
DNA sequence classification by Deep Neural Network
Md. Tarek Hasan, Mohammed Jawwadul Islam, Arifa Akter, Sumayra Islam, Mohammad Fahad Al Rafi

Department of Computer Science and Engineering, United International University
Plot-2, United City, Madani Avenue, Badda, Dhaka-1212, Bangladesh

(mhasan181076, mislam181182, aakter181254, sislam181123, mrafi181201)@bscse.uiu.ac.bd

Introduction

Motivation
The study of DNA is a vital part of understanding organisms in life science. In all species, DNA
contains the majority of the genetic instructions for development, function, and reproduction. In
the field of bioinformatics, the classification of DNA sequences is a very important task.
Through classification, we can survey and track various organisms and their evolutionary traits.
So, if we can correctly classify DNA sequences, we will be able to survey and track diverse
organisms and their evolutionary features. DNA sequences are very long, for example, small
bacterial genomes are a few million base pairs. So, to classify these sequences would require
powerful algorithms capable of performing lots of computation.

Histones are highly basic proteins with a lot of lysine and arginine residues that are present in the
nucleus of eukaryotic cells. Histones protect DNA from tangles and damage by preventing it
from getting knotted. Histones also play a crucial function in gene regulation and DNA
replication. Unwound DNA in chromosomes would be very lengthy if histones were not there.
By classifying the histone protein in the DNA sequence, we will be able to get a clear idea about
the histone that is responsible for certain changes or vice-versa which has motivated us to work
with the DNA sequence classification using the dataset.

Deep learning is one of the most extensively utilized approaches for any type of classification
task since it automates the process of extracting features from data. In recent years, deep learning
has outperformed traditional machine learning algorithms in most of the classification tasks in
the area of Bioinformatics. That is why we have chosen a classification task to do an
experimental analysis on different deep learning algorithms and sequence embedding techniques
as the main challenge for the DNA classification task is feature extraction from the sequences.

History of the Problem
Over the last few years, scientists have been collecting a lot of information on DNA sequences.
As a result, the amount of data on DNA sequences has been increasing exponentially every year.
To work with these sequences, to understand them, researchers have been using the power of
modern computation provided due to advances in technology, particularly accessibility of



superior computing hardware (e.g. GPUs) required to handle DNA sequences. Living organisms
are classified with specific scientific names. This classification is done on a hierarchical basis,
which allows researchers to keep track of parent-child organisms.

Throughout the years, machine learning models were trained on DNA sequences to predict the
class of unknown organisms. However, in recent years, a new technique called deep learning was
introduced. Deep learning is a branch of machine learning where artificial neural networks are
used. These are algorithms inspired by neurons inside the human brain. With many nonlinear
layers, each layer representing data at high-level abstractions, deep learning algorithms solve
complex problems by training the neural networks on large amounts of data. Therefore, several
researchers have started applying deep learning models for studying and understanding DNA
sequences.

Problem Description
Deep learning models have been used to extract features of high-level abstraction. One such
model is called Convolutional Neural Network (CNN) [19]. In a convolutional neural network
model, neurons in a convolutional layer can extract higher-level abstraction features from
extracted features from the previous layer. Another model is called Bidirectional Long
Short-Term Memory (Bi-LSTM) [20]. Bi-LSTM is just two separate RNNs combined. This
structure enables the networks to contain both backward and forward sequence information at
each time step.

In this work, we have worked on the DNA sequence classification problem where the input is the
DNA sequence and the output class states whether a certain histone protein is present on the
sequence or not. For this purpose, we have used one of the datasets from 12 different datasets [1]
that we have collected. The name of the dataset is H3K4me2. Because of the time limitation, just
one dataset was chosen, and H3K4me2 was chosen because prior research on this dataset had
shown unsatisfactory results. The main challenge of our work was feature extraction from the
DNA sequences. To represent a sequence, we have utilized k-mer representation. For the
sequence embedding we have used one-hot encoding, and two different word embedding models,
one is Word2Vec [16,17] and another one is BERT [18]. Moreover, we have used Keras
Embedding layer, Bi-LSTM, and CNN for our experiments.

