DNA sequence classification by Deep Neural Network
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Introduction

Motivation

The study of DNA is a vital part of understanding organisms in life science. In all species, DNA
contains the majority of the genetic instructions for development, function, and reproduction. In
the field of bioinformatics, the classification of DNA sequences is a very important task.
Through classification, we can survey and track various organisms and their evolutionary traits.
So, if we can correctly classify DNA sequences, we will be able to survey and track diverse
organisms and their evolutionary features. DNA sequences are very long, for example, small
bacterial genomes are a few million base pairs. So, to classify these sequences would require
powerful algorithms capable of performing lots of computation.

Histones are highly basic proteins with a lot of lysine and arginine residues that are present in the
nucleus of eukaryotic cells. Histones protect DNA from tangles and damage by preventing it
from getting knotted. Histones also play a crucial function in gene regulation and DNA
replication. Unwound DNA in chromosomes would be very lengthy if histones were not there.
By classifying the histone protein in the DNA sequence, we will be able to get a clear idea about
the histone that is responsible for certain changes or vice-versa which has motivated us to work
with the DNA sequence classification using the dataset.

Deep learning is one of the most extensively utilized approaches for any type of classification
task since it automates the process of extracting features from data. In recent years, deep learning
has outperformed traditional machine learning algorithms in most of the classification tasks in
the area of Bioinformatics. That is why we have chosen a classification task to do an
experimental analysis on different deep learning algorithms and sequence embedding techniques
as the main challenge for the DNA classification task is feature extraction from the sequences.

History of the Problem

Over the last few years, scientists have been collecting a lot of information on DNA sequences.
As a result, the amount of data on DNA sequences has been increasing exponentially every year.
To work with these sequences, to understand them, researchers have been using the power of
modern computation provided due to advances in technology, particularly accessibility of



superior computing hardware (e.g. GPUs) required to handle DNA sequences. Living organisms
are classified with specific scientific names. This classification is done on a hierarchical basis,
which allows researchers to keep track of parent-child organisms.

Throughout the years, machine learning models were trained on DNA sequences to predict the
class of unknown organisms. However, in recent years, a new technique called deep learning was
introduced. Deep learning is a branch of machine learning where artificial neural networks are
used. These are algorithms inspired by neurons inside the human brain. With many nonlinear
layers, each layer representing data at high-level abstractions, deep learning algorithms solve
complex problems by training the neural networks on large amounts of data. Therefore, several
researchers have started applying deep learning models for studying and understanding DNA
sequences.

Problem Description

Deep learning models have been used to extract features of high-level abstraction. One such
model is called Convolutional Neural Network (CNN) [19]. In a convolutional neural network
model, neurons in a convolutional layer can extract higher-level abstraction features from
extracted features from the previous layer. Another model is called Bidirectional Long
Short-Term Memory (Bi-LSTM) [20]. Bi-LSTM is just two separate RNNs combined. This
structure enables the networks to contain both backward and forward sequence information at
each time step.

In this work, we have worked on the DNA sequence classification problem where the input is the
DNA sequence and the output class states whether a certain histone protein is present on the
sequence or not. For this purpose, we have used one of the datasets from 12 different datasets [1]
that we have collected. The name of the dataset is H3K4me?2. Because of the time limitation, just
one dataset was chosen, and H3K4me2 was chosen because prior research on this dataset had
shown unsatisfactory results. The main challenge of our work was feature extraction from the
DNA sequences. To represent a sequence, we have utilized k-mer representation. For the
sequence embedding we have used one-hot encoding, and two different word embedding models,
one is Word2Vec [16,17] and another one is BERT [18]. Moreover, we have used Keras
Embedding layer, Bi-LSTM, and CNN for our experiments.

