Jupyter Notebook.

1.1.1 Drasil

Drasil is a framework that can generate software artifacts, including Software Re-

quirement Specifications (SRS), code (C++, C#, Java, and Python), README, and

Makefile, from a stable knowledge base. The goals of Drasil are reducing knowledge

duplication and improving traceability [16]. Drasil captures the knowledge through

our hand-made case studies. We currently have 10 case studies that cover differ-

ent physics problems, such as Projectile motion and double Pendulum simulation.

3

reviewer
Pencil

reviewer
Pencil

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

Recipes for scientific problems are encoded in Drasil, which then generates code and

documentation for us. Each piece of information only needs to be provided to Drasil

once, and that information can be used wherever it is needed. By defining and stor-

ing common concepts in a central repository and case-specific concepts in their own

packages, Drasil enables the reuse of information across different engineering domains

and applications. This feature significantly reduces the time and effort required for

software development and documentation, while also improving the consistency and

accuracy of the information being used. Later in the chapters, we will discuss the

details of how information is encoded and how knowledge is reused in Drasil.

The SRS is built using a template for designing and documenting scientific com-

puting software requirements as created by Smith et al [17]. Drasil is currently capable

of generating an SRS in the document languages HTML and LaTeX. We are looking

to extend the capability of Drasil by generating Jupyter Notebooks in Drasil.

For more details on how to create a project using Drasil and how information is

encoded, please refer to Chapter 3 and the Drasil Wiki: Creating Your Project in

Drasil.

1.1.2 Jupyter Notebook

Jupyter Notebook is an interactive open-source web application for creating and shar-

ing computational science documentation that contains text, executable code, math-

ematical equations, graphics, and visualizations.

4

https://github.com/JacquesCarette/Drasil/wiki/Creating-Your-Project-in-Drasil
https://github.com/JacquesCarette/Drasil/wiki/Creating-Your-Project-in-Drasil
reviewer
Pencil

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

Structure of a notebook document

A Jupyter Notebook has two components: front-end “cells” and back-end “kernels”.

The notebook consists of a series of cells, which can be code cells, Markdown cells, or

raw cells. A cell is a multiline text input field. The notebook follows a sequential flow,

where users entering a piece of information, either in the form of text or programming

code, into the cells from the web page interface. This information is then sent to the

back-end kernels for execution, and the results are return to the user [18]. Figure 1.1

shows an example of a Jupyter Notebook [19].

Figure 1.1: Example of a Jupyter Notebook

5

reviewer
Pencil

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

The Value of Jupyter Notebooks

There are several advantages of Jupyter Notebook: sharable, all-in-one, and live code.

First of all, the notebook is easy to share because it can be converted into other for-

mats such as HTML, Markdown, and PDF. This is advantageuous because it allows

someone working on a notebook to share it with others without requesting that they

install any additional software and making it easier to collaborate on the projects.

Secondly, Jupyter Notebooks combine all aspects of data in one single document, mak-

ing the document easy to visualize, maintain and modify. In addition, they provide an

environment of live code and computational equations. Usually, when programmers

are running code on some other IDEs, they have to write the entire program before

executing it. However, the notebook allows programmers to execute a specific portion

of the code without running the whole program. The ability to run a snippet of code

and integrate with text highlight the usability of the notebook. Previous research has

demonstrated that Jupyter Notebooks can significantly contribute to reproducibility,

reusability, and more effective computational workflows in science [20].

1.2 Problem Statement

Since both Jupyter Notebook and Drasil focus on creating and generating scientific

computing documentation, we are interested in extending the values of Jupyter Note-

book to Drasil and the kind of knowledge we can manipulate. Following are the three

main problems we are trying to solve with Drasil in this paper:

1. Generate Jupyter Notebooks. To acheive this, we will have to generate doc-

uments in notebook format. Jupyter Notebook is a simple JSON document

6

reviewer
Pencil

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

with a .ipynb file extension. Notebook contents are either code or Markdown.

Therefore, non-code contents must be in Markdown format with JSON layout.

Drasil can currently write in HTML and LaTeX. We are building a notebook

printer in Drasil for generating documents that are readable and writable in

Jupyter Notebook.

2. Develop the structure of lesson plans and generate them. As mentioned, Jupyter

Notebook is used as an educational tool for teaching engineering courses. When

it comes to teaching, lesson plans are often brought up because they help teach-

ers to organize the daily activities in each class time. We are interested in

teaching Drasil a “textbook” structure by starting with generating a simple

physics lesson plan and expanding Drasil’s application. We aim to capture the

elements of textbook chapters, identify the family of lesson plans, and classify

the knowledge to build a general structure in Drasil, which will enable the lesson

plan to generalize to a variety of lessons.

3. Generate notebooks that mix text and Python code. Jupyter Notebook is an

interactive application for creating documents that contain formattable text and

executable code. However, Drasil doesn’t currently support interactive recipes.

There is no code in SRS documents, and text and code are generated separately

in Drasil. We are looking for the possibility of generating a notebook document

that incorporate both text and Python code, thereby enhancing the capabilities

of Drasil and its potential to solve more scientific problems.

7

reviewer
Pencil

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

1.3 Thesis Outline

Chapter 2 covers the topic of how Drasil generates and prints documents using the

Drasil printer, as well as the creation of the notebook printer for generating Jupyter

Notebooks in Drasil. Moving on to Chapter 3, we discuss the structure of lesson plans,

how we define the lesson plans language in Drasil, and how to generate them with the

notebook printer. Chapter 4 discusses various approaches for splitting the contents

to mix different types of content, such as text and code, in Jupyter Notebooks with

Drasil, as well as the implementation for generating code blocks. Lastly, Chapter 5

provides an overview of the future work and concludes the achievements of this work.

8

Chapter 2

Drasil Printer

To generate Jupyter Notebooks in Drasil, the first step is to build a printer that

can handle notebook generation. As explained in Chapter 1, a notebook is a JSON

document composed of code and Markdown contexts, such as text and images. Drasil

is currently capable of generating SRS documents in HTML and LaTeX, which are

handled by the HTML and TeX printers, respectively. We are adding a JSON printer

to Drasil for generating SRS documents in notebook format.

Once we have the user-encoded document (i.e., recipes of the scientific problem),

the contents are passed to Drasil’s printers for printing. The printer is located in the

drasil-printers, which contains all the necessary modules and functions for printing

software artifacts. The drasil-printers module is responsible for transferring the

types and data defined in Drasil’s source language to printable objects and rendering

those objects in desirable formats, such as HTML, LaTeX, or JSON. A list of packages

and modules of the printers and their responsibilities can be found in Table 2.1. The

majority of the drasil-printers already existed before this research; we only added

a JSON printer and made a few changes to it for better notebook printing.

9

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

This chapter explains how the contents are printed, how the printer works, and

the implementation of the JSON printer.

Table 2.1: Summary of Packages and Modules in drasil-printers

Package/Module Responsibility

Language.Drasil.DOT Defines types and holds functions for generating

traceability graphs as .dot files.

Language.Drasil.HTML Holds all functions needed to generate HTML files.

Language.Drasil.JSON Holds all functions needed to generate JSON files.

Language.Drasil.Log Holds functions for generating log files.

Language.Drasil.Markdown Holds functions for generating READMEs

alongside GOOL code.

Language.Drasil.Plain Holds functions for generating plain files.

Language.Drasil.Printing Transfers types and datas to printable objects and

defines helper functions for printing.

Language.Drasil.TeX Holds all functions needed to generate TeX files.

Language.Drasil.Config Holds default configuration functions.

Language.Drasil.Format Defines document types (SRS, Website, or Jupyter)

and output formats (HTML, TeX, JSON, or Plain).

2.1 How documents are printed in Drasil

In Drasil, a document that is meant to be printable includes a title, authors, and

layout objects, as illustrated in Code 2.1. While the title and authors are simply of

type Sentence, the layout objects are a collection of various contents.

10

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

Code 2.1: Source Code for Definition of a Printable Document

1 data Document = Document Title Author [LayoutObj]

The contents of the document are defined as RawContent in Drasil’s document

source language, as shown in Code 2.2. We categorize the contents into various types

and deal with them explicitly. For instance, a Paragraph is comprised of sentences,

and an EqnBlock holds an expression of type ModelExpr1.

Code 2.2: Source Code for Definition of RawContent

1 -- | Types of contents we deal with explicitly.

2 data RawContent =

3 Table [Sentence] [[Sentence]] Title Bool

4 | Paragraph Sentence

5 | EqnBlock ModelExpr

6 | DerivBlock Sentence [RawContent]

7 | Enumeration ListType

8 | Defini DType [(Identifier , [Contents])]

9 | Figure Lbl Filepath MaxWidthPercent

10 | Bib BibRef

11 | Graph [(Sentence , Sentence)] (Maybe Width) (Maybe Height

↪→) Lbl

To print these raw contents, we transform them into printable layout objects,

defined in Code 2.3 in Language.Drasil.Printing. Although the types of these

layout objects are similar to the types of the raw contents, layout objects are more

appropriate for printing because all the information is generalized into a type called

Spec, as shown in Code 2.4. For example, a printable Paragraph contains Contents,

which is a Spec (Code 2.5). The smallest unit that any layout object holds is always a

Spec, which means that printing always starts from a Spec. By generalizing different

1ModelExpr is a mathematical expression language.

11

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

kinds of information that layout objects hold, we can print them more efficiently.

Code 2.3: Source Code for Definition of LayoutObj

1 -- | Defines types similar to content types of

2 -- RawContent in "Language.Drasil" but better

3 -- suited for printing.

4 data LayoutObj =

5 Table Tags [[Spec]] Label Bool Caption

6 | Header Depth Title Label

7 | Paragraph Contents

8 | EqnBlock Contents

9 | Definition DType [(String ,[LayoutObj])] Label

10 | List ListType

11 | Figure Label Caption Filepath MaxWidthPercent

12 | Graph [(Spec , Spec)] (Maybe Width) (Maybe Height)

↪→ Caption Label

13 | HDiv Tags [LayoutObj] Label

14 | Cell [LayoutObj]

15 | Bib BibRef

Code 2.4: Source Code for Definition of Spec

1 -- | Redefine the 'Sentence ' type from Language.Drasil

2 -- to be more suitable to printing.

3 data Spec = E Expr

4 | S String

5 | Spec :+: Spec

6 | Sp Special

7 | Ref LinkType String Spec

8 | EmptyS

9 | Quote Spec

10 | HARDNL

Code 2.5: Source Code for Definition of Contents

1 -- | Contents are just a sentence ('Spec ').
2 type Contents = Spec

12

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

Once the conversion of contents from RawContent to LayoutObj is done, the layout

objects can be targeted to produce the desired format in various document languages

through language printers.

Here is an example of how an expression is encoded and printed: Equation 2.1.1

represents the velocity (v) obtained by integrating constant acceleration (ac) with

respect to time (t) in one dimension, which is used in the case study Projectile:

v = vi + act (2.1.1)

To encode Equation 2.1.1, which we name rectVel, we might write it as shown in

Code 2.6, where the type pExpr is a synonyms used for ModelExpr. Let’s unpack this

code. The QP module is located in Data.Drasil.Quantities.Physics and is respon-

sible for assigning symbols and units to physical concepts used in Drasil, including

time, speed, acceleration, and gravity. These quantities are of type UnitalChunk2,

which represents concepts with quantities that require a unit definition. For example,

constAccel is a physical concept with the definition “a one-dimensional acceleration

that is constant”, symbol ac, and unit m/s.

The sy constructor creates an expression from a concept that contains a symbol.

Additionally, it is clear that $=, addRe, and mulRe constructors are used for equating,

adding, and multiplying two expressions, respectively.

Code 2.6: Code for Encoding rectVel

1 rectVel :: PExpr

2 rectVel = sy QP.speed $= sy QP.iSpeed `addRe `
3 (sy QP.constAccel `mulRe ` sy QP.time)

2UnitalChunks are concepts with quantities that require a definition of units. A UnitalChunk

contains a ‘Concept’, ‘Symbol’, and ‘Unit’.

13

https://jacquescarette.github.io/Drasil/examples/projectile/SRS/srs/Projectile_SRS.html

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

Once the equation is defined, we can incorporate it into a Sentence. Code 2.7

shows an example of using an expression in a sentence, where eS lifts a ModelExpr to a

Sentence. Equations can also be used in other content types that contain expressions,

such as DerivBlock3. Alternatively, we can convert expressions directly to Contents,

as shown in Code 2.8.