Literature Review
In the domain of Bioinformatics, there are several works available for the sequence classification task. We
are presenting some of the most related works compared to our work. For a better understanding of this
part, we are using a tabular format to present the previous studies. To give a comprehensive view of that
task, Table 1 shows the major work that has been done by other researchers, dataset, feature extraction
techniques, and deep learning models used by them.



Reference Major Work Dataset(s) Feature Extraction
Technique

Deep learning/
Machine Learning

Model

Nguyen et al. [1] Classifying DNA
sequences

H3, H4,
H3K9ac,
H3K14ac,

H4ac,
H3K4me1,
H3K4me2,
H3K4me3,
H3K36me3,
H3K79me3,

Splice,
Promoter

One-hot encoding CNN

Yin et al. [2] An
image-representation
of primary DNA
sequence as its input,
and predicts key
determinants of
chromatin structure

Doulrs/Hilbert-
CNN: An
image
representation
based
convolutional
network for
DNA
classification
(github.com)

K-mer frequency,
One hot label
encoding

CNN, Kernel SVM,
LSTM

Lopez-Rincon et
al. [3]

an assisted detection
test, combining
molecular testing
with deep learning.
Automatically create
features starting
from the genome
sequence of the
virus.

albertotonda/de
ep-learning-cor
onavirus-geno
me: Repository
with data and
code for the
paper
"Identification
of
SARS-CoV-2
from Genome
Sequences
using Deep
Learning"
(github.com)

PCR Amplification,
One hot Encoding

CNN

Phan et al. [4] an effective
framework for
improving
fixed-length DNA

btu083
Supplementary
Data

K-mer frequency Kernel SVM,
Random Forest
Classifier

https://github.com/Doulrs/Hilbert-CNN
https://github.com/Doulrs/Hilbert-CNN
https://github.com/Doulrs/Hilbert-CNN
https://github.com/Doulrs/Hilbert-CNN
https://github.com/Doulrs/Hilbert-CNN
https://github.com/Doulrs/Hilbert-CNN
https://github.com/Doulrs/Hilbert-CNN
https://github.com/Doulrs/Hilbert-CNN
https://github.com/Doulrs/Hilbert-CNN
https://github.com/Doulrs/Hilbert-CNN
https://github.com/albertotonda/deep-learning-coronavirus-genome
https://github.com/albertotonda/deep-learning-coronavirus-genome
https://github.com/albertotonda/deep-learning-coronavirus-genome
https://github.com/albertotonda/deep-learning-coronavirus-genome
https://github.com/albertotonda/deep-learning-coronavirus-genome
https://github.com/albertotonda/deep-learning-coronavirus-genome
https://github.com/albertotonda/deep-learning-coronavirus-genome
https://github.com/albertotonda/deep-learning-coronavirus-genome
https://github.com/albertotonda/deep-learning-coronavirus-genome
https://github.com/albertotonda/deep-learning-coronavirus-genome
https://github.com/albertotonda/deep-learning-coronavirus-genome
https://github.com/albertotonda/deep-learning-coronavirus-genome
https://github.com/albertotonda/deep-learning-coronavirus-genome
https://github.com/albertotonda/deep-learning-coronavirus-genome
https://github.com/albertotonda/deep-learning-coronavirus-genome


sequence
classification by
using the
combination of
categorical features
and numerical
features

Lopez-Rincon et
al. [5]

discovery of
representative
genomic sequences
in SARS-CoV-2

steppenwolf0/p
rimers-sars-cov
-2 (github.com)

One-hot label
encoding

CNN

Kassim et al. [6] DNA Sequence
Classification
(HBV, non-HVB
nucleotide
sequences)

Leung et al.
[7]

