-
Notifications
You must be signed in to change notification settings - Fork 10
/
TwoPiAngles_amp.cc
133 lines (110 loc) · 4.7 KB
/
TwoPiAngles_amp.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
#include <cassert>
#include <iostream>
#include <string>
#include <sstream>
#include <cstdlib>
#include "TLorentzVector.h"
#include "TLorentzRotation.h"
#include "IUAmpTools/Kinematics.h"
#include "AMPTOOLS_AMPS/TwoPiAngles_amp.h"
#include "AMPTOOLS_AMPS/clebschGordan.h"
#include "AMPTOOLS_AMPS/wignerD.h"
TwoPiAngles_amp::TwoPiAngles_amp( const vector< string >& args ) :
UserAmplitude< TwoPiAngles_amp >( args )
{
assert( args.size() == 5 );
phipol = atof(args[0].c_str() )*3.14159/180.; // azimuthal angle of the photon polarization vector in the lab.
polFrac = AmpParameter( args[1] ); // fraction of polarization (0-1)
m_rho = atoi( args[2].c_str() ); // Jz component of rho
PhaseFactor = AmpParameter( args[3] ); // prefix factor to amplitudes in computation ( 0=1/1=exp(2iPhi)/2=-exp(2iPhi) )
flat = atoi( args[4].c_str() ); // flat=1 uniform angles, flat=0 use YLMs
assert( ( phipol >= 0.) && (phipol <= 2*3.14159));
assert( ( polFrac >= 0 ) && ( polFrac <= 1 ) );
assert( ( m_rho == 1 ) || ( m_rho == 0 ) || ( m_rho == -1 ));
assert( ( PhaseFactor == 0 ) || ( PhaseFactor == 1 ) || ( PhaseFactor == 2 ) || ( PhaseFactor == 3 )
|| ( PhaseFactor == 4 ) || ( PhaseFactor == 5 ) || ( PhaseFactor == 6 ) || ( PhaseFactor == 7 ));
assert( (flat == 0) || (flat == 1) );
// need to register any free parameters so the framework knows about them
registerParameter( polFrac );
}
complex< GDouble >
TwoPiAngles_amp::calcAmplitude( GDouble** pKin ) const {
TLorentzVector beam ( pKin[0][1], pKin[0][2], pKin[0][3], pKin[0][0] );
TLorentzVector recoil ( pKin[1][1], pKin[1][2], pKin[1][3], pKin[1][0] );
TLorentzVector p1 ( pKin[2][1], pKin[2][2], pKin[2][3], pKin[2][0] );
TLorentzVector p2 ( pKin[3][1], pKin[3][2], pKin[3][3], pKin[3][0] );
TLorentzVector resonance = p1 + p2;
TLorentzRotation resonanceBoost( -resonance.BoostVector() );
TLorentzVector beam_res = resonanceBoost * beam;
TLorentzVector recoil_res = resonanceBoost * recoil;
TLorentzVector p1_res = resonanceBoost * p1;
// normal to the production plane
TVector3 y = (beam.Vect().Unit().Cross(-recoil.Vect().Unit())).Unit();
// choose helicity frame: z-axis opposite recoil proton in rho rest frame
TVector3 z = -1. * recoil_res.Vect().Unit();
TVector3 x = y.Cross(z).Unit();
TVector3 angles( (p1_res.Vect()).Dot(x),
(p1_res.Vect()).Dot(y),
(p1_res.Vect()).Dot(z) );
GDouble cosTheta = angles.CosTheta();
// GDouble sinSqTheta = G_SIN(angles.Theta())*G_SIN(angles.Theta());
// GDouble sin2Theta = G_SIN(2.*angles.Theta());
GDouble phi = angles.Phi();
// TVector3 zlab(0.,0.,1.0); // z axis in lab
TVector3 eps(G_COS(phipol), G_SIN(phipol), 0.0); // beam polarization vector in lab
// TVector3 eps_perp = zlab.Cross(eps); // perpendicular to plane defined by eps
// GDouble Phi_test = aG_SIN((eps_perp.Cross(y)).Mag()); // compute angle between planes.
GDouble Phi = atan2(y.Dot(eps), beam.Vect().Unit().Dot(eps.Cross(y)));
Phi = Phi > 0? Phi : Phi + 3.14159;
// cout << "Phi_test=" << Phi_test << " Phi=" << Phi << " Sum=" << Phi_test+Phi << " Diff=" << Phi_test-Phi << " PhaseFactor=" << PhaseFactor << endl;
complex< GDouble > i( 0, 1 );
complex< GDouble > prefactor( 0, 0 );
complex< GDouble > Amp( 0, 0 );
Int_t Mrho=0;
switch (PhaseFactor) {
case 0:
prefactor = GDouble(0.5)*G_SQRT(1-polFrac)*(G_COS(Phi) - i*G_SIN(Phi));
Mrho = m_rho;
break;
case 1:
prefactor = GDouble(0.5)*G_SQRT(1+polFrac)*(G_COS(Phi) - i*G_SIN(Phi));
Mrho = m_rho;
break;
case 2:
prefactor = GDouble(0.5)*G_SQRT(1-polFrac)*(G_COS(Phi) + i*G_SIN(Phi));
Mrho = m_rho;
break;
case 3:
prefactor = GDouble(-0.5)*G_SQRT(1+polFrac)*(G_COS(Phi) + i*G_SIN(Phi));
Mrho = m_rho;
break;
case 4:
prefactor = GDouble(0.5)*G_SQRT(1-polFrac)*(G_COS(Phi) - i*G_SIN(Phi));
prefactor *= pow(-1,m_rho);
Mrho = -m_rho;
break;
case 5:
prefactor = GDouble(0.5)*G_SQRT(1+polFrac)*(G_COS(Phi) - i*G_SIN(Phi));
prefactor *= pow(-1,m_rho);
Mrho = -m_rho;
break;
case 6:
prefactor = GDouble(0.5)*G_SQRT(1-polFrac)*(G_COS(Phi) + i*G_SIN(Phi));
prefactor *= pow(-1,m_rho);
Mrho = -m_rho;
break;
case 7:
prefactor = GDouble(-0.5)*G_SQRT(1+polFrac)*(G_COS(Phi) + i*G_SIN(Phi));
prefactor *= pow(-1,m_rho);
Mrho = -m_rho;
break;
}
if (flat == 1) {
Amp = 1;
}
else {
Amp = prefactor * Y( 1, Mrho, cosTheta, phi);
}
// cout << " m_rho=" << m_rho << " cosTheta=" << cosTheta << " phi=" << phi << " prefactor=" << prefactor << " Amp=" << Amp << endl;
return Amp;
}