Code 2.7: Code for Converting rectVel to a Sentence

1 equationsSent :: Sentence

2 equationsSent = S "From Equation" +:+ eS rectVel

Code 2.8: Source Code for Converting ModelExpr to Contents

1 -- | Displays a given expression and attaches a 'Reference
↪→ ' to it.

2 lbldExpr :: ModelExpr -> Reference -> LabelledContent

3 lbldExpr c lbl = llcc lbl $ EqnBlock c

4

5 -- | Same as 'lbldExpr ' except content is unlabelled

6 -- (does not attach a 'Reference ').
7 unlbldExpr :: ModelExpr -> Contents

8 unlbldExpr c = UlC $ ulcc $ EqnBlock c

After encoding the equation and creating the sentence, the printers take over and

convert the expression to a printable EqnBlock, which can then be generated in a

specific document language. In Code 2.9, we can see how an EqnBlock is converted

from a RawContent to a printable LayoutObj and rendered in LaTeX.

3DerivBlock is a type of contents representing a derivation block.

14

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

Code 2.9: Source Code for Rendering EqnBlock to LaTeX

1 -- Line 2-15 is handled by Language.Drasil.Printing

2 -- | Helper that translates 'LabelledContent 's to a

3 -- printable representation of 'T.LayoutObj '.
4 -- Called internally by 'lay '.
5 layLabelled :: PrintingInformation -> LabelledContent -> T

↪→ .LayoutObj

6 layLabelled sm x@(LblC _ (EqnBlock c)) =

7 T.HDiv ["equation"] [T.EqnBlock

8 (P.E (modelExpr c sm))] (P.S $ getAdd $ getRefAdd x)

9

10 -- | Helper that translates 'RawContent 's to a

11 -- printable representation of 'T.LayoutObj '.
12 -- Called internally by 'lay '.
13 layUnlabelled :: PrintingInformation -> RawContent -> T.

↪→ LayoutObj

14 layUnlabelled sm (EqnBlock c) = T.HDiv ["equation"]

15 [T.EqnBlock (P.E (modelExpr c sm))] P.EmptyS

16

17 -- Line 18-28 is handled by Language.Drasil.TeX

18 -- | Helper for rendering 'LayoutObj 's into TeX.

19 lo :: LayoutObj -> PrintingInformation -> D

20 lo (EqnBlock contents) _ = makeEquation contents

21

22 -- | Prints an equation.

23 makeEquation :: Spec -> D

24 makeEquation contents = toEqn (spec contents)

25

26 -- | toEqn inserts an equation environment.

27 toEqn :: D -> D

28 toEqn (PL g) = equation $ PL (_ -> g Math)

15

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

2.2 Notebook Printer

Since LayoutObj is the key to handling different types of contents, each document

language’s printer is responsible for rendering layout objects in that particular lan-

guage and generating necessary information for the document. For example, CSS

describes the style and presentation of an HTML page, so generating the necessary

CSS selectors in HTML documents is handled by the HTML printer. In the case of a

Jupyter Notebook document, metadata4 is required. To implement a well-functioning

notebook printer, our focus is on rendering contents in JSON format and generating

necessary metadata.

2.2.1 Rendering LayoutObjs in Notebook Format

Code 2.10 is the primary function for rendering layout objects into a notebook. This

function works similarly to the ones used by the HTML and TeX printers, and is

responsible for generating content in the appropriate format. Each type of layout

object is handled explicitly, taking into account how notebook users add content

by hand in Jupyter Notebook, to ensure accurate reproduction and display of the

contents. To help us properly render content in notebook format, we also created a

few helper functions. For instance, nbformat (Code 2.11) helps create the necessary

indentations for each line of content and encode them into JSON. We take advantage

of the encode function from the Haskell package Text.JSON, which takes a Haskell

value and converts it into a JSON string [22].

4Information about a book or its contents is known as metadata. It’s often used to regulate how
the notebook behaves and how its feature works [21].

16

reviewer
Pencil

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

Code 2.10: Source Code for Rendering LayoutObjs into JSON

1 -- | Helper for rendering LayoutObjects into JSON

2 printLO :: LayoutObj -> Doc

3 printLO (Header n contents l) = nbformat empty $$ nbformat

4 (h (n + 1) <> pSpec contents) $$ refID (pSpec l)

5 printLO (Cell layObs) = markdownCell $ vcat (map printLO

↪→ layObs)

6 printLO (HDiv _ layObs _) = vcat (map printLO layObs)

7 printLO (Paragraph contents) = nbformat empty $$
8 nbformat (stripnewLine (show(pSpec contents)))

9 printLO (EqnBlock contents) = nbformat mathEqn

10 where

11 toMathHelper (PL g) = PL (_ -> g Math)

12 mjDelimDisp d = text "$$" <> stripnewLine (show d) <> text

↪→ "$$"
13 mathEqn = mjDelimDisp $ printMath $ toMathHelper $
14 TeX.spec contents

15 printLO (Table _ rows r _ _) = nbformat empty $$
16 makeTable rows (pSpec r)

17 printLO (Definition dt ssPs l) = nbformat (text "
") $$
18 makeDefn dt ssPs (pSpec l)

19 printLO (List t) = nbformat empty $$ makeList t False

20 printLO (Figure r c f wp) = makeFigure (pSpec r) (pSpec c)

↪→ (text f) wp

21 printLO (Bib bib) = makeBib bib

22 printLO Graph{} = empty

In addition, because non-code contents in Jupyter Notebook are built in Mark-

down, some types of contents require special treatment for Markdown generation,

such as tables. Although Jupyter Notebook supports HTML tables (where we would

be able to reuse the function from the HTML printer), we want to make the gener-

ated documents more “human-like” and reflect how people create contents in Jupyter.

Therefore, instead of generating HTML tables, we create tables in Markdown format.

The function makeTable from Code 2.12 generates a table in Markdown and converts

it to the notebook format.

17

reviewer
Pencil

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

Code 2.11: Source Code for Converting Contents into JSON

1 import qualified Text.JSON as J (encode)

2

3 -- | Helper for converting a Doc in JSON format

4 nbformat :: Doc -> Doc

5 nbformat s = text (" " ++ J.encode (show s ++ "\n") ++

↪→ ",")

Code 2.12: Source Code for Rendering a Markdown Table

1 -- | Renders Markdown table , called by 'printLO '
2 makeTable :: [[Spec]] -> Doc -> Doc

3 makeTable [] _ = error "No table to print"

4 makeTable (l:lls) r = refID r $$ nbformat empty $$
5 (makeHeaderCols l $$ makeRows lls) $$ nbformat empty

6

7 -- | Helper for creating table rows

8 makeRows :: [[Spec]] -> Doc

9 makeRows = foldr (($$) . makeColumns) empty

10

11 -- | makeHeaderCols: Helper for creating table header

12 -- (each of the column header cells)

13 -- | makeColumns: Helper for creating table columns

14 makeHeaderCols , makeColumns :: [Spec] -> Doc

15 makeHeaderCols l = nbformat (text header) $$
16 nbformat (text $ genMDtable ++ "|")

17 where

18 header = show(text "|" <> hcat(punctuate

19 (text "|") (map pSpec l)) <> text "|")

20 c = count '|' header

21 genMDtable = concat (replicate (c-1) "|:--- ")

22

23 makeColumns ls = nbformat (text "|" <> hcat(punctuate

24 (text "|") (map pSpec ls)) <> text "|")

To handle the various types of contents, we break them down into different types

and handle each type individually in our code. When we encounter a more complex

case, we create a specific make function to deal with it to reduce confusion in the main

18

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

printLO function. For instance, we have makeTable, which handles table generation,

and makeList, which generates a list of items. These functions are then called by

printLO. We carefully consider how contents are created in the notebook and render

each type of layout object in notebook format to ensure that the generated document

is a valid Jupyter Notebook.

2.2.2 Metadata Generation

There are two types of metadata in a Jupyter Notebook: the first type is for the

notebook environment setup (line 9-30 in Code A.1 in Appendix A), while the second

type (line 3-7 in Code A.1 in Appendix A) is used to control the behavior of a notebook

cell, where we define the type of cell (i.e, Code or Markdown). Generating the first

type of metadata is straightforward since the metadata for setting up the environment

is identical across all notebooks. We built a helper function called makeMetadata to

generate the necessary metadata of a notebook document, as shown in Code 2.13.

This function is called when a notebook document is being built, and the metadata

is printed at the end of the document. It is important to note that this metadata

enables Python code for the generated notebook, but Jupyter Notebook also supports

other programming languages like Matlab and R. Therefore, we plan to make other

languages available in the future.

The second type of metadata is more complex. We need to break down our

contents into units and differentiate them to generate the right type of cells. We will

discuss this further in Chapter 4 after introducing a new case study in Chapter 3.

For now, since there is no code in the SRS, all contents should be in Markdown. To

generate the metadata for a Markdown cell, we use the helper function markdownCell

19

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

Code 2.13: Source Code for Making Metadata

1 -- | Generate the necessary metadata for a notebook

↪→ document.

2 makeMetadata :: Doc

3 makeMetadata = vcat [

4 text " \" metadata \": {",

5 vcat[

6 text " \" kernelspec \": {",

7 text " \" display_name \": \" Python 3\",",

8 text " \" language \": \" python\",",

9 text " \"name \": \" python3 \"",

10 text " },"],

11 vcat[

12 text " \" language_info \": {",

13 text " \" codemirror_mode \": {",

14 text " \"name \": \" ipython\",",

15 text " \" version \": 3",

16 text " },"],

17 text " \" file_extension \": \".py\",",

18 text " \" mimetype \": \"text/x-python\",",

19 text " \"name \": \" python\",",

20 text " \" nbconvert_exporter \": \" python\",",

21 text " \" pygments_lexer \": \" ipython3\",",

22 text " \" version \": \"3.9.1\"",

23 text " }",

24 text " },",

25 text " \" nbformat \": 4,",

26 text " \" nbformat_minor \": 4"

27]

function from Code 2.14. This function creates the necessary metadata and a cell for

the given unit of content. An example implementation can be found in Code 2.15.

The JSON printer implemented so far is not without flaws, there is always room

for improvement. Nevertheless, the current implementation already enables Drasil to

generate Jupyter Notebooks and expand the generated document to include SRS in

JSON format. This makes it possible to edit and share Drasil-generated documents

20

reviewer
Pencil

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

Code 2.14: Source Code for markdownCell

1 -- | Helper for building markdown cells

2 markdownB ', markdownE :: Doc

3 markdownB ' = text " {\n \" cell_type \": \" markdown

4 \",\n \" metadata \": {},\n \" source \": ["

5 markdownE = text " \"\\n\"\n]\n },"

6

7 -- | Helper for generate a Markdown cell

8 markdownCell :: Doc -> Doc

9 markdownCell c = markdownB ' <> c <> markdownE

Code 2.15: Source Code for Calling markdownCell

1 printLO (Cell layoutObs) = markdownCell $ vcat (map

↪→ printLO layoutObs)

with Jupyter Notebook, thereby increasing their value.

For complete implementation of the JSON printer, please refer to Code A.2 and

Code A.3 in Appendix A .

21

Chapter 3

Lesson Plans

With the addition of a JSON printer capable of generating Jupyter Notebooks, we are

now looking to expand Drasil’s application by generating educational documents. As

discussed in Chapter 1, Jupyter Notebooks are commonly used in teaching engineering

courses due to their characteristics and advantages. One of the educational practices

to enhance education is creating lesson plans [23, 24], which provide a guide for

structuring daily activities in each class period. A lesson plan outlines the learning

objectives, methods and procedures for achieving them, and the measurement of how

student progress. Lesson plans are an ideal starting point for generating educational

documents in Drasil because they are more accessible than academic papers. In

addition, we are able to work with real examples in a lesson plan.

To incorporate lesson plans in Drasil, we first need to understand their components

and categorize the knowledge in a structured manner. We analyzed the similarities

and differences of elements in textbook chapters in Discussion of Projectile Lesson:

What and Why using online resources. Based on our analysis, we narrowed down the

elements and defined a structure that fits our lesson plans the most, as summarized

22

https://github.com/smiths/caseStudies/blob/master/CaseStudies/projectile/projectileLesson/AboutProjectileLesson.pdf
https://github.com/smiths/caseStudies/blob/master/CaseStudies/projectile/projectileLesson/AboutProjectileLesson.pdf
reviewer
Pencil

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

in Table 3.2. While not all chapters are mandatory, a typical lesson plan includes

learning outcomes (objectives), lesson topics (case problems), and activities (exam-

ples). It’s worth noting that this structure may be subject to future modifications to

better suit our needs.