Sequence of Words CNN

Whata et al. [8] DNA Sequence
Classification
(SARS COV-2
Genome

SARS-CoV2_2
0210514

CNN, max-pooling CNN, CNN,
Bi-LSTM

Zhang et al. [9] DNA Sequence
Classification
(SARS COV 2)

https://ftp.ncbi.nl
m.nih.gov/

CNN CNN, CNN LSTM,
CNN, Bi-LSTM

Bosco et al. [10] DNA Sequence
Classification

16S dataset character-level-one-
hot-encoding

CNN
LSTM

Rizzo et al. [11] DNA Sequence
Classification

16S rRNA k-mer
representation

CNN

Gunasekaran et al.
[12]

DNA Sequence
Classification

The complete
DNA/Genomic
sequence of the
viruses like
COVID, SARS,
MERS, dengue,
hepatitis, and
influenza
obtained from
the public
nucleotide
sequence

Label and K-mer
encoding

CNN, CNN-LSTM,
CNN-Bidirectional
LSTM

https://github.com/steppenwolf0/primers-sars-cov-2
https://github.com/steppenwolf0/primers-sars-cov-2
https://github.com/steppenwolf0/primers-sars-cov-2


database: “The
National Centre
for
Biotechnology
Information
(NCBI)”
(https://www.nc
bi.nlm.nih.gov).

Akkaya et al. [13] DNA Sequence
Classification

splice,
promoter, and
H3

one-hot based with
random and default
dictionary, Voss and
dna2vec

Deep Convolutional
Neural Network

Mahmoud et al.
[14]

DNA Sequence
Classification

H3, H4,
H3K9ac,
H3K14ac, H4ac

DDV software to
read the sequences
and convert it into
images

Xception network,
VGG network,
Pseudoinverse
Learning
Autoencoder
(PILAE)

Higashihara et al.
[15]

Classifying DNA
sequences

H3, H4,
H3K9ac,
H3K14ac,
H4ac,
H3K4me1,
H3K4me2,
H3K4me3,
H3K36me3,
H3K79me3

4-mer frequency SVM with RVF
kernel

Table 1: Related studies on DNA sequence classification using Deep Learning Algorithms

We can get some important insights from the related works those have been done by other researchers.
CNN is widely used for the sequence classification task along with the K-mer frequency representation,
and one-hot encoding technique for sequence representation, and embedding. In addition, LSTM and
Bi-LSTM are two other common deep learning models for sequence classification tasks. Some of the
related works employed traditional machine learning algorithms, i.e. Support Vector Machine (SVM) with
RBF kernel, Random Forest Classifier which is an ensemble learning technique for their experimental
analysis.

Materials and Methods

Dataset Description
DNA sequences wrapped around histone proteins are the subject of datasets.

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/


DNA's spatial organization is done by integrating (or "recruiting") additional molecules, such as histone
proteins, which assist in assuming the proper spatial arrangement. Chromatin is the combination of DNA
and helper molecules. To estimate chromatin state from DNA sequence characteristics, the datasets below
can be used.

We have collected the dataset from Nguyen who is one of the authors of the paper titled “DNA sequence
classification by convolutional neural network” [1]. The description of the dataset is explained in Table 2.
For our experiment, we selected one of the datasets entitled H3K4me2. H3K4me2 has 30683 DNA
sequences whose 18143 samples fall under the positive class, the rest of the samples fall under the
negative class, and it makes the problem binary class classification. The ratio of the positive-negative
class is around (59:41)%. The class label represents the presence of H3K4me2 histone proteins in the
sequences. The base length of the sequences is 500. Moreover, we will employ other datasets for future
experiments as an expanded version of our work.

