Skip to content

JialianW/Forest_RCNN

master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
January 2, 2021 13:26
July 30, 2020 15:18
kit
January 3, 2021 23:08
July 30, 2020 15:18
July 30, 2020 15:18
July 30, 2020 15:18
July 30, 2020 15:18
July 30, 2020 15:18
July 30, 2020 15:18
July 30, 2020 15:18
July 30, 2020 15:18
March 2, 2021 22:42
August 13, 2020 20:10
July 30, 2020 15:18
July 30, 2020 15:18
July 30, 2020 15:18
July 30, 2020 15:18

Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance Segmentation (ACM MM 2020)

Official implementation of:

Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance Segmentation
Jialian Wu, Liangchen Song, Tiancai Wang, Qian Zhang and Junsong Yuan
In ACM International Conference on Multimedia , Seattle WA, October 12-16, 2020.

Many thanks to mmdetection authors for their great framework!

News

Mar 2, 2021 Update: We test Forest R-CNN on LVIS v1.0 set. Thanks for considering comparing with our method :)

Jan 1, 2021 Update: We propose Forest DetSeg, an extension of original Forest R-CNN. Forest DetSeg extends the proposed method to RetinaNet. While the new work is under review now, the code has been available. More details will come up along with the new paper.

Installation

Please refer to INSTALL.md for installation and dataset preparation.

Forest R-CNN

Inference

# Examples
# single-gpu testing
python tools/test.py configs/lvis/forest_rcnn_r50_fpn.py forest_rcnn_res50.pth --out out.pkl --eval bbox segm

# multi-gpu testing
./tools/dist_test.sh configs/lvis/forest_rcnn_r50_fpn.py forest_rcnn_res50.pth ${GPU_NUM} --out out.pkl --eval bbox segm

Training

# Examples
# single-gpu training
python tools/train.py configs/lvis/forest_rcnn_r50_fpn.py --validate

# multi-gpu training
./tools/dist_train.sh configs/lvis/forest_rcnn_r50_fpn.py ${GPU_NUM} --validate

(Note that we found in our experiments the best result comes up around the 20-th epoch instead of the end of training.)

Forest RetinaNet

Inference

# Examples  
# multi-gpu testing
./tools/dist_test.sh configs/lvis/forest_retinanet_r50_fpn_1x.py forest_retinanet_res50.pth ${GPU_NUM} --out out.pkl --eval bbox segm

Training

# Examples    
# multi-gpu training
./tools/dist_train.sh configs/lvis/forest_retinanet_r50_fpn_1x.py ${GPU_NUM} --validate

Main Results

Instance Segmentation on LVIS v0.5 val set

AP and AP.b denote the mask AP and box AP. r, c, f represent the rare, common, frequent contegoires.

Method Backbone AP AP.r AP.c AP.f AP.b AP.b.r AP.b.c AP.b.f download
MaskRCNN R50-FPN 21.7 6.8 22.6 26.4 21.8 6.5 21.6 28.0 model 
Forest R-CNN R50-FPN 25.6 18.3 26.4 27.6 25.9 16.9 26.1 29.2 model 
MaskRCNN R101-FPN 23.6 10.0 24.8 27.6 23.5 8.7 23.1 29.8 model 
Forest R-CNN R101-FPN 26.9 20.1 27.9 28.3 27.5 20.0 27.5 30.4 model 
MaskRCNN X-101-32x4d-FPN 24.8 10.0 26.4 28.6 24.8 8.6 25.0 30.9 model 
Forest R-CNN X-101-32x4d-FPN 28.5 21.6 29.7 29.7 28.8 20.6 29.2 31.7 model 

Instance Segmentation on LVIS v1.0 val set

Method Backbone AP AP.r AP.c AP.f AP.b
MaskRCNN R50-FPN 19.2 0.0 17.2 29.5 20.0
Forest R-CNN R50-FPN 23.2 14.2 22.7 27.7 24.6

Visualized Examples

Citation

If you find it useful in your research, please consider citing our paper as follows:

@inproceedings{wu2020forest,
title={Forest R-CNN: Large-vocabulary long-tailed object detection and instance segmentation},
author={Wu, Jialian and Song, Liangchen and Wang, Tiancai and Zhang, Qian and Yuan, Junsong},
booktitle={Proceedings of the 28th ACM International Conference on Multimedia},
pages={1570--1578},
year={2020}}

About

Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance Segmentation (ACM MM 2020)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published