Table 3.2: Structure of Lesson Plans

Chapter Overview

Introduction An introduction of the lesson plan or the topic.

Learning Objectives What students can do or will learn after the lesson.

Review A recap of what has been covered previously.

A Case Problem A case problem that link the topic to a real world problem.

Example An example of the case problem.

Summary A summary of the lesson plan.

Bibliography References that support the lesson plan.

Appendix Additional resources or information of the lesson.

In this chapter, we will discuss the language of lesson plans in Drasil, introduce a

new case study on Projectile Motion Lesson, and explore the reuse of knowledge in

Drasil.

3.1 Language of Lesson Plans

To generate a new type of document, lesson plans, in Drasil, we must define its

language first. Drasil’s document language has SRS, and we are creating a language

for lesson plans. As discussed in Chapter 2, a Drasil document has a title, authors,

23

reviewer
Pencil

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

and sections, which hold the contents of the document. The definition of a document

is defined in drasil-lang1 as shown in Code 3.12, where Document is the type for SRS

document and Notebook is for Jupyter Notebook, specifically lesson plans at this

moment. The reason why we define them separately is because we print the SRS and

lesson plans differently. We are able to pattern match the way we print the document

in the printer.

Code 3.1: Code for Definition of Document

1 data Document = Document Title Author ShowToC [Section]

2 | Notebook Title Author [Section]

We need to create helper types and functions that facilitate the creation of docu-

ment language for generating lesson plans, based on our lesson plans structure. Our

first step is to define the types and data for the lesson and its chapters in Drasil’s

document language, drasil-docLang. Code 3.2 is the core declaration of the lesson

plan. A LsnDesc type represents a lesson description (line 1), which consists of lesson

chapters (line 3), including an introduction, learning objectives, review, case problem,

example, summary, bibliography, and appendix. The detail structure of each chapter

is defined in line 12-31. At present, Contents is the only defined elements as the

chapter structure has not yet been fully understood. We intend to further develop

the chapter structure in the future.

The LsnDecl type, as shown in Code 3.3, is used to declare all the necessary

chapters for a lesson plan. It is similar in definition to LsnDesc, but in a more usable

form. It is meant to be a semantic rendition of a lesson plan document, while LsnDesc

1drasil-lang holds the higher level language for Drasil.
2ShowToC is ShowTableOfContents in the source code, which is to determine whether to show

the table of contents in the document.

24

reviewer
Pencil

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

Code 3.2: Source Code for Notebook Core Language

1 type LsnDesc = [LsnChapter]

2

3 data LsnChapter = Intro Intro

4 | LearnObj LearnObj

5 | Review Review

6 | CaseProb CaseProb

7 | Example Example

8 | Smmry Smmry

9 | BibSec

10 | Apndx Apndx

11

12 -- ** Introduction

13 newtype Intro = IntrodProg [Contents]

14 -- ** Learning Objectives

15 newtype LearnObj = LrnObjProg [Contents]

16 -- ** Review Chapter

17 newtype Review = ReviewProg [Contents]

18 -- ** A Case Problem

19 newtype CaseProb = CaseProbProg [Contents]

20 -- ** Examples of the lesson

21 newtype Example = ExampleProg [Contents]

22 -- ** Summary

23 newtype Smmry = SmmryProg [Contents]

24 -- ** Appendix

25 newtype Apndx = ApndxProg [Contents]

is intended to be a general description and more suitable for printing [25]. They are

identical at this point because the chapter structure is not well understood, but they

might evolve differently as we gain more understanding of our lesson plans.

Next, we need functions to generate chapters. We can use the Section type that

is used for creating SRS sections, which consists of a title, a list of contents, and a

short name, as shown in Code 3.4. We can also take advantage of the section smart

constructor to build our own chapter constructors, as illustrates in Code 3.5. Once

we have these constructors, we can use them to build each chapter (Code 3.6).

25

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

Code 3.3: Source Code for LsnDecl

1 type LsnDecl = [LsnChapter]

2

3 data LsnChapter = Intro NB.Intro

4 | LearnObj NB.LearnObj

5 | Review NB.Review

6 | CaseProb NB.CaseProb

7 | Example NB.Example

8 | Smmry NB.Smmry

9 | BibSec

10 | Apndx NB.Apndx

Code 3.4: Source Code for Section and the section Constructor

1 data Section = Section

2 { tle :: Title

3 , cons :: [SecCons]

4 , _lab :: Reference

5 }

6 makeLenses ''Section
7

8 -- | Constructor for creating 'Section 's with a title

9 -- ('Sentence '), introductory contents , a list of

10 -- subsections , and a shortname ('Reference ').
11 section :: Sentence -> [Contents] -> [Section] ->

↪→ Reference -> Section

12 section title intro secs = Section title (map Con intro ++

↪→ map Sub secs)

When building lesson plans, the document and chapters are encoded in the LsnDecl

type, which is then converted to LsnDesc for printing. The mkNb function, as shown

in Code 3.7, takes the user-encoded list of chapters (i.e., LsnDecl) and System

Information3 to form a lesson plan document. The mkSections and mkLsnDesc

functions are helper functions that aid in the creation of lesson plan chapters.

3System Information is a data structure designed to contain all the necessary information about
a system for the purpose of generating artifacts.

26

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

Code 3.5: Source Code for Chapter Constructors

1 learnObj , review , caseProb , example :: [Contents] ->

2 [Section] -> Section

3 learnObj cs ss = section (titleize ' Docum.learnObj) cs ss

↪→ learnObjLabel

4 review cs ss = section (titleize Docum.review) cs ss

↪→ reviewLabel

5 caseProb cs ss = section (titleize Docum.caseProb) cs ss

↪→ caseProbLabel

6 example cs ss = section (titleize Docum.example) cs ss

↪→ exampleLabel

Code 3.6: Source Code for Making Chapters

1 -- | Helper for making the 'Learning Objectives '.
2 mkLearnObj :: LearnObj -> Section

3 mkLearnObj (LrnObjProg cs) = Lsn.learnObj cs []

4

5 -- | Helper for making the 'Review '.
6 mkReview :: Review -> Section

7 mkReview (ReviewProg r) = Lsn.review r []

8

9 -- | Helper for making the 'Case Problem '.
10 mkCaseProb :: CaseProb -> Section

11 mkCaseProb (CaseProbProg cp) = Lsn.caseProb cp []

12

13 -- | Helper for making the 'Example '.
14 mkExample :: Example -> Section

15 mkExample (ExampleProg cs) = Lsn.example cs []

Code 3.7: Source Code for mkNb

1 mkNb :: LsnDecl -> (IdeaDict -> IdeaDict -> Sentence)

2 -> SystemInformation -> Document

3 mkNb dd comb si@SI {_sys = s, _kind = k, _authors = a} =

4 Notebook (nw k `comb ` nw s) (foldlList Comma List $
5 map (S . name) a) $ mkSections si l where

6 l = mkLsnDesc si dd

27

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

All types and functions discussed in this chapter are declared in drasil-docLang.

Table 3.3 provides an overview of the responsibilities of each module regarding the

language of lesson plans. Complete implementation of the language of lesson plans

can be found in Code A.4 to Code A.7 in Appendix A.

Table 3.3: Summary of Notebook Modules

Module Responsibility

Drasil.DocLang

Notebook.hs Contains constructors for building chapters.

Drasil.DocumentLanguage.Notebook

Core.hs Contains general description functions for lesson plans.

DocumentLanguage.hs Holds functions to create chapters and form a lesson plan.

LsnDecl.hs Contains declaration functions for generating lesson plans.

3.2 A Case Study: Projectile Motion

In Chapter 3.1, we discussed the language of lesson plans to introduce a new case

study on projectile motion. We chose projectile motion as a starting point for our

lesson plans for several reasons: i) it is often one of the initial concepts taught when

students are introduced to the study of dynamics; ii) the developed model is consid-

ered relatively straightforward as it solely incorporates kinematics, which pertains to

the geometric characteristics of motion [26]; iii) Drasil already captures the knowledge

of projectile, allowing us to showcase the reuse of knowledge. We are going to repro-

duce the Projectile Motion Lesson, authored by Dr. Spencer Smith, and generate a

Jupyter Notebook version with Drasil.

28

https://github.com/smiths/caseStudies/blob/master/CaseStudies/projectile/projectileLesson/orgModeVersion/projMotLesson.pdf
reviewer
Pencil

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

In accordance with the lesson plan structure discussed, we divided the Projectile

Motion Lesson into four chapters: learning objectives, review, a case problem, and

examples. Each chapter is composed of a variety of content types, such as sentences,

equations, or figures. To combine these contents into a chapter, we convert them

to the Contents type and map them together. We provide smart constructors like

lbldExpr4 for transfering different kind of contents to Contents. In Code 3.8, we

demonstrate how information and contents of the review chapter are encoded in

Drasil.

A lesson plan is represented in the LsnDecl type, which is a collection of chapters

(see Code 3.9). We then use the mkNb function (presented in Code 3.7) to convert

the lesson plan into a Drasil document. The resulting document can be printed and

produced as a Jupyter Notebook with the Drasil printer, as discussed in Chapter 2.

The review chapter of Projectile Motion Lesson created manually and using Drasil

can be seen in Figures 3.2 and 3.3, respectively. Moreover, Figure 3.3 is generated

from the code presented in Code 3.8.

Figure 3.2: Review Chapter Created Manually

4This converts a ModelExpr into a Contents.

29

https://github.com/smiths/caseStudies/blob/master/CaseStudies/projectile/projectileLesson/orgModeVersion/projMotLesson.pdf
https://github.com/smiths/caseStudies/blob/master/CaseStudies/projectile/projectileLesson/orgModeVersion/projMotLesson.pdf
reviewer
Pencil

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

Code 3.8: Source Code for Encoded Review Chapter

1 reviewContent :: [Contents]

2 reviewContent = [reviewHead , reviewContextP1 ,

3 LlC E.lcrectVel , LlC E.lcrectPos , LlC E.lcrectNoTime ,

4 reviewEqns , reviewContextP2]

5

6 reviewHead , reviewContextP1 ,

7 reviewEqns , reviewContextP2 :: Contents

8 reviewHead = foldlSP_ [headSent 2 (S "Rectilinear

9 Kinematics: Continuous Motion")]

10 reviewContP1 = foldlSP_

11 [S "As covered previously , the", plural equation , S

12 "relating", phrase velocity , sParen (eS (sy QP.speed)

13) `sC ` phrase position , sParen (eS (sy QP.scalarPos))

14 `S.and_ ` phrase time , sParen (eS (sy QP.time))

15 `S.for ` phrase motion `S.in_ ` S "one dimension with",

16 phrase QP.constAccel , sParen (eS (sy QP.constAccel))

17 +:+ S "are as follows:"]

18

19 reviewEqns = foldlSP [S "where", eS (sy QP.iSpeed)

20 `S.and_ ` eS (sy QP.iPos), S "are the initial",

21 phrase velocity `S.and_ ` phrase position ,

22 S ",respectively"]

23

24 reviewContP2 = foldlSP

25 [S "Only two of these", plural equation , S "are

26 independent , since the third" +:+ phrase equation , S

27 "can always be derived from the other two"]

Code 3.9: Source Code for Forming a Notebook

1 mkNB :: LsnDecl

2 mkNB = [

3 LearnObj $ LrnObjProg [learnObjContext],

4 Review $ ReviewProg reviewContent ,

5 CaseProb $ CaseProbProg caseProbCont ,

6 Example $ ExampleProg exampleContent ,

7 BibSec

8]

30

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

Figure 3.3: Review Chapter Generated using Drasil

The remaining chapters of the generated Projectile Motion Lesson can be found

in Appendix A, from Figure A.6 to Figure A.11.

3.3 Knowledge Reusability

Drasil offers the advantage of reusing knowledge, which is not trivial. We would like

to highlight this feature with the Projectile and Projectile Motion Lesson.

In Drasil, we store commonly used knowledge, such as physics concepts (e.g.,

acceleration) and mathematics ideas (e.g., Cartesian coordinates), in a package named

drasil-data. Additionally, each case study has its own package that contains concepts

specific to that study. For example, “Projectile Motion” is an idea in the Projectile

case study. Once these ideas and concepts are defined in Drasil, they can be utilized

whenever needed. Since there is an overlap in knowledge between the Projectile SRS

31

reviewer
Pencil

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

and Projectile Motion Lesson, we can reuse the information without the need to

encode it again.

