-
Notifications
You must be signed in to change notification settings - Fork 10
/
ThreePiAnglesSchilling.cc
159 lines (121 loc) · 5.46 KB
/
ThreePiAnglesSchilling.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
#include <cassert>
#include <iostream>
#include <string>
#include <sstream>
#include <cstdlib>
#include "TLorentzVector.h"
#include "TLorentzRotation.h"
#include "TFile.h"
#include "IUAmpTools/Kinematics.h"
#include "AMPTOOLS_AMPS/ThreePiAnglesSchilling.h"
#include "UTILITIES/BeamProperties.h"
ThreePiAnglesSchilling::ThreePiAnglesSchilling( const vector< string >& args ) :
UserAmplitude< ThreePiAnglesSchilling >( args )
{
assert( args.size() == 11 );
m_rho000 = AmpParameter( args[0] );
m_rho100 = AmpParameter( args[1] );
m_rho1m10 = AmpParameter( args[2] );
m_rho111 = AmpParameter( args[3] );
m_rho001 = AmpParameter( args[4] );
m_rho101 = AmpParameter( args[5] );
m_rho1m11 = AmpParameter( args[6] );
m_rho102 = AmpParameter( args[7] );
m_rho1m12 = AmpParameter( args[8] );
m_polAngle = AmpParameter( args[9] );
m_polFraction = atof(args[10].c_str());
// need to register any free parameters so the framework knows about them
registerParameter( m_rho000 );
registerParameter( m_rho100 );
registerParameter( m_rho1m10 );
registerParameter( m_rho111 );
registerParameter( m_rho001 );
registerParameter( m_rho101 );
registerParameter( m_rho1m11 );
registerParameter( m_rho102 );
registerParameter( m_rho1m12 );
registerParameter( m_polAngle );
if (m_polFraction > 0.0)
cout << "Fitting with constant polarization" << endl;
else
{
cout << "Fitting with polarization from BeamProperties class" << endl;
// BeamProperties configuration file
TString beamConfigFile = args[10].c_str();
BeamProperties beamProp(beamConfigFile);
m_polFrac_vs_E = (TH1D*)beamProp.GetPolFrac();
}
}
complex< GDouble >
ThreePiAnglesSchilling::calcAmplitude( GDouble** pKin, GDouble* userVars ) const {
GDouble sinSqTheta = userVars[kSinSqTheta];
GDouble sin2Theta = userVars[kSin2Theta];
GDouble cosTheta = userVars[kCosTheta];
GDouble phi = userVars[kPhi];
GDouble bigPhi = userVars[kBigPhi];
GDouble polFrac = userVars[kPolFrac];
// vector meson production from K. Schilling et. al.
GDouble W = 0.5*(1 - m_rho000) + 0.5*(3*m_rho000 - 1)*cosTheta*cosTheta -
sqrt(2)*m_rho100*sin2Theta*cos(phi) - m_rho1m10*sinSqTheta*cos(2*phi);
W -= polFrac * cos(2*bigPhi) * ( m_rho111*sinSqTheta + m_rho001*cosTheta*cosTheta -
sqrt(2)*m_rho101*sin2Theta*cos(phi) -
m_rho1m11*sinSqTheta*cos(2*phi) );
W -= polFrac * sin(2*bigPhi) * ( sqrt(2)*m_rho102*sin2Theta*sin(phi) +
m_rho1m12*sinSqTheta*sin(2*phi));
W *= 3/(4*PI);
return complex< GDouble > ( sqrt(fabs(W)) );
}
void
ThreePiAnglesSchilling::calcUserVars( GDouble** pKin, GDouble* userVars ) const {
TLorentzVector beam ( pKin[0][1], pKin[0][2], pKin[0][3], pKin[0][0] );
TLorentzVector recoil ( pKin[1][1], pKin[1][2], pKin[1][3], pKin[1][0] );
TLorentzVector p1 ( pKin[2][1], pKin[2][2], pKin[2][3], pKin[2][0] );
TLorentzVector p2 ( pKin[3][1], pKin[3][2], pKin[3][3], pKin[3][0] );
TLorentzVector p3 ( pKin[4][1], pKin[4][2], pKin[4][3], pKin[4][0] );
TLorentzVector omega = p1 + p2 + p3;
// construct a boost that will take us to the omega rest frame:
TLorentzRotation omegaRestBoost( -omega.BoostVector() );
TLorentzVector recoil_omegaRest = omegaRestBoost * recoil;
TLorentzVector p1_omegaRest = omegaRestBoost * p1;
TLorentzVector p2_omegaRest = omegaRestBoost * p2;
// for the 3pi decay the normal to the decay plane is the
// key vector that describes the decay
TVector3 norm = (p2_omegaRest.Vect().Cross(p1_omegaRest.Vect())).Unit();
// in the helicity frame the z axis is opposite the recoil in the CM
// frame, but the direction of the recoil in the CM frame is the same
// as the direction of the recoil in the omega rest frame, so this
// works fine:
TVector3 zHel = -1*recoil_omegaRest.Vect().Unit();
// the y axis is normal to the production plane production plane, which
// can be obtained in a variety of ways and is unchanged by boosts
// to the CM or omega rest frame as all of these boost vectors
// lie in the production plane
TVector3 yHel = (beam.Vect().Cross(omega.Vect())).Unit();
// and the x axis is constructed so the coordinate system is
// right handed:
TVector3 xHel = yHel.Cross(zHel);
// construct the normal to the decay plane in the helicity frame:
TVector3 normHel( norm.Dot( xHel ), norm.Dot( yHel ), norm.Dot( zHel ) );
userVars[kCosTheta] = normHel.CosTheta();
userVars[kSinSqTheta] = sin(normHel.Theta())*sin(normHel.Theta());
userVars[kSin2Theta] = sin(2*normHel.Theta());
userVars[kPhi] = normHel.Phi();
// a unit vector for the polarization direction in the lab
TVector3 polUnitVec( cos( m_polAngle*TMath::DegToRad() ),
sin( m_polAngle*TMath::DegToRad() ), 0.0 );
// now get the angle between the production plane (defined by the
// y axis in the helicity frame) and the photon polarization vector:
userVars[kBigPhi] = atan2( yHel.Dot( polUnitVec ),
beam.Vect().Unit().Dot( polUnitVec.Cross( yHel ) ) );
GDouble polFrac = 0;
if( m_polFraction > 0 ) {
// for fitting with constant polarization
polFrac = m_polFraction;
}
else{
int bin = m_polFrac_vs_E->GetXaxis()->FindBin(pKin[0][0]);
if( bin == 0 || bin > m_polFrac_vs_E->GetXaxis()->GetNbins() ) polFrac = 0;
else polFrac = m_polFrac_vs_E->GetBinContent(bin);
}
userVars[kPolFrac] = polFrac;
}