-
Notifications
You must be signed in to change notification settings - Fork 10
/
Lambda1520Angles.cc
133 lines (103 loc) · 4.53 KB
/
Lambda1520Angles.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
#include <cassert>
#include <iostream>
#include <string>
#include <sstream>
#include <cstdlib>
#include "TLorentzVector.h"
#include "TLorentzRotation.h"
#include "IUAmpTools/Kinematics.h"
#include "AMPTOOLS_AMPS/Lambda1520Angles.h"
#include "AMPTOOLS_AMPS/clebschGordan.h"
#include "AMPTOOLS_AMPS/wignerD.h"
#include "UTILITIES/BeamProperties.h"
Lambda1520Angles::Lambda1520Angles( const vector< string >& args ) :
UserAmplitude< Lambda1520Angles >( args )
{
assert( args.size() == 11 || args.size() == 10 );
rho011 = AmpParameter( args[0] );
rho031 = AmpParameter( args[1] );
rho03m1 = AmpParameter( args[2] );
rho111 = AmpParameter( args[3] );
rho133 = AmpParameter( args[4] );
rho131 = AmpParameter( args[5] );
rho13m1 = AmpParameter( args[6] );
rho231 = AmpParameter( args[7] );
rho23m1 = AmpParameter( args[8] );
// need to register any free parameters so the framework knows about them
registerParameter( rho011 );
registerParameter( rho031 );
registerParameter( rho03m1 );
registerParameter( rho111 );
registerParameter( rho133 );
registerParameter( rho131 );
registerParameter( rho13m1 );
registerParameter( rho231 );
registerParameter( rho23m1 );
if(args.size() == 11){
polAngle = atof(args[9].c_str() ); // azimuthal angle of the photon polarization vector in the lab.
polFraction = AmpParameter( args[10] ); // fraction of polarization (0-1)
std::cout << "Fixed polarisation of " << polFraction << " and angle of " << polAngle << " degrees." << std::endl;
}
else if (args.size() == 10){
// BeamProperties configuration file
TString beamConfigFile = args[9].c_str();
BeamProperties beamProp(beamConfigFile);
polFrac_vs_E = (TH1D*)beamProp.GetPolFrac();
polAngle = beamProp.GetPolAngle();
std::cout << "Polarisation angle of " << polAngle << " and degree from BeamProperties." << std::endl;
if(polAngle == -1)
std::cout << "This is an amorphous run. Set beam polarisation to 0." << std::endl;
for(Int_t i=0; i<polFrac_vs_E->GetXaxis()->GetNbins()+2; i++){
cout << polFrac_vs_E->GetBinContent(i) << endl;
}
}
else
assert(0);
}
complex< GDouble >
Lambda1520Angles::calcAmplitude( GDouble** pKin ) const {
TLorentzVector target ( 0, 0, 0, 0.9382720813);
TLorentzVector beam ( pKin[0][1], pKin[0][2], pKin[0][3], pKin[0][0] );
TLorentzVector recoil ( pKin[1][1], pKin[1][2], pKin[1][3], pKin[1][0] );
TLorentzVector p1 ( pKin[2][1], pKin[2][2], pKin[2][3], pKin[2][0] );
TLorentzVector p2 ( pKin[3][1], pKin[3][2], pKin[3][3], pKin[3][0] );
TLorentzVector resonance = p1 + p2;
TLorentzRotation resonanceBoost( -resonance.BoostVector() );
TLorentzVector target_res = resonanceBoost * target;
TLorentzVector beam_res = resonanceBoost * beam;
TLorentzVector recoil_res = resonanceBoost * recoil;
TLorentzVector p1_res = resonanceBoost * p1;
// normal to the production plane
TVector3 y = (beam_res.Vect().Unit().Cross(recoil_res.Vect().Unit())).Unit();
// choose Gottfried-Jackson frame: z-axis along -target direction in baryon rest frame
TVector3 z = -1. * target_res.Vect().Unit();
TVector3 x = y.Cross(z).Unit();
TVector3 angles( (p1_res.Vect()).Dot(x),
(p1_res.Vect()).Dot(y),
(p1_res.Vect()).Dot(z) );
GDouble sinSqTheta = sin(angles.Theta())*sin(angles.Theta());
GDouble cosSqTheta = cos(angles.Theta())*cos(angles.Theta());
GDouble sin2Theta = sin(2.*angles.Theta());
GDouble phi = angles.Phi();
TVector3 eps(cos(polAngle*TMath::DegToRad()), sin(polAngle*TMath::DegToRad()), 0.0); // beam polarization vector in lab
GDouble Phi = atan2(y.Dot(eps), beam.Vect().Unit().Dot(eps.Cross(y)));
Phi = Phi > 0? Phi : Phi + 3.14159;
// polarization BeamProperties
GDouble Pgamma=polFraction;
if(polAngle == -1)
Pgamma = 0.;
else if(polFrac_vs_E!=NULL){
int bin = polFrac_vs_E->GetXaxis()->FindBin(beam.E());
if (bin == 0 || bin > polFrac_vs_E->GetXaxis()->GetNbins()){
Pgamma = 0.;
}
else Pgamma = polFrac_vs_E->GetBinContent(bin);
}
// SDMEs for 3/2- -> 1/2+ + 0- (doi.org/10.1103/PhysRevC.96.025208)
GDouble W = 3.*(0.5 - rho011)*sinSqTheta + rho011*(1.+3.*cosSqTheta) - 2.*TMath::Sqrt(3.)*rho031*cos(phi)*sin2Theta - 2.*TMath::Sqrt(3.)*rho03m1*cos(2.*phi)*sinSqTheta;
W -= Pgamma*cos(2.*Phi) * (3.*rho133*sinSqTheta + rho111*(1.+3.*cosSqTheta) - 2.*TMath::Sqrt(3.)*rho131*cos(phi)*sin2Theta - 2.*TMath::Sqrt(3.)*rho13m1*cos(2.*phi)*sinSqTheta);
W -= Pgamma*sin(2.*Phi) * (2.*TMath::Sqrt(3.)*rho231*sin(phi)*sin2Theta + 2.*TMath::Sqrt(3.)*rho23m1*sin(2.*phi)*sinSqTheta);
W *= 1./(4.*PI);
// return W;
return complex< GDouble > ( sqrt(fabs(W)) );
}