For example, the following equation is the position of a particle moving in straight

line as a function of time, given that the object experiences a constant acceleration:

p = pi + vit +
act2

2
(3.3.1)

On the left side of the equation, denoted as p and named as scalarPos, is a

physical quantity with units as a UnitalChunk defined in drasil-data. On the right

side, we have an expression denoted as scalarPos’, declared as a PExpr in the

Projectile package in drasil-example, as shown in Code 3.10.

Code 3.10: Source Code for scalarPos

1 scalarPos :: UnitalChunk

2 scalarPos = uc CP.scalarPos lP Real metre

3

4 scalarPos ' :: PExpr

5 scalarPos ' = sy iPos `addRe ` (sy QP.iSpeed `mulRe `
6 sy time `addRe ` half (sy QP.constAccel `mulRe ` square (sy

↪→ time)))

The information of Equation 3.3.1 was already available prior to the development

of Projectile Motion. By utilizing the definitions of both scalarPos and scalarPos’

as a reference, we can incorporate this information into our own usage for the lesson

plan. The implementation of this can be seen in Code 3.11. The expression is defined

in a LabelledContent because we are adding a label to it, allowing us to cross-

reference it in the document.

Drasil offers a powerful way to store and reuse knowledge across different domains

and aspects of the case study. By growing our knowledge database in this way, we

32

reviewer
Pencil

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

Code 3.11: Source Code for lcrectPos

1 lcrectPos :: LabelledContent

2 lcrectPos = lbldExpr (sy scalarPos $= scalarPos ') (

↪→ makeEqnRef "rectPos")

believe that we can save time and effort while also ensuring consistency and accuracy

in the use of concepts and ideas. This has the potential to greatly enhance the

efficiency and effectiveness of engineering projects, and we are excited to continue

exploring the possibilities of Drasil in the field of engineering.

33

Chapter 4

Code Block Generation

Jupyter Notebooks are valued for their effectiveness in writing and revising code for

data research. They allow code to be written in discrete blocks (or “cells”), which

can be executed separately, as opposed to writing and running a whole program [27].

This allows for a mix of content types, including equations, figures, and graphs, with

code to better present information.

In Chapter 2, we cover two types of metadata in Jupyter Notebooks: one type

is necessary for forming the notebook, while the other is required to create cells for

the contents. We explain how to generate the metadata and create a Markdown cell.

When generating the SRS, we do not need to worry about generating code blocks

since the SRS does not include any code. However, when creating lesson plans (or

user manuals), we likely want to integrate real examples that involve code. As we

are now combining text and code in a document, we need to address the following

questions before generating the right type of cell: i) what type of cell should we use,

Markdown or code? and ii) how do we know when to end a cell and start a new one?

That is, how do we determine where to split the contents into cells?

34

reviewer
Pencil

reviewer
Pencil

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

To begin, we need to consider the conceptual definition of a cell in Jupyter Note-

books. A cell is essentially a standalone unit of information or code that can be

executed independently. In other words, it is a unit of content within the notebook

[28]. A cell can contain either text or code and can span multiple lines. Understand-

ing the relationship between cells and their contents is crucial for implementing an

effective splitting strategy. By identifying natural boundaries within the text or code

and recognizing the unit of the contents, we can determine where to split the contents

into cells.

In this chapter, we will discuss different approaches and implementations for split-

ting the contents and generating the appropriate type of cells.

4.1 Unit of Contents

To organize the contents of a lesson plan, we use two different approaches: by sections

and by content types. We will discuss the advantages and disadvantages of these

approaches.

4.1.1 Section-level

When considering what would be the appropriate unit of content for splitting, one

might first think of paragraphs or sections. In the source language of Drasil, since

a document is made up of sections (as seen in Code 3.1), it may appear reasonable

to split these sections into individual cells. However, the nested structure of Drasil

documents, where each Section is composed of a list of Contents and Sections (as

demonstrated in Code 3.4), does not align well with the sequential flow of a Jupyter

35

reviewer
Pencil

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

Notebook. To address this issue, we flatten the structure of the Drasil document by

making each section and subsection an independent Section.

We have updated the definition of Section data type (Code 4.1). In the new

definition (line 9-16), the Depth attribute is used to keep track of the level of each

section, with 0 indicating the parent section, 1 indicating the subsection, 2 indicating

the sub-subsection, and so on. Furthermore, we have replaced the SecCons attribute,

which previously represented both sections and contents, with a new attribute that

allows each section to only have contents.

For example, Code 4.2 defines the Introduction section, where the original nested

structure (lines 1-12) comprises a list of subsections, while in the flattened version

(lines 13-21), each subsection is self-contained and has its own type. Code 4.3 further

illustrates that each section is independent after the changes.

Code 4.1: Nested and Flattened Section Comparison

1 -- Nested Structure

2 data Section = Section

3 { tle :: Title

4 , cons :: [SecCons]

5 , _lab :: Reference

6 }

7 makeLenses ''Section
8

9 -- Flattened Structure

10 data Section = Section

11 { dep :: Depth

12 , tle :: Title

13 , cons :: [Contents]

14 , _lab :: Reference

15 }

16 makeLenses ''Section

While flattening the structure of a document can allow for it to be split into

36

reviewer
Pencil

reviewer
Pencil

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

Code 4.2: Nested and Flattened Introduction Comparison

1 -- Nested Structure

2 -- | Introduction section. Contents are top level

3 -- followed by a list of subsections.

4 data IntroSec = IntroProg Sentence Sentence [IntroSub]

5

6 -- | Introduction subsections.

7 data IntroSub where

8 IPurpose :: [Sentence] -> IntroSub

9 IScope :: Sentence -> IntroSub

10 IChar :: [Sentence] -> [Sentence] -> [Sentence] ->

↪→ IntroSub

11 IOrgSec :: Sentence -> CI -> Section -> Sentence ->

↪→ IntroSub

12

13 -- Flattened Structure

14 -- | Introduction section.

15 data IntroSec = IntroProg Sentence Sentence

16

17 -- | Introduction subsections.

18 newtype IPurpose = IPurposeProg [Sentence]

19 newtype IScope = IScopeProg Sentence

20 data IChar = ICharProg [Sentence] [Sentence] [Sentence]

21 data IOrgSec = IOrgProg Sentence CI Section Sentence

individual cells by sections, there are limitations to this approach. Splitting the

contents at the section level might not always be the most effective approach. It’s

possible that certain sections might be too long to fit comfortably in a single cell.

Moreover, when working with documents that combine text and code (such as lesson

plans), section-level splitting may not be appropriate due to the different types of

cells needed for text and code. Therefore, a better approach is needed, as presented

in the next section.

37

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

Code 4.3: Pseudocode for Definition of DocSection

1 -- Nested Structure

2 data DocSection = TableOfContents

3 | RefSec RefSec

4 | IntroSec IntroSec

5 | StkhldrSec StkhldrSec

6 ...

7

8 -- Flatten Structure

9 data DocSection = TableOfContents TableOfContents

10 | RefSec RefSec

11 | TUnits TUnits

12 | TSymb TSymb

13 | TAandA TAandA

14 | IntroSec IntroSec

15 | IPurposeSub IPurposeSub

16 | IScopeSub IScopeSub

17 | ICharSub ICharSub

18 | IOrgSub IOrgSub

19 ...

4.1.2 LayoutObj-level

In Jupyter Notebook, a cell can be seen as a self-contained unit of information, and it

can contain multiple types of content, such as text, code, and figures. To determine

the appropriate unit of content for splitting, we need to consider the content itself

and what makes sense in terms of its structure and organization. Although a cell

might not always be the most appropriate unit of content for splitting, it is somehow

the lowest level of “display content” that conveys a coherent piece of information [28].

Therefore, splitting the content based on logical units of information might be a more

effective approach rather than using sections as the sole criterion.

In previous chapters, we discussed how Drasil handles different types of content

through the use of the RawContent data type, which includes paragraphs, figures,

38

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

equations, and other content types (Code 2.2). A Drasil Section can consist of a list

of RawContent, allowing for the inclusion of different types of content within a single

section. Additionally, as we saw in Chapter 2, the document is printed in a specific

document language using LayoutObj, which is derived from RawContent. Because

each content type is handled explicitly by LayoutObj, we can take advantage of this

and split each type of content into its own cell.

To implement this approach, we first need to ensure that each layout object is

generated independently and is not nested with other layout objects. In Chapter 2,

we discussed how RawContent is translated to a printable LayoutObj. The printLO

function in Code 2.3 demonstrates how the printer renders each content type into

a notebook format. However, the current format of LayourObj is designed for the

SRS and may not be suitable for lesson plans. For instance, the HDiv1 type wraps

sections and creates an HTML <div> tag, and even an equation block is translated

into the HDiv, as seen in Code 2.9. Moreover, the Definition type is designed for

the definition or model defined in the SRS and may not be required for lesson plans.

To better accommodate lesson plan content types, we may need to create a new

LayoutObj in the future when we have a better understanding of the lesson plan

structure.

Currently, we are using the existing LayoutObj to translate our lesson plan con-

tents into printable layout object. Since these contents are not code and should be

in Markdown, we print each required content type independently into a Markdown

cell. To accomplish this, we use the markdownCell function from Code 2.14. This

function generates the necessary metadata and creates the Markdown cell for each

1The HDiv is a printable layout object that’s designed to create HTML documents. The main
purpose is to wrap contents in the <div> tag.

39

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

layout object, which is our unit of content.

Code 4.4 illustrates how each content type is rendered in notebook format in a

Markdown cell. For layout objects that are not needed in lesson plans, we make them

empty. We also separate equation blocks from HDiv with the equation tag to have

more control over the structure.

Code 4.4: Source Code for printLO’

1 -- printLO ' is used for generating lesson plans

2 printLO ' :: LayoutObj -> Doc

3 printLO ' (HDiv ["equation"] layObs _) = markdownCell $
4 vcat (map printLO ' layObs)

5 printLO ' (Header n contents l) = markdownCell $ nbformat

6 (h (n + 1) <> pSpec contents) $$ refID (pSpec l)

7 printLO ' (Cell layObs) = vcat (map printLO ' layObs)

8 printLO ' HDiv {} = empty

9 printLO ' (Paragraph contents) = markdownCell $ nbformat

10 (stripnewLine (show(pSpec contents)))

11 printLO ' (EqnBlock contents) = nbformat mathEqn

12 where

13 toMathHelper (PL g) = PL (_ -> g Math)

14 mjDelimDisp d = text "$$" <> stripnewLine (show d) <>

↪→ text "$$"
15 mathEqn = mjDelimDisp $ printMath $ toMathHelper $
16 TeX.spec contents

17 printLO ' (Table _ rows r _ _) = markdownCell $
18 makeTable rows (pSpec r)

19 printLO ' (Definition dt ssPs l) = empty

20 printLO ' (List t) = markdownCell $ makeList t False

21 printLO ' (Figure r c f wp) = markdownCell $ makeFigure

22 (pSpec r) (pSpec c) (text f) wp

23 printLO ' (Bib bib) = markdownCell $ makeBib bib

24 printLO ' Graph {} = empty

As splitting contents by their types rather than sections makes more sense and

better satisfies our needs, we can keep the document structure nested. Also, as the

structure of our lesson plans is already linear, we can achieve the goal of breaking

40

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

contents into smaller units by adopting only the second approach.

4.2 Code Block

We split contents with our content types for various reasons, including the need

to differentiate between Markdown contents and code to generate the appropriate

type of cell and to specifically deal with each type of content. To better manage

and generate code in Jupyter Notebook with Drasil, we introduce a new content

type called CodeBlock. Like other content types, a CodeBlock is defined within

RawContent, which requires a CodeExpr as shown in Code 4.5.

Code 4.5: Source Code for the New Definition of RawContent

1 -- | Types of layout objects we deal with explicitly.

2 data RawContent =

3 Table [Sentence] [[Sentence]] Title Bool

4 | Paragraph Sentence

5 | EqnBlock ModelExpr

6 | DerivBlock Sentence [RawContent]

7 | Enumeration ListType

8 | Defini DType [(Identifier , [Contents])]

9 | Figure Lbl Filepath MaxWidthPercent

10 | Bib BibRef

11 | Graph [(Sentence , Sentence)] (Maybe Width) (Maybe Height

↪→) Lbl

12 | CodeBlock CodeExpr

CodeExpr is a language (pre-existing in Drasil) that allows us to define code ex-

pressions. It shares similarities with Expr functions, constructors, and operators, but

is tailored specifically for generating code. We utilize this data type to define and

encode the expressions for our Jupyter Notebook code.