Literature Review

In the domain of Bioinformatics, there are several works available for the sequence classification task. We
are presenting some of the most related works compared to our work. For a better understanding of this
part, we are using a tabular format to present the previous studies. To give a comprehensive view of that
task, Table 1 shows the major work that has been done by other researchers, dataset, feature extraction
techniques, and deep learning models used by them.



Reference Major Work Dataset(s) Feature Extraction Deep learning/
Technique Machine Learning
Model
Nguyen et al. [1] Classifying DNA H3, H4, One-hot encoding CNN
sequences H3K9ac,
H3K14ac,
H4ac,
H3K4mel,
H3K4me2,
H3K4me3,
H3K36me3,
H3K79me3,
Splice,
Promoter
Yin et al. [2] An Doulrs/Hilbert- | K-mer frequency, CNN, Kernel SVM,
image-representation | CNN: An One hot label LSTM
of primary DNA image encoding
sequence as its input, | representation
and predicts key based
determinants of convolutional
chromatin structure | network for
DNA
classification
(github.com)
Lopez-Rincon et an assisted detection | albertotonda/de | PCR Amplification, | CNN
al. [3] test, combining ep-learning-cor | One hot Encoding
molecular testing onavirus-geno
with deep learning. me: Repository
Automatically create | with data and
features starting code for the
from the genome paper
sequence of the "Identification
virus. of
SARS-CoV-2
from Genome
Sequences
using Deep
Learning"
(github.com)
Phan et al. [4] an effective btu083 K-mer frequency Kernel SVM,
framework for Supplementary Random Forest
improving Data Classifier

fixed-length DNA
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sequence
classification by
using the
combination of
categorical features
and numerical
features

Lopez-Rincon et | discovery of steppenwolf0/p | One-hot label CNN

al. [5] representative rimers-sars-cov | encoding
genomic sequences | -2 (github.com)
in SARS-CoV-2

Kassim et al. [6] DNA Sequence Leung et al. Sequence of Words | CNN
Classification [7]
(HBV, non-HVB
nucleotide
sequences)

Whata et al. [8] DNA Sequence SARS-CoV2 2 [ CNN, max-pooling | CNN, CNN,
Classification 0210514 Bi-LSTM
(SARS COV-2
Genome

Zhang et al. [9] DNA Sequence https:/ftp.ncbinl [ CNN CNN, CNN LSTM,
Classification m.nih.gov/ CNN, Bi-LSTM
(SARS COV 2)

Bosco et al. [10] DNA Sequence 16S dataset character-level-one- | CNN
Classification hot-encoding LSTM

Rizzo et al. [11] DNA Sequence 16S rRNA k-mer CNN
Classification representation

Gunasekaran et al. | DNA Sequence The complete Label and K-mer CNN, CNN-LSTM,

[12] Classification DNA/Genomic | encoding CNN-Bidirectional

sequence of the
viruses like
COVID, SARS,
MERS, dengue,
hepatitis, and
influenza
obtained from
the public
nucleotide
sequence

LSTM
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database: “The
National Centre
for
Biotechnology
Information
(NCBI)”

(https://www.nc
bi.nlm.nih.gov).

Akkaya et al. [13] | DNA Sequence splice, one-hot based with | Deep Convolutional
Classification promoter, and random and default | Neural Network
H3 dictionary, Voss and
dna2vec
Mahmoud et al. DNA Sequence H3, H4, DDV software to Xception network,
[14] Classification H3K9ac, read the sequences | VGG network,
H3K14ac, H4ac | and convert it into Pseudoinverse
images Learning
Autoencoder
(PILAE)
Higashihara et al. | Classifying DNA H3, H4, 4-mer frequency SVM with RVF
[15] sequences H3K9ac, kernel
H3K14ac,
H4ac,
H3K4mel,
H3K4me?2,
H3K4me3,
H3K36me3,
H3K79me3

Table 1: Related studies on DNA sequence classification using Deep Learning Algorithms

We can get some important insights from the related works those have been done by other researchers.
CNN is widely used for the sequence classification task along with the K-mer frequency representation,
and one-hot encoding technique for sequence representation, and embedding. In addition, LSTM and
Bi-LSTM are two other common deep learning models for sequence classification tasks. Some of the
related works employed traditional machine learning algorithms, i.e. Support Vector Machine (SVM) with
RBF kernel, Random Forest Classifier which is an ensemble learning technique for their experimental

analysis.