No Dataset Description Number of
Classes

Number of
Samples

Sequence
Length (base)

1 H3 H3 occupancy 2 7667; 7298 500

2 H4 H4 occupancy 2 6480; 8121 500

3 H3K9ac H3K9 acetylation
relative to H3

2 15,415; 12,367 500

4 H3K14ac H3K14 acetylation
relative to H3

2 18,771; 14,277 500

5 H4ac H4 acetylation
relative to H4

2 18,410; 15,686 500

6 H3K4me1 H3K4
mono-methylation

relative to H3

2 17,266; 14,411 500

7 H3K4me2 H3K4
di-methylation
relative to H3

2 18,143; 12,540 500

8 H3K4me3 H3K4
tri-methylation
relative to H3

2 19,604; 17,195 500

9 H3K36me3 H3K36
tri-methylation
relative to H3

2 18,892; 15,988 500

10 H3K79me3 H3K79
tri-methylation
relative to H3

2 15,337; 13,500 500



11 Splice Primate
splice-junction
gene sequences
with associated

imperfect domain
theory

3 762; 765; 1648 60

12 Promoter E. coli promoter
gene sequences

with
partial domain

theory

2 53;53 57

Table 2: Description of the data set

Methodology

Data Cleaning
The datasets were gathered in.txt format. We discovered that the dataset contains id, sequence, and class
label during the Exploratory Data Analysis phase of our work. We dropped the id column from the dataset
because it is the only trait that all of the samples share. Except for two samples, H3K4me2 includes 36799
DNA sequences, the majority of which are 500 bases long. Those two sequences have lengths of 310 and
290, respectively. To begin, we employed the zero-padding strategy to tackle the problem. However,
because there are only two examples of varying lengths, we dropped those two samples from the dataset
later for experiments, as these samples may cause noise.

Sequence Representation
DNA sequence representation techniques are utilized to effectively designate a gene structure and
facilitate coding sequence similarity/dissimilarity analysis. Numerical, Graphical, Geometrical, and
Hybrid representation approaches are the most common. In our work, we have used the K-mer sequence
representation technique. More specifically, we have used the 3-mer representation technique.

Example:

DNA Sequence before applying the 3-mer representation technique:

CATGTAGTATTGGGC

The Sequence after applying the 3-mer representation technique:

CAT ATG TGT GTA TAG AGT GTA TAT ATT TTG TGG GGG GGC

Sequence Embedding
The main challenge for DNA sequence classification task is the sequence embedding. It’s difficult due to
the fact that sequence data is inherently unstructured. Sequences are arbitrary strings, just like texts in



Natural Language Processing (NLP). These strings have no significance for a computer. That’s why we
need to convert the strings into the numerical format.

For embedding the sequence after applying the 3-mer representation technique, we have experimented
using six different embedding techniques. The first three embedding methods are named
SequenceEmbedding1D, SequenceEmbedding2D, SequenceEmbedding2D_V2. The other two methods are
Word2Vec [16,17] and BERT [18]. The base method of the first three methods is one-hot encoding.
One-hot encoding represents a single 3-mer using a vector of size 64 of values 0 and 1, where there is
only one 1 and the rest of the values are 0. There are 64 different 3-mer possible from the 4 nucleotides
(A, C, G, T). To represent the one-hot encoding technique sets,

AAA: the first value of the vector as 1 and the rest of the values are 0,

AAC: the second value of the vector as 1 and the rest of the values are 0,

AAG: the third value of the vector as 1 and the rest of the values are 0, and so on.

SequenceEmbedding1D is the one-dimensional representation of a single DNA sequence which is
basically the one-hot encoding. SequenceEmbedding2D is the two-dimensional representation of a single
DNA sequence where the first row is the one-hot encoding of a sequence after applying 3-mer
representation. The second row is the one-hot encoding of a left-rotated sequence after applying 3-mer
representation. Similarly, the third row of SequenceEmbedding2D_V2 is the one-hot encoding of a
right-rotated sequence after applying 3-mer representation.

Word2Vec and BERT are the word embedding techniques for language modeling. But, Word2Vec is a
widely used technique in the domain of Bioinformatics for sequence classification tasks as well.
Moreover, we used one_hot from Keras.preprocessing.text which converts each 3-mer using an integer in
the range from 1 to 64 uniquely.