The process of handling code blocks and printing the code within a code cell

41

reviewer
Pencil

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

is similar to how we handle other Markdown contents, as discussed in the previous

chapters. However, the conversion is unique to the CodeBlock type. For instance, to

encode the code, we can use the unlbldCode (Code 4.6) function, which converts a

CodeExpr to Contents.

Code 4.6: Source Code for Rendering CodeBlock to LayoutObj

1 -- | Unlabelled code expression

2 unlbldCode :: CodeExpr -> Contents

3 unlbldCode c = UlC $ ulcc $ CodeBlock c

After encoding the code expressions in Drasil, the printer then converts the code

blocks into printable layout objects, as defined in Code 4.7, using the methods in

Code 4.8. The resulting content, which is a RawContent, is translated into a printable

object, a LayoutObj, before being processed by the document language printer.

Code 4.7: Source Code for the New Definition of LayoutObj

1 data LayoutObj =

2 Table Tags [[Spec]] Label Bool Caption

3 | Header Depth Title Label

4 | Paragraph Contents

5 | EqnBlock Contents

6 | Definition DType [(String ,[LayoutObj])] Label

7 | List ListType

8 | Figure Label Caption Filepath MaxWidthPercent

9 | Graph [(Spec , Spec)] (Maybe Width) (Maybe Height)

↪→ Caption Label

10 | CodeBlock Contents

11 | HDiv Tags [LayoutObj] Label

12 | Cell [LayoutObj]

13 | Bib BibRef

Generating a code cell in Jupyter Notebook requires metadata, similar to gener-

ating a markdown cell. However, since the metadata is identical across code cells,

42

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

Code 4.8: Source Code for Rendering CodeBlock to LayoutObj

1 -- | Helper that translates 'LabelledContent 's to a

2 -- printable representation of 'LayoutObj '.
3 layLabelled sm (LblC _ (CodeBlock c)) = T.CodeBlock

4 (P.E (codeExpr c sm))

5 -- | Helper that translates 'RawContent 's to a

6 -- printable representation of 'LayoutObj '.
7 layUnlabelled sm (CodeBlock c) = T.CodeBlock (P.E (

↪→ codeExpr c sm))

the codeCell function generates the required metadata and creates a code cell for

the given code, which is the ‘contents’ in Code 4.10. This constructor eliminates the

need for redundant metadata specification and provides a convenient way to generate

code cells in Jupyter Notebook.

Code 4.9: Source Code for Generating a CodeBlock

1 -- | Helper for generate a Code cell

2 codeCell :: Doc -> Doc

3 codeCell c = codeB <> c <> codeE

4

5 codeB , codeE :: Doc

6 codeB = text " {\n \" cell_type \": \"code\",\n

7 \" execution_count \": null ,\n \" metadata \":

8 {},\n \" outputs \": [],\n \" source \": ["

9 codeE = text "\n]\n },"

Finally, the JSON printer takes the printable layout object of the code block,

prints the code, converts it to the notebook format, and generates a code cell, as

demonstrated in Code 4.10.

The benefits of using Jupyter Notebook lie in its ability to allow users to write a

portion of code and combine it with text. We have discussed various approaches to

split the contents and generate the appropriate types of cell. The Projectile Motion

43

reviewer
Pencil

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

Code 4.10: Source Code for Rendering CodeBlock into JSON

1 -- | Helper for rendering CodeBlock into JSON

2 printLO ' (CodeBlock contents) = codeCell $ nbformat $
↪→ cSpec contents

Lesson generated by Drasil (an snapshot of the example is shown in Figure 4.4 and the

full example can be found in Appendix), demonstrates that we are able to mix text link

and code and generate the appropriate cell types in Jupyter Notebook with Drasil.

The source code for encoding this example can be found in Code 4.11. In comparison,

Figure 4.5 shows the same part created manually.

Figure 4.4: Snapshot of Example Chapter Generated using Drasil

44

reviewer
Pencil

reviewer
Pencil

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

Figure 4.5: Snapshot of Example Chapter Created Manually

45

reviewer
Pencil

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

Code 4.11: Source Code for Encoding Example Chapter

1 exampleContent :: [Contents]

2 exampleContent = [exampleContextP1 , codeC1 ,

3 exampleContextP2 , codeC2 , exampleContextP3 , codeC3]

4

5 exampleContextP1 , exampleContextP2 , exampleContextP3 ::

↪→ Contents

6 exampleContextP1 = foldlSP_ [S "A sack slides off the

7 ramp , shown in Figure.", S "We can ignore the physics

8 of the sack sliding down the ramp and just focus on

9 its exit", phrase velocity +:+. S "from the ramp",

10 S "There is initially no vertical component of",

11 phrase velocity `S.andThe ` S "horizontal",

12 phrase velocity , S "is:"]

13 exampleContextP2 = foldlSP_ [S "The", phrase height

14 `S.ofThe ` S "ramp from the floor is"]

15 exampleContextP3 = foldlSP_ [S "Task: Determine the",

16 phrase time , S "needed for the sack to strike the

17 floor and the range", P cR +:+. S "where sacks begin

18 to pile up", S "The", phrase acceleration , S "due to",

19 phrase gravity , P lG +:+. S "is assumed to have the

20 following value"]

21

22 codeC1 , codeC2 , codeC3 :: Contents

23 codeC1 = unlbldCode (sy horiz_velo $= exactDbl 17)

24 codeC2 = unlbldCode (sy QP.height $= exactDbl 6)

25 codeC3 = unlbldCode (sy QP.gravitationalAccel $= dbl 9.81)

46

Chapter 5

Conclusion

In this chapter, we will discuss the future work and summarize the achievements of

this paper.

5.1 Future Work

Although this work has contributed to the Drasil research project and opened up new

possibilities for future research, there is still much to be done.

5.1.1 JSON Printer Improvement

While the current JSON printer is capable of generating Jupyter Notebook docu-

ments, there are several issues that need to be addressed. For example, the JSON

printer currently relies on the TeX printer function for generating mathematical equa-

tions. However, this approach has some limitations, and some equations may not be

displayed correctly in Jupyter Notebook, such as the use of the symbf command for

47

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

math equations in LaTeX, which is not valid in Jupyter Notebook1. To ensure math-

ematical symbols and expressions are displayed correctly, it is crucial to understand

how Jupyter Notebook works with these elements. It may be necessary to modify

the JSON printer and use different methods or consider using specialized libraries or

tools designed for generating mathematical equations in Jupyter Notebook.

5.1.2 Design Lesson Plan Content Type

In Chapter 4, we discussed the potential limitations of the current LayoutObj for the

structure of lesson plans. Most of the existing layout objects are designed for SRS

data types such as Definition. To better accommodate the content types found in

lesson plans, we could define a new set of LayoutObjs that are specific to these types of

contents, such as a model that includes step-by-step instructions, since many lessons

include these instructions. By doing so, we could ensure that each content type is

handled explicitly by the appropriate LayoutObj, and we could create a separate cell

for each type of content as discussed earlier. This approach would make it easier to

split the content into logical units of information, and it would also make the resulting

notebook more modular and easier to navigate.

5.1.3 Develop the Structure of Lesson Plans

The current structure of lesson plans includes several chapters such as learning objec-

tives, case problems, and examples, and each chapter is made up of a list of contents.

However, this structure needs improvement to better fit the architecture of each chap-

ter. By gaining a better understanding of our lesson plans and the structure of each

1symbf not recognized in notebook.

48

https://github.com/JacquesCarette/Drasil/issues/2761
reviewer
Pencil

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

chapter, we can incorporate the newly designed specific content types (as discussed in

5.1.2) into each chapter. For example, the Case Problem chapter should include the

model of procedure analysis, which includes step-by-step instructions. Having a more

detailed and adaptable structure of lesson plans would enable greater consistency and

efficiency in creating and delivering content. Furthermore, it would make it easier to

capture the key elements and knowledge of each lesson.

5.1.4 Develop the Language of Code Block

As we have discussed in earlier chapters, Drasil has the capability of generate source

code as a part of software artifacts. To generate code content, we can use the available

code expression, known as CodeExpr. However, generating code in a ‘text’ document

is different from generating it as a program. While we can generate code and code

blocks in the Jupyter Notebook, the current language is not yet mature and requires

further improvement. For example, to encode the code variable, we need to define

it as a UnitalChunk (Code 5.1) before we can use it in an expression. However,

UnitalChunks are concepts with quantities that require unit definition, which does

not align with the concept of code variables. We can introduce a new data type that

better fits code variables or create smart constructors. In addition, we still need to

explore how to make the most of our CodeBlock, and generate code flawlessly. These

are interesting areas to investigate.

Code 5.1: Source Code for horiz velo

1 horiz_velo :: UnitalChunk

2 horiz_velo = uc horizontalMotion (variable "horiz_velo")

↪→ Real velU

49

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

5.1.5 Enable Other Programming Languages in Notebook

Jupyter Notebook can handle code written in multiple programming languages, such

as Python, Matlab, Julia, and R. In Chapter 2, we cover the metadata required

to configure the notebook’s environment. At present, the metadata enables Python

code, but we aim to support additional languages in the future. To accomplish this,

users should be able to choose their preferred language, and we can generate the

appropriate metadata accordingly. Furthermore, we need to develop the language for

other programming languages as well.

5.2 Conclusion

This paper demonstrates the potential of Jupyter Notebook as a versatile tool for

creating and sharing scientific documents and for enhancing the teaching and learning

efficiency in engineering education. To extend the capabilities of Jupyter Notebook to

Drasil, we present the implementation of a JSON printer that is capable of generating

Drasil software artifacts, such as the SRS, in the notebook format. We discuss the

necessary functions and data types for working with notebook generation, as well as

the process of encoding information in Drasil and generating and printing Jupyter

Notebook documents using the printer.

The addition of the JSON printer expands the application of Drasil, making it

possible to generate educational documents and develop lesson planes. We analyze

the similarities and differences of elements in textbook chapters to create a universal

structure that fits our lesson plans the most and provide insights into the design and

implementation of the structure in the Drasil language. With the lesson plan structure

50

reviewer
Pencil

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

in place, we demonstrate how the knowledge can be manipulated and reused in Drasil

through the creation of a new case study on Projectile Motion Lesson.

Furthermore, we highlight the benefits of using Jupyter Notebooks for data re-

search and how they enable users to seamlessly combine different content types with

code. When creating lesson plans that involve code, we need to address questions

such as which type of cell to use and how to determine where to split the contents

into cells. By understanding the conceptual definition of a cell and identifying nat-

ural boundaries within the text or code, we can effectively divide the contents and

generate appropriate cell types. We cover the implementation of Markdown and

code cell generation, which are essential components for creating a Jupyter Notebook

document.

In conclusion, this research addresses three main problems and provides a starting

point for generating Jupyter Notebook in Drasil. With further refinement and de-

velopment of the JSON printer and the language of lesson plans, generating Jupyter

Notebook documents in Drasil can open up more possibilities.

51

Appendix A

Appendix

This section includes the full implementation of the JSON printer, as well as the

language for lesson plans, and additional information to provide further clarification

on the report.

52

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

Code A.1: JSON Code of a Notebook Document

1 {
2 "cells": [

3 {
4 "cell_type": "markdown",

5 "metadata": {},
6 "source": []

7 }
8],

9 "metadata": {
10 "kernelspec": {
11 "display_name": "Python 3",

12 "language": "python",

13 "name": "python3"

14 },
15 "language_info": {
16 "codemirror_mode": {
17 "name": "ipython",

18 "version": 3

19 },
20 "file_extension": ".py",

21 "mimetype": "text/x-python",

22 "name": "python",

23 "nbconvert_exporter": "python",

24 "pygments_lexer": "ipython3",

25 "version": "3.9.1"

26 }
27 },
28 "nbformat": 4,

29 "nbformat_minor": 4

30 }

53

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

Code A.2: Source Code for Language.Drasil.JSON.Print

1 -- | Defines .json printers to generate Jupyter Notebooks

2

3 -- | Generate a python notebook document (using json).