Materials and Methods

Dataset Description

DNA sequences wrapped around histone proteins are the subject of datasets.
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DNA's spatial organization is done by integrating (or "recruiting") additional molecules, such as histone
proteins, which assist in assuming the proper spatial arrangement. Chromatin is the combination of DNA
and helper molecules. To estimate chromatin state from DNA sequence characteristics, the datasets below
can be used.

We have collected the dataset from Nguyen who is one of the authors of the paper titled “DNA sequence
classification by convolutional neural network™ [1]. The description of the dataset is explained in Table 2.
For our experiment, we selected one of the datasets entitled H3K4me2. H3K4me2 has 30683 DNA
sequences whose 18143 samples fall under the positive class, the rest of the samples fall under the
negative class, and it makes the problem binary class classification. The ratio of the positive-negative
class is around (59:41)%. The class label represents the presence of H3K4me2 histone proteins in the
sequences. The base length of the sequences is 500. Moreover, we will employ other datasets for future
experiments as an expanded version of our work.

No Dataset Description Number of |  Number of Sequence
Classes Samples Length (base)
1 H3 H3 occupancy 2 7667; 7298 500
2 H4 H4 occupancy 2 6480; 8121 500
3 H3K9ac H3K9 acetylation 2 15,415; 12,367 500

relative to H3

4 H3K14ac H3K14 acetylation 2 18,771; 14,277 500
relative to H3

5 H4ac H4 acetylation 2 18,410; 15,686 500
relative to H4

6 H3K4mel H3K4 2 17,266; 14,411 500
mono-methylation
relative to H3

7 H3K4me2 H3K4 2 18,143; 12,540 500
di-methylation
relative to H3

8 H3K4me3 H3K4 2 19,604; 17,195 500
tri-methylation
relative to H3

9 H3K36me3 H3K36 2 18,892; 15,988 500
tri-methylation
relative to H3

10 H3K79me3 H3K79 2 15,337; 13,500 500
tri-methylation
relative to H3




11 Splice Primate 3 762; 765; 1648 60
splice-junction
gene sequences
with associated

imperfect domain

theory

12 Promoter E. coli promoter 2 53;53 57
gene sequences
with
partial domain
theory

Table 2: Description of the data set

Methodology

Data Cleaning

The datasets were gathered in.txt format. We discovered that the dataset contains id, sequence, and class
label during the Exploratory Data Analysis phase of our work. We dropped the id column from the dataset
because it is the only trait that all of the samples share. Except for two samples, H3K4me2 includes 36799
DNA sequences, the majority of which are 500 bases long. Those two sequences have lengths of 310 and
290, respectively. To begin, we employed the zero-padding strategy to tackle the problem. However,
because there are only two examples of varying lengths, we dropped those two samples from the dataset
later for experiments, as these samples may cause noise.

Sequence Representation

DNA sequence representation techniques are utilized to effectively designate a gene structure and
facilitate coding sequence similarity/dissimilarity analysis. Numerical, Graphical, Geometrical, and
Hybrid representation approaches are the most common. In our work, we have used the K-mer sequence
representation technique. More specifically, we have used the 3-mer representation technique.

Example:

DNA Sequence before applying the 3-mer representation technique:
CATGTAGTATTGGGC

The Sequence after applying the 3-mer representation technique:

CAT ATG TGT GTA TAG AGT GTA TATATT TTG TGG GGG GGC

Sequence Embedding

The main challenge for DNA sequence classification task is the sequence embedding. It’s difficult due to
the fact that sequence data is inherently unstructured. Sequences are arbitrary strings, just like texts in



Natural Language Processing (NLP). These strings have no significance for a computer. That’s why we
need to convert the strings into the numerical format.