Deep Learning Models
After the completion of sequence embedding, we have used deep learning models for the classification
task. We have used two different deep learning models for this purpose, one is Convolutional Neural
Network (CNN) [19] and the other is Bidirectional Long Short-Term Memory (Bi-LSTM) [20]. The
details of the architectures are described in the following paragraphs.

Two one-dimensional convolutional layers with filter size 16 and kernel size 4 make up the CNN model.
A one-dimensional max-pooling layer follows each of these layers. These layers are responsible for
extracting features from sequence representation matrices. A fully connected neural network layer with
100 neurons is then used to convert the retrieved features. To mitigate the effect of overfitting, we
employed a dropout [22] value of 0.5 in this layer. After that, input sequence labels are predicted using a
softmax output layer. For all other layers, we have used the activation function: ReLU [23]. In Table 3,
you can see the tabular format of the architecture. The hyperparameters that are not mentioned in Table 3
have been used as the default value.

Table 3: CNN Architecture for our experiments

Layer Hyperparameters



1D Convolution filter size = 16, kernel size = 4, activation function = ReLU

1D Max-pooling pool size = 2

1D Convolution filter size = 16, kernel size = 4, activation function = ReLU

1D Max-Pooling pool size = 2

Flatten

Dense units = 100, activation function = ReLU

Dropout rate = 0.5

Dense units = 2, activation function = softmax

In the implementation of Bi-LSTM architecture, there is an embedding layer of Keras with input
dimension 64, output dimension 256 and the input length is 498 as we can take 498 3-mer from a
sequence of length 500. After this layer, we utilized a Spatial Dropout [21] Layer with a rate of 0.2. Then,
a Bi-LSTM has been employed with 256 units. A fully connected neural network layer with 128 neurons
is then used to convert the retrieved features. To prevent the effect of overfitting, we have used a dropout
[22] with a ratio of 0.5 in this layer. Then, input sequence labels are predicted using a softmax output
layer. For all other layers, we have used the activation function: ReLU [23]. In Table 4, you can see the
tabular format of the architecture. The hyperparameters that are not mentioned in Table 4 have been used
as the default value.

Table 4: Bi-LSTM Architecture for our experiments

Layer Hyperparameters

Embedding input dimension = 64, output dimension = 256, input length = 498

1D Spatial Dropout rate = 0.2

Bidirectional LSTM units = 256, return sequences = True

Flatten

Dense units = 128, activation function = ReLU

Dropout rate = 0.5

Dense units = 2, activation function = softmax

Finally, for both models, we have utilized adam as the optimizer, sparse categorical cross-entropy as the
loss function. In addition, we have used early stopping by monitoring the validation accuracy with



patience for 200 epochs, and model checkpoint to save the weight of the best model. We have run the
model for 300 epochs utilizing the model checkpoint and early stopping [24] with batch size 256.

For a better understanding of the implementation, we are adding the links to the supplementary materials:

CNN & Sequence Embedding Implementation, Bi-LSTM Implementation.

Experimental Analysis
All the experiments were conducted on 3.60GHz Intel(R) Core(TM) i7-7700 CPU, 32 GB RAM, and an
NVIDIA TITAN XP with 12GB physical memory under Ubuntu 16.04.7 LIS. After the data cleaning
phase, we had 36797 samples. We have used 80% of the whole dataset for training and the rest of the
samples for testing. The dataset has been split using train_test_split from sklearn.model_selection
stratifying by the class label. We have utilized 10% of the training data for validation purposes. For the
first five experiments shown in Table 5, we have used batch training as it was throwing an exception of
resource exhaustion.

The evaluation metrics we used for our experiments are accuracy, precision, recall, f1-score, and
Matthews Correlation Coefficient (MCC) score. The minimum value of accuracy, precision, recall,
f1-score can be 0 and the maximum value can be 1. The minimum value of the MCC score can be -1 and
the maximum value can be 1.

The experimental results are shown in Table 5 where bold font represents the best score for the certain
evaluation matrix.

