-
Notifications
You must be signed in to change notification settings - Fork 10
/
Pi0ReggeModel.cc
378 lines (324 loc) · 12.3 KB
/
Pi0ReggeModel.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
/*
============================================================================
Name : Pi0ReggeModel.cc
Author : Vincent Mathieu (Adapted for C++ and GlueX sim-recon by Justin Stevens)
Version : v1.0 June 2015
Copyright : MyLab
Publication : arXiv:1505.02321
Description : Photoproduction of a pseudoscalar : gamma + N --> 0- + N'
Applied to gamma + p --> pi0 + p
To change the model, change 'CGLN_Ai'
============================================================================
*/
#include "Pi0ReggeModel.h"
// *********************************************************************************
double Pi0PhotCS_S(double E, double theta, double &BeamSigma){
/*
* compute the differential cross section from s-channel helicities
* in micro barns/Gev^2
*/
double MP = 0.938272046;
double MPI = 0.1349766;
double mass[5] = {0.0, 0.0, MP, MPI, MP};
double pa[4], pb[4], pc[4], pd[4];
int hel[4] = {2,1,0,1}; // hel = {1,+,0,+} (x2)
complex<double> res[4] ;
double sig;
kin2to2(E, theta, mass, pa, pb, pc, pd);
res[0] = Pi0PhotAmpS(pa, pb, pc, hel); // hel = {1,+,0,+} (x2)
hel[1] = -1; // hel = {1,-,0,+} (x2)
res[1] = Pi0PhotAmpS(pa, pb, pc, hel);
hel[3] = -1; // hel = {1,-,0,-} (x2)
res[2] = Pi0PhotAmpS(pa, pb, pc, hel);
hel[1] = +1; // hel = {1,+,0,-} (x2)
res[3] = Pi0PhotAmpS(pa, pb, pc, hel);
sig = pow(abs(res[0]),2) + pow(abs(res[1]),2) + pow(abs(res[2]),2) + pow(abs(res[3]),2);
sig = sig/32 * 389.3;
//sig = sig/32/M_PI/(E*E-MP*MP)/(E*E-MP*MP) * 389.3;
// Sigma beam asymmetry from equation B3b from paper
BeamSigma = real(res[0]*conj(res[2]) - res[1]*conj(res[3]));
BeamSigma = BeamSigma/16 * 389.3;
BeamSigma = BeamSigma/sig;
return sig;
}
// *********************************************************************************
complex<double> Pi0PhotAmpS(double pa[],double pb[],double pc[], int hel[]){
/* Regge amplitudes for gamma + p --> pi0 + p
* See arXiv:1505.02321 for the formulas
* Amplitudes in the S-CHANNEL !
* Helicities are defined in the c.o.m. of (gamma,p)
* Inputs:
* pa, pb, pc : four vectors in the c.o.m. frame.
* hel={mua, mub, muc, mud} : 2 x helicities of a,b,c,d
* Outputs:
* ampl : the amplitude ; complex number
*/
complex<double> amp = 0.0;
complex<double> Ai[5] = {0}, Fi[5] = {0};
//pbc set but not used: double pab[4], pbc[4], pca[4], pd[4];
double pab[4], pca[4], pd[4];
struct Kin var;
double mass[5]={0};
// Only valid for Q^2 = 0 --> photon helicity should be +1 or -1
if ( abs(hel[0]) != 2 ) return 0.0;
int i;
for(i=0;i<4;i++){ // compute the Mandelstam invariant
pab[i] = pa[i] + pb[i]; // from four-vectors
// pbc set but not used: pbc[i] = pb[i] - pc[i]; //
pca[i] = pc[i] - pa[i]; //
pd[i] = pa[i] + pb[i] - pc[i]; //