For embedding the sequence after applying the 3-mer representation technique, we have experimented
using six different embedding techniques. The first three embedding methods are named
SequenceEmbedding 1D, SequenceEmbedding2D, SequenceEmbedding2D V2. The other two methods are
Word2Vec [16,17] and BERT [18]. The base method of the first three methods is one-hot encoding.
One-hot encoding represents a single 3-mer using a vector of size 64 of values 0 and 1, where there is
only one 1 and the rest of the values are 0. There are 64 different 3-mer possible from the 4 nucleotides
(4, C, G, T). To represent the one-hot encoding technique sets,

AAA: the first value of the vector as 1 and the rest of the values are 0,
AAC: the second value of the vector as 1 and the rest of the values are 0,
AAG: the third value of the vector as 1 and the rest of the values are 0, and so on.

SequenceEmbeddinglD is the one-dimensional representation of a single DNA sequence which is
basically the one-hot encoding. SequenceEmbedding?D is the two-dimensional representation of a single
DNA sequence where the first row is the one-hot encoding of a sequence after applying 3-mer
representation. The second row is the one-hot encoding of a left-rotated sequence after applying 3-mer
representation. Similarly, the third row of SequenceEmbedding2D V2 is the one-hot encoding of a
right-rotated sequence after applying 3-mer representation.

Word2Vec and BERT are the word embedding techniques for language modeling. But, Word2Vec is a
widely used technique in the domain of Bioinformatics for sequence classification tasks as well.
Moreover, we used one_hot from Keras.preprocessing.text which converts each 3-mer using an integer in
the range from 1 to 64 uniquely.

Deep Learning Models

After the completion of sequence embedding, we have used deep learning models for the classification
task. We have used two different deep learning models for this purpose, one is Convolutional Neural
Network (CNN) [19] and the other is Bidirectional Long Short-Term Memory (Bi-LSTM) [20]. The
details of the architectures are described in the following paragraphs.

Two one-dimensional convolutional layers with filter size 16 and kernel size 4 make up the CNN model.
A one-dimensional max-pooling layer follows each of these layers. These layers are responsible for
extracting features from sequence representation matrices. A fully connected neural network layer with
100 neurons is then used to convert the retrieved features. To mitigate the effect of overfitting, we
employed a dropout [22] value of 0.5 in this layer. After that, input sequence labels are predicted using a
softmax output layer. For all other layers, we have used the activation function: ReLU [23]. In Table 3,
you can see the tabular format of the architecture. The hyperparameters that are not mentioned in Table 3
have been used as the default value.

Table 3: CNN Architecture for our experiments

Layer Hyperparameters




1D Convolution filter size = 16, kernel size = 4, activation function = ReLU
1D Max-pooling pool size =2
1D Convolution filter size = 16, kernel size = 4, activation function = ReLU
1D Max-Pooling pool size =2
Flatten
Dense units = 100, activation function = ReLU
Dropout rate = 0.5
Dense units = 2, activation function = softmax

In the implementation of Bi-LSTM architecture, there is an embedding layer of Keras with input
dimension 64, output dimension 256 and the input length is 498 as we can take 498 3-mer from a
sequence of length 500. After this layer, we utilized a Spatial Dropout [21] Layer with a rate of 0.2. Then,
a Bi-LSTM has been employed with 256 units. A fully connected neural network layer with 128 neurons
is then used to convert the retrieved features. To prevent the effect of overfitting, we have used a dropout
[22] with a ratio of 0.5 in this layer. Then, input sequence labels are predicted using a softmax output
layer. For all other layers, we have used the activation function: ReLU [23]. In Table 4, you can see the
tabular format of the architecture. The hyperparameters that are not mentioned in Table 4 have been used
as the default value.