Table 5: Result of the Experiments

Sequence
Embedding
Technique

Deep
Learning
Model

Accuracy Precision Recall F1-Score MCC Score

SequenceE-
mbedding1D

CNN 0.6027 0.6467 0.7230 0.6827 0.1573

SequenceE-
mbedding2D

CNN 0.5914 0.5914 1 0.7432 0

SequenceE-
mbedding2D

_V2

CNN 0.5914 0.5914 1 0.7432 0

Word2Vec CNN 0.5914 0.5914 1 0.7432 0

BERT CNN 0.5914 0.5914 1 0.7432 0

one_hot Bi-LSTM 0.5914 0.5914 1 0.7432 0

https://colab.research.google.com/drive/1-8gBN0swK5GVsFpq-oyfo9gcJN5MLfP4?usp=sharing
https://colab.research.google.com/drive/1IQgR4tQW1PMzbyemPv4rwGGQMNbJxxBT?usp=sharing


From the results of these experiments, we can state that we have got the maximum accuracy of 60.27%,
precision 64.67%, and MCC score 0.1573 using SequenceEmbedding1D and CNN model. We have got
the maximum recall score and f1-score on the rest of the experiments.

Discussion
MCC score 0 indicates the model's randomized predictions. The recall score indicates how well the
classifier can find all positive samples. We can say that the model's ability to classify all positive samples
has been at an all-time high over the last five experiments. The highest MCC score we received was
0.1573, indicating that the model is very near to predicting in a randomized approach. We attain a
maximum accuracy of 60.27%, which is much lower than the state-of-the-art result of 71.77% [1]. To
improve the score, we need to emphasize more on the sequence embedding approach. Furthermore, we
can experiment with various deep learning techniques.

Conclusion
We used a variety of sequence embedding methods and deep learning models in our work. We can gain a
thorough understanding of the combinations of sequence embedding techniques and deep learning models
through this study. We can conclude that the aforementioned combinations are ineffective for DNA
sequence classification tasks. We will test other combinations of the above-mentioned embedding
approach and DL models, i.e. Word2Vec with Bi-LSTM, as an expanded version of our work. We will
also test different deep learning models on other datasets, such as Bi-LSTM with an attention mechanism
and GRU [25]. In addition, we can tune the K value for the K-mer representation.

Acknowledgment
We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan
Xp GPU and Nguyen to provide us with the datasets used for this work.

References
[1] Nguyen, N.G., Tran, V.A., Phan, D., Lumbanraja, F.R., Faisal, M.R., Abapihi, B., Kubo, M. and Satou,
K., 2016. DNA sequence classification by convolutional neural network. Journal Biomedical Science and
Engineering, 9(5), pp.280-286.

[2] Yin, B., Balvert, M., Zambrano, D., Schönhuth, A. and Bohte, S., 2018. An image representation
based convolutional network for DNA classification. arXiv preprint arXiv:1806.04931.

[3] Lopez-Rincon, A., Tonda, A., Mendoza-Maldonado, L., Claassen, E., Garssen, J. and Kraneveld,
A.D., 2020. Accurate identification of sars-cov-2 from viral genome sequences using deep
learning. bioRxiv.



[4] Phan, D., Ngoc, G.N., Lumbanraja, F.R., Faisal, M.R., Abipihi, B., Purnama, B., Delimiyanti, M.K.,
Kubo, M. and Satou, K., 2017. Combined Use of k-Mer Numerical Features and Position-Specific
Categorical Features in Fixed-Length DNA Sequence Classification. Journal of Biomedical Science and
Engineering, 10(8), pp.390-401.

[5] Lopez-Rincon, A., Tonda, A., Mendoza-Maldonado, L., Mulders, D.G., Molenkamp, R.,
Perez-Romero, C.A., Claassen, E., Garssen, J. and Kraneveld, A.D., 2021. Classification and specific
primer design for accurate detection of SARS-CoV-2 using deep learning. Scientific reports, 11(1),
pp.1-11.

