-
Notifications
You must be signed in to change notification settings - Fork 10
/
TwoLeptonAngles.cc
156 lines (122 loc) · 5.38 KB
/
TwoLeptonAngles.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
#include <cassert>
#include <iostream>
#include <string>
#include <sstream>
#include <cstdlib>
#include "TLorentzVector.h"
#include "TLorentzRotation.h"
#include "TFile.h"
#include "IUAmpTools/Kinematics.h"
#include "AMPTOOLS_AMPS/TwoLeptonAngles.h"
#include "AMPTOOLS_AMPS/clebschGordan.h"
#include "AMPTOOLS_AMPS/wignerD.h"
TwoLeptonAngles::TwoLeptonAngles( const vector< string >& args ) :
UserAmplitude< TwoLeptonAngles >( args )
{
assert( args.size() == 11 || args.size() == 12 );
rho000 = AmpParameter( args[0] );
rho100 = AmpParameter( args[1] );
rho1m10 = AmpParameter( args[2] );
rho111 = AmpParameter( args[3] );
rho001 = AmpParameter( args[4] );
rho101 = AmpParameter( args[5] );
rho1m11 = AmpParameter( args[6] );
rho102 = AmpParameter( args[7] );
rho1m12 = AmpParameter( args[8] );
polAngle = AmpParameter( args[9] );
// need to register any free parameters so the framework knows about them
registerParameter( rho000 );
registerParameter( rho100 );
registerParameter( rho1m10 );
registerParameter( rho111 );
registerParameter( rho001 );
registerParameter( rho101 );
registerParameter( rho1m11 );
registerParameter( rho102 );
registerParameter( rho1m12 );
registerParameter( polAngle );
// Two possibilities to initialize this amplitude:
// 1: 11 arguments, fixed polarization
// Usage: amplitude <reaction>::<sum>::<ampName> TwoLeptonAngles <rho000> ... <rho1m12> <polAngle> <polFraction>
if(args.size() == 11) {
polFraction = atof(args[10].c_str());
cout << "Fitting with constant polarization " << polFraction << endl;
}
// 2: 12 arguments, read polarization from histogram <hist> in file <rootFile>
// Usage: amplitude <reaction>::<sum>::<ampName> TwoLeptonAngles <rho000> ... <rho1m12> <polAngle> <rootFile> <hist>
else if(args.size() == 12) {
polFraction = 0.;
TFile* f = new TFile( args[10].c_str() );
polFrac_vs_E = (TH1D*)f->Get( args[11].c_str() );
assert( polFrac_vs_E != NULL );
cout << "Fitting with polarization from " << polFrac_vs_E->GetName() << endl;
}
}
complex< GDouble >
TwoLeptonAngles::calcAmplitude( GDouble** pKin, GDouble* userVars ) const {
GDouble sinSqTheta = userVars[kSinSqTheta];
GDouble sin2Theta = userVars[kSin2Theta];
GDouble cosTheta = userVars[kCosTheta];
GDouble phi = userVars[kPhi];
GDouble bigPhi = polAngle * 0.017453293 + userVars[kBigPhi]; // rotate Phi (in rad)
GDouble Pgamma = userVars[kPgamma];
// Decay angular distribution for J/psi --> e-e+ (spin 1 --> spin 1/2 + spin 1/2).
// Unpolarized decay angular distribution for this reaction can be found in:
// Eq. (A6) in A. I. Titov et al., PRC 60, 035205 (1999).
// For the linearly polarized photon beam, this can be decomposed as in:
// Eq. (29) in K. Schilling et al., Nuclear Physics B15, 397 (1970).
GDouble W = 0.5 * (1 + rho000) - 0.5 * (3 * rho000 - 1) * cosTheta * cosTheta + sqrt(2) * rho100 * sin2Theta * cos(phi) + rho1m10 * sinSqTheta * cos(2 * phi);
W -= Pgamma * cos(2 * bigPhi) * (rho111 * (1 + cosTheta * cosTheta) + rho001 * sinSqTheta + sqrt(2) * rho101 * sin2Theta * cos(phi) + rho1m11 * sinSqTheta * cos(2 * phi));
W += Pgamma * sin(2 * bigPhi) * (sqrt(2) * rho102 * sin2Theta * sin(phi) + rho1m12 * sinSqTheta * sin(2 * phi));
W *= 3 / (8 * PI);
return complex< GDouble > ( sqrt(fabs(W)) );
}
void
TwoLeptonAngles::calcUserVars( GDouble** pKin, GDouble* userVars ) const {
TLorentzVector beam ( pKin[0][1], pKin[0][2], pKin[0][3], pKin[0][0] );
TLorentzVector recoil ( pKin[1][1], pKin[1][2], pKin[1][3], pKin[1][0] );
TLorentzVector p1 ( pKin[2][1], pKin[2][2], pKin[2][3], pKin[2][0] );
TLorentzVector p2 ( pKin[3][1], pKin[3][2], pKin[3][3], pKin[3][0] );
TLorentzVector resonance = p1 + p2;
TLorentzRotation resonanceBoost( -resonance.BoostVector() );
TLorentzVector beam_res = resonanceBoost * beam;
TLorentzVector recoil_res = resonanceBoost * recoil;
TLorentzVector p1_res = resonanceBoost * p1;
// normal to the production plane
TVector3 y = (beam.Vect().Unit().Cross(-recoil.Vect().Unit())).Unit();
// choose helicity frame: z-axis opposite recoil proton in rho rest frame
TVector3 z = -1. * recoil_res.Vect().Unit();
TVector3 x = y.Cross(z).Unit();
TVector3 angles( (p1_res.Vect()).Dot(x),
(p1_res.Vect()).Dot(y),
(p1_res.Vect()).Dot(z) );
userVars[kCosTheta] = angles.CosTheta();
userVars[kSinSqTheta] = sin(angles.Theta())*sin(angles.Theta());
userVars[kSin2Theta] = sin(2.*angles.Theta());
userVars[kPhi] = angles.Phi();
TVector3 eps(1.0, 0.0, 0.0); // reference beam polarization vector at 0 degrees
userVars[kBigPhi] = atan2(y.Dot(eps), beam.Vect().Unit().Dot(eps.Cross(y)));
// vector meson production from K. Schilling et. al.
GDouble Pgamma;
if(polFraction > 0.) { // for fitting with constant polarization
Pgamma = polFraction;
}
else{
int bin = polFrac_vs_E->GetXaxis()->FindBin(pKin[0][0]);
if (bin == 0 || bin > polFrac_vs_E->GetXaxis()->GetNbins()){
Pgamma = 0.;
}
else Pgamma = polFrac_vs_E->GetBinContent(bin);
}
userVars[kPgamma] = Pgamma;
}
#ifdef GPU_ACCELERATION
void
TwoLeptonAngles::launchGPUKernel( dim3 dimGrid, dim3 dimBlock, GPU_AMP_PROTO ) const {
GPUTwoLeptonAngles_exec( dimGrid, dimBlock, GPU_AMP_ARGS,
rho000, rho100, rho1m10,
rho111, rho001, rho101,
rho1m11, rho102, rho1m12,
polAngle );
}
#endif //GPU_ACCELERATION