4 -- build : build the SRS document in JSON format

5 -- build ': build the Jupyter Notbooks (lesson plans)

6 genJSON :: PrintingInformation -> DocType -> L.Document ->

↪→ Doc

7 genJSON sm Jupyter doc = build (makeDocument sm doc)

8 genJSON sm _ doc = build ' (makeDocument sm doc)

9

10 -- | Build the JSON Document , called by genJSON

11 build :: Document -> Doc

12 build (Document t a c) =

13 markdownB $$
14 nbformat (text "# " <> pSpec t) $$
15 nbformat (text "## " <> pSpec a) $$
16 markdownE $$
17 print ' c $$
18 markdownB ' $$
19 markdownE ' $$
20 makeMetadata $$
21 text "}"

22

23 build ' :: Document -> Doc

24 build ' (Document t a c) =

25 markdownB $$
26 nbformat (text "# " <> pSpec t) $$
27 nbformat (text "## " <> pSpec a) $$
28 markdownE $$
29 markdownB ' $$
30 print c $$
31 markdownE ' $$
32 makeMetadata $$
33 text "}"

34

35 -- | Helper for rendering a D from Latex print

54

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

36 printMath :: D -> Doc

37 printMath = (`runPrint ` Math)

38

39 -- | Helper for rendering LayoutObjects into JSON

40 -- printLO is used for generating SRS

41 printLO :: LayoutObj -> Doc

42 printLO (Header n contents l) = nbformat empty $$ nbformat

43 (h (n + 1) <> pSpec contents) $$ refID (pSpec l)

44 printLO (Cell layoutObs) = markdownCell $ vcat (map printLO

↪→ layoutObs)

45 printLO (HDiv _ layoutObs _) = vcat (map printLO layoutObs)

46 printLO (Paragraph contents) = nbformat empty $$ nbformat

47 (stripnewLine (show(pSpec contents)))

48 printLO (EqnBlock contents) = nbformat mathEqn

49 where

50 toMathHelper (PL g) = PL (_ -> g Math)

51 mjDelimDisp d = text "$$" <> stripnewLine (show d) <>

↪→ text "$$"
52 mathEqn = mjDelimDisp $ printMath $ toMathHelper $ TeX.

↪→ spec contents

53 printLO (Table _ rows r _ _) = nbformat empty $$
54 makeTable rows (pSpec r)

55 printLO (Definition dt ssPs l) = nbformat (text "
") $$
56 makeDefn dt ssPs (pSpec l)

57 printLO (List t) = nbformat empty $$ makeList t False

58 printLO (Figure r c f wp) = makeFigure (pSpec r) (pSpec c) (

↪→ text f) wp

59 printLO (Bib bib) = makeBib bib

60 printLO Graph{} = empty

61 printLO CodeBlock {} = empty

62

63 -- printLO ' is used for generating lesson plans

64 printLO ' :: LayoutObj -> Doc

65 printLO ' (HDiv ["equation"] layoutObs _) = markdownCell $
66 vcat (map printLO ' layoutObs)

67 printLO ' (Header n contents l) = markdownCell $ nbformat

68 (h (n + 1) <> pSpec contents) $$ refID (pSpec l)

69 printLO ' (Cell layoutObs) = vcat (map printLO ' layoutObs)

70 printLO ' HDiv {} = empty

55

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

71 printLO ' (Paragraph contents) = markdownCell $ nbformat

72 (stripnewLine (show(pSpec contents)))

73 printLO ' (EqnBlock contents) = nbformat mathEqn

74 where

75 toMathHelper (PL g) = PL (_ -> g Math)

76 mjDelimDisp d = text "$$" <> stripnewLine (show d) <>

↪→ text "$$"
77 mathEqn = mjDelimDisp $ printMath $ toMathHelper $ TeX.

↪→ spec contents

78 printLO ' (Table _ rows r _ _) = markdownCell $ makeTable

↪→ rows (pSpec r)

79 printLO ' Definition {} = empty

80 printLO ' (List t) = markdownCell $ makeList t False

81 printLO ' (Figure r c f wp) = markdownCell $
82 makeFigure (pSpec r) (pSpec c) (text f) wp

83 printLO ' (Bib bib) = markdownCell $ makeBib bib

84 printLO ' Graph{} = empty

85 printLO ' (CodeBlock contents) = codeCell $ codeformat $
↪→ cSpec contents

86

87 -- | Called by build

88 print :: [LayoutObj] -> Doc

89 print = foldr (($$) . printLO) empty

90

91 -- | Called by build '
92 print ' :: [LayoutObj] -> Doc

93 print ' = foldr (($$) . printLO ') empty

94

95 pSpec :: Spec -> Doc

96 pSpec (E e) = text "$" <> pExpr e <> text "$"
97 pSpec (a :+: b) = pSpec a <> pSpec b

98 pSpec (S s) = either error (text . concatMap escapeChars) $
99 L.checkValidStr s invalid

100 where

101 invalid = ['<', '>']
102 escapeChars '&' = "\\&"

103 escapeChars c = [c]

104 pSpec (Sp s) = text $ unPH $ L.special s

105 pSpec HARDNL = empty

56

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

106 pSpec (Ref Internal r a) = reflink r $ pSpec a

107 pSpec (Ref (Cite2 n) r a) = reflinkInfo r (pSpec a)(pSpec n)

108 pSpec (Ref External r a) = reflinkURI r $ pSpec a

109 pSpec EmptyS = text ""

110 pSpec (Quote q) = doubleQuotes $ pSpec q

111

112 cSpec :: Spec -> Doc

113 cSpec (E e) = pExpr e

114 cSpec _ = empty

115

116 -- | Renders expressions in JSON

117 -- (called by multiple functions)

118 pExpr :: Expr -> Doc

119 pExpr (Dbl d) = text $ showEFloat Nothing d ""

120 pExpr (Int i) = text $ show i

121 pExpr (Str s) = doubleQuotes $ text s

122 pExpr (Div n d) = mkDiv "frac" (pExpr n) (pExpr d)

123 pExpr (Row l) = hcat $ map pExpr l

124 pExpr (Ident s) = text s

125 pExpr (Label s) = text s

126 pExpr (Spec s) = text $ unPH $ L.special s

127 pExpr (Sub e) = unders <> pExpr e

128 pExpr (Sup e) = hat <> pExpr e

129 pExpr (Over Hat s) = pExpr s <> text "̂"

130 pExpr (MO o) = text $ pOps o

131 pExpr (Fenced l r e) = text (fence Open l) <> pExpr e <>

132 text (fence Close r)

133 pExpr (Font Bold e) = pExpr e

134 pExpr e = printMath $ toMath $ TeX.pExpr e

135

136 -- | Renders operations in Markdown format

137 pOps :: Ops -> String

138 pOps IsIn = "&thinsp ;∈& thinsp;"

139 pOps Integer = "ℤ"

140 pOps Rational = "ℚ"

141 pOps Real = "ℝ"

142 pOps Natural = "ℕ"

143 pOps Boolean = "𝔹"

144 pOps Comma = ","

57

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

145 pOps Prime = "′"

146 pOps Log = "log"

147 pOps Ln = "ln"

148 pOps Sin = "sin"

149 pOps Cos = "cos"

150 pOps Tan = "tan"

151 pOps Sec = "sec"

152 pOps Csc = "csc"

153 pOps Cot = "cot"

154 pOps Arcsin = "arcsin"

155 pOps Arccos = "arccos"

156 pOps Arctan = "arctan"

157 pOps Not = "¬"

158 pOps Dim = "dim"

159 pOps Exp = "e"

160 pOps Neg = "-"

161 pOps Cross = "⨯"

162 pOps VAdd = " + "

163 pOps VSub = " - "

164 pOps Dot = "⋅"

165 pOps Scale = ""

166 pOps Eq = " = "

167 pOps NEq = "≠"

168 pOps Lt = "&thinsp ;<& thinsp;"

169 pOps Gt = "&thinsp ;>& thinsp;"

170 pOps LEq = "&thinsp ;≤& thinsp;"

171 pOps GEq = "&thinsp ;≥& thinsp;"

172 pOps Impl = " ⇒ "

173 pOps Iff = " ⇔ "

174 pOps Subt = " - "

175 pOps And = " ∧ "

176 pOps Or = " ∨ "

177 pOps Add = " + "

178 pOps Mul = ""

179 pOps Summ = "&sum"

180 pOps Inte = "∫"

181 pOps Prod = "∏"

182 pOps Point = "."

183 pOps Perc = "%"

58

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

184 pOps LArrow = " ← "

185 pOps RArrow = " → "

186 pOps ForAll = " ForAll "

187 pOps Partial = "∂"

188

189 -- | Renders Markdown table , called by 'printLO '
190 makeTable :: [[Spec]] -> Doc -> Doc

191 makeTable [] _ = error "No table to print"

192 makeTable (l:lls) r = refID r $$ nbformat empty $$
193 (makeHeaderCols l $$ makeRows lls) $$ nbformat empty

194

195 -- | Helper for creating table rows

196 makeRows :: [[Spec]] -> Doc

197 makeRows = foldr (($$) . makeColumns) empty

198

199 -- | makeHeaderCols: Helper for creating table header row

200 -- (each of the column header cells)

201 -- | makeColumns: Helper for creating table columns

202 makeHeaderCols , makeColumns :: [Spec] -> Doc

203 makeHeaderCols l = nbformat (text header) $$
204 nbformat (text $ genMDtable ++ "|")

205 where

206 header = show(text "|" <> hcat(punctuate (text "|")

207 (map pSpec l)) <> text "|")

208 c = count '|' header

209 genMDtable = concat (replicate (c-1) "|:--- ")

210

211 makeColumns ls = nbformat (text "|" <> hcat(punctuate

212 (text "|") (map pSpec ls)) <> text "|")

213

214 count :: Char -> String -> Int

215 count _ [] = 0

216 count c (x:xs)

217 | c == x = 1 + count c xs

218 | otherwise = count c xs

219

220 -- | Renders definition tables (Data , General , Theory , etc.)

221 makeDefn :: L.DType -> [(String ,[LayoutObj])] -> Doc -> Doc

222 makeDefn _ [] _ = error "L.Empty definition"

59

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

223 makeDefn dt ps l = refID l $$ table [dtag dt] (tr (nbformat

224 (th (text "Refname")) $$ td (nbformat(bold l))) $$
↪→ makeDRows ps)

225 where dtag L.General = "gdefn"

226 dtag L.Instance = "idefn"

227 dtag L.Theory = "tdefn"

228 dtag L.Data = "ddefn"

229

230 -- | Helper for making the definition table rows

231 makeDRows :: [(String ,[LayoutObj])] -> Doc

232 makeDRows [] = error "No fields to create defn table"

233 makeDRows [(f,d)] = tr (nbformat (th (text f)) $$ td

234 (vcat $ map printLO d))

235 makeDRows ((f,d):ps) = tr (nbformat (th (text f)) $$ td

236 (vcat $ map printLO d)) $$ makeDRows ps

237

238 -- | Renders lists

239 makeList :: ListType -> Bool -> Doc

240 makeList (Simple items) _ = vcat $ map (\(b,e,l) -> mlref l

241 $ nbformat (pSpec b <> text ": " <> sItem e) $$ nbformat

↪→ empty) items

242 makeList (Desc items) bl = vcat $ map (\(b,e,l) -> pa $
243 mlref l $ ba $ pSpec b <> text ": " <> pItem e bl) items

244 makeList (Ordered items) bl = vcat $ map (\(i,l) -> mlref l

245 $ pItem i bl) items

246 makeList (Unordered items) bl = vcat $ map (\(i,l) ->

247 mlref l $ pItem i bl) items

248 makeList (Definitions items) _ = vcat $ map (\(b,e,l) ->

↪→ nbformat $ li $
249 mlref l $ pSpec b <> text " is the" <+> sItem e) items

250

251 -- | Helper for setting up references

252 mlref :: Maybe Label -> Doc -> Doc

253 mlref = maybe id $ refwrap . pSpec

254

255 -- | Helper for rendering list items

256 pItem :: ItemType -> Bool -> Doc

257 pItem (Flat s) b = nbformat $ (if b then text " - " else

258 text "- ") <> pSpec s

60

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

259 pItem (Nested s l) _ = vcat [nbformat $ text "- " <>

260 pSpec s, makeList l True]

261

262 sItem :: ItemType -> Doc

263 sItem (Flat s) = pSpec s

264 sItem (Nested s l) = vcat [pSpec s, makeList l False]

265

266 -- | Renders figures in HTML

267 makeFigure :: Doc -> Doc -> Doc -> L.MaxWidthPercent -> Doc

268 makeFigure r c f wp = refID r $$ image f c wp

269

270 -- | Renders assumptions , requirements , likely changes

271 makeRefList :: Doc -> Doc -> Doc -> Doc

272 makeRefList a l i = refID l $$ nbformat(i <> text ": " <> a)

273

274 makeBib :: BibRef -> Doc

275 makeBib = vcat .