[6] Kassim, N.A. and Abdullah, A., 2017. Classification of DNA sequences using convolutional neural
network approach. Innovations in Computing Technology and Applications, 2, pp.1-6.

[7] Leung, KwongSak, et al. "Data mining on dna sequences of hepatitis b virus." IEEE/ACM
transactions on computational biology and bioinformatics 8.2 (2011): 428-440.

[8] Whata, A. and Chimedza, C., 2021. Deep Learning for SARS COV-2 Genome Sequences. IEEE
Access, 9, pp.59597-59611.

[9] Zhang, X., Beinke, B., Kindhi, B.A. and Wiering, M., 2020. Comparing Machine Learning
Algorithms with or without Feature Extraction for DNA Classification. arXiv preprint arXiv:2011.00485.

[10] Bosco, G.L. and Di Gangi, M.A., 2016, December. Deep learning architectures for DNA sequence
classification. In International Workshop on Fuzzy Logic and Applications (pp. 162-171). Springer,
Cham.

[11] Rizzo, R., Fiannaca, A., La Rosa, M. and Urso, A., 2015, September. A deep learning approach to
dna sequence classification. In International Meeting on Computational Intelligence Methods for
Bioinformatics and Biostatistics (pp. 129-140). Springer, Cham.

[12] Gunasekaran, H., Ramalakshmi, K., Rex Macedo Arokiaraj, A., Deepa Kanmani, S., Venkatesan, C.
and Suresh Gnana Dhas, C., 2021. Analysis of DNA Sequence Classification Using CNN and Hybrid
Models. Computational and Mathematical Methods in Medicine, 2021.

[13] Akkaya, U.M. and Kalkan, H., 2021, October. Classification of DNA Sequences with k-mers Based
Vector Representations. In 2021 Innovations in Intelligent Systems and Applications Conference
(ASYU) (pp. 1-5). IEEE.

[14] Mahmoud, M.A. and Guo, P., 2021. DNA sequence classification based on MLP with PILAE
algorithm. Soft Computing, 25(5), pp.4003-4014.

[15] Higashihara, M.A.S.A.N.O.R.I., Rebolledo-Mendez, J.D., Yamada, Y.O.I.C.H.I. and Satou,
K.E.N.J.I., 2008. Application of a feature selection method to nucleosome data: accuracy improvement
and comparison with other methods. WSEAS Transactions on Biology and Biomedicine, 5(5), pp.95-104.

[16] Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations
in vector space. arXiv preprint arXiv:1301.3781.



[17] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of
words and phrases and their compositionality. In Advances in neural information processing systems (pp.
3111-3119).

[18] Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805.

[19] Albawi, S., Mohammed, T. A., & Al-Zawi, S. (2017, August). Understanding of a convolutional
neural network. In 2017 International Conference on Engineering and Technology (ICET) (pp. 1-6). Ieee.

[20] Graves, A., Fernández, S., & Schmidhuber, J. (2005, September). Bidirectional LSTM networks for
improved phoneme classification and recognition. In International conference on artificial neural
networks (pp. 799-804). Springer, Berlin, Heidelberg.

[21] Lee, S., & Lee, C. (2020). Revisiting spatial dropout for regularizing convolutional neural networks.
Multimedia Tools and Applications, 79(45), 34195-34207.

[22] Baldi, P., & Sadowski, P. J. (2013). Understanding dropout. Advances in neural information
processing systems, 26, 2814-2822.

[23] Agarap, A. F. (2018). Deep learning using rectified linear units (relu). arXiv preprint
arXiv:1803.08375.

[24] Prechelt, L. (1998). Early stopping-but when?. In Neural Networks: Tricks of the trade (pp. 55-69).
Springer, Berlin, Heidelberg.

[25] Cho, K., Van Merriënboer, B., Bahdanau, D., & Bengio, Y. (2014). On the properties of neural
machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259.


