-
Notifications
You must be signed in to change notification settings - Fork 10
/
Pi0Regge.cc
67 lines (51 loc) · 1.88 KB
/
Pi0Regge.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
#include <cassert>
#include <iostream>
#include <string>
#include <sstream>
#include <cstdlib>
#include "TLorentzVector.h"
#include "TLorentzRotation.h"
#include "IUAmpTools/Kinematics.h"
#include "AMPTOOLS_AMPS/Pi0Regge.h"
#include "UTILITIES/BeamProperties.h"
Pi0Regge::Pi0Regge( const vector< string >& args ) :
UserAmplitude< Pi0Regge >( args )
{
assert( args.size() == 1 );
// BeamProperties configuration file
TString beamConfigFile = args[0].c_str();
BeamProperties beamProp(beamConfigFile);
polFrac_vs_E = (TH1D*)beamProp.GetPolFrac();
polAngle = beamProp.GetPolAngle();
}
complex< GDouble >
Pi0Regge::calcAmplitude( GDouble** pKin ) const {
TLorentzVector target ( 0., 0., 0., 0.938);
TLorentzVector beam ( pKin[0][1], pKin[0][2], pKin[0][3], pKin[0][0] );
TLorentzVector recoil ( pKin[1][1], pKin[1][2], pKin[1][3], pKin[1][0] );
TLorentzVector p1 ( pKin[2][1], pKin[2][2], pKin[2][3], pKin[2][0] );
TLorentzVector cm = recoil + p1;
TLorentzRotation cmBoost( -cm.BoostVector() );
TLorentzVector beam_cm = cmBoost * beam;
TLorentzVector target_cm = cmBoost * target;
TLorentzVector recoil_cm = cmBoost * recoil;
// phi dependence needed for polarized distribution
TLorentzVector p1_cm = cmBoost * p1;
GDouble phi = p1_cm.Phi() + polAngle*TMath::Pi()/180.;
GDouble cos2Phi = cos(2.*phi);
// polarization BeamProperties
int bin = polFrac_vs_E->GetXaxis()->FindBin(beam.E());
GDouble Pgamma;
if (bin == 0 || bin > polFrac_vs_E->GetXaxis()->GetNbins()){
Pgamma = 0.;
}
else Pgamma = polFrac_vs_E->GetBinContent(bin);
// factors needed to calculate amplitude in c++ code
GDouble Ecom = cm.M();
GDouble theta = p1_cm.Theta();
// amplitude coded in c++ (include calculation of beam asymmetry)
double BeamSigma = 0.;
GDouble W = Pi0PhotCS_S(Ecom, theta, BeamSigma);
W *= (1 - Pgamma * BeamSigma * cos2Phi);
return complex< GDouble > ( sqrt( fabs(W) ) );
}