276 zipWith (curry (\(x,(y,z)) -> makeRefList z y x))

277 [text $ sqbrac $ show x | x <- [1..] :: [Int]] . map

↪→ renderCite

61

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

Code A.3: Source Code for Language.Drasil.JSON.Helpers

1 -- | Defines helper functions for creating Jupyter Notebooks

2

3 data Variation = Class | Id

4

5 tr, td, figure , li, pa, ba :: Doc -> Doc

6 -- | Table row tag wrapper

7 tr = wrap "tr" []

8 -- | Table cell tag wrapper

9 td = wrap "td" []

10 -- | Figure tag wrapper

11 figure = wrap "figure" []

12 -- | List tag wrapper

13 li = wrap ' "li" []

14 -- | Paragraph in list tag wrapper

15 pa = wrap "p" []

16 -- | Bring attention to element wrapper.

17 ba = wrap "b" []

18

19 ol, ul, table :: [String] -> Doc -> Doc

20 -- | Ordered list tag wrapper

21 ol = wrap "ol"

22 -- | Unordered list tag wrapper

23 ul = wrap "ul"

24 -- | Table tag wrapper

25 table = wrap "table"

26

27 nbformat :: Doc -> Doc

28 nbformat s = text (" " ++ J.encode (show s ++ "\n") ++ ",

↪→ ")

29

30 codeformat :: Doc -> Doc

31 codeformat s = text (" " ++ J.encode (show s))

32

33 wrap :: String -> [String] -> Doc -> Doc

34 wrap a = wrapGen ' vcat Class a empty

35

62

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

36 wrap ' :: String -> [String] -> Doc -> Doc

37 wrap ' a = wrapGen ' hcat Class a empty

38

39 wrapGen ' :: ([Doc] -> Doc) -> Variation -> String -> Doc ->

40 [String] -> Doc -> Doc

41 wrapGen ' sepf _ s _ [] = \x ->

42 let tb c = text $ "<" ++ c ++ ">"

43 in if s == "li" then sepf [tb s, x, tb $ '/':s]
44 else sepf [nbformat(tb s), x, nbformat(tb $ '/':s)]
45 wrapGen ' sepf Class s _ ts = \x ->

46 let tb c = text $ "<" ++ c ++ " class =\\\"" ++ foldr1 (++)

47 (intersperse " " ts) ++ "\\\">"

48 in let te c = text $ "</" ++ c ++ ">"

49 in sepf [nbformat(tb s), x, nbformat(te s)]

50 wrapGen ' sepf Id s ti _ = \x ->

51 let tb c = text ("<" ++ c ++ " id =\\\"") <> ti <> text "

↪→ \\\">"

52 te c = text $ " </" ++ c ++ ">"

53 in sepf [nbformat(tb s), x, nbformat(te s)]

54

55 refwrap :: Doc -> Doc -> Doc

56 refwrap = flip (wrapGen ' vcat Id "div") [""]

57

58 refID :: Doc -> Doc

59 refID i = nbformat $ text "<a id=\"" <> i <> text "\">"

60

61 -- | Helper for setting up links to references

62 reflink :: String -> Doc -> Doc

63 reflink ref txt = text "[" <> txt <> text ("](#" ++ ref ++ "

↪→)")

64

65 -- | Helper for setting up links to external URIs

66 reflinkURI :: String -> Doc -> Doc

67 reflinkURI ref txt = text ("")

68 <> txt <> text ""

69

70 -- | Helper for setting up figures

71 image :: Doc -> Doc -> MaxWidthPercent -> Doc

72 image f c 100 =

63

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

73 figure $ vcat [

74 nbformat $ img [("src", f), ("alt", c)]]

75 image f c wp =

76 figure $ vcat [

77 nbformat $ img [("src", f), ("alt", c), ("width",

78 text $ show wp ++ "%")]]

79

80 h :: Int -> Doc

81 h n | n < 1 = error "Illegal header (too small)"

82 | n > 4 = error "Illegal header (too large)"

83 | otherwise = text (hash n)

84 where hash 1 = "# "

85 hash 2 = "## "

86 hash 3 = "### "

87 hash 4 = "#### "

88 hash _ = "Illegal header"

89

90 -- | Curly braces.

91 br :: Doc -> Doc

92 br x = text "{" <> x <> text"}"

93

94 mkDiv :: String -> Doc -> Doc -> Doc

95 mkDiv s a0 a1 = (H.bslash <> text s) <> br a0 <> br a1

96

97 stripnewLine :: String -> Doc

98 stripnewLine s = hcat (map text (splitOn "\n" s))

99

100 -- | Helper for building Markdown cells

101 markdownB , markdownB ', markdownE , markdownE ' :: Doc

102 markdownB = text "{\n \" cells \": [\n {\n \" cell_type \":

103 \" markdown \",\n \" metadata \": {},\n \" source \": [\n"

104 markdownB ' = text " {\n \" cell_type \": \" markdown \",\n

105 \" metadata \": {},\n \" source \": [\n"

106 markdownE = text " \"\\n\"\n]\n },"

107 markdownE ' = text " \"\\n\"\n]\n }\n],"

108

109 -- | Helper for building code cells

110 codeB , codeE :: Doc

111 codeB = text " {\n \" cell_type \": \"code\",\n

64

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

112 \" execution_count \": null ,\n \" metadata \": {},\n

113 \" outputs \": [],\n \" source \": ["

114 codeE = text "\n]\n },"

115

116 -- | Helper for generate a Markdown cell

117 markdownCell :: Doc -> Doc

118 markdownCell c = markdownB ' <> c <> markdownE

119

120 -- | Helper for generate a code cell

121 codeCell :: Doc -> Doc

122 codeCell c = codeB <> c <> codeE

123

124 -- | Generate the metadata necessary for a notebook document

125 makeMetadata :: Doc

126 makeMetadata = vcat [

127 text " \" metadata \": {",

128 vcat[

129 text " \" kernelspec \": {",

130 text " \" display_name \": \" Python 3\",",

131 text " \" language \": \" python\",",

132 text " \"name \": \" python3 \"",

133 text " },"],

134 vcat[

135 text " \" language_info \": {",

136 text " \" codemirror_mode \": {",

137 text " \"name \": \" ipython\",",

138 text " \" version \": 3",

139 text " },"],

140 text " \" file_extension \": \".py\",",

141 text " \" mimetype \": \"text/x-python\",",

142 text " \"name \": \" python\",",

143 text " \" nbconvert_exporter \": \" python\",",

144 text " \" pygments_lexer \": \" ipython3\",",

145 text " \" version \": \"3.9.1\"",

146 text " }",

147 text " },",

148 text " \" nbformat \": 4,",

149 text " \" nbformat_minor \": 4"

150]

65

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

Code A.4: Source Code for DocLang.Notebook

1 -- * Section Constructors

2 -- | Section constructors for the Lesson Plans

3 intro , learnObj , review , caseProb , summary , appendix ,

4 reference , example :: [Contents] -> [Section] -> Section

5 intro cs ss = section (titleize Docum.introduction)

6 cs ss introLabel

7 learnObj cs ss = section (titleize ' Docum.learnObj)

8 cs ss learnObjLabel

9 review cs ss = section (titleize Docum.review)

10 cs ss reviewLabel

11 caseProb cs ss = section (titleize Docum.caseProb)

12 cs ss caseProbLabel

13 example cs ss = section (titleize Docum.example)

14 cs ss exampleLabel

15 summary cs ss = section (titleize Docum.summary)

16 cs ss summaryLabel

17 appendix cs ss = section (titleize Docum.appendix)

18 cs ss appendixLabel

19 reference cs ss = section (titleize ' Docum.reference)

20 cs ss referenceLabel

21

22 --Labels --

23 sectionReferences :: [Reference]

24 sectionReferences = [introLabel , learnObjLabel ,

25 docPurposeLabel , referenceLabel , reviewLabel ,

26 appendixLabel , summaryLabel , exampleLabel]

27

28 -- * Section References

29

30 -- | Individual section reference labels.

31 -- Used in creating example sections for the notebook.

32 introLabel , learnObjLabel , docPurposeLabel , referenceLabel ,

33 reviewLabel , caseProbLabel , appendixLabel , summaryLabel ,

34 exampleLabel :: Reference

35 introLabel = makeSecRef "Intro"

36 $ titleize Docum.introduction

66

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

37 learnObjLabel = makeSecRef "LearnObj"

38 $ titleize ' Docum.learnObj

39 docPurposeLabel = makeSecRef "DocPurpose"

40 $ titleize Docum.prpsOfDoc

41 referenceLabel = makeSecRef "References"

42 $ titleize ' Docum.reference

43 reviewLabel = makeSecRef "Review"

44 $ titleize Docum.review

45 caseProbLabel = makeSecRef "CaseProb"

46 $ titleize Docum.caseProb

47 appendixLabel = makeSecRef "Appendix"

48 $ titleize Docum.appendix

49 summaryLabel = makeSecRef "Summary"

50 $ titleize Docum.summary

51 exampleLabel = makeSecRef "Example"

52 $ titleize Docum.example

67

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

Code A.5: Source Code for DocumentLanguage.Notebook.Core

1 module Drasil.DocumentLanguage.Notebook.Core where

2

3 -- * Lesson Chapter Types

4

5 type LsnDesc = [LsnChapter]

6

7 data LsnChapter = Intro Intro

8 | LearnObj LearnObj

9 | Review Review

10 | CaseProb CaseProb

11 | Example Example

12 | Smmry Smmry

13 | BibSec

14 | Apndx Apndx

15

16 -- ** Introduction

17 newtype Intro = IntrodProg [Contents]

18

19 -- ** Learning Objectives

20 newtype LearnObj = LrnObjProg [Contents]

21

22 -- ** Review Chapter

23 newtype Review = ReviewProg [Contents]

24

25 -- ** A Case Problem

26 newtype CaseProb = CaseProbProg [Contents]

27

28 -- ** Examples of the lesson

29 newtype Example = ExampleProg [Contents]

30

31 -- ** Summary

32 newtype Smmry = SmmryProg [Contents]

33

34 -- ** Appendix

35 newtype Apndx = ApndxProg [Contents]

36

68

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

37 -- * Multiplate Definition and Type

38 data DLPlate f = DLPlate {

39 lsnChap :: LsnChapter -> f LsnChapter ,

40 intro :: Intro -> f Intro ,

41 learnObj :: LearnObj -> f LearnObj ,

42 review :: Review -> f Review ,

43 caseProb :: CaseProb -> f CaseProb ,

44 example :: Example -> f Example ,

45 smmry :: Smmry -> f Smmry ,

46 apndx :: Apndx -> f Apndx

47 }

48

49 instance Multiplate DLPlate where

50 multiplate p = DLPlate lc introd lrnObj rvw csProb exmp

↪→ smry aps where

51 lc (Intro x) = Intro <$> intro p x

52 lc (LearnObj x) = LearnObj <$> learnObj p x

53 lc (Review x) = Review <$> review p x

54 lc (CaseProb x) = CaseProb <$> caseProb p x

55 lc (Example x) = Example <$> example p x

56 lc (Smmry x) = Smmry <$> smmry p x

57 lc (Apndx x) = Apndx <$> apndx p x

58 lc BibSec = pure BibSec

59

60 introd (IntrodProg con) = pure $ IntrodProg con

61 lrnObj (LrnObjProg con) = pure $ LrnObjProg con

62 rvw (ReviewProg con) = pure $ ReviewProg con

63 csProb (CaseProbProg con) = pure $ CaseProbProg con

64 exmp (ExampleProg con) = pure $ ExampleProg con

65 smry (SmmryProg con) = pure $ SmmryProg con

66 aps (ApndxProg con) = pure $ ApndxProg con

67 mkPlate b = DLPlate (b lsnChap) (b intro) (b learnObj)

68 (b review) (b caseProb) (b example) (b smmry) (b apndx)

69

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

Code A.6: Source Code for DocumentLanguage.Notebook.DocumentLanguage

1 -- | Creates a notebook from a lesson description and system

↪→ information.