}
double EPS = 0.0;
complex<double> I(0,1);
var.s = snorm( pab ) + I*EPS;
var.t = snorm( pca ) - I*EPS;
// photon should be real
mass[1] = 0.0;
mass[2] = sqrt( snorm( pb ) );
mass[3] = sqrt( snorm( pc ) );
mass[4] = sqrt( snorm( pd ) );
kinematics(var.s, var.t, mass, &var); // fill the structure var with all kin. quantities
CGLN_Ai(var.s,var.t,Ai); // call the model : CHANGE HERE FOR ANOTHER MODEL
CGLNA2F(var, Ai, Fi); // Convert CGLN Ai to CGLN Fi
// Test nucleon helicities hel[1] and hel[3]
if ( hel[1] == 1 && hel[3] == 1 ) {
// hel = {1,+,0,+}
amp = sqrt(2) * var.sinsh * (Fi[2] + Fi[1] )
+ 1/sqrt(2) * var.sins * var.cossh * (Fi[3] + Fi[4]);
}
else if ( hel[1] == -1 && hel[3] == -1 ){
// hel = {1,-,0,-}
amp = -1/sqrt(2) * var.sins * var.cossh * (Fi[3] + Fi[4]);
}
else if ( hel[1] == -1 && hel[3] == 1 ){
// hel = {1,-,0,+}
amp = sqrt(2) * var.cossh * (Fi[2] - Fi[1] )
+ 1/sqrt(2) * var.sins * var.sinsh * (Fi[3] - Fi[4]);
}
else if ( hel[1] == 1 && hel[3] == -1 ){
// hel = {1,+,0,-}
amp = 1/sqrt(2) * var.sins * var.sinsh * (Fi[3] - Fi[4]);
}
else return 0.0 ;
// if negative photon helicity, nucleon flip amplitude changes sign
if (hel[0] == -2 && hel[1] != hel[3] ) amp = -1.*amp;
// there is a factor 8*PI*W between Hi and helicity amplitudes
return amp * 8. * M_PI * sqrt(var.s);
}
// *********************************************************************************
void CGLN_Ai(complex<double> s, complex<double> t, complex<double> CGLNA[]){
/*
* Model for gamma p --> pi0 p from arXiv:1505.02321
* Vincent Mathieu June 2015
*/
// Model parameters
double alpV[3] = { 0.442457, 1.099910, 0.0}; // vector trajectory
double alpC[3] = { 0.461811, 0.166543, 0.0}; // vector cut trajectory
double alpA[3] = {-0.193332, 1.021300, 0.0}; // axial-vector trajectory
double g1 = 3.8873, g4 = -10.1403, g1c = -1.76187, g4c = -3.58089, g2 = -8.887; // residues
complex<double> Rv, Rc, Ra;
complex<double> avec, acut, aaxi;
// trajectories:
avec = alpV[0] + t*alpV[1] + t*t*alpV[2];
acut = alpC[0] + t*alpC[1] + t*t*alpC[2];
aaxi = alpA[0] + t*alpA[1] + t*t*alpA[2];
// Regge factors:
complex<double> I(0,1);
Rv = cgamma( 1.0 - avec, 0)/2. * ( 1.-exp(-1.*I*M_PI*avec) ) * pow(s,avec-1.);
Rc = cgamma( 1.0 - acut, 0)/2. * ( 1.-exp(-1.*I*M_PI*acut) ) * pow(s,acut-1.);
Ra = cgamma( 1.0 - aaxi, 0)/2. * ( 1.-exp(-1.*I*M_PI*aaxi) ) * pow(s,aaxi-1.);
Rc = Rc / log(s);
// IF ONLY VECTOR POLE
//Rc = 0; Ra = 0;
// Scalar amplitudes:
CGLNA[1] = t* ( g1*Rv + g1c*Rc);
CGLNA[2] = g2 * Ra - ( g1*Rv + g1c*Rc);
CGLNA[3] = 0;
CGLNA[4] = g4*Rv + g4c*Rc;
return ;
}
// *********************************************************************************
void CGLNA2F(struct Kin var, complex<double> Ai[], complex<double> Fi[]){
/*
* Compute CGLN Fi(s,t) from CGLN Ai(s,t)
*/
complex<double> w;
complex<double> E2p, E2m, E4p, E4m;
w = sqrt(var.s);