Table 4: Bi-LSTM Architecture for our experiments

Layer Hyperparameters
Embedding input dimension = 64, output dimension = 256, input length = 498
1D Spatial Dropout rate = 0.2
Bidirectional LSTM units = 256, return sequences = True
Flatten
Dense units = 128, activation function = ReLU
Dropout rate = 0.5
Dense units = 2, activation function = softmax

Finally, for both models, we have utilized adam as the optimizer, sparse categorical cross-entropy as the
loss function. In addition, we have used early stopping by monitoring the validation accuracy with



patience for 200 epochs, and model checkpoint to save the weight of the best model. We have run the
model for 300 epochs utilizing the model checkpoint and early stopping [24] with batch size 256.

For a better understanding of the implementation, we are adding the links to the supplementary materials:

CNN & Sequence Embedding Implementation, Bi-LSTM Implementation.

Experimental Analysis

All the experiments were conducted on 3.60GHz Intel(R) Core(TM) i7-7700 CPU, 32 GB RAM, and an
NVIDIA TITAN XP with 12GB physical memory under Ubuntu 16.04.7 LIS. After the data cleaning
phase, we had 36797 samples. We have used 80% of the whole dataset for training and the rest of the
samples for testing. The dataset has been split using train_test split from sklearn.model selection
stratifying by the class label. We have utilized 10% of the training data for validation purposes. For the
first five experiments shown in Table 5, we have used batch training as it was throwing an exception of
resource exhaustion.

The evaluation metrics we used for our experiments are accuracy, precision, recall, fl-score, and
Matthews Correlation Coefficient (MCC) score. The minimum value of accuracy, precision, recall,
fl-score can be 0 and the maximum value can be 1. The minimum value of the MCC score can be -1 and
the maximum value can be 1.

The experimental results are shown in Table 5 where bold font represents the best score for the certain
evaluation matrix.

Table 5: Result of the Experiments

Sequence Deep Accuracy Precision Recall F1-Score MCC Score
Embedding Learning
Technique Model
SequenceF- CNN 0.6027 0.6467 0.7230 0.6827 0.1573
mbedding1D
SequenceE- CNN 0.5914 0.5914 1 0.7432 0
mbedding2D
SequenceF- CNN 0.5914 0.5914 1 0.7432 0
mbedding2D
2
Word2Vec CNN 0.5914 0.5914 1 0.7432 0
BERT CNN 0.5914 0.5914 1 0.7432 0
one_hot Bi-LSTM 0.5914 0.5914 1 0.7432 0
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From the results of these experiments, we can state that we have got the maximum accuracy of 60.27%,
precision 64.67%, and MCC score 0.1573 using SequenceEmbedding1D and CNN model. We have got
the maximum recall score and fl-score on the rest of the experiments.

Discussion

MCC score 0 indicates the model's randomized predictions. The recall score indicates how well the
classifier can find all positive samples. We can say that the model's ability to classify all positive samples
has been at an all-time high over the last five experiments. The highest MCC score we received was
0.1573, indicating that the model is very near to predicting in a randomized approach. We attain a
maximum accuracy of 60.27%, which is much lower than the state-of-the-art result of 71.77% [1]. To
improve the score, we need to emphasize more on the sequence embedding approach. Furthermore, we
can experiment with various deep learning techniques.

Conclusion

We used a variety of sequence embedding methods and deep learning models in our work. We can gain a
thorough understanding of the combinations of sequence embedding techniques and deep learning models
through this study. We can conclude that the aforementioned combinations are ineffective for DNA
sequence classification tasks. We will test other combinations of the above-mentioned embedding
approach and DL models, i.e. Word2Vec with Bi-LSTM, as an expanded version of our work. We will
also test different deep learning models on other datasets, such as Bi-LSTM with an attention mechanism
and GRU [25]. In addition, we can tune the K value for the K-mer representation.
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