2 mkNb :: LsnDecl -> (IdeaDict -> IdeaDict -> Sentence) ->

3 SystemInformation -> Document

4 mkNb dd comb si@SI {_sys = s, _kind = k, _authors = a} =

5 Notebook (nw k `comb ` nw s) (foldlList Comma List $
6 map (S . name) a) $
7 mkSections si l where

8 l = mkLsnDesc si dd

9

10 -- | Helper for creating the notebook sections.

11 mkSections :: SystemInformation -> LsnDesc -> [Section]

12 mkSections si = map doit

13 where

14 doit :: LsnChapter -> Section

15 doit (Intro i) = mkIntro i

16 doit (LearnObj l) = mkLearnObj l

17 doit (Review r) = mkReview r

18 doit (CaseProb cp) = mkCaseProb cp

19 doit (Example e) = mkExample e

20 doit (Smmry s) = mkSmmry s

21 doit BibSec = mkBib (citeDB si)

22 doit (Apndx a) = mkAppndx a

23

24 -- | Helper for making the 'Introduction ' section.

25 mkIntro :: Intro -> Section

26 mkIntro (IntrodProg i) = Lsn.intro i []

27

28 -- | Helper for making the 'Learning Objectives ' section.

29 mkLearnObj :: LearnObj -> Section

30 mkLearnObj (LrnObjProg cs) = Lsn.learnObj cs []

31

32 -- | Helper for making the 'Review ' section.

33 mkReview :: Review -> Section

34 mkReview (ReviewProg r) = Lsn.review r []

35

70

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

36 -- | Helper for making the 'Case Problem ' section.

37 mkCaseProb :: CaseProb -> Section

38 mkCaseProb (CaseProbProg cp) = Lsn.caseProb cp []

39

40 -- | Helper for making the 'Example ' section.

41 mkExample :: Example -> Section

42 mkExample (ExampleProg cs) = Lsn.example cs []

43

44 -- | Helper for making the 'Summary ' section.

45 mkSmmry :: Smmry -> Section

46 mkSmmry (SmmryProg cs) = Lsn.summary cs []

47

48 -- | Helper for making the 'Bibliography ' section.

49 mkBib :: BibRef -> Section

50 mkBib bib = Lsn.reference [UlC $ ulcc (Bib bib)] []

51

52 -- | Helper for making the 'Appendix ' section.

53 mkAppndx :: Apndx -> Section

54 mkAppndx (ApndxProg cs) = Lsn.appendix cs []

71

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

Code A.7: Source Code for DocumentLanguage.Notebook.LsnDecl

1 -- | A Lesson Plan notebook declaration is made up of all

2 -- necessary chapters ('LsnChapter 's).
3 type LsnDecl = [LsnChapter]

4

5 -- | Contains all the different chapters needed for a

6 -- notebook lesson plan ('LsnDecl ').
7 data LsnChapter = Intro NB.Intro

8 | LearnObj NB.LearnObj

9 | Review NB.Review

10 | CaseProb NB.CaseProb

11 | Example NB.Example

12 | Smmry NB.Smmry

13 | BibSec

14 | Apndx NB.Apndx

15

16 -- * Functions

17

18 -- | Creates the lesson description (translates 'LsnDecl '
19 -- into a more usable form for generating documents).

20 mkLsnDesc :: SystemInformation -> LsnDecl -> NB.LsnDesc

21 mkLsnDesc _ = map sec where

22 sec :: LsnChapter -> NB.LsnChapter

23 sec (Intro i) = NB.Intro i

24 sec (LearnObj l) = NB.LearnObj l

25 sec (Review r) = NB.Review r

26 sec (CaseProb c) = NB.CaseProb c

27 sec (Example e) = NB.Example e

28 sec (Smmry s) = NB.Smmry s

29 sec BibSec = NB.BibSec

30 sec (Apndx a) = NB.Apndx a

72

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

Figure A.6: Learning Objectives Generated using Drasil

73

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

Figure A.7: Case Problem Generated using Drasil

74

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

Figure A.8: Case Problem Generated using Drasil Cont.

Figure A.9: Case Problem Generated using Drasil Cont.

75

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

Figure A.10: Case Problem Generated using Drasil Cont.

Figure A.11: Case Problem Generated using Drasil Cont.

76

Bibliography

[1] Andrew Forward. Software documentation: Building and maintaining artefacts

of communication. University of Ottawa (Canada), 2002 (cit. on p. 1).

[2] David Lorge Parnas. “Precise documentation: The key to better software”. In:

The Future of Software Engineering (2011), pp. 125–148 (cit. on p. 1).

[3] Vikas S Chomal and Jatinderkumar R Saini. “Significance of software docu-

mentation in software development process”. In: International Journal of En-

gineering Innovations and Research 3.4 (2014), p. 410 (cit. on p. 1).

[4] Noela Jemutai Kipyegen and William PK Korir. “Importance of software docu-

mentation”. In: International Journal of Computer Science Issues (IJCSI) 10.5

(2013), p. 223 (cit. on p. 1).

[5] Koothoor Nirmitha and Smith Spencer. Developing Scientific Computing Soft-

ware: Current Processes and Future Directions. 2016. url: http : / / hdl .

handle.net/11375/13266 (cit. on p. 1).

[6] Yu Wen and Smith Spencer. A Document Driven Methodology for Improving

the Quality of a Parallel Mesh Generation Toolbox. 2007. url: http://hdl.

handle.net/11375/21299 (cit. on p. 1).

77

http://hdl.handle.net/11375/13266
http://hdl.handle.net/11375/13266
http://hdl.handle.net/11375/21299
http://hdl.handle.net/11375/21299

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

[7] Jeffrey M. Perkel. “Why Jupyter is data scientists’ computational notebook of

choice”. In: Nature 563 (2018), pp. 145–146 (cit. on p. 2).

[8] Alberto Cardoso, Joaquim Leitão, and César Teixeira. “Using the Jupyter note-

book as a tool to support the teaching and learning processes in engineer-

ing courses”. In: The Challenges of the Digital Transformation in Education:

Proceedings of the 21st International Conference on Interactive Collaborative

Learning (ICL2018)-Volume 2. Springer. 2019, pp. 227–236 (cit. on p. 2).

[9] Pengfei Zhao and Junwei Xia. “Use JupyterHub to Enhance the Teaching and

Learning Efficiency of Programming Related Courses”. In: (2019) (cit. on p. 2).

[10] Sibylle Hermann and Jörg Fehr. “Documenting research software in engineering

science”. In: Scientific Reports 12.1 (2022), p. 6567 (cit. on p. 2).

[11] Jiyoo Chang and Christine Custis. “Understanding Implementation Challenges

in Machine Learning Documentation”. In: Equity and Access in Algorithms,

Mechanisms, and Optimization. 2022, pp. 1–8 (cit. on p. 2).

[12] Rebecca Sanders and Diane Kelly. “Dealing with risk in scientific software de-

velopment”. In: IEEE software 25.4 (2008), pp. 21–28 (cit. on p. 2).

[13] Spencer Smith, Thulasi Jegatheesan, and Diane Kelly. “Advantages, disadvan-

tages and misunderstandings about document driven design for scientific soft-

ware”. In: 2016 Fourth International Workshop on Software Engineering for

High Performance Computing in Computational Science and Engineering (SE-

HPCCSE). IEEE. 2016, pp. 41–48 (cit. on p. 2).

78

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

[14] João Felipe Pimentel, Leonardo Murta, Vanessa Braganholo, and Juliana Freire.

“Understanding and improving the quality and reproducibility of Jupyter note-

books”. In: Empirical Software Engineering 26.4 (2021), p. 65 (cit. on p. 2).

[15] Jiawei Wang, Li Li, and Andreas Zeller. “Better code, better sharing: on the

need of analyzing jupyter notebooks”. In: Proceedings of the ACM/IEEE 42nd

International Conference on Software Engineering: New Ideas and Emerging

Results. 2020, pp. 53–56 (cit. on p. 2).

[16] The Drasil Team. Drasil - Generate All the Things! url: https : / /

jacquescarette.github.io/Drasil/ (cit. on p. 3).

[17] W Spencer Smith and Lei Lai. “A new requirements template for scientific

computing”. In: Proceedings of the First International Workshop on Situational

Requirements Engineering Processes–Methods, Techniques and Tools to Support

Situation-Specific Requirements Engineering Processes, SREP. Vol. 5. Citeseer.

2005, pp. 107–121 (cit. on p. 4).

[18] GitHub contributors. The Jupyter Notebook. url: https : / / jupyter -

notebook.readthedocs.io/en/stable/notebook.html (cit. on p. 5).

[19] GitHub contributors. Jupyter Notebook. url: https://github.com/jupyter/

notebook (cit. on p. 5).

[20] Marijan Beg, Juliette Taka, Thomas Kluyver, Alexander Konovalov, Min

Ragan-Kelley, Nicolas M Thiéry, and Hans Fangohr. “Using Jupyter for re-

producible scientific workflows”. In: Computing in Science & Engineering 23.2

(2021), pp. 36–46 (cit. on p. 6).

79

https://jacquescarette.github.io/Drasil/
https://jacquescarette.github.io/Drasil/
https://jupyter-notebook.readthedocs.io/en/stable/notebook.html
https://jupyter-notebook.readthedocs.io/en/stable/notebook.html
https://github.com/jupyter/notebook
https://github.com/jupyter/notebook

M.Eng. Report—Ting-Yu Wu McMaster University—Computing and Software

[21] Jupyter Notebook contributors. Add metadata to your book pages. url: https:

//jupyterbook.org/en/stable/content/metadata.html (cit. on p. 16).

[22] The Haskell Team. Text.JSON. url: https : / / hackage . haskell . org /

package/json-0.10/docs/Text-JSON.html (cit. on p. 16).

[23] Volkan Cicek and Tok Hidayet. “Effective use of lesson plans to enhance educa-

tion”. In: International Journal of Economy, Management and Social Sciences

2.6 (2013), pp. 334–341 (cit. on p. 22).

[24] Harry K Wong and Rosemary Tripi Wong. The first days of school: How to be

an effective teacher. Harry K. Wong Publications Mountain View, CA, 2018

(cit. on p. 22).

[25] The Drasil Team. Do we need both LsnDecl and LsnDesc for lesson plan? url:

https://github.com/JacquesCarette/Drasil/issues/3308 (cit. on p. 25).

[26] Spencer Smith. Discussion of Projectile Lesson: What and Why. url: https://

github.com/smiths/caseStudies/blob/master/CaseStudies/projectile/

projectileLesson/AboutProjectileLesson.pdf (cit. on p. 28).

[27] The Codecademy Team. How To Use Jupyter Notebooks. url: https://www.

codecademy.com/article/how-to-use-jupyter-notebooks-py3 (cit. on

p. 34).

[28] The Drasil Team. Separating cells of SRS. url: https : / / github . com /

JacquesCarette/Drasil/issues/2346 (cit. on pp. 35, 38).

80

https://jupyterbook.org/en/stable/content/metadata.html
https://jupyterbook.org/en/stable/content/metadata.html
https://hackage.haskell.org/package/json-0.10/docs/Text-JSON.html
https://hackage.haskell.org/package/json-0.10/docs/Text-JSON.html
https://github.com/JacquesCarette/Drasil/issues/3308
https://github.com/smiths/caseStudies/blob/master/CaseStudies/projectile/projectileLesson/AboutProjectileLesson.pdf
https://github.com/smiths/caseStudies/blob/master/CaseStudies/projectile/projectileLesson/AboutProjectileLesson.pdf
https://github.com/smiths/caseStudies/blob/master/CaseStudies/projectile/projectileLesson/AboutProjectileLesson.pdf
https://www.codecademy.com/article/how-to-use-jupyter-notebooks-py3
https://www.codecademy.com/article/how-to-use-jupyter-notebooks-py3
https://github.com/JacquesCarette/Drasil/issues/2346
https://github.com/JacquesCarette/Drasil/issues/2346

	Lay Abstract
	Abstract
	Acknowledgements
	Notation and Abbreviations
	Declaration of Academic Achievement
	Introduction
	Background
	Problem Statement
	Thesis Outline

	Drasil Printer
	How documents are printed in Drasil
	Notebook Printer

	Lesson Plans
	Language of Lesson Plans
	A Case Study: Projectile Motion
	Knowledge Reusability

	Code Block Generation
	Unit of Contents
	Code Block

	Conclusion
	Future Work
	Conclusion

	Appendix

