
ISA description:
Consider a 16 bit ISA with the following instructions and opcodes, along with the syntax of an
assembly language that supports this ISA.
The ISA has 6 encoding types of instructions. The description of the types is given later.

Opcode Instruction Semantics Syntax Type

00000 Addition Performs reg1 =
reg2 + reg3. If the
computation
overflows, then the
overflow flag is
set

add reg1 reg2 reg3 A

00001 Subtraction Performs reg1 =
reg2 - reg3. In
case reg3 > reg2, 0
is written to reg1
and overflow flag
is set.

sub reg1 reg2 reg3 A

00010 Move
Immediate

Performs reg1 =$Imm
where Imm is a 8
bit value.

mov reg1 $Imm B

00011 Move
Register

Performs reg1 =
reg2.

mov reg1 reg2 C

00100 Load Loads data from
mem_addr into reg1.

ld reg1 mem_addr D

00101 Store Stores data from
reg1 to mem_addr.

st reg1 mem_addr D

00110 Multiply Performs reg1 =
reg2 x reg3. If the
computation
overflows, then the
overflow flag is
set.

mul reg1 reg2 reg3 A

00111 Divide Performs reg3/reg4.
Stores the quotient
in R0 and the
remainder in R1.

div reg3 reg4 C

01000 Right Shift Right shifts reg1
by $Imm, where $Imm
is an 8 bit value.

rs reg1 $Imm B

01001 Left Shift Left shifts reg1 by
$Imm, where $Imm is
an 8 bit value.

ls reg1 $Imm B

01010 Exclusive
OR

Performs bitwise
XOR of reg2 and
reg3. Stores the
result in reg1.

xor reg1 reg2 reg3 A

01011 Or Performs bitwise OR
of reg2 and reg3.
Stores the result
in reg1.

or reg1 reg2 reg3 A

01100 And Performs bitwise
AND of reg2 and
reg3. Stores the
result in reg1.

and reg1 reg2 reg3 A

01101 Invert Performs bitwise
NOT of reg2. Stores
the result in reg1.

not reg1 reg2 C

01110 Compare Compares reg1 and
reg2 and sets up
the FLAGS register.

cmp reg1 reg2 C

01111 Unconditio
nal Jump

Jumps to
mem_addr,where
mem_addr is a
memory address.

jmp mem_addr E

10000 Jump If
Less Than

Jump to mem_addr if
the less than flag
is set (less than
flag = 1), where
mem_addr is a
memory address.

jlt mem_addr E

10001 Jump If
Greater
Than

Jump to mem_addr if
the greater than
flag is set
(greater than flag

jgt mem_addr E

= 1), where
mem_addr is a
memory address.

10010 Jump If
Equal

Jump to mem_addr if
the equal flag is
set (equal flag =
1), where mem_addr
is a memory
address.

je mem_addr E

10011 Halt Stops the machine
from executing
until reset

hlt F

● reg(x) denotes register, mem_addr is a memory address (must be an 8-bit binary
number), and Imm denotes a constant value (must be an 8-bit binary number).

● The ISA has 7 general-purpose registers and 1 flag register.
● The ISA supports an address size of 8 bits, which is double byte-addressable.
● Therefore, each address fetches two bytes of data.
● This results in a total address space of 512 bytes.
● This ISA only supports whole number arithmetic.
● If the subtraction results in a negative number; for example, “3 - 4”, the reg value will be

set to 0 and the overflow bit will be set. All the representations of the number are hence
unsigned.

● The registers in the assembly are named R0, R1, R2, ..., R6 and FLAGS. Each register
is 16 bits.

Note: “mov reg $Imm”: This instruction copies the Imm(8bit) value in the register’s lower
8 bits. The upper 8 bits are zeroed out.
Example: Suppose R0 has 1110_1010_1000_1110 stored, and mov R0 $13 is executed.
The final value of R0 will be 0000_0000_0000_1101.

FLAGS semantics
The semantics of the flags register is:

● Overflow (V): This flag is set by add, sub,and mul when the result of the operation
overflows. This shows the overflow status for the last executed instruction. ● Less than
(L): This flag is set by the “cmp reg1 reg2” instruction if reg1 < reg2 ● Greater than
(G): This flag is set by the “cmp reg1 reg2” instruction if the value of reg1 > reg2
● Equal (E): This flag is set by the “cmp reg1 reg2” instruction if reg1 = reg2 The

default state of the FLAGS register is all zeros. If an instruction does not affect the FLAGS
register, then the state of the FLAGS register is reset to 0 upon execution.

The structure of the FLAGS register is as follows:

Unused 12 bits V L G E

The only operation allowed in the FLAGS register is “mov reg1 FLAGS”, where reg1 can
be any of the registers from R0 to R6. This instruction reads FLAGS register and writes the
data into reg1. All other operations on the FLAGS register are prohibited.
The cmp instruction can implicitly write to the FLAGS register. Similarly, conditional
jump instructions can implicitly read the FLAGS register.
Example: R0 has 5, R1 has 10
Implicit write: cmp R0 R1 will set the L (less than) flag in the FLAGS register. Implicit read:
jlt 10001001 will read the FLAGS register and figure out that the L flag was set, and then
jump to address 10001001.

Binary Encoding
The ISA has 6 types of instructions with distinct encoding styles. However, each instruction is of
16 bits, regardless of the type.

● Type A: 3 register type

opcode
(5 bits)

unused
(2 bits)

reg1 reg2 reg3
(3 bits) (3 bits) (3 bits)

● Type B: register and immediate type

opcode
(5 bits)

reg1
(3 bits)

Immediate Value
(8 bits)

● Type C: 2 registers type

opcode
(5 bits)

unused reg1 reg2
(3 bits) (3 bits) (3 bits)

● Type D: register and memory address type

opcode
(5 bits)

reg1
(3 bits)

Memory Address
(8 bits)

● Type E: memory address type

opcode
(5 bits)

unused
(3 bits)

Memory Address
(8 bits)

● Type F: halt

opcode
(5 bits)

unused
(11 bits)

Binary representations for the register is given as follows:-

Register Address

R0 000

R1 001

R2 010

R3 011

R4 100

R5 101

R6 110

FLAGs 111

Executable binary syntax
The machine exposed by the ISA starts executing the code provided to it in the following format
until it reaches hlt instruction. There can only be one hlt instruction in the whole program,
and it must be the last instruction. The execution starts from the 0th address. The ISA follows
Von-Neumann architecture with a unified code and data memory.
The variables must be allocated in the binary in the program order.

code

(last instruction) halt

variables