E2p = var.E2s + var.m2 ;
E2m = var.E2s - var.m2 ;
E4p = var.E4s + var.m4 ;
E4m = var.E4s - var.m4 ;
Fi[1] = (w - var.m2) * Ai[1] + (var.m3*var.m3 - var.t)/2. * (Ai[3] - Ai[4]);
Fi[1] = Fi[1] + ( w - var.m2 ) * ( w - var.m4 ) * Ai[4];
Fi[1] = Fi[1] * sqrt( E2p * E4p ) / ( 8. * M_PI * w);
Fi[2] = -1.*(w + var.m2) * Ai[1] + (var.m3*var.m3 - var.t)/2. * (Ai[3] - Ai[4]);
Fi[2] = Fi[2] + ( w + var.m2 ) * ( w + var.m4 ) * Ai[4];
Fi[2] = Fi[2] * sqrt( E2m * E4m ) / ( 8. * M_PI * w);
Fi[3] = (w + var.m2) * ( (w - var.m2)*Ai[2] + Ai[3] - Ai[4] );
Fi[3] = Fi[3] * sqrt( E2m * E4p) * var.qs / ( 8. * M_PI * w);
Fi[4] = (w - var.m2) * ( -1.*(w + var.m2)*Ai[2] + Ai[3] - Ai[4] );
Fi[4] = Fi[4] * sqrt( E2p * E4m) * var.qs / ( 8. * M_PI * w);
return;
}
// *********************************************************************************
void kin2to2(double Ecm, double theta, double mass[], double pa[],double pb[],double pc[], double pd[]){
/*
* Kinematics of the 2-to-2 reaction, a + b --> c + d
* Inputs:
* Ecm center of mass energy
* cos cosine of the scattering angle in the center of mass
* mass = {ma,mb,mc,md} vector with the masses of external particles
* Outputs:
* pa, pb, pc, pd are the momenta of the particles
*/
double Ea, Eb, Ec, Ed; // Energies of the particles
double pi, pf; // initial and final breakup momenta
double ma, mb, mc, md; // masses of the particles
ma = mass[1]; mb = mass[2]; mc = mass[3]; md = mass[4];
// Check that inputs are valid
if( ( ma<0 ) || ( mb<0 ) || ( mc<0 ) || ( md<0 ) ) {
printf("\n*** Wrong masses in kin2to2 ! *** \n\n");
return ;
}
if( ( Ecm < ma + mb ) || ( Ecm < mc + md ) ) {
printf("\n*** Wrong total energy in kin2to2 ! *** \n\n");
return ;
}
Ea = ( Ecm*Ecm + ma*ma - mb*mb )/2./Ecm;
Eb = ( Ecm*Ecm - ma*ma + mb*mb )/2./Ecm;
Ec = ( Ecm*Ecm + mc*mc - md*md )/2./Ecm;
Ed = ( Ecm*Ecm - mc*mc + md*md )/2./Ecm;
pi = sqrt(Ea*Ea - ma*ma);
pa[0] = Ea; pa[1] = 0; pa[2] = 0; pa[3] = +pi;
pb[0] = Eb; pb[1] = 0; pb[2] = 0; pb[3] = -pi;
pf = sqrt(Ec*Ec - mc*mc);
pc[0] = Ec; pc[1] = +pf*sin(theta); pc[2] = 0; pc[3] = +pf*cos(theta);
pd[0] = Ed; pd[1] = -pf*sin(theta); pd[2] = 0; pd[3] = -pf*cos(theta);
return;
}
// *********************************************************************************
void kinematics(complex<double> s, complex<double> t, double mass[], struct Kin *var)
{
double m12, m22, m32, m42; // masses squared
complex<double> t0, t1, u ;
var->s = s;
var->t = t;
var->m1 = mass[1];
var->m2 = mass[2];
var->m3 = mass[3];
var->m4 = mass[4];
m12 = mass[1] * mass[1] ;
m22 = mass[2] * mass[2] ;
m32 = mass[3] * mass[3] ;
m42 = mass[4] * mass[4] ;
var->ks = sqrt( lambda(s, m12, m22) / 4. / s );
var->qs = sqrt( lambda(s, m32, m42) / 4. / s );
var->kt = sqrt( lambda(t, m12, m32) / 4. / t );
var->pt = sqrt( lambda(t, m22, m42) / 4. / t );
// nuclei energies in s- and t-channel frames
var->E2s = ( s + m22 - m12 ) / 2. / sqrt(s);
