Bioinformatics 2021 [Paper]
Simply clone this repository via
$ git clone https://github.com/JaesikKim/HiG2Vec.git
$ cd HiG2Vec
$ conda env create -n hig2vec -f environment.yml
$ conda activate hig2vec
$ python setup.py build_ext --inplace Gene Ontology and Gene Ontology Annotation are available in official website (http://geneontology.org/)
Transitive closure of GO
$ data/transitive_closure.py -dset data/GO.tsv$ ./run_embedding.sh$ python evalGO/link_prediction.py -dset evalGO/GO_samples.txt -model result/hig2vec.pth -distfn poincare$ python evalGO/reconstruction.py -model result/hig2vec.pth -eval data/GO_closure.tsv -distfn poincare$ python evalGO/level_prediction.py -dset evalGO/level_samples.txt -model result/hig2vec.pth -fout evalGO/level_output.txt $ python evalGene/binary_prediction_NN.py -dset evalGene/STRING_samples_binary.csv -model result/hig2vec.pth -fout evalGene/binary_output.txt$ python evalGene/binary_prediction_NN.py -dset evalGene/STRING_samples_binary.csv -model result/hig2vec.pth -fout evalGene/binary_output.txt$ python multilabel_prediction_NN.py -dset evalGene/STRING_samples_multilabel.csv -model result/hig2vec.pth$ python evalGene/score_prediction_NN.py -dset evalGene/STRING_samples_score.csv -model result/hig2vec.pth -fout evalGene/score_output.txt[Download Link] for HiG2Vec 200 dim and 1000 dim (GOonly, Human, Mouse, and Yeast)
Python code for usage
import torch
model = torch.load("HiG2Vec.pth", map_location="cpu")
objects, embeddings = model['objects'], model['embeddings']- python 3 with numpy
- pytorch >= 2.0.0
- scikit-Learn >= 1.2.1
- pandas
- tqdm
- cython >= 0.29.33
@article{10.1093/bioinformatics/btab193,
author = {Kim, Jaesik and Kim, Dokyoon and Sohn, Kyung-Ah},
title = "{HiG2Vec: hierarchical representations of Gene Ontology and genes in the Poincaré ball}",
journal = {Bioinformatics},
year = {2021}
}
** License Software code is under MIT license, and the pre-trained HiG2Vec (GOonly, Human, Mouse, and Yeast) are under CC0 license