var->E4s = ( s + m42 - m32 ) / 2. / sqrt(s);
var->E2t = ( t + m22 - m42 ) / 2. / sqrt(t);
var->E4t = ( t + m42 - m22 ) / 2. / sqrt(t);
t1 = pow(m12 - m32 - m22 + m42,2)/(4.*s) - (var->ks - var->qs) * (var->ks - var->qs);
t0 = t1 - 4. * var->ks *var->qs ;
u = -1.*s - t + m12 + m22 + m32 + m42 ; // Mandelstam s variable
var->phi = s * (t - t1) * (t0 - t) ; // Kibble function
var->coss = 1. + (t - t1)/(2. * var->qs * var->ks) ;
var->cost = (t*(s-u) + (m12-m32) * (m22-m42) )/(sqrt(lambda(var->t,m12,m32) * lambda(var->t,m22,m42) ) ) ;
var->sins = sqrt( var->phi / s ) / ( 2. * var->qs * var->ks) ;
var->sint = sqrt( var->phi / t ) / ( 2. * var->kt * var->pt) ;
var->cossh = sqrt( (1. + var->coss ) / 2. );
var->sinsh = sqrt( (1. - var->coss ) / 2. );
var->costh = sqrt( (1. + var->cost ) / 2. );
var->sinth = sqrt( (1. - var->cost ) / 2. );
return ;
}
// *********************************************************************************
complex<double> lambda(complex<double> a, double b, double c){
// triangle function
return a*a + b*b + c*c - 2.*(a*b + b*c + c*a);
}
// *********************************************************************************
double snorm(double p[]){
// Norm squared of a quadri-vector ; p[0] is the energy ; p[1-3] are x,y,z components
return p[0]*p[0] - ( p[1]*p[1] + p[2]*p[2] + p[3]*p[3] );
}
// *********************************************************************************
complex<double> cgamma(complex<double> z,int OPT)
{
complex<double> I(0,1);
complex<double> g, infini= 1e308+ 0.*I; // z0,z1
double x0,q1,q2,x,y,th,th1,th2,g0,gr,gi,gr1,gi1;
double na,t,x1,y1,sr,si;
int j,k;
x1=9e9;
na=9e9;
static double a[] = {
8.333333333333333e-02,
-2.777777777777778e-03,
7.936507936507937e-04,
-5.952380952380952e-04,
8.417508417508418e-04,
-1.917526917526918e-03,
6.410256410256410e-03,
-2.955065359477124e-02,
1.796443723688307e-01,
-1.39243221690590};
x = real(z);
y = imag(z);
if (x > 171) return infini;
if ((y == 0.0) && (x == (int)x) && (x <= 0.0))
return infini;
else if (x < 0.0) {
x1 = x;
y1 = y;
x = -x;
y = -y;
}
x0 = x;
if (x <= 7.0) {
na = (int)(7.0-x);
x0 = x+na;
}
q1 = sqrt(x0*x0+y*y);
th = atan(y/x0);
gr = (x0-0.5)*log(q1)-th*y-x0+0.5*log(2.0*M_PI);
gi = th*(x0-0.5)+y*log(q1)-y;
for (k=0;k<10;k++){
t = pow(q1,-1.0-2.0*k);
gr += (a[k]*t*cos((2.0*k+1.0)*th));
gi -= (a[k]*t*sin((2.0*k+1.0)*th));
}
if (x <= 7.0) {
gr1 = 0.0;
gi1 = 0.0;
for (j=0;j<na;j++) {
gr1 += (0.5*log((x+j)*(x+j)+y*y));
gi1 += atan(y/(x+j));
}
gr -= gr1;
gi -= gi1;
}
if (x1 <= 0.0) {
q1 = sqrt(x*x+y*y);
th1 = atan(y/x);
sr = -sin(M_PI*x)*cosh(M_PI*y);
si = -cos(M_PI*x)*sinh(M_PI*y);
q2 = sqrt(sr*sr+si*si);
th2 = atan(si/sr);
if (sr < 0.0) th2 += M_PI;
gr = log(M_PI/(q1*q2))-gr;
gi = -th1-th2-gi;
x = x1;
y = y1;
}
if (OPT == 0) {
g0 = exp(gr);
gr = g0*cos(gi);
gi = g0*sin(gi);
}
g = gr + I*gi